Kasvisruokailijan käsikirja

Kasvisruokavalioiden suosio on lisääntynyt räjähdysmäisesti, kirjoittaa Julieanna Hever (MS, RD, CPT) PubMedissa julkaistussa pitkässä lääkäreille suunnatussa artikkelissa. Kasvisruokailijan käsikirja sisältää vastaukset yleisimpiin kasvisruokavalioiden herättämiin kysymyksiin sekä ohjeita tasapainoisen kasvisruokavalion noudattamiseen.

Tämä opas on käännetty ja kirjoitettu henkilökohtaisena valmentajana ja ravintoneuvojana työskentelevän Julieanna Heverin artikkelin pohjalta.

Miksi valita vegaaninen tai vegetaristinen ruokavalio?

Kasvisravinnon suotuisat terveysvaikutukset on kattavasti dokumentoitu1.

Kasvipainotteinen ruokavalio laskee sydän- ja verisuonitautikuolleisuutta 2, auttaa painonhallinnassa3, vähentää lääkkeiden tarvetta4–6, pienentää riskiä sairastua moniin kroonisiin tauteihin7,8, ylläpitää tervettä painonhallintaa9 ja verenpainetta10 sekä ehkäisee hyperlipidemiaa ja hyperglykemiaa11.

Kasvisruokavalio voi jopa kääntää pitkälle edenneen valtimonkovettumataudin12,13 ja tyypin 2 diabeteksen suunnan6.

Kasvispainotteinen ravinto on terveellistä, koska se sisältää runsaasti arvokkaita mikroravinteita (vitamiinit, mineraalit, kuidut, antioksidantit, fytokemikaalit ja prebiootit). Toisaalta kasvisruokailija välttyy myös monilta teollisesti tuotetun ja ultraprosessoidun eläinperäisen ravinnon sisältämiltä epäterveellisiltä ravinteilta, kuten:

  • Tyydyttyneet (”kovat”) rasvat: Tyydyttyneet rasvat ovat ryhmä rasvahappoja, joita saadaan yleensä eläinperäisestä ravinnosta. Tyydyttyneitä keskipitkäketjuisia rasvoja esiintyy myös eräissä trooppisissa öljyissä, kuten kookos- ja palmuöljyissä.Tyydyttyneiden rasvojen vaikutuksista sydänterveyteen väännetään yhä kättä, mutta vallitsevan näkemyksen mukaan ”kovat” rasvat ovat haitallisia sydämen ja verisuonten terveydelle14,15.Erityisen haitallisia ovat teolliset transrasvat, joita muodostuu valmistuksessa moniin prosessoituihin elintarvikkeisiin, kuten kekseihin.
  • Ravinnon sisältämä kolesteroli: Elimistö tuottaa tarvitsemansa kolesterolin itse. Ravinnon sisältämän kolesterolin vaikutuksista seerumin kolesterolitasoihin on väitelty vuosikymmeniä, mutta nykytiedon valossa ravinnosta saatu kolesteroli ei juurikaan vaikuta veren kolesterolitasoihin.Ravinnosta saatu kolesteroli voi kuitenkin joidenkin tutkimusten mukaan lisätä LDL-kolesterolin oksidaatiota, mikä voi lisätä sydän- ja verisuonitauteja16–18. Ravinnon sisältämä kolesteroli on lähes aina peräisin eläinperäisestä ravinnosta.
  • Antibiootit: 70-80 % USA:ssa käytetyistä antibiooteista syötetään terveille tuotantoeläimille 19,20. Tämän tarkoituksena on ennaltaehkäistä puutteellisissa oloissa elävien tuotantoeläinten saamat infektiot. Antibioottien syöttäminen tuotantoeläimille on merkittävin yksittäinen tekijä antibioottiresistenttien bakteerikantojen kehittymiselle. Vuonna 2013 antibioottiresistentit infektiot vaivasivat 2 miljoonaa amerikkalaista, joista noin 23 000 kuoli 20.
  • Insuliinin kaltainen kasvutekijä-1 (IGF-1): Insuliinin kaltainen kasvutekijä-1 on hormoni, jota luonnostaan syntyy eläimillä ja ihmisillä. Kuten nimestä voi päätellä, se on kasvuhormoni, jota käytetään myös anabolisena steroidina. IGF-1 osallistuu elimistön kasvuun ja kudosten rakentumiseen. Se siis lisää tuotantoeläimen lihasmassaa. IGF-1 stimuloi eläimen kasvuhormonien tuotantoa 21. Kasvuhormonina IGF-1 voi lisätä syöpää täysikasvuisilla.
  • Hemirauta: Rauta on välttämätön ravintoaine, jota saa runsaasti eläinperäisestä ravinnosta, josta se imeytyy tehokkaasti verenkiertoon. Kasveissa esiintyy rautaa hieman huonommin imeytyvässä muodossa (nonhemirauta), joten kasvisravintoon voidaan lisätä rautaa.Raudan saantia ja imeytymistä voi kasvisravinnossa tehostaa C-vitamiinilla22. Eläinperäisestä ravinnosta rautaa saadaan usein liikaa; tutkimusten mukaan ylimääräinen rauta on pro-oksidatiivista ja se voi aiheuttaa paksusuolen syöpää, ateroskleroosia sekä insuliiniresistenssiä23, 24, 25, 26.
  • Karsinogeenit: Prosessoituihin eläinperäisiin ruokiin kehittyy usein valmistuksessa käytettävien korkeiden lämpötilojen vuoksi syöpiä aiheuttavia ja tulehdusta edistäviä inflammatorisia ja syöpää aiheuttavia yhdisteitä, kuten karsinogeenejä27,28, 29. Lihatuotteisiin valmistuksessa muodostuvat kemialliset yhdisteet kasvattavat kroonisten sairauksien riskiä.
  • Karnitiini: Karnitiini on aminohappo ja lysiinin johdannainen. Se kuljettaa aktiivisia rasvahappoja eläinsolun sytoplasmasta mitokondrioon, jossa rasvahappo pilkotaan energiaa tuottavassa soluhengitysreaktiossa. Elimistö valmistaa karnitiinia lysiinistä ja metioniinista, mutta sitä saa myös liha- ja maitotuotteista.Liika karnitiini voi suoliston mikrobiomin vaikutuksesta muuttua trimetyyliamiini N-oksidiksi (TMAO), joka on yhdistetty tulehduksiin, ateroskleroosiin, sydänkohtauksiin ja ennenaikaiseen kuolemaan30.
  • N-glykolyylineuramiinihappo (Neu5Gc): On lihan sisältämä yhdiste, jota ei elimistöstä luonnostaan löydy. Neu5Gc aiheuttaa tulehdusreaktion, koska immuunijärjestelmä hyökkää vierasainetta vastaan. Tulehdusreaktio voi altistaa syövälle. Krooninen tulehdus kasvattaa tyypin 2 diabeteksen riskiä ja lisää valtimoiden rasvoittumista31,32.

Fytokemikaalit

Kasviruokavalio sisältää valtavasti hyödyllisiä mikroravinteita, kuten fytokemikaaleja ja kuituja, jotka edistävät tutkimusten mukaan terveyttä. Fytokemikaalit ovat kasveissa esiintyviä yhdisteitä, jotka suojelevat kasvia UV-säteilyltä, tuholaishyönteisiltä, bakteereilta, viruksilta ja sieniltä.

Kasviperäinen ravinto on fytokemikaalien ja kuitujen sekä useimpien vitamiinien ainoa lähde. Erilaisia fytokemikaaleja, kuten karotenoideja, glukosinolaatteja ja flavonoideja on tuhansia.

Fytokemikaalit:

  • Ovat antioksidantteja, jotka neutraloivat vapaita radikaaleja33
  • Anti-inflammatorisia eli tulehduksia ehkäiseviä34
  • Fytokemikaalit estävät syöpäsolujen kasvua ja lisääntymistä35
  • Parantavat immuunijärjestelmän toimintaa36
  • Suojaavat eräiltä taudeilta, kuten osteoporoosilta ja eräiltä syöviltä, sydän- ja verisuonitaudeilta (CVD) sekä viher- ja harmaakaihilta37–39
  • Optimoi veren kolesterolitasot40,41

Kasveista ja erityisesti täysjyväviljoista saatavat kuidut hyödyttävät suoliston, verenkierron ja immuunijärjestelmän toimintaa monin tavoin. Kuitujen terveysväittämät on vahvasti todennettu ja lisää tutkimusnäyttöä kuitujen terveellisyydestä saadaan koko ajan. Kuitenkin esimerkiksi USA:ssa yli 90 % aikuisista ja lapsista syö suosituksiin nähden aivan liian vähän kuituja42.

Kasvipainotteisen ravinnon syöminen parantaa terveyttä käytännössä kaikkien ravintoa ja terveyttä käsittelevien tutkimusten mukaan. Se voi ennaltaehkäistä monia sairauksia ja siten se tuottaa säästöjä myös yhteiskunnalle43.

Sairaanhoidon ammattilaisten tulisi suositella kasvisruokavaliota terveyttä ja hyvinvointia edistävänä ja lääketieteellistä hoitoa tukevana vaihtoehtona potilaille, kirjoittaa Hever.

Ohjeita kasvisruokailun aloittamiseen

Tähän artikkeliin on koottu ohjeita ja vinkkejä tasapainoisen ja ravinnepitoisen kasvisruokavalion suunnitteluun ja aloittamiseen.

Tärkeät ravintoaineet ja niiden riittävä saanti

Kasvisruokavalion sisältämien ravintoaineiden mahdolliset puutokset herättävät kysymyksiä. Saako kasvisruokavalioista kaikki elimistön tarvitsemat ravinteet, kuten proteiinit?

Vegetaristinen ja vegaaninen ruokavalio sisältävät riittävästi elimistön tarvitsemia ravintoaineita ja edistävät monin tavoin terveyttä, toteaa Academy of Nutrition and Dietetics 44. Samassa yhteydessä painotetaan, että hyvin suunniteltu ja tasapainoinen kasvisruokavalio sopii kaikille lapsista aikuisiin, odottaville ja imettäville äideille sekä urheilijoille.

Makro- ja mikroravinteiden saannin kannalta hyvin suunniteltu ja tasapainoinen ruokavalio on yleensä suunnittelematonta ruokavaliota terveellisempi ja tukee tarvittavien ravintoaineiden saantia tehokkaasti riippumatta siitä, mistä ruokavaliosta on kyse45. Ravintoaineiden tuntemus lisää terveyttä ylläpitäviä valintoja.

Tasapainoinen kasvisruokavalio

Tasapainoinen kasvisruokavalio sisältää vihanneksia, hedelmiä, täysjyväviljoja, palkokasveja, yrttejä, mausteita sekä pähkinöitä ja siemeniä.

Puolet lautasesta tulisi täyttää vihanneksilla ja hedelmillä (US Department of Agriculture, American Cancer Society, American Heart Association), eli ravintoaineilla, jotka sisältävät runsaasti kuituja, kaliumia, magnesiumia, rautaa, folaattia sekä C- ja A-vitamiineja. Nämä ovat ravintoaineita, joita amerikkalaiset (ja ehkä myös monet suomalaiset) saavat ravinnosta liian vähän (2015 Dietary Guidelines Advisory Committee46).

Lysiini

Palkokasvit ovat hyvä lysiinin lähde. Lysiini on välttämätön aminohappo, jonka saanti voi jäädä yksipuolisissa kasvisruokavalioissa liian vähäiseksi. Palkokasvit sisältävät lisäksi mm. kuituja, kalsiumia, rautaa, sinkkiä ja seleeniä. On suositeltavaa syödä pari desiä (1,5 cups) palkokasveja päivässä.

Pähkinät sisältävät elimistön tarvitsemia välttämättömiä rasvahappoja, proteiineja, kuituja, E-vitamiinia sekä terveellisiä kasvissteroleja. Ne ylläpitävät sydämen terveyttä ja vähentävät riskiä sairastua tyypin 2 diabetekseen. Pähkinät auttavat painonhallinnassa, suojaavat silmiä kaihilta ja ehkäisevät sappikivien muodostumista47-50. Suositeltava päiväannos pähkinöitä on 30-60 g.

Siemenissä on hyviä rasvahappoja sekä runsaasti tärkeitä hivenaineita ja fytokemikaaleja. Siemeniä suositellaan syötäväksi 1-2 ruokalusikallista päivässä.

Täysjyväviljat sisältävät kaikki viljan hyvät ominaisuudet. Täysjyväviljoissa on runsaasti kuituja, B- ja E-vitamiineja, hivenaineita, rautaa, magnesiumia ja seleeniä. Hiilihydraatit antavat elimistölle energiaa.

Elimistö tarvitsee välttämättömiä rasvoja (omega-3 ja omega-6). Valitsemalla rasvojen lähteeksi ravinnon, kuten pähkinät, siemenet ja avokadot teollisten rasvojen sijaan, elimistö saa vähemmän kaloritiheiden ja hitaammin imeytyvien rasvojen lisäksi kuituja sekä muita tärkeitä ravintoaineita.

Myös yrtit ja mausteet sisältävät fytokemiaaleja. Niiden avulla ravintoon saa jännittäviä makuja ja vaihtelua.

Ruokaryhmät ja suositeltava päivittänen saanti

Ruokaryhmä Suositeltu päivittäinen annos
Vihannekset (myös tärkkelyspitoiset) Vihanneksia ja kasviksia saa syödä niin paljon, kuin jaksaa. Muista syödä monenvärisiä vihanneksia
Hedelmät 2–4 annosta (1 annos = n. 1,2 dl)
Täysjyväviljat (esim. kvinoa, täysjyväriisi, kaura) 6–11 annosta (1 annos = n. 1,2 dl keitettynä tai 1 siivu täysjyväleipää)
Palkokasvit (pavut, herneet, linssit, soijaruoat) 2–3 annosta (1 annos = n. 1,2 dl keitettynä)
Lehtivihreät vihannekset (esim. lehtikaali, salaatti, pinaatti, parsakaali) Vähintään 2–3 annosta (1 annos = n. 2,4 dl raakana tai 1,2 dl kypsänä)
Pähkinät (esim. saksanpähkinät, mantelit, pistaasit) 30-60 grammaa päivässä
Siemenet (esim. chia, hamppu, pellava) 1–3 ruokalusikallista päivässä
Vitaminoidut kasvismaidot (soijamaito, mantelimaito, kauramaito) Halutessa 4-6 dl
Tuoreet yrtit ja mausteet Mieltymysten mukaan niin paljon kuin haluaa

 

Kasvispohjaiset makroravinteet

Ravinnon sisältämää energiaa mitataan usein kilokaloreina (kcal). Energia saadaan energiaravinteista ja niiden erilaisista kombinaatioista. Hiilihydraatit (4 kcal/g), proteiinit (4 kcal/g) ja rasvat (9 kcal/g) ovat energia- ja makroravinteita. Alkoholi sisältää 7 kcal/g, mutta se ei ole oikeastaan ravintoaine – tai ehkä se joillekin on.

Makroravinteiden saantisuosituksista käydään kovaa kädenvääntöä, mutta mitään yleistä konsensusta ei ole. Toisilla runsaasti rasvaa ja vähän hiilihydraatteja sisältävät ruokavaliot toimivat, toiset suosivat vähärasvaisia ja hiilihydraattipainotteisia ruokavalioita.

Kasvava näyttö viittaa siihen, että yleispätevää yksittäistä totuutta makroravinteiden suhteista ei ole. Aineenvaihdunta on mutkikas kokonaisuus, johon vaikuttavat geenien ohella hormonit, suoliston mikrobit, maksan ja haiman terveys sekä lukemattomat muut asiat.

Stanfordin yliopiston tuore tutkimus vertasi vähähiilihydraattisen ja vähärasvaisen ruokavalion terveysvaikutuksia vuoden kestäneessä seurannassa. Mitään selkeää eroa ruokavalioiden vaikutuksista painonhallintaan ei havaittu tutkittavien ryhmien väliltä. Molemmissa seuratuissa ryhmissä esiintyi valtavasti ryhmän sisäistä vaihtelua. Keskimäärin koehenkilöiden paino putosi noin 6 kiloa, mutta suurimmilla pudottajilla painoa katosi lähes kaksikymmentä kiloa. Mayo Clinic pitää vähähiilihydraattista ruokavaliota hieman tehokkaampana laihdutusruokavaliona lyhyellä tähtäimellä kuin vähärasvaista ruokavaliota.

On myös runsaasti tutkimusnäyttöä, jonka perusteella elimistön hyvinvoinnin ja painonhallinnan kannalta parhaiten toimivat vähärasvaiset/runsashiilihydraattiset ruokavaliot (perinteinen Okinawan ruokavalio), Dean Ornish-ruokavalio, Caldwell Esselstyn-ruokavalio, Neal Barnard-ruokavalio  51, 12, 13, 6.

Ja kuitenkin Välimeren ruokavaliossa52 sekä eräissä raakaruokavalioissa päivittäisestä energiasta yli 36 % voi tulla rasvoista, mutta näilläkin ruokavalioilla on runsaasti suotuisia terveysvaikutuksia53.

On siis todennäköistä, että ruokavalioiden kokonaisuus sekä tärkeiden mikroravinteiden saanti on terveyden ja painonhallinnan kannalta tärkeämpää kuin makroravinteiden saantisuhteet.

Hiilihydraatit

Hiilihydraattien optimaaliset lähteet ovat vihannekset, hedelmät, täysjyväviljat ja palkokasvit. Nämä sisältävät hiilihydraattien lisäksi runsaasti muita hyödyllisiä ravinteita ja kuituja. Saantisuositus kaikille (paitsi odottaville ja imettäville äideille) on 130 g pivässä (The Institute of Medicine54).

Prosessoidut hiilihydraatit (sokerit, valkoiset jauhot, valkoiset pastat) eivät energian lisäksi sisällä juurikaan tärkeitä ravinteita, joten niiden runsas kulutus voi johtaa aliravitsemukseen ja elimistön sairastumiseen.

Proteiinit

Proteiinien saantisuosituksissa on hieman vaihtelua. Keho tarvitsee aminohapoista muodostuvia proteiineja, jotka se pilkkoo ravinnosta aminohapoiksi ja käyttää pääasiassa rakennusaineina (lihakset, luut, veri, entsyymit, hormonit, iho jne.). Proteiineissa esiintyy 20 aminohappoa, joista 9 on ihmiselle välttämättömiä.

Riittävä proteiinien saanti riippuu painosta ja iästä. Kasvavien lasten ja ikääntyvien vanhusten proteiinien tarve on hieman nuorten ja aikuisten tarvetta suurempi54. Vaihtelua on, mutta proteiineja tulisi saada iästä riippuen 0,8 – 1,6 grammaa painokiloa kohden päivässä. Urheilijat ja lihasmassaa kasvattavat voivat tarvita enemmänkin.

Monipuolisen kasvisruokavalion tulee sisältää riittävästi proteiineja. Parhaita proteiinien kasvislähteitä ovat: palkokasvit, pähkinät, siemenet, täysjyväviljat, soija sekä pähkinä- ja siemenvoit.

Rasvat

PUFA

Rasvat ovat haastavampi kokonaisuus, koska rasvahapot esiintyvät erilaisina rakenteina, tyydyttyneinä ja tyydyttämättöminä. Ihminen tarvitse ravinnosta monityydyttämättömiä omega-3 ja omega-6 rasvahappoja (PUFA). Kaikki muut tarvittavat rasvahapot elimistö syntetisoi näistä. Rasvahapot toimivat elimistössä eri tavoin ja niillä on omat tarkoituksensa14.

ALA, EPA ja DHA

Lyhytketjuisia omega-3 rasvoja (alfalinoleenihappo – ALA) voidaan hyödyntää energiansaannissa. Elimistö muodostaa lyhytkejuisista alfalinoleenihapoista pidempiketjuisia eikosapentaeenihappoja (EPA) ja edelleen dokosaheksaeenihappoja (DHA).

Elimistö muuttaa lyhytkestoisia omega-3 rasvahappoja pidempiketjuisiksi kuitenkin melko tehottomasti ja siksi niiden saanti lisäravinteista on suositeltavaa. EPAn ja DHAn riittävän saannin voi turvata kasvispohjaisilla omega-3 ravintolisillä, jotka on valmistettu mikrolevistä.

Alfalinoleenihapppoa saa mm. pellavansiemenistä, hampunsiemenistä, chia-siemenistä sekä vihreistä lehtikasveista ja levistä, soijasta, maapähkinöistä sekä näistä valmistetuista öljyistä.

Omega-3 mielletään helposti kalaöljystä saatavaksi, mutta EPAn ja DHAn lähteenä mikrolevistä valmistetut lisäravinteet ovat oivallinen lähde, sillä mikrolevät ovat näiden rasvojen lähde myös kaloille.

Välttämättömien rasvojen lähteenä mikrolevät voivat olla kaloja terveellisempi vaihtoehto, koska ne eivät sisällä myrkyllisiä raskasmetalleja (lyijyä, kadmiumia, elohopeaa) tai muita saastejäämiä, kuten kalat. (Itämeren silakat eivät kelpaa Euroopan markkinoille ravintona, koska ne sisältävät niin paljon myrkkyjä ja raskasmetalleja. On hullua, että niitä Suomessa voidaan markkinoida terveellisenä ruokana.)55. Mikrolevät ovat myös kestävän kehityksen kannalta järkevämpi vaihtoehto omega-3 rasvojen lähteinä kuin kalat56.

MUFA

Kertatyydyttämättömät rasvahapot (MUFA) eivät ole elimistölle välttämättömiä rasvoja, mutta niillä voi olla suotuisia vaikutuksia seerumin kolesterolitasoihin.

Jos MUFAlla korvataan tyydyttyneitä rasvoja, transrasvoja tai prosessoituja hiilihydraatteja, se voi laskea huonon LDL-kolesterolin määrää ja lisätä hyvän HDL-kolesterolin määrää.

Toisaalta kertatyydyttämättömistä kasvirasvoista valmistettuja prosessoituja kasvirasvalevitteitä ja -öljyjä on myös voimakkaasti kritisoitu. Ne käyvät läpi rajuja teollisia prosesseja, joissa rasvojen luontainen rakenne muuttuu.

Kertatyydyttämättömiä rasvahappoja on mm. oliiveissa, avokadoissa, macadamia- ja hasselpähkinöissä, pekaanipähkinöissä, maapähkinöissä sekä pähkinäöljyissä ja rypsi-, rapsi-, auringonkukka- ja safloriöljyistä.

Tyydyttyneet rasvat

Tyydyttyneet rasvat eivät ole elimistölle välttämättömiä ja ne saattavat altistaa sydän- ja verisuonitaudeille. Tyydyttyneiden rasvojen terveysvaikutuksista on kalisteltu peistä 1970-luvulta alkaen. On tutkimuksia, joiden mukaan tyydyttyneet rasvat aiheuttavat sydän- ja verisuonitauteja, mutta toisaalta tuoreimpien tutkimusten mukaan tyydyttyneet rasvat eivät itsenäisesti vaikuta sydän- ja verisuoniterveyteen negatiivisesti. Mutta se ja sama, elimistö ei välttämättä niitä tarvitse.

Tyydyttyneet rasvat ovat lähes poikkeuksetta lähtöisin eläinperäisestä ravinnosta, kuten lihasta ja meijerituotteista. Eräät trooppiset kasvirasvat, kuten kookos- ja palmuöljyt ovat myös tyydyttyneitä rasvoja. Myös avokadoissa, oliiveissa, pähkinöissä ja siemenissä on jonkin verran tyydyttyneitä rasvoja.

Tyydyttyneiden rasvojen osuus päivittäisestä energiansaannista tulisi olla 5-6 % (American Heart Organization).

Transrasvat

Transrasvat ovat epäterveellisiä rasvoja, joita on mm. uppopaistetuissa ja ultraprosessoidussa ravinnossa sekä pikaruoassa. Transrasvat kehiteltiin alun alkaen terveelliseksi vaihtoehdoksi voille ja laardille, mutta niiden on sittemmin osoitettu lisäävän sydäntautien ja syöpien riskiä.

Marraskuussa 2013 FDA julkaisi tiedonannon, jonka mukaan transrasvoja ei voi pitää terveydelle turvallisina rasvoina57. Tarkoituksena on kieltää täysin teollisten transrasvojen käyttö elintarvikkeissa. Transrasvoja esiintyy luonnostaan jonkin verran liha- ja meijerituotteissa.

Jos tuotteen paketissa lukee, että se ei sisällä transrasvoja, niitä voi siinä kuitenkin olla 0,5 grammaa per annos. Hydrogenoidut (kovetetut) ja osittain kovetetut kasvirasvat, margariinit ja prosessoidut öljyt saattavat olla epäterveellisiä ja ne kannattaa jättää kaupan hyllyyn. Myös erilaiset snacksit, keksit ja monet makeiset sisältävät haitallisia transrasvoja.

Kolesteroli

Ravinnon sisältämä kolesteroli on steroli, jota esiintyy pääasiassa eläinperäisessä ravinnossa. Keho tarvitsee kolesterolia mm. hormonien, D-vitamiinin, ruoansulatusnesteiden sekä hermoratoja suojaavien myeliinikalvojen rakentamiseen, mutta elimistö valmistaa kolesterolia itse ns. kolesterolisynteesissä.

Ravinnon sisältämän kolesterolin vaikutuksista on olemassa runsaasti ristiriitaista tietoa. Kananmunat tai muut kolesterolia sisältävät elintarvikkeet eivät ilmeisesti lisää seerumin kolesterolitasoja, mutta joidenkin tutkimusten mukaan ne voivat lisätä LDL-kolesterolia. 1970-luvulta peräisin olevan lipiditeorian mukaan kolesteroli aiheuttaa sydäntauteja, mutta tästä hypoteesista ei enää vallitse tieteellistä konsensusta.

Fytosterolit eli kasvisterolit

Fytosterolit eli kasvisterolit ovat steroidialkoholeja, yhdisteitä, joita kasveissa esiintyy luonnollisesti. Kasvisteroleja käytetään yleisesti elintarviketeollisuudessa ja kosmetiikassa.

Fytosterolit muistuttavat hieman kolesterolia. Kasvisteroleja esiintyy kaikissa kasveissa.Fytosterolit vähentävät kolesterolin imeytymistä suolistossa ja parantavat lipidien profiileja. Joidenkin tutkimusten mukaan fytosterolit, soijaproteiinit, viskoosit kuidut ja mantelit voivat laskea LDL-kolesterolia yhtä tehokkaasti kuin statiinit5,58.

Kasvisteroleja mg/100g annos:

  • Appelsiinit: 24 mg
  • Ananas: 17 mg
  • Banaani: 16 mg
  • Omena: 12-13 mg
  • Parsakaali: 39 mg
  • Lehtisalaatti: 38 mg
  • Porkkana: 16 mg
  • Tomaatti: 5-7 mg
  • Vehnä: 69 mg
  • Kaurahiutaleet: 39 mg
  • Rypsiöljy: 668 mg
  • Soijaöljy: 221 mg
  • Oliiviöljy: 154-176 mf
  • Mantelit: 143 mg
  • Pavut: 76 mg

Täysipainoinen kasvisruokavalio

Täysipainoinen ruokavalio koostuu kaikista kolmesta makroravinteesta. Ruokien ajatteleminen vain hiilihydraatteina, proteiineina ja rasvoina on eräänlainen median ja muodikkaiden laihdutusruokavalioiden ylläpitämä ajatusharha, joka ei palvele aineenvaihdunnan ja elimistön hyvinvoinnin tarpeita.

Ravintoaineet ovat komplekseja, joihin sisältyy veden ja pääravintoaineiden lisäksi runsaasti erilaisia vitamiineja ja hivenaineita, antioksidantteja, kuituja jne.

Panosta laatuun!

Terveellinen ja tasapainoinen ruokavalio sisältää runsaasti hyviä hiilihydraatteja kuten täysjyväviljoja sekä kohtuullisesti hyviä rasvoja ja proteiineja. Ravinnon terveellisyyttä tavoiteltaessa painopisteen tulee olla ravintoaineiden laadussa ja niiden sisältämissä ravinteissa.

Makroravinteiden keskinäisten suhteiden arviointi ja kaloreiden laskeminen ei ole tärkeää silloin kun syö ravinnepitoista ja terveellistä kasvisruokaa.

 

Kasvisravinnon kannalta tärkeät mikroravinteet

Kasvisravinnosta saa kaikki välttämättömät ravintoaineet, paitsi B12-vitamiinia eli kobalamiinia. Suomessa lähes kaikki tarvitsevat myös D-vitamiinia lisäravinteena lyhyen kesän ja pitkän talven vuoksi59.

Kasveista saatava D2-vitamiini eli ergokalsiferoli toimii ihmisen aineenvaihdunnassa aivan samoin kuin lampaanvillasta uutettu tai kalasta ja kalaöljystä saatava D3-vitamiini (kolekalsiferoli).

Kaikkien suomalaisten tulisi syödä D-vitamiinia lisäravinteena 50-100 µg/vuorokaudessa etenkin pimeinä vuodenaikoina. Erityisen tärkeää D-vitamiinin saanti on odottaville ja imettäville äideille, sillä sikiön matalat D-vitamiinitasot lisäävät lapsen riskiä sairastua mm. MS-tautiin ja tyypin 1 diabetekseen. Rintaruokinta ja äidinmaidosta saatava D-vitamiini tehostavat lapsen kehittyvää immuunijärjestelmää.

D-vitamiinin bioaktiivinen muoto toimii elimistössä immuunijärjestelmää säätelevänä hormonin kaltaisena sekosteroidina, joka vaikuttaa yli 200 geenin toimintaan solujen kromosomin DNA:ssa sijaitsevan VDRE-sekvenssin kautta.

B12 eli kobalamiini

B12-vitamiini eli kobalamiini on välttämätön ravintoaine. Kobalamiineja tunnetaan parikymmentä, mutta aineenvaihdunnassa bioaktiivisia ovat vain metyylikobalamiini ja adeniinikobalamiini sekä ravintolisistä saatava synteettinen syanokobalamiini.

Eräät bakteerit tuottavat kobalamiinia, Suolistobakteerit ja arkit syntetisoivat B12-vitamiineja ihmisen paksusuolessa, mutta ne eivät imeydy paksusuolesta aineenvaihdunnan käyttöön. Kasveista saatavat kobalamiinit eivät ole ihmisellä bioaktiivisia.

No fungi, plants, or animals (including humans) are capable of producing vitamin B12. Only bacteria and archaea have the enzymes needed for its synthesis.

Mihin kobalamiinia tarvitaan?

Kobalamiinia tarvitaan nopeasti uusiutuvien veren puna- ja valkosolujen valmistuksessa sekä hermosolujen ja aivojen toimintaan. Aineenvaihdunnassa kobalamiini osallistuu myös homokysteiinin metylaatioon metioniiniksi (aminohappo).

B12-vitamiinia on välttämätön tekijä foolihapon (B9-vitamiini) eli folaatin valmistuksessa. Yhdessä nämä ovat tärkeitä, koska kobalamiinia ja foolihappoa tarvitaan nukleotidien ja DNA:n synteesiin solujen uusiutuessa.

Kasvisruokailijan on turvattava B12-vitamiinin saanti

B12-vitamiini on käytännössä ainut välttämätön ravintoaine, jota kasvisruokailijat eivät ravinnosta saa. Idut, tempe ja merilevät eivät sisällä biologisesti aktiivista B12-vitamiinia, kuten jotkut uskovat. Nori-levä on ainoa poikkeus, mutta kuivattaminen tuhoaa nori-levästä B12-vitamiinin. Sekaravintoa syövät saavat kobalamiinia riittävästi lihasta, kalasta, kananmunista ja meijerituotteista.

Although there are claims that fermented foods, spirulina, chlorella, certain mushrooms, and sea vegetables, among other foods, can provide B12, the vitamin is not usually biologically active. These inactive forms act as B12 analogues, attaching to B12receptors, preventing absorption of the functional version, and thereby promoting deficiency. The most reliable method of avoiding deficiency for vegans or anyone else at risk is to take a B12 supplement. Julieanna Hever

Kobalamiinia on myös vegaaneille

Apteekeista ja luontaistuotekaupoista saa vegaaneille sopivaa bakteeriperäistä B12-vitamiinivalmistetta. Lisäksi moniin kasviperäisiin ruoka-aineksiin, kuten kasvimaitoihin lisätään usein B12-vitamiinia.

B12-vitamiinin (kobalamiinin) vähimmäistarve on

  • naisilla: 2,0 µg/vrk
  • miehillä: 2,4 µg/vrk
  • lapsilla: 0,7 – 1,4 µg/vrk

Kobalamiinivarastot

Elimistön B12-varastot ovat suhteellisen suuret (2 – 3 mg). Varastot riittävät useamman vuoden tarpeisiin. Mikäli vitamiinin saanti vaikeutuu, kliinisen puutostilan kehittyminen voikin kestää useita vuosia. Keskimääräinen B12-vitamiinin saanti ravinnosta on 5-8 µg/vrk, mikä ylittää suositukset moninkertaisesti.

Kobalamiinin puutos

B12-vitamiinin puutoksen alkuoireena on kihelmöinti ja tunnottomuus ääreishermostossa, kuten sormenpäissä. Oireet voivat ilmentyä myös lihasheikkoutena ja muistin häiriöinä. Harvinaisempia oireita ovat kielitulehdukset, verisuonitukokset ja ihon pigmentin lisääntyminen.

Pitkäaikainen B12-vitamiinin puutos johtaa peruuttamattomiin hermostollisiin vaurioihin sekä perniöösiin anemiaan.

B12-vitamiinin tarve korostuu tietyissä tapauksissa:

  • laktoosi-intoleranssi
  • kasviruokavalio
  • keliakia
  • raskaus
  • imetys
  • sairaus- ja toipilasaika
  • kova fyysinen rasitus
  • yksipuolinen ravinto
  • pitkäaikainen paasto
  • dieetti ja laihdutuskuurit
  • ehkäisypillerien käyttö
  • runsas alkoholinkäyttö

D-vitamiini

Paljas iho syntetisoi D-vitamiinia auringon UVB-säteilyn avulla keskikesän kuukausina riittävästi. Vain 15-30 minuuttia keskipäivän auringonvalossa riittää syntetisoimaan paljaalla iholla 250 µg D-vitamiinin lähtöaineena toimivaa7-dehydrokolesterolia, josta kolesterolisynteesissä muodostuu kolekalsiferolia eli D3-vitamiinia,

Kalsidioli

Kolekalsiferoli hydroksyloidaan maksassa kalsidioliksi, joka on D-vitamiinin verestä mitattava varastomuoto. Aineenvaihdunta tarvitsee vuorokaudessa noin 40 µg D-vitamiinia ja loput varastoituvat rasvasoluihin, joista sitä vapautuu aineenvaihdunnan käyttöön pimeänä aikana.

D-vitamiinia tarvitaan mm. kalsiumin homeostaasin säätelyyn sekä verisuonten terveyden ja immuunijärjestelmän toiminnan turvaamiseen.

Kalsitrioli

Kalsidiolista munuaiset hydroksyloivat edelleen pieniä määriä hormonin tavoin vaikuttavaa kalsitriolia. Kalsitrioli on sekosteroidi, joka vaikuttaa monin tavoin aineenvaihdunnassa.

Kalsitrioli kuljetetaan solujen pinnalla oleviin D-vitamiinireseptoreihin ja niiden kautta edelleen soluissa olevan kromosomin D-vitamiiniin reagoivaan DNA:n osaan (Vitamin D Responding Elements). VDRE:ssä kalsitrioli vaikuttaa yli 200 geenin toimintaan.

Nykykäsityksen mukaan kalsitrioli on immunomodulatorinen eli immuunijärjestelmän toimintaa ohjaava hormoni.

D-vitamiinin saanti

D-vitamiini vaikuttaa kaikkien elävien organismien aineenvaihduntaan. Se kehittyi evoluutiossa ilmeisesti jo noin 500 miljoonaa vuotta sitten. Kaikilla selkärankaisilla on monimutkainen D-vitamiiniin liittyvä umpieritysjärjestelmä ja lähes kaikkien solujen pinnalla on D-vitamiiniin reagoiva reseptori.

Vaikka iho syntetisoi D-vitamiinia, on sen puutos valitettavan yleinen ongelma maailmanlaajuisesti. D-vitamiini edellyttää riittävästi auringon UVB-säteilyä, mutta Suomen korkeudella sen saanti rajoittuu vain keskikesän kuukausiin. Muina aikoina otsonikerros estää UVB-säteilyn, jolloin D-vitamiinia ei muodostu iholla. D-vitamiinin puutokseen voi vaikuttaa myös se, että suurin osa ihmisistä viettää päivät sisätiloissa.

Ravinnosta, kuten rasvaisista kaloista, sienistä ja kananmunankeltuaisista saa jonkin verran D-vitamiinia, mutta ei riittävästi. Siksi D-vitamiinia lisätään moniin elintarvikkeisiin, kuten maitoihin ja margariineihin.

Kasvisruokailijoiden on turvattava D-vitamiinin saanti. Kasvipohjainen ergokalsiferoli (D2) toimii aivan kuten kolekalsiferoli (D3). Lisäksi on löydetty jäkälää, josta saa D3-vitamiinia60.

Kalsium

Makromineraali kalsiumia on elimistössä enemmän kuin mitään muuta mineraalia. Noin 99% kalsiumista on varastoituneena luustoon ja hampaisiin ja 1 % on vapaana kudoksissa ja verenkierrossa.

Ihmisen elimistö tarvitsee kalsiumia luuston rakennusaineena ja lihastoiminnassa sekä veren hyytymisprosesseissa. Se säätelee mm. hermo-lihasärtyvyyttä, solukalvoissa tapahtuvia kuljetuksia, hormoni- ja välittäjäaineiden vapautumista sekä useita entsyymireaktioita.

Kasvisruokailijat saavat yleensä riittävästi kalsiumia, mutta koska kalsiumin aineenvaihdunta edellyttää muita ravinteita, kuten D-vitamiinia, K-vitamiinia ja kobalamiinia, kasvisruokailijan on huolehdittava myös niiden riittävästä saannista. Kalsiumin aineenvaihduntaan ja luuston hyvinvointiin vaikuttavat myös magnesium, fosfori ja kalium.

Kalsiumin saanti

Hyviä kalsiumin lähteitä ovat vihreät vihannekset ja salaatit, kuten brokkoli, lehtikaali ja pinaatti, seesaminsiemenet, tahini, tempe, mantelit ja mantelivoi, appelsiinit, bataatit ja pavut.

Riippumatta ravinnosta saadusta kalsiumista, tärkeää on se, kuinka paljon kalsiumista todellisuudessa imeytyy ravinnosta elimistön hyödynnettäväksi. Monet tekijät vaikuttavat kalsiumin imeytymiseen:

  • Kalsiumin kokonaissaanti vaikuttaa imeytymiseen: Vain noin 500 mg imeytyy kerralla ja imeytyminen vähenee saannin kasvaessa.
  • Ikä vaikuttaa kalsiumin imeytymiseen. Vauvoilla ja lapsilla kalsiumin imeytyminen on tehokasta, koska luusto kasvaa voimakkaasti. Ikääntyminen hidastaa imeytymistä.
  • Fylaatit,joita saadaan mm. täysjyväviljoista, pavuista, siemenistä ja pähkinöistä voivat sitoutua kalsiumiin sekä muihin mineraaleihin ja rajoittaa niiden imeytymistä.
  • Oksalaatit, joita saadaan mm. monista vihreistä lehtikasveista, kuten pinaatista, lehtijuurikkaista, persiljasta, purjosta, punajuuren lehdistä sekä marjoista, manteleista, maapähkinöistä, soijapavuista, okrasta, kvinoasta, kaakaosta, teestä ja suklaasta voivat myös heikentää kalsiumin ja muiden mineraalien imeytymistä.
  • Kalsiumia ei imeydy, jos D-vitamiinitasot ovat liian alhaiset.
  • Runsas suolan, proteiinien, kahvin ja fosforin saanti lisää kalsiumin poistumista elimistöstä62.

Rauta

Raudan puutos on yleisin ravintoaineen puutos sekä teollistuneissa että kehittyvissä maissa 63. Raudan puutos on erityisen yleistä nuorilla naisilla, odottavilla äideillä, vauvoilla ja lapsilla sekä teini-ikäisillä tytöillä. Myös runsaat kuukautiset voivat altistaa raudanpuutokselle.

Sekä sekasyöjät että kasvisravintoa syövät voivat kärsiä raudanpuutteesta.

Hemi- ja nonhemirauta

Rautaa esiintyy kahdessa muodossa: hemi- ja nonhemirautana. Lihassa ja kalassa on noin puolet hemirautaa, joka imeytyy nonhemirautaa paremmin. Kasviksissa esiintyy vain nonhemirautaa. Tästä syystä on suositeltavaa, että kasvisruokavaliossa rautaa pyritään saamaan ravinnosta hieman yleisiä suosituksia enemmän.

Tämä ei ole vaikeaa, sillä monet kasvit sisältävät runsaasti rautaa. Vihreät lehtikasvit ja palkokasvit ovat erinomaisia raudan lähteitä. Myös soijavalmisteissa, tummassa suklaassa, seesaminsiemenissä, auringonkukansiemenissä, rusinoissa, luumuissa ja cashew-pähkinöissä on runsaasti rautaa.

Raudan imeytyminen

Raudan imeytymistä ravinnosta voivat heikentää fytaatit, teen sisältämät tanniinit, kalsium, kuidut, kahvin ja kaakaon polyfenolit sekä eräät mausteet (korianteri, chili, kurkuma).

Raudan imeytymistä voi tehostaa syömällä runsaasti rautaa sisältäviä kasviksia eri aikoina kuin imeytymistä heikentäviä aineita. Raudan imeytymistä tehostaa myös, jos syö runsaasti rautaa sisältäviä kasviksia yhdessä C-vitamiinia ja orgaanisia happoja sisältävien kasvisten kanssa.

Esimerkiksi: smoothie, joka sisältää vihreitä lehtikasveja (lehtikaalia, pinaattia tms), joista saa rautaa sekä hedelmiä tai tomaatteja, jossa on C-vitamiinia.

Jodi

Jodia ei välttämättä saa riittävästi kasviravinnosta, mutta sitä on mm. levissä. On kuitenkin huomattava, että levissä jodin pitoisuudet vaihtelevat todella paljon ja joissain levissä jodin määrä on voi ylittää toksisen rajan. Nori-levä on hyvä jodin lähde, mutta hijiki tai hiziki sisältää niin paljon arseenia, että sen syömistä ei suositella.

Jodioidusta suolasta saa riittävästi jodia. Puolikas teelusikallinen jodioitua suolaa riittää kattamaan päivittäisen jodin tarpeen (150 µg). Merisuola ei sisällä jodia.

Jodi vaikuttaa kilpirauhasen toimintaan

Kilpirauhanen säätelee elimistön aineenvaihduntaa ja erittää tärkeitä kilpirauhashormoneja, jotka huolehtivat sisäelinten toiminnasta. Kilpirauhasen toiminnalle jodin saanti on tärkeää.

Kilpirauhasen vajaatoimintaa sairastavan on jodin imeytymisen varmistamiseksi hyvä välttää ns. goitrogeenisiä ruokia, koska ne heikentävät jodin imeytymistä ja voivat pahentaa olemassa olevaa kilpirauhasen vajaatoimintaa.

Goitrogeeniset ruoat

Goitrogeenejä on mm. ruusukalissa, kukkakaalissa, parsakaalissa, retiisissä, sellerissä, maississa, soijatuotteissa, maapähkinöissä, avokadoissa, appelsiineissa, viikunoissa, pinaatissa, bataatissa, mansikoissa ja vehnässä. Näiden välttely on perusteltua, jos on sairastunut kilpirauhasen vajaatoimintaan.

Goitrogeenisten ruokien välttäminen ei ole tarpeen, jos jodin saanti on riittävää ja kilpirauhanen toimii normaalisti.

Seleeni

Seleeni on voimaks antioksidantti, joka suojaa soluja. Sitä tarvitaan kilpirauhashormin säätelyyn, reproduktioon sekä DNA:n synteesiin. Kasvisravinto sisältää riittävästi seleeniä. Sitä saa runsaasti mm. täysjyväviljoista, palkokasveista, siemenistä ja pähkinöistä. Venäjällä ja Kiinassa on alueita, joissa maaperän ravinnepitoisuus on niin köyhtynyttä, että seleenin puutosta voi esiintyä. Muualla seleenin puutos on harvinaista.

Sinkki

Sinkki tukee immuunijärjestelmän toimintaa ja tehostaa haavojen parantumista. Sinkki osallistuu myös proteiinien ja DNA:n synteesiin, sikiön kehitykseen, sekä lasten kasvuun.

Kasvien sisältämien fylaattien vaikutuksesta sinkin saanti kasviksista on vähäisempää kuin eläinperäisestä ravinnosta. Sinkin puutos on vaikea havaita verikokeissa, mutta puutos voi ilmentyä haavojen paranemisen hitautena, kasvun pysähtymisenä (lapsilla), kaljuuntumisena, heikentyneenä vastustuskykynä, ruokahaluttomuutena, makuhäiriöinä sekä ihon ja silmien leesioina.

Puutteellisen imeytymisen vuoksi kasvissyöjien on syötävä sinkkiä jopa 50 % virallisia suosituksia enemmän. Hyviä lähteitä sinkin saannille ovat palkokasvit, pähkinät, siemenet, soijatuotteet ja täysjyväviljat.

 

Tärkeimpien ravintoaineiden lähteet

Ravinne Ruoka
Proteiini palkokasvit (pavut, linssit, herneet, maapähkinät), pähkinät, siemenet, soijatuotteet (tempe, tofu)
Omega-3 rasvat siemenet (chia, hamppu, pellava), vihreät lehtikasvit, mikrolevät, soijapavut ja soijavalmisteet, saksanpähkinät
Kuitu vihannekset, hedelmät (marjat, päärynät, papaijat, kuivatut hedelmät), avokado, palkokasvit (pavut, linssit, herneet), pähkinät, siemenet, täysjyväviljat
Kalsium vähän oksalaattia sisältävät vihreät lehtikasvit (brokkoli, bok choy, kaali, lehtisalaatit, voikukan lehdet, vesikrassi), kalsiumia sisältävä tofu, mantelit, mantelivoi, kalsiumia sisältävät kasvimaidot (mantelimaito, kauramaito, soijamaito) seesaminsiemenet, tahini, viikunat, melassi (blackstrap molasses)
Jodi vesikasvit ja levät (arame, dulse, nori, wakame), jodioitu suola
Rauta palkokasvit (pavut, linssit, herneet, maapähkinät), vihreät lehtikasvit, soijapavut ja soijatuotteet, kvinoa, perunat, kuivatut hedelmät, tumma suklaa, tahini, siemenet (kurpitsa, seesami, auringonkukka), levät (dulse, nori)
Sinkki palkokasvit (pavut, linssit, herneet, maapähkinät) soijatuotteet, pähkinät, siemenet, kaura
Koliini palkokasvit (pavut, linssit, herneet, maapähkinät), bnaani, brokkoli, kaura, appelsiinit, kvinoa, soijatuotteet
Folaatti vihreät lehtikasvit, mantelit, parsa, avokado, punajuuret, folaattia sisältävät viljat (leivät, pastat, riisit), appelsiinit, kvinoa, ravintohiiva
B12 –Vitamiini elintarvikkeet, joihin B12 -vitamiinia eli kobalamiinia on lisätty (ravintohiiva, kasvimaidot), kasvipohjainen B12 lisäravinne (2500 μg viikossa)
C -Vitamiini hedelmät (marjat, sitrushedelmät, verkkomeloni, kiwi-hedelmä, mango, papaya, ananans), vihreät lehtikasvit, perunat, herneet, paprikat, chilipippurit, tomaatit
D – Vitamiini sun, fortified plant milks, supplement if deficient
K -Vitamiini vihreät lehtikasvit, levät, parsa, avokado, brokkoli, ruusukaali, kukkakaali, linssit, herneet, nattō (a traditional Japanese food made from soybeans fermented with Bacillus subtilis var nattō)

 

Tutustu elintarvikkeiden ravintosisältöön ennen tuotteen ostoa!

  • Sivuuta harhaanjohtava markkinointilauseet elintarvikepakkauksissa, kuten (”erinomainen …”, ”…vapaa”, ”luonnollinen”)
  • Keskity elintarvikkeen ravintosisältöön ja unohda kaikki ylimääräiset merkinnät pakkauksessa (ne ovat markkinointia)
  • Suosi elintarvikkeita, jotka:
    • – sisältävät tuttuja ravintoaineita
    • – joiden tuoteseloste on lyhyt (ilman useita lisäaineita)
    • – eivät sisällä keinotekoisia makeutusaineita, makuvahventeita, värejä, säilöntäaineita, stabilointiaineita jne.
    • – älä osta elintarvikkeita, joihin on lisätty tuntemattomia lisäaineita

Suositeltavia sivustoja terveellisestä kasvisravinnosta kiinnostuneille

 

Lähteet:

Julieanna Haver (Ms, RD, CPT): Plant-Based Dietes: A Physician’s Guide, 6.6.2016

  1. Graffeo C. Is there evidence to support a vegetarian diet in common chronic diseases? [Internet] New York, NY: Clinical Correlations; 2013. Jun 20, [cited 2015 Mar 17]:[about 8 p]. Available from:www.clinicalcorrelations.org/?p=6186.
  2. Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013 Jul 8;173(13):1230–8. DOI:http://dx.doi.org/10.1001/jamainternmed.2013.6473. [PMC free article] [PubMed]
  3. Rosell M, Appleby P, Spencer E, Key T. Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes (Lond) 2006 Sep;30(9):1389–96. DOI:http://dx.doi.org/10.1038/sj.ijo.0803305. [PubMed]
  4. Ornish D. Statins and the soul of medicine. Am J Cardiol. 2002 Jun 1;89(11):1286–90. DOI:http://dx.doi.org/10.1016/S0002-9149(02)02327-5. [PubMed]
  5. Jenkins DJ, Kendall CW, Marchie A, et al. Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr. 2005 Feb;81(2):380–7.[PubMed]
  6. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009 May;89(5):1588S–1596S. DOI: http://dx.doi.org/10.3945/ajcn.2009.26736H. [PMC free article] [PubMed]
  7. Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab. 2012;60(4):233–40.DOI: http://dx.doi.org/10.1159/000337301. [PubMed]
  8. Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013 Spring;17(2):61–6. DOI: http://dx.doi.org/10.7812/TPP/12-085. [PMC free article] [PubMed]
  9. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009 May;32(5):791–6. DOI: http://dx.doi.org/10.2337/dc08-1886. [PMC free article] [PubMed]
  10. Appleby PN, Davey GK, Key TJ. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002 Oct;5(5):645–54. DOI:http://dx.doi.org/10.1079/PHN2002332. [PubMed]
  11. Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol. 2009 Oct 1;104(7):947–56. DOI: http://dx.doi.org/10.1016/j.amjcard.2009.05.032. [PubMed]
  12. Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998 Dec 16;280(23):2001–7. DOI: http://dx.doi.org/10.1001/jama.280.23.2001.[PubMed]
  13. Esselstyn CB, Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014 Jul;63(7):356–364b. [PubMed]
  14. Vannice G, Rasmussen H. Position of the Academy of Nutrition and Dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014 Jan;114(1):136–53. DOI:http://dx.doi.org/10.1016/j.jand.2013.11.001. Erratum in: J Acad Nutr Diet 2014 Apr;114(4):644. DOI:http://dx.doi.org/10.1016/j.jand.2014.02.014. [PubMed]
  15. Saturated Fats [Internet] Dallas, TX: American Heart Association; 2015. Jan 12, [cited 2015 Mar 17]. Available from: www.heart.org/HEARTORG/GettingHealthy/NutritionCenter/HealthyEating/Saturated-Fats_UCM_301110_Article.jsp.
  16. Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr. 1992 Jun;55(6):1060–70. [PubMed]
  17. Howell WH, McNamara DJ, Tosca MA, Smith BT, Gaines JA. Plasma lipid and lipoprotein responses to dietary fat and cholesterol: a meta-analysis. Am J Clin Nutr. 1997 Jun;65(6):1747–64. [PubMed]
  18. Spence JD, Jenkins DJ, Davignon J. Dietary cholesterol and egg yolks: not for patients at risk of vascular disease. Can J Cardiol. 2010 Nov;26(9):e336–9. [PMC free article] [PubMed]
  19. Record-high antibiotic sales for meat and poultry production [Internet] Philadelphia, PA: The Pew Charitable Trusts; 2013. Feb 6, [cited 2015 Apr 7]. Available from: www.pewtrusts.org/en/about/news-room/news/2013/02/06/recordhigh-antibiotic-sales-for-meat-and-poultry-production.
  20. Antibiotic resistance threats in the United States, 2013 [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2014. Jul 17, [cited 2015 Apr 7]. Available from:www.cdc.gov/drugresistance/threat-report-2013/.
  21. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002 Nov;11(11):1441–8. [PubMed]
  22. Iron: dietary supplement fact sheet [Internet] Bethesda, MD: National Institutes of Health, Office of Dietary Supplements; 2015. Feb 19, [cited 2015 Apr 12]. Available from:http://ods.od.nih.gov/factsheets/Iron-HealthProfessional/.
  23. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2–3):65–87. DOI: http://dx.doi.org/10.1016/j.tox.2011.03.001. [PubMed]
  24. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 2011 Feb;4(2):177–84. DOI:http://dx.doi.org/10.1158/1940-6207.CAPR-10-0113. [PubMed]
  25. Ahluwalia N, Genoux A, Ferrieres J, et al. Iron status is associated with carotid atherosclerotic plaques in middle-aged adults. J Nutr. 2010 Apr;140(4):812–6. DOI: http://dx.doi.org/10.3945/jn.109.110353. [PMC free article] [PubMed]
  26. Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003 Sep;78(3 Suppl):633S–639S. [PubMed]
  27. European Commission Scientific Committee on Food . Polycyclic aromatic hydrocarbons— occurrence in foods, dietary exposure and health effects [Internet] Brussels, Belgium: European Commission Health and Consumer Protection Directorate-General; 2002. Dec 4, [cited 2015 Apr 7]. Available from:http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf.
  28. Chemicals in meat cooked at high temperatures and cancer risk [Internet] Bethesda, MD: National Cancer Institute at the National Institutes of Health; 2010. Oct 15, [cited 2015 Apr 7]. Available from:www.cancer.gov/cancertopics/causes-prevention/risk/diet/cooked-meats-fact-sheet.
  29. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010 Jun;110(6):911–6. DOI:http://dx.doi.org/10.1016/j.jada.2010.03.018. [PMC free article] [PubMed]
  30. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576–85. DOI:http://dx.doi.org/10.1038/nm.3145. [PMC free article] [PubMed]
  31. Hedlund M, Padler-Karavani V, Varki NM, Varki A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18936–41. DOI: http://dx.doi.org/10.1073/pnas.0803943105. [PMC free article] [PubMed]
  32. Taylor RE, Gregg CJ, Padler-Karavani V, et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010 Aug 2;207(8):1637–46. DOI: http://dx.doi.org/10.1084/jem.20100575. [PMC free article] [PubMed]
  33. Food Insight Functional foods fact sheet: antioxidants [Internet] Washington DC: International Food Information Council Foundation; 2009. Oct 14, [cited 2015 Apr 17]. Available from:www.foodinsight.org/Functional_Foods_Fact_Sheet_Antioxidants.
  34. Bellik Y, Boukraâ L, Alzahrani HA, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2012 Dec 27;18(1):322–53. DOI:http://dx.doi.org/10.3390/molecules18010322. [PubMed]
  35. Phytochemicals: the cancer fighters in the foods we eat [Internet] Washington, DC: American Institute for Cancer Research; 2013. Apr 10, [cited 2015 Apr 17]. Available from: www.aicr.org/reduce-your-cancer-risk/diet/elements_phytochemicals.html.
  36. Schmitz H, Chevaux K. Defining the role of dietary phytochemicals in modulating human immune function. In: Gershwin ME, German JB, Keen CL, editors. Nutrition and immunology: principles and practice. Totowa, NJ: Humana Press Inc; 2000. pp. 107–19.
  37. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas. 2011 Dec;70(4):333–8. DOI: http://dx.doi.org/10.1016/j.maturitas.2011.09.001.[PubMed]
  38. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med. 2012 Mar;5(3):243–8. DOI: http://dx.doi.org/10.1016/S1995-7645(12)60033-9. [PubMed]
  39. Basu HN, Del Vecchio AJ, Filder F, Orthoeter FT. Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc. 2001 Jul;78(7):665–75. DOI:http://dx.doi.org/10.1007/s11746-001-0324-x.
  40. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007 Apr;85(4):1148–56. [PubMed]
  41. Howard BV, Kritchevsky D. Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation. 1997 Jun 3;95(11):2591–3. DOI:http://dx.doi.org/10.1161/01.CIR.95.11.2591. [PubMed]
  42. Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012 Jul;142(7):1390S–401S. DOI:http://dx.doi.org/10.3945/jn.112.160176. [PubMed]
  43. National Center for Chronic Disease Prevention and Health Promotion . The power of prevention: chronic disease … the public health challenge of the 21st century [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2009. [cited 2015 Mar 17]. Available from:www.cdc.gov/chronicdisease/pdf/2009-power-of-prevention.pdf.
  44. Craig WJ, Mangels AR, American Dietetic Association Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009 Jul;109(7):1266–82. DOI:http://dx.doi.org/10.1016/j.jada.2009.05.027. [PubMed]
  45. Farmer B, Larson BT, Fulgoni VL, III, Rainville AJ, Liepa GU. A vegetarian diet pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999–2004. J Am Diet Assoc. 2011 Jun;111(6):819–27. DOI: http://dx.doi.org/10.1016/j.jada.2011.03.012.[PubMed]
  46. 2015 Dietary Guidelines Advisory Committee . Scientific report of the 2015 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture [Internet] Washington, DC: USDA, Department of Health and Human Services; 2015. Feb, [cited 2015 Mar 18]. Available from: www.health.gov/dietaryguidelines/2015-scientific-report/PDFs/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf.
  47. Sabaté J. Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. Am J Clin Nutr. 1999 Sep;70(3 Suppl):500S–503S. [PubMed]
  48. O’Neil CE, Keast DR, Nicklas TA, Fulgoni VL., 3rd Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in US adults: NHANES 1999–2004. J Am Coll Nutr. 2011 Dec;30(6):502–10. DOI: http://dx.doi.org/10.1080/07315724.2011.10719996.[PubMed]
  49. Seddon JM, Cote J, Rosner B. Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol. 2003 Dec;121(12):1728–37. DOI:http://dx.doi.org/10.1001/archopht.121.12.1728. Erratum in: Arch Ophthalmol 2004 Mar;122(3):426. DOI:http://dx.doi.org/10.1001/archopht.122.3.426. [PubMed]
  50. Tsai CJ, Leitzmann MF, Hu FB, Willett WC, Giovannucci EL. Frequent nut consumption and decreased risk of cholecystectomy in women. Am J Clin Nutr. 2004 Jul;80(1):76–81. [PubMed]
  51. Wilcox DC, Wilcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009 Aug;28(Suppl):500S–516S. DOI: http://dx.doi.org/10.1080/07315724.2009.10718117. [PubMed]
  52. Allbaugh L. Crete: a case study of an underdeveloped area. Princeton, NJ: Princeton University Press; 1953.
  53. Davis B, Melina V. Becoming vegan: comprehensive edition. Summertown, TN: Book Publishing Company; 2014.
  54. Dietary reference intakes: macronutrients [Internet] Washinton, DC: Institute of Medicine of the National Academies; 2005. [cited 2015 Apr 15]. Available from:https://iom.nationalacademies.org/~/media/Files/Activity%20Files/Nutrition/DRIs/DRI_Macronutrients.pdf.
  55. Fish [Internet] Washington DC: Physicians Committee for Responsible Medicine; 2009. Jan, [cited 2016 Mar 17]. Available from: www.pcrm.org/health/reports/fish.
  56. Worm B, Barbier EB, Beaumont N, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006 Nov 3;314(5800):787–90. DOI: http://dx.doi.org/10.1126/science.1132294. [PubMed]
  57. FDA cuts trans fats in processed foods [Internet] Washington DC: US Food and Drug Administration; 2015. Jun 16, [2016 Mar 17]. Available from:www.fda.gov/ForConsumers/ConsumerUpdates/ucm372915.htm.
  58. Jenkins DJ, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003 Jul 23;290(4):502–10. DOI:http://dx.doi.org/10.1001/jama.290.4.502. [PubMed]
  59. Jacobs DR, Jr, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009 May;89(5):1543S–1548S. DOI:http://dx.doi.org/10.3945/ajcn.2009.26736B. [PMC free article] [PubMed]
  60. Watson E. Veggie vitamin D3 maker explores novel production process to secure future supplies [Internet] Montpelier, France: William Reed Business Media; 2012. Mar 13, [cited 2016 Jun 6]. Available from: www.nutraingredients-usa.com/Suppliers2/Veggie-vitamin-D3-maker-explores-novel-production-process-to-secure-future-supplies.
  61. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011 Jan;96(1):53–8. DOI: http://dx.doi.org/10.1210/jc.2010-2704. [PMC free article] [PubMed]
  62. National Institutes of Health Office of Dietary Supplements . Calcium: dietary supplement fact sheet [Internet] Washington, DC: National Institutes of Health; 2013. Nov 21, [cited 2015 Mar 26]. Available from: http://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/.
  63. Part II. Evaluating the public health significance of micronutrient malnutrition. In: Allen L, de Benoist B, Dary O, Hurrell R, editors. Guidelines on food fortification with micronutrients. Geneva, Switzerland: World Health Organization; 2006. pp. 43–56.
  64. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014 Sep;68(9):856–62. DOI: http://dx.doi.org/10.1136/jech-2013-203500. [PMC free article] [PubMed]
  65. Gallant MP. The influence of social support on chronic illness self-management: a review and directions for research. Health Educ Behav. 2003 Apr;30(2):170–95. DOI:http://dx.doi.org/10.1177/1090198102251030. [PubMed]



Hiilihydraattien rajoittaminen korjaa maksa-arvoja

Pienimuotoisen ruotsalaistutkimuksen mukaan hiilihydraattien rajoittaminen korjaa maksa-arvoja ylipainoisilla alkoholista riippumatonta rasvamaksaa sairastavilla. Tutkimuksen mukaan vähän hiilihydraatteja sisältävällä ravinnolla on selvästi suotuisia vaikutuksia alkoholista riippumatonta rasvamaksaa sairastavien terveydelle. Tutkimuksesta uutisoi Medical News Today 20.02.2018. Tutkimus on julkaistu Cell Metabolism lehdessä.

Alkoholista riippumaton rasvamaksa (NAFLD) yleistyy nopeasti kaikissa ikäryhmissä ja se on lasten yleisin maksasairaus. NAFLD voi johtaa diabeteksen kehittymiseen, verenpainetautiin, maksakirroosiin ja maksasyöpään.

NAFLD lisääntyy erityisesti keskivartalolihavilla aikuisilla ja lapsilla. Yhtenä syynä voi olla runsas fruktoosin saanti mm. virvoitusjuomista ja makeisista. Yli 15 g fruktoosia päivässä on joidenkin tutkimusten valossa maksalle haitallista. Fruktoosi voi aiheuttaa maksan sidekudostumista henkilöillä, joilla on alkoholista riippumaton rasvamaksa.

NAFLD ja PNPLA3

Rasvamaksassa rasvaa kertyy maksasolujen sisälle. Rasvamaksan tunnusmerkistö täyttyy, kun yli 5 % maksakudoksesta koostuu rasvapisaroista.

Rasvamaksan komplikaatioiden, kuten sepelvaltimotaudin, aivohalvauksen ja tyypin 2 diabeteksen riski kasvaa vain niillä henkilöillä, joilla on sekä NAFLD että metabolinen oireyhtymä, kertoo Aki Käräjämäki väitöstutkimuksessaan.

Rasvamaksa kaksinkertaistaa eteisvärinän riskin ja on siten jopa suurempi riskitekijä kuin verenpainetauti, jota on perinteisesti pidetty olennaisena eteisvärinän kehittymiselle.

Pregnane-X-reseptori

Lisävalaistusta alkoholista riippumattoman rasvamaksan kehittymisen syihin antaa Aki Käräjämäen 16 vuotta kestänyt väitöstutkimus, jossa seurattiin 1000 keski-ikäistä pohjoissuomalaista henkilöä.

Tutkimuksessa havaittiin, että mm. lääke- ja energia-aineenvaihduntaa säätelevän Pregnane X-reseptorin aktivaatio muutti terveiden nuorten ihmisten maksan rasva-aineenvaihduntaa tavalla, joka voi altistaa rasvamaksalle.

Väitöstutkimuksen kirjoittajan mukaan jopa sadat lääkeaineet, luontaistuotteet ja ympäristökemikaalit aktivoivat Pregnane-X-reseptoria ja voivat näin vaikuttaa maksan rasva-aineenvaihduntaan ja edesauttaa alkoholiin liittymättömän rasvamaksataudin puhkeamista.

(LL Aki Käräjämäen väitöskirja Non-alcoholic fatty liver disease (NAFLD) – perspectives to etiology, complications and lipid metabolism tarkastetaan Oulun yliopistossa 8.12.2017)

Alkoholista riippumaton rasvamaksa – NAFLD (Non-Alcoholic-Fatty-Liver-Disease)

Alkoholista riippumaton rasvamaksa assosioituu vahvasti lihavuuteen, metaboliseen oireyhtymään ja tyypin 2 diabetekseen. NAFLD on maailman yleisin maksasairaus. Eurooppalaisista jopa 20-25 % saattaa tietämättään sairastaa alkoholista riippumatonta rasvamaksaa, suomalaisista 45-74-vuotiaista sitä sairastaa noin 21 %.

PNPLA3-rasvamaksa

NAFLD ei ole yksi sairaus. Diabetekselle ja sepelvaltimotaudille altistava metabolinen rasvamaksa liittyy metaboliseen oireyhtymään ja maksan insuliiniresistenssiin.

PNPLA3-rasvamaksan taustalla on PNPLA3-geenin muunnos (PNPLA3| 148M), jonka kantajien maksa rasvoittuu normaalia helpommin. Jopa 40 %:lla eurooppalaisista on tämä geenimuunnos. Tähän ei liity insuliiniresistenssiä, eikä se altista diabetekselle.

Molemmat: NAFLD ja PNPLA3-rasvamaksa voivat edetä maksakirroosiin tai maksasyöpään. Rasvoittunut maksa lisää kirroosin ja maksasyövän riskiä.

Professori Hannele Yki-Järvisen johdolla tehdyssä tutkimuksessa selvitettiin miksi PNPLA3-rasvamaksa ei altista diabetekselle eikä sydänsairaudelle. Tutkittaville tehdyistä maksabiobsianäytteistä selvisi, että metabolisen rasvamaksan ja PNPLA3-rasvamaksan koostumuksessa oli selviä eroavaisuuksia. Metabolisessa rasvamaksassa oli tyydyttyneitä rasvahappoja ja insuliiniresistenssiä aiheuttavia seramideja, kun taas PNPLA3-rasvamaksan rasvahapot olivat monityydyttämättömiä eikä haitallisia seramideja esiintynyt.

Ihmisillä esiintyy kahta rasvoittuneen maksan päätyyppiä ja seramidirasvat aiheuttavat insuliiniresistenssia ihmisen maksassa. Erot maksan rasvahappo- ja triglyseridikoostumuksessa selittävät hyvin, miksi metabolinen rasvamaksa lisää tyypin 2 diabeteksen ja sepelvaltimotaudin riskiä, mutta PNPLA3-rasvamaksa ei.

ALAT – mitä maksa-arvot kertovat maksan terveydestä?

Maksa-arvojen mittauksia käytetään maksasairauksien seulonnassa sekä niiden vakavuuden ja ennusteen arvioinnissa.

Yleisimmät maksakokeet ovat ALAT (alaniiniaminotransferaasi), AFOS (alkalinen fosfataasi), GT (glutamyylitransferaasi) ja bilirubiini. CDT (desialotransferiiini) on spesifinen alkoholin kroonisen riskikäytön mittari.

ALAT on ensisijainen maksasoluvaurion seulontatutkimus. Virusten ja lääkeaineiden aiheuttamien akuuttien maksatulehdusten (hepatiitti) yhteydessä ALAT kohoaa usein noin kymmenkertaiseksi tai suuremmaksi. Kroonisessa hepatiitissa ja maksakirroosissa ALAT kertoo taudin aktiivisuudesta.

ALATin viitearvot

Lapset (0–16 v) alle 40U/l
Miehet (yli 16v) alle 50U/l
Naiset (yli 16v) alle 35U/l

Yleinen ei-alkoholiperäisen maksasairauden syy on lihavuus, koska lihavuuteen liittyy usein maksasolujen rasvoittumista. Tämä voi johtaa rasvamaksan kehittymiseen. Rasvamaksa voi johtaa diabeteksen kehittymisen lisäksi myös maksakirroosiin ja maksasyöpään. Toistaiseksi ei tiedetä, miksi rasvamaksa joillain etenee hengenvaaralliseksi sairaudeksi ja toisilla ei.

Hiilihydraattien rajoittaminen ja maksan terveys

Hiilihydraattien rajoittaminen mielletään yleensä laihdutusruokavalioksi. Pastan, perunoiden, leivän, sokereiden ja valkoisten jauhojen vähentämiselle voi olla myös terveydellisiä syitä.

Ruotsissa vähähiilihydraattisella ruokavaliolla hoidetaan diabetesta ja ketogeeninen ruokavalio toimii lääkeresistentin epilepsian hoidossa jopa 50 %:lla potilaista.

Kaksi viikkoa karppausta

Ruotsalaistutkijoiden mukaan vain kahden viikon vähähiilihydraattinen ruokavalio vähensi ylipainoisten alkoholista riippumatonta rasvamaksaa sairastavien henkilöiden maksan rasvoittumista ja paransi muita terveyttä mittaavia kardiometabolisia markkereita.

Usein lääkärit kehottavat alkoholista riippumattoman rasvamaksan hoitokeinoksi vähärasvaisia elintarvikkeita. Tämä kuulostaa loogiselta, mutta se ei huomioi aineenvaihduntaa, jossa ylimääräiset hiilihydraatit muutetaan maksa- ja rasvasolujen lipogneesissa triglyserideiksi eli rasvoiksi. Fruktoosin aineenvaihdunta tapahtuu maksassa, ja vaikka maksa muuttaisi osan fruktooista glukoosiksi, prosessi rasittaa maksaa.

Pienessä ruotsalaistutkimuksessa Adil Mardinoglun (KTH Royal Institute of Technology) tutkimusryhmä seurasi kymmenen ylipainoisen alkoholista riippumatonta rasvamaksaa sairastavan maksan terveyttä vähän hiilihydraatteja ja runsaasti proteiineja sisältävällä ruokavalioilla.

Tutkittavat henkilöt söivät kaksi viikkoa ruokavaliota, jossa hiilihydraattien osuutta rajoitettiin ja proteiinien osuutta lisättiin. Lyhyen kokeilun jälkeen tutkimusryhmä tutki minkälainen metabolinen vaikutus ruokavaliolla oli maksan terveyteen.

Tutkimus osoitti, että 14 päivän vähähiilihydraattinen ruokavalio paransi maksan rasva-aineenvaihduntaa ja vähensi maksan rasvoittumista dramaattisesti. Myös tutkittavien tulehdusmarkkerit (erityisesti interleukiini-6 ja tuumorinekroositekijä-alfa) laskivat hiilihydraattien rajoituksen seurauksena. Interleukiini-6 ja tuumorinekroositekijä-alfa assosioituvat alkoholista riippumattoman rasvamaksan vaikeusasteeseen.

Tutkimusryhmän mukaan tutkittavien suoliston mikrobiomissa tapahtui suotuisia muutoksia hiilihydraattien rajoittamisen seurauksena. Erityisesti B-ryhmän vitamiineihin kuuluvan ja maksan rasva-aineenvaihduntaa parantavan folaatin määrä verenkierrossa lisääntyi.

[…] we showed that short-term intervention with an isocaloric low-carbohydrate diet with increased protein content promotes multiple metabolic benefits in obese humans with NAFLD.”

Tutkijat muistuttavat kuitenkin, että hiilihydraattien rajoittaminen ei välttämättä auta kaikkia alkoholista riippumatonta rasvamaksaa sairastavia.

LÄHTEET:

www.helsinki.fi
Potilaan lääkärilehti
Medical News Today
Potilaan lääkärilehti – ALAT




Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen ruokavalio kääntää perinteiset ravintosuositukset päälaelleen. Vähähiilihydraattisena ruokavaliona se ylittää aika ajoin uutiskynnyksen ja keskustelu sen ympärillä on ollut kiivasta karppausbuumin alkuajoista alkaen.

Viime kuussa joukko amerikkalaisia asiantuntijoita rankkasi ketogeenisen ruokavalion 40 dieetin vertailussa pitkäaikaisvaikutuksiltaan huonoimmaksi laihdutusruokavalioksi. Luulen, että ketogeeniseen ruokavalioon liittyy paljon epätietoisuutta. Mitä ketogeenisellä ruokavaliolla tarkoitetaan ja kuinka se toimii?

Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen dieetti on vähähiilihydraattinen ruokavalio, jossa tavoitellaan aineenvaihdunnan ketoositilaa. Kun maksaan ja lihaksiin varastoidut hiilihydraattivarastot tyhjenevät, maksa ryhtyy tuottamaan ketoaineita ketogeneesissä ja käyttämään rasvakudokseen säilöttyä energiaa tasapainottaakseen elimistön energiavajetta.

Käytännössä ketogeenisessä ruokavaliossa tavoitellaan sellaista aineenvaihdunnan tilaa, jossa elimistö oppii käyttämään tehokkaasti rasvakudokseen varastoitua läskiä energianlähteenä.

Ketogeneesin käynnistyminen edellyttää, että ravinnon hiilihydraattien saantia rajoitetaan. Ketoosi alkaa, kun elimistö ei saa riittävästi hiilihydraatteja ja elimistön hiilihydraattivarastot eli glykogeenit tyhjenevät.

Varsinkin ruokavalion alkuvaiheessa hiilihydraatteja rajoitetaan reilusti. Tämän ”induktiovaiheen” tavoitteena on uudelleenohjelmoida elimistö käyttämään energianlähteenä aluksi ketoaineita ja myöhemmin pääasiassa rasvaa. Hiilihydraattien saanti lasketaan 20-100 grammaan vuorokaudessa.

Ketogeeninen ruokavalio lääketieteessä

Lääketieteessä ketogeenista ruokavaliota käytetään erityisesti vaikean epilepsian hoitoon lapsilla. Käypä hoito -suosituksissa neuvotaan harkitsemaan ketogeenista ruokavaliota yhteistyössä ravitsemusterapeutin kanssa vaikean epilepsian hoidossa silloin, kun epilepsialääkkeet eivät käy eikä kirurgisen hoidon mahdollisuutta ole. Ketogeenista ruokavaliota on käytetty myös lasten lihavuuden hoidossa.

Vähähiilihydraattinen ruokavalio on hyväksi diabeetikoille, sydän- ja syöpäpotilaille sekä ylipainoisille. Vähän hiilihydraatteja sisältävä ravinto laihduttaa ja vähentää ylipainoisten ihmisten sydäntautien riskiä tehokkaammin kuin vähärasvainen ruokavalio, osoittaa laajameta-analyysi, jossa käytiin läpi tutkimukset vuosilta 1966-2014 (Sackner-Bernstein ym. 2015).

Induktiovaiheen ravintosisältö

Alkuvaiheessa ketogeeninen ruokavalio sisältää yleensä noin 20 – 50 grammaa hiilihydraatteja vuorokaudessa hieman henkilöstä ja ruokavalion tavoitteista riippuen. Proteiinien saanniksi suositellaan 1-2 grammaa / painokilo, mutta ikääntyneillä proteiinien saanti voi olla korkeampikin lihaksia energianlähteeksi pilkkovan katabolisen aineenvaihdunnan vuoksi. Suurin osa ravinnosta muodostuu ketogeenisessä ruokavaliossa rasvasta.

Vettä on tärkeää juoda runsaasti (3-4 l/vuorokaudessa), sillä ketogeeninen ruokavalio poistaa vettä sitovien hiilihydraattien puutoksen vuoksi runsaasti kehoon sitoutuneita nesteitä. Myös suolan saannista on tärkeä huolehtia, koska se sitoo elimistöön nestettä ja ehkäisee elimistön kuivumista hiilihydraattien puuttuessa.

Noin neljän viikon induktiojakson jälkeen hiilihydraattien määrää voi lisätä  alle 50 grammasta 50-100 grammaan vuorokaudessa esimerkiksi kasviksia lisäämällä.

  • 5-10 % Ravinnon energiamäärästä (kcal) tulisi saada hiilihydraateista
  • 30 % Ravinnon energiamäärästä (kcal) tulisi saada proteiineista
  • 60 % Ravinnon energiamäärästä (kcal) tulisi saada rasvasta

Ketogeenisen ruokavalion tiedetään aiheuttavan päänsärkyä monilla, mutta se on yleensä seurausta veden liian vähäisen juomisen aiheuttamasta nestehukasta.Silloin kannattaa juoda enemmän vettä.

Ketoosi ja ketoasidoosi eivät ole sama asia

Ketoasidoosi eli happomyrkytys on toksinen tila, jossa ketoaineiden määrä verenkierrossa voi kasvaa monikymmenkertaiseksi ketoosiin verrattuna. Lievimmillään ketoasidoosia ei välttämättä edes huomaa, mutta vakavimmillaan se on hengenvaarallinen myrkytystila. Ketoosi ja ketoasidoosi ovat siis kaksi eri asiaa.

Ketogeeninen ruokavalio ja aineenvaihdunta

Aineenvaihdunnan tasolla ketogeneesi tarkoittaa energianlähteiksi kelpaavien ketoaineiden tuottamista rasvahapoista silloin kun hiilihydraattien saanti on niukkaa tai olematonta.

Ketoaineet ovat rasvasta ja etanolista muodostuvia pienimolekyylisia yhdisteitä. Elimistössä muodostuu kolmea eri ketoainetta:

  • asetoasetaattia
  • beeta-hydroksibutyraattia
  • asetonia

Ketoaineiden tuotannon käynnistyminen

Aineenvaihdunta aloittaa ketoaineiden tuotannon, kun maksan ja lihasten sokerivarastot (glykogeenit) on kulutettu loppuun esimerkiksi intensiivisen urheilusuorituksen, vähän hiilihydraatteja sisältävän ravinnon tai paaston vaikutuksesta.

Ketoaineiden tuotannon käynnistyminen ei tarkoita, että elimistö on ketoosissa. Se on vain merkki siitä, että hiilihydraattivarastot ovat loppu ja elimistö siirtyy ”varavoimanlähteen” käyttöön. Ketoosi alkaa yleensä muutamassa päivässä ja rasvan käyttäminen solujen polttoaineena vakiintuu 3-4 viikossa.

Kun keho menee ketoosiin, aineenvaihdunta turvaa elintoimintojen tarvitseman energian saannin glukoneogeneesillä ja ketogeneesillä myös paaston ja hiilihydraatittoman ruokavalion aikana. 3-4 viikossa elimistö korvaa ketoaineet energianlähteinä rasvakudoksen ja ravinnon rasvoilla.

Näiden aineenvaihduntamekanismien ansiosta terve ihminen selviää elossa pelkällä vedellä jopa kuukauden ajan.

Ketoaineita syntyy maksassa ja munuaisissa

Yleensä ketoaineita syntyy maksan ja munuaisten solujen mitokondrioissa solujen glukoneogeneesin sivutuotteina. Kun solut tuottavat glukoosia, ne tuottavat tarvitsemansa energian hapettamalla rasvahappoja asetyylikoentsyymi-A:ksi.

Asetyylikoentsyymi-A

Wikipedia kertoo, että asetyylikoentsyymi-A, eli aktiivinen etikkahappo, on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa.  Asetyylikoentsyymi-A:ta saadaan monosakkarideista (sokereista), triglyserideistä (rasvoista) ja aminohapoista (proteiineista) erilaisten reaktiovaiheiden kautta.

Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä (sitruunahappokierto) ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Glukoosi hajoaa solulimassa tapahtuvassa glykolyysissä kahdeksi pyruvaatiksi, joista molemmista saadaan edelleen oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos happea ja mitokondrioita ei ole riittävästi, pyruvaatti pelkistyy maitohapon anioniksi laktaatiksi.

Rasvahapot hajoavat hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

– Wikipedia

Asetyylikoentsyymi-A, joka ei hapetu normaalisti sitruunahappokierrossa glukoneogeneesin ollessa käynnissä, muuntuu ketogeneesissä asetoasetaatiksi ja edelleen betahydroksibutyraatiksi.

Ketoaineet kulkeutuvat verenkierron mukana maksasta ja munuaisista muualle elimistöön. Aivojen gliasolut käyttävät asetoasetaattia ja betahydroksibutyraattia lipidien rakennusaineena. Sydän, lihakset ja aivot voivat tarvittaessa käyttää ketoaineita solujen energianlähteenä.

Ketogeneesi on elintoimintojen varavoimanlähde

Glukoneogeneesi ja ketogeneesi toimivat itsenäisesti energiantuotannon taustaprosesseina ja ylläpitävät solujen energiansaantia silloin, kun syömisestä on kulunut paljon aikaa. Glukoneogeneesi käynnistyy haiman erittämän glukagonin aktivoimana maksassa ja munuaisissa ja se johtaa edelleen ketogeneesin käynnistymiseen maksan ja munuaisten mitokondrioissa.

Ilman näitä aineenvaihdunnan prosesseja evoluutio ja aivojen kehitys olisivat pysähtyneet esihistorian aamuhämärissä, eikä nykyihmistä olisi koskaan kehittynyt.

In essence, a ketogenic diet mimics starvation, allowing the body to go into a metabolic state called ketosis (key-tow-sis). Normally, human bodies are sugar-driven machines: ingested carbohydrates are broken down into glucose, which is mainly transported and used as energy or stored as glycogen in liver and muscle tissue. When deprived of dietary carbohydrates (usually below 50g/day), the liver becomes the sole provider of glucose to feed your hungry organs – especially the brain, a particularly greedy entity accounting for ~20% of total energy expenditure. The brain cannot DIRECTLY use fat for energy. Once liver glycogen is depleted, without a backup energy source, humanity would’ve long disappeared in the eons of evolution. .

Scientific American

Ketogeneesi on osa kehon normaalia aineenvaihduntaa. Nykyisin ravinto on sen verran energiatiheää ja hiilihydraattipainotteista, että elimistö turvautuu ketogeneesiin vain satunnaisesti, vaikka se esi-isillämme oli luontainen osa elimistön energiantuotantoa. Viimeisten vuosisatojen aikana ravintotottumukset ovat muuttuneet valtavasti, mutta aineenvaihdunnan mekanismit muuttuvat hitaammin.

Aineenvaihduntamme on lapsesta lähtien opetettu saamaan energia hiilihydraateista, mutta se ei tarkoita sitä, etteikö energiansaantiin olisi muita tapoja. Aineenvaihdunta voidaan uudelleenohjelmoida ”sokeripolttoisesta” tehtaasta ”rasvapolttoiseksi” ravintoon liittyvillä valinnoilla.

Aineenvaihdunta biohakkeroimalla rasvaa polttavaksi

Ketoosi on ketogeneettisessä ruokavaliossa tavoiteltava aineenvaihdunnan tila. Siihen päästään ”biohakkeroimalla” aineenvaihdunnan toimintaa.

Käytännössä biohakkeroinnilla tarkoitetaan ravinnosta saatavien hiilihydraattien rajoittamista 20-50 grammaan vuorokaudessa. Aineenvaihdunta opetetaan käyttämään ketoaineita ja rasvasolujen sisältämiä energiavarastoja energianlähteenä, koska sille ei tarjota helppoa energianlähdettä hiilihydraattien muodossa.

Kuvan lähde: Wikipedia – Glycogen

Glykogeenit

Oheinen kuva esittää kaksiulotteisen mallin glykogeenistä, joka on jopa 30 000 glukoosimolekyylistä muodostuva monihaarainen ja pitkäketjuinen polysakkaridi. Osa verensokerista varastoidaan tällaisina polysakkarideina maksa- ja lihassoluihin.

Kun verensokeri laskee, haima erittää glukagonia, joka purkaa glykogeenejä maksasta verenkiertoon. Se kohottaa verensokeria ja antaa lihas- ja aivosoluille nopeaa energiaa glukoosin muodossa. Lihassolujen varastoimat glykogeenit eivät vapaudu verenkiertoon, vaan lihas käyttää ne nopeana energianlähteenä itse.

Glykogeneesi

Glykogeenit muodostuvat insuliinin aktivoimana glykogeneesissä maksa- ja lihassoluissa. Maksasolut ylläpitävät veren glukoosipitoisuutta glykogeenivarastojensa avulla syömisten välissä.

Aivot käyttävät valtavasti energiaa

Glykogeenivarastot ovat kooltaan varsin pienet ja elimistö kuluttaa varastosokerit nopeasti loppuun.  Pelkästään aivot kuluttavat vuorokaudessa noin 100 g glukoosia, joka saadaan syödyistä hiilihydraateista sekä glukagonin avulla puretuista maksan varastosokereista.

Glukoneogeneesin sivutuotteena syntyy ketoaineita

Kun glykogeenit tyhjenevät, maksa ryhtyy korvaamaan aivojen tarvitsemaa glukoosia ketoaineilla. Glykogeenejä purkava glukagoni aktivoi glukoosia tuottavan glukoneogeneesin maksassa ja munuaisten kuoriosissa.

Glukoosimolekyylin syntetisoiminen kuluttaa enemmän energiaa kuin glukoosimolekyyli tuottaa

Glukoneogeneesi hyödyntää mm. vapaita aminohappoja ja rasvoja sekä glykolyysissä syntyneitä maitohappoja, sitruunahappokierron sivutuotteita sekä ketoaineita glukoosin syntetisoimisessa.

Yhden glukoosimolekyylin tuottaminen vaatii 2 pyruvaattimolekyyliä, 4 ATP:tä, 2 GTP:tä, 2 NADH-molekyyliä ja neljä vesimolekyyliä. Se vaatii siten enemmän energiaa kuin glykolyysi tuottaa yhdesta glukoosimolekyylistä.

Glykogeenit purkautuvat glukagonin vaikutuksesta glykogenolyysissa

Haiman alfasolujen erittämä glukagoni aktivoi glykogeenien purkamisen eli glykogenolyysin maksassa ja lihassoluissa, jolloin glykogeeni purkautuu glukoosiksi (maksasta) ja glukoosi-1-fosfaatiksi (lihaksissa).

Glukagoni käynnistää glykogenolyysin yhteydessä glukoneogeneesin. Haiman beetasolujen erittämä insuliini puolestaan pysäyttää glukongeogeneesin, kun verensokeri nousee ja aineenvaihdunnan energianlähde muuttuu glukoosiksi.

Induktio

Scientific American kirjoittaa, että aivot toimivat hyvin myös ketoaineilla. Aivojen toiminta on turvattu, jos ~70 % aivojen energiatarpeesta saadaan ketoaineista. Prosessi, jossa aivot oppivat käyttämään ketoaineita energianlähteenä 0 – 70 % vie kolmisen viikkoa. Tämä on eräänlainen aineenvaihdunnan induktiovaihe.

Induktiovaiheen aikana aivoja lukuun ottamatta kaikki kehon kudokset vähentävät ketoaineiden käyttöä energianlähteenä. 3-4 viikon aikana solut sopeutuvat käyttämään energianlähteenä rasvasoluista vapautuvia vapaita rasvahappoja.

Induktion jälkeen elimistö tuottaa hyvin vähän ketoaineita (vähemmän kuin 280 kcal / päivä), mutta riittävästi aivosolujen energiantarpeen turvaamiseksi.

Ketogeenisessä ruokavaliossa painosta putoaa ennen induktiovaiheen loppua lähinnä nesteitä, joten nestetasapainon kanssa tulee olla tarkkana ja juoda reilusti vettä. Rasvan käyttö energianlähteenä tehostuu hitaasti koko ajan ja on tehokkaimmillaan vasta kolmisen viikkoa ruokavalion aloittamisen jälkeen. Sen verran kestää, että solut sopeutuvat uuteen energianlähteeseen.

Aineenvaihdunta

Aineenvaihduntaan vaikuttaa useita tekijöitä: ravinnon määrä ja laatu, makroravinteet, ravinnon sisältämät vitamiinit ja mineraalit, stressi, nestetasapaino, maksan ja haiman terveys, geenit, hormonit, insuliinisensitiivisyys, liikunta, ja uni.

Oheinen Jonathan Bailorin luento sisältää mielenkiintoisia huomioita aineenvaihdunnan toiminnasta, lihomisesta ja laihtumisesta:

Aineenvaihdunta ylläpitää elämää sitkeästi. Se on joustava ja pystyy hyödyntämään tehokkaasti erilaisia ravinnonlähteitä elintoimintojen ylläpidossa.

Perusaineenvaihdunta kuluttaa valtavasti energiaa

Sängyssä makaaminen kuluttaa 80 kg painavalla, 180 cm pitkällä 30 vuotiaalla miehellä noin 1780 kcal vuorokaudessa. Aivojen ja välttämättömien elintoimintojen ylläpito edellyttävät paljon energiaa.

Keskimäärin aikuinen tarvitsee ravinnosta 2000-2500 kcal vuorokaudessa. Liikunta lisää energiantarvetta, mutta ikä, paino ja kehon rakenne vaikuttavat lepokulutukseen.

Tärkeimpiä elintoimintoja ylläpitää perusaineenvaihdunta. Siihen kuuluvat keuhkojen ja sydämen toiminta, kemiallisten yhdisteiden eristys ja synteesit, sekä ionien siirto solukalvojen läpi. Vuorokautisesta kokonaisenergiankulutuksesta 65–75 prosenttia on
perusaineenvaihduntaa, miehillä keskimäärin 4,2 kJ/min ja naisilla 3,8 kJ/min. Perusaineenvaihdunta koostuu aivojen (21 %), lihasten (22 %), maksan (18 %), munuaisten (6 %), sydämen (12 %) ja muiden kudosten (21 %) energiankulutuksesta. Sen suuruuteen vaikuttaa sukupuolen lisäksi ikä, kehon tyyppi ja koostumus, paasto, lämpötila ja laihduttaminen. – Wikipedia

Anabolinen ja katabolinen aineenvaihdunta

Solun aineenvaihdunta voidaan jakaa kahteen toimintamekanismiin: anaboliseen ja kataboliseen aineenvaihduntaan.

Anaboliset reaktiot ovat biosynteettisiä eli kokoavia aineenvaihduntatapahtumia, joissa yksinkertaisemmista molekyyleistä rakennetaan monimutkaisempia molekyylejä.

Katabolisissa reaktioissa monimutkaisempia molekyylirakenteita pilkotaan yksinkertaisemmiksi molekyyleiksi.

Energian tuotanto

ADP + Pi      –                ATP
NAD+              –                 NADH +H+

  • Energianlähteenä voi hyödyntää hiilihydraatteja, rasvoja ja proteiineja
  • Solut saavat energiaa orgaanisista molekyyleistä hapettamalla niitä esimerkiksi:
    – Glukoosin hapetus tapahtuu sytoplasman glykolyysissä
    – Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Kuvan lähde: Nina Peitsaro

Anabolinen ja katabolinen aineenvaihdunta vuorottelevat elimistössä päivittäisten rutiinien lisäksi myös iän ja elämäntilanteen mukaan. Fyysinen harjoittelu ja sairaudesta toipuminen kallistavat aineenvaihduntaa anaboliseksi, jolloin aineenvaihdeunta rakentaa lihaskudosta tai korjaa sairauden aiheuttamia vaurioita. Myös kasvavien lasten aineenvaihdunta on anabolinen, mutta vanhemmilla ihmisillä ja hyvin vähän liikkuvilla aineenvaihdunta on yleensä pitkäkestoisessa katabolisessa tilassa.

Anabolisen aineenvaihdunnan käynnistyminen

Anabolinen aineenvaihdunta käynnistyy yleensä ruokailun jälkeen. Ravinnosta saaduista perusmolekyyleistä muodostetaan elimistössä suurempia molekyylejä, kuten lihasten tarvitsemia proteiineja.

Kun ruokailusta kuluu enemmän aikaa ja ravintoaineiden saatavuus ruoansulatuskanavan kautta vähenee, aineenvaihdunnan painopiste siirtyy katabolisten reaktioiden puolelle.

Anaboliset reaktiot kuluttavat energiaa

Anaboliset reaktiot kuluttavat energiaa ATP:n tai NADH:n (ja NADPH:n) muodossa.
ATP à ADP + Pi
NADH + H+ — NAD+

Katabolinen aineenvaihdunta tuottaa ravintoaineista soluhengityksen avulla energiaa. Anabolinen aineenvaihdunta rakentaa ja uusii elimistön rakenteita mm. proteiinisynteesissä.

Kehon energiantuotanto: Kuinka hiilihydraatit tuottavat energiaa

Hiilihydraatit ovat energiansaannin kannalta tehokkaimpia ravintoaineita. Myös rasvat ja proteiinit voidaan hyödyntää energiaksi.

Rasvat ovat hiilihydraatteja edullisempi tapa varastoida energiaa, sillä niissä on yli kaksinkertainen määrä energiaa painoyksikköä kohden.

Hiilihydraateista pilkotut sokerit imeytyvät verenkiertoon ohutsuolessa. Glukoosi kohottaa verensokeria, johon haima reagoi erittämällä vereen insuliinia. Insuliini kiinnittyy solun pinnassa olevaan insuliinireseptoriin, jolloin solussa olevat sokerikanavat (kalvorakkulat) siirtyvät solukelmulle ja päästävät glukoosimolekyylin solun sisälle.

Solulimassa glukoosi osallistuu glykolyysiin eli reaktioiden sarjaan, jossa glukoosimolekyyli hajotetaan pyruvaatiksi. Glukoosi on solujen energiantuotannon yleisin lähtöaine. Fruktoosin aineenvaihdunta tapahtuu maksassa, jossa se muutetaan lipogeneesissä triglyseridiksi eli rasvaksi.

Glukoosi, joka ei ravitse solujen energiantarvetta, varastoituu maksa- ja lihassoluihin glykogeeneinä, joista energiavarasto on nopeasti purettavissa. Glukoosi, joka ei ravitse solujen energiantarvetta tai mahdu glykogeenivarastoihin, siirtyy insuliinin avaamien sokerikanavien avulla rasvakudoksen rasvasoluihin, jossa se muutetaan lipogeneesissa rasvaksi.

Lipogeneesi

Insuliini säätelee lipogeneesiä, jossa veren ylimääräiset glukoosimolekyylit muutetaan triglyserideiksi eli rasvoiksi maksassa, rasvakudoksessa ja toimivan maitorauhasen soluissa. Lipogeneesissä yhdestä glukoosimolekyylistä muodostuu ensin kaksi glyserolimolekyyliä, joihin liittyy glukoosin auenneesta renkaasta muodostunut, pelkistynyt rasvahappoketju.

  • Keho käyttää arviolta 45 % ravinnosta saatavista hiilihydraateista energiantuotantoon ja 55 % hiilihydraateista muutetaan lipogeneesissä rasvahapoiksi.

Rasva-aineenvaihdunta on hyvin dynaaminen. Osa vapaista rasvahapoista hyödynnetään glukoneogeneesissä ja osa varastoituu rasvasoluihin. Rasvasoluista vapautuu kuitenkin jatkuvasti rasvasoluja verenkiertoon. Yksittäisen lipidimolekyylin elinaika on arviolta 2-10 vuorokautta.

Solulimassa tapahtuva reaktioketju – glykolyysi tuottaa energiaa

Glykolyysi tuottaa energiaa ATP-molekyylien muodossa. Soluissa, joilla on käytettävissään happea, energiaa tuottava reaktio etenee glykolyysistä mitokondrioiden soluhengitykseen.

Haima ja haiman tehtävät aineenvaihdunnassa

Haima osallistuu ravintoaineiden aineenvaihduntaan erittämiensä ruoansulatusentsyymien sekä insuliinin ja glukagonin avulla.

Haima muodostuu kahdesta toiminnallisesti erilaisesta solukkotyypistä: avorauhas- ja umpirauhasosasta. Avorauhasosa tuottaa ruoansulatusentsyymejä, jotka pilkkovat kaikkia ravintoaineita (sokereita, rasvoja, proteiineja ja nukleiinihappoja).

Haiman erittämät ruoansulatusentsyymit ja niiden tehtävät

  • Amylaasi: pilkkoo sokereita
  • Peptidaasit: pilkkovat proteiineja
  • Lipaasit: pilkkovat rasvahappoja
  • Nukleaasit: pilkkovat nukleiinihappoja (DNA ja RNA)

Insuliini ja glukagoni säätelevät sokeriaineenvaihduntaa

Haiman umpirauhasosa tuottaa elintärkeitä hormoneja: insuliinia ja glukagonia. Useimmista kehon umpirauhasista poiketen glukagonin ja insuliinin eritystä säätelee veressä olevan sokerin määrä eikä aivojen hypotalamus.

Jos veren sokeripitoisuus on matala, haiman Alfa-solut erittävät glukagonia, joka nostaa verensokeria purkamalla maksaan ja lihaksiin varastoituneita glykogeenejä.

Jos veren sokeripitoisuus on korkea, haiman Beta-solut erittävät insuliinia, joka kiinnittyessään solun insuliinireseptoriin, päästää sokerimolekyylin solun sisälle, jossa se osallistuu energiantuotantoon glykolyysissa ja mahdollisesti edelleen mitokondrion soluhengityksessä.

Glukagoni ja glykogeenit

Keho varastoi osan ravinnosta saaduista sokereista maksa- ja lihassoluihin glykogeeneinä, joista energia on nopeasti purettavissa energiaa tuottavan glykolyysin ja soluhengityksen tarvitsemiksi lyhytketjuisiksi sokereiksi.

Kun haiman erittämä glukagoni kiinnittyy maksa- tai lihassolun pinnalla olevaan reseptoriinsa, sokerin pitkäketjuiset varastomolekyylit eli glykogeenit alkavat hajota solussa lyhytketjuisemmiksi sokereiksi. Glykogeeneistä puretut sokerit kulkeutuvat maksasta verenkiertoon, jolloin verensokeri nousee.

Glukagonin purkaa glykogeenejä ja käynnistää glukoneogeneesin

Verensokerin lasku lisää glukagonin eritystä haimasta. Glukagoni purkaa maksa- ja lihassolujen sokerivarastoja, jolloin verensokeri jälleen nousee.

Glukagoni käynnistää myös maksassa ja munuaisten kuorikerroksessa tapahtuvan glukoneogeneesin, joka syntetisoi glukoosia muista yhdisteistä. Glukoneogeneesin yhteydessä maksassa ja munuaisissa alkaa syntyä ketoaineita.

Insuliinin merkitys glukoosin aineenvaihdunnalle

Kaikkien solujen pinnalla on insuliinireseptoreita. Insuliinin kiinnittyminen solureseptoriinsa laukaisee solun sisällä toisiolähettijärjestelmän. Tämä saa aikaan sen, että solun sisällä olevat transmembraanisia (kalvon läpi ulottuvia) sokerikanavaproteiineja kuljettavat kalvorakkulat kiinnittyvät solukelmuun.

Insuliini saa siis sokerikanavat siirtymään solun ulkopinnalle jolloin glukoosi pääsee siirtymään verestä sokerikanavan läpi solun sisälle.

Mutta on hyvä muistaa, että insuliini myös varastoi ylimääräiset glukoosimolekyylit rasvakudoksen, maksan ja maitorauhasten rasvasoluihin eli adiposyytteihin, joissa sokerit muutetaan lipogeneesissä rasvahapoiksi. Näin veren runsas insuliini- ja glukoosipitoisuus aiheuttavat lihomista.

Glykolyysi

Solu saa energiantuotantoon tarvitsemansa glukoosin joko solun ulkopuolelta tai lihassolun sisällä olevasta glykogeenistä.

Glykolyysi on monesta reaktiovaiheesta muodostuva reaktioketju. Solulimassa tapahtuvassa glykolyysissä glukoosi hajotetaan palorypälehapon anionimuodoksi eli pyruvaatiksi. Anaerobinen energiansaanti perustuu glykolyysiin, joka tuottaa kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä.

Jos solulla on happea käytettävissään, energiantuotanto jatkuu soluhengityksessä mitokondrioissa. Pyruvaateista saadaan mitokondrioissa eräiden entsyymien avulla tapahtuvassa oksidatiivisessa dekarboksylaatiossa asetyylikoentsyymi-A:ta.

Jos solulta puuttuu mitokondriot (kuten veren punasoluilta) tai happea ei ole käytettävissä, pyruvaatti pelkistyy maitohapoksi.

  • Anaerobinen glykolyysi päättyy pyruvaatin pelkistyessä maitohapoksi
  • Aerobinen glykolyysi jatkaa energiantuotantoa ja tuottaa pyruvaatista edelleen asetyylikoentsyymi-A:ta.

Sokerikanavaproteiinit kiertävät jatkuvasti soluliman ja solukelmun välillä. Kun insuliinipitoisuus laskee veressä, solu imee sokerikanavia sisältävät solukelmun osat sisäänsä.

Ihminen voi kuluttaa vuorokauden aikana painonsa verran ATP-molekyylejä.

ATP eli Adenosiinitrifosfaatti on runsasenerginen mitokondrioiden soluhengityksessä, tai glykolyysin solulimassa tuottama yhdiste. ATP:tä käytetään energian siirtoon ja lyhytaikaiseen varastointiin lihaksissa.

Kun elimistön solut tarvitsevat ATP-molekyyleihin sitoutunutta energiaa, ATPaasi-entsyymi pilkkoo runsasenergisiä sidoksia fosfaattiryhmien väliltä.

ATP:ssä on emäsoasa (adeniini), sokeriosa (riboosi) ja 3 fosfaattiosaa. Kun ATP:stä irtoaa yksi fosfaattiosa, siitä tulee adenosiinidifosfaattia eli ADP:tä ja kun ADP:stä irtoaa fosfaattiosa, syntyy adenosiinimonofosfaatti eli AMP.

Ihminen kuluttaa vuorokauden aikana arviolta painonsa verran ATP-molekyylejä. Yksi ATP-molekyyli kierrätetään jopa 1000-1500 kertaa vuorokauden aikana.

ATP on lihassupistuksen ainoa energianlähde. Sitä on hieman varastoituneena lihaksissa, mutta nämä varastot hyödynnetään nopeasti.

Energian varastomolekyyli: ADP+ADP à ATP+AMP

Kuinka ketogeneesin aineenvaihdunta toimii

Paasto, intensiivinen liikunta tai vähähiilihydraattinen ruokavalio saa aineenvaihdunnan tuottamaan ketoaineita energianlähteeksi. Muutaman päivän vähähiilihydraattinen jakso siirtää aineenvaihdunnan ketoosiin, jolloin ketoaineiden käyttö energianlähteenä tehostuu. Ketoaineiden tuotanto käynnistyy aina, kun veren insuliinipitoisuus laskee.

Haima erittää insuliinia verensokerin eli glukoosipitoisuuden kohotessa. Kun veressä ei ole glukoosia energianlähteenä, aineenvaihdunta ryhtyy hyödyntämään ketoaineita energianlähteenä ja ”polttamaan” rasvoja.

Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Lähteet:

Scientific American

KetoSchool

CNN

Wikipedia – Ketoasidoosi

Wikipedia – Glykolyysi

Wikipedia – Ketoaine

Wikipedia – Ketogeneesi

Wikipedia – Glukoneogeneesi

Solunetti – Solun aineenvaihdunta

Solun aineenvaihdunta – Nina Peitsaro

Safkatutka

Laihdutus.info




Probiootit

Näkökulma: Probiootit vahvistavat mikrobiomin hyvää bakteerikantaa. Suoliston pinta-alaltaan lähes kahden tenniskentän kokoisella alueella elää arviolta yli 100 biljoonan mikro-organismin muodostama monimutkainen ekosysteemi.

Jopa tuhannesta bakteerilajista muodostuva mikrobiomi on jokaisella ihmisellä yksilöllinen ja se vaikuttaa aineenvaihdunnan ja immuunijärjestelmän välityksellä vastustuskykyyn ja terveyteen. Kun jokin mikrobipopulaatio suolistossa kuolee, sen elintilan kolonisoi nopeasti jokin toinen ”hyvä” tai ”paha” bakteerikanta. Suolistossa käydäänkin jatkuvasti ”hyvien” ja ”pahojen” bakteerien välistä taistelua.

Ravinnosta ja lisäravinteista saatavat probiootit ovat eläviä mikro-organismeja, joilla uskotaan olevan suolistoflooran hyvinvoinnille suotuisia vaikutuksia. Ne vahvistavat suoliston hyvää mikrobikantaa ja suojelevat elimistöä haitallisilta taudinaiheuttajilta.

Ovatko probiootit huijausta?

Erilaisten lisäravinteiden hyödyistä käydään kiivasta keskustelua. Ovatko pillerit, pallerot ja kapselit vain tapa kusettaa hölmöiltä rahat, vai onko niistä oikeasti jotain hyötyä?

Kysymys on ihan aiheellinen, sillä terveyttä edistävillä tuotteilla on valtava markkinapotentiaali. Tällä hetkellä vitamiini- ja lisäravinteet muodostavat noin 100 miljardin euron maailmanlaajuiset markkinat. Monenlaisia vitamiini-, mineraali- ja probioottivalmisteita myydään ja markkinoidaan aggressiivisesti terveyttä edistävinä ja kehon hyvinvointia ylläpitävinä lisäravinteina. Ovatko ne sellaisia?

Keho on temppeli, jota kannattaa suojella ulkoisilta taudinaiheuttajilta. Suojelevatko probiootit kehoa taudinaiheuttajilta? FDA ja EFSA sekä eräät tutkijat eivät ole täysin vakuuttuneita probioottien hyödyistä.

FDA ja EFSA suhtautuvat probiootteihin kriittisesti

Terveyshyötynäkökulman esiintuominen markkinoinnissa on probioottien osalta estetty USA:ssa, jossa Yhdysvaltain elintarvike- ja lääkevirasto FDA katsoo, ettei yhdestäkään probioottituotteiden terveyshyödystä ole vielä riittävän vahvaa tieteellistä näyttöä.

Samanlainen kriittinen kanta on Euroopan elintarviketurvallisuusvirasto EFSA:lla, joka ei salli probiootteihin liittyvien terveysväittämien käyttöä elintarvikkeiden markkinoinnissa. Jopa pelkkä ”probiootti”-sanan käyttäminen voidaan tulkita kielletyksi terveysväittämäksi.

Probioottien terveyshyödyistä ei siis vallitse täysin aukotonta tieteellistä yksimielisyyttä. Esimerkiksi seuraavat raportit kyseenalaistavat probiootteihin liitettyjä väitteitä:

  • Rijkers GT, de Vos WM, Brummer RJ, Morelli L, Corthier G, Marteau P (2011). ”Health benefits and health claims of probiotics: Bridging science and marketing”. British Journal of Nutrition.
  • Slashinski MJ, McCurdy SA, Achenbaum LS, Whitney SN, McGuire AL (2012). ””Snake-oil,” ”quack medicine,” and ”industrially cultured organisms:” biovalue and the commercialization of human microbiome research”. BMC Medical Ethics.

Ovatko probiootit siis vedätys, jolla tehdään valtavasti rahaa?

Kyllä, mutta käytännössä ei sittenkään. Lisäravinteiden myynnissä pyörii isot rahat, mutta myös tieteellinen näyttö niiden hyödyistä on varsin kattava. Eräillä spesifeillä mikrobikannoilla on runsaan tutkimusnäytön perusteella suotuisia terveysvaikutuksia. Toisaalta terveysväittämät vaikuttavat toteutuvan sairailla, kun taas hyötyjä ei ole terveillä osoitettu.

Mitään spesifejä terveysväittämiä ei voi aukottomasti kytkeä kaikkiin probiootteina kaupattaviin lisäravinteisiin tai yleensäkään kaikkiin lisäravinteisiin. Lisäravinteiden laaduissa on suuria eroja, ja sinänsä hyvätkin valmisteet voivat kärsiä pitkästä varastoimisesta, lämpötilaeroista ja kuljetuksista.

Kaupan hyllyltä kotiin lähtevän probioottivalmisteen sisältämien mikrobien määrästä on valmistajan takeet, mutta voiko niihin aina luottaa? Valmistettaessa probiootti on voinut olla erinomainen ja runsaan mikrobipopulaation sisältävä lisäravinne, mutta täyttääkö se lupaukset viikkoja, kuukausia tai vuosia myöhemmin? Vastaus on: Kyllä lähes aina. Probiootit käyvät läpi hyvin tiukan seulan.

Mutta kriittiset kysymykset ovat aiheellisia

Kuinka monta elävää mikro-organismia Yhdysvalloissa valmistetussa probiootissa on sen jälkeen, kun se on valmistajan varastoista rahdattu Suomeen ja varastoitu odottamaan kuljetuksia myymälöihin? Tätä ei juurikaan valvota, mutta lisäravinteita kuluttavan väestön luottamus on vahva.

Jos kaikki on mennyt oikein, probiootit eivät ehkä ole kärsineet lainkaan kuljetusten ja varastoimisen aiheuttamista lämpötilojen vaihteluista. Probiootit voivat olla yhtä elinvoimaisia kuin valmisteessa luvataan.

Mutta toisinkin voi käydä; kuluttaja ei voi mitenkään tarkistaa, kuinka paljon eläviä mikrobeja probioottikapseli sisältää. Pilleri tai kapseli näyttää aivan samalta riippumatta siitä onko sen sisällä eläviä mikro-organismeja tai ei.

Oletusarvoisesti hyvän probiootin tulisi sisältää vähintään 500 miljoonaa elävää mikrobia. Joissain tapauksissa probiootissa on eläviä mikrobeja kuitenkin vain murto-osa luvatusta määrästä. Sellaisen probiootin käytännön merkitys suoliston hyvinvoinnille voi olla vähäinen ja useimmissa tapauksissa olematon.

Mutta

Asian voi kääntää niinkin, että historian viisastuttamina tiedämme kuinka aggressiivisesti elintarvike- ja lääketeollisuuden lobbaajat pyrkivät vaikuttamaan lääke- ja elintarvikevirastojen ohjeisiin.

Ehkäpä kusetus syntyykin siitä, että syömällä probiootteja ihmisen immuunijärjestelmä toimii paremmin ja hän tarvitsee vähemmän tai harvemmin lääkkeitä, kuin syömättä probiootteja, mikä ei tue lääketeollisuuden etuja. Yleensä tällaiset vedätykset paljastuvat vasta vuosikymmenien kädenväännön jälkeen, kuten tupakka- ja sokeriteollisuuden vääristelemät tutkimukset, joita löydetään vähän väliä arkistoista.

Tai ehkäpä totuus on jälleen jotain siltä väliltä: jospa lääketeollisuus vähättelee ja elintarvike- ja lisäravinneteollisuus liioittelee. Ei sekään täysin mahdotonta olisi. Luultavasti totuus probiooteista menee jotenkin näin. Suoliston terveys ja ihmisen terveys kulkevat käsikkäin, mutta ehkä mitään ohituskaistoja ei suoliston terveydelle ole.

Tutkimusten mukaan

Melko varmasti tiedetään, että ainakin tiettyjen elintarvikkeiden luonnollisen hapatusprosessin myötä kehittyneet probioottipopulaatiot ovat suoliston terveydelle suotuisia. Tähän viittaa laboratoriotutkimusten ohella myös suurten ihmispopulaatioiden laajat ravitsemustottumuksia käsittelevät tutkimukset. Ne viittaavat vahvasti siihen suuntaan, että probiootit hyödyttävät terveyttä.

Mitä probiootit ovat?

Maailman terveysjärjestön (WHO) vuoden 2002 määritelmän mukaan probiootit ovat eläviä organismeja, jotka ovat oikein annosteltuna hyödyksi terveydelle. Tunnetuimmat ja tutkituimmat probiootit ovat Lactobacillus GG- ja Bifido-mikrobit. Probiootteja on kuitenkin useita ja ne toimivat hieman eri tavoin.

Élie Metchnikoff

Teorian probiooteista määritteli Élie Metchnikoff vuonna 1907. Käsitteenä ”probiootti” on syntynyt paljon myöhemmin luultavasti lisäravinteiden markkinointitarkoituksiin.

Käsitteessä yhdistyvät latinan ”pro-” ja kreikan ” biōtikos”, joilla tarkoitetaan jotakuinkin ”elämää ylläpitävää”. Probiootti määritellään usein antibiootin vastakohdaksi.

Metchnikoff päätteli, että jogurttia syövät bulgarialaiset talonpojat olivat keskimääräistä terveempiä ja pitkäikäisempiä jogurtin sisältämien suolistoflooraa hyödyttävien mikrobien ansiosta. Tämä selittyi hänen mukaansa sillä, että jogurtin hyvät mikrobit korvaavat suolistossa haitallisia bakteereita.

Probioottien hyväksytty määritelmä

”This first global effort was further developed in 2010; two expert groups of academic scientists and industry representatives made recommendations for the evaluation and validation of probiotic health claims. The same principles emerged from those groups as the ones expressed in the Guidelines of FAO/WHO in 2002. This definition, though widely adopted, is not acceptable to the European Food Safety Authority because it embeds a health claim that is not measurable.

Monien käsitteen sisältöä täsmentävien tieteellisten paneelien jälkeen on yleisesti hyväksytty, että probioottien on ehdottomasti oltava eläviä mikro-organismeja.

”One of the concerns throughout the scientific literature resides in the viability and reproducibility on a large scale of the observed results, as well as the viability and stability during use and storage, and finally the ability to survive in stomach acids and then in the intestinal ecosystem”

Probiooteilta edellytetään valvottua arviointia ja testejä, jossa terveysväittämät voidaan tieteellisesti dokumentoida. Niinpä probiootti-termiä voivat käyttää vain sellaiset eläviä mikrobeja sisältävät ravintoaineet ja lisäravinteet, joiden terveyshyödyistä on saatu tieteellistä näyttöä.

Probioottien on oltava myös sellaisia mikrobeja, jotka voidaan tieteellisesti luokitella taksonomisiin ryhmiin suvun, lajin jne. perusteella. Probioottien käytön on luonnollisesti oltava turvallista ohjeenmukaisella annostuksella.

Eräitä hyödyllisiä probiootteja ovat:

  • Lactobacillus acidophilus: Ehkäisee iholla ja kynsissä elävien Candida-sienten leviämistä. Asidofilus-bakteerit vähentävät ripulia, kramppeja ja suolistokaasujen muodostumista.
  • Lactobacillus plantarum: Suojelee paksusuolen limakalvoja sekä ylläpitää suoliston läpäisevyyttä säätelevää ”epiteelistä muuria”. Lactobacillus plantarum ehkäisee ummetusta ja ripulia ja on resistentti useimmille antibiooteille.
  • Bifidobacterium bifidum: Muodostavat populaatioita paksusuoleen, jossa nämä probiootit vievät elintilaa haitallisilta bakteereilta ja tehostavat immuunijärjestelmän toimintaa.
  • Lactobacillus fermentum: Osallistuu immuunijärjestelmän ylläpitoon ja suojelee ohutsuolen pintaa. Lactobacillus fermentum absorboi kolesterolia ja pitää immuunijärjestelmän vahvana.
  • Bifidobacterium longum: Ehkäisee tulehduksia laukaisevia bakteereita, auttaa helpottamaan ripulin ja laktoosi-intoleranssin oireita.

Probiootit stimuloivat suolistossa ruoansulatuksen kannalta välttämättömiä ruoansulatusnesteitä ja entsyymejä ja estävät suoliston limakalvoilla taudinaiheuttajien lisääntymistä ja kehittymistä.

Kaikki probiootteihin liitettävät terveysväittämät käyvät läpi tarkan tieteellisen seulan. Mikä tahansa väite ei mene tästä seulasta läpi ja probiootti-käsitettä saa käyttää vain tuotteista, jotka on valvotusti testattu, ja jotka täyttävät probiooteille määritellyt täsmälliset kriteerit.

Suositellun annosmäärän probioottituotetta tulee sisältää viimeiseen käyttöpäivään saakka terveysvaikutuksiin vaadittava määrä probioottisia mikrobeja. Tällä perusteella myös lisäravinteina myytäviin probioottivalmisteisiin voi luottaa.

Kysymys mahahapoista

Mahahapot pilkkovat ravinnosta ruokasulaa, joka kulkeutuu mahalaukusta ohutsuoleen ja sieltä edelleen imusuonten ja verisuonten kautta ravitsemaan elimistöä.

Mahahapoilla on toinenkin tärkeä tehtävä: ne toimivat osana toimivaa immuunijärjestelmää ja estävät elävien mikro-organismien, kuten sairastuttavien bakteerien pääsyn ravinnosta suolistoon. Jotkin bakteerit, kuten E.coli, ovat niin vahvoja, että ne selviävät mahahapoista suolistoon. Myös Lactobacillus- ja Bifido-bakteerit säilyvät elossa mahahapoista huolimatta. On havaittu, että maito suojaa maitohappobakteereita tehokkaasti.

Probioottien syöminen tarkoittaa elävien bakteerien syömistä. Ne ovat muutoksille herkkiä mikro-organismeja, joiden on selvittävä elävinä ruoansulatuskanavaa pitkin suolistoon ohut- ja paksusuoleen. Vakavin uhka probioottien elämälle ovat mahahapot. Maitohappobakteerit pääsevät suolistoon, koska maito suojaa niitä. Pilleri- ja kapselimuotoisilla probiooteilla pitää olla sellainen kalvo, joka kestää mahahapot; muuten ne ovat hyödyttömiä.

Lisäravinteiden tarpeellisuudesta

Lisäravinteet ovat tarpeen, jos ravinnosta ei muuten saa riittävästi välttämättömiä ravintoaineita. D-vitamiinilisä on suositeltava kaikille suomalaisille lyhyen kesän vuoksi. B12 on vitamiini, jota vegaanit eivät välttämättä saa riittävästi, koska sitä saa käytännössä vain eläinperäisestä ravinnosta.

Probiootit ovat hyödyllisiä etenkin, jos ravinto on kovin yksipuolista, alkoholipainotteista tai jos ihminen käyttää paljon lääkkeitä. Antibiootit tappavat sekä tautia aiheuttavia bakteereita että suoliston hyviä mikrobeja.

Sen sijaan ei ole tarkoituksenmukaista korvata monipuolista ravintoa erilaisilla monivitamiini- ja mineraalivalmisteilla, vaikka onkin totta, että tehotuotettu nykyravinto sisältää vähemmän ravinteita kuin mitä ravinto aiemmin sisälsi. Liikaa käytettynä erilaiset monivitamiinit ja muut lisäravinteet ovat terveysriski, sillä ne vaikuttavat aineenvaihduntaan ja elimistön tasapainoiseen toimintaan.

Probioottien terveysvaikutukset

Probiootit tehostavat ihmisen omaa vastustuskykyä viemällä elintilaa sairastuttavilta bakteereilta.

Yksilöllinen mikrobiomi ja suolistofloora kehittyvät syntymästä alkaen ja kehitys jatkuu koko elämän ajan. Lapsi perii äidiltään mikrobiomin, jota rintaruokinta vahvistaa. Lapsesta alkaen ravinto ja antibiootit sekä ympäristön patogeenit ja myrkyt vaikuttavat suoliston mikrobiomin kautta vastustuskykyyn ja terveyteen.

Probiootit

  • suojaavat elimistöä ympäristön taudinaiheuttajilta,
  • vahvistavat ruoansulatuskanavan toimintaa,
  • parantavat ravinteiden imeytymistä,
  • tehostavat aineenvaihduntaa ja
  • vahvistavat immuunijärjestelmää

Maitohappobakteerien säännöllinen käyttö ehkäisee tutkimusten mukaan lapsilla rota-viruksia ja korvatulehduksia.

Terve mikrobiomi voi helpottaa myös painonhallinnassa. Tuoreissa tutkimuksissa on saatu vahvaa näyttöä siitä, että probiootit osallistuvat aineenvaihduntaan ja voivat auttaa merkittävästi painonhallinnan ylläpidossa. Tutkimuksissa on havaittu, että ne lapset, joiden suolistossa esiintyi vähiten Bifido-bakteereja, lihoivat todennäköisimmin hieman vanhempina.

Eräiden probioottisten elintarvikkeiden, kuten jogurttien syöminen raskauden aikana auttaa tutkimusten mukaan äitejä karistamaan raskauskilot synnytyksen jälkeen. Odottavan äidin kannattaa syödä probiootteja myös siksi, että sen on havaittu suojaavan syntyvää lasta allergioilta, ihottumilta ja atooppiselta iholta

Probiootit voivat lievittää stressiä ja masennusta

Tutkimuksissa on saatu viitteitä myös siitä, että probiootit voivat lievittää kroonista väsymysoireyhtymää potevien oireita. Suoliston mikrobit osallistuvat aineenvaihduntaan ja tuottavat elimistöön mm. dopamiinia ja serotoniinia.

Vaikka on epäselvää, kuinka paljon suoliston tuottamista mielialahormoneista ja hermovälittäjäaineista pääsee veri-aivoesteen läpi keskushermostoon, tiedetään, että ne osallistuvat muihinkin elimistön tärkeisiin aineenvaihduntaprosesseihin.

Lactobacillus GG lyhentää vauvojen ja lasten ripulin kestoa

Lactobacillus GG on ilmeisesti kaikkein tutkituin probiootti. Sen on osoitettu helpottavan ja lyhentävän vauvojen ja lasten tulehduksellista ripulia. Samaa ei ole kuitenkaan osoitettu aikuisten potilaiden kohdalla.

Kaksi laajaa seurantatutkimusta osoitti, että probiootit vähentävät antibioottiripulia 60 % tehokkaammin kuin lumelääkkeet.

Mihin probiootit vaikuttavat?

Suolistoflooran hyvinvointi vaikuttaa ihmisen terveyteen monin tavoin immuunijärjestelmän ja aineenvaihdunnan kautta. Monet taudit ja terveysongelmat on tutkimuksissa yhdistetty suoliston mikrobeihin ja suolistoflooran tasapainoon.

Harvard.edu raportoi, että probiooteilla on saatu tutkimuksissa suotuisia vaikutuksia seuraavien oireiden ja tautien hoidossa tai ehkäisyssä.

  • Ripuli
  • IBS eli ärtyvän suolen oireyhtymä
  • Paksusuolen tulehdus
  • Crohnin tauti
  • H. pylori
  • Vaginan tulehdukset
  • Virtsatien tulehdukset
  • Virtsarakon syöpä
  • Ruoansulatuskanavan tulehdukset, joita aiheuttaa Clostridium difficile
  • Lasten ihottumat

Probiootit saattavat myös vaikuttaa suotuisasti:

  • Ahdistukseen
  • Masennukseen
  • Suolistosyöpien ehkäisyyn
  • Reuman oireisiin
  • Vuotavan suolen oireyhtymään (LGS)
  • Sairaalloiseen väsymykseen (fatiikki)
  • Lihomiseen
  • Diabetekseen
  • Allergioihin

Probiootit ravinnosta

Probiootit toimivat parhaiten, jos ne saa elintarvikkeiden mukana. Tämä perustuu siihen, että tabletit, kapselit ja jauheet on monella tapaa käsiteltyjä, ja käsittelyprosessissa probiootit ovat voineet menettää tehoaan.

Hapanmaitotuotteet sekä muut luonnollisesti hapatetut elintarvikkeet auttavat immuunijärjestelmää suojautumaan monilta taudinaiheuttajilta kolonisoimalla suoliston limakalvoja ja estämällä haitallisten bakteerien lisääntymistä.

Probiootteja ei ole elintarvikkeissa itsestään, mutta niitä lisätään moniin ravintoaineisiin, kuten jogurtteihin, mehuihin, rahkoihin ja juustoihin. Lisäksi probiootteja syntyy joihinkin elintarvikkeisiin, kuten kefiiriin ja hapankaaliin perinteisessä hapatusprosessissa.

Vielä 1950-luvun alussa osa ruoasta tehtiin kotona hapattamalla säilyvyyden lisäämiseksi. Hapatetussa ruoassa on luonnostaan paljon probiootteja. Siitä lähtien kun jääkaapit yleistyivät ja hapatettujen elintarvikkeiden käyttö alkoi vähentyä, ihmisen luontainen mikrobisto ei ole saanut ravinnosta tarvitsemaansa täydennystä. – Hyvä Terveys

Se, mistä ravinnosta probiootit saa, ei ole yhdentekevää, sillä mahahapot tappavat tehokkaasti mahaan tulleita vieraita mikrobeja. Hapanmaitotuotteissa mikrobit säilyvät elävänä suolistoon asti, koska maito suojaa mikrobeja mahahapoilta.

Hapanmaitotuotteet sisältävät myös monia probioottien vaikutuksia tehostavia bioaktiivisia yhdisteitä kuten:

  • kalsium
  • oligosakkaridit
  • flykosfingolipidit
  • laktoferriini
  • immunoglobuliinit

Näillä bioaktiivisilla yhdisteillä on antimikrobisia, antikarsinogeenisia ja prebioottisia sekä immuunijärjestelmää sääteleviä vaikutuksia. Kalsium tehostaa lisäksi probioottien tarttumista suoliston limakalvoon.

Maito: tavallinen maito ei sisällä probiootteja

Maidon terveyshyötyjä korostetaan usein suomalaisille. Viime aikoina perinteisiä pastöroituja maitoja on kuitenkin myös kritisoitu. Puolet maailman ihmisistä eivät juo normaalisti maitoa imetysajan jälkeen, koska heidän elimistönsä ei tuota laktaasia, jota tarvitaan pilkkomaan maitosokeria eli laktoosia. Laktaasi-entsyymin puutos aiheuttaa laktoosi-intoleranssia.

Maidosta tapetaan kaikki mikro-organismit pastöroimalla, eli kuumentamalla. Raakamaidossa on hyviä mikrobeja ja entsyymejä, kuten laktaasia, mutta mikrobit tuhoava pastörointi ja molekyylirakenteita pilkkova homogenointi muuttavat maidon kivennäisten, vitamiinien ja proteiinien suhteita, mikä aiheuttaa monilla imeytymisongelmia ja vatsavaivoja. Maidosta saa todennäköisemmin vatsanpuruja kuin terveyttä edistäviä mikrobeja.

Kefiiri on yksi eniten eläviä mikro-organismeja sisältävistä ruoista

Kefiiri on hapatettua lehmän- tai vuohenmaitoa, jonka hapan maku johtuu hapatusprosessista, joka vähentää maidon sisältämiä sokereita. Kefiiri vahvistaa suoliston hyvää mikrobikantaa ja säännöllisesti nautittuna vähentää suolistossa eläviä taudinaiheuttajia.

Hapankaali parantaa suolistobakteerien laatua

Hapankaali on hapatettua kaalia, joka sisältää runsaasti Lactobacillus- ja Bifido-bakteereja. Hapankaalin sisältämät hyvät mikrobit kolonisoivat suoliston limakalvoja ja estävät näin taudinaiheuttajien leviämistä. Hapankaali myös auttaa palauttamaan ohutsuolen pH-tason, tehostaa ruoansulatusta ja auttaa ravintoaineiden imeytymisessä.

Hapankaalissa on lisäksi paljon A-, B1, B2- ja C-vitamiineja sekä hivenaineita, kuten rautaa, kalsiumia, fosforia ja magnesiumia.

Muita hyviä probioottien lähteitä ovat: kreikkalainen jogurtti, misokeitto, kombutsa-juoma, oliivit ja tumma suklaa.

Probiootteja antibioottikuurin jälkeen

Probioottien terveysvaikutuksia terveillä on vaikea arvioida. Se kuitenkin tiedetään, että antibioottikuuri tappaa myös suoliston hyviä bakteereita ja suoliston terveen mikrobiomin palautuminen antibioottikuurista voi viedä kuukausia tai jopa vuosia. Niinpä antibioottikuurin jälkeen probiootteja kannattaa syödä ainakin kuukauden ajan, että suoliston hyvinvointi palautuu.

Probioottitutkimuksiin liittyy myös eräs merkittävä ongelma: hyvät tutkimustulokset on usein saatu tutkimalla sairaita ihmisiä. EU-lainsäädännön mukaan elintarvikkeiden terveysväittämien tulisi kuitenkin päteä keskivertokuluttajaan, joka on usein aika terve. – Hyvä Terveys

Kuvan alkuperä: Huffington Post