Likaista biologiaa & muutama vesiperä

Biologia on likaista. Paperilla matematiikka on puhdasta ja kaunista, mutta jos ihmisen aineenvaihdunnan toiminta määritellään termodynamiikan ensimmäisellä pääsäännöllä muuttujista piittaamatta, johtopäätökset ovat väistämättä harhaanjohtavia. Likaista biologiaa & muutama vesiperä tutustuu painonhallintaan ja terveyteen vaikuttaviin tekijöihin hieman toisesta vinkkelistä.

Olen aiemmissa kirjoituksissani arvioinut, että LCHF-ruokavaliota noudattavia ja suosittelevia lääkäreitä on muutamista kymmenistä satoihin. Olin väärässä. Pelkästään Kanadassa on lähes 4000 naistentautien lääkäriä, jotka suosittelevat potilailleen LCHF-ruokavaliota osana hoitosuosituksia.

Gary Taubesin mukaan koko maailmassa voi olla jo yli 10 000 lääkäriä, jotka toimivat institutionalisoituja lääketieteen dogmeja vastaan suosittelemalla LCHF-ruokavaliota osana lihavuuden, metabolisen oireyhtymän ja aikuistyypin diabeteksen hoitosuunnitelmaa.

Andreas Eenfeldtin Diet Doctor on maailman johtava lääketieteen ammattilaisten ylläpitämä ketogeeniseen ruokavalioon keskittynyt riippumaton verkkosivusto. Monet pidempään ketoilleet tunnistavat Diet Doctorin suunnannäyttäjien joukosta useita henkilöitä. Tämä henkilögalleria esimerkkinä siitä, että maailmalla yhä useammat lääketieteen ammattilaiset ja ravintoterapeutit luottavat tieteeseen ja tutkimukseen enemmän kuin pölyttyneisiin dogmeihin.

Diet Doctor Team

Tieteellinen tieto ei perustu muuttumattomiin dogmeihin

Koska tieteellinen metodologia on itseään korjaava järjestelmä, oletus on, että paremmin ilmiöitä kuvaava havaintojen ja evidenssin tukema malli korvaa huonommin ilmiöitä selittävän mallin. Perinteinen diet-heart hypoteesi on aikansa elänyt. Se on aika kuopata. Myös kaloriteoria kaipaa kipeästi päivittämistä.

Conclusions: Available evidence from randomized controlled trials shows that replacement of saturated fat in the diet with linoleic acid effectively lowers serum cholesterol but does not support the hypothesis that this translates to a lower risk of death from coronary heart disease or all causes. Findings from the Minnesota Coronary Experiment add to growing evidence that incomplete publication has contributed to overestimation of the benefits of replacing saturated fat with vegetable oils rich in linoleic acid.”

Uudet utkimukset eivät tue Ancel Keysin vuosikymmeniä vanhaa hypoteesiä, jonka mukaan tyydyttyneet rasvat ja kolesteroli aiheuttavat ateroskleroosia ja lisäävät kuolleisuutta.

On totta, että tyydyttyneet rasvat lisäävät ja monityydyttämättömät rasvat vähentävät lipoproteiinien määrää veressä. Tutkimusten mukaan kuolleisuus lisääntyy matalilla kolesterolitasoilla.

Robert Atkins

Palataan historiassa hieman taaksepäin. Robert Atkins ei ollut ensimmäinen ketoilija. Aihetta on käsitelty länsimaisessa lääketietellisessä kirjallisuudessa jo 1700-luvulta lähtien. Paaston ja hiilihydraattien rajoittamisen hyödyt on tunnettu Kiinassa pari vuosituhatta.

Robert Atkins (1930-2003) oli yhdysvaltalainen lääketieteen tohtori, fysiologi ja sydänlääkäri. Perinteisiä ruokavaliosuosituksia noudattanut Atkins kärsi ylipainosta ja masennuksesta. Hän aloitti 33-vuotiaana Alfred W. Penningtonin kehittämän ruokavalion noudattamisen rajoittamalla sokerin ja tärkkelyksen saantia. Vain kuudessa viikossa hänen painonsa putosi 12 kg.

Laihtumisen rohkaisemana hän ryhtyi hoitamaan ylipainoisia potilaitaan samanlaisella ruokavaliolla. Myös potilaiden paino laski ja terveys koheni. Vuonna 1972 Robert Atkins julkaisi maineikkaan laihdutusoppaan: Dr. Atkins’ Diet Revolution: The High Calorie Way to Stay Thin Forever. Vuonna 1992 hän julkaisi toisen kirjansa: Dr. Atkins’ New Diet Revolution, joka toimi lähtölaukauksena vuosituhannen vaihteen jälkeiselle vähähiilihydraattiselle buumille.

On selvää, etteivät terveysviranomaiset ja terveysjärjestöt katsoneet hyvällä Atkinsin oppeja. Hiilihydraattien rajoittamista vastustavat muistavat aina mainita, että Atkins kuoli 125 kiloisena läskinä sydänkohtaukseen, ja että hänellä oli pitkä historia sydänkohtauksia. Tällä urbaanilla legendalla halutaan alleviivata ketogeenisen Atkinsin ruokavalion oletettuja sydänriskejä. tarina on myytti.

Robert Atkins kaatui ja loukkasi päänsä. Sairaalassa hänet punnittiin. Robert Atkins painoi sairaalaan tullessaan 88,5 kiloa. Atkins vaipui sairaalassa koomaan ja sai nesteytystä yhdeksän päivää kestäneen kooman ajan. Sairaalassa Atkinsin paino nousi noin 28 kiloa. Hän siis painoi kuollessaan enemmän kuin sairaalaan saapuessaan. Robert Atkins sairasti kardiomyopatiaa (sydännlihaksen sairaus), jonka todennäköisin aiheuttaja oli infektio. Robert Atkins kuoli kaatumisen aiheuttamaan aivovammaan. Tämä on virallinen lääketieteellinen totuus.

Tutkimusten mukaan Atkinsin dieetti on turvallinen ja tehokas

Vuoden 2000 jälkeen tehdyt tutkimukset ovat osoittaneet, että Atkinsin dieetti on tehokas ruokavalio painonpudotuksessa ja hyödyllinen sydänterveyden riskitekijöiden kannalta. Tutkimukset eivät ole kuitenkaan vakuuttaneet läheskään kaikkia.

Kun sata lääkäriä julkaisi taannoin ketogeenisen ruokavalion terveyshyötyjä painottavan julkilausuman Huffington Postissa, vain muutama viikko myöhemmin ketogeeninen ruokavalio ja Atkinsin dieetti teilattiin mediassa täysin. Kamppailu on ankaraa. Paradigmat kaatuvat väistämättä, mutta väärien tietojen kumoaminen on hidasta.

Miksi ihminen lihoo?

Nykyihminen kehittyi noin 200 000 vuotta sitten. Ravitsemussuositukset otettiin käyttöön Yhdysvalloissa vuonna 1977. Ihmiskunta selvisi ja kehittyi 200 000 vuotta ilman virallisia ohjeita. Kuinka se on mahdollista? Miksi ihminen lihoo, vaikka meillä on vimpan päälle ohjeet oikein syömiseen?

Ihminen kehittyi sekasyöjäksi,koska se oli ainoa tapa selvitä. Ravinto kerättiin luonnosta silloin kun jotain ravintoa oli kerättävissä. Eläimiä saalistettiin ravinnoksi aina kuin se oli mahdollista tai tarpeen. Talvisin saaliseläimet olivat käytännössä varhaisten ihmisten ainoa ravinnonlähde. Tähän kehityshistoriaan nojaa paleodieetin perusta. Ruokaa syötiin silloin, kun sitä oli. Ylimääräisen energian elimistö varastoi rasvasoluihin.

Ihminen lihoo siksi, että evoluutio on mahdollistanut energian varastoimisen rasvasoluihin pahan päivän varalle. Ihminen selviää erinomaisesti ilman ravintoa pitkiäkin aikoja. Miten ihminen lihoo, on kokonaan toinen kysymys, joka liittyy energiansaannin ja kulutuksen tasapainoon sekä noin kymmeneen muuhun muuttujaan.

Luontokappaleet joko varastoivat energiaa tai vaihtolämpöisinä säästävät energian kulutuksessa. Varastoiminen tarkoittaa rasvan keräämistä, koska ravinnon saanti ei aina ollut itsestään selvää.

Lähes kaikki eläimet varastoivat energiaa rasvasoluihin. Lihominen on siis luonnollinen tapa varautua siihen, että ravintoa ei olekaan saatavilla. Rasvasoluihin varastoituu myös rasvaliukoisia vitamiineja.

Kun ihminen ei saa energiaa ravinnosta, elimistössä aktivoituu aineenvaihduntaprosessi, joka purkaa rasvasoluihin varastoituneita triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon. Vapaiden rasvahappojen karboksyyliryhmät hapetetaan solujen beetaoksidaatiossa asetyylikoentsyymi-A:ksi, jota mitokondriot voivat sitruunahappokierrossa hapettaa energiaksi. Osa asetyylikoentsyymi-A:sta voidaan edelleen muuttaa solujen energiaksi kelpaaviksi ketoaineiksi. Maksa muuttaa ketogeneesissä vapaita rasvahappoja ketoaineiksi, kuten betahydroksibutyraatiksi.

Vapaita aminohappoja, sitruunahappokierron välituotteita, ketoaineita, vettä ja glyserolia voidaan muuttaa glukoosiksi glukoneogeneesissä. Veren punasolut tarvitsevat välttämättä glukoosia, jonka keho osaa itse valmistaa. Aiempien oletusten mukaan aivojen solut eivät ole riippuvaisia glukoosin saannista.

Evoluutio on varmistanut näin sen, että me emme kuole nälkään, jos emme saa heti ruokaa. Terve ihminen voi paastota pelkällä vedellä jopa 30 vuorokautta ja pysyä terveenä ja toimintakykyisenä.

Maailman pisimpään paastosi skotlantilainen Angus Barbieri, joka paastosi veden ja vitamiinipillereiden avulla kokonaista 382 vuorokautta. Paaston aikana hänen painonsa putosi 125 kiloa. Tapaus on hyvin dokumentoitu ja mainitaan mm. Guinnesin ennätysten kirjassa.

Angus Barbieri
Lähde: Wikipedia

Lämpöopin ensimmäinen pääsääntö

Aineenvaihdunta on enemmän kuin lämpöoppia ja paljon enemmän kuin iltapäivälehtien höpöhöpöjutut. Ongelma on se, että monimutkaiset asiat halutaan yksinkertaistaa. Lihomisen selittäminen energian säilymisellä tarkoittaa sitä, että viivat vedetään suoriksi ja kaikki häiritsevät taustavaikuttajat pyyhitään yhtälöstä.

Tutkiva journalismi on lähestulkoon haudattu. Uutiset julkaistaan sen tarkemmin asioihin paneutumaatta. Monet journalistit käytännössä vain kääntävät uutistoimistojen uutisia ymmärtämättä uutisen aiheesta juuri mitään. Se on valitettavaa, mutta totta.

Kalorioppi toimii periaatteessa hyvin paperilla. Ikävä tieteellinen fakta on, että rumat tosiasiat pilaavat kauniit teoriat. Biologia on likaista. En tarkoita saastaista, vaan tarkoitan, että kaikkien yhtälöön vaikuttavien tekijöiden laskeminen ja mallintaminen jokaiseen ihmiseen päteväksi universaaliksi lainalaisuudeksi on mahdotonta.

Biologia on likaista, koska aineenvaihdunnasta ei voi vetää universaaleja lakeja. Se sisältää liikaa rumia tosiasioita, jotka pilaavat kauniin teorian.

Energia ei häviä suljetusta systeemistä, mutta energian käyttöä ja varastoitumista säätelee monimutkainen biokemiallinen kone. Perinteisenen kalorioppi selittää kyllä lihomista, mutta se kuvaa puutteellisesti lihomisen syitä ja aineenvaihdunnan mekanismeja.

Kalorioppi

Kalori on vanha energian mittayksikkö. Se tarkoittaa lämpömäärää, joka kasvattaa yhden 14,5 asteisen vesigramman lämpötilaa assteella normaalipaineessa. Ravinnosta puhuttaessa pitäisi puhua kilokaloreista.

Tohtorit Newburg ja Johnston esittivät vuonna 1930 hypoteesin, jonka mukaan lihavuus johtuu kalorein mitattuna liian rusaasta ravinnosta, eikä aineenvaihdunnan häiriöstä. Tutkimusaineisto oli niukka, mutta kaloriteoria otettiin vastaan kumoamattomana tieteellisenä faktana.

Montignacin kritiikki kaloriteoriaa vastaan

Ranskalaisen Michel Montignacin periaate on seuraava: ”Lihominen ei johdu liiasta syömisestä vaan huonosta syömisestä.”

Montignacin mukaan kalorien vähentämiseen perustuva laihdutusteoria on 20. vuosisadan suurin ”tieteellinen ankka”. ”Se on ansa, huiputus, hölmö ja vaarallinen olettamus, jolla ei ole mitään tieteellistä perustaa. Ja kuitenkin se on ohjannut ravitsemuskäyttäymistämme yli puolen vuosisadan ajan.”

Montignac selvittää painon kertymisen logiikan seuraavasti: Olettakaamme, että yksilön päivittäinen tarve on 2500 kcal ja hänen saamansa kalorimäärä on pitkän ajan vastannut tätä tarvetta. Mikäli päivittäinen kaloriannos putoaa äkkiä 2000 kcal:iin, seurauksena on todellakin vastaavan vararasvamäärän käyttö ja toteamme painon pudonneen.

Jos päivittäinen kalorimäärä sen sijaan vakiintuu 2000:ksi aiemman 2500:n sijasta, elimistön eloonjäämisvaisto mukauttaa energiatarpeen nopeasti uudelle tasolle. Koska ihmiselle annetaan vain 2000 kcal, hän kuluttaa vain 2000 kcal. Painonmenetys keskeytyy nopeasti. Mutta elimistö ei jää tähän. Itsesäilytysvaisto houkuttelee sen entistä suurempaan varovaisuuteen. Ja tämä varovaisuus johtaa uusien varastojen muodostamiseen. Mikäpä siinä, jos sille annetaan vain 2000 kcal, se vähentää energiantarvettaan entisestään ja kuluttaa esimerkiksi vain 1700 kcal ja tallettaa ylimääräiset 300 kcal vararasvoiksi.

Montignacin mukaan vararasvojen muodostuminen tai muodostumatta jääminen on suoraan riippuvainen insuliinin erityksestä. Insuliinin eritys käynnistyy aina silloin kun veren sokeripitoisuus on nousemassa liian korkeaksi. Sen tehtävänä on auttaa veren glukoosin imeytymistä elimistön kudoksiin. Tarjolla oleva glukoosi käytetään joko tyydyttämään kehon välitöntä energiantarvetta tai, mikäli sitä esiintyy runsaasti, vararasvojen muodostamiseen. (1)
Ajatus, että jokaisen ihmisen biokemiallinen kone noudattaa täsmälleen samalla tavalla termodynamiikan ensimmäistä pääsääntöä, on yhtä hölmö, kuin väite, että kaikkien autojen bensiininkulutus on täsmälleen sama.

Termodynamiikan ensimmäinen pääsääntö:

  • Energiaa ei voida hävittää, se vain muuttaa muotoaan.
  • Termodynaamiseen systeemiin voidaan tuoda energiaa kahdessa eri muodossa työnä W ja lämpönä Q.
  • Tuotu energia muuttuu systeemin sisäenergiaksi U.
  • Sisäenergian muutos on siis systeemiin tuodun energian määrä:

ΔU=Q+W

  • Sisäenergian muutos ilmenee muutoksena systeemin lämpötilassa, paineessa, tilavuudessa tai olomuodossa.
  • Systeemistä voi myös lähteä energiaa. Tällöin systeemi, joko luovuttaa lämpömäärän -Q tai tekee ympäristölle työn -W. Huomaa miinus merkki energian lähtiessä systeemistä.

Syötyjen ja kulutettujen kaloreiden laskeminen on käytännössä mahdotonta. Erilaiset laskurit ja laskentakaavat helpottavat seurantaa, mutta nekin antavat epätäsmällisiä osatotuuksia.

Tietenkin ihminen laihtuu, jos syödyn energian määrä on vähäisempi kuin kulutetun energian määrä, mutta jos aineenvaihdunta toimii normaalisti, se purkaa energianpuutteessa mm. lihasten proteiineja polttoaineeksi. Äärimmäisellä rasvoja rajoittavalla ruokavaliolla ihminen voi ”syödä” omat lihaksensa. (1)

Kaikki laihduttajat tietävät, että laihduttaminen on vaikeampaa kuin lihominen. Meidät on ehdollistettu syömään 4-6 kertaa päivässä (mukaanlukien välipalat), että verensokerimme pysyy tasaisena.

Koska ravintomme koostuu pääasiassa sokereista, verensokerin ja insuliinipitoisuuden vaihtelut aiheuttavat energiapiikkejä ja energiatason nopeita laskuja. Tämä pitää meidät nälkäisinä ympäri vuorokauden. Jatkuvaa nälkää kompensoidaan välipalapatukoilla, pullakahveilla, välipaloilla, snackseillä, virvoitusjuomilla jne.

Tämä aiheuttaa toisaalta kokonaisenergian huomaamattoman kasvun, mutta tärkeämpää on se, kuinka ruoka vaikuttaa verensokeriin ja insuliiniin.

Miksi insuliini on tärkeää?

Kuvaparissa tyypin 1 diabetesta sairastava potilas ennen ja jälkeen insuliinihoidon. Kun haima lopettaa insuliinintuotannon, aineenvaihdunta ei voi käyttää syötyä ravintoa polttoaineena, joten se turvaa välttämättömien elintoimintojen jatkuvuuden purkamalla lihaksiin, maksaan ja rasvakudokseen varastoitua energiaa solujen polttoaineeksi.

Ennen insuliinilääkitystä tyypin 1 diabeetikot nääntyivät nälkään riippumatta siitä, kuinka paljon he söivät.

Haiman beetasolut erittävät vereen insuliinia kahdella mekanismilla.

  1. Ensinnäkin syöminen signaloi aivoille, että elimistö saa ravintoa. Tällöin hypotalamus signaloi haimalle, että ruokaa olisi pian tulossa, joten eritäpä sitä insuliinia vereen.Syöminen vaikuttaa insuliinin eritykseen makuaisti-hypotalamas-haima reitillä. Hypotalamuksen säätelemään insuliinin eritykseen vaikuttaa ainakin makuaisti. (1, 2).
  2. Veren glukoosipitoisuuden kasvu vaikuttaa haiman insuliinin eritykseen suoraan. Haiman Langerhansin saarekkeiden beetasolut aistivat verensokerin muutoksia ja pystyvät autonomisesti säätelemään verensokeria.Verensokerin noustessa haiman beetasolut erittävät vereen insuliinia, joka siivoaa glukoosin (ja muut ravinteet) verestä soluihin. Verensokerin laskiessa haiman alfasolut erittävät vereen glukagonia, joka aktivoi lihaksiin ja maksaan varastoitujen glykogeenien purkamisen glukoosimolekyyleiksi.

Insuliinin merkitystä painonhallinnalle ja terveydelle ei voi vähätellä.

  1. Insuliini on elintärkeä hormoni, jota ilman me kuolisimme.
  2. Insuliini vaikuttaa glukoosin ja muiden ravintoaineiden soluunottoon, glykolyysiin, glykogeenien synteesiin, proteiinien synteesiin sekä elektroninsiirtoketjun toimintaan.
  3. Insuliini estää glukoosia tuottavan glukoneogeneesin käynnistymisen, maksan ja lihasten sokerivarastoja purkavan glykogenolyysin, rasvahappoja purkavan lipolyysin, proteolyysin ja ketogeneesin.

Insuliinin toiminta

Insuliini on energia-aineenvaihdunnan tarvitsema elintärkeä hormoni. Se toimii kuin liikennevalvoja, joka ohjaa solujen energia-aineenvaihduntaa ja energian varastointia.

Solujen energiakylläisyyden perusteella solujen insuliinireseptoreihin kiinnittyneet insuliinimolekyylit päästävät ravintoaineita soluihin, jotka tarvitsevat energiaa ja/tai soluihin, joissa on tilaa varastoida energiaa.

Soluun kiinnittynyt insuliinimolekyyli näyttää glukoosi- ja rasvamolekyyleille vihreää valoa; tänne mahtuu.

Insuliini on porttivahti, joka avaa solut vain yhteen suuntaan: sisälle. Glukagoni insuliinin vastavaikuttajana puolestaan toimii solusta ulos periaatteella ja purkaa mm. glykogeeneihin varastoituneita sokereita verenkiertoon.

Veressä on aina insuliinia, mutta, kun insuliinipitoisuus laskee riittävästi, haima erittää glukagonia,joka purkaa energiavarastoja. Kun maksan ja lihasten sokerivarastot on kulutettu, verenkiertoon erittyy lipolyyttisiä hormoneja (adrenaliini, noradrenaliini, kortikotropiini ja glukagoni), jotka käynnistävät rasvasolujen purkamisen. Insuliini estää rasvasolujen purkamista, eli lipolyysiä. Jos verensokeri on jatkuvasti korkea ja veressä on paljon insuliinia, rasvasolujen purkaminen energiakäyttöön estyy.

Insuliiniresistenssi ja hyperinsulinemia

Jos haiman kyky tuottaa insuliinia loppuu, kuten tyypin 1 diabeteksessa tapahtuu, ravintoaineet eivät pääse verestä soluihin. Insuliinin puutteessa energian tuotanto loppuu ja ihminen nääntyy nälkään, vaikka söisi koko ajan. Tyypin 2 diabeteksessa haima tuottaa alkuun jopa normaalia enemmän insuliinia, mutta solujen insuliiniherkkyyden heikentyminen johtaa siihen, että veressä on liikaa insuliinia (hyperinsulinemia).

Insuliiniresistenssi ja hyperinsulinemia assosioituvat kaikkiin yleisimpiin kroonisiin sairauksiin. Tätä ei vielä tiedetty viime vuosisadan puolivälissä, mutta tieto lisääntyy ja se korjaa vanhoja käsityksiä.

Useimpien sairauksien taustalla on aineenvaihdunnan toimintahäiriö ja tämän aiheuttamat komplikaatiot. Lihavuus on lähes aina oire siitä, että aineenvaihdunnan toiminta on häiriintynyt. Nykyisin on tapana syyllistää ja leimata lihavia, mutta se on väärin. Lihavuus on oire, ei syy.

Hyperinsulinemiaan assosioituvat mm. Alzheimerin ja Parkinsonin taudit, tyypin 2 diabetes, alkoholista riippumaton rasvamaksa, haavainen paksusuolentulehdus, krooninen inflammaatio, lihavuus, ateroskleroosi, kardiomyopatia, sydänhalvaukset ja verenpaine. Edelliset kuvankaappaukset Catherine Kroftsin videolta.

Insuliini rakentaa lihas- ja rasvakudosta

Insuliini vaikuttaa myös anabolisiin aineenvaihduntatapahtumiin, kuten energian varastoimiseen lihasten ja maksan glykogeeneihin ja rasvasoluihin sekä esimerkiksi lihaskudosta rakentavaan proteiinisynteesiin. Tämä on äärimmäisen tärkeää.

Kun verenkierrossa on liikaa energiaravinteita (glukoosia ja rasvaa), ravintoaineet ohjataan ensin soluihin, jotka tarvitsevat energiaa. Ylimääräinen glukoosi varastoidaan ensimmäiseksi maksan ja lihasten sokerivarastoihin (glykogeenit), johon mahtuu keskimäärin 250-500 grammaa sokeria ihmisen lihaskunnosta riippuen.

Glukoosi, joka ei mahdu glykogeeneihin, varastoidaan rasvasoluihin. Myös ylimääräinen rasva ohjataan rasvasoluihin. Insuliinilla on keskeinen rooli energiaravinteiden ohjaamisessa soluihin. Solut käyttävät energian lähteenä joko rasvaa tai glukoosia. Solu ei voi samanaikaisesti sekä polttaa, että varastoida energiaa. Niin ei vain tapahdu. Tämä on periaatteessa perinteisen kaloriopin mukainen mekanismi.

Kiinnostavaksi tilanne muuttuu, kun likainen biologia kumoaa perinteisen mallin. Jos ja kun veressä on liikaa sokeria (hyperglykemia) ja insuliinia (hyperinsulinemia), sokeri voidaan varastoida vain rasvasoluihin, jossa glukoosi muutetaan lipogeneesissä triglyserideiksi. Jatkuvasti koholla oleva insuliini johtaa solujen insuliiniresistenssiin, minkä seurauksena insuliinin kyky siivota verestä ravintoaineet soluihin heikkenee. Rasvasolujen insuliinisensitiivisyys säilyy pisimpään, joten insuliini ohjaa yhä enemmän ravintoa verenkierrosta rasvasoluihin samalla, kun insuliiniresistenttien lihassolujen energiansaanti vähenee. Tämän seurauksena ihminen alkaa lihoa.

Insuliiniresistentti varastoi enemmän energiaa rasvasoluihn

Mitä tämä käytännössä tarkoittaa? Se tarkoittaa sitä, että samasta syödystä energiamäärästä insuliini varastoi suhteessa suuremman osan rasvakudokseen, koska ravintoa energiaksi polttavien lihassolujen kyky vastaanottaa energiaa on heikentynyt. Insuliiniresistentin ihmisen lihominen voi alkaa, vaikka kilokalorimääräisesti energiansaanti pysyisi aiemmalla tasolla. Insuliiniresistenssi vaikuttaa lihomiseen satunnaista ylensyöntiä enemmän.

Veressä on aina hieman insuliinia. Proteiinit ja rasvat lisäävät insuliinin eritystä, koska energia-aineenvaihdunta loppuu ja ihminen nääntyy nälkään, jos insuliinia ei ole saatavilla. Glukoosi kohottaa insuliinitasoja tuplasti enemmän kuin proteiini ja moninkertaisesti enemmän kuin rasva. Liikaa hiilihydraatteja sisältävä ravinto pitää verensokerin liian korkealla, jolloin insuliinin eritys lisääntyy ja vähitellen jatkuvasti koholla olevat verensokeri ja insuliini alkavat vaikuttaa negatiivisesti aineenvaihdunnan toimintaan. Tämä ennakoi insuliiniresistenssia, joka on useimpien kardiometabolisten sairauksien tärkein aiheuttaja.

Aineenvaihdunta on enemmän kuin lämpöoppia ja paljon enemmän kuin iltapäivälehtien höpöhöpöjutut. Energia ei häviä suljetusta systeemistä, mutta energian käyttöä ja varastoitumista säätelee monimutkainen biologinen kone. Perinteisenen kalorioppi selittää kyllä lihomista, mutta se kuvaa puutteellisesti lihomisen syitä ja aineenvaihdunnan jänniä mekanismeja.

Se, että eräät konservatiiviset ja institutionalisoituneet tieteestä piittaamattomat ravitsemusneuvojat väittävät, ettei hormoneilla, kuten insuliinilla ole suurtakaan merkitystä painon kannalta, on raivostuttavaa paskapuhetta.

Yksinkertaisesti: keho ei voi varastoida sokereita tai läskiä ilman insuliinin välittävää vaikutusta.

Etanolin aineenvaihdunta

Entä, jos laitamme energian tilalle alkoholin? Termodynamiikan ensimmäisen pääsäännön mukaan juodun alkoholin pitäisi poistua kehosta, koska muuten ylimääräinen alkohli varastoituisi elimistöön alkoholina tai läskinä.

Aineenvaihdunta polttaa juotua alkoholia muiksi aineiksi. Myös ravinnon sisältämä energia muuttuu aineenvaihdunnassa. Ravinto ei ole pelkkää energiaa.

Lämpöoppi toimii, mutta siinä on huomioitava myös yhtälöön vaikuttavat lukemattomat muuttujat, koska muuten siihen ei voi luottaa.
Etanoli on luonnosta ja alkoholijuomista löytyvä alkoholi, joka metaboloituu monimutkaisella katabolisella aineenvaihduntareitillä. Useat entsyymit osallistuvat etanolin prosessointiin ensin asetaldehydiksi ja edelleen etikkahapoksi ja asetyylikoentsyymi-A:ksi.

Kun asetyylikoentsyymi-A on muodostunut, siitä tulee sitruunahappokierron substraatti, joka hapetetaan solujen mitokondrioissa energiaksi. Sitruunahappokierron jäännöstuotteina on vettä ja hiilidioksidia.

Entsyymien esiintymisessä ja saatavuudessa olevien erojen vuoksi eri ikäiset ihmiset käsittelevät etanolia eri aineenvaihduntareiteillä. Maksa on tärkein etanolin aineenvaihduntaan osallistuva elin, koska maksassa esiintyy korkeina pitoisuuksina etanolin aineenvaihdunnan tarvitsemia entsyymeitä.

Ruoansulatusjärjestelmä tuottaa noin 3 g etanolia päivässä fermentoimalla ravintoa. Etanolin katabolinen hajoaminen on välttämätöntä paitsi ihmisten, myös kaikkien tunnettujen organismien, elämälle.

Eräät etanolin aineenvaihduntaan liittyvien entsyymien aminohapposekvenssit eivät ole muuttuneet 3,5 miljardiin vuoteen. Kaikki organismit tuottavat alkoholia pieninä määrinä useilla aineenvaihduntareiteillä.

Etanolia syntyy pääasiassa rasvahappojen synteesin, glyserolipidimetabolian, ja sappihapon biosynteesireittien kautta. Jos keholla ei olisi mekanismia alkoholien katabolisoimiseksi, alkoholit kumuloituisivat elimistöön ja muuttuisivat myrkyllisiksi.

Ehkä tämän vuoksi evoluutio on kehittänyt keinon katabolisoida etanolia myös sulfotransferaasin avulla. Sulfotransferaasit sulfonoivat serebrosideja sulfatideiksi. Serebrosidit ovat sfingolipideihin kuuluvia glykolipidejä, jotka vaikuttavat mm. hermokudoksessa.

Serebrosidien rakenne koostuu sfingosiinistä, rasvahappo-osasta ja glukoosista tai galaktoosista. Galaktooseja sisältäviä serebrosideja esiintyy erityisesti myeliinistä. No niin. Pitikö se viina vetää tähänkin juttuun? Ohessa etanolin aineenvaihduntareitti

Kuvankaappaus: Wikipedia

Kuinka etanolin aineenvaihdunta liittyy termodynamiikan ensimmäiseen pääsääntöön?Aineenvaihdunta muuttaa etanolin energiaksi, mutta ei varastoi etanolia soluihin alkoholina. Itse asiassa aineenvaihdunta ei edes osaa muuttaa etanolia läskiksi.

Lihottaako alkoholi ja miten se lihottaa?

Alkoholi sisältää noin 7 kcal/g energiaa. Puhtaassa etanolissa on enemmän energiaa kuin sokerissa ja melkein saman verran kuin rasvassa.

Alkoholi voi vaikuttaa lihomiseen ja rasvoittaa maksaa, mutta ei sen vuoksi, että laskennallisesti etanolissa on paljon energiaa. Lihomiseen ja maksan rasvoittumiseen vaikuttavat ne muuttujat, jotka sotkevat puhtaan termodynamiikan ensimmäisen pääsäännön kauniin yhtälön likaisella biologialla.

Mitä alkoholille tapahtuu? Kun ihminen juo alkoholia, maksa paiskii ylitöitä. Entsyymi nimeltä Alkoholidehydrogenaasi (ADH) hapettaa alkoholin asetaldehydiksi. Alkoholia palaa noin 0,1 g/painokilo/h, eli 70-kiloinen henkilö polttaa 7 grammaa alkoholia tunnissa.

Aldehydidehydrogenaasi metaboloi asetaldehydistä edelleen asetaattia. Asyyli-CoA syntaasi (ACSS2) ja asetyyli-CoA syntaasi (ACSS1) syntetisoivat asetaatista asetyylikoentsyymi-A:ta. Kun asetyylikoentsyymi-A on muodostunut, se siirtyy mitokondrioiden sitruunahappokiertoon, jossa siitä hapetetaan energiaa ja jäännöstuotteena on vettä ja hiilidioksidia. Kaikki energiaa tuottavat ravinteet muuttuvat aineenvaihdunnassa asetyylikoentsyymi-A:ksi, joka poltetaan vedeksi ja hiilidioksidiksi.

Alkoholin sisältämät sokerit lihottavat, alkoholi hidastaa rasvan palamista ja kasvattaa ruokahalua. Jos alkoholin yhteydessä syö energiatiheää ruokaa, alkoholi lisää ravinnon sisältämän rasvan ja hiilihydraattien varastoimista mm. maksaan. Puhdas alkoholi ei muutu elimistössä läskiksi. Se on sitä likaista biologiaa, joka ei sovi yhteen termodynamiikan ensimmäisen pääsäännön kanssa. Eräs alkoliin liittyvä kiinnostava huomio on se, että alkoholi itse asiassa parantaa solujen insuliinisensitiivisyyttä.

Runsaan alkoholin nauttimisen seurauksena veren alkoholipitoisuus pysyy korkeana kunnes maksa on prosessoinut kaiken alkoholin asetaldehydiksi, astetaatiksi ja asetyylikoentsyymi-A:ksi, joka hapetetaan sitruunahappokierrossa energiaksi. Jo tämä itsessään todistaa, että keho ei osaa muuttaa alkoholia läskiksi. Elimistö metabolisoi alkoholin ennen muita ravinteita. Jos ihminen syö, kun veressä on alkoholia, syöty ravinto muutetaan energiaksi tai varastoidaan vasta alkoholin palamisen jälkeen. Tämä voi lihottaa.

Aineenvaihdunta on siitä merkillinen biokemiallinen järjestelmä, että rasvat eivät aina varastoidu läskinä, mutta hiilihydraatit joudutaan joskus muuttamaan läskiksi.

Energiaravinteet: rasvat, hiilihydraatit ja proteiinit seuraavat kukin omia kemiallisia aineenvaihduntareittejään. Niillä on elimistössä muitakin tehtäviä kuin energian tuottaminen.

Alkoholiesimerkin takoituksena oli havainnollistaa, että aineenvaihdunnan kannalta tapahtumat eivät ole yksinkertaisesti sisään-ulos-tapahtumia, vaan paljon paljon monimutkaisempia reaktioketjuja, joihin vaikuttavat mm. geenit, sukupuoli, ikä ja hormonit.

Me tiesimme tämän aina, mutta emme ymmärtäneet. Alkoholin aiheuttama humalatila jatkuu, kunnes maksa on polttanut kaiken alkoholin verestä. Alkoholin sisältämä energia (kalorit) palaa, mutta ei varastoidu.

Lihava ihminen – Homo Corpulentus

Lihomiseen vaikuttaa ravinnon sisältämän energian lisäksi mm. ympäristö, geenit, hormonit, sukupuoli,ikä, suolistoflooran koostumus, stressi, unen määrä ja laatu, sekä ruumiinrakenne, eli kehon rasva- ja lihaskudoksen suhde. Näillä kaikilla on huomattava merkitys siihen, kuinka elimistö käyttää ravinnosta saatuja kaloreita, ja kuinka ihminen lihoo. Lihomiseen vaikuttavia tekijöitä kutsutaan obesogeneettiseksi potentiaaliksi.

Yleisesti ottaen aineenvaihdunta varastoi energiaa silloin kun energiansaanti ylittää kulutuksen. Tämä on selvää, mutta tutkimuksista tiedetään, että samaa ruokaa saman verran syövien ihmisten aineenvaihdunnan tapa käsitellä ravinnosta saatua energiaa poikkeaa toisistaan.

Tämä on osoitettu mm. identtisillä kaksosilla, jotka ovat syöneet laskennallisesti saman verran energiaa, mutta toinen on pysynyt hoikkana ja toinen lihonut. Kuinka se on mahdollista? Identtisillä kaksosilla on havaittu suoliston mikrobiomin vaikutus energia-aineenvaihduntaan. Lajistoltaan runsaampi mikrobiomi on yhteydessä tehokkaamaan aineenvaihduntaan ja energian kulutukseen, kun lajistoltaan köyhempi mikrobiomi assosioituu lihomiseen.

Ravinnolla on lihomisen kannalta merkittävä rooli, mutta jopa 70 % kehonpainoon vaikuttavista muuttujista johtuu geneettisistä tekijöistä, kertoi Professori Alfredo Martinez (Center of Nutrition Research at the University of Navarra, Pamplona, Espanja) Nature Reviews Disease Primers-lehdelle.

Melanokortiini 4 reseptori -geenimuutos näyttää liittyvän lihavilla ihmisillä selvästi ahmimishäiriöön. Sveitsiläistutkijat totesivat, että kaikki tätä geenimuutosta kantavat erittäin lihavat potilaat kärsivät ahmimishäiriöstä. Melanokortiini 4 reseptorin geenimuutosta on kahden tuoreen tutkimuksen mukaan runsaalla viidellä prosentilla lihavista ihmisistä. Geenimuunnos vaikuttaa ruokahalun sääntelyyn aivojen hypotalamuksessa.”Duodecim

Lihomisalttiuteen vaikuttavia geenimuutoksia on löydetty 118. Yksittäinen muutos ei kasvata lihomisen riskiä merkittävästi, mutta ihmisillä, joilla on useita lihomisalttiuteen vaikuttavia geenimuutoksia, on vahva taipumus lihomiseen kaloreista ja liikunnan määrästä riippumatta. Esimerkiksi ankyrin-B geenin muutokset lisäävät glukoosin kulkua rasvasoluihin.

Myös äidin paino vaikuttaa raskauden ja imetyksen aikana lapsen kehitykseen. Professori Martinezin mukaan raskaudenaikainen lihominen ensimmäisten 20 raskausviikon aikana lisää syntyvän lapsen ylipainoisuuden riskiä. Ilmiö palautuu sikiöaikaiseen aineenvaihduntaan, joka vaikuttaa pysyvästi lapsen geeneihin.

Toisaalta äidin imetyksen aikainen ravinto voi aiheuttaa vastaavanlaisia epigeneettisiä muutoksia lapsen insuliininsäätelyä ohjaavissa geeneissä ja altistaa lapsen myöhemmin elämässä insuliiniherkkyyden alenemiselle ja insuliiniresistenssille, kertoo professori Mark H. Vickers (Liggins Institute at the University of Auckland, New Zealand) Frontiers in Endocinology-lehdessä.

Kolesteroli

Yritän kirjoittaa kolesterolista oman tutkielman, koska aihe on äärimmäisen laaja ja monimutkainen.

Ei ole olemassa hyvää tai pahaa kolesterolia. On vain kolesterolia. Jos kolesterolimolekyyliä muutetaan yhdelläkin atomilla puoleen tai toiseen, se ei enää ole kolesterolia.

LDL, HDL ja kylomikronit (yms.) ovat rasvaa, kolesterolia ja vitamiineja kuljettavia lipoproteiineja. Sellaisina ne ovat aivan välttämättömiä rasva-aineenvaihdunnan normaalille toiminnalle. Se, että lipoproteiineja kutsutaan kolesteroliksi on hyvin harhaanjohtavaa.

Kolesterolisynteesi tuottaa kolesterolia, joka on mm. steroidihormonien, kuten estrogeenin, testosteronin ja D-vitamiinin synteesin välttämätön lähtöaine. Ruoansulatusnesteet tarvitsevat kolesterolia, aivot tarvitsevat kolesterolia, hermoratoja suojaavissa myeliinikalvoissa on kolesterolia ja solut tarvitsevat kolesterolia solukalvoihin. Joka päivä uusiutuu noin 200 grammaa soluja, joiden solukalvojen yksi rakennusaine on kolesteroli. Ihmisen kolesterolista 25 % on aivoissa, ja ravinto ei lisää kokonaiskolesterolia juuri lainkaan. Elimistö tuottaa sen verran kolesterolia kuin se tarvitsee.

Esimerkiksi suomalaisen väitöstutkimuksen mukaan naisten kuolleisuus lähtee kasvuun, jos kokonaiskolesteroli laskee neljään tai sen alle. Mutta tutustutaan kolesteroliin toisessa artikkelissa.

Inspiraation ja tiedon lähteitä

Gary Taubes

Robert Lustig

Paul Mason

Catherine Crofts

Nina Teicholz

Andreas Eenfeldt

Jason Fung

Georgia Erde

Benjamin Bikaman

Stephen Phinney

Darius Mozaffarian
Tim Noakes

David Unwin

Jeffry Gerber

Ted Naiman

Ivor Cummins

Dave Feldman

image_pdfimage_print
Secured By miniOrange