β-hydroksibutyraatin oksidaatio edistää immunometaboliittien kertymistä aktivoituneisiin mikroglia-soluihin

Adrian Beniton, Nabil Hajjin, Kevin O’Neill’n, Hector C. Keunin, & Nelofer Syedin tutkimus on julkaistu elokuun 26. päivänä 2020: 10.3390/metabo10090346

Sairastan etenevää MS-tautia. Olen aiemmissa artikkeleissa useita kertoja viitannut ketogeeniseen ruokavalioon yhtenä MS-taudin progressiota hidastavana terapiavaihtoehtona. Lisääntyvä kliininen näyttö osoittaa, että solujen glukoosinoton troofinen häiriö vaikuttaa neurodegeneraatioon Parkinsonin ja Alzheimerin tautien lisäksi myös mm. progressiivisessa multippeliskleroosissa.

Tässä katsauksessa kummastellaan mihin ketogeenisen ruokavalion vaikutus hermosoluja suojaavana, eli neuroprotektiivisena terapiana perustuu. Lets go!

Laajennan ja yritän parhaani mukaan myös selventää Beniton, Haijin et. al. tutkimusta

Saatteeksi: Neurologi ja kirjailija: Dr. Sophie Christoph kirjoittaa ketogeenisesta ruokavaliosta MS-taudin terapiana:

Ketogeeninen ruokavalio voi muuttaa immuunivastetta ja siten vaikuttaa MS-taudin etenemiseen. Eläinkokeet vahvistavat tämän havainnon.

Lihavuus on MS-taudin oireita pahentava riskitekijä. Ketogeeninen ruokavalio voi hillitä taudin etenemistä ja siihen liittyviä tulehdustiloja laihtumisen seurauksena. Viimeaikaiset tutkimukset viittaavat ruokailutottumusten ja sairauden tai oireiden vakavuuden väliseen vahvaan korrelaatioon.

Suuressa poikkileikkaustutkimuksessa ruokavalion laatuun ja aktiiviseen elämäntapaan liittyi kohentunut vireys, alhaisempi väsymys, ahdistuksen ja masennuksen lieveneminen, kognitiivisten kykyjen paraneminen ja neurologisten särkyjen helpottuminen.

Ketogeeninen ruokavalio tarjoaa vaihtoehtoisen energialähteen hermosoluille. Koska solujen rappeutuminen on ainakin osittain seurausta solujen glukoosinoton heikkenemisestä, betahydroksibutyraatti energiasubstraattina turvaa solujen energiansaannin.

Ketogeeniset ruokavaliot imitoivat aineevaihdunnan tasolla paastotilaa. Aineenvaihdunta siirtyy pois glykolyysin tuottamasta energiantuotannosta ja kohti rasvahappojen beeta-oksidaatiota ensisijaisena energialähteenä.

Ketogeeninen ruokavalio voi olla hyödyllinen MS-potilaille, koska:

  • ROS:ia ja RNS:iä (reaktiivisia happi- ja typpiradikaaleja) muodostuu vähemmän
  • veri-aivoesteen läpi kulkeutuvat ketoaineet säätelevät antioksidanttien signalointireittejä
  • ketoaineet lisäävät energiantuotantoa aivokudoksessa
  • eläimillä ja ihmisillä tehdyt tutkimukset vahvistavat, että ketogeeniset ruokavaliot vähentävät tulehduksellisia biomarkkereita veressä ja aivo-selkäydinnesteessä
  • kokeellisen autoimmuunisen enkefaliitin (EAE) hiirimallissa ketogeeninen ruokavalio johti motorisen vamman korjaantumiseen, parempaan oppimiseen ja muistiin, suurempiin hippokampuksen tilavuuksiin ja periventrikulaaristen vaurioiden remyelinaatioon
  • tulehduksellisten sytokiinien tukahdutettuun tuotantoon
  • lisääntyneisiin hermosolujen korjausprosesseihin
  • ketogeeninen ruokavalio parantaa MS-potilaiden väsymystä, masennusta ja laskee painoa
  • ketogeeninen ruokavalio ehkäisee ja parantaa MS:n aiheuttamaa neurodegeneraatiota ja neuroinflammaatiota

Mitokondrioiden toimintahäiriöt näyttävät olevan keskeisiä MS-patogeneesin neurodegeneratiivisessa vaikutuksessa. Tämä johtaa ATP:n heikompaan saatavuuteen, mikä voi edistää aksonin atrofiaa ja rappeutumista.

In vitro– ja eläintutkimusten mukaan ketogeenisen ruokavalion on osoitettu parantavan mitokondrioiden toimintaa ja edistävän siten aksonien terveyttä edistämällä ATP-tuotantoa ja mitokondrioiden biogeneesiä, ohittamalla mitokondrioiden häiriintyneet prosessit, lisäämällä antioksidanttien määrää ja vähentämällä oksidatiivisia vaurioita.

Tutkimukset ovat raportoineet merkittäviä eroja suolistobakteerien pitoisuudessa, monimuotoisuudessa ja koostumuksessa MS-potilailla ja niiden vaikutuksessa immuunijärjestelmän säätelyyn. Noin 3 kuukauden ketogeenisen ruokavalion jälkeen tämä tila parani myös MS-potilailla.

Tietoa kertyy jatkuvasti. Tälläkin hetkellä on käynnissä useita tutkimuksia, joissa selvitetään ketoosin vaikutuksia aivojen rappeutumista aiheuttaviin neurodegeneratiivisiin tauteihin, kuten Parkinsonin tauti, Alzheimerin tauti ja primaaristi progressiivinen MS.

Immuunisolujen metabolinen säätely on keskeinen vaikuttaja immunologisissa tapahtumissa

Julkaisin Ruokasodassa hiljattin kaksi tätä aihetta syventävää pitkää tutkimuskatsausta (Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa: 1 & 2). Ketogeenisen ruokavalion myönteisiä vaikutuksia primaaristi progressiivisessa multippeliskleroosissa on kuvattu tässä: Ketogeeninen ruokavalio ja PPMS.

Pidemmittä puheitta, mennään asiaan

Tieto leukosyyttien metabolisesta säätelystä on lisääntynyt valtavasti, mutta keskushermoston mikroglia-solujen metabolisesta säätelystä tiedetään yhä paljon vähemmän. Tässä tutkimuksessa osoitetaan, että muiden hermoston solujen tapaan, myös mikroglia-solut pystyvät hapettamaan betahydroksibutyraatista energiaa sitruunahappokierrossa.

Vaihtoehtoisten ravintoaineiden rooli hermosolujen energiasubstraattina tunnetaan huonosti. Vielä vuosituhannen alkupuolella lähtökohtainen oletus oli, että aivojen solut eivät toimi ilman glukoosia. Tämä käsitys kuitenkin kumottiin virheellisenä viimeistään 1960-luvulla. Tieto ei saavuttanut laajemmin lääketieteellistä yhteisöä ja tutkimus jäi pienen piirin kuriositeetiksi.

Ongelmana ovat pitkään olleet tutkimusmenetelmien rajoitukset. Aineenvaihdunnan määrittelyssä on pitänyt tuvautua kovien faktojen lisäksi arvauksiin ja valistuneisiin mielipiteisiin.

Uusilla kehittyneemmillä tutkimusmenetelmillä nähdään tarkemmin ja syvemmälle. Aineenvaihdunnan mekanismeja voidaan korjata siellä, missä on veikattu väärää hevosta. Tämä selittää sen, että tieto aineenvaihdunnan mekanismeista täsmentyy nopeasti.

Glukoosin uskottiin olevan välttämätöntä aivoille, vaikka glukoosin saantia rajoittavaa ketogeenista ruokavaliota on käytetty lääkeresistentin epilepsian kohtausten hillitsemiseen noin sadan vuoden ajan. Hiilihydraattien (glukoosin) rajoittamista sovellettiin menestyksellisesti diabeteksen hoitoon jo 1700 ja 1800 lukujen vaihteessa. Ketogeenisen ruokavalion hyödyt eivät ole uusi ilmiö. Ne tunnettiin vuosituhansia ennen, kuin hiilihydraattien rajoittamisen terveyshyödyt unohdettiin viime vuosisadan puolenvälin jälkeen.

Ketogeeninen ruokavalio, aivan kuten paasto, olisi käytännössä mahdotonta, jos elimistöllä ei olisi mekanismeja korvata glukoosin saantia aivosolujen energianlähteenä muilla energiasubstraateilla.

β-hydroksibutyraatin oksidaatio edistää immunometaboliittien kertymistä aktivoituneisiin mikroglia-soluihin

Tässä tutkimuksessa käytettiin stabiilien isotooppien (13C) jäljitysstrategioita ja metabolomiikkaa* hahmottamaan β-hydroksibutyraatin (BHB) oksidatiivista metaboliaa ihmisen (HMC3) ja hiiren (BV2) mikroglia-soluissa sekä β-hydroksibutyraatin vuorovaikutusta glukoosin kanssa lepo- ja LPS- elli lipopolysakkaridi-aktivoidussa BV2:ssa.

Lipopolysakkarideja esiintyy gramnegatiivisten bakteerien ulkokalvon pinnalla, jossa ne toimivat endotoksiineina ja aktivoivat elimistön immuunijärjestelmän.

*Metabolomiikka on uusi menetelmä, jolla tutkitaan pienimolekyylisten metaboliittien rakennetta, toimintaa ja yhteisvaikutuksia elimistön soluissa, kudoksissa, veressä ja eritteissä.

β-hydroksibutyraatti tuodaan ja hapetetaan TCA-syklissä eli sitruunahappokierrossa molemmissa solulinjoissa, minkä jälkeen sytosolinen NADH : NAD+ -suhde muuttuu.

Nikotiiniamidiadeniinidinukleotidi (NAD+)

NAD+ eli nikotiiniamidiadeniinidinukleotidi on kaikissa elävissä soluissa esiintyvä tärkeä koentsyymi. Rakenteeltaan se on dinukleotidi, jossa nikotiiniamidiemäksen sisältävä nukleotidi ja adeniininukleotidi ovat liittyneet toisiinsa fosfaattiryhmiensä välityksellä.

NAD+ ja sen pelkistynyt muoto NADH toimivat koentsyymeinä monissa tärkeissä biologisissa hapetus-pelkistysreaktioissa. NAD+ muistuttaa rakenteeltaan toista tärkeää koentsyymiä NADP+:a eli nikotiiniamidiadeniinidinukleotidifosfaattia, jossa lisäksi on adenosiiniin liittynyt fosfaattiryhmä.NAD+ osallistuu lähinnä katabolisiin reaktioihin, kun taas NADP+:lla on tärkeä rooli anabolisissa reaktioissa.

Eliöt tuottavat NAD+:a kahdella eri tavalla. Niin sanotussa de novo -synteesissä, jota säätelevät BNA-geenit, eliöt valmistavat aminohappo tryptofaanista kinoliinihappoa. Kinoliinihappo muutetaan nikotiinihappomononukleotidiksi, joka muutetaan nikotinaattinukleotidiadenylyylitransferaasientsyymin avulla desamino-NAD+:ksi. NAD+-syntaasientsyymi muuttaa desamino-NAD+:n NAD+:ksi.

Eliöt biosyntetisoivat NAD+:a myös sen hajoamisessa syntyvästä nikotiiniamidista. Nikotiiniamidi muutetaan nikotiiniamidaasientsyymin avulla nikotiinihapoksi. Nikotiinihaposta muodostetaan nikotiinihappomononukleotidia, joka muokataan NAD+:ksi kuten de novo -synteesissä.

NAD+ on bioreaktioissa hapetin ja NADH pelkistin. NAD+ kiinnittyy entsyymeihin, jotka katalysoivat dehydrausreaktioita. Tällaisia ovat esimerkiksi glykolyysin yhteydessä tapahtuva glyseraldehydi-3-fosfaatin muuttaminen 1,3-bisfosfoglyseraatiksi, alkoholien hapettaminen aldehydeiksi, jota katalysoi alkoholidehydrogenaasi sekä glutamaatin hajotus.

Muita entsyymejä, joille NAD+ toimii koentsyyminä, ovat muun muassa UDP-galaktoosiepimeraasi, adenosyylihomokysteinaasi, 3-dehydrokinaattisyntaasi, ornitiinisyklodeaminaasi ja urokanaasi.- Wikipedia

BV2-soluissa stimulaatio lipopolysakkaridilla sääteli glykolyyttistä virtausta, lisäsi sytosolista NADH : NAD+ -suhdetta ja edisti glykolyyttisen dihydroksiasetonifosfaatin (DHAP) välituotetta.

β-hydroksibutyraatin lisääminen lisäsi LPS:n aiheuttamaa DHAP:n kertymistä ja edisti glukoosista johdetun laktaatin vientiä.

β-hydroksibutyraatti (BHB) lisäsi myös synergistisesti sukkinaatin ja muiden keskeisten immunometaboliittien, kuten sitruunahappokierron tuottamien a-ketoglutaraatin ja fumaraatin, LPS:n aiheuttamaa kertymistä. Lopuksi BHB sääteli avaintulehdusta edistävän (M1-polarisaatio) markkerigeenin, NOS2:n, ilmentymistä LPS:llä aktivoiduissa BV2-soluissa.

Yhteenvetona: havaitsimme β-hydroksibutyraatin mahdollisesti immunomoduloivaksi metaboliseksi substraatiksi, joka säätelee metabolista uudelleenohjelmointia tulehdusta edistävän vasteen aikana.

Betahydroksibutyraatti, β-hydroksibutyraatti eli betahydroksivoihappo tai BHB

Rakkaalla lapsella on monta nimeä. β-hydroksibutyraatti eli β-hydroksivoihappo on energia–aineenvaihdunnassa syntyvä ketoniyhdiste eli ns. ketoaine. Muita elimistön ketoaineita ovat asetoni ja asetoasetaatti.

Ketoaineita muodostuu elimistön energiatilan mukaisesti joko vapaista eli esteröitymättömistä rasvahapoista (free fatty acids eli FFA/non-esterified fatty acids eli NEFA) tai haihtuvista rasva-hapoista (volatile fatty acids eli VFA).

Ketoaineet erittyvät vapaasti munuaisissa virtsaan, joten virtsasta voidaan havaita ketoaineita melko pian ketoottisen tilanteen alkamisen jälkeen. On kuitenkin hyvä muistaa, että virtsaliuskojen ketoainemääritys havaitsee vain asetoasetaatin (ja vähemmässä määrin asetonin), muttei β-hydroksibutyraattia. β-hydroksibutyraatti on se ketoaine, jota syntyy eniten ketoosissa.

Ihmisillä β-hydroksibutyraatti voidaan syntetisoida maksassa rasvahappojen (esim. Butyraatti), β-hydroksi-β-metyylibutyraatin ja ketogeenisten aminohappojen aineenvaihdunnan reaktioiden avulla. Aineenvaihdunta muuttaa nämä yhdisteet asetoasetaatiksi, joka on ensimmäinen ketoaine, joka tuotetaan paastotilassa.

β-hydroksibutyraatin biosynteesiä asetoasetaatista katalysoi β-hydroksibutyraattidehydrogenaasientsyymi. Butyraatti voidaan myös metaboloida β-hydroksibutyraatiksi toisen metaboliareitin kautta, joka ei sisällä asetoasetaattia metabolisena välituotteena.

Tämä metabolinen reitti on seuraava β-hydroksibutyraatin pitoisuus ihmisen veriplasmassa, kuten muissakin ketoelimissä, kasvaa ketoosin kautta. Tämä kohonnut β-hydroksibutyraattitaso on luonnollisesti odotettavissa, koska p-hydroksibutyraatti muodostuu asetoasetaatista.

Aivot voivat käyttää β-hydroksibutyraattia energialähteenä, kun verensokeri on alhainen.

Diabetesta sairastavien potilaiden ketonitasot voidaan mitata virtsan tai veren kautta diabeettisen ketoasidoosin (happomyrkytys) osoittamiseksi.

Ketogeneesi tapahtuu, kun maksasolujen oksaloasetaatti ehtyy, mikä johtuu vähentyneestä hiilihydraattien saannista (ruokavalion tai paaston seurauksena).

Koska oksaloasetaatti on ratkaisevan tärkeä tekijä asetyyli-CoA:n (asetyylikoentsyymi-A on kaikkien energiaravinteiden välimuoto sitruunahaoppokierrossa) pääsemiseksi TCA-sykliin (trikarboksyylihappokeirto) eli sitruunahappokiertoon, asetyyli-CoA:n nopea tuotanto rasvahappohapetuksesta runsaan oksaloasetaatin puuttuessa ylittää TCA-syklin heikentyneen kapasiteetin ja tuloksena oleva ylimäärä asetyyli-CoA siirtyy kohti ketoaineiden tuotantoa.

β-hydroksibutyraatti pystyy läpäisemään keskushermostoa suojaavan veri-aivoesteen

Näin se pääsee ravitsemaan keskushermoston soluja. β-hydroksibutyyrihappotaso kasvaa maksassa, sydämessä, luurankolihaksissa, aivoissa ja muissa kudoksissa liikunnan, kalorien rajoittamisen, paaston ja ketogeenisten ruokavalioiden seurauksena.

Yhdisteen on havaittu toimivan histonideasetylaasin (HDAC) estäjänä. Estämällä HDAC-luokan I isoentsyymien HDAC2 ja HDAC3, β-hydroksibutyraatin on havaittu lisäävän aivoperäisen neurotroofisen tekijän (BDNF) pitoisuutta ja TrkB-signalointia hippokampuksessa.

Jyrsijätutkimuksissa on havaittu, että pitkäaikainen liikunta lisää plasman β-hydroksibutyraattipitoisuuksia, mikä indusoi BDNF-geenin promoottoreita hippokampuksessa.

Näillä havainnoilla voi olla kliininen merkitys masennuksen, ahdistuneisuuden ja kognitiivisten vajaatoimintojen hoidossa. Ketogeenistä ruokavaliota käyttävillä epilepsiapotilailla veren β-hydroksibutyraattitasot korreloivat parhaiten kohtausten hallinnan asteen kanssa. Optimaalisen antikonvulsanttivaikutuksen kynnys näyttää olevan noin 4 mmol / l.

Tutkimus

Mikroglia-solut ovat keskushermoston (CNS) immuunisoluja. Arviolta 10% kaikista keskushermoston soluista on mikroglia-soluja.

Nämä solut ovat viime aikoina herättäneet runsaasti kiinnostusta, koska niillä on kriittinen rooli yleisimmissä aivosairauksissa, kuten dementia, aivohalvaus ja aivokasvaimet. Aivosairaudessa tai immuunialtistuksessa levossa oleva mikroglia hyväksyy ohjelmalliset muutokset, jotka liittyvät sytokiinien ja kemokiinien vapautumiseen.

Sytokiinit ja kemokiinit

Sytokiini on proteiinirakenteinen solujen välisen viestinnän välittäjäaine, joka on löydetty immunologisen tutkimustyön yhteydessä. Sytokiinin ja kasvutekijän, joka on toinen paikallisesti vaikuttava kudoshormonityyppi, välinen ero on lähinnä löytöhistoriasta, eikä toimintatavasta tai muista ominaisuuksista johtuva. Valkosolut tuottavat suurimman osan sytokiineista. Immuunijärjestelmän ohjaus on niiden keskeisin tehtävä.

Immuunijärjestelmää ohjailevat sytokiinit voidaan jakaa toimintansa pääasiallisen luonteen perusteella viiteen pääryhmään: tuumorinekroositekijät, interferonit, interleukiinit, hematopoieettiset kasvutekijät ja muut kasvutekijät. Sytokiineja voidaan luokitella myös tuottajasolujensa mukaan. Esimerkiksi lymfosyyttien tuottamia sytokiineja kutsutaan lymfokiineiksi ja monosyyttien monokiineiksi.

Tuumorinekroositekijät (TNF) ovat ehkä keskeisimpiä ensisijaisia aktivoivia välittäjäaineita immunovasteen käynnistyksessä. Tuumorinekroositekijän nimi juontuu sen löytöhistoriasta, kun joidenkin syöpäpotilaiden kasvainten havaittiin surkastuvan bakteeritulehduksen yhteydessä. Myöhemmin saatiin selville, että kasvainten tuhoutumiseen vaikuttaa keskeisesti eräiden valkosolujen, makrofagien ja T-lymfosyyttien, tuottama proteiini, joka ristittiin tuumorinekroositekijäksi.

Hematopoieettiset kasvutekijät ohjailevat ja stimuloivat immunojärjestelmän solujen erilaistumista ja tuotantoa luuytimessä ja muissa verisoluja muodostavissa kudoksissa. Immunojärjestelmän kannalta ehkä keskeisin hematopoieettinen kasvutekijä on granulosyytti-makrofagi-solulinjaa stimuloiva tekijä. – Wikipedia

Kemokiinit saavat aikaan kemotaksista eli solun liikkumista joko suurempaa kemokiinipitoisuutta kohti tai siitä poispäin. Kemokiinit ovat yli 40 tunnetun molekyylin joukko rakenteeltaan samankaltaisia, pienikokoisia polypeptidejä (8-14 kDa), jotka sitoutuessaan kemokiinireseptoreihin aktivoivat ne. Kemokiinit ja niiden reseptorit luokitellaan C, CC, CXC ja CXXXC perheisiin sen mukaan, miten kemokiinin N-terminaalinen kysteiini paikantuu.

Kemokiinireseptorit ovat luonteeltaan G-proteiineja, joiden aktivoituminen käynnistää sarjan biokemiallisia reaktioita, kuten fosfatidyyli-inositolitrifostaatin hydrolysoitumisen, proteiinikinaasi C:n aktivoitumisen, kalsium-ionien sisänvirtauksen, sekä rac- ja Rho-proteiinien aktivaation. Rac ja Rho osallistuvat solun migraatioon säädellen aktiiniverkoston rakentumista lamellipodeissa ja filopodeissa.

Kemokiinien on osoitettu säätelevän erilaisia immuunijärjestelmän vasteita siten, että T-solujen alalajit ilmentävät eri kemokiinireseptoreita. Tämä puolestaan vaikuttaa siihen, mihin kudoksiin kyseiset T-solut voivat vaeltaa.

Monosyyteissä ja lepäävissä T-soluissa esiintyvät kemokiinireseptorit CCR5 and CXCR4 osallistuvat tulehdusreaktioihin, ja samat reseptorit avustavat HIV-virusten tarttumisessa T-soluihin. – Solunetti


Nämä polarisoidut solut on perinteisesti luokiteltu joko tulehdusta edistäviksi (M1-tyyppi) tai anti-inflammatorisiksi (M2-tyyppi) muutaman molekyylimarkkerin ilmentymisen mukaan. Molekyylit, kuten lipopolysakkaridi (LPS) ja interferoni-y (IFN-y), ovat voimakkaita M1-polarisaation promoottoreita, kun taas IL-4 indusoi M2-polarisaatiota.

Todisteiden lisääntyminen on kuitenkin osoittanut M1 / M2-kehyksen rajoitukset. Mikroglian polarisaatio on edelleen intensiivisen tieteellisen tutkimuksen aiheena. Lisääntyvä tutkimusnäyttö antaa ratkaisevan merkityksen solujen aineenvaihdunnalle mikrogliumin toiminnan ja polarisaation säätelyssä.

Solunulkoinen metabolinen ympäristö ja metabolisten reaktioiden ohjaamat muutokset solunsisäisessä aineenvaihduntaympäristössä, moduloivat vasteen immunologisiin signaaleihin.

Perifeerisissä immuunisoluissa mekanismit, joilla tulehdus vaikuttaa energia-aineenvaihduntaan, tunnetaan jo hyvin. Mikroglia-alueen viimeaikaiset havainnot osoittavat, että tämä immuunisolutyyppi sitoutuu erilaisiin metaboliareitteihin stimulaatiomallista riippuen.

Paljon vähemmän tiedetään kuitenkin siitä, kuinka energia-aineenvaihdunta ja metabolinen mikroympäristö vaikuttavat immuunivasteisiin. Immunometabolian havainnot ovat osoittaneet, että perifeeriset immuunisolut voivat sopeutua vaihteleviin ympäristöhaasteisiin metaboloimalla muita vaihtoehtoisia ravintoaineita kuin glukoosia (asetaattia, aminohappoja ja rasvahappoja).

Mikrogliassa tämä ns. metabolisen joustavuuden ilmiö ja vaihtoehtoisten substraattien energia-aineenvaihdunta ymmärretään edelleen puutteellisesti. Vasta äskettäin raportoitiin, että mikroglia voi glukoosin puuttuessa siirtyä käyttämään glutamiinia vaihtoehtoisena polttoaineena mikrogliafunktion ylläpitämiseksi.

Metabolisen joustavuuden merkitys lisääntyy samalla, kun metabolisen mikroympäristön merkityksestä immuunitoiminnan säätelylle saadaan lisää todisteita

Äskettäin on keksitty termi immunometaboliitit tai sytokiinien kaltaiset metaboliitit kuvaamaan metaboliitteja sukkinaattia, itakononaattia, laktaattia, fumaraattia ja a-ketoglutaraattia. Nämä ovat metaboliitteja, joilla on tärkeä vaikutus leukosyyttien aktivaatiossa ja erilaistumisessa, ja jotka ovat riippumattomia niiden tavanomaisesta roolista biosynteesissä ja bioenergeettisissä aineissa.

Ruokavalio-interventiot ovat osoittaneet terapeuttista potentiaalia aineenvaihduntaympäristön ja immuunijärjestelmän säätelijöinä. Tällaisista ruokavalioista ketogeeniset ruokavaliot ovat olleet suosittuja erityisesti aivosairauksien, kuten epilepsian ja gliooman (aivokasvain) hoidossa.

Huomio: Multippeliskleroosi aiheuttaa todellista tuhoa keskushermoston valkeassa ja harmaassa aineessa.Arpeumat ja kuolleiden neuroneiden muodostamat ”mustat aukot” ovat yhtä todellisia kuin amputoitu sormi tai varvas, joka ei ihmeenomaisesti jotain eliksiiriä nauttimalla kasva takaisin.

Ruokavalio-interventio terapiana hidastaa ja ehkäisee uusien hermostovaurioiden syntyä. Olemassaolevat vauriot voivat ehkä jossain määrin korjautua vuosien tai vuosikymmenten aikana neurogeneesin, remyelinaation ja neuroplastisuuden avulla, mutta sellaisesta ei ole tieteellistä näyttöä.

Yhtä kaikki, ketogeeninen ruokavalio hidastaa ja ehkäisee uusien leesioiden syntyä. Sen parempaan nykylääketiede ei oikein MS-taudin kohdalla pysty. Tämä on masentavaa, mutta samalla rohkaisevaa. Se on se, mitä me multippelisklerootikot voimme itsellemme antaa. Kukaan ei osaa korjata jo syntyneitä valkean ja harmaan aineen vaurioita, mutta me voimme ehkäistä uusien vaurioiden syntymistä ja hidastaa invalidisoivaa prosessia.

Tähän ruokavalioon liittyvien monien terveysvaikutusten joukossa ketoaine β-hydroksibutyraatin (BHB) endogeenisen tuotannon lisääntyminen on yksi biologisesti merkittävimmistä vaikutuksista.

Todiste tämän metaboliitin merkityksellisyydestä on se, että β-hydroksibutyraatti yksinään annettuna tuottaa ketogeenisen ruokavalion hyödylliset vaikutukset äärimmäisissä olosuhteissa.

Tämä on ajankohtainen aihe. NASA rahoittaa β-hydroksibutyraatin ja ketoosin vaikutuksia selvittäviä tutkimuksia, koska tulevaisuuden Mars-lentojen astronauttien aineenvaihdunta ja kognitiiviset kyvyt äärioloissa halutaan maksimoida. USAn puolustusministeriö rahoittaa ketoaineiden ja ketoosin tutkimusta, koska ketoosin uskotaan parantavan taistelusukeltajien toimintakykyä äärioloissa.

Ketoosin neuroprotektiiviset ja kognitiota tehostavat vaikutukset todentuvat erityisen hyvin äärioloissa. Karppaus ei vittuilusta huolimatta ole enää pienen pöpiseurakunnan ruokauskonto, vaan faktisesti ihmisen aineenvaihduntaa ja immuunijärjestelmää tehostava ruokavalio.

β-hydroksibutyraatti on nelihiilinen molekyyli, joka syntyy maksan rasvahappojen hapettuessa, kun elimistö ei saa glukoosia. Se voi toimia signalointimolekyylinä sitoutumalla suoraan G-proteiiniin kytkettyyn reseptoriin GPR109A tai histonideasetylaasin (HDAC) estäjänä sekä epäsuorasti oksidatiivisen aineenvaihdunnan kautta, minkä jälkeen muodostuu asetyyli-CoA ja NADH, eli asetyylikoentsyymi-A ja nikotiiniamidiadeniinidinukleotidin pelkistynyt muoto.

Vaikka β-hydroksibutyraatin suoria signalointivaikutuksia aivoissa ja mikroglia-alueella on tutkittu laajasti eri järjestelmissä, sen metaboliaa mikrogliassa ei ole aiemmin kartoitettu.

Kun otetaan huomioon metabolisen signaloinnin ja uudelleenohjelmoinnin keskeinen rooli immuniteetissa, β-hydroksibutyraatin metabolisten vaikutusten ymmärtäminen mikrogliassa nousee perustavanlaatuiseksi kysymykseksi.

Tässä käytimme stabiilin isotoopin (13C) jäljitystä ja metabolomiikkaa β-hydroksibutyraatin oksidatiivisen aineenvaihdunnan ja glukoosimetabolian välisen vuorovaikutuksen lepo- ja LPS- eli lipopolysakkaridi-aktivoidun mikroglian vertailuun.

Arvioimme myös β-hydroksibutyraatin vaikutusta lipopolysakkaridiin kohdistuvaan tulehdusvasteeseen analysoimalla polarisaatiotuottajien ilmentymässä tapahtuvia muutoksia.

Lipopolysakkaridi (LPS)on suurikokoinen molekyyli, joka koostuu lipidistä ja polysakkaridista. Molekyylin rakenteessa on kolme kovalenttisin sidoksin yhdistynyttä osaa: O-polysakkaridi eli O-antigeeni, ydinoligosakkaridi ja lipidi A. Lipopolysakkarideja esiintyy gramnegatiivisten bakteerien ulkokalvon pinnalla, jossa ne toimivat endotoksiineina ja aktivoivat elimistön immuunijärjestelmän.

Tulokset


Mikroglia-solut hapettavat β-hydroksibutyraattia TCA-syklissä

Sitruunahappokierto eli Krebsin sykli eli trikarboksyylihappokierto (TCA-kierto) on solujen mitokondrioissa tapahtuva monivaiheinen kemiallinen prosessi, jossa ravintoaineista peräisin olevat hiiliatomit hapettuvat hiilidioksidiksi ja samojen molekyylien sisältämät vedyt siirtyvät elektroninsiirtäjäkoentsyymeille. Prosessissa vapautuu energiaa, ja se on solujen pääasiallinen energianlähde.

Ennen kuin ravintoaineet kuten hiilihydraatit ja rasvat voivat tulla mukaan sitruunahappokiertoon, solussa tapahtuvien muiden prosessien on muutettava ne sopivaan muotoon, etenkin asetyyliryhmäksi, joka sitoutuu koentsyymi-A:n kanssa aktiiviseksi etikkahapoksi eli asetyylikoentsyymi-A:ksi. Lisäksi kierron eri vaiheissa sitoutuu vesimolekyylejä, ja siinä vapautuu hiilidioksidia sekä vetyioneja ja elektroneja. Nämä vapautuneet vetyionit ja ylimääräiset elektronit siirtyvät hapetus-pelkistysreaktioissa elektroninsiirtäjäkoentsyymeille, joita ovat NAD+:a ja FAD. Koentsyymeiltä vedyt siirtyvät edelleen elektroninsiirtoketjuun, jonka päätteeksi ne yhtyvät hengitysilmasta tulleen hapen kanssa vesimolekyyleiksi.

Syklisessä reaktiossa sitoutuu myös yksi fosforihappomolekyyli, jolloin muodostuu yksi korkeaenergiainen ATP-molekyyli GTP-välivaiheen kautta, ja neljä pelkistynyttä elektroninsiirtäjäkoentsyymiä (kolme NADH:ta ja yksi FADH2) kutakin pilkkoutunutta ja hapettunutta asetyylikoentsyymi-A:ta kohti. Sitruunahappokierto tapahtuu pääosin mitokondrion matriksissa, kun taas elektroninsiirtoketju tapahtuu mitokondrion sisäkalvolla.

Yksi sitruunahappokierron entsyymi, sukkinaattidehydrogenaasi, on mitokondrion sisäkalvon entsyymi. Se voi syöttää saamansa elektronit suoraan mitokondrion sisäkalvolla tapahtuvaan elektroninsiirtoketjuun.


β-hydroksibutyraati
n metabolian tutkimuksessa mikroglia-solulinjat BV2 (hiiri) ja HMC3 (ihminen) valittiin mikroglia-solumalleiksi.

β-hydroksibutyraatin pitoisuus nousee olosuhteissa, joille on tunnusomaista rajoitettu glukoosin saatavuus. Vaikka β-hydroksibutyraatin hapettumisen on jo kauan tiedetty tapahtuvan hermosoluissa, astrosyyteissä ja oligodendrosyyteissä, todisteita β-hydroksibutyraatin hapettumisesta mikroglia-soluissa ei vielä ole.

Pyrimme ensin vahvistamaan, voiko mikroglia hapettaa β-hydroksibutyraattia, sekä ymmärtämään, miten glukoosin saatavuus muuttaa β-hydroksibutyraatin aineenvaihduntaa.

Näiden hypoteesien testaamiseksi teimme stabiilin isotooppien jäljityskokeen käyttäen 13C-leimattua β-hydroksibutyraattia. 13C-leimattujen substraattien käyttö mahdollistaa hiilen kulkeutumisen jäljittämisen eri aineenvaihduntareittien kautta ja liittymisen alavirran metaboliitteihin.

β-hydroksibutyraatti hapetetaan kolmivaiheisen ketoaineiden hapetusreitin kautta, minkä jälkeen tuotetaan NADH:ta ja asetyyli-CoA:ta, jotka voidaan siirtää sitruunahappokiertoon. (Kuva 1)

BV2- ja HMC3-viljelmiä täydennettiin tasaisesti 5 mmol/l 13C-leimatulla BHB:lla (13C4-BHB) viljelyolosuhteissa, jotka eivät sisältäneet lisättyä glukoosia, 1 tai 5 mmol/l leimaamatonta glukoosia (12C6-glukoosi).

Rinnakkaisanalyysi 13C-leimatulla glukoosilla (13C6-glukoosi) vahvisti glykolyyttisen virtauksen merkittävän vähenemisen glukoosia rajoittavassa ympäristössä (kuvio S1A, B). Tuloksemme osoittivat, että sekä BV2 että HMC3 voivat tuoda ja hapettaa β-hydroksibutyraattia, kuten TCA-syklin m +2 13C-rikastus osoittaa. Välituotteina sitraatti, a-ketoglutaraatti, glutamaatti, sukkinaatti, fumaraatti ja malaatti (kuva 1B).

Tuloksemme osoittivat myös, että glukoosin saatavuus muuttaa β-hydroksibutyraatin vaikutusta eri tavalla kussakin solulinjassa. BV2-soluissa β-hydroksibutyraatin hapettuminen lisääntyi vähitellen glukoosipitoisuuden laskiessa, mikä ilmeni m+2 13C-rikastumisen kasvuna kaikissa sitruunahappokierron välituotteissa (kuvio 1B, vasemmalla).

HMC3-soluilla ei ollut samaa vastemallia, ja β-hydroksibutyraatin hapettuminen pysyi vakiona riippumatta glukoosipitoisuudesta, mistä osoittaa tasainen m +2 13C-rikastumisen osuus TCA-syklin välituotteissa (kuvio 1B, oikea).

Mielenkiintoista on, että sekä BV2- että HMC3-soluissa havaittavissa oleva osa 13C4-BHB-johdetuista hiilistä transformoitiin laktaatiksi (kuvio S2A, B) ja pyruvaatiksi (kuvio S2C, D).

Havaitsimme erityisesti solunsisäisen m+2 13C2-laktaatin lisääntymisen glukoosista riippuvaisella tavalla, mikä viittaa vaihtoehtoiseen β-hydroksibutyraatin metaboliareittiin, joka paranee glukoosia rajoittavissa olosuhteissa.

On raportoitu, että mikroglia-soluilla on joustava aineenvaihdunta ja glukoosipuutteessa ne voivat nopeasti siirtyä käyttämään glutamiinia mitokondrioiden aineenvaihdunnan ja valvontatoimintojen ylläpitämiseen. Siksi testataksemme mahdollisuutta, että β-hydroksibutyraatti voisi aiheuttaa mikroglia-proliferaation (lisääntymisen) hyvin matalan glukoosin olosuhteissa, viljelimme BV2- ja HMC3-soluja 0,1 mmol/l glukoosissa, johon oli lisätty 5 tai 10 mmol/l leimaamatonta β-hydroksibutyraattia.

Tuloksemme osoittavat, että β-hydroksibutyraatti ei aiheuttanut mikroglian lisääntymistä missään solulinjassa (kuva S2E, F). Koska sekä glukoosi että β-hydroksibutyraatinn metaboliareitit ovat mukana NADH:n tuotannossa, olimme kiinnostuneita siitä, voisiko β-hydroksibutyraatti muuttaa bioenergeettistä aineenvaihduntaa ja redox-tilaa indusoimalla muutoksia NADH : NAD+ -suhteessa.

Tämän suhteen on äskettäin raportoitu hallitsevan synnynnäisiä tulehdusvasteita transkriptionaalisen repressorin CtBP:n kautta. Sytosolinen NADH : NAD+ -suhde voidaan arvioida epäsuorasti mittaamalla laktaatin ja pyruvaatin solunsisäisten tasojen suhde (kuvio 1C) . Kuten odotettiin, 5 mmol/l glukoosissa viljellyillä soluilla oli suurempi NADH : NAD+ -suhde kuin 1 mmol/ glukoosissa viljellyillä soluilla (kuvio 1D, E).

BV2-soluissa β-hydroksibutyraatin lisääminen lisäsi NADH : NAD+ -suhdetta, kun soluja viljeltiin 5 mmol/l glukoosissa, mutta ei 1 mmol/l glukoosissa (kuvio 1D). HMC3-soluissa β-hydroksibutyraatin lisäys nosti suhdetta sekä 1 että 5 mmol/l glukoosiolosuhteissa (kuvio 1E).

Tutkimme myös β-hydroksibutyraatin isäyksen vaikutusta metaboliittitasoihin useilla metaboliareiteillä soluissa, joita viljeltiin 1 ja 5 mmol/l glukoosissa. BV2-solujen aineenvaihdunta reagoi paremmin β-hydroksibutyraattiin kuin HMC3. 1 mmol/l glukoosissa BV2-solut, joihin oli lisätty β-hydroksibutyraattia, osoittivat laktaatin, glysiinin ja glutamaatin kertymistä, kun taas 5 mmol/l glukoosissa havaittiin laktaatin kertymistä ja glutamaatin konsentraation pienenemistä (kuvio S3A).

HMC3-soluissa β-hydroksibutyraatti edisti glutamaatin kerääntymistä matalassa glukoosissa viljellyissä soluissa (kuvio S3B). Nämä tiedot yhdessä vahvistavat, että β-hydroksibutyraatti hapetetaan sitruunahappokierrossa (TCA-syklissä) mikroglia-soluissa ja edistää NADH:n tuotantoa ja sytosolisen NADH : NAD+ -suhteen säätelyä.

β-hydroksibutyraatin (BHB) hapettuminen hiiren (BV2) ja ihmisen (HMC3) soluissa.

  1. (A) Kaavamainen esitys 13C4-BHB: stä johdetusta 13C-rikastuksesta.
  2. (B) TCA-syklin välituotteiden (Cit, sitraatti; αKG, α-ketoglutaraatti; Glu, glutamaatti; Suc, sukkinaatti; Fum, fumaraatti; Mal, malaatti) m + 2 13C-rikastus BV2- ja HMC3-soluissa viljelyolosuhteissa joko ilman lisättiin glukoosia tai 1 tai 5 mM 12C6-glukoosia ja 5 mM 13C4-BHB 24 tunnin ajan. Pylväät edustavat n = 3 biologisen replikaation keskiarvoa ± SD. Tiedot analysoitiin yksisuuntaisella ANOVA: lla metaboliittia kohti, mitä seurasi Tukey-testi.
  3. (C) Kaavioesitys sytosolisesta NADH : NAD+ -suhteesta tasapainossa laktaatti: pyruvaatti-suhteen kanssa.
  4. (D, E) Sytosolinen NADH : NAD+ -suhde arvioitu käyttämällä laktaatin ja pyruvaatin solunsisäisiä tasoja BV2: ssa (D) ja HMC3: ssa (E). Pylväät edustavat n = 2-3 (-BHB) ja n = 5-6 (+ BHB) biologisten kopioiden keskiarvoa ± SD. Tiedot analysoitiin kaksisuuntaisella ANOVA:lla, jota seurasi Sidakin testi (-BHB vs. + BHB glukoosiluokassa). Tilastollista merkitsevyyttä merkitään * p <0,05, ** p <0,01 ja **** p <0,0001.

β-Hydroxybutyraatti muuttaa LPS:n aiheuttaman glykolyyttisen vasteen

β-hydroksibutyraatin roolia mikrogliassa ja neuroinflammatiossa on aiemmin tutkittu erilaisissa sairausmalleissa. β-hydroksibutyraatin metabolisia vaikutuksia mikroglia-aktivaatioon ja taustalla olevaan metaboliseen uudelleenohjelmointiin ei kuitenkaan tunneta.

Tutkimusten mukaan yhä useampi todiste osoittaa, että metabolinen häiriö voi muuttaa mikroglia-vastetta immuunisignaaleihin. Siksi haluamme ymmärtää β-hydroksibutyraatin vaikutusta LPS-aktivoituun mikrogliaan liittyvään metaboliseen uudelleenohjelmointiin.

Koska BV2-solut reagoivat metabolisesti paremmin β-hydroksibutyraatin lisäykseen ja aiemmat tutkimukset olivat optimoineet LPS-stimulaation ja luonnehtineet osittain tämän solulinjan metabolista vastetta, BV2 valittiin malliksi tutkittaessa β-hydroksibutyraatin vaikutuksia LPS:n aiheuttamaan metaboliseen uudelleenohjelmointiin.

BV2-soluja viljeltiin 5 mmol/l 13C6-glukoosin läsnä ollessa ja käsiteltiin joko 5 mmol/l 12C4β-hydroksibutyraatilla, 100 ng / ml LPS:llä tai molemmilla 6 tuntia.Onnistuneen aktivaation vahvisti tulehdusmerkinnän NOS2 uudelleen säätely (kuvio S4A). Glykolyyttisen aineenvaihdunnan muutosten tutkimiseksi mitasimme 13C-rikastumisen ja keskeisten glykolyyttisten välituotteiden suhteellisen runsauden (kuvio 2A). Vaikka LPS-hoito ei muuttanut glukoosin ottonopeutta, havaitsimme korkeamman glukoosinottotrendin soluissa, joita hoidettiin yksin β-hydroksibutyraatilla tai yhdessä LPS:n kanssa, mikä ei saavuttanut tilastollista merkitsevyyttä (kuvio 2B).

LPS:n, mutta ei β-hydroksibutyraatin lisääminen lisäsi glykolyyttistä virtausta solunsisäisen m+3 13C-pyruvaatin (kuvio 2C) ja m+3 13C-laktaatin (kuvio 2D) nousun perusteella.

Johdonmukaisesti tämä glykolyyttisen vuon kasvu, kun soluja käsiteltiin LPS:llä, liittyi sytosolisen NADH : NAD+ -suhteen nousuun (kuvio 2E). Pelkkä β-hydroksibutyraatin täydentäminen ei muuttanut NADH : NAD+ -suhdetta, mutta LPS:n ja β-hydroksibutyraatin yhdistelmä vähensi tätä verrattuna yksin LPS:ään. Mielenkiintoista on, että LPS:n ja β-hydroksibutyraatin vaikutukset 13C-laktaatin vientiin seurasivat eri suuntausta kuin solunsisäisen 13C-pyruvaatin ja 13C-laktaatin tuotanto. Vaikka erilliset hoidot LPS:llä tai β-hydroksibutyraatilla yksinään eivät muuttaneet 13C-laktaatin vientinopeutta, yhdistelmähoito lisäsi dramaattisesti 13C-laktaatin vientiä väliaineeseen (kuvio 2F), mikä viittaa siihen, että β-hydroksibutyraatti voisi muuttaa glukoosista otetun hiilen kohtaloa sekä laktaattimetaboliaa ja vientiä.

Tutkimme myös muutoksia joidenkin glykolyyttisten välituotteiden suhteellisessa runsaudessa (otoksen koko). Havaitsimme suuren dihydroksiasetonifosfaatin (DHAP) (kuvio 2G, H) pitoisuuden nousun LPS:llä käsitellyissä soluissa, jotka lisääntyivät enemmän, kun soluja käsiteltiin samanaikaisesti LPS:llä ja β-hydroksibutyraatilla, mikä viittaa synergistiseen metaboliseen vasteeseen molemmille aineille.

Löysimme myös seriinin, glysiinin ja metioniinin merkittäviä kertymiä, kun soluja käsiteltiin LPS:llä ja β-hydroksibutyraatilla samanaikaisesti (kuvio 2G). Nämä tulokset osoittavat yhdessä, että LPS lisää glykolyyttistä virtausta ja sytosolista NADH : NAD+ -suhdetta ja että BHB muuttaa LPS:n aiheuttamaa glykolyyttistä fenotyyppiä edistämällä laktaatin vientiä ja glykolyyttisten välituotteiden kertymistä.

β-hydroksibutyraatti edistää mitokondrioiden aineenvaihduntaa ja TCA-syklin välituotteiden kertymistä

Kuten aikaisemmin on esitetty kuviossa 1B, mikroglia-solut hapettavat β-hydroksibutyraattia sitruunahappokierrossa (TCA-syklissä). Viime vuosina useiden TCA-syklin välituotteiden on raportoitu osallistuvan immuniteetin signalointiin ja säätelyyn, mutta on epäselvää vaikuttaako tämä aineenvaihdunnan säätely myös mikrogliassa.

Lipopolysakkaridi-stimulaatiolla mitattiin sitruunahappokierron välituotteiden 13C-rikastuminen ja suhteellinen runsaus BV2-soluissa samoissa koeolosuhteissa kuin kuvassa 2. Pelkästään LPS-käsittely kasvatti 13C-glukoosista johdettujen hiilien virtausta mitokondrioihin. M+2 13C-sitraatin lisääntymieen liittyen (kuvio 3A).


Vastaavasti kuviossa 1B esitettyjen tulosten kanssa yksin β-hydroksibutyraatin lisääminen vähensi 13C-rikastumista kaikissa sitruunahappokierron välituotteissa verrattuna soluihin, joita viljeltiin ilman β-hydroksibutyraattia 13C-leimauksen laimentamisen vuoksi.

Lipopolysakkaridin lisääminen yhdessä β-hydroksibutyraatin kanssa lisäsi merkittävästi m+2 13C-sitraatin ja muiden TCA-syklin välituotteiden, kuten:

13C-a-ketoglutaraatin 13C-glutamaatin

13C-sukkinaatin

13C-malaatin

13C-fumaraatin

osuutta verrattuna B β-hydroksibutyraattiin yksin (kuva 3A).

Tutkimme myös muutoksia sitruunahappokierron välituotteiden ja aminohappojen suhteellisessa esiintymisessä. Erillinen käsittely lipopolysakkaridilla, muttei betahydroksibutyraatilla, lisäsi käsiteltyjen solujen sukkinaatin tasoa merkittävästi käsittelemättömiin soluihin verrattuna (kuvio 3B, C). Vastaava ilmiö on aiemmin raportoitu makrofageissa.

Sukkinaattitasot nousivat edelleen soluissa, joita oli käsitelty LPS:llä ja BHB:llä. Tämä viittaa synergistiseen vaikutukseen yhtäläisellä altistuksella näille kahdelle metaboliitille.

Pelkkä BHB-hoito ei muuttanut merkittävästi minkään tutkitun metaboliitin tasoja, mutta hoito LPS:lla ja BHB:lla yhdessä lisäsi myös immunometaboliittien fumaraatin (kuva 3D) ja a-ketoglutaraatin (kuva 3E) tasoja. Lisäksi havaittiin sitraatin, glutamaatin, malaatin ja pyroglutamaatin lisääntymistä, kun soluja käsiteltiin LPS:llä ja BHB:llä samanaikaisesti (kuvio 3B).

Tuloksemme osoittavat, että β-hydroksibutyraatti edistää mitokondrioiden metaboliaa ja sitruunahappokierron immunometaboliittien kertymistä LPS-aktivoiduihin soluihin.

β-hydroksibutyraatti tehostaa lipopolysakkaridin aiheuttaman tulehdusta ehkäisevän markkerin NOS2 stimulaatiota

β-hydroksibutyraatinn vaikutuksen ymmärtämiseksi mikroglian aktivaatiossa ja polarisaatiossa BV2-soluja käsiteltiin pienellä (1 ng / ml) tai suurella (100 ng / ml) LPS-annoksella, 5 mmol/l β-hydroksibutyraatilla tai molempien yhdistelmällä. ja määritettiin M1 (NOS2 ja IL-1p) ja M2 (ARG1) polarisaatiomerkkien ilmentyminen (kuvio 4A, B).

Stimulaatio joko pienellä tai korkealla LPS-konsentraatiolla yksin johti NOS2- ja IL-1β-ilmentymisen voimakkaaseen säätelyyn. Ainoastaan suurella LPS-pitoisuudella käsitellyt solut vähensivät merkittävästi ARG1:n ilmentymistä.

Pelkästään β-hydroksibutyraatin lisääminen ei vaikuttanut minkään geenin ilmentymiseen, mutta mikä tärkeintä, solut, joita oli hoidettu pienen LPS- ja BHB-annoksen yhdistelmällä, osoittivat NOS2-ilmentymisen lisääntynyttä säätelyä verrattuna pelkästään LPS: llä käsitellyihin soluihin.

Millaisia ajatuksia tämä herätti?

Tässä käyttämällä stabiilin isotoopin jäljitystä 13C-BHB:n kanssa olemme osoittaneet, että mikroglia-solut voivat tuoda ja hapettaa betahydroksibutyraattia sitruunahappokierrossa, jolloin sytosolinen NADH : NAD+ -suhde kasvaa myöhemmin.

Käyttämällä 13C-glukoosia havaitsimme, että lipopolysakkaridi (LPS) säätelee glykolyyttistä virtausta, lisää NADH : NAD+ -suhdetta ja edistää DHAP: n kertymistä. β-hydroksibutyraatin lisääminen lisäsi LPS:n indusoimaa DHAP:n kertymistä ja edisti glukoosista johdetun laktaatin vientiä. β-hydroksibutyraatti lisäsi myös synergistisesti sukkinaatin ja muiden keskeisten immunometaboliittien, kuten TCA-syklin tuottamien a-ketoglutaraatin ja fumaraatin, lipopolysakkaridin aiheuttamaa kertymistä.

β-hydroksibutyraatti on tärkein ketoaine yhdessä asetoasetaatin ja asetonin kanssa. Ketoaineita syntetisoituu maksassa rasvakudoksista tai ravinnon rasvahapoista. β-hydroksibutyraatin peruskonsentraatio plasmassa terveillä koehenkilöillä on suhteellisen pieni, viitearvojen ilmoitettuina 0,04–0,08 mmol/l ja tyypillisesti <0,5 mmol/l, ja se nousee erityisolosuhteissa, kuten paaston aikana (5–6 mmol/l), ketogeenisellä ruokavaliolla (1 mmol/l) tai diabeettisessa ketoasidoosissa (> 10 mmol/l).

Glukoosi on aivoille edullinen energiasubstraatti. Toisin kuin useimmat muut kudokset, aivot eivät voi käyttää rasvahappoja energiaksi, kun verensokeritaso vaarantuu. Alhaisen saatavuuden aikoina sitä voidaan kuitenkin täydentää vaihtoehtoisten substraattien, kuten monokarboksylaattipyruvaatin, laktaatin, asetaatin ja ketoaineiden hapetuksella. Suurin osa tämänhetkisestä tiedosta vaihtoehtoisten ravintoaineiden käytöstä aivosoluissa on saatu hermosoluista ja astrosyyteistä tai kokoaivokokeissa joko in vivo tai aivokuoren viipaleina.

Tuloksemme osoittavat selvästi, että mikroglia-solut BV2 ja HMC3 voivat tuoda ja hapettaa ketoaine β-hydroksibutyraattia. Monokarboksylaattikuljettimet (MCT) kuljettavat β-hydroksibutyraattia aktiivisesti aivoihin.

β-hydroksibutyraatin hapettuminen asetyyli-CoA: ksi tapahtuu lineaarisen metabolisen reaktion sekvenssin kautta, jota katalysoivat entsyymit β-hydroksibutyraattidehydrogenaasi (BDH1 / 2), sukkinyyli-CoA: 3: oksohappo-CoA-transferaasi (SCOT) ja asetyyli-CoA-asetyylitransferaasi ( ACAT1 / 2), minkä jälkeen tuotetaan yksi NADH- ja sukkinaattimolekyyli ja kaksi asetyyli-CoA-molekyyliä. SCOT koodaa geeni OXCT1, ja sen katsotaan olevan nopeutta rajoittava vaihe ketoaineen hapetuksessa.

Tuloksemme osoittavat, että mikroglia, kuten neuronit, astrosyytit ja oligodendrosyytit, omaavat entsymaattisen aktiivisuuden ketoaineiden hapettamiselle. Useat tutkimukset ovat raportoineet ikään, lajeihin ja aivojen alueeseen liittyvistä eroista entsyymiaktiivisuudessa, joka liittyy ketoaineiden hapettumiseen. Ketoaineiden hapettumisen (ketolyysin) säätelystä tiedetään vähän.

Solutasolla ketogeneesiä ohjaa säätelyverkko, johon osallistuvat AMPK, mTOR ja PPARa.

Yhteenvetona voidaan todeta, että tutkimus antoi uusia tietoja, jotka selittävät betahydroksibutyraatin toimintaa mikroglia-solulinjoissa. Osoitamme myös, kuinka β-hydroksibutyraatti lisää tunnettujen immunomoduloivien (immuunijärjestelmää säätelevien) metaboliittien tasoa näissä malleissa. Synteettisissä gliooma-hiirimalleissa ketogeeninen ruokavalion ja sädehoidon yhdistelmä johti kasvaimen täydelliseen hävittämiseen, mikä viittaa siihen, että ketogeeninen ruokavalio ohjaa immuunijärjestelmän toimintaa.





Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa 2

Tämä on toinen osa progressiivisen multippeliskleroosin patogeneesiä avaavaa tutkimuskatsausta:

Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa

Tutkimuskatsauksen ensimmäinen osa maalasi MS-taudin oireiden biokemiallista taustaa heijastelevan värikkään ja hämmentävän neurologisen maiseman. Ensimmäiseen osaan voit tutustua tästä. Toisessa osassa jatketaan saman mikroskooppisen maailman kartoittamista.

CD4+ CD28-T-soluissa on oligoklonaalisia antigeenireseptoreita

Oligoklonaalisella tarkoitetaan useammasta kuin yhdestä solukloonista muodostuvaa rakennetta. Esimerkiksi immunoglobuliini-G, eli IgG on monomeerimuodossa esiintyvä ihmisen yleisin vasta-aine. IgG:n oligoklonaalisia joukkoja havaitaan lähes kaikkien multippeliskleroosia sairastavien aivo-selkäydinnesteestä (CSF), eli likvorissa. Niinpä niitä pidetään yhtenä MS-taudin diagnoosia tukevana immunologisena tunnuspiirteenä.

Oligoklonaaliset joukot (OCB) eivät kuitenkaan liity vain MS-tautiin. Niitä havaitaan myös kroonisissa keskushermostoinfektioissa. OCB-vasta-aineiden tunnistamien antigeenien tunnistamisen uskotaan antavan perustavanlaatuisia vihjeitä MS-taudin patogeneesistä.

CD4+ CD28-T-solut tuottavat suuria määriä tulehduksellisia sytokiinejä, kuten IFN-y ja GM-CSF, ja ilmentävät sytotoksisia molekyylejä, kuten NKG2D, perforiini ja grantsyymi B. Entä mitä nämä tulehdukselliset sytokiinit ovat?

  • Gammainterferoni (IFNy) on dimeroitunut liukoinen sytokiini, ja ainoa tyyppiä II olevien interferonien jäsen. Tämä interferoni tunnettiin aiemmin immuuni-interferonina.
  • Granulosyytti-makrofagipesäkkeitä stimuloiva tekijä (GM-CSF) tunnetaan myös nimellä pesäkkeitä stimuloiva tekijä 2 (CSF2), on makrofagien, T-solujen, syöjäsolujen, luonnollisten tappajasolujen, endoteelisolujen ja fibroblastien erittämä monomeerinen glykoproteiini, joka toimii sytokiininä. Toisin kuin granulosyyttipesäkkeitä stimuloiva tekijä, joka erityisesti edistää neutrofiilien lisääntymistä ja kypsymistä, GM-CSF vaikuttaa useampaan solutyyppiin, kuten makrofageihin ja eosinofiileihin.
  • GM-CSF stimuloi kantasoluja tuottamaan granulosyyttejä (neutrofiilejä, eosinofiilejä, basofiilejä) ja monosyyttejä. Monosyytit poistuvat verenkierrosta ja kulkeutuvat kudokseen, minkä jälkeen ne kypsyvät makrofageiksi ja dendriittisoluiksi. Siten se on osa immunologista ja tulehduksellista kaskadia, jossa vähäisen makrofagien määrän aktivaatio voi nopeasti johtaa niiden määrän kasvuun. Tämä on ratkaisevan tärkeää infektioiden torjunnassa. GM-CSF:llä on myös joitain vaikutuksia immuunijärjestelmän kypsiin soluihin. Näitä ovat esimerkiksi neutrofiilien kulkeutumisen tehostaminen ja solupinnalla ilmentyvien reseptorien muutoksen aiheuttaminen.
  • NKG2D on transmembraaniproteiini, joka kuuluu C-tyypin lektiinin kaltaisten reseptorien NKG2-perheeseen. NKG2D tunnistaa MIC:n ja RAET1 / ULBP-perheiden tuottamat proteiinit, jotka esiintyvät pahanlaatuisten, muuttuneiden ja infektoitujen solujen pinnalla. NKG2D on transformoituneiden ja infektoitujen solujen havaitsemisen ja tuhoamisen kannalta keskeinen tunnistusreseptori

    NK-soluissa NKG2D toimii aktivoivana reseptorina, joka kykenee laukaisemaan sytotoksisuuden. NKG2D:n tehtävä CD8+ T-soluissa on lähettää stimulointisignaaleja niiden aktivoimiseksi. Virukset solunsisäisinä patogeeneinä voivat aiheuttaa stressioligandien ilmentymistä NKG2D:lle.

    Solun vanhenemisen aikana solut säätelevät NKG2D-ligandien ilmentymistä, mikä mahdollistaa ikääntyvien solujen NK-välitteisen tappamisen rakeiden eksosytoosireitin kautta. Ikääntyvien solujen MICA- ja ULBP2-proteiinit tunnistaa NKG2D-reseptorin Natural Killer -soluissa, mikä on välttämätöntä vanhenevien solujen tehokkaalle tunnistamiselle ja eliminoinnille.

  • Perforiini on solun hajottamiseen osallistuva proteiini, jota tappaja-T-solut ja luonnolliset tappajasolut erittävät tuhotessaan kohdesolujaan. Virusinfektoituneen tai pahanlaatuiseksi muuttuneen solun tunnistaessaan tappaja-T-solu vapauttaa eksosytoosilla perforiinia ja grantsyymeja kohdesolun pinnalle. Solunulkoisen nesteen korkean kalsiumpitoisuuden vaikutuksesta perforiini liittyy kohdesolun solukalvoon, polymerisoituu ja muodostaa solukalvon läpäiseviä kanavia. Kanavien avulla solun sisälle kulkeutuu solunulkoisesta nesteestä kalsiumioneja, jotka käynnistävät kohdesolussa solukalvon korjausmekanismin. Tähän korjausmekanismiin sisältyy solukalvon vaurioituneiden osien ottaminen solun sisälle endosytoosilla. Muodostuviin endosytoosirakkuloihin kulkeutuu myös solukalvon pinnalta tappaja-T-solun erittämiä perforiini- ja grantsyymiproteiineja.
  • Grantsyymi vapautuu todennäköisesti perforiinin avustuksella endosytoosirakkuloista solulimaan, jossa se käynnistää kohdesolun apoptoitumisen.

CD4+ CD28-T-soluilla on vastaavia ominaisuuksia kuin synnynnäisillä T-soluilla. Yhdessä nämä solut voivat aiheuttaa vastaavan hermosolujen ja aksonien vaurioitumisen, kuin CD8+ T-solut.

On kuitenkin epäselvää, mitkä antigeenit tai biokemialliset tekijät laukaisevat ja / tai ohjaavat CD4+ CD28-T-solujen yleistymistä ja missä vaiheessa ne muuttuvat sytotoksisesti aktiivisiksi. Sytotoksinen aktiivisuus kuitenkin vaikuttaa kudosvaurioihin ja sen seurauksena MS-taudin etenemiseen.

Mikroglia-aktivaatio

Aktiivinen demyelinaatio ja neurodegeneraatio on yhdistetty mikroglia-aktivaatioon MS-taudin varhaisissa leesioissa. Mikroglia-solut aktivoivat aivojen parenkyymiä havaitsemaan vaarasignaaleja. Tämä tila näyttää toteutuvan lukuisissa vuorovaikutuksissa neuronien kanssa.

Tällaisia vuorovaikutuksia on kuvattu esimerkiksi CD200-CD200R-, CD47-CD172a- ja fraktalkiini-CX3CR1- välillä. Aivovaurion tai sairauden seurauksena nämä vuorovaikutukset estyvät ja mikroglia kehittyy fenotyypiltään ”aktiiviseksi”.

Tämä muutos voidaan aiheuttaa useilla mekanismeilla, kuten Th1- tai Th17-T-solujen erittämien tulehdusta edistävien sytokiinien tuotanto. Myös Tollin kaltaisten reseptorien (TLR) tunnistamien mikrobipatogeenien (PAMP) tai leusiinipitoisten toistuvien reseptorien (NLR) ilmentyminen, solunsisäisten komponenttien vapautuminen nekroottisista tai apoptoottisista soluista sekä lämpöshokkiproteiinien, väärin taittuneiden proteiinien (DAMP) tai komplementtikaskadin komponenttien läsnäolo johtaa vastaavaan mikroglia-aktivaatioon.

Mikrogia-aktivaatio ei rajoitu vaurioihin, mutta sitä esiintyy myös hajanaisesti normaalissa esiintyvässä valkoisessa ja harmaassa aineessa. Terveeltä vaikuttavassa valkeassa aineessa (NAWM) voi esiintyä aktivoituneen mikroglian klustereita. Näitä ns. Mikroglia-kyhmyjä, on runsaasti plakkien vieressä olevilla alueilla, etenkin potilailla, joilla on progressiivinen tautimuoto.

Mikroglia-kyhmyt on yhdistetty vaurioituneisiin aksoneihin, jotka ilmentävät amyloidiprekursoriproteiinin (APP) kertymistä, ja muutoksia neurofilamenttifosforylaatiossa periplakinissa* valkeassa aineessa.

  • Periplakiini on proteiini, jota ihmisissä koodaa PPL-geeni. Tämän geenin koodaama proteiini on osa desmosomien ja epidermaalisen kornifioidun vaipan keratinosyytteissä. Periplakiini muodostaa sauvadomeeninsa kautta komplekseja envoplakiinin kanssa. Tämä proteiini voi toimia linkkinä kornifioidun vaipan ja desmosomien sekä välifilamenttien välillä. AKT1 / PKB:n, proteiinikinaasin, joka välittää erilaisia solukasvun ja selviytymisen signalointiprosesseja, on ilmoitettu olevan vuorovaikutuksessa tämän proteiinin kanssa, mikä viittaa tämän proteiinin mahdolliseen rooliin lokalisointisignaalina AKT1-välitteisessä signaloinnissa. PPL:n (geeni) on osoitettu olevan vuorovaikutuksessa keratiini 8:n ja Envoplakinin kanssa.

Lisäksi on havaittu suoraa spatiaalista yhteyttä mikroglia-kyhmyjen ja Wallerian rappeutumista* sairastavien aksonien välillä. Nämä havainnot osoittavat, että mikroglia-aktivaatio liittyy hermosolujen vaurioiden ja kudosten atrofian merkkeihin, mikä viittaa vahvasti siihen, että mikroglia-solut vaikuttavat keskushermoston vaurioihin progressiivisessa MS-taudissa.

  • Wallerian rappeuma on aktiivinen rappeutumisprosessi, joka syntyy, kun hermokuitu katkeaa tai vahingoittuu ja aksonin distaalinen osa (eli kauempana hermosolun rungosta) rappeutuu.Tähän liittyvä taaksepäin tapahtuva rappeutumisprosessi, tunnetaan nimellä ’Wallerian-tyyppinen rappeuma’, esiintyy monissa neurodegeneratiivisissa sairauksissa, erityisesti niissä, joissa aksonikuljetukset ovat heikentyneet, kuten ALS ja Alzheimerin tauti.

    Wallerian rappeuma tapahtuu aksonivaurion jälkeen sekä ääreishermostossa (PNS) että keskushermostossa (CNS). Se esiintyy aksonin osassa, joka on distaalinen loukkaantumispaikasta, ja alkaa yleensä 24–36 tunnin sisällä vauriosta. Ennen rappeutumista aksonin distaaliosa pyrkii pysymään sähköisesti virittyneenä. Loukkaantumisen jälkeen aksonaalirunko ja aksonikalvo hajoaa.

Aksonaalista rappeutumista seuraa myeliinivaipan hajoaminen ja solujätettä siivoavien makrofagien lisääntyminen.MS-taudisssa mikrogliaalisten solujen aiheuttamat vauriot välittyvät erilaisten mekanismien kautta, mukaan lukien tulehdusta edistävien sytokiinien, kuten IL-1, IL-6, TNF-a ja IFN-y, eritys, fagosyyttinen aktiivisuus ja antigeenien esittely CD4+ T-solujen MHC-luokan II molekyylien kautta.

Tulehdukselliset sytokiinit voivat myös aiheuttaa mitokondrioiden vaurioita sekä hermosoluissa että gliasoluissa

Mikrogliasolujen tuottamat reaktiiviset happi- ja typpilajit (ROS / RNS) aiheuttavat suoraa vahinkoa hermosoluille sytokromi C-oksidaasin (COX1) menetyksen sekä mitokondrioiden soluhengitysketjuyhdistelmän IV-aktiivisuuden menetyksen seurauksena, mikä johtaa mitokondrioiden toimintahäiriöön.

Tärkeää on, että Fe2+:n vapautuminen solunulkoiseen tilaan loukkaantuneista oligodendrosyyteistä voi vahvistaa oksidatiivisia vaurioita muodostamalla H2O2:sta (vetyperoksidista) erittäin myrkyllisiä hydroksyyli (OH) -radikaaleja.

Aktivoidun mikroglian Fe2+:n saanti vaikuttaa niiden rappeutumiseen, mikä johtaa toiseen Fe2+:n vapautumisaaltoon. Se voi lisätä ympäröivien kudosten alttiutta vapaiden radikaalien ohjaamalle aksoneiden ja hermosolujen tuhoamiselle.

MS-taudin etenemiseen mahdollisesti liittyvät mekanismit

  1. Progressiivisessa MS-taudissa tulehdusilmiöt, jotka johtavat aksonin rappeutumiseen ja tuhoutumiseen, vaikuttavat keskushermostoon. Solukomponentteja edustavat solut (T- ja B-lymfosyytit) sekä paikalliset keskushermostosolut (mikroglia-solut ja astrosyytit).B-solut voivat muodostaa ektooppisia rakenteita, jotka muistuttavat tertiäärisiä imusolmukkeita, tuottamalla vasta-aineita myeliini- ja ei-myeliiniantigeenejä vastaan. Näillä on tärkeä rooli aksonaalisissa ja hermosoluissa tapahtuvassa vaurioitumisessa komplementtikaskadiaktivaation kautta. CD8+ -lymfosyytit voivat tunnistaa spesifiset aksonaaliset antigeenit ja tuottaa kudosvaurioita perforiinin tai gransyymien A ja B erityksen kautta.Autoreaktiiviset CD4+ Th1- ja Th17-lymfosyytit voivat aktivoida mikrogliaalisia soluja, jotka puolestaan tuottavat tulehdusta edistäviä sytokineja (IL-1, IL 6, TNF-a) tai hapen tai typen vapaita radikaaleja (ROS / RNS) aiheuttaen aksonivaurioita ja hermosolujen menetyksiä sivullisten mekanismin kautta.
  2. Demyelinaation jälkeen energiantarve kasvaa paranodaalisten myeliinisilmukoiden häiriöiden vuoksi. Hermosolujen ATP-tuotannon väheneminen johtaa Na+ / K+ -pumpun häiriöön. Tämä tuottaa jatkuvaa natriumvirtaa, joka ajaa käänteistä natrium / kalsiumvaihtoa ja aiheuttaa kalsiumin kumuloitumista aksoniin. Tämä puolestaan aktivoi hajoavia entsyymejä, kuten proteaasit, fosfolipaasit ja kalpaiinit, mikä johtaa edelleen hermosolujen ja / tai aksonien vaurioihin sekä heikentyneeseen ATP-tuotantoon.
  3. Aksonaalivauriot voivat johtua huonosta troofisesta (ravinnonottoon liittyvästä) tuesta. Oligodendrosyytit sieppaavat glukoosia verenkierrosta ja hajottavat sen glykolyysissä pyruvaateiksi, ATP-molekyyleiksi ja laktaatiksi. Solujen mitokondriot jatkavat pyruvaattien energia-aineenvaihduntaa sitruunahappokierrossa ja elektroninsiirtoketjussa. Vaihtoehtoinen energialähde aksoneille tulee astrosyytteihin varastoituneesta glykogeenistä, joka voidaan hajottaa glukoosiksi ja myöhemmin pyruvaatiksi tai laktaatiksi hapen saatavuuden mukaan.
  4. Useat mekanismit aiheuttavat mikroglia-aktivaation, mukaan lukien Th1- tai Th17-T-solut, mikrobipatogeenien (PAMP) läsnäolo, jotka Tollin kaltaiset reseptorit (TLR) tai leusiinipitoiset toistoa sisältävät reseptorit (NLR) tunnistavat; solunsisäisten komponenttien vapautuminen nekroottisista tai apoptoottisista soluista; lämpöshokkiproteiinien, väärin taittuneiden proteiinien (DAMP) tai komplementtikaskadin komponenttien läsnäolo.Kun ne mikroglia-solut aktivoituvat, ne saavat aikaan astrosyyttien aktivaation ja lisääntymisen, mikä johtaa astroglioosiin, eli reaktiivisten astrosyyttien lisääntymiseen

Progressiivisessa MS-taudissa aivokuoren demyelinoiduissa leesioissa ei ole tulehduksellisia lymfosyyttien tai makrofagien infiltraatteja, eikä niissä ole komplementtikerrostumia

Suurin osa fagosyyteista (syöjäsoluista) asemoituu mikrogliaan lähelle neuriitteja ja hermosolujen rakenteita. Aktivoidulla mikroglialla on myös joukko hermosoluja suojaavia neuroprotektiivisia toimintoja, kuten kuolleiden solujen yms. jätteiden fagosytoosi ja siivous, kasvutekijöiden tuotanto ja hermosolujen muokkaaminen.

Neuroprotektiivisten mikroglia-solujen erottaminen tulehdusta ehkäisevistä solutyypeistä on edelleen haaste mikroglia-solujen toiminnan tulkinnassa.

On epäselvää, kuinka varhaisessa vaiheessa MS-taudin aikana nämä rappeuttavat tapahtumat alkavat. Tulevat in vivo -tutkimukset, jotka yhdistävät mikroglia-aktivaation paikalliseen aivokuoren atrofian tai toimintahäiriön tasoon sekä vammaisuuden etenemiseen yksittäisillä koehenkilöillä, auttaisivat parantamaan ymmärrystä aivokuoripatologian seurauksista taudin eri vaiheissa.

Tässä yhteydessä mikroglia-positroniemissiotomografiakuvat (v) in vivo (PET) voisivat selventää aktivoidun mikroglian roolia MS-tautiin liittyvässä hermoston rappeutumisessa. Selektiivisen translokaattoriproteiinin (TSPO) radioligandin 11C-PK11195 käyttö mahdollistaa aktivoidun mikroglian havaitsemisen PET:llä. TSPO on proteiini, jota ilmentyy mikrogliaalisten solujen ulommalla mitokondriokalvolla, terveessä keskushermostossa matalilla tasoilla, mutta sitä säätelee mikroglia-aktivaatio, mikä tekee TSPO:sta herkän ”reaaliaikaisen” aktivaatiomarkkerin.

Keskushermostoon kohdistuvassa ei-neoplastisessa vaurioissa ilman BBB-vaurioita mikroglia on tärkein solupopulaatio, joka ilmentää TSPO:ta. Verisuonista peräisin olevat makrofagit, reaktiiviset astrosyytit ja verisuoniston endoteelisolut ilmentävät kuitenkin TSPO:ta. Kuvantamistutkimukset, joissa käytettiin TSPO-radioligandia 11C-PK11195, ovat osoittaneet, että mikrogliasolujen aktivaatio tapahtuu MS-taudin varhaisessa vaiheessa ja näyttää olevan yhteydessä invaliditeetin asteeseen ja aivojen atrofiaan.

SPMS-potilaiden NAWM:ssä TSPO:n sitoutuminen lisääntyy merkittävästi verrattuna ikään sovitettuihin terveisiin verrokkeihin. PET-kuvantamista voidaan käyttää myös erottamaan aktiiviset ja passiiviset krooniset vauriot. Hitaasti laajenevien kroonisten aktiivisten vaurioiden uskotaan edistävän MS-taudin etenemistä. Plakin kinetiikan havaitseminen in vivo tarjoaa todennäköisesti uutta tietoa taustalla olevasta patologiasta, joka ajaa progressiota.

Kuten muissakin neurodegeneratiivisissa häiriöissä, mikroglian lisääntyminen ja aktivaatio on ensisijainen mekanismi astrosytoosin taustalla

Vaikka tutkimuksissa astrosyytit selviytyivät tulehduksen ja ROS / RNS:n aiheuttamasta oksidatiivisesta stressistä, niissä oli silti vaurion merkkejä, mikä heijastui lähinnä solumorfologian ja molekyyliekspression muutoksiin.

Arpikudos koostuu pääasiassa astrosyyteistä, mutta vakavissa vaurioissa esiintyy myös vuorovaikutusta muiden solutyyppien, kuten oligodendrosyyttien esisolujen, ja fibromeningeaalisten solujen kanssa.

Astrosyytteissä on havaittu useita spesifisiä molekulaarisia ja morfologisia piirteitä reaktiivisen astroglioosin aikana sekä ihmisen patologiassa että eläinmalleissa, joista gliaalifibrillaarihappoproteiinin (GFAP), vimentiinin, nestiinin ja vähemmän tutkitun synemiinin säätely ovat tunnusmerkkejä.

Gliaaliarvet näkyvät MS-potilaiden kudoksissa ja ympäröivät demyelinoituneita alueita. Arpien muodostumisen merkitys näyttäisi olevan vahingoittuneiden keskushermoston alueiden eristäminen kudosten tuhoutumisen leviämisen estämiseksi.

Gliaaliarpien jäykkyys johtaa kuitenkin sekä remyelinaation että aksonien regeneroitumisen estymiseen. Molemmat vaikutukset välittyvät eri mekanismien kautta. Astrosyyttien FGF-2:n liiallinen eritys voi olla haitallista remyelinaatiolle, mikä puolestaan edistää oliogodendrosyyttien esiastesolujen (OPC) lisääntymistä ja eloonjäämistä, mutta estää niiden kypsymisen.

Toinen molekyyli, jolla näyttää olevan tärkeä rooli OPC:n kypsymisen estämisessä, on glykosaminoglykaanihyaluronaani (glycosaminoglycan hyaluronan), jota esiintyy solunulkoisessa matriksissa ja keskushermoston valkeassa aineessa. Hyaluronaanin kanssa paikallistuvat oligodendrosyytit ilmentävät näiden solujen kypsymätöntä fenotyyppiä, ja oligodendrosyyttien esiastesolujen in vitro -hoito hyaluronaanilla estää solujen kypsymisen.

Vahingoittuneiden alueiden astrosyytit vapauttavat estäviä solunulkoisia matriksimolekyylejä, jotka tunnetaan kondroitiinisulfaattiproteoglykaaneina (CSPG) ja jotka voivat vakavasti loukkaantuneilla alueilla vaikuttaa sekä kasvukartioarkkitehtuurin sytoskeletoniin (solun tukirankaan) että kalvokomponentteihin.

CSPG:t ovat molekyyliperhe, jolle on tunnusomaista proteiinisydän, johon on kiinnittynyt erittäin sulfatoituneita glykosaminoglykaaniketjuja (GAG). Neurokaani (eritetty) ja brevikaani (soluun sitoutunut) ovat tärkeimmät astrosyyttien tuottamat proteoglykaanit in vitro, ja molempien on osoitettu estävän aksonin kasvua keskushermostovaurioiden jälkeen.

On vahvaa näyttöä siitä, että astrosyytit tuottavat liikaa kondroitiinisulfaattiproteoglykaaneita, kun niistä tulee reaktiivisia, ja että CSPG:n estävä aktiivisuus riippuu GAG-pitoisuudesta, koska GAG-ketjujen poistaminen proteiinisydämestä tukahduttaa CSPG:n välittämän eston. Kondroitiinisulfaattiproteoglykaanien (CSPG) lisäksi muut astrosyyttien ilmentämät vähemmän tutkitut estomolekyylit voivat tukahduttaa aksonikasvua.

Efriinit (EPH) ja niiden reseptorit erittyvät esimerkiksi normaalien astrosyyttien toimesta ja lisääntyvät MS-vaurioissa, mikä aiheuttaa aksonikasvukartion romahtamisen aktivoimalla aksoniin sitoutuneen EPH-tyrosiinireseptorikinaasin.

Astrosyytit osana immuunijärjestelmää voivat edistää MS-taudin etenemistä useiden mekanismien avulla

Ensinnäkin ne voivat vaikuttaa suoraan solujen pääsyyn keskushermostoon veri-aivoesteen läpi säätelemällä adheesiomolekyylien – erityisesti verisuonten adheesiomolekyyli-1 (VCAM-1) ja solujen välinen adheesiomolekyyli-1 (ICAM-1), ilmentymistä.

Toiseksi astrosyytit erittävät erilaisia kemokiinejä, kuten CCL-2 (MCP-1), CCL5 (RANTES), IP-10 (CXCL10), CXCL12 (SDF-1) ja IL-8 (CXCL8), jotka houkuttelevat perifeerisiä immuunisoluja ( esim. T-solut, monosyytit ja DC:t) sekä paikallisia keskushermostosoluja (mikroglia) vaurioalueille.

Astrosyytit voivat erittää GM-CSF:ää, M-CSF:ää tai TGF-β: ta, jotka säätävät MHC-luokan II molekyylien ilmentymistä mikroglialla ja jopa niiden fagosytoosia

Tämä voisi olla ensisijainen mekanismi, jonka kautta astrosyytit jatkavat immuunivälitteistä demyelinaatiota ja hermoston rappeutumista.

Hiljattain tehdyt eläintutkimukset havaitsivat, että EAE:n kroonisissa vaiheissa astrosyyttien ehtyminen lievittää taudin vakavuutta. Tämä astrosyyttien vahingollinen vaikutus EAE:ssa välittyy ensisijaisesti 4-galaktosyylitransferaasin 5 ja 6 (B4GALT5 ja B4GALT6) vaikutuksesta.

B4GALT6:tta ilmentävät myös reaktiiviset astrosyytit ihmisen MS-leesioissa. Nämä entsyymit syntetisoivat signalointimolekyylin laktosyyliseramidia (LacCer), jonka keskushermostossa ilmentyminen lisääntyy merkittävästi EAE:n progressiivisten vaiheiden aikana.

LacCer edistää astrosyyttien aktivaatiota autokriinisellä tavalla indusoimalla GM-CSF- ja CCL2-geenejä, aktivoimalla mikrogliaa ja aiheuttamalla vastaavasti monosyyttien tunkeutumista verestä.

B4GALT6:n estäminen hiirikokeissa pysäyttää keskushermoston neurodegeneraation EAE:ssa ja hillitseee myös ihmisen astrosyyttien aktivaatiota in vitro

Astrosyytit ilmentävät normaalissa keskushermostossa pysyvää (konstitutiivista) B-solua aktivoivaa tekijää (BAFF), joka on välttämätöntä B-solujen kehitykselle ja immunoglobuliinituotannolle.

MS-vaurioissa ja EAE:ta sairastavissa hiirissä BAFF:n ilmentymistä astrosyytteissä säätelee lisääntyvä vaste ärsykkeelle (up-regulated), mikä viittaa siihen, että astrosyytit voivat edistää B-soluista riippuvaisen autoimmuniteetin kehittymistä.

Luontaisten immuunisolujen tärkeä tehtävä on toimia antigeeniä esittelevinä soluina. Vaikka astrosyytit ilmentävät MHC-luokan I ja luokan II molekyylejä, jotka kykenevät esittelemään myeliiniantigeenejä, niiden kyky ilmentää myös stimuloivia molekyylejä, kuten CD40, CD80 ja CD86, haastaa tämän toiminnon, mikä tekee niiden lopullisesta vaikutuksesta epäselvän.

Sen lisäksi, että astrosyytit ovat osa immuunijärjestelmää, ne edistävät MS:n etenemistä tuottamalla sytotoksisia tekijöitä.

Jyrsijöillä IL-17- ja IFN-y-stimuloidut astrosyytit aiheuttavat typpioksidisyntaasia (iNOS). IL-1 ja yhdistetty altistus TGF-β:lla ja IFN-y:llä lisää astrosyyttien erittämän typpioksidin (NO) prosentuaalista osuutta, mikä on yksi merkittävimmistä vaurioita aiheuttavista molekyyleistä hermoston rappeutumisessa.

NO (typpioksidi) stimuloi glutamaatin vapautumista astrosyyteistä, mikä lisää edelleen hermosolun jatkuvaa stimulaatiota välittäjäaine glutamaatilla (eksitoksisuutta, joka on häiriö glutamaatin aineenvaihdunnassa).

Typpioksidin (NO) hallitseva osuus eksitotoksisuuteen (eli glutamaatin aineenvaihduntahäiriöön) riippuu lisääntyneestä superoksidi-ioni O2-tuotannosta, joka reagoi typpioksidin kanssa muodostaen peroksinitriitin (ONOO−) ja johtaa hermosolujen nekroosiin (kuolio) tai apoptoosiin (ohjattu solukuolema) sen pitoisuudesta riippuen.

Peroksinitriitti inaktivoi glutamaattikuljettimet astrosyytteissä vahingoittamalla suoraan myeliiniä, oligodendrosyyttejä ja aksoneja

Astrosyyttien kuljettajien vähentynyt glutamaatin saanti voi myös vaikuttaa epänormaaliin solunulkoisen glutamaattitasoon, joka on myrkyllistä oligodendrosyytteille, aksoneille ja neuroneille.

Eksitotoksisuus johtuu pääasiassa glutamaattireseptorien pitkäaikaisesta aktivoitumisesta ja massiivisesta Ca2+ -virtauksesta elinkelpoisiin hermosoluihin, mikä puolestaan johtaa muutoksiin mikrotubuluksissa ja neurofilamenttien fosforylaatiossa, ja aiheuttaa lopulta aksonin tukirangan hajoamiseen.

Astrosyytteillä on kaksoisrooli, joka ei ainoastaan edesauta aksonin rappeutumista, vaan myös luo sallivan ympäristön, joka edistää remyelinoitumista. Astrosyyttien todellinen vaikutus MS-taudin patogeneesiin ja tulehduksen korjaamiseen riippuu siis useista tekijöistä, kuten loukkaantumisen jälkeinen ajoitus, vaurion tyyppi ja ympäröivä mikroympäristö sekä vuorovaikutus muiden solutyyppien kanssa ja niiden aktivoitumiseen vaikuttavat tekijät.

Ionikanavien ja aksonivaurioiden uudelleenjakautuminen

Koska patologiset tulokset ja tulehdukseen liittyvien aksonien määrä korreloivat MS-taudin tulehdusasteen kanssa, suuri kiinnostus kohdistuu synnynnäisen immuunijärjestelmän vapauttamiin neurotoksisiin tuotteisiin, kuten makrofageihin, mikroglia-soluihin ja astrosyytteihin.

Mitokondriot ja mitokondrioiden DNA (mtDNA) ovat erittäin alttiita hapettumisvaurioille. ROS ja RNS aiheuttavat mitokondrioihin entsyymivajetta, joka voi olla joko palautuva tai peruuttamaton.

MS-taudissa aktiiviset leesiot osoittavat mitokondrioiden diffuusia vaurioitumista, mikä tekee energian puutteellisesta saannista tärkeimmän mekanismin toiminnallisten ja rakenteellisten oireiden taustalla.

Progressiivisessa MS-taudissa mitokondriovauriot ilmenevät harmaassa aineessa. Aivokuoren syvemmissä kerroksissa olevat hermosolujen soluelimet osoittavat sekä heikentynyttä mitokondrioiden aktiivisuutta hengitysketjukomplekseissa että muutoksia moottoriproteiineissa, jotka ovat vastuussa mitokondrioiden liikkumisesta solurungosta aksoneihin.

Aksonaalikuljetus on välttämätöntä hermosolujen terveydelle, ja se on osallisena erilaisissa hermostoa rappeuttavissa olosuhteissa. Mitokondrioita, kuten muita kalvorakenteita, kuljettaa aksonia pitkin kaksi suurta mikrotubuluspohjaisten molekyylimoottorien perhettä, kinesiiniperhe, joka välittää anterogradisen kuljetuksen pois solurungosta aksoniterminaaliin päin, ja sytoplasmallinen dyneiini, joka ajaa retrogradista liikettä distaalisesta aksonista kohti solurunkoa.

Progressiivista MS-tautia sairastavilla kinesiinin vähenemisen aiheuttamaa mitokondrioiden kuljetusvajetta esiintyy erityisesti ei-demyelinoidussa aivokuoressa. Tällaiset muutokset edeltävät rakenteellisia aksonivaurioita ja morfologisia muutoksia mitokondrioissa.

Etenevässä MS-taudissa syvempien aivokuorikerroksien neuroneissa esiintyy mitokondrioita, joissa on mtDNA-deleetioita, mikä viittaa solujen kiihtyneeseen ikääntymiseen

Deleetion taustalla on useimmiten kromosomin katkeaminen kahdesta eri kohdasta, jolloin irronnut pala häviää. Tämän seurauksena väistämättä myös osa perintöaineksesta eli geeneistä häviää, mikä aiheuttaa kehityshäiriöitä. Deleetion seurauksena vastinkromosomin resessiivisetkin alleelit tulevat näkyviin fenotyypissä.

Mitokondrioiden poikkeavuuksien seuraukset hermosolujen rungoissa ja aksoneissa ovat kaksinkertaiset.

Ensinnäkin mitokondrioiden toimintahäiriö johtaa energian puutteeseen, joka lievissä muodoissa aiheuttaa toiminnallisia häiriöitä ilman rakenteellisten vaurioita. Kuitenkin, kun vaurio ylittää tietyn kynnyksen, energian puute johtaa aksonin rappeutumiseen ja solukuolemaan.

Kun hermosysteemi on menettänyt varauksensa, se on kyvyttömämpi spontaaniin toipumiseen. Siten sen kyky toiminnalliseen parantumiseen on heikentynyt.

Toiseksi mitokondriovauriot vahvistavat oksidatiivista stressiä vapauttamalla happiradikaaleja, jotka syntyvät heikentyneen soluhengitysketjun toiminnan seurauksena, mikä luo kudoksen tuhoutumisen kierteen. Demyelinaation jälkeen seuraa tiettyjen Na+ -kanavien isoformien (Nav 1.1 ja Nav 1.6) uudelleenjakautuminen myymeloimattomalla segmentillä, mikä johtaa lisääntyneeseen natriumvirtaan.

Na+ -kanavien varhainen uudelleenjako MS-plakkien ja EAE:n valkeassa aineessa hajonneilla aksoneilla mahdollistaa toimintapotentiaalien jatkumisen MS-taudin kliinisen toiminnan palautumisen yhteydessä.

Nav 1.6 tuottaa pysyvän sähkövirran, joka on suurempi kuin Nav 1.2:n, on paikallistettu Na+ / Ca2+ -vaihtimen ja APP:n kanssa, mikä viittaa aksonin vaurioitumiseen. Nav 1.2 voi puolestaan edistää mukautuvaa toimintoa, jolla on rajallinen kyky ylläpitää toimintapotentiaalien korkeataajuista johtumista. Ne voivat myötävaikuttaa hitaaseen depolarisoitumiseen edistämällä ulkoisia polttomalleja demyelinaation jälkeen.

Mitokondrioiden hidas aksonaalinen kuljetus sekä mitokondrioiden vauriot voivat johtaa Na+ / K+ ATPaasipumpun vaurioitumiseen, mikä tuottaa pysyvän natriumvirran. Aksoplasmaan kertynyt Na+ korvataan Ca2+:lla Na+ / Ca2+ -vaihtimen käänteisen toiminnan kautta.

Lisääntynyt intraaksonaalinen Ca2+ aktivoi erilaisia katabolisia entsyymejä, mukaan lukien proteaasit, fosfolipaasit ja kalpaiinit, mikä lopulta johtaa solun tukirangan proteiinien progressiiviseen proteolyyttiseen hajoamiseen.

Solunsisäinen Ca2+: n kasvu johtaa mikrotubulusten ja neurofilamenttien (NF) fosforylaation muutoksiin, mikä aiheuttaa solun tukirangan (sytoskeletti) hajoamisen. Lisää vahingollista Ca2+:n kertymistä aksoneihin aiheutuu L- ja N-tyypin Ca2+ -kanavien sisäänvirtauksen kautta sekä vapautumalla solunsisäisistä varastoista aksoplasmisessa verkkokalvossa. Epänormaali Ca2+:n aksonaalinen kertyminen voi johtua myös glutamaattineurotoksisuudesta, joka muuttaa solunsisäistä Ca2+-homeostaasia aksonien AMPA / kainaatti- ja metabotrooppisten glutamaattireseptorien välittämän mekanismin kautta.

Na+ -kanavien lisäksi muilla ionikanavilla on rinnakkaisia adaptiivisia muutoksia tulehduksellisiin ärsykkeisiin: esim. muuttamalla niiden jakautumista hermosoluissa alkukompensoivana mekanismina johtokyvyn ja aksonin eheyden säilyttämiseksi.

Jänniteportoitujen Ca2+ -kanavien uudelleenjako, transienttipotentiaalireseptorit melastatiini 4 (TRPM4) ja happoa tuntevat ionikanavat 1 (ASIC1) aiheuttavat ylimääräistä Ca2+ -kuormitusta aiheuttaen edelleen vaurioita aksoneihin.

Neurofilamenttien epänormaalit kertymät ovat monien neurodegeneratiivisten häiriöiden patologinen tunnusmerkki

Neurofilamentit (NF) luokitellaan tyypin IV välituotesäikeiksi, joita esiintyy neuronien sytoplasmassa. Ne ovat proteiinipolymeerejä, joiden halkaisija on 10 nm ja pituus monta mikrometriä. Yhdessä mikrotubulusten (~ 25 nm) ja mikrofilamenttien (7 nm) kanssa ne muodostavat hermosolujen tukirangan (sytoskeletin).

Niiden uskotaan toimivan ensisijaisesti aksoneiden rakenteellisena tukena ja aksonin halkaisijan säätelijänä. Halkaisijaa vaikuttaa hermon johtumisnopeuteen. Neurofilamentteja muodostavat proteiinit ovat välifilamenttiproteiiniperheen jäseniä, joka on jaettu kuuteen tyyppiin niiden geenijärjestelyn ja proteiinirakenteen perusteella.

Tyypit I ja II ovat keratiinit, jotka ilmentyvät epiteelissä. Tyyppi III sisältää proteiinit vimentiini, desmiini, perifeeri ja gliaalifibrillaarihappoproteiini (GFAP). Tyyppi IV koostuu neurofilamenttiproteiineista L, M, H ja internexiinista. Tyyppi V koostuu ydinlaminoista ja tyyppi VI koostuu proteiinista nestiini. Tyypin IV välifilamenttigeeneillä kaikilla on kaksi ainutlaatuista intronia, joita ei löydy muista välifilamenttigeenisekvensseistä, mikä viittaa yhteiseen evoluutiolähteeseen yhdestä primitiivisestä tyypin IV geenistä.

Neurofilamentin kevyen (NfL), keskiraskaan- (NfM) ja raskaan ketjuproteiinin (NfH) alayksiköiden rooli neurodegeneraation ja aksonivaurioiden biomarkkereina kiinnostaa tutkijoita, koska ne ovat solun tukirangan eli sytoskeletin rakennustelineitä. Neurofilamenteilla on tärkeä rooli aksonin radiaaliselle kasvulle ja vakaudelle, mikä mahdollistaa hermon tehokkaan johtumisnopeuden sekä dendriittisen haarautumisen ja kasvun.

Neuroflamentteja esiintyy yksinomaan hermosoluissa. Niiden määrä saavuttaa epänormaalin tason aksonivaurioiden ja lopulta hermosolujen kuoleman seurauksena. Normaaleissa olosuhteissa neurofilamentit ovat erittäin vakaita aksonien sisällä ja niiden vaihtuvuus on vähäistä.

Aksonaalisia vaurioita aiheuttavat patologiset prosessit vapauttavat neurofilamentti-proteiineja selkäydinnesteeseen (CSF) ja perifeeriseen vereen vahingon laajuudesta riippuen

MS-taudin tutkimukset ovat osoittaneet että NfLn määrä selkäydinnesteessä liittyi taudin aktiivisuuden ja invaliditeetin asteeseen. Lisäksi NfL:n määrä selkäydinnesteessä laskee taudin modifiointiterapioiden seurauksena, mikä viittaa siihen, että NfL:ää voidaan käyttää terapian tehon seuraamiseen.

Lupaavista MS-tautiin liittyvistä kliinisistä löydöksistä huolimatta merkittävä este NfL-arvioinnin laajalle soveltamiselle MS-tutkimuksessa ja kliinisessä käytännössä on ollut selkäydinnesteen näytteenoton tarve, ongelma, joka on voitettu käyttämällä neljännen sukupolven immunomäärityksiä, jotka mahdollistavat seerumin NfL-tasojen arvioinnin.

Seerumin korkeat NfL-tasot korreloivat MS-taudin vakavuuden ja ivalidisoitumisen kassa. Lääkehoitoa saavilla potilailla on matalampi seerumin NfL-arvo kuin hoitamattomilla potilailla, mikä osoittaa, että muutos NfL-tasoissa on kertoo hoitovasteesta.

Potilailla, joiden seerumin NfL-tasot olivat korkeat jo taudin alussa, esiintyi huomattavasti enemmän aivojen ja selkäytimen atrofiaa 2 ja 5 vuoden seurannan aikana. Nämä havainnot osoittavat yhdessä, että seerumin NfL-tasot voivat olla hyödyllinen merkki aksonivaurioista, kun käytetään riittävää havainnointitekniikkaa.

Myeliinitroofismin häiriö johtaa aksonaaliseen rappeutumiseen

Troofismi viittaa solun ja kudoksen ravinnonottoon. Vaikka myeliiniä pidetään perinteisesti passiivisena eristävänä rakenteena, viimeisimmät havainnot osoittavat, että sillä voi olla dynaamisempi rooli. Myeliini on metabolisesti aktiivinen, mikä sallii makromolekyylien liikkumisen periksonaaliseen tilaan, mikä vaikuttaa merkittävästi aksonien terveyteen ja hermosolujen selviytymiseen.

Kun myelinaatio on saatu päätökseen, oligodendrosyyttien päätehtävä on tarjota runsaasti energiaa sisältäviä substraatteja aksoneille, joita tarvitaan nopeaan aksonaaliseen kuljetukseen. Lisäksi resurssien tehokkaaseen rekrytointiin on olemassa kaksisuuntainen signalointi, jolloin aksonit ilmoittavat myelinisoiville soluilleen aineenvaihduntatarpeet suhteessa aktiivisuuteensa.

Myeliinivaippaa ja sen alapuolista aksonia tulisi sen vuoksi pitää funktionaalisena yksikkönä, joka on kytketty paitsi morfologisella, myös metabolisella tasolla. Eläintutkimukset ovat osoittaneet, että oligodendrosyyteillä on kriittinen rooli aksonien ja neuronien ylläpidossa ja pitkäaikaisessa selviytymisessä.

Oligodendrosyyttispesifisen Plp1-geenin mutaatiot, jotka koodaavat PLP / DM20: ta myeliinivaipan rakenteelliseksi komponentiksi, kehittävät progressiivista aksonaalista keskushermoston rappeutumista vanhemmassa iässä.

Jokaisella oligodendrogliaalisella proteiinilla on erillinen rooli myelinisoidun aksonin toiminnan tukemisessa. Aksonaalista rappeutumista edeltävä aksonipatologia sisältää muuttuneen aksonikuljetuksen ja aksonimunan muodostumisen. Nämä havainnot ovat näkyvämpiä paranodaalisilla alueilla, joilla myeliini-aksonaalinen viestintä tapahtuu todennäköisimmin, ja muistuttavat suuresti MS-potilaiden keskushermostokudoksessa havaittuja muutoksia. Eläinmallien havainnot viittaavat siihen, että oligodendrosyyttien myeliiniä tuottava funktio ei liity niiden rooliin aksonin säilyttämisessä ja että oligodendrosyytit itse ovat kriittisiä aksonitoiminnon ylläpitämiselle ja selviytymiselle.

Kehityksensä aikana oligodendrosyytit hyödyntävät glukoosia ja laktaattia, jotta nopea myelinaatio syntetisoisi suuria määriä lipidejä.

Kun myelinaatio on valmis, oligodendrosyytteistä peräisin oleva laktaatti ja pyruvaatti voidaan ottaa mitokondrioiden ATP-tuotantoon, mikä tukee solujen energiantarpeita. Kokeet ovat osoittaneet, että monokarboksyylihappokuljettajat (MCT) ovat kriittisiä aksonaalisen eheyden ylläpitämiseksi.

Sekvenssihomologian perusteella on tunnistettu 16 MCT-jäsentä, joista vain MCT1, 2 ja 4 löytyvät keskushermostosta. Kun oligodendrosyytit keräävät solunsisäistä laktaattia, tämä substraatti voi virrata MCT1:n läpi periksonaaliseen tilaan, jossa neuronit sieppaavat sen MCT2:n kautta ja metabolisoivat sen energiantarpeen täydentämiseksi.

Erityisesti MCT1:n sekä geneettinen että farmakologinen alasregulaatio*, jota esiintyy melkein yksinomaan oligodendrosyyteissä, johtaa aksonin rappeutumiseen ja hermosolujen menetykseen sekä in vivo (elävässä organismissa) että in vitro (koeputkessa) ilman ilmeisiä oligodendrosyyttien vaurioita.

*alasregulaatio on prosessi, jossa solu vähentää solukomponentin, kuten RNA: n tai proteiinin määrää vasteena ulkoiselle ärsykkeelle

Vaikka edellä mainitut havainnot tarjoavat vahvaa näyttöä oligodendrosyyttien roolista aksonien suorassa energiantuotannossa, myös muut solut, kuten astrosyytit, voivat osallistua. Astrosyytit ovat pohjimmiltaan ainoat solut, jotka sisältävät glykogeenia keskushermostossa, ja glykogeenimetabolia, jota seuraa glykolyysi, tarjoaa laktaatin lähteen muille soluille. Tutkimukset osoittavat, että astrosyytit siirtävät energiametaboliitteja suoraan oligodendrosyytteihin, jotka puolestaan tukevat hermosolujen ja aksonien aineenvaihduntaa, kuten aiemmin on käsitelty.

Astrosyyttien ja myelinoivien solujen väliset yhteydet tapahtuvat konneksiinien (Cx) muodostamien aukkoyhteyksien kautta. Nämä aukkoyhteydet käsittävät Cx32:n ja Cx47:n ilmentyneinä oligodendrosyyteillä, jotka muodostavat heteromeerisiä kanavia astrosyyttien kanssa Cx30:n ja Cx43:n kautta.

Cx43:n menetys estää glukoosin kulkeutumisen oligodendrosyyttisolujen kantasoluihin ja niiden lisääntymiseen, mikä puolestaan voi vaikuttaa oligodendrogeneesiin ja oligodendrosyyttien metaboliseen tukeen.

Kaiken kaikkiaan nämä havainnot tarjoavat uusia näkökulmia oligodendrosyyttien ja astrosyyttien roolista MS-taudin patogeneesissä. Kaksisuuntaisten signalointireittien tunnistaminen, joilla oligodendrosyytit vaikuttavat aksonimetaboliaan, on erittäin merkityksellistä MS-taudin etenemisen ymmärtämiseksi.

Efektiivisten MS-taudin tehokkaiden hoitomuotojen tunnistaminen on edelleen prioriteetti ja haaste MS-yhteisölle

Uusien ja tehokkaiden hoitostrategioiden kehittämiseksi on tarpeen ymmärtää paremmin tautiin liittyvät patologiset mekanismit.

Tässä artikkelissa kirjoittajat ovat tiivistäneet joitakin tärkeimmistä mekanismeista, jotka liittyvät MS-taudin etenemiseen. Epäilemättä lisätutkimukset johtavat parempaan ymmärrykseen demyelinaatio- / remyelinoitumisprosesseista sekä gliasolujen merkityksestä hermosolujen homeostaasissa ja hermosolujen rappeutumisessa.

Tehokkaiden hoitomuotojen kehittäminen riippuu suurelta osin taudin patogeneesin kattavasta ymmärryksestä, eläinmalleista, jotka sisältävät nämä patogeeniset ominaisuudet, uusista koemalleista sekä uusista lääkäreiden ja perustutkijoiden yhteistyömalleista.

Pahoittelen, jos tekstiin jäi kirjoitus- tai asiavirheitä. Aineevaihduntaa ja biokemiallisia prosesseja käsittelevän tekstin ymmärrettäväksi suomentaminen on haastavaa. Minäkin vasta harjoittelen. Aihe on kuitenkin tavattoman kiinnostava.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466454/




Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa 1

Sairastan ensisijaisesti etenevää multippeliskleroosia, johon ei tunneta hidastavaa, tai parantavaa lääkitystä. Primaaristi progressiivinen MS-tauti tunnetaan edelleen heikommin, kuin selvästi yleisempi aaltoilevasti etenevä relapsoiva-remittoiva MS.

Usein MS-taudista puhuttaessa unohdetaan, että relapsoiva-remittoiva MS-tauti ja primaaristi progressiivinen MS-tauti eroavat taudin etenemisen suhteen merkittävästi toisistaan. Tautimuodot ovat luonteiltaan kuin kesä ja talvi.

Yritän parhaani mukaan levittää tietoa PPMS-taudin syistä ja vaikutusmekanismeista. Etsin myös aktiivisesti tietoa keinoista, jolla taudin neurodegeneratiivista etenemistä voisi hidastaa.

En usko, että monitekijäisiin ongelmiin on yksinkertaisia tai helppoja vastauksia

Tämäkin on pitkä ja vaikeatajuinen aineenvaihduntaa ja biokemiaa sivuava kirjoitus, jonka sisäistäminen vie aikaa. Tämä on toistaiseksi täsmällisin selvitys etenevän MS-taudin patogeneesista, jonka olen lukenut. Jaan artikkelin kahteen osaan, joista tämä on ensimmäinen.

Avaan tässä Jorge Correalen, Mariano Marrodanin ja María Célica Ysrraelitin laatimaa tutkimuskatsausta: Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis

Progressiivinen multippeliskleroosi on monitekijäinen neurologinen sairaus, joka vaurioittaa aivojen kortikaalisten alueiden ja harmaan aineen soluja

Taudille tyypillinen oireiden asteittainen paheneminen johtuu erilaisista mekanismeista ja keskushermostoon rajoittuneista immuunireaktioista, kuten:

  1. B-solujen dysregulaatio (eli B-solujen säätelyvirhe)
  2. CD8+ T-solut, jotka aiheuttavat demyelinaation ja/tai aksonaaliset / hermosolujen vauriot
  3. aivokuoren demyelinoivissa vaurioissa havaittu neuriittiseen transaktioon liittyvä mikrogliaalinen soluaktivaatio

Muita mahdollisia neurodegeneraation aiheuttajia ovat reaktiivisten happi- ja typpiradikaalien muodostuminen ja solujen energiantuotantoa heikentävät mitokondrioiden vauriot.

Ca2+:n kertyminen aksoneihin lisää solujen rappeutumista aktivoimalla eräitä katabolisia entsyymeitä, mikä johtaa sytoskeletoniproteiinien, eli solun tukirangan proteiinien progressiiviseen proteolyyttiseen hajoamiseen.

Oligodendrosyyttien aksoneille tuottaman energian väheneminen johtaa aksonien rappeutumiseen ja siten hermosolujen vaurioitumiseen ja tuhoutumiseen. Nämä mekanismit eivät poissulje toisiaan.

Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa

Aivot ja selkäydin

 


Tässä katsauksessa sukelletaan syvälle aivoihin ja aivojen kemiallisiin tapahtumiin.

Multippeliskleroosi on aivoihin ja selkäytimeen vaikuttava neurologinen sairaus, jonka oireita on helpompi ymmärtää dissektoimalla aivot erilaisiin toiminnallisiin segmentteihin.

Keskushermostoon kuuluvat isot aivot, pikkuaivot, aivorunko ja selkäydin. Keskushermosto saa informaatiota ääreis- eli perifeerisestä hermostosta. Aivojen signaalit lihaksille ja umpieritysrauhasille välittyvät myös ääreishermoja pitkin.

Tietoisuus ja tahdosta riippuvainen toiminta on keskittynyt isoihin aivoihin. Pikkuaivot orkestroivat tahdosta riippumattomia toimintoja tai toteuttavat isojen aivojen käskyjä. Pikkuaivoilla on tärkeä rooli motorisen muistin hallinnassa ja opittujen liikeratojen suorittamisessa. Pikkuaivot liittyvät aivorungon takaosaan pikkuaivovarsien (pedunculus cerebelli) välityksellä.

Aivorunko sisältää motorisia ja sensorisia hermoratoja sekä yhteyksiä aivojen eri osien välillä. Aivorungossa on myös paljon hermosolurykelmiä, eli tumakkeita, jotka säätelevät tiedostamattomia elintoimintoja, kuten hengitystä.

Ylhäältä katsoen aivorunko muodostuu väliaivoista (diencephalon), keskiaivoista (mesencephalon), aivosillasta (pons) ja ydinjatkoksesta (medulla oblongata). Väliaivoissa on hormonitoimintaa säätelevä hypotalamus sekä talamus, jonka solujen kautta aistien lähettämät signaalit hajua paitsi, välittyvät aivokuorelle.

Selkäydin sisältää ensisijaisesti lihasten ohjaamiseen ja tuntoaistimusten välittämiseen liittyviä hermoratoja. Toisaalta selkäytimen neuronit hallitsevat eräitä automaattisia reflektireaktioita ja ohjaavat eräitä automaattisia toimintoja, kuten kävelyn säätelyä.

Aivot kelluvat aivo-selkäydinnesteessä (cerebrospinal fluid / CSF), joka suojaa aivojen herkkiä rakenteita fyysisenä ja kemiallisena puskurina. CSF suojaa aivoja mm. iskuilta.

Kaksi aivopuoliskoa (hemispheres) käsittävät isot aivot koostuvat aivokuoresta (cortex), valkeasta aineesta harmaan sisäpuolella sekä tyvitumakkeista (basal ganglia). Basaaligangliat ovat hermosolujen kasaumia, joilla on yhteyksiä liikettä ohjaaviin aivokuoren alueisiin sekä pikkuaivoihin.

Valkea aine koostuu lähinnä aivoon tulevista ja aivoista lähtevistä sekä aivokuoren eri osien välisistä aksonikimpuista (viejähaarakekimpuista), joiden myeliinitupit antavat valkealle aineelle värin.

Aivokuori jaetaan neljään lohkoon kummallakin aivopuoliskolla. Etummaisena on otsalohko (lobus frontalis). Sen takana on päälaenlohko (lobus parietalis). Näiden väliin jäävä uurre on keskusvako (sulcus centralis). Sivuvaon (sulcus Sylvii) alapuolella on ohimolohko (lobus temporalis). Takaraivolohko (lobus occipitalis) on aivojen takaosassa.

Aivokuori näyttää pinnallisesti tarkasteltuna melko samanlaiselta kaikkialta, mutta solutyyppien jakauman, aivokuoren kerrosrakenteen, metabolian, yhteyksien sekä toiminnallisten erojen vuoksi kukin lohko on jaettu lukuisiin aivoalueisiin. Ensimmäinen systemaattinen jako oli histologinen: saksalainen Brodmann numeroi aivoalueet siinä järjestyksessä kun hän uusia kudosrakenteita löysi.

Aivokuoren sytoarkkitehtoniset alueet Brodmannin mukaan. Tärkeimmät alueet ovat motorinen aivokuori (alue 4), tuntoaivokuori (1,2 ja 3), näköaivokuori (17,18 ja 19) sekä kuuloaivokuori (41 ja 42). Muut alueet muodostavat ihmisen aivoissa erityisen laajoiksi kehittyneet assosiatiiviset osat.

 


Aivokuoren eri alueet ja aivoalueiden osat ovat kytkeytyneet toisiinsa assosiaatiosyiksi kutsuttujen valkean aineen aksonikimppujen välityksellä. Aivopuoliskojen välisiä yhteyksiä kutsutaan kommissuraalisyiksi. Kommissuraalisyiden pari miljoonaa aksonia muodostaa aivokurkiaisen (corpus callosum), joka on suurin aivopuoliskojen välinen tiedonsiirtoväylä.

Aisteista tulevat (afferentit) signaalit (hajua lukuunottamatta) välittyvät talamuksen kautta; talamuksen ja korteksin yhteydet ovat kaksisuuntaiset, ts. aivokuorelta on voimakas takaisinkytkentä talamukseen.


Suurin hermosäiekimppu talamuksesta aivokuorelle on optinen radiaatio (optic radiation) ulommasta polvitumakkeesta näköaivokuorelle. Motoriset (efferentit) viestit taas vällittyvät pitkin capsula internaa aivokuorelta aivorunkoon. Tämä vahva hermosäiekimppu menee talamuksen ja tyvitumakkeiden välistä.

Keskushermosto on sekä vasemmalta että oikealta puoleltaan yhteydessä ulkomaailmaan 12 aivohermon (cranial nerves) ja 31 selkäydinhermon (spinal nerves) kautta. Aivohermot ovat yhteydessä pään seudun aisteihin ja lihaksiin.

Selkäydinhermot palvelevat muuta osaa kehosta. Niiden kautta saapuvat afferentit hermoradat menevät ensin talamukseen ja sieltä aivokuorelle. Selänpuoleiset hermoradat (dorsal columns) vievät selkäytimen yläpäässä oleviin tumakkeisiin, joista signaalit etenevät lemniscus medialista pitkin talamuksen vastakkaiseen puoliskoon ja sieltä edelleen tuntoaivokuorelle (alueet 1, 2 ja 3).

Pikkuaivot koostuvat kahdesta voimakkaasti poimuttuneesta puoliskosta. Pikkuaivokuoren (cortex cerebelli) sisäpuolella on myelinisoitujen aksonien muodostamaa valkeaa ainetta. Pikkuaivokuori on kauttaaltaan samanlainen, joten sen eri alueet luultavasti käsittelevät saamansa tiedon samalla tavalla.

Pikkuaivot säätelevät lihasliikkeitä ja liikesarjoja (esim. polkupyörällä ajo) ja liikkeiden ajoitusta yhdessä tyvitumakkeiden ja liikeaivokuoren kanssa. Ne ovat tärkeät myös tasapainon säilymisen kannalta. Keskushermostoa ympäröi tiivis kalvosto.

Aivokalvojen ja hermokudoksen välissä on aivoselkäydinnestettä (cerebrospinal fluid = CSF, liquor cerebrospinalis), jota valmistuu aivokammioiden seinämissä . Aivot kelluvat tässä nesteessä ja neste muodostaa hermosoluille optimaalisen toimintaympäristön, jota aktiiviset mekanismit pyrkivät pitämään vakaana.

Veri saapuu aivoihin molemminpuolisia kaulavaltimoita (carotid artery, arteria carotis) ja niskassa kulkevia nikamavaltimoita (vertebral artery, a. vertebralis) pitkin. Nämä neljä valtimoa muodostavat aivojen pohjassa verisuonirenkaan (circle of Willis, circulus Willisii 1500-luvulla eläneen brittianatomin mukaan), josta nousee molemmin puolin kolme aivojen päävaltimoa (a. cerebri anterior, a. cerebri media ja a. cerebri posterior).

Mikäli kaula- tai nikamavaltimo ahtautuu hitaasti, elimistö pystyy yleensä korvaamaan aivojen verenpuutteen tämän suonirenkaan avulla; äkillinen tukos aiheuttaa kuitenkin ainakin ohimeneviä oireita.

Kun kudosta aivovaltimoiden tukkeutuessa hapenpuutteen takia vaurioituu, puhutaan aivoinfarktista tai ohimenevästä aivoverenkiertohäiriöstä (TIA). Verisuonen katketessa taas syntyy aivoverenvuoto joko aivojen sisään (intrakerebraalivuoto) tai lukinkalvon alle (subaraknoidaalivuoto). Vuodon tai infarktin paikka ja laajuus ratkaisevat, minkälaisia oireita potilaalla on.

Pahimmassa tapauksessa aivoinfarkti johtaa nopeaan kuolemaan. Aivojen laskimot (sinukset) kulkevat lähellä kalloa ja veri palaa niistä yläonttolaskimon kautta sydämeen.

Lähde: Aivojen rakenne ja toiminta, Risto Ilmoniemi, Helsingin yliopistollinen keskussairaala

Johdanto

Multippeliskleroosi (MS) on keskushermoston (CNS) krooninen tulehdussairaus, joka aiheuttaa vaurioita aivojen ja selkäytimen valkeassa ja harmaassa aineessa.

Viejähaarakkeita suojaavien myeliinituppien vaurioitumisen (demyelinaation) lisäksi keskushermostossa tapahtuu neurodegeneraatiota, joka johtaa hermosolujen surkastumiseen, rappeutumiseen ja kuoleman.

MS-taudin etiologia tunnetaan yhä huonosti, mutta immunologisten, geneettisten ja histopatologisten tutkimusten perusteella uskotaan, että MS-taudin patogeneesissä autoimmuniteetilla on keskeinen rooli.

Taudin kulku voi vaihdella potilaskohtaisesti, mutta useimmilla potilailla esiintyy toistuvia kliinisiä oireita taudin alusta alkaen, minkä jälkeen tapahtuu täydellinen tai osittainen oireista toipuminen. Tämä tautimuoto on aaltoilevasti etenevä, eli relapsoiva-remittoiva MS (RRMS).

10–15 vuoden jälkeen RRMS muuttuu eteneväksi (progressiiviseksi) jopa 50%:lla potilaista. Toissijaisesti etenevässä MS-taudissa (SPMS) oireet etenevät yleensä hitaasti ilman pahenemis- tai paranemisvaiheita monen vuoden ajan.

15 prosentilla MS-potilaista eireet etenevät taudin alusta alkaen tasaisesti ilman pahenemis- ja paranemisvaiheita. Tämä on ensisijaiseksi etenevä, eli primaaristi progressiivinen MS-tauti (PPMS).

Nykyään ei olla aivan varmoja siitä, onko PPMS erillinen MS-taudin muoto vai ilman tunnistettavia kliinisiä relapseja sekundaarisesti eteneväksi muuttunut MS.

Tämä on ihan uskottava hypoteesi. Minä koin kaksoiskuvia ja tasapainovaikeuksia aiheuttaneen kohtauksen vuosia ennen MS-diagnoosia. Sen syy ei koskaanselvinnyt, mutta jälkikäteen ajatellen kohtaus saattoi olla ensimmäinen ja ainoa MS-taudin pahenemisvaihe. Oireet kestivät useita päiviä.

Toisaalta monet MS-tautiin viittaavat oireet olivat minulla alkaneet lievinä jo vuosituhannen vaihteen molemmin puolin.

Sellaisenkin hypoteesin olen lukenut, jossa PPMS luokitellaan omaksi sairaudekseen, joka yhtäläisyyksistä huolimatta ei varsinaisesti ole inflammatorinen autoimmuunitauti, kuten MS-tauti, vaan lähempänä muita neurodegeneratiivisia sairauksia, kuten Parkinsonin tautia.

Multippeliskleroosin tyypillisin aivokudosvaurio on aksoneita suojaavien myeliinituppien primaarinen demyelinaatio aivojen valkeassa aineessa. Myeliinin vauriot altistavat myös hermosyyt vaurioille.

RRMS:sä aktiivisesti demyelinoiviin plakkeihin liittyy immuunisolujen pääsy ääreisalueelta keskushermostoon, mikä selittyy veri-aivoesteen (BBB) vuotamisella.

Terveen veri-aivoesteen ei pitäisi päästää perifeerisiä immuunisoluja keskushermostoon.

Progressiivisessa MS-taudissa patologisia prosesseja aivoissa välittävät pääasiassa paikalliset keskushermostosolut. Magneettikuvantamisella (MRI) on osoitettu, että PPMS:ssä keskushermoston vauriossa esiintyy vähäisempiä gadolinium-pitoisuuksia, mikä viittaa siihen, että leesiot eivät ole immuunijärjestelmän aiheuttamia.

Useat kudospatologiset havainnot liittyvät progressiiviseen MS: ään. Tärkein on aivojen atrofia, eli rappeuma tai surkastuminen, jonka aiheuttaa pääasiassa aksonien krooninen demyelinaatio, mikä johtaa lopulta hermosolujen menetykseen.

Vaikka MRI-kuvantaminen ja neuropatologiset tutkimukset ovat osoittaneet, että sekä aksonin rappeutumista että hermosolujen kuolemaa esiintyy akuuteissa ja aktiivisissa MS-vaurioissa, taudin eteneminen tapahtuu todennäköisesti, kun aksonituho ylittää keskushermoston kompensointikyvyn.

Ovatko tulehdus ja hermoston rappeutuminen ensisijaisia vai toissijaisia prosesseja ja miten ne ovat vuorovaikutuksessa taudin aikana, on edelleen epäselvää

Toinen progressiivisen MS:n merkittävä patologinen substraatti on kortikaalinen demyelinaatio. Harmaan aineen demyelinaatiota havaitaan myös pikkuaivokuoressa, hippokampuksessa ja syvän harmaan aineen solujen tumisa.

Demyelinoitumisen ja oligodendrosyyttien häviämisen lisäksi demyelinoivissa aivokuoren vaurioissa esiintyy hermosolujen transaktiota, hermosolujen kuolemaa ja pienentyneitä presynaptisia terminaalilukuja.

Progressiivisissa MS-vaurioissa diffuusia patologiaa esiintyy myös terveeltä vaikuttavassa valkeassa ja harmaassa aineessa, mikä heijastuu diffuuseina (epätarkkarajaisina) aksonivaurioina, joissa syvä mikroglia-aktivaatio vaikuttaa aivokalvon laajan tulehdusreaktion taustalla.

MRI-tutkimukset viittaavat siihen, että aivokuoren atrofia (surkastuminen) voi olla läheisemmässä suhteessa diffuusiin hermoston rappeutumiseen terveeltä näyttävässä valkeassa aineessa kuin fokaaliseen (pesäkkeisiin liittyvän) valkean aineen demyelinaation laajuudessa.

Tässä katsauksessa käsitellään nykyistä käsitystä harmaan aineen tapahtumista progressiivisen MS-taudin patogeneesissa sekä oletettuja mekanismeja, jotka voivat selittää hermoston rappeutumista ja hermosolujen kuolemaa.

MS-taudissa havaitut harmaan aineen muutokset

MS-taudin uskottiin pitkään olevan tulehduksen välittämä keskushermoston valkean aineen demyelinoiva sairaus, mutta viime vuosina on noussut esiin mahdollisuus, että aivokuoren ja syvän harmaan aineen demyelinaatio voivat olla valkean aineen vaurioita merkittävämpiä taudin oireita ja etenemistä selittäviä syitä.

Valkean aineen demyelinaation ruumiinavaus- ja in vivo tutkimukset ovat paljastaneet laajojen vaurioiden esiintymisen harmaata ainetta tukevissa rakenteissa.

Aluksi tämä selitettiin harvinaisena geneettisenä poikkeamana, joka liittyy yksinomaan taudin pitkittyneeseen kestoon ja eteneviin muotoihin.

Äskettäin osoitettiin, että kortikaalisia ja syvän harmaan aineen vaurioita talamuksessa, häntätumakkeessa, tyvitumakkeessa ja pikkuaivokuoressa esiintyy jo taudin alkuvaiheessa riippumatta valkean aineen patologiasta.

Todisteet taudin aktiivisuuteen ja aggressiivisempiin muotoihin liittyvistä harmaan aineen vaurioista lisääntyvät jatkuvasti

Toisin kuin muissa neurodegeneratiivisissa sairauksissa, ei tiedetä, onko aivokuoren atrofia MS:ssä diffuusi prosessi vai kehittyykö atrofia sen sijaan yksilöllisten anatomisten mallien mukaisesti.

Otsalohkon kortikaaliset osat, pihtipoimun takaosat, aivosaareke ja ohimolohkojen (erityisesti hippokampuksen) ja pikkuaivojen aivokuoren alueet ovat aivoalueita, joihin progressiivinen tauti iskee jo taudin varhaisessa vaiheessa. Tämä selittää ivaliditeetin etenemisen ja tautiin usein liittyvät lievät ja keskivaikeat kognitiiviset oireet.

Pitkään MS-tautia sairastaneilla on viime aikoina kuvattu erilaisia kortikaalisen atrofian tapahtumia, joissa on tai ei ole samanaikaisia valkean aineen vaurioita.

Suurin osa saadusta näytöstä viittaa vaurioiden symmetriseen (ei-satunnaiseen) jakautumiseen. Vaurioilla on vahva yhteys kliinisiin oireisiin.

Ruumiinavauksissa saaduista keskushermostokudosnäytteistä on havaittu erilaisia aivokuoren vaurioita noin 60 prosentissa tapauksista, kun taas uudemmissa 7T-magneettikuvausprotokollissa esiintyvyyden arvioidaan olevan yli 90%.

MS-potilaiden aivokudoksessa on raportoitu kolmen tyyppisiä kortikaalisia vaurioita: leukokortikaalisia, intrakortikaalisia ja subpiaalisia

Leukokortikaaliset leesiot (tyypin 1 leesiot) näyttävät alkavan aivokuoren alapuolisesta valkeasta aineesta ja ulottuvan aivokuoreen kerroksiin V ja VI. Näiden vaurioiden aivokuorisektorit osoittivat lisääntynyttä lymfosyyttien ja mikroglia- / monosyyttien määrää verrattuna terveeseen aivokuoreen samasta aivosta tai ikääntyneistä vertailuaivoista, vaikka näiden solujen lukumäärä on huomattavasti vähäisempi kuin aivokuoren alapuolisessa valkeassa ainessa. Leukokortikaalisia vaurioita on havaittu potilailla jopa taudin varhaisimmissa vaiheissa.

Intrakortikaaliset, eli aivokuoren sisäiset leesiot (tyypin 2 leesiot) sijaitsevat kokonaan aivokuoressa, eivätkä ole suorassa kosketuksessa aivokuoren valkean aineen tai pehmytkudoksen (pia mater) kanssa. Nämä vauriot ovat yleensä pieniä ja perivaskulaarisia (verisuonia ympäröiviä).

Subpiaaliset leesiot (tyypin 3 leesiot) edustavat kaikkein runsainta kortikaalivaurioiden tyyppiä ja ovat merkittävimpiä vaurioita MS-taudin progressiivisissa muodoissa. Nähin vaurioihin liittyy usein myeliinin menetystä kortikaalisissa kerroksissa I – IV, jotka ulottuvat useisiin aivopoimuihin (gyri, gyrus).

Joskus ne voivat läpäistä kaikki kuusi aivokuorikerrosta, mutta harvoin vauriot tunkeutuvat subkortikaaliseen valkoiseen aineeseen.

Oireisiin voi liittyä tulehdusreaktio aivokalvolla. Myeliinivaurioita paitsi, subpiaalisissa leesioissa ei ole suurinta osaa muista patologisista ominaispiirteistä, joita kuvataan valkean aineen vaurioissa, kuten veri-aivoesteen vuotaminen, immuunisolujen tunkeutuminen keskushermostoon, perivaskulaariset muutokset (perivascular cuffs, jossa inflammaatioon viittaavia leukosyyttejä kumuloituu verisuonten ympärille), astroglioosi tai oligodendrosyyttien esisolujen tuhoutuminen.

Aktiivinen kudosvaurio liittyy myös mikroglia-aktivaatioon. Korrelaatiota subpiaalisen ja valkean aineen leesioiden kuormitusten välillä ei ole havaittu, mikä viittaa siihen, että subpiaalinen demyelinaatio tapahtuu riippumatta valkean aineen demyelinaatiosta.

Ruumiinavaustutkimusten yleinen konsensus on, että subpiaalisia vaurioita esiintyy runsaasti MS:n progressiivisissa tautimuodoissa ( PPMS ja SPMS), mutta ne ovat harvinaisia MS-potilailla, joilla on akuutti MS tai RRMS.

Syvän harmaan aineen (DGM) rakenteiden muutokset MS-taudissa

DGM-rakenteiden muutoksia multippeliskleroosissa on tutkittu melko vähän.Kortikaalista atrofiaa havaitaan usein syvässä harmaassa aineessa, etenkin talamuksessa.

On yhä enemmän todisteita siitä, että harmaan aineen volyymin väheneminen (neurodegeneraatio) on invaliditeetin etenemisen kannalta tärkeämpi vaikuttaja, kuin demyelinaatio ja valkean aineen vauriot.

Talamus saattaa olla erityisen herkkä hermoston rappeutumiselle. Demyelinoivia vaurioita voi esiintyä talamuksessa ja peritalaamisilla alueilla.

DGM:n demyelinaatiota löydetään usein MS-tautia sairastaneiden ruumiinavauksissa. Kuolemanjälkeisissä tutkimuksissa demyelinaatiota havaitaan erityisesti häntätumakkeessa sekä talamuksen mediaalisissa ja anteriorisissa tumakkeissa.

Talamuksessa havaittavien vaurioiden histopatologinen* hahmottelu kokoaa yhteen aktiivisen, kroonisesti demyelinoivan, valkeassa aineessa havaittujen vaurioiden spektrin.

* histopatologiassa tutkitaan, onko kudosnäytteissä tulehdukseen, kasvaimiin, rappeumaan tai syöpään viittaavia muutoksia

Samoin kuin ruumiinavauksessa todetut muutokset aivokuoren harmaassa aineessa, T- ja B-solujen aiheuttama parenkymaalinen tunkeutuminen on rajallista verrattuna klassisten aktiivisten valkean aineen vaurioiden havaittuihin tasoihin.

Tutkimus on osoittanut MS-potilailla selkeitä surkastumia harmaan aineen volyymissa

Surkastumat keskittyvät alueille, jotka ovat vahvasti yhteydessä erilaisiin hermosoluihin.

Koska DGM-rakenteet ovat laajasti yhteydessä kortikaalikehän harmaan aineen alueisiin, atrofia voi johtua myös taaksepäin kulkevasta tapahtumaketjusta, joka aiheutuu aksonitransaktiosta talamuksesta ulkonevissa valkean aineen rakenteissa tai sekundaarisesti talamushermosolujen trans-synaptisesta deafferentaatiosta*.

*keskushermostoon tuovien hermoimpulssien kulun estyminen esim. katkenneissa hermoissa

Tutkimukset ovat osoittaneet, että syvän harmaan aineen volyymin surkastuminen on ajan myötä nopeampaa kuin muilla aivojen alueilla kaikissa kliinisissä MS-fenotyypeissä, ja se johtaa invaliditeetin etenemiseen.

Yhdessä nämä tutkimukset tarjoavat vahvaa näyttöä siitä, että talamuksen ja DGM:n volyymiin surkastuminen vaikuttaa dramaattisesti taudin vaikeusasteeseen.

Tulehduksia lievittävät sekä immuunijärjestelmän toimintaa säätelevät lääkkeet toimivat yleensä hyvin aaltomaisesti etenevässä RRMS-tautimuodossa, mutta niillä ei ole terapeuttista arvoa progresiivisissa tautimuodoisssa.

Lääkkeet eivät hidasta MS-taudin etenemistä, vaikka ne lievittävät ja estävät RRMS-taudin akuutteja pahenemisvaiheita. Pitkällä aikahaitarilla eri MS-tautimuotojen invalidisaation aste ja kliiniset oireet lähestyvät toisiaan. Tämä viittaa siihen, että neurodeneraation hidastamiseen tähtäävä terapia olisi taudin alusta alkaen perusteltua.

Ilmeisesti vain neurodegeneraation ehkäisemisellä ja hidastamisella voi vaikuttaa myönteisesti taudin etenemiseen pitkällä aikavälillä.

Lisääntyvä kliininen näyttö osoittaa, että toistaiseksi paras tapa hidastaa/estää neurodegeneraatiota on ketoosiin perustuva aineenvaihdunta, sillä aivorappeumaa ja solujen kuolemaa aiheuttaa erityisesti aivosolujen glukoosinottoon liittyvä trofistinen häiriö.

Kun aivosolut eivät saa energiaa glukoosista, ne kuolevat energianpuutteeseen. Onneksi aivosolut saavat tarvitsemansa energian vaihtoehtoisesti myös ketoaineista, kuten betahydroksibutyraatista.

MRI-kuvantaminen ja kognitiiviset testit osoittavat, että ketoosissa aivojen aktiivisuus ja soluterveys paranevat. Käsittelin aihetta aiemmin pitkässä tutkimuskatsauksessa.

Neurodegeneraation mekanismit

Etenevän MS-taudin syistä on esitetty erilaisia valituneita arvauksia. Eräs ehdotus on, että vaikka aivovaurioita ohjaavat tulehdusprosessit ovat verrannollisia aaltoilevasti etenevän MS-taudin tulehdusprosessien kanssa, progressiivisesti etenevässä taudissa keskushermostoon kehittyy tulehdussoluja suosiva mikroympäristö, mikä tekee immunomodifioivista hoidoista tehottomia.

Toinen mahdollisuus on, että MS alkaa tulehduksellisena sairautena, mutta useiden vuosien jälkeen tulehdusvasteista riippumaton neurodegeneratiivinen prosessi muuttuu taudin etenemisessä keskeiseksi mekanismiksi.

MS voi olla neurodegeneratiivinen sairaus, jossa tulehdus esiintyy toissijaisena tauden etenemistä vahvistavana vasteena.

Nämä erilaiset mekanismit eivät sulje pois toisiaan ja voivat esiintyä yhdessä. Siksi MS-taudissa neurodegeneraatio ja lopulta taudin eteneminen sekä krooniset vauriot kehittyvät monien erilaisten molekyylimekanismien seurauksena. Näistä on esitetty yhteenveto, jota en käännä:

Multippeliskleroosin etenemistä selittävät mekanismit

Immunological Mechanisms and Effectors

Mechanisms of Neurodegeneration and Axonal Dysfunction

B Cells

Mitochondrial Injury

Antibody production, Ag presentation, ectopic formation of follicle-like structures
Induction of compartmentalized population driving CNS injury, independent of peripheral immune activity.
Secretion of IL-6, TNF-α, IL-10, and IL-35: Complement activation and T cell functions
EBV-infected B-cell Induce CD8-mediated immune responses against brain tissue

Impaired activity of respiratory chain complexes (I, III and IV)
Alterations in mitochondrial molecular motors
mtDNA deletions
Energy deficiency: failure of Na+/K+ ATPase, reverse activity of NCX, and excess of intra-axonal Ca2+. Amplify oxidative stress. Mediates histotoxic hypoxia, which magnifies energy deficiency

CD8+ cytotoxic T lymphocytes

Release of Fe3+

Release of TNF-α: neuronal cell death via p55 receptor; IFN-γ: increased Glutamate neurotoxicity and Ca2+ influx; secretion of perforin and granzyme: cellular membrane damage, associated to Na+ and Ca2+ influx

Iron accumulates with aging. The release of Fe3+ from damaged OGD amplifies oxidative injury

Astrocytes *

Anomalous Distribution of Ion Channels

Secretion of pro-inflammatory cytokines (IL-1, IL-6, TNF-α), chemokines (CCL-2, CCL-5, IP-10, CXCL-12, IL-8) and BAFF.
Blood-brain-barrier breakthrough: action on endothelial cells and tight junctions
Activation of microglia: secretion of CXCL-10/CXR3, GM-CSF, M-CSF and TGF-β. Production of Lactosylceramide: induces secretion of CCL2 and GM-CSF
Production of ROS, RNS, NO and ONOO-limited Glutamate transporters, increasing Glutamate excitotoxicity
Reactive astrogliosis: inhibition of remyelination and axonal regeneration by over-secretion of FGF-2, CSPGs and EPH.
Upregulation of purinergic receptors: increased responsiveness to ATP, formation of membrane pores and increased of Ca2+ influx
Cellular senescence: low level of chronic inflammation, altered Ca2+ homeostasis

Redistribution of Na+ channels (Nav, 1.2, 1.6 and 1.8) along the denuded axon: increased energy demand.
Activation of VGCC, ASIC1 and TRPM4 contributes to excess of intra-axonal Ca2+
Glutamate excitotoxicity mediates massive influx of Ca2+ into neurons
Excess of intra-axonal Ca2+ stimulates catabolic enzyme systems: leading to proteolytic degradation of cytoskeletal proteins

Microglia *

Loss of Myelin-Derived Trophic Support and Deficit in Axonal Transport

Decreased expression of immunosuppressive factors: fractalkine-CX3CR1, and CD200-CD200R. Secretion of pro-inflammatory cytokines: IL-1, IL-6, TNF-α, IFN-γ. Ag presentation of CD4+ T cells via Major Histocompatibility Complex (MHC) Class II
Oxidative burst: production of ROS and RNS
Acquisition of aging phenotype: expression of AGE and RAGE

Alteration of a single myelin protein synthesis (PLP, MGA, or CNP) can cause axonal dysfunction
Deficit in axonal transport can reduced expression of kinesins (anterograde transport) and dyneins (retrograde transport)

 

*Taulukossa esiintyvät lyhennykset:

Ag: antigeeni
AGE: Edistyneet glykaation lopputuotteet
ASIC1: happoa tunnistava ionikanava
BAFF: B-solua aktivoiva tekijä
CNP: 2’3′-syklinen nukleotidi 3′-fosfodiesteraasi
CNS: keskushermosto
CSPG:t: kondroitiinisulfaatti-proteoglykaanit
EBV: Epstein – Barr-virus
EPH: efriinit
FGF-2: fibroblastien kasvutekijä 2
GM-CSF: granulosyytti-makrofagipesäkkeitä stimuloiva tekijä
MAG: myeliiniin liittyvä glykoproteiini
M-CSF: makrofagipesäkkeitä stimuloiva tekijä
mtDNA: mitokondrioiden DNA
NCX: natriumkalsiumvaihdin
NO: typpioksidi
OGD: oligodendrosyytit
ONOO -: peroksinitriitti
PLP: proteolipidiproteiini
RAGE: AGE-reseptori
RNS: reaktiiviset typpilajit
ROS: reaktiiviset happilajit
TRPM4: ohimenevä potentiaalireseptori melastatiini 4
VGCC: Jänniteohjattu Ca2 + -kanava.

Tulehdukselliset tapahtumat

Eläinmalleista ja MS-potilailla tehdyistä immunologisista tutkimuksista saatu näyttö viittaa siihen, että keskushermostoon kohdistuva perifeerinen immuunivaste ohjaa sairausprosessia varhaisvaiheissa, kun taas keskushermostoon rajoittuneet immuunireaktiot hallitsevat taudin etenemisen myöhempiä vaiheita.

Tulehduksellisen infiltraatin (keräymä, tiivistymä) koostumus keskushermostossa johtuu perifeeristen immuunisolujen sisäänvirtauksen ja erityisesti mikrogliaalisten solujen aktivoitumisen yhdistelmästä, joka voi muuttaa niiden sisäistä ”lepotilaa” vasteena pitkittyneelle tulehdukselle.

Etenevässä MS-taudissa tulehdusta aiheuttavien ehdokkaiden joukossa B-solujen rooli näyttää olevan hyvin merkittävä. B-solutoimintoja, joilla voi olla merkitystä etenevässä MS-taudissa ovat:

  • vasta-ainetuotanto
  • tulehdusta edistävien sytokiinien lisääntynyt eritys
  • puutteellinen komplementtijärjestelmän aktivaatioon ja T-solujen toimintaan vaikuttava säätelysytokiinien tuotanto
  • antigeenien esittely ja follikkelien kaltaisten rakenteiden virhesijaintinen, eli ektooppinen muodostuminen.

Ektooppiset munarakkulamaiset rakenteet ovat patologisia kudosmuodostumia, jotka muistuttavat tertiäärisiä imusolmukkeita, ja jotka löytyvät leptomeningien* subaraknoidisesta (lukinkalvon alaisesta?) tilasta lähellä tulehtuneita verisuonia ja joita esiintyy myös muissa kroonisissa tulehdussairauksissa. Nämä voidaan indusoida follikulaaristen T-auttajasolujen sytokiiniverkostoilla, jotka toimivat positiivisina (so. IL-21 ja IL-22) ja negatiivisina (eli IL-27) säätelijöinä, samoin kuin muutoksilla stroomassa (sidekudosverkossa).

*Leptomeningit: Kaksi sisintä kudoskerrosta, jotka peittävät aivot ja selkäytimen. Näitä kahta kerrosta kutsutaan arachnoid materiksi ja pia materiksi

Näiden patologisten rakenteiden koostumukselle on tunnusomaista T- ja B-solujen aggregaatit, jotka usein osoittavat T-/B-segregoitumista


Ne kykenevät ylläpitämään vasta-aineiden monipuolistumista
in situ, isotyyppien vaihtamista, B-solujen erilaistumista ja oligoklonaalista leviämistä, jotka muistuttavat ektooppisia itukeskuksia, mikä voi myös tukea autoreaktiivisten plasmasolujen tuotantoa paikallisen tulehduksen kohdalla.

Nämä rakenteet paikallistuvat yhdessä harmaata ainetta olevien leesioiden ja parenkymaalisen (eli elimistön peruskudokseen – parenkyymiin liittyvä) tunkeutumisen kanssa, ja niitä esiintyy eri kehitysvaiheissa, aina yksinkertaisista T- ja B-soluklustereista retikuliinipäällysteen ympäröimiin erittäin järjestäytyneisiin follikkeleihin.

Follikkelimaiset kehittyneet, lymfoidiset kemokiinit CCL19, CCL21, CXCL12 ja CXCL13, jotka kontrolloivat B-solujen rekrytointia, kypsymistä ja antigeenivalintaa, ylläpitävät korkeaa humoraalista vastetta keskushermoston perifeerisestä tulehduksesta riippumatta.

Tällä on erityistä merkitystä progressiivisessa MS-taudissa, jossa veri-aivoeste toimii jokseenkin normaalisti ja taudin aktiivisuuden laukaiseva perifeeristen immuunisolujen pääsy aivoihin on vähäistä.

Sekä myeliiniantigeenien että ei-myeliiniantigeenien, kuten neurofassiinin, neurofilamenttien ja gliakaliumkanavan KIR 4, vasta-aineilla on osoitettu olevan tärkeä rooli aksonien ja hermosolujen vaurioissa komplementtikaskadiaktivaation kautta.

Progressiivisessa MS-taudissa aivokuoren demyelinaatiossa neurodegeneraatio ja atrofia osoittavat positiivista korrelaatiota diffuusien tulehduksellisten infiltraattien ja leptomeningien lymfoidi-follikkelirakenteiden kanssa, mikä osoittaa, että näiden rakenteiden aktivaatio vaikuttaa kortikaaliseen patologiaan.

Follikkelimaisia rakenteita esiintyy noin 40 prosentissa SPMS-tapauksista, mutta ne ovat harvinaisia PPMS-potilailla


Follikkelimainen, eli rakkulamainen

Ei tiedetä, ovatko follikkelimaiset rakenteet alusta alkaen tyypillisiä piirteitä taudin eri alatyypeille vai kehittyvätkö ne pysyvien kudosvaurioiden ja antigeenien vapautumisen seurauksena.

Sekundaarisesti progressiivisen MS-taudin aivokalvontulehdukseen liittyy glial limitansin vaurioituminen (ks. kuva) ja hermosolujen menetysgradientti, joka on suurempi pinnallisissa aivokuorikerroksissa (I-III) lähempänä pialin pintaa kuin sisäisissä aivokuorikerroksissa.


Diffundoivilla sytotoksisilla tekijöillä voi olla tärkeä rooli subpiaalisen aivokuoren vaurioiden kehittymisessä. Follikkelien kaltaisten rakenteiden esiintyminen SPMS-potilailla on liittynyt vakavampaan kliiniseen taudinkulkuun, lyhyempään taudin kestoon ja aikaisempaan kuolemaan.

PPMS:n ja SPMS-patologian taustalla olevat neurodegeneratiiviset ja immunologiset mekanismit ovat jäljellä. Molemmissa tapauksissa diffuusi aivokalvontulehdus ja aivokuoren hermosolujen patologia voivat olla merkittäviä tekijöitä sairauden kliinisessä etenemisessä, mikä viittaa samankaltaisiin patogeenisiin mekanismeihin riippumatta aikaisemmasta relapsoivasta remissiokurssista tai follikkelien kaltaisten rakenteiden esiintymisestä.

Epstein-Barrin virus

Taudin muotojen välillä havaitut erot ovat luonteeltaan enemmän määrällisiä kuin laadullisia.

Koska serologisissa ja epidemiologisissa tutkimuksissa on löydetty yhteys B-lymfotrooppisen Epstein-Barrin viruksen (EBV) infektion ja MS-taudin välillä, on oletettu, että keskushermostoon imeytyvien B-solujen EBV-infektio voi johtaa MS-patologiaan.

Analyysi kuolemanjälkeisestä aivokudoksesta MS-potilailla on osoittanut, että EBV-tartunnan saaneiden B-solujen / plasmasolujen kertyminen aivokalvoihin ja valkean aineen vaurioiden perivaskulaariseen osastoon on yleistä ja että EBV:ta sisältävien solujen määrä korreloi aivojen tulehduksen asteen kanssa.

EBV:n puuttuminen aivoon tunkeutuvissa B-soluissa muissa tulehduksellisissa neurologisissa sairauksissa osoittaa, että EBV:n infektoimien B-solujen pesiytyminen keskushermostoon on spesifistä MS-taudille eikä yleinen tulehduksen aiheuttama ilmiö.

Kortikaalisten vaurioiden kolonisaatio on liitetty EBV:n koodaamiin pieniin tuman mRNA (EBER) -transkripteihin B-soluissa ja plasmasoluissa, jotka ilmentyvät pääasiassa virusinfektion piilevän vaiheen aikana.

Latenssiproteiinien EBNA2 ja LMP1, jotka tuottavat lisääntymis- ja prosurvival -signaaleja B-soluille, ilmentyminen aktiivisissa valkean aineen vaurioissa ja aivokalvoissa useimmissa MS-tapauksissa, samoin kuin B-solujen lisääntymisen esiintyminen MS-aivoissa tukevat mekanismia EBV-ohjatulle B-solujen esiintymiselle.

Tutkimuksissa follikkelimaiset rakenteet sisälsivät runsaasti LMP1+:sta, mutta ei EBNA2+ -soluja. Samaan aikaan lyyttisten (liukenevien) proteiinien BZLF1 ja BERF1 havaittiin rajoittuneen plasmasoluihin, jotka sijaitsevat aktiivisissa kortikaalisissa vaurioissa, mikä osoittaa, että nämä rakenteet ovat viruksen uudelleenaktivoitumisen pääkohteita.

Koska EBNA2:ta ja LMP1:tä ilmentäviä soluja ei yleensä löydy verestä, niiden läsnäolo aivoissa viittaa EBV-säätelyn häiriöön

Joidenkin tutkimusten mukaan keskushermostoon liittyvä EBV-infektio ei kuitenkaan näyttele erityistä roolia MS-taudissa. Varhaiset lyyttiset (hajoamiseen, liukenemiseen liittyvät) EBV-antigeenit herättivät CD8+ -välitteisiä immuunivasteita aiheuttaen voimakkaita sytotoksisia vaikutuksia aivokudoksessa.

Aktiivisimmat aivokuoren MS-vauriot ovat usein täynnä CD8+ T-soluja, ja ne sisältävät vain vähän B-soluja tai plasmasoluja, mikä viittaa siihen, että kortikaalinen tulehdus korreloi sekä B- että plasmasolujen määrän vähenemisen kanssa.

Nämä havainnot viittaavat siihen, että EBV:n uudelleenaktivoituminen yhdistettynä CD8+ T-solujen välittämään voimakkaaseen sytotoksiseen viruslääkkeeseen voi johtaa akuuttiin tulehdukseen sekä valkeassa että harmaassa aineessa sekä aivokalvotilassa.

CD8+ -T-solut voivat myös tunnistaa oligodendrosyytteissä, neuroneissa tai aksoneissa läsnä olevat spesifiset antigeenit.

Aktivoituina ne voivat olla osittain vastuussa demyelinaatiosta tai aksonaalisista / hermosolujen vaurioista MS-taudissa. Useimmat MS-vaurioista toipuneet CD8+ T-lymfosyytit kuuluivat muutamiin klooneihin. Tietyt MS-potilailla löydetyt CD8+ T-solukloonit voivat säilyä monien vuosien ajan selkäydinnesteessä (CSF) ja / tai keskushermostokudoksessa.

Keskushermostosta havaittujen CD4+ T-solujen valikoima MS-potilailla on heterogeeninen. Kaiken kaikkiaan havainnot vahvistavat käsitystä siitä, että MS-potilaiden keskushermostossa olevat CD8+ T-lymfosyytit eivät ole vain sivullisia soluja, vaan ne osallistuvat aktiiviseen immuunivasteeseen.

Aksonaaliset valkean aineen vauriot korreloivat sekä CD8+ T-solujen että aktivoituneiden mikroglia / makrofagien ja keskushermostosolujen lukumäärän kanssa, joilla on voimakas MHC I -ekspressio kaikentyyppisissä tulehduksellisissa vaurioissa.

Nämä havainnot viittaavat yhdessä siihen, että valkean aineen vaurioissa CD8+ T-solut vaikuttavat efektorisoluina aiheuttaen sekä oligodendrosyyttien että aksonien vaurioita.

Taustalla olevista mekanismeista, joiden kautta sytotoksiset CD8+ T-lymfosyytit vahingoittavat aksoneja ja neuroneja MS-taudissa, on kuitenkin edelleen kiistaa.

Sytotoksiset CD8+ T-lymfosyytit vapauttavat sytokiinejä, kuten IFN-y ja TNF-a, samoin kuin perforiini ja grantsyymit A ja B.

IFN-y voi lisätä glutamaatin neurotoksisuutta ja Ca2+ -virtausta soluihin moduloimalla IFN-y / AMPA-glutamaattireseptorikompleksia. Toisaalta TNF-a laukaisee solukuoleman hermosoluissa olevan p55-reseptorin kautta.

Perforiini ja grantsyymit vahingoittavat suoraan solukalvoa aiheuttaen Na+– ja Ca2+ -virtauksen, mikä johtaa lopulta energian puutteeseen ja sen seurauksena lyyttisten soluentsyymien aktivoitumiseen.

Grantsyymit häiritsevät kalsiumin homeostaasia lisäämällä lepotasoa ja parantamalla IP3-välitteistä endoplasman verkkokalsiumin vapautumista. Kohonneet Ca2+ -pitoisuudet ovat riittäviä aktivoimaan kalsiumriippuvaisia solukuolemaan vaikuttajia, kuten kaspaasit.

Vaikka perforiini lisäsi GrB-välitteistä neurotoksisuutta, rekombinantti GrB voi itse aiheuttaa neurotoksisuutta perforiinista riippumatta.

Samoin CD8+ -sytotoksisten T-lymfosyyttien Fas-antigeenin ja hermosolujen Fas-ligandin välinen vuorovaikutus laukaisee Ca2+:n vapautumisen solunsisäisistä varastointipaikoista, mikä johtaa solunsisäisen kaspaasikaskadin lisäaktivaatioon, mikä vaurioittaa aksoneita ja neuroneita.

Sytotoksisten CD4+ T-solujen rooli progressiivisessa MS:ssä unohtuu usein

Tuoreet tutkimukset osoittivat kuitenkin, että tämä T-solupopulaatio lisääntyi myöhäisissä / kroonisissa kokeellisissa autoimmuunisissa enkefalomyeliitti- (EAE) vaurioissa verrattuna akuutteihin vaurioihin.

Sytotoksisten CD4+ T-solujen osuudet lisääntyivät edelleen SPMS-potilaiden selkäydinnesteessä (CSF) vastaaviin verinäytteisiin verrattuna.

Nämä solut syntyvät toistuvasta antigeenisesta stimulaatiosta, minkä jälkeen ne menettävät rinnakkaistimulaattorimolekyylin CD28, jolloin sytotoksinen fenotyyppi on verrattavissa NK- ja CD8+ T-soluihin. Lisäksi CD4+ CD28-T-solut menettävät herkkyytensä apoptoosin induktioon ja ovat resistenttejä niitä säätelevien T-solujen tukahduttaville vaikutuksille.

CD4+ CD28-T-solujen lisääntyminen liittyy useisiin autoimmuuni- ja kroonisiin tulehdustiloihin, kuten MS, kun taas terveillä niitä ei yleensä havaita.

Ne on tunnistettu paitsi kroonisten tulehdussairauksien potilaiden verenkierrossa myös kohdekudoksissa. MS:ssä CD4+ CD28-T-solut kykenevät kulkeutumaan keskushermostoon pääasiassa fraktalkiinijärjestelmän (CX3CL1-CX3CR1) kautta.

Potilailla, joilla on paljon näitä soluja, on vakavampi sairaus ja yleensä huonompi ennuste

Itse asiassa äskettäin CD4+ CD28-T-solujen lähtötason prosenttiosuus liittyi multimodaalisesti herätettyyn potentiaaliin (EP), mikä osoitti yhteyden näiden solujen ja taudin vakavuuden välillä.

Lähtötason CD4+ CD28-T-solujen prosenttiosuudella oli ennustearvo, koska se liittyi EP:hen 3 vuoden kuluttua ja EP:n ja laajennetun vammaisuuden tila-asteikkoon (EDSS) viiden vuoden kuluttua.

Uusien ja tehokkaiden hoitostrategioiden kehittämiseksi on tarpeen ymmärtää paremmin tautiin liittyvät patologiset mekanismit.

Tässä artikkelissa kirjoittajat ovat tiivistäneet joitakin tärkeimmistä mekanismeista, jotka liittyvät MS-taudin etenemiseen. Epäilemättä lisätutkimukset johtavat parempaan ymmärrykseen demyelinaatio- / remyelinoitumisprosesseista sekä gliasolujen merkityksestä hermosolujen homeostaasissa ja hermosolujen rappeutumisessa.

Tehokkaiden hoitomuotojen kehittäminen riippuu suurelta osin taudin patogeneesin kattavasta ymmärryksestä, eläinmalleista, jotka sisältävät nämä patogeeniset ominaisuudet, uusista koemalleista sekä uusista lääkäreiden ja perustutkijoiden yhteistyömalleista.

Pahoittelen, jos tekstiin jäi kirjoitus- tai asiavirheitä. Aineevaihduntaa ja biokemiallisia prosesseja käsittelevän tekstin ymmärrettäväksi suomentaminen on haastavaa.

Tämä on ensimmäinen osa tutkimuskatsausta: Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa




Insuliini ja terveys: Neljäs luku

Jatkan insuliinia käsittelevää kirjoitussarjaa syventymällä insuliinin terveysvaikutuksiin erityisesti sydän- ja verisuonitauteihin liittyen. Aiemmissa artikkeleissa (Insuliini ja terveys: Johdanto, Insuliini ja terveys: Hiilihydraatti-insuliinimalli, Insuliini ja terveys: Kolmas luku)käsittelin insuliinin kemiallista rakennetta, aineenvaihduntaa ja biokemiaa yleisellä tasolla.

Aihe on vaikea ja joiltain osin kiistanalainen, joten esittelen tässä kirjoituksessa kaksi hyvin perusteltua näkemystä insuliiniresistenssin syistä. Ne ovat osittain yhteneviä ja osittain ristiriitaisia. Kahden tutkiimuskatsauksen käsittelyn vuoksi teksti on todella pitkä ja paikoin myös vaikeaselkoinen.

Tässä tutkimuskatsauksessa osoitetaan, että:

Heikentynyt ravinnonsaanti edistää hyperlipidemiaa ja insuliiniresistenssiä aiheuttaen hyperglykemiaa. Tämä tila muuttaa solujen metaboliaa ja solunsisäistä signalointia, joka vaikuttaa negatiivisesti soluihin.

Kardiomyosyytissä tämä vaurio voidaan tiivistää kolmeen vaikutukseen:

  1. muutos insuliinin signalointiin
  2. kasvanut substraatin saavutettavuus ja
  3. aineenvaihdunnan muutosten joustamattomuus

Kaikki nämä vaikutukset edistävät solutapahtumia, kuten:

  1. geeniekspressiomodifikaatiot
  2. hyperglykemia ja dyslipidemia
  3. oksidatiivisen stressin ja tulehdusvasteen aktivoituminen,
  4. endoteelin toimintahäiriöt ja
  5. kohdunulkoisten lipidien kumuloituminen, joka ylläpitää metabolisen sääntelyn purkamista

Kaiken kaikkiaan insuliiniresistenssi vaikuttaa sydän- ja verisuonitauteihin (CVD) kahden itsenäisen aineenvaihdutareitin kautta:

  1. ateroomapleksin muodostuminen
  2. kammion hypertrofia ja diastolinen poikkeavuus

Lyhyesti: Tämä tutkimuskatsaus osoittaa, että korkea verensokeri ja insuliiniresistenssi ovat merkittäviä sydäntautien riskitekijöitä.

Diabeetikoilla on suurempi sydäninfarktin, sydäntautien ja sydänkuolleisuuden riski kuin diabetesta sairastamattomilla. Tätä riskiä ei selitä muut muuttujat, kuten tupakointi, kolesteroli, verenpaine tai kehon rasvan jakautuminen.

Hypo- ja hyperinsulinemiaan liittyvät sairaudet

Insuliinilla on merkittäviä metabolisia vaikutuksia koko kehossa. Haiman Langerhansin saarekkeiden beetasolut säätelevät insuliinin tuotantoa seuraamalla plasman glukoosin, aminohappojen, ketohappojen ja rasvahappojen pitoisuuksia. Insuliini säätelee energiaravinteiden hapettamista energiaksi ja varastointia rasvakudokseen triglyserideina.

Diabetes mellitus (DM1) on insuliinin puutokseen (hypoinsulinemiaan) liittyvä sairaus, jossa elimistön oma immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden beetasoluja, mikä nopeasti johtaa elintärkeän insuliinin tuotannon vähenemiseen ja loppumiseen.Tyypin 1 diabetes puhkeaa tavallisesti alle 40-vuotiaana ja usein jo lapsena ennen murrosikää.

Beetasolujen tuhoutuminen on todennäköisesti seurausta beetasolujen yhteen tai useampaan rakenteeseen kohdistuvasta virheellisen tunnistamisen aiheuttamasta autoimmunireaktiosta, jossa elimistön oma immuunijärjestelmä kohdistaa aktivaation omia kudoksia vastaan.

Taudin tarkkaa syytä ei tunneta, mutta sairastuminen edellyttää geneettisen alttiuden sekä yhden tai useamman taudin laukaisevan ympäristömuuttujan. Tyypin 1 diabeteksen saattaa laukaista esimerkiksi sikiöaikainen D-vitamiinin puutos ja yleinen herpes zoster-infektio.

Taudin oireet saadaan hallintaan insuliinikorvaushoidolla. Verensokeripitoisuuden muutosten tarkkailu, tasaisen verensokerin ylläpitäminen, insuliinihoito ja ruokavaliomuutokset minimoivat tyypin 1 diabeteksen pitkän aikavälin komplikaatioita, kuten verisonten ja hermoston vaurioitumista. Insuliinihoito on elinkautinen.

DM2

Tyypin 2 diabetes mellitus (DM2) on useiden vuosien aikana kehittyvä solujen insuliiniherkkyyden heikentymisestä johtuva elintapasairaus. Toisin sanoen kohdekudokset eivät reagoi asianmukaisesti haiman tuottamaan insuliiniin. Seurauksena voi olla hyperinsulinemia, jossa vereen erittyvä runsaskaan insuliini ei avaa soluja glukoosinotolle.

Rasvakudoksen ja elinten adiposyyttien insuliiniherkkyys säilyy yleensä pitkään, joten glukoosi ohjautuu rasvasoluihin lihasten sijaan.

Tyypillisesti DM2 puhkeaa aikuisiässä. Massiivisista tutkimusponnisteluista huolimatta tyypin 2 diabetekseen johtavien tekijöiden tarkkaa luonnetta on ollut vaikea varmistaa. Taudin patogeneesi on selvästi monitekijäinen.

Lihavuutta pidetään riskitekijänä, mutta lihavuus voi itsessään olla diabetesta edeltävä oire insuliiniresistenssistä. Kaikki diabeetikot eivät ole lihavia, mutta monet lihavat sairastavat insuliiniresistenssiä. Insuliiniresistenssi todennäköisesti johtaa aikuistyypin diabetekseen. Insuliiniresistenssin aiheuttama lihavuus ei aina näy ulospäin, sillä se aiheuttaa tavallisesti elinten rasvoittumista ja viskeraalista keskivartalon elimiä ympäröivää läskiä.

Aikuistyypin diabeteksessa haiman kyky syntetisoida ja erittää insuliinia säilyy ainakin taudin varhaisvaiheessa melko normaalina. Insuliinilääkityksestä ei siis taudin varhaisvaiheessa ole sanottavaa hyötyä. Pikemminkin päinvastoin. Tautia hallitaan ruokavaliohoidolla ja verensokeria laskevilla hypoglykeemisillä lääkkeillä.

Tyypin 2 diabetes on kuitenkin etenevä sairaus, jossa insuliinilääkityskin tulee todennäköisesti ajankohtaiseksi jossain vaiheessa, mikäli verensokeri- ja insuliinipitoisuuksia ei ruokavaliolla saada korjattua.

Hyperinsulinemia, eli liiallinen insuliinin eritys on yleisimmin seurausta insuliiniresistenssistä, joka liittyy tyypin 2 diabetekseen tai metaboliseen oireyhtymään. Hyperinsulinemia voi myös johtua haiman insuliinia erittävästä kasvaimesta (insulinooma), mutta se on harvinaista.

Hyperinsulinemia voi olla hengenvaarallinen tila, josssa veren glukoosipitoisuus laskee nopeasti ja aivojen energiansaanti romahtaa (insuliinishokki).

Glukagoni

Glukagonilla on tärkeä rooli veren normaalin glukoosipitoisuuden säätelyssä. Se on insuliinin vastavaikuttaja. Toisin sanoen glukagonin vaikutus veren glukoosipitoisuuteen on päinvastainen insuliinin vaikutukselle. Insuliini on anabolinen hormoni, joka orkestroi energiaravinteiden käyttöä ja varastoimista. Glukagoni on katabolinen hormoni, joka purkaa energiavarastoja, kuten glykogeenejä verenkiertoon.

Glukagoni on lineaarinen peptidi, jossa on 29 aminohappoa. Sen ensisijainen sekvenssi on melkein täysin konservoitunut (identtinen) selkärankaisten keskuudessa, ja se on rakenteellisesti sukua peptidihormonien sekretiiniperheeseelle.

Glukagoni syntetisoidaan proglukagonina ja prosessoidaan proteolyyttisesti glukagonin tuottamiseksi haimasaarien alfasoluissa. Proglukagonia ilmentyy myös suolistossa, jossa sitä ei prosessoida glukagoniksi, vaan glukagonin kaltaisten peptidien perheeksi (enteroglukagoni).

Glukagonin fysiologiset vaikutukset

Glukagonin tärkein vaikutus on stimuloida veren glukoosipitoisuuden nousua.

Kun veren glukoosipitoisuus alkaa laskea normaalin alapuolelle, on välttämätöntä löytää ja pumpata lisää glukoosia vereen. Glukagoni hallitsee kahta keskeistä metaboliareittiä maksassa, mikä johtaa siihen, että elin luovuttaa glukoosia muuhun kehoon:

  • Glukagoni stimuloi maksassa varastoituneen glykogeenin hajoamista.

    Kun veren glukoosipitoisuus on korkea, maksa varastoi suuria määriä glukoosia glykogeeneiksi. Maksan glykogeenien koko vaihtelee ihmisten ja elämäntilanteiden välillä, mutta keskimäärin glukoosia varastoituu maksaan noin 200-250 g.

    Insuliinin vaikutuksesta osa glukoosista varastoidaan glykogeenin muodossa. Myöhemmin, kun veren glukoosipitoisuus alkaa laskea, glukagonin erittyminen vaikuttaa maksasoluihin aktivoiden entsyymejä, jotka depolymeroivat glykogeenejä glukoosiksi ja vapauttavat glukoosia verenkiertoon.

  • Glukagoni aktivoi maksan glukoneogeneesiä. Glukoneogeneesi on aineenvaihduntakanava, jossa sitruunahappokierron väliaineita, eräitä aminohappoja ja glyserolia muutetaan glukoosiksi.

    Glukoneogeneesi tuottaa tarvittaessa kaiken elimistön tarvitseman glukoosin.

Glukagonilla näyttää olevan vähäinen vaikutus triglyseridien lipolyysin tehostamisessa rasvakudoksessa.

Lipolyyttiset hormonit, kuten kortikotropiini, glukagoni ja adrenaliini aktivoivat rasvasolujen lipolyysin, jossa triglyseridejä pilkotaan verenkiertoon vapaiksi rasvahapoiksi ja glyseroliksi.

Insuliini on puolestaan lipolyyttisten entsyymien, kuten hormonisensitiivisen lipaasin (HSL) estäjä. Veren korkea insuliinipitoisuus estää rasvasolujen purkamisen energiakäyttöön.

Glukagonierityksen hallinta

Glukagonin tärkein vaikutus on lisätä veren glukoosipitoisuutta. Glukagonia erittyy hypoglykemian, eli matalan veren glukoosipitoisuuden vaikutuksesta. Kahden muun mekanismin tiedetään laukaisevan glukagonin erityksen:

  1. Kohonnut aminohappopitoisuus veressä: Tässä tilanteessa glukagoni edistää ylimääräisten aminohappojen muuntumista glukoosiksi lisäämällä glukoneogeneesiä.

    Koska korkea veren aminohappopitoisuus stimuloi myös insuliinin erittymistä, tämä on poikkeuksellinen tilanne, jossa sekä insuliini että glukagoni ovat samanaikaisesti aktiivisia.

  2. Liikunta: Tässä tapauksessa ei ole täysin selvää, onko todellinen glukoosin erittymisen laukaiseva ärsyke liikunta sinänsä vai liikunnan aiheuttama veren glukoosipitoisuuden lasku.

    Glukagonin eritystä estävät korkeat verensokeritasot. Ei ole selvää, heijastako tämä glukoosin suoraa vaikutusta alfasoluun vai ehkä insuliinin vaikutusta, jonka tiedetään vaimentavan glukagonia.

    Toinen hormoni, jonka tiedetään estävän glukagonin eritystä, on somatostatiini.

Glukagoniin liittyvät sairaudet

Glukagonin korkeaan tai matalaan eritykseen liittyvät sairaudet ovat hyvin harvinaisia. Alfa-solujen (glukagonomat) syövät ovat eräs sairaus, jonka tiedetään aiheuttavan liiallista glukagonieritystä.

Vaikka insuliinipuutos on selvästi tärkein tekijä tyypin 1 diabetes mellituksessa, on huomattavaa näyttöä siitä, että glukagonin poikkeava eritys edistää taudissa havaittuja metabolisia häiriöitä.

Monilla diabetesta sairastavilla potilailla, joilla mitataan hyperglykeminen verensokeri, on myös kohonnut glukagonipitoisuus veressä, vaikka kohonnut verensokeritaso estää glukagonin eritystä.

Sydän- ja verisuonitaudit: Yleinen näkemys

Vuosikymmenten ajan sydän- ja verisuonitaudit (CVD) ovat olleet johtava kuolinsyy ympäri maailmaa.

Sydän- ja verisuonitauteihin liittyy useita samanaikaisia sairauksia, kuten lihavuus, epänormaalit lipidiprofiilit ja insuliiniresistenssi. Vaikka insuliiniresistenssi ja DM2 hyväksytään vihdoin sydän- ja verisuonitautien itsenäisiksi riskitekijöiksi, yleinen sydänsairauksien malli nojaa vahvasti perinteiseen oppiin rasvojen ja erityisesti tyydyttyneiden rasvojen haitallisuudesta.

Vaikka vapaat rasvahapot näyttävät kasvattavan insuliiniresistenssin riskiä, mekanismi jolla rasvahapot aiheuttavat insuliiniresistenssin, on tuntematon.

Kyse lienee perinteisestä muna-kana-ongelmasta: kumpi oli ensin? Aineenvaihdunnan tasolla syy- ja seuraussuhteet kääntyvät herkästi nurinniskoin.

Insuliiniresistenssistä on ainakin kaksi vaihtoehtoista mallia: a) rasva aiheuttaa insuliiniresistenssia, ja b) insuliiniresistenssi aiheuttaa kehon ja veren rasvapitoisuuden lisääntymistä ja lihomista.

Avaan tässä tutkimuskatsausta, jonka ovat koonneet Valeska Ormazabal, Soumyalekshmi Nair, Omar Elfeky, Claudio Aguayo, Carlos Salomon & Felipe A. Zuñiga. Association between insulin resistance and the development of cardiovascular disease on julkaistu alun perin Cardiovascular Diabetology -lehdessä.

Lopuksi tutustun vielä lyhyesti James J. DiNicolantonion ja James H. O’keefen BMJ-lehdessä julkaistuun artikkeliiin: Added sugars drive coronary heart disease via insulin resistance and hyperinsulinaemia: a new paradigm.

Ensimmäinen tutkimuskatsaus noudattaa nähdäkseni yleistä ja perinteisempää  lääke- ja ravintotieteellistä tulkintaa insuliiniresistenssistä ja sen vaikutuksista sydän- ja verisuonitauteihin.

Tämä käsitys on osittain ristiriidassa kasvavan rasvojen aineenvaihduntaa selittävän tutkimusaineiston kanssa. Tieteen periaatteisiin kuuluu tieteen itseään korjaava luonne; paremmin ilmiöitä selittävä evidenssin tukema malli kumoaa heikommin ilmiöitä selittävän mallin. Nähdäkseni tyydyttyneisiin rasvoihin liittyvä paradigma on romahtamassa ja oppi sokereiden haitallisuudesta täsmentyy jatkuvasti.

Kasvavan evidenssin mukaan hyperglykemia ja insuliiniresistenssi ovat sydän- ja verisuoniterveyden kannalta merkittävämpiä riskitekijöitä, kuin LDL.

Jälkimmäinen artikkeli vastaa lähemmin uutta käsitystä insuliiniresistenssista sydän- ja verisuonitautien riskitekijänä. Siinä sydän- ja verisuonitaudit palautuvat hyperglykemiaan, insuliiniresistenssiin ja hyperinsulinemiaan.

Insuliini on avainhormoni, joka toimii solujen aineenvaihdunnan säätelijänä monissa ihmiskehon kudoksissa.

Insuliiniresistenssi määritellään kudosvasteen heikkenemisenä insuliinin stimulaatiolle, joten insuliiniresistenssille on tunnusomaista glukoosin imeytymisen ja hapettumisen häiriöt, glykogeenisynteesin väheneminen ja vähäisemmässä määrin kyky estää lipidien hapettumista ( β-oksidaatiota).

Vapaat rasvahapot ovat hallitseva substraatti, jota aikuisen sydänlihaksessa käytetään ATP:n tuotantoon, mutta sydämen metabolinen verkosto on erittäin joustava ja se voi käyttää muita substraatteja, kuten glukoosia, laktaattia, ketoaineita tai aminohappoja energian tuotantoon.

Substraatilla tarkoitetaan yhdistettä, jota entsyymi- tai muu reaktio muuttaa. Energia-aineenvaihdunnan substraatteja ovat glukoosi, vapaat rasvahapot, ketoaineet ja aminohapot.

Insuliiniresistenssin aikana useat metaboliset muutokset johtavat sydän- ja verisuonitautien riskin lisääntymiseen. Insuliiniresistenssi voi esimerkiksi aiheuttaa glukoosimetabolian epätasapainon, kuten kroonisen hyperglykemian, mikä puolestaan laukaisee oksidatiivisen stressin, joka aiheuttaa soluvaurioihin johtavan tulehdusreaktion.

Insuliiniresistenssi voi myös muuttaa systeemistä lipidimetaboliaa, joka johtaa sitten dyslipidemiaan ja haitallisen lipiditriadin kehittymiseen:

  1. korkeat plasman triglyseridipitoisuudet

  2. matalat korkean tiheyden lipoproteiinipitoisuudet (HDL)

  3. matalatiheyksisten lipoproteiinien lisääntyminen (LDL)

Tämä lipiditriadi yhdessä endoteelin insuliinisignaloinnin toimintahäiriöiden kanssa myötävaikuttaa ateroskleroottisen plakin muodostumiseen.

Insuliiniresistenssin ja sydämen metabolisten muutosten systeemiset seuraukset aiheuttavat vahinkoa ainakin kolmella mekanismilla:

  1. insuliinisignaloinnin muuttuminen
  2. heikentynyt energiasubstraatin aineenvaihdunnan säätely

  3. muuttunut substraattien kulku sydänlihakseen

Insuliiniresistenssin vähentämiseen keskittyvät hoidot voivat vähentää sekä sydän- ja verisuonitautien että ateroskleroottisten plakkien muodostumista.

Sydäntautien tausta

Sydän- ja verisuonitauteihin liittyvät patologiset prosessit ja riskitekijät alkavat jo lapsuudessa.

Erityisesti lihavuus, joka liittyy epänormaaliin lipidiprofiiliin nuoremmalla iällä, assosioituu vahvasti insuliiniresistenssin kanssa. Kuten tutkimuksissa korostetaan, monilla tekijöillä, kuten lihavuudella, epänormaalilla lipidiprofiililla ja insuliiniresistenssillä, on keskeinen rooli sydän- ja verisuonitautien (CVD) kehittymisessä.

Fysiologisissa olosuhteissa insuliini stimuloi metabolisten substraattien käyttöä monissa kudoksissa, kuten sydämessä, luurankolihaksissa, maksassa ja rasvakudoksessa.

Kardiomyosyyteissä, eli sydänlihassoluissa insuliini edistää glukoosin ja rasvahappojen imeytymistä, mutta estää β-ksidaation eli rasvahappojen hapettamisen energiaksi.

Haima yrittää kompensoida solujen heikentynyttä insuliiniherkkyyttä erittämällä kasvavia määriä insuliinia, mikä johtaa hyperinsulinemiaan.

Insuliiniresistenssin ja / tai hyperinsulinemian aikana normaali glukoositoleranssi säilyy johtuen joukosta fysiologisia muutoksia, jotka tämä ilmiö aktivoi.

Insuliiniresistenssin ja CVD:n kehittymisriskin välillä on todettu vahva korrelaatio. Useat molekyylimekanismit edistävät insuliiniresistenssin ja CVD:n välistä yhteyttä. Nämä mekanismit sisältävät insuliiniresistenssin roolin ateroskleroosin kehittymisessä, verisuonten (endoteelin) toiminnassa, verenpainetaudissa ja makrofagien lisääntymisessä.

Insuliinisignalointi

Insuliini on voimakas anabolinen hormoni, jolla on laajasti vaikutuksia monentyyppisiin soluihin.

Jotkut insuliinin tärkeimmistä metabolisista vaikutuksista ovat glukoosinoton stimuloiminen luurankolihaksissa ja adiposyyteissä, glykogeenisynteesin edistäminen luurankolihaksissa, maksan glukoosituotannon (glukoneogeneesin) tukahduttaminen ja lipolyysin estäminen adiposyyteissä.

Ruokailun seurauksena insuliinia erittyy haimasta verenkiertoon. Se aiheuttaa kiertävän glukoosin imeytymistä kohdekudoksiin sitoutumalla solujen insuliinireseptoreihin.

Tämä sitoutuminen aktivoi reseptorin autofosforylaation, joka laukaisee alavirran signalointikaskadin fosforyloimalla insuliinireseptorisubstraattien tyrosiinitähteet, IRS (IRS-1 tai IRS-2), mitä seuraa reaktiosarja, jossa fosfatidyyli-inositoli-3-kinaasi (PI3K), fosfoinositidista riippuvainen kinaasi -1, Akt (Akt1 ja Akt2), proteiinikinaasi C (PKC) ja rapamysiinin* nisäkäskohde (mTOR), samoin kuin ribosomaalinen proteiini S6-kinaasi beeta 1 (S6K1) fosforyloituvat.

Substraattitason fosforylaatio

Substraattitason fosforylaatio on soluissa tapahtuva kemiallinen reaktio, jossa syntyy ATP:tä fosfaattiryhmän liittyessä ADP:hen. Reaktio tapahtuu solulimassa glykolyysin yhteydessä sekä aerobisissa että anaerobisissa oloissa.

Substraattitason fosforylaatiossa voi syntyä neljä ATP:tä. Kaksi ATP-molekyyliä syntyy kahden 1,3-bisfosfoglyseraatin luovuttaessa fosfaattiryhmän ADP:lle fosfoglyseraattikinaasientsyymin avulla. Samalla syntyy 3-fosfoglyseraattia. Kaksi ATP:tä syntyy myös, kun fosfoenolipyruvaatti luovuttaa fosfaattiryhmän ADP:lle pyruvaattikinaasientsyymin avulla. Lisäksi syntyy palorypälehappoa.

Substraattitason fosforylaatio toimii myös luustolihaksissa ja aivoissa, joissa on energiaa varastoivaa ja fosfaattiryhmän sisältävää fosfokreatiinia ja kreatiinifosfokinaasientsyymi siirtää fosfaattiryhmän ADP:lle, jolloin tuloksena on ATP:tä. – Wikipedia

*Rapamysiini (sirolimuusi) on immunosuppressiivinen lääke, jota käytetään elinsiirron, varsinkin munuaisensiirron jälkeisen hylkimisreaktion estossa. Se löydettiin alun perin Pääsiäissaarelta (Rapa Nui), mistä tulee nimitys rapamysiini.

Yhdysvaltalaisessa tutkimuksessa sirolimuusi pidensi vanhojen hiirten jäljellä olevaa elinajanodotetta 28–38%:lla. Aine kuitenkin heikentää immuniteettia, joten ihmisille se ei sovi vanhenemisen hidastamiseen.

Rapamysiini lisää henkilön alttiutta saada vaarallinen infektio. Lääkkeen aiheuttama immuunijärjestelmän heikkeneminen voi myös lisätä syöpäriskiä. Lääkkeellä on runsaasti sivuvaikutuksia, kuten hypertensio, nivelkivut, vatsavaivat, kuume, virtsatietulehdus, pahoinvointi, päänsärky, anemia ja hypokalemia. Rapamysiini hidastaa energian kulutusta.

GLUT4

Nämä aineenvaihduntatapahtumat johtavat lisääntyneeseen glukoosinkuljettaja-4:n (GLUT4) siirtymään (translokaatio) solukalvolle, mikä helpottaa glukoosinottoa.

Imeytymisen jälkeen vapaa glukoosi fosforyloituu nopeasti glukoosi-6-fosfaatiksi (G6P), joka myöhemmin siirtyy eri metaboliareiteille.

Insuliinisignalointi tehostaa lipidien varastoitumista rasvasoluihin kahdella mekanismilla, stimuloimalla triglyseridisynteesiä ja estämällä lipolyysin käynnisymistä.

Triglyseridejä varastoidaan lipidipisaroihin, jotka sisältävät lipidipisaraproteiineja, kuten perilipiiniä.

Lipolyysin esto tapahtuu vähentämällä cAMP-tasoja ja estämällä proteiinikinaasi A:n (PKA) -aktiivisuutta, mikä heikentää siten hormoniherkän lipaasin -fosforylaatiota ja perilipiiniä aiheuttaen lipolyysinopeuden laskun.

Adiposyyttien lipidipisaroiden sisältämät triglyseridit hydrolysoituvat rasvahapoiksi, asyyliglyserideiksi ja glyseroliksi aktivoimalla hormoniherkkää lipaasia.

Maksassa insuliini estää glukoosin tuotantoa ja vapautumista estämällä glukoneogeneesin ja glykogenolyysin säätämällä fosfoenolipyruvaattikarboksylaasin (PEPCK) ilmentymistä.

Lisäksi insuliini voi stimuloida glykogeenisynteesiä Akt2-aktivaation, glykogeenisyntaasikinaasi 3:n (GSK3) estämisen ja glykogeenisyntaasin (GS) aktivaation kautta seriinitähteiden desfosforylaation kautta näiden proteiinien NH2- ja COOH-terminaaleissa.

Insuliinin verisuonivaikutukset ovat monimutkaisia: insuliinilla voi olla joko suojaavia tai haitallisia vaikutuksia verisuonistossa.

Insuliinin verisuonia suojaavat vaikutukset liittyvät endoteelin typpioksidisyntaasin (eNOS) aktivaatioon PI3K / Akt-reitin kautta.

Haitallisiin vaikutuksiin sisältyy verisuonten sileän lihassolun (VSMC) lisääntymisen indusointi, verisuonten supistuminen ja proinflammatorinen aktiivisuus.

Nämä verisuonivaikutukset välittyvät mitogeeniaktivoidun proteiinikinaasireitin (MAPK) kautta. Tämä osallistuu vain insuliinin mitogeenisiin vaikutuksiin, mutta ei sen metabolisiin vaikutuksiin. Mitogeeni on yhdiste, joka käynnistää solunjakautumisen.

Insuliiniresistenssi

Yleisen hypoteesin mukaan insuliiniresistenssi määritellään kliiniseksi tilaksi, jossa insuliinilla on odotettua pienempi fysiologinen vaikutus.

Insuliiniresistenssi tarkoittaa tilaa, jossa insuliinin vaikutus heikkenee. Insuliiniresistenssi aiheuttaa verensokerin nousua (hyperglykemia). Insuliiniresistenssi lisää huomattavasti kakkostyypin diabeteksen sekä sydän- ja verisuonisairauksien riskiä.

Muutos voi olla lyhyt- tai pitkävaikutteinen aiheuttajasta riippuen. Resistenssille herkistäviä tekijöitä tunnetaan yli 30, niitä ovat muun muassa lihavuus, tupakointi, asidoosi, alkoholi, korkea verenpaine, raskaus (raskausajan diabetes) ja palovammat. Insuliiniresistenssi on yhteinen nimittäjä monille sairauksille, jotka yleistyvät länsimaissa. Yksi yleisimmistä on metabolinen oireyhtymä.

Insuliiniresistenssi voi johtua häiriöstä insuliinin sitoutumisessa solun insuliinireseptoriin, reseptorien määrän tai toiminnan muutoksesta, glukoosin-sokerin kuljetusproteiinin (GLUT4) määrän tai toiminnan häiriöstä tai glukoosiaineenvaihdunnan häiriöstä solun sisällä. Häiriö on siis glukoosin otossa soluun tai sen aineenvaihdunnassa solun sisällä.

Insuliiniresistenssistä kärsiviä suositellaan valitsemaan matalan glykemiaindeksin ruoka-aineita ja ruokia. Lisäksi heidän kannattaa valita sellaisia ruoka-aineita, joilla on myös matala insuliini-indeksi. – Wikipedia

Glukoosinoton häiriö

Tämä ilmiö johtuu puutteista insuliinin stimuloimassa glukoosinotossa, erityisesti glykogeenisynteesissä, ja vähemmässä määrin glukoosin hapettumisessa. Insuliiniresistenssin vaikutukset eri kudoksiin riippuvat kudosten fysiologisesta ja metabolisesta toiminnasta.

Suuren aineenvaihduntavaikutuksen vuoksi insuliiniresistenssillä on merkittäviä vaikutuksia luurankolihakseen, rasvasoluihin ja maksakudokseen, jotka ovat solunsisäisen glukoosikuljetuksen sekä glukoosi- ja lipidimetabolian pääkohteet.

Luurankolihasten ja rasvasolujen osuus GLUT4 -reseptorien insuliinin stimuloimasta glukoosinotosta ovat noin 60–70%.

Insuliiniresistenssi heikentää maksan ja lihasten glykogeenisynteesiä, lisää proteiinikataboliaa luurankolihaksissa (lihasten kannibalisoiminen energiaksi) ja estää lipoproteiinilipaasiaktiivisuutta adiposyyteissä, mikä johtaa vapaiden rasvahappojen ja tulehduksellisten sytokiinien, kuten IL-6, TNFa sekä kylläisyyshormoni leptiinin, erityksen lisääntymiseen.

Maksan aineenvaihdunta kattaa karkeasti 30% insuliinin stimuloimasta glukoosin metaboliasta. Insuliiniresistenssi heikentää maksan glukoosiaineenvaihduntaa ja rasvahappojen aineenvaihduntaa, mikä puolestaan lisää veren triglyseridipitoisuutta ja VLDL-lipoproteiinien eritystä maksasta.

Insuliiniresistenssi aiheuttaa endoteelisolujen toimintahäiriöitä vähentämällä typpioksidin tuotantoa endoteelisoluissa ja lisäämällä veren hyytymistä estävien tekijöiden vapautumista. Tämä johtaa verihiutaleiden aggregaatioon (puuroutumiseen).

Insuliiniresistenssi vaikuttaa PI3K-reitin metaboliaan, kun taas MAP-kinaasireitti toimii normaalisti. Tämä aiheuttaa insuliinin mitogeenisen vaikutuksen endoteelisoluissa ja kasvattaa ateroskleroosin riskiä.

Veren matalalalla insuliinipitoisuudella ja insuliiniresistenssillä on merkittävä fysiologinen rooli raskauden ja nälkiintymisen aikaisen aineenvaihdunnan säätelyssä.

Ravinnon puutteellisen saannin aiheuttama alhainen glukoosipitoisuus johtaa heikentyneeseen insuliinin eritykseen, mikä helpottaa glukoosin mobilisoitumista maksasta.

Matala insuliinipitoisuus edistää lipolyysin käynnistymistä, jolloin rasvasoluista vapautuu vereen vapaita rasvahappoja ja glyserolia, joita voidaan käyttää ketoaineiden, β-oksidaation ja glukoosin lähtöaineina.

Nämä kompensointimekanismit auttavat ylläpitämään verensokeritasoja poikkeusolosuhteissa, kuten paastolla. Nykyään tiedetään, että aivosolut osaavat tuottaa energiaa ketoaineista, mutta vielä kymmenisen vuotta sitten aivotoiminnan uskottiin edellyttävän tasaista glukoosinsaantia.

β-hydroksibutyraatti on aivojen kuvantamisen ja kognitiivisten testien perusteella erinomainen energianlähde aivosoluille.

Veren punasoluilta puuttuu mitokondriot, joten niiden energianluotanto on glukoosista energiaa tuottavan glykolyysin varassa. Gukoosin puuttuessa ja glykogeenien ehtyessä glukoneogeneesi valmistaa glukoosia veren punasoluille.

Odottavan äidin insuliiniresistenssi sekä glukoosinsaannin turvaavat kompensoivat aineenvaihduntamekanismit varmistavat sikiölle kasvun ja kehityksen kannalta riittävän energian- ja ravinteiden saatavuuden.

Insuliiniresistenssi on avainasemassa metabolisten sairauksien, kuten tyypin 2 diabeteksen patogeneesissä. Insuliiniresistenssi on osallisena useissa muissakin sairauksissa, kuten rintasyövässä, nivelreumassa, munasarjojen monirakkulaoireyhtymässä, alkoholista riippumattomassa rasvamaksassa sekä sydän- ja verisuonitaudeissa. Insuliinimetabolian häiriöt vaikuttavat useimpien elintapasairauksien taustalla.

Ei-hapettavalle aineenvaihduntareitille päätyneiden lipidien liiallinen määrä kardiomyosyyteissä johtaa myrkyllisten lipidilajien (lipotoksiinien) kertymiseen soluihin, mikä muuttaa solujen signalointia ja sydämen rakennetta.

Lipotoksiinit

Lipotoksisuus on metabolinen oireyhtymä, joka johtuu lipidivälituotteiden kertymisestä ei-rasvakudokseen. Tämä johtaa solujen toimintahäiriöihin ja solukuolemaan. Kudoksiin, joihin lipotoksisuus normaalisti vaikuttaa, kuuluvat munuaiset, maksa, sydän ja luurankolihakset.

Lipotoksisuudella uskotaan olevan huomattava merkitys sydämen vajaatoiminnassa, liikalihavuudessa ja diabeteksessa.

Normaaleissa solutoiminnoissa lipidien tuotannon ja niiden hapettumisen tai kuljetuksen välillä on tasapaino.

Lipotoksisissa soluissa tuotettujen lipidien määrän ja energian tuotantoon hapetettujen lipidien määrän välillä on epätasapaino. Soluuntulon jälkeen rasvahapot voidaan muuntaa erityyppisiksi lipideiksi varastointia varten.

Rasvan yleinen varastomuoto, eli triglyseridi koostuu kolmesta glyserolimolekyyliin sitoutuneesta rasvahaposta, ja sitä pidetään neutraalimpana ja vaarattomimpana solunsisäisenä lipidivarastona.

Vaihtoehtoisesti rasvahapot voidaan muuntaa lipidivälituotteiksi, kuten diasyyliglyseroliksi, keramideiksi ja rasva-asyyli-CoA:ksi.

Nämä lipidivälituotteet voivat heikentää solun toimintaa, jota kutsutaan lipotoksisuudeksi

Adiposyytit, solut, jotka normaalisti toimivat kehon lipidivarastona, pystyvät käsittelemään ylimääräisiä lipidejä. Liian suuri lipidien määrä ylikuormittaa soluja ja aiheuttaa lipidien leviämisen ei-rasvasoluihin, joilla ei ole rasvoille tarvittavaa varastotilaa.

Kun ei-rasvasolujen varastointikapasiteetti ylitetään, seurauksena on solujen toimintahäiriö ja / tai solukuolema. Mekanismia, jolla lipotoksisuus aiheuttaa solun kuoleman ja toimintahäiriöitä, ei tunneta hyvin. Apoptoosin syy ja solun toimintahäiriön laajuus liittyvät solutyyppiin sekä ylimääräisten lipidien tyyppiin ja määrään.

Lihavuuden syy-vaikutus lipotoksisuudessa on kiistanalainen aihe. Jotkut tutkijat väittävät, että lihavuudella on suojaavia vaikutuksia lipotoksisuutta vastaan, koska se johtaa ylimääräiseen rasvakudokseen, johon voidaan varastoida ylimääräisiä lipidejä. Toiset väittävät, että lihavuus on lipotoksisuuden riskitekijä. Molemmat osapuolet myöntävät, että runsasrasvainen ruokavalio lisää lipotoksisten solujen määrää.

Henkilöt, joilla on paljon lipotoksisia soluja, sairastuvat yleensä sekä leptiini- että insuliiniresistenssiin. Tälle korrelaatiolle ei kuitenkaan ole löydetty selvää syy-mekanismia.

Häiriöt useilla solun signalointireiteillä, kuten mitokondrioiden toimintahäiriöissä ja endoplasmisen verkkokalvon stressissä, on liitetty lipotoksisuuteen.

Välittäjien, kuten reaktiivisten happilajien (ROS), typpioksidin (NO), keramidin, fosfatidyyli-inositoli-3-kinaasin, diasyyliglyserolin (DAG), PPAR-ydinreseptorien ligandien, leptiinin, on ehdotettu edistävän näitä lipotoksisia vaikutuksia ja lisäävän solujen apoptoosinopeutta.

Insuliiniresistenssi solutasolla

Insuliini vaikuttaa useissa aineenvaihduntaprosesseissa ja toimii signalointijärjestelmänä, joka mahdollistaa tasapainon ravinteiden tarjonnan ja tarpeen välillä.

Insuliiniresistenssissä kohdesolut eivät reagoi veresssä kiertävän insuliinin tavanomaisiin tasoihin, joten normaalia vastetta varten tarvitaan suurempia insuliinipitoisuuksia.

Insuliiniresistentti tila määritellään glukoosin imeytymisen heikkenemisenä lihaksissa ja maksan lisääntyneenä glukoneogeneesinä, mikä johtaa hyperglykemiaan, eli postbrandiaaliseen ja paastonjälkeiseen kohonneeseen verensokeriin.

Insuliiniresistenssiin liittyviä mekanismeja on selitetty monin tavoin, mutta kiistatonta tieteellistä konsensusta insuliiniresistenssin syystä ei taida olla.

Insuliiniresistenssin patogeneesi voidaan kuitenkin ryhmitellä geneettisiin virheisiin, rasvasta peräisin olevaan signaalointiin (kohdunulkoisten rasvojen kertyminen), fyysiseen passiivisuuteen, lihavuuteen ja tulehduksiin.

Insuliiniresistenssi ja geenit

Yksi lähestymistapa sairastumisen selittämiseen on insuliiniresistenssiin johtavan geneettisen virheen analysointi selvittämällä insuliinin signalointiketjuun assosioituvia ehdokasgeenejä. Insuliiniresistenssissä ja tyypin 2 diabeteksessa on havaittu useita muutoksia insuliinin signalointiin liittyvissä geeneissä.

IRS-1- ja IRS-2-geenien poikkeavuudet hiirikokeissa osoittavat, että IRS-1-hiiret ovat insuliiniresistenttejä, mutta eivät hyperglykeemisiä. Hiiret, joilta puuttuu IRS-2-geeni ovat vakavasti hyperglykeemisiä johtuen perifeerisen insuliinin toiminnan poikkeavuuksista ja β-solujen insuliinin erityksen häiriöistä.

Akt1:n häiriö hiirissä ei aiheuta merkittäviä häiriöitä aineenvaihdunnassa, kun taas hiiret, joilta Akt2 on estetty, osoittavat insuliiniresistenssiin viittaavia oireita, jotka fenotyypiltään muistuttavat läheisesti tyypin 2 diabetesta.

Muita mutaatioita, jotka on tunnistettu ja tutkittu tyypin 2 diabetekseen liittyen, ovat mutaatiot insuliinireseptorissa, PI3K:ssa, maksan glukokinaasipromoottorissa, GLUT4, glykogeenisyntaasissa ja proteiinifosfataasi-1:ssä.

Erilaisista tyypin 2 diabetekseen assosioituvista mutaatioista huolimatta, harvat henkilöt ovat diabeettisia geneettisten mutaatioiden vuoksi.

Geneettinen alttius aikuistyypin diabetekseen kuitenkin kasvattaa sairastumisriskiä. Voi myös olla useita muita geneettisiä poikkeamia, joita ei ole vielä tunnistettu ja jotka voivat vaikuttaa insuliiniresistenssin ja tyypin 2 diabeteksen patogeneesiin.

Ympäristötekijät

Lihavuuden aiheuttama vapaiden rasvahappojen (FFA) lisääntyminen verenkierrossa saattaa laukaista insuliiniresistenssin lipidien kertymisen kautta.

Tämä voi aktivoida epätyypillisen PKC:n, joka estää insuliinin solusignaloinnin ja insuliinin stimuloiman glukoosinoton luuston lihaksissa, sekä vähentää insuliinin stimuloimaa maksan glykogeenisynteesiä. Tämä voi johtaa insuliiniresistenssiin ja lisääntyneeseen glukoosin kulkeutumiseen maksassa.

Lisäksi vapaat rasvahapot laukaisevat insuliiniresistenssin aktivoimalla suoraan Tollin kaltaisen reseptorin 4 (TLR4) ja luontaisen immuunivasteen.

Lihavuus liittyy tulehdustekijöihin, joille on tunnusomaista ATM:ien (rasvakudoksen makrofagien) lisääntyminen

Tulehdustekijät lisäävät lipolyysiä ja edistävät maksan triglyseridisynteesiä ja hyperlipidemiaa lisääntyneen rasvahappoesteröinnin vuoksi.

ATM stimuloi tulehdussytokiineja, jotka estävät insuliinin signalointia ja nopeuttavat maksan glukoneogeneesiä sekä postbrandiaalista eli aterianjälkeistä hyperglykemiaa.

Muita insuliiniresistenssiä selittäviä mekanismeja ovat sekä mTOR- että S6K1-reittien aktivaatio. Nämä aktivaatiot aiheuttavat IRS-1: n seriinifosforylaation ja sen jälkeen IRS-1:een liittyvän PI3K-aktiivisuuden vähenemisen. On arveltu, että ravinteiden kyllästysolosuhteissa S6K1 voi säätää negatiivisesti insuliinin signalointia ja herkkyyttä.

Lisäksi IRS-1:n seriinifosforylaatiota on tutkittu eri olosuhteissa. Näyttää siltä, että mTOR-S6K1:stä riippuvaisen mekanismin lisäksi erilaiset seriinikinaasit, kuten c-Jun NH2-terminaalinen kinaasi (JNK), stressillä aktivoidut proteiinikinaasit, tuumorinekroositekijä-alfa (TNF-a) ja PKC voivat edistää IRS:n seriinifosforylaatiota aiheuttaen insuliinisignaalin voimakkuuden vähenemisen metaboliareitillä.

Lihavuuden merkitys insuliiniresistenssissa

Ihmisillä, joiden painoindeksi (BMI) on korkea (BMI ≥ 30 kg / m2), on suurempi sydän- ja verisuonitautien riski verrattuna ihmisiin, joilla on normaali BMI (BMI = 18,8–24,9 kg / m2).

Lihavuus assosioituu insuliiniresistenssiin. Molekyylimekanismi, jolla rasvan lisääntyminen selittäisi insuliiniresistenssin, on kuitenkin epäselvä; lipidien kertymisestä johtuva tulehdus, rasvahappojen hapettumisen estävä vaikutus glukoosin hapettumiseen, lipotoksiinien kertyminen ja adiposytokiinien eritys on kaikki yhdistetty paikallisen ja systeemisen insuliiniresistenssin kehittymiseen.

Lisääntyvä näyttö viittaa siihen, että rasvakoostumuksen heterogeenisuus ja rasvakudoksen jakautuminen voi olla ratkaisevan tärkeää insuliiniresistenssin ja kardiometabolisten häiriöiden kehittymisessä.

Viskeraalinen rasvakudos (VAT) assosioituu vahvasiti insuliiniresistenssin, DM2:n lisääntyvään esiintyvyyteen ja suurempaan sydän- ja verisuonitautien riskiin.

Viskeraalinen rasva liittyy tulehdusta edistävien adiposytokiinien korkeaan tuotantoon, oksidatiiviseen stressiin ja reniini-angiotensiini-aldosteronijärjestelmän (RAAS) aktivaatioon.

Krooninen energian (kalorien) liikasaanti aiheuttaa sisäelinten rasvamassan lisääntymisen, yksittäisten adiposyyttien hypertrofian ja adiposyyttien jakautumisen uusiksi rasvasoluiksi.

Rasvapitoisuuden lisääntyessä adiposyytit vapauttavat kemotaktisia tekijöitä, kuten monosyyttien kemoattraktantiproteiini-1 (MCP-1) ja tuumorinekroositekijä-a (TNFa), jotka moduloivat tulehdusvastetta rasvakudoksessa. MCP-1 aloittaa monosyyttien migraation viskeraaliseen rasvakudokseen ja edistää niiden erilaistumista makrofageiksi.

Makrofagit erittävät suuria määriä TNF-alfaa. Lipolyysi lisääntyy samalla kun insuliinin stimuloiman glukoosin kuljettaja-4 (GLUT4), triglyseridien biosynteesi ja adiposyyttien varastointi viskeraalisessa rasvakudoksessa vähenevät, mikä tämän mallin mukaan johtaa kiertävien veressä triglyseriditasojen nousuun.

Tämä tapahtuma voi johtaa toksisten rasvahappolajien (eli diasyyliglyserolin, keramidin) lipidisaostumiin rasvakudoksessa, haimassa, munuaisten verisuonissa, maksassa, luurankolihaksissa ja sydämessä, mikä johtaa epikardiaalisen rasvakudoksen (EAT) lisääntymiseen.

EAT:n kasvu aiheuttaa sydämen rasvoittumiseen ja massan lisääntymiseen molemmissa kammioissa, mikä johtaa kammion hypertrofiaan, supistumishäiriöön, apoptoosiin, fibroosiin ja heikentyneeseen vasemman kammion diastoliseen toimintaan.

Insuliiniresistenssi ja sydäntaudit

Kohonnneet LDL-tasot, tupakointi, korkea verenpaine ja tyypin 1 ja 2 diabetes ovat tunnettuja sydän- ja verisuonitautien riskitekijöitä, mutta insuliiniresistenssi, hyperglykemia ja inflammaatio voivat myös ennakoida haitallisia sydän- ja verisuonitapahtumia.

Insuliiniresistenssi liittyy aineenvaihdunnan häiriöihin, kuten hypertriglyseridemiaan sekä mataliin HDL-tasoihin. Lisäksi insuliiniresistenssiä on havaittu noin 30%:lla potilaista, joilla on diagnosoitu verenpainetauti (hypertensio).

Vuonna 1996 toteutetussa insuliiniresistenssin ateroskleroositutkimuksessa (IRAS) tutkijat osoittivat suoran yhteyden insuliiniresistenssin ja ateroskleroosin välillä. Jatkotutkimuksessa 2938 potilaan kohortissa määriteltiin insuliiniresistenssi tärkeäksi sydäninfarktin riskitekijäksi.

Vuonna 2012 tehty 65 tutkimuksen ja yhteensä 516 325 henkilön meta-analyysi, osoitti, että HOMA-indeksillä arvioituna insuliiniresistenssi ennustaa hyvin sydän- ja verisuonitauteja.

Archimedes-mallin ja 20–30-vuotiaiden nuorten diabetesta sairastamattomien aikuisten populaation seurannan perusteella tutkijat päätyivät johtopäätökseen, että insuliiniresistenssin estäminen populaatiotasolla voisi vähentää 42% sydäninfarkteista simuloidun 60 vuoden seurantajakson aikana.

Vaikka useat tutkimukset tukevat ajatusta siitä, että sydän- ja verisuonitaudit liittyvät insuliiniresistenssiin, on myös eräitä kiisteltyjä raportteja.

Insuliiniresistenssin lisäksi insuliiniresistenssiin liittyvällä kompensoivalla hyperinsulinemialla voi olla kriittinen rooli ateroskleroottisten plakkien muodostumisessa muuttamalla estrogeenireseptoreihin liittyvää geeniekspressiomallia, kuten eläinmalleissa on havaittu.

Hyperglykemia aiheuttaa muutoksia aineenvaihdunnan- ja solujen toiminnoissa: dyslipidemia (veren huono lipiditasapaino), hypertensio, endoteelin toimintahäiriöt, oksidatiivinen stressi ja muutokset sydämen aineenvaihdunnassa näyttävät liittyvän hyperglykemiaan.

Noin 50–70% sydänlihaksen tarvitsemasta ATP:stä  tuotetaan (pitkäketjuisten) rasvahappojen hapetuksella ( β-oksidaatio). Glykolyysin osuus terveessä sydämessä on alle 10% ATP:n kokonaistuotannosta.

Sydän käyttää energiantuotantoon ensisijaisesti pitkäketjuisia rasvahappoja, mutta sydämellä on kyky vaihtaa toiseen energiasubstraattiin ATP:n tuottamiseksi sydämen energiantarpeen varmistamiseksi. Myös substraattikuljettimilla, GLUT4 (glukoosille) ja CD36 (rasvahapoille), on merkitys tässä substraatin käyttöasteen dynaamisessa tasapainossa.

Loukkaantumisen aikana sydän siirtyy rasvahappojen käytöstä energia-substraateina kohti glukoosia, mutta tämä metabolinen joustavuus heikentyy insuliiniresistenssin aikana, jolloin rasvahappo on ainoa polttoaineen lähde.

Tämä muutos indusoi lipidien imeytymisen ja kertymisen lisääntymistä sydämessä tuottaen lipotoksisuutta. Tässä mielessä tasapaino lipidien hajoamisen ja glukoosin hapettumisen välillä voi vähentää diabeettista kardiomyopatiaa.

Insuliiniresistenssi ja dyslipidemia

Insuliiniresistenssin ja tyypin 2 diabeteksen (diabeettinen dyslipidemia) aiheuttamalle dyslipidemialle on tunnusomaista lipidien kolmikko:

  1. korkeat plasman triglyseriditasot
  2. matalat HDL-tasot

  3. pienten tiheiden matalatiheyksisten lipoproteiinien (sdLDL) pitoisuuden kasvu sekä liiallinen aterianjälkeinen lipidemia

Hypertriglyseridemia lisää sydän- ja verisuonitautien ilmaantuvuutta miehillä 32% ja naisilla 76%.

10 038 ihmisellä, joilla oli normaali verenpaine tai pre-hypertensio, tehty tutkimus osoitti dyslipidemian olevan vahva ennuste tyypin 2 diabeteksen kehittymiselle.

Usein diabeettinen dyslipidemia kehittyy vuosia ennen tyypin 2 diabetesta, mikä viittaa siihen, että epänormaali lipidimetabolia on varhainen sydän- ja verisuonitautien indikaattori tyypin 2 diabeteksessa.

Lihavuus on maailmanlaajuinen epidemia, joka liittyy läheisesti tyypin 2 diabeteksen sekä sydän- ja verisuonitautien (CVD) kehittymiseen.

Lihavuuteen liittyvä viskeraalinen ja epikardiaalinen rasva ovat sydänsairauksien riskitekijöitä. Lihavuudella on merkittävä vaikutus lipoproteiiniprofiilin ja systeemiseen ja verisuonitulehdukseen sekä endoteelin toimintahäiriöön liittyvien tekijöiden modifioinnissa.

Epänormaalit lipidien ja apolipoproteiinien pitoisuudet voivat aiheuttaa muutoksia lipoproteiinihiukkasten tuotannossa, konversiossa tai kataboliassa.

Nämä muutokset voivat myötävaikuttaa liikalihavuuden lisääntyneeseen basaaliseen lipolyysiin ja rasvahappojen vapautumiseen verenkiertoon, mikä johtaa proaterogeeniseen fenotyyppiin.

Insuliiniresistenssi ja liporoteiinieprofiilien muutokset

VLDL, hyvin matalatiheyksinen lipoproteiini, kootaan ja tuotetaan substraattien saatavuuden perusteella maksassa.

Insuliini säätelee tiukasti VLDL-tuotantoa. Maksan VLDL-tuotanto indusoituu paastotilassa, mikä johtaa lisääntyneeseen VLDL-pitoisuuteen veressä.

Eri lähteistä peräisin olevien lipidien lisääntyminen, kuten verenkierron vapaat rasvahapot, triglyseridipitoisten lipoproteiinien endosytoosi ja de novo lipogeneesi mahdollistavat apoB:n translaation jälkeisen stabiloinnin ja tehostavat VLDL-hiukkasten kokoonpanoa ja eritystä.

Tämä johtaa VLDL:n ja vapaiden rasvahappojen uotantoon. Lipoproteiinit kuljettavat energiaa maksan ja rasvakudoksen välillä. Vastauksena insuliinin eritykseen VLDL-synteesi estetään plasman triglyseriditason rajoittamiseksi. Normaalisti insuliini edistää PI3K-aktivaation avulla apoB:n hajoamista, mutta insuliiniresistenssin aikana tämä hajoaminen on heikentynyt.

Yhdistelmä:

  1. käytettävissä olevien rasvahappojen ylimäärä

  2. apoB: n rajoitettu hajoaminen

  3. apoB: n suurempi stabiloituminenVLDL-synteesin kasvu selittää insuliiniresistenssissä havaitun hypertriglyseridemian

Insuliiniresistenssi vähentää myös lipoproteiinilipaasiaktiivisuutta, joka on tärkeä VLDL-puhdistuman välittäjä. Tällä vaikutuksella on vähäinen vaikutus plasman triglyseriditasoon, vaikka se on myös mekanismi, jota myös muutetaan.

Tyypin 2 diabetesta sairastavilla potilailla VLDL:n, IDL:n ja LDL:n imeytyminen maksassa vähenee, mikä johtaa näiden lipoproteiinien viipymisaikojen pitenemiseen plasmassa.

SdLDL: n muodostuminen ja alentuneet HDL-tasot liittyvät läheisesti insuliiniresistenssiin. Ateroskleroosiriskien (ARIC) prospektiivisessa tutkimuksessa sdLDL: n plasmatasoihin liittyi sepelvaltimotaudin (CHD) riski. Lisäksi VLDL-tasot ovat tärkein LDL-koon ennustaja.

SdLDL: n muodostuminen riippuu sekä kolesteryyliesterin siirtoproteiinin (CETP) että maksan lipaasin osallistumisesta. CETP helpottaa triglyseridien siirtymistä VLDL:stä LDL:ään ja HDL:ään, tuottaa triglyseridipitoisen LDL:n ja johtaa matalaan HDL-C:hen.

Triglyseridipitoinen LDL on maksalipaasin substraatti, mikä lisää triglyseridipitoisen LDL:n lipolyysiä, mikä johtaa sdLDL: n muodostumiseen. Erilaisia mekanismeja on ehdotettu selittämään sdLDL:n lisääntynyttä aterogeenistä vaikutusta.

Näitä mekanismeja ovat:

  1. alempi affiniteetti LDL-reseptoriin

  2. helpotettu pääsy valtimon seinämään

  3. valtimon retentio

  4. suuri hapettumisherkkyys

  5. pidempi puoliintumisaika

Lisääntyneet sdLDL-tasot edustavat lisääntynyttä määrää aterogeenisiä hiukkasia, mikä ei välttämättä heijastu LDL-tasoilla, koska sdLDL-hiukkaset sisältävät vähemmän kolesterolia.

HDL-hiukkasten triglyseridirikastus CETP:llä yhdistettynä maksalipaasin lipolyyttiseen vaikutukseen johtaa plasman HDL-C:n ja apoA-I:n vähenemiseen, mikä vaikuttaa pienen tiheän HDL:n muodostumiseen ja johtaa näiden hiukkasten lisääntyneeseen kataboliaan.

Vuonna 1932 ei-diabeetikoilla tehdyssä retrospektiivisessä tutkimuksessa raportoitiin, että triglyseridin ja HDL-kolesterolin suhde voi ennustaa insuliiniresistenssin ja metabolisten sairauksien todennäköisyyden. Lisäksi on osoitettu lipidien kerääntymistuotteiden ja triglyseridien glukoosindeksin korrelaatio insuliiniresistenssin ja CVD:n kanssa.

Insuliiniresistenssi johtaa lisääntyneeseen vapaiden rasvahappojen (FFA) vapautumiseen rasvasoluista. Plasman paasto-FFA:n kohonnut suhde insuliinipitoisuuteen on rasvakudoksen insuliiniresistenssi. Rasvakudoksen insuliiniresistenssin on raportoitu olevan riskitekijä aortan venttiilin kalkkeutumisessa, mikä ennustaa sydän- ja verisuonitaudit.

Insuliiniresistenssi, verenpainetauti ja endoteelin häiriöt

Kliiniset tutkimukset ovat osoittaneet, että noin 50 prosentilla hypertensiivisistä koehenkilöistä on komorbidi hyperinsulinemia tai glukoosi-intoleranssi, kun taas vähintään 80 prosentilla tyypin 2 diabetesta sairastavista potilaista on komorbidi hypertensio.

Komorbiditeetti tarkoittaa kahden tai useamman itsenäisen sairauden esiintymistä samanaikaisesti. Komorbidi sairaus tai häiriö voi olla seurausta perussairaudesta tai suorassa yhteydessä siihen. Tämä johtuu usein erilliseksi luokiteltujen ongelmien yhteisestä taustatekijästä.

Komorbidit häiriöt ovat silti usein vaikeammin hoidettavissa kuin yksittäisesti esiintyvät häiriöt, sillä hoitoa suunniteltaessa on otettava huomioon kunkin häiriön yksittäiset ominaispiirteet ja niiden yhdistelmien variaatiot. – Wikipedia

Verenpainetaudin ja diabeteksen yhdistelmää sairastavilla potilailla on selvästi korostunut sydän- ja verisuonitautien riski.

On ehdotettu, että poikkeavuudet vasodilataatiossa, verenkierrossa ja reniini-angiotensiini-aldosteronijärjestelmässä (RAAS) voivat liittyä hypertensioon ja insuliiniresistenssiin. Lisäsyynä verenpainetautiin insuliiniresistentillä potilaalla on sympaattisen hermoston yliaktiivisuus, joka edistää myosyyttien hypertrofiaa, interstitiaalista fibroosia ja heikentynyttä verisuonten supistumista, johon liittyy lisääntynyt myosyyttien apoptoosi (solukuolema).

RAAS-järjestelmässä angiotensinogeeni muuttuu reniiniksi angiotensiini I:ksi, joka sitten ACE:n (angiotensiiniä konvertoivan entsyymin) avulla muutetaan angiotensiini II:ksi (Ang II). Lopuksi Ang II vaikuttaa sekä AT1- että AT2-reseptoreihin. AT1-reseptori välittää kaikki Ang II:n klassiset vaikutukset, kuten verenpaineen nousu, verisuonten supistuminen, lisääntynyt sydämen supistuvuus, munuaisten natriumpitoisuus, veden reabsorptio ja aldosteronin vapautuminen lisämunuaisen kuoren zona glomerulosasta lisämunuaisessa.

Yksi aldosteronin rooleista on lisätä natriumin reabsorptiota distaalisessa nefronissa. Tämän vaikutuksen tarkoituksena on ylläpitää natriumtasapainoa aktivoimalla apikaalisen epiteelin natriumkanava ja basolateraalinen Na +, K + -ATPaasi. Aldosteronilla on kuitenkin vaikutuksia myös munuaisiin, verisuoniin ja sydänlihakseen, millä voi olla patofysiologisia seurauksia.

Tutkimukset ovat osoittaneet, että hyperglykemia lisää angiotensinogeenin, ACE:n ja Ang II:n transkriptiota. Tyypin 2 diabetesta sairastavilla on havaittu RAAS:n ylöspäin säätely sydän- ja verisuonijärjestelmässä. Ylössäädelty RAAS voi vaikuttaa monien diabeettisten komplikaatioiden, kuten mikrovaskulaaristen ja makrovaskulaaristen sairauksien, kehittymiseen. Lisäksi on osoitettu, että Ang II:n ylössäätely ja mineralokortikoidireseptorin aktivointi aldosteronilla voivat edistää insuliiniresistenssia aktivoimalla mTOR – S6K1-signaalinsiirtoreitti indusoimalla fosforylaatio IRS:n seriinitähteissä.

Diabeettisen kardiomyopatian kehittymiseen liittyvät mekanismit

Normaalisti insuliinin signalointi säätelee glukoosin ja lipidien aineenvaihduntaa sydämessä. Insuliiniresistenssi aiheuttaa metabolisen häiriön, joka johtaa korkeaan lipidihapetukseen ja matalaan glukoosihapetukseen.

Reniini-angiotensiini-aldosteronijärjestelmän (RAAS) aktivaatio voi aiheuttaa mitokondrioiden toimintahäiriöitä, endoplasmisen verkkokalvon stressiä ja oksidatiivista stressiä. Tämä voi johtaa epänormaaliin Ca2 + -käsittelyyn ja alhaiseen ATP-tuotantoon, mikä johtaa kardiomyosyyttien kuolemaan.

RAAS:n aktivaatio ja hyperinsulinemia voivat synergistisesti stimuloida MAPK-reittiä, jolla on verisuoniseinää vahingoittava vaikutus, koska se indusoi endoteelin toimintahäiriöitä ja edistää näin ateroskleroosia.

Tutkimuksissa on pohdittu, että insuliinin ja Ang II:n signaalinsiirtoreitit jakavat useita alavirran tehosteita ja kommunikoivat useilla tasoilla. RAAS:n (Ang II ja aldosteroni) ja yliravitsemuksen aktivaatio edistää endoteelin toimintahäiriötä lisäämällä nikotiiniamidiadeniinidinukleotidifosfaatti (NADPH) -oksidaasin välittämää ROS-tuotantoa, mekanismia, joka myös kohottaa verenpainetta.

Itse asiassa ROS johtaa redox-herkkien kinaasien, kuten S6K1:n ja mTOR:n, aktivoitumiseen, aiheuttaen insuliini-PI3K-signalointireitin, fosforylaation kautta IRS-1: n seriinitähteissä. Viimeksi mainittu mekanismi estää Akt-fosforylaation, Glut-4-translokaation sarkolemmaan ja typpioksidin (NO) tuotannon alavirran signaloinnin endoteelissä.

Lisäksi hypertensioon ja tyypin 2 diabetekseen liittyy myös endoteelin esisolujen määrän väheneminen ja toimintahäiriöt, jotka ovat kiertäviä luuytimestä peräisin olevia kantasoluja, joilla on tärkeä rooli verisuonten seinämän endoteelikorjauksessa.

Joissakin kliinisissä ja kokeellisissa tutkimuksissa on osoitettu, että RAAS-esto paransi insuliinin signalointia ja insuliiniherkkyyttä, mutta toisissa ei ole osoitettu mitään hyödyllistä vaikutusta. Tämä ero voidaan selittää joko eroilla kokeiden suunnittelussa tai tutkimuspopulaatioissa.

Yhteenvetona voidaan todeta, että TOR / S6K: n aktivointi RAAS:lla tai yliravitsemuksella johtaa insuliiniresistenssiin, jolla on metabolisia ja biologisia seurauksia. Se johtaa myös heikentyneeseen sydänlihaksen glukoosikäyttöön ja diastolisen rentoutumisen vähenemiseen.

Insuliiniresistenssi ja endoteelin toimintahäiriöt

Funktionaalisen endoteelin eheys on tärkeä verisuonten terveyselementti. Typpioksidia (NO) pidetään kehon tehokkaimpana endogeenisena vasodilataattorina (verisuonten laajentajana), ja NO:n biologisen hyötyosuuden väheneminen on endoteelin toimintahäiriön tunnusmerkki.

Endoteelin toimintahäiriö vaikuttaa sydän- ja verisuonitauteihin, kuten hypertensio, ateroskleroosi ja sepelvaltimotauti, jotka myös aiheutuvat insuliiniresistenssistä.

NO osallistuu verisuonten seinämän homeostaasiin verihiutaleiden aggregaation, leukosyyttien adheesion eston ja anti-inflammatoristen ominaisuuksien avulla. Fysiologisissa olosuhteissa insuliinin NO-tuotannon konstitutiivisella stimulaatiolla voi olla tärkeä rooli verisuonten terveyden ylläpidossa, koska se kykenee rentouttamaan verisuonen sileää lihasta.

Insuliiniresistenssitilassa insuliinin stimuloima NO-synteesi on kuitenkin heikentynyt selektiivisesti ja kompensoiva hyperinsulinemia voi aktivoida MAPK-reitin, mikä johtaa verisuonten supistumiseen, tulehdukseen, lisääntyneeseen natriumin ja veden kertymiseen, mikä johtaa verenpaineen nousuun.

Insuliiniresistenssi endoteelisoluissa lisää protromboottisia tekijöitä, tulehdusta edeltäviä markkereita ja vapaita happiradikaleja, mikä johtaa adheesiomolekyylin 1 (ICAM-1) ja verisuonisolujen adheesiomolekyylin 1 (VCAM-1) solunsisäisten tasojen nousuun.

Endoteelin toiminnan ja insuliinin aineenvaihdunnan välinen suhde on erittäin tärkeä. Tämä johtuu siitä, että insuliiniresistenssin ja endoteelin signaalihäiriöiden välinen yhteys edistää tulehdusta, häiritsee endoteelin tasapainoa vasodilataattorin ja vasokonstriktorimekanismien välillä ja lisää kardiovaskulaarista riskiä.

Tutkimuksessa, joka tehtiin ei-diabeetikoilla, joilla epäillään sydänlihasvaurioita, raportoitiin, että HOMA-IR:llä mitattu insuliiniresistenssi korreloi voimakkaasti endoteelin toimintahäiriöiden ja prognostisen arvon kanssa.

Krooninen hyperglykemia sydän- ja verisuonitaudeissa

Lisääntynyt sydän- ja verisuonitautiriski tyypin 2 diabetesta sairastavilla potilailla on tunnettu jo pitkään. Diabetesta sairastavilla potilailla on lisääntynyt verisuonten sairastuvuus ja kuolleisuus, mikä alentaa heidän elinajanodotettaan noin 5–15 vuodella.

Lisäksi on osoitettu, että sydän- ja verisuonitautien ilmaantuvuus on 2–8 kertaa suurempi tyypin 2 diabetesta sairastavilla henkilöillä kuin diabeetikoilla, ja tämä tauti aiheuttaa suurimman osan kuolemista.

Jälkimmäisen tueksi epidemiologiset ja patofysiologiset tutkimukset viittaavat siihen, että hyperglykemia (kroonisesti korkea verensokeri) voi olla suurelta osin vastuussa sydän- ja verisuonitaudeista.

Verensokerin on raportoitu ennakoivan luotettavasti ateroskleroosia, ja yli 90 mg / dl: n verensokeritaso voi johtaa ateroskleroosiin kaulavaltimossa. Pitkän aikavälin seurantatiedot tyypin 1 ja 2 diabetesta sairastavilta potilailta viittaavat siihen, että hyperglykemia on diabetekseen liittyvien sairauksien ja CVD:n riskitekijä.

Salvin et al. Havaitsi, että yhden yksikön nousu glykosyloidussa hemoglobiinissa tai HbA1C:ssä voi lisätä sydän- ja verisuonitautien riskiä 18%.

Jopa selkeän diabeteksen puuttuessa glukoosihomeostaasin heikkeneminen voi vaikuttaa sydämen autonomiseen toimintaan, mikä johtaa korkeaan sydänsairauksien riskiin.

Hyperglykemian haitalliset vaikutukset kardiomyosyyteihin voidaan selittää ilmiöllä, jota kutsutaan hyperglykeemiseksi muistiksi. Ilmiössä hyperglykeeminen stressi jatkuu pitkään verensokeritason normalisoitumisen jälkeen.

Glukoosivaihtelut ja hyperglykemia laukaisevat tulehdusreaktioita mitokondrioiden toimintahäiriöiden ja endoplasmisen verkkokalvon kautta. Tämä edistää vapaiden reaktiivisten happiradikaalien kertymistä, mikä puolestaan aiheuttaa soluvaurioita.

Hyperglykemia voi myös lisätä tulehdusta edistävien ja hyytymistä estävien tekijöiden ilmentymistä, mikä edistää leukosyyttien tarttumista endoteelisoluihin. Se indusoi apoptoosia ja heikentää typpioksidin vapautumista, mikä johtaa endoteelin toimintahäiriöön. Tästä syystä tulehdus johtaa insuliiniresistenssiin ja β-solujen toimintahäiriöihin, mikä pahentaa edelleen hyperglykemiaa.

Lisäksi glukoosivaihteluiden ja hyperglykemian tuottamat muutokset voivat aiheuttaa pitkäaikaisia epigeneettisiä modifikaatioita NF-KB: n promoottorissa, jonka näyttää vaikuttavan lisääntyneestä oksidatiivisesta stressistä.

Toinen pysyvän hyperglykemian haitallinen vaikutus on pitkälle edenneiden glykaation lopputuotteiden (AGE) sukupolvi, jotka ovat proteiinien ja lipidien ei-entsymaattisia glykaation tuotteita sokereille altistumisen seurauksena.

Yleensä AGE:t kertyvät verisuonen seinämään, mikä vaikuttaa solunulkoisen matriisin (ECM) rakenteelliseen eheyteen (tunnetaan myös nimellä matriisisoluvuorovaikutukset). Jälkimmäinen aiheuttaa endoteelivaurioita ja vähentää NO-aktiivisuutta. Kaiken kaikkiaan AGE:t edistävät diabeettisten komplikaatioiden, kuten retinopatian, nefropatian sekä sydän- ja verisuonitautien etenemistä.

Insuliiniresistenssi ja muutokset sydänmetaboliassa

Sydänseinämän paksuin kerros on sydänlihassoluista koostuva sydänlihas, joten luurankolihassolujen fysiologian tarjoama tieto auttaa selittämään sydämen aineenvaihduntaa.

Nisäkkään sydämen on supistettava lakkaamatta; mikä tarkoittaa, että optimaalisen toiminnan energiantarve on valtava. Tämä on mielenkiintoinen ilmiö, koska sydämen lihaksessa ei ole ATP-varausta.

Energiaa varastoidaan sydämen lihassoluihin kolmessa muodossa:

  1. Ensimmäinen on fosfokreatiini (PCr), joka voi nopeasti luovuttaa korkean energian fosfaatit ATP:n tuottamiseksi ADP:stä. PCr: stä saatavissa oleva energia on suhteellisen vaatimaton, sitä käytetään vain erittäin nopeiden harjoitusten aikana

  2. Toinen on glykogeeni, joka muodostaa solussa endogeenisen energiamuodon. Lihaksen glykogeenivarastokapasiteetti on rajallinen. Sen etuna on kuitenkin se, että se kuluttaa paljon vähemmän happea kuin rasvahapot ja on helposti saatavilla käytettäväksi polttoaineena lihaksissa.

  3. Kolmas muoto on triglyseridit ja vapaat rasvahapot (FFA). Niiden hapettuminen on vähemmän tehokasta verrattuna glykogeeniin, vaikka ne sisältävät enemmän energiaa.
    On yleisesti hyväksyttyä, että vapaat rasvahapot ovat hallitsevia substraatteja, joita käytetään aikuisen sydänlihaksessa ATP:n tuotantoon mitokondriossa. Siten 60-70% sydämen työn ylläpitoon tarvittavasta energiasta tulee vapaiden rasvahappojen β-oksidaatiosta. Verenkierron vapaiden rasvahappojen tasot määräävät suurelta osin vapaiden rasvahappojen imeytymisen sydämessä. Kun FFA on imeytynyt, sen metaboliaa säätelee pääasiassa transkriptiotasolla ligandiaktivoitujen transkriptiotekijöiden perhe, nimittäin peroksisomiproliferaattorin aktivaattorireseptori a (PPAR-a).

Sydämen aineenvaihduntaverkosto on ravinnon, paaston ja intensiivisen liikunnan suhteen erittäin joustava energiasubstraattien käytössä. Kardiomyosyytit, eli sydänlihassolut pystyvät käyttämään glukoosia ja laktaattia, aminohappoja, sekä ketoaineita.

Glukoosinottoa välitetään glukoosikuljettimien kautta. Kuljettimia on kahta erilaista tyyppiä, Na2 + -kytketty kantajajärjestelmä ja helpottavat glukoosikuljettimet (GLUT). GLUT1 ja GLUT4 ovat tärkeimmät toimijat sydämen glukoosikuljetuksissa.

GLUT4 edustaa tärkeintä mekanismia, joka säätelee glukoosin sisäänpääsyä sykkivässä sydämessä. GLUT1:llä on vähäisempi rooli, koska se on ensisijaisesti paikallaan plasmamembraanilla ja vastuussa sydämen glukoosin perusinsuliinista.

GLUT4:ää esiintyy enimmäkseen solunsisäisissä rakkuloissa lepovaiheissa ja se siirtyy plasmamembraaniin insuliinistimulaation yhteydessä. Imeytymisen jälkeen vapaa glukoosi fosforyloituu nopeasti glukoosi-6-fosfaatiksi (G6P), joka myöhemmin pääsee moniin metaboliareitteihin.

Glykolyysi edustaa glukoosin aineenvaihdunnan pääreittiä, joka tuottaa pyruvaatin myöhempää hapetusta varten. Glykolyysin ohella G6P voidaan myös kanavoida glykogeenisynteesiin tai pentoosifosfaattireittiin (PPP). PPP on tärkeä NADPH-lähde, jolla on kriittinen rooli solun oksidatiivisen stressin säätelyssä ja jota tarvitaan lipidisynteesiin.

Vastauksena lisääntyneeseen energiantarpeeseen sydämen lihassolut luottavat aluksi hiilihydraattien hapettumiseen. Esimerkiksi stressin, kuten liikunnan, iskemian ja patologisen hypertrofian alaisena, glukoosin substraattipreferenssiä voidaan muuttaa. Stressin aikana GLUT4-ilmentymisen nopea kasvu on varhainen adaptiivinen vaste, joka viittaa siihen, että tämän sopeutumisen fysiologisena tehtävänä on parantaa lihasten glykogeenivarastojen täydennystä.

Kun glykogeenipitoisuus on korkea, sydän käyttää ensisijaisesti glykogeenia energiasubstraatin lähteenä, mutta kun glykogeenivarastot ovat vähäisiä, se muuttuu rasvahappojen hapettumiseksi. Tämä induktio voidaan estää suurella hiilihydraattiruokavaliolla palautumisen aikana. Aineenvaihdunnan hallinta palautumisessa glykogeenitasojen avulla korostaa sen merkitystä aineenvaihdunnan lihasten varaan.

Insuliiniresistenssissä sydän on rikkaassa rasvahappo- ja glukoosiympäristössä. Ylimääräinen insuliini edistää vapaiden rasvahappojen lisääntynyttä imeytymistä sydämessä klusterin erilaistumisproteiinin 36 (CD36) säätelyn seurauksena. Se on voimakas vapaiden rasvahappojen kuljettamiseen ja säätelyyn vaikuttava proteiini. Tämä lisää solunsisäisiä rasvahappoja ja PPAR-a-ilmentymistä. Viimeksi mainittu lisää geeniekspressiota rasvahappojen hapettumisen kolmessa vaiheessa lisäämällä (1) FFA-kuljettajien synteesiä solussa, (2) proteiineja, jotka tuovat FFA:ta mitokondrioon, ja (3) entsyymejä rasvahappojen hapetuksessa.

Toisaalta glukoosin käytön eston takia kardiomyosyytteihin kertyy glykolyyttistä välituotetta, mikä indusoi glukotoksisuutta

Kun diabetes etenee tai kun sydämeen kohdistuu lisärasituksia; metabolista sopeutumista voi esiintyä, ja aineenvaihdunnan joustavuus heikkenee huomattavasti. Sydän heikentää kykyään käyttää rasvahappoja, lisää vapaiden rasvahappojen kulkeutumista ja johtaa lipidien (keramidit, diasyyliglyserolit, pitkäketjuiset asyyli-CoA:t ja asyylikarnitiinit) kertymiseen sydänlihakseen.

Tämä lipidien kertyminen voi vaikuttaa solujen kuolemaan (apoptoosiin), heikentää mitokondrioiden toimintaa, sydämen hypertrofiaa ja supistushäiriöitä. Esimerkiksi diasyyliglyseroli ja rasva-asyylikoentsyymi (CoA) indusoivat epätyypillisen PKC: n aktivaation, mikä johtaa heikentyneeseen insuliinin signalointiin.

Keramidit, jotka yhdistävät lipidien aiheuttaman tulehduksen insuliinin signaloinnin estoon, toimivat lipotoksisten signalointireittien avainkomponentteina. Toisaalta korkea lipidipitoisuus voi aiheuttaa supistushäiriöitä insuliiniresistenssistä riippumatta. Seurauksena oleva sydänlihaksen energiantuotannon vika heikentää myosyyttien supistumista ja diastolista toimintaa. Nämä muutokset aiheuttavat toiminnallisia muutoksia, jotka johtavat kardiomyopatiaan ja sydämen vajaatoimintaan.

Glukoosin puuttuessa maksassa syntyvät ketoaineet pääsevät verenkiertoon, ja elimet, kuten aivot, munuaiset, luurankolihakset ja sydän, käyttävät niitä energiasubstraatteina. Sydänlihaksen polttoaineenvaihdunnan ja bioenergian häiriöt vaikuttavat sydän- ja verisuonitauteihin, koska aikuisen sydän vaatii paljon energiaa supistumiseen.

Sydän- ja verisuonitauteissa sydämen kyky käyttää rasvahappoja, sydämen ensisijaista polttoainetta, on heikentynyt

Tässä tilanteessa sydän käyttää vaihtoehtoisia reittejä, kuten ketoaineita, polttoaineena ATP:n tuotannossa. Edelleen kiistellään siitä, kuinka hyvin sydänlihas sopeutuu tähän energiasubstraatin muutokseen.

Viime aikoina on osoitettu, että syklinen ketoaineiden käyttö energiasubstraattina ylläpitää sydämen nuoruutta vanhoilla hiirillä. Toisaalta on raportoitu, että isokalorinen (yhtäläisen energian sisältävä) ketogeeninen ruokavalio (hyvin vähän hiilihydraatteja ja runsaasti rasvoja ja / tai proteiineja) pidentää elinikää.

Ketogeenisen ruokavalion vaikutus voidaan välittää tukahduttamalla pitkäikäisyyteen liittyvä insuliinin signalointi ja mTOR-reitti sekä aktivoimalla peroksisomiproliferaattorilla aktivoitunut reseptori a (PPARa), pääsäädin, joka kytkee päälle ketogeneesiin osallistuvat geenit.

Useat raportit viittaavat siihen, että ketogeeniseen ruokavalioon voi liittyä sydän- ja verisuonitautien riskitekijöiden, kuten liikalihavuuden, diabeteksen, valtimoverenpaineen ja kolesterolitasojen, esiintyvyyden väheneminen. Toisaalta monien raporttien mukaan sydän- ja verisuonitautien riskitekijöiden väheneminen vastasi painonlaskua käytetystä ruokavaliosta riippumatta.

Muut tekijät, jotka vaikuttavat diabeettisen kardiomyopatian patogeneesiin

Muita diabeettisen kardiomyopatian patogeneesiin vaikuttavia tekijöitä ovat metaboliset poikkeavuudet, joihin liittyy mitokondrioiden toimintahäiriöitä, endoplasman verkkokalvon stressiä ja heikentynyttä Ca2 + -käsittelyä. Reaktiivisten happiradikaalien (ROS) liiallinen tuotanto johtaa proteiini-, DNA- ja kalvovaurioihin. Lisäksi ROS:lla on haitallisia vaikutuksia endoplasmiseen verkkokalvoon.

Oksidatiivinen stressi ja endoplasman verkkokalvon stressi voivat aiheuttaa solunsisäisen Ca2 + -tason nousun. Mitokondrioiden ylimääräinen Ca2 +:n otto johtaa Ca2 +:n ylikuormitukseen ja mitokondrioiden läpäisevyyden siirtymähuokosten avautumiseen, mikä johtaa myöhemmin mitokondrioiden toimintahäiriöihin ja solujen apoptoosiin. Tämä vaikuttaa myös diabeettisen kardiomyopatian patogeneesiin.

Sokerit ohjaavat sepelvaltimotautia insuliiniresistenssin ja hyperinsulinemian kautta: uusi paradigma

I know of no single acceptable study that shows a high intake of sugar in a population that is almost entirely free from heart disease.’1—John Yudkin

Sepelvaltimotauti (CHD) aiheuttaa joka kuudennen kuolemantapauksen Yhdysvalloissa. Sepelvaltimotauti johtaa lopulta akuuttiin infarktiin (MI). Yhdysvalloissa tapahtuu vuosittain melkein miljoona akuuttia sydäninfarktia, ja noin 15% potilaista kuolee sydäninfarktin seurauksena.

Oireeton hyperglykemia on sydän- ja verisuonitautien ja infarktin riskitekijä. Hyperglykemia voi kehittyä akuutin infarktin aikana myös potilaille, joilla ei ole diabetesta. Hyperglykemian voi aiheuttaa insuliinin erityksen väheneminen, insuliiniresistenssin kehittyminen sekä katekoliamiinien (adrenaliini, noradrenaliini ja dopamiini), kortisolin ja kasvuhormonin lisääntyminen.

Monilla infarktipotilailla on diagnosoitu tai diagnosoimaton diabetes, jossa akuutti stressi pahentaa diabeettista tilaa ja johtaa hyperglykemiaan. Erään tutkimuksen mukaan 73%:lla akuutin infarktin saaneista potilaista oli epänormaali glukoositoleranssi ja 50%:lla diabetes. 6 kuukauden kuluttua infarktista 43%:lla oli epänormaali glukoositoleranssi, mikä on noin kolminkertainen määrä terveisiin verrokkeihin nähden.

Hyperglykemia ei siis näytä olevan akuutti tai väliaikainen löydös potilailla, joilla on ollut infarkti. Monilla potilaalla on havaittavissa jatkuvasti epänormaali glukoositoleranssi.

Whitehall-tutkimus (prospektiivinen kohorttitutkimus), johon osallistui 18 403 potilasta, osoitti, että verensokeri 2 tuntia suun kautta otetun glukoositoleranssitestin jälkeen liittyi iän mukaan mukautettuun kardiovaskulaariseen kuolleisuuteen 7,5 vuoden jälkeen.

Ei-diabeetikoilla 2 tunnin veri glukoosipitoisuus 96 mg / dl tai korkeampi liittyi kaksinkertaiseeb sydän- ja verisuonitautien kuolleisuuden riskiin.

Suun kautta otettavaan glukoosin aiheuttama korkea insuliinivaste on todettu perifeeristen-, aivo- ja sepelvaltimoiden ateroskleroosipotilailla.

Australian Busseltonissa tehdyssä tutkimuksessa, insuliinipitoisuudet tunnin kuluttua 50 g:n glukoosiannoksen jälkeen korreloivat merkittävästi 60-vuotiaiden ja sitä vanhempien miesten 6 vuoden CVD-ilmaantuvuuteen ja 12-vuotiseen CVD-kuolleisuuteen.

Sekä Helsingin poliisitutkimuksessa että Pariisin siviilipalveluksessa olevien tutkimuksessa paastotilassa otetun 75 g tai 90 g oraalisen glukoosiannoksen jälkeinen insuliinipitoisuuden kasvu korreloi infarkti- ja sydäntautikuolemiin 5 vuotta myöhemmin 30–59-vuotiailla miehillä.

Insuliini-glukoosisuhteella oli selvin yhteys sydän- ja verisuonitauteihin. Kaikissa kolmessa tutkimuksessa insuliinin suhde sydän- ja verisuonitautiin oli riippumaton muista muuttujista, kuten lipidit, verenpaine ja verensokeri.

Puhdistetun sokerin aiheuttama insuliinivaste on jopa tärkkelyksen insuliinivastetta suurempi. Tämä on vakuuttava osoitus siitä, että lisättyjen sokereiden (sakkaroosi sekä runsaasti fruktoosia sisältävä maissisiirappi) liiallinen käyttö voi johtaa lisääntyneeseen sydän- ja verisuonitautieriskiin kohonneiden insuliinitasojen kautta.

Insuliinin ja hiilihydraattehin rooliin aterogeneesissä viittaava näyttö on vahva. Tämä järjestelmä yhdistää ateroskleroosin diabetekseen, lihavuuteen, hyperlipidemiaan ja mahdollisesti verenpainetautiin. (Stout ja Vallance-Owen)

Yli 50 vuoden ajan on ollut tiedossa, että hyperkolesterolemiaa ja hyperlipatemiaa sairastavilla ihmisillä on yleensä epänormaali hiilihydraattien aineenvaihdunta. Kohonneet insuliinitasot johtavat usein hyperlipidemiaan.

Insuliinin on todettu lisäävän lipogeneesiä (glukoosin muuttamista triglyserideiksi, eli varastorasvaksi) ja stimuloivan sileiden lihassolujen lisääntymistä. Hyperinsulinemia on itsenäinen sydänsairauksien riskitekijä. Insuliiniresistenssi ennustaa hyvin kardiovaskulaarisia riskejä. Näin ollen kaikki ruokavalion tekijät, jotka heikentävät glukoosinsietokykyä tai edistävät insuliiniresistenssiä, lisäävät todennäköisesti myös akuutin infarktin, sydän- ja verisuonitautien (CHD) ja CHD-kuolleisuuden riskiä.

Runsaasti lisättyä sokeria (erityisesti teollisesti käsiteltyä fruktoosia) sisältävä ruokavalio johtaa insuliiniresistenssiin. Lisättyjen sokereiden liiallinen kulutus on vaikuttava tekijä CHD- ja CVD-kuolleisuudessa.

Ihmisillä, joiden ruokavaliossa päivittäisestä energiasta alle 10% saadaan lisätyistä sokereista, on lähes kolme kertaa pienempi sydän- ja verisuonitautien riski, kuin ihmisillä, joiden ruokavalio sisältää 25% tai enemmän energiaa lisätyistä sokereista.

Eläin- ja ihmistutkimuksissa on havaittu, että tärkkelyksen, glukoosin tai molempien yhdistelmän isokalorinen (yhtäläisen energiapitoisuuden) korvaaminen sakkaroosilla tai fruktoosilla lisää paastoinsuliinipitoisuutta, heikentää insuliiniherkkyyttä, lisää paastoglukoosipitoisuutta, lisää glukoosi- ja insuliinivasteita sakkaroosikuormitukseen ja vähentää solun insuliiniin sitoutumista.

Toisin sanoen kalori on kalori, mutta lisättyjen sokereiden kulutus on selvästi haitallisempaa kuin tärkkelys ja/tai glukoosi, koska lisätyt sokerit heikentävät insuliiniherkkyyttä ja glukoositoleranssia.

Rottien ruokinta sakkaroosilla johtaa heikentyneeseen glukoositoleranssiin ja rasvakudokseen, joka on vähemmän herkkä insuliinin vaikutuksille.Eläimiltä ja ihmisiltä saadut tiedot viittaavat siis siihen, että lisättyjen sokereiden liiallinen kulutus johtaa insuliiniresistenssiin ja hyperinsulinemiaan.

Akuutin sydäninfarktin aikana sydän siirtyy ensisijaisesta rasvahappojen käytöstä energiana glukoosin käyttämiseen. Koska insuliini helpottaa glukoosinottoa soluihin, insuliiniresistenttien potilaiden ennuste on huonompi.

Insuliiniresistenssin aste liittyy sydäninfarktin vakavuuteen. Sydäninfarktin saanet diabeetikot kuolevat todennäköisemmin kuin ei-diabeetikot. Runsas lisättyä sokeria sisältävä ruokavalio edistää insuliiniresistenssiä ja diabetesta, ja voi siten johtaa sydäninfarkteihin ja lisätä sydänkuolleisuuden riskiä.

Diabeetikoilla on suurempi sydäninfarktin, sydäntautien ja sydänkuolleisuuden riski kuin diabetesta sairastamattomilla. Tätä riskiä ei selitä muut muuttujat, kuten tupakointi, kolesteroli, verenpaine tai kehon rasvan jakautuminen.

Potilailla, joilla on diagnosoitu äskettäin diabetes, on myös suurempi sydäninfarktin riski. Diabeetikoilla on enemmän sepelvaltimoiden ateroskleroosia kuin ei-diabeetikoilla. Erityisesti vasemman sepelvaltimon kapeneminen ja parantuneiden transmuraalisten ventrikulaaristen arpien esiintymistiheys on diabeetikoilla verrokkeja yleisempää.

Framingham-tutkimus osoitti, että diabeetikoilla on likimäärin kolminkertainen riski kuolla sydän- ja verisuonitautiin verrattuna väestöön keskimäärin, sekä lisääntynyt aivohalvauksen, sydänsairauden ja perifeerisen valtimosairauden riski.

Korkeampi verenpaine tai korkeammat lipoproteiiniarvot eivät selitä sydänsairauden lisääntynyttä esiintyvyyttä diabeetikoilla

Runsaasti lisättyä sokeria sisältävän ruokavalion on osoitettu lisäävän diabeteksen esiintyvyyttä, kun taas vähäisempi sokerin saanti assosioituu pienempään diabetesriskiin.

Lisätyt sokerit edistävät insuliiniresistenssiä. Akuutin sydäninfarktiin kokevat ovat todennäköisemmin insuliiniresistenttejä. Lisättyjen sokereiden liiallinen kulutus on sydän- ja verisuonitautien riskitekijä.

Me olemme kasvaneet uskossa, että kohonnut kolesteroli selittää sydän- ja verisuonitautien syntymekanismia, mutta se ei suinkaan ole ainoa tai ehkä edes merkittävin riskitekijä.

Sydänsasairauksissa havaitaan kolesterolin ohella monia muita kliinisiä poikkeavuuksia, kuten kohonnut glukoosi (hyperglykemia), insuliini (hyperinsulinemia), triglyseridit, virtsahappo ja matalat korkean tiheyden lipoproteiinikolesterolin (HDL) tasot. Kaikki nämä CHD-riskitekijät aiheutuvat tai pahenevat ihmisillä ja eläimillä, kun he noudattavat runsaasti sokeria sisältävää ruokavaliota.

Lisättyjen sokereiden liiallinen kulutus on tärkein sydänsairauksien aiheuttaja

Korkean glykeemisen kuorman ruokavalion noudattaminen vain muutaman viikon ajan kasvatti sydäntautien ja perifeeristen verisuonitautien riskitekijöitä kolmanneksella tutkimukseen osallistuneista.

Tämä viittaa siihen, että sokerin liiallinen kulutus ja sitä seuraava insuliiniresistenssi ja / tai hyperinsulinemia lisäävät sydän- ja verisuonitautien sekä monien muiden sairauksien, kuten verenpainetaudin, diabeteksen, lihavuuden ja kihdin riskiä.

Mielenkiintoista on, että tupakoinnin, joka on sydänsairauksien riskitekijä, on todettu aiheuttavan hyperinsuliniaa, mikä viittaa siihen, että sekä lisättyjen sokereiden liiallinen kulutus että tupakointi altistavat sydänsairauksille samalla mekanismilla (hyperinsulinemian kautta; vaikka molemmat aiheuttavat myös inflammaatiota, oksidatiivista stressiä ja lisääntynyttä verihiutaleiden puuroutumista).

Viimeisten 200 vuoden aikana keskimääräinen lisättyjen sokerien saanti on kasvanut vajaasta kahdesta kilosta lähes 60 kiloon vuodessa. Se, että diabeetikoilla on kasvanut okklusiivisen valtimosairauden riski, ja että ei-diabeetikoilla, joilla on verisuonisairaus, on myös selvästi kohonneet insuliinitasot, viittaa siihen, että insuliiniresistenssilla on merkittävä vaikutus sydäntautien patogeneesissä.

Kun otetaan huomioon, että runsaasti lisättyä sokeria sisältävä ruokavalio voi aiheuttaa ihmisille insuliiniresistenssin ja hyperinsulinemian, ja toisaalta lisättyjen sokerien vähentäminen voi parantaa näitä aineenvaihdunnan häiriöitä, on vakuuttavaa näyttöä siitä, että lisättyjen sokereiden (runsaasti fruktoosia sisältävä maissisiirappi ja sakkaroosi) runsas saanti on keskeinen sydäntautien vaikuttaja.

Puhdistettu sokeri verrattuna rasvaan, tärkkelykseen, glukoosiin tai tärkkelyksen ja glukoosin yhdistelmään, edistää suurempia haittoja ihmisen glukoositoleranssille ja insuliiniherkkyydelle.

Vieläkin uskotaan, että tärkein ruokavalion sydän- ja verisuonitautien riskiä kasvattava yksittäinen ravintoaine on tyydyttynyt rasva. Lisättyjen sokerien (sakkaroosi- tai pöytäsokeri ja runsasfruktoosinen maissisiirappi) liialliseen kulutukseen liittyy myös lisääntynyt sydän- ja verisuonitautien riski sekä sydän- ja verisuonitaudeista johtuva kuolleisuus.

Korkean glykeemisen kuorman lisättyjä sokereita sisältävä ruokavalio kasvattaa sydäntautien riskitekijöitä jo muutaman viikon aikana. Vielä tärkeämpää on, että ruokavalion, jossa on vähän lisättyjä sokereita ja puhdistettuja hiilihydraatteja, on havaittu korjaavan nämä aineenvaihduntahäiriöt.

Todisteet osoittavat, että lisätyt sokerit kasvattavat sydän- ja verisuonitautien riskiä enemmän kuin tyydyttyneet rasvat, jotka itse asiassa ovat viimeisimpien tutkimusten mukaan sydänterveyden kannalta neutraaleja. Asiasta on siis vähintään kaksi perusteltua mielipidettä. Sokereiden haitallisuutta korostava näyttö on lisääntynyt ja tyydyttyneiden rasvojen maine on vastaavasti puhdistunut.




Ketogeeninen ruokavalio & PPMS

Aivan viime aikoihin asti multippeliskleroosia on pidetty ensisijaisesti tulehduksellisena autoimmuunitautina. Lähes täysin huomiotta on jäänyt tautiin liittyvä neurodegeneratiivinen komponentti, joka vaikuttaa sairauden etenemiseen ja invaliditeettiin.

Löysin hyvin kiinnostavan tutkielman vuodelta 2015. Mithu Storonin ja Gordon T. Plantin kirjoittama The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis selvittää ketogeenisen ruokavalion terapeuttista vaikutusta ensisijaisesti etenevää multippeliskleroosia sairastavilla.

Perinteistä kuvaa MS-taudista haastavat kliiniset havainnot tulehduksen ja neurodegeneraation välisestä dissosiaatiosta, jossa neurodegeneratiivisella komponentilla saattaa olla tulehduksellisia tekijöitä merkittävämpi rooli taudin patogeneesissä.

Tässä katsauksessa tutkitaan mitokondrioiden toimintahäiriöiden ja hermoston rappeutumisen suhdetta multippeliskleroosissa. Tarkastelemme todisteita siitä, että ketogeeninen ruokavalio voi korjata mitokondrioiden toimintaa, ja pohdimme ketogeenisen ruokavalion terapeuttista potentiaalia etenevän multippeliskleroosin hoidossa.

Kaikkiin potentiaalisiin terapeuttisiin vaihtoehtoihin tutustuminen on perusteltua, koska etenevään MS-tautiin ei tällä hetkellä tunneta parantavaa tai edes taudin etenemistä hidastavaa hoitoa.

1. Survival of the sickest? Multippelisklerootikko ketoosissa


Näyttö ketogeenisen ruokavalion neurologisista hyödyistä kasvaa nopeasti. Lääkeresistenttiä epilepsiaa on hoidettu ketogeenisellä ruokavaliolla jo vuosisadan ajan. Tutkimuksissa ketogeenisen ruokavalion terapeuttisista hyödyistä Parkinsonin taudin ja Alzheimerin taudin hoidossa on saatu erittäin lupaavia tuloksia.

Löysin hiljattain useita tutkimuksia, jotka tukevat ketogeenisen ruokavalion terapeuttisia hyötyjä multippeliskleroosia sairastavilla. Tämä on uusi pohjaton kaninkolo, johon aion kompastua. Ehkäpä meidän kaikkein sairaimpienkin horisontissa voi nähdä sateenkaaren ja lupauksen paremmasta? Minä en lupaa mitään, mutta katsotaan millainen maailma peilin takana odottaa.

Jean-Martin Charcotin huolellinen kliininen ja patologinen kuvaus potilaasta, jolla oli demyelinoivia leesioita tai “sclérose en plques” vuonna 1868, antoi maailmalle ensimmäisen selkeän kuvauksen multippeliskleroosista (MS).

Puolitoista vuosisataa Charcotin havaintojen jälkeen, taudin patogeneesi on yhä suurelta osin mysteeri. Primaaristi progressivisen, eli ensisijaisesti etenevän multippeliskleroosin hoito ei ole oireenmukaisia hoitoja paitsi edistynyt käytännössä lainkaan.

Arviolta 85 prosentilla MS-potilaista esiintyy toistuvia yksittäisten neurologisten oireyhtymien jaksoja, jotka yleensä häviävät konservatiivisella hoidolla täysin tai lähes täysin. Tätä tautimuotoa kutsutaan relapsoivaksi remittoivaksi tai aaltoillen eteneväksi MS-taudiksi (RRMS).

Noin 15 prosentilla potilaista on asteittainen ja progressiivinen neurologisen toiminnan menetys, joka ei parane. Tätä tautimuotoa kutsutaan primaaristi progressiiviseksi MS-taudiksi (PPMS). Vaikka tautimuodoissa on yhtäläisyyksiä, ne eroavat toisistaan kuin yö ja päivä.

Vaikuttaa siltä, että RRMS on tulehduksellinen autoimmuunitauti ja PPMS neurodegeneratiivinen hermosoluja tuhoava sairaus. Minä olen invalidisoitunut tämän ilman pahenemis- ja paranemisvaiheita etenevän etenevän ms-taudin luomassa kuplassa vuodesta 2008.

Potilaista, joilla on RRMS, suurimmalle osalle kehittyy progressiivisia neurologisia oireita 1-3 vuosikymmentä ms-diagnoosin jälkeen. Tätä tautimuotoa nimitetään toissijaisesti eteneväksi MS-taudiksi (SPMS). Se muistuttaa ensisijaisesti etenevää MS-tautia.

Multippeliskleroosia on perinteisesti pidetty immuunivälitteisenä tulehdussairautena. Immuunivasteen uskotaan aiheuttavan spontaanisti remisoituvia relapseja RRMS:ssä.

Perinteisen näkemyksen mukaan immuunisolut kulkeutuvat vaurioituneen veri-aivoesteen läpi ja aiheuttavat RRMS:lle tyypillisen fokaalisen ja levinneen tulehduksen. Perinteinen näkemys multippeliskleroosista tulehdussairautena on johtanut siihen, että lähes kaikissa terapeuttisissa strategioissa käytetään immunomoduloivaa tai immunosuppressiivista lähestymistapaa. Lähestymistapa toimii aaltoilevaa ms-tautia sairastavilla, mutta siitä ei ole mitään apua etenevää ms-tautia sairastavien hoidossa.

Näkemys multippeliskleroosista tulehduksellisena sairautena on riittämätön, koska fokaalinen tulehdus voi puuttua etenevää tautimuotoa sairastavilta. Neurodegeneraatiolla voi olla keskeisempi rooli etenevän MS-taudin patogeneesissä.

Tulehduksen ja taudin etenemisen välisen dissosiaation todisteiden lisääntyminen ellyttää tarkistettua näkökulmaa neurodegeneraation roolista multippeliskleroosin patogeneesiin ja siten terapeuttisisten strategioiden uudelleenarviointia.

Tässä katsauksessa tutkimme todisteita hermoston rappeutumisesta ja muuttujista etenevän ms-taudin patogeneesissä. Samalla arvioidaan ketogeenisen ruokavalion toimivuutta etenevän multippeliskleroosin hoitomuotona.

Minä aloitin ketogeenisen ruokavalion joulukuun toisena päivänä torjuakseni alkavan diabeteksen. Huomasin pian oloni energisemmäksi ja aktiivisemmaksi. Söin vähemmän, mutta jaksoin enemmän. Painoni putosi muutamassa kuukaudessa 10 kg. Verensokeri laski esidiabeettiselta tasolta optimaaliselle tasolle. Aiemmin korkea verenpaineeni on nyt melko hyvä. Kaiken kaikkiaan minulle tämä ruokavalio on tehnyt hyvää.

2. Onko MS ensisijaisesti neurodegeneratiivinen sairaus?


Perinteinen MS-malli perustuu ”
ulkopuolelta-sisään” -tulkintaan. Tässä mallissa virheellisesti toimiva immuunijärjestelmä hyökkää keskushermostoa vastaan. Oletus on, että jokin tai jotkin ulkoiset tekijät laukaisevat tulehduksen, joka johtaa autoimmuunireaktioon ja taudille ominaisiin vaurioihin keskushermostossa.

Perifeeriset immuunisolut läpäisevät vaurioituneen veri-aivoesteen päästäkseen keskushermostoon, jossa ne aiheuttavat akuutteja multifokaalisia tulehduksellisia vaurioita Vauriot ovat joskus oireettomia, mutta yleensä ne liittyvät pahenemisvaiheeseen eli relapsiin aaltoilevasti etenevässä RRMS:sä. Pahenemisvaiheisiin liittyy erilaisia neurologisia oireita.

RRMS on yleisin multippeliskleroosin muoto, mutta suurimmalle osalle aaltoilevasti etenevää tautimuotoa sairastavista potilaista kehittyy multippeliskleroosin toissijaisesti progressiivinen muoto (SPMS) kolmen vuosikymmenen sisällä taudin puhkeamisen jälkeen.

Tulehduksellisten ja neurodegeneratiivisten komponenttien kaksinaisuuden tekee kiinnostavaksi havainto, että MS ”etenee” molemmissa tautimuodoissa osittain yhteneväisellä tavalla riippumatta siitä, sairastuiko potilas aluksi aaltolevasti etenevään tautimuotoon vai ensisijaisesti etenevään tautiin. Patofysiologisesti näiden kahden taudifenotyypin välillä ei löydy eroa.

2.1. Vaihtoehtoinen MS-malli


Todisteet taudin etenemisen ja tulehduksen erillisestä dissosiaatiosta ovat haastaneet perinteisen lähestymistavan. Eteneminen ilman autoimmuunikohtauksia on osoitus erillisestä ja/tai rinnakkaisesta patogeenisestä prosessista.

Jotkut tutkijat ovat ehdottaneet multippeliskleroosiin ”sisältä-ulospäin” -mallia, jossa primaarinen solujen rappeuma on käynnistävä tekijä, joka sitten laukaisee tulehduksen. Rappeuma vapauttaa antigeenisen soluaineen, joka sitten johtaa immuunivasteeseen.

2.2. Tulehduksen pysäyttäminen ei pysäytä taudin etenemistä


Vaikka toistaiseksi ei ole pitävää näyttöä siitä, että solujen rappeuma olisi tulehduksen laukaiseva ensimmäinen tapahtuma (ikivanha muna- vai kana-kysymys), kliiniset havainnot tukevat näiden kahden välistä dissosiaatiota, jossa rappeuma ei seuraa tulehdusta, vaan voi tapahtua tulehduksesta riippumatta.

Tulehduksiin vaikuttavalla immuunimoduloivalla hoidolla ei ole juurikaan merkitystä multippeliskleroosin etenemiseen hyvin pitkällä aikavälillä, vaikka aaltoilevasti etenevän tautimuodon pahenemisvaiheiden hoitona immuunimoduloiva lääkitys toimiikin hyvin.

Autologinen hematopoieettinen kantasolusiirtoihin perustuva hoito on erittäin tehokas tulehduksen vähentämisessä, mutta sekään ei pysäytä aksonien rappeutumista ja aivojen atrofiaa. MS-taudissa tapahtuu progressiivista hermoston rappeutumista ja aksonien atrofiaa tulehduksellisista tekijöistä riippumatta.

Atrofiatarkoittaa solun koon pienenemistä sen rakenneosien vähenemisen seurauksena. Atrofioituvassa solussa rakenneproteiinien hajotus on nopeampaa kuin niiden synteesi. Elimen tasolla atrofialla voidaan tarkoittaa myös kudoksen tai elimen surkastumista, joka saattaa johtua solujen pienenemisen ohella niiden määrän vähenemisestä. Atrofian vastakohta on hypertrofia.

Atrofian taustalla on solujen pyrkimys sopeutua muuttuneisiin ympäristöolosuhteisiin ja säilyä hengissä. Elimen atrofiaa voi aiheuttaa myös vanhenemiseen liittyvä lisääntynyt apoptoosi, eli ohjattu solukuolema.

Atrofian mahdollisia aiheuttajia ovat solun vähentynyt aktiivisuus, hermotuksen heikentyminen, verenkierron tai ravintoaineiden riittämättömyys, hormonitoiminnan muutos ja lisääntynyt paine kudoksessa.

2.3. Harding-oireyhtymä


Teorian tueksi on olemassa patologista näyttöä, joka osoittaa että neurodegeneraatio voi tapahtua ilman mitään edeltävään tulehdukseen viittaavia todisteita. Myeliinivaipan sisäkerroksista on tunnistettu pistemäisiä vaurioita, vaikka myeliinivaipan ulkokerrokset ovat ehjät.

Tämä haastaa T-soluvälitteisen ulkoisen mekanismin mahdollisuuden. Harding-oireyhtymässä on todisteita siitä, että neurodegeneraatio edeltää tulehdusreaktiota. Vastaava perinnöllinen mitokondrioiden toimintahäiriö voi aiheuttaa MS-taudissa havaitun atrofian ja neurodegeneraation.

Harding-oireyhtymässä solujen rappeuma, joka ilmenee mitokondrioiden viallisen toiminnan seurauksena, voi laukaista autoimmuunivasteen ihmisillä, joilla on immunologinen ja geneettinen alttius ko. Oireyhtymälle.

Vaikka Leberin perinnöllinen optinen neuropatia (LHON) on tavallisempi miehillä, naisilla on suurempi riski saada autoimmuunisairaus, ja tämä voi selittää, miksi naisilla esiintyy enemmän Harding-oireyhtymää multippeliskleroosin kaltaisen tulehduksen kanssa, vaikka kyseessä on sama mutaatio kuin LHON.

Leberin perinnöllinen optinen neuropatia (LHON) on mitokondriaalisesti perinnöllinen häiriö, jolle on ominaista kivuton näköhäiriö, joka voi johtaa vakavaan optisen atrofiaan. Se voi liittyä muihin sairauksiin, kuten multippeliskleroosiin (MS).

LHON:n liittymistä MS:n kaltaiseen sairauteen kutsutaan usein Hardingin taudiksi (tai Hardingin oireyhtymäksi).

3. Mitokondrioiden rooli multippeliskleroosissa


Kliininen näyttö, jonka mukaan MS-tudin neurologisiin vaurioihin vaikuttaa sekä neurodegeneraatio että inflammaatio kasvaa koko ajan riippumatta siitä, laukaiseeko neurodegeneraatio tulehduksen vai tulehdus neurodegeneraation. Sekin on mahdollista, että kyse on rinnakkaisista tautitapahtumista.

Mitokondrioiden toimintahäiriöillä uskotaan kuitenkin olevan keskeinen rooli neurodegeneratiivisessa tapahtumissa. Kasvava näyttö osoittaa, että mitokondrioiden toimintahäiriöillä voi olla myös huomattava merkitys MS-taudin patogeneesissä.

3.1. Mitokondrioiden virheellinen toiminta voi selittää aksonien kohtalon


Aksoni, eli viejähaarake (hermosyy) on hermosolun eli neuronin osa, joita on vain yksi neuronia kohti, kun taas tuojahaarakkeita eli dendriittejä on useita yhdessä neuronissa.

Aksoni haarautuu loppupäästään ja muodostaa näin useita hermopäätteitä, jotka puolestaan voivat muodostaa synapsin toisen hermosolun tai lihassolun kanssa. Aksoni voi olla joko myelinisoitunut tai myelinisoitumaton. Myelinisoituneessa aksonissa hermoimpulssi kulkee nopeammin kuin myelinisoitumattomassa, koska hermoimpulssi hyppii myeliiniin muodostuneiden Ranvierien kuroumien välillä. – Wikipedia

Aksonaalinen rappeutuminen on multippeliskleroosille tunnusomainen piirre ja sitä esiintyy jopa ilman paikallista demyelinaatiota. Eläinmallit viittaavat siihen, että mitokondrioiden vaurio voi olla aksonin rappeutumista edeltävä tautitapahtuma.

Reaktiivisten happiradikaalien (ROS) muodostuminen voi myötävaikuttaa aksonien mitokondriovaurioihin. Reaktiivisten happiradikaalien detoksifikaatio voi puolestaan pysäyttää aksonin rappeutumisen.

Rappeutuvien aksonien katsotaan sisältävän toimintahäiriöisiä mitokondrioita, kun taas demyelinaatiosta selviytyvät aksonit sisältävät toimivia mitokondrioita. Nämä havainnot vastaavat äskettäistä tutkimusta glaukomatoottisesta optisesta neuropatiasta, jossa havaittiin, että terveet mitokondriot voivat tarjota suojaa hermoston rappeutumiselta huolimatta korkean silmänsisäisen paineen läsnäolosta.

Demyelinaatiota seuraava aksonien rappeutuinen aiheutuu nykykäsityksen mukaan mitokondrioiden tuottaman energian vähyydestä. Mitokondrioiden toiminta näyttää säätelevän aksonien kohtaloa.

Demyelinaatio: Myeliinikato on MS-taudille tyypillinen myeliinivaurio (myeliini on nopeasti johtavia hermosyitä ympäröivän, eristävän hermotupen rasva-aine).


3.2. Mitokondrioiden toimintahäiriö havaitaan harmaassa aineessa


Harmaan aineen atrofia on multippeliskleroosille tunnusomainen kliininen havainto. Atrofia lisääntyy, kun RRMS-tautimuoto etenee SPMS-tautimuodoksi. Immunohistokemiallisilla värjäystekniikoilla ja mikroskopialla on osoitetettu, että hermosolujen atrofia lisääntyy demyelinaatiosta riippumatta myös aivojen alueilla, joilla on ”
terveeltä äyttävää harmaata ainetta”.

MS-taudissa aivokuoren neuronien mitokondrioiden toiminnan on osoitettu vahingoittuneen. Campbell et al. (2011) käytti kompleksista IV / kompleksi II histokemiaa, immunohistokemiaa, laserdisektiomikroskopiaa sekä PCR- ja DNA-sekvensointimenetelmiä osoittamaan silmiinpistävän kompleksien II ja IV aktiivisuuden vähenemisen oksidatiivisen fosforylaatioketjun aikana neuroneissa, jotka saatiin SPMS-tapausten ruumiinavauksista.

3.3. Progressiivinen mitokondrioiden vahingoittuminen voi korreloida relapsien vähentyneen toipumisen kanssa


Transkriptiokofaktorin PGC-1a tasoja, joilla on keskeinen rooli mitokondrioiden toimintaan liittyvien tumatranskriptiotekijöiden aktivaatiossa, voidaan vähentää aivokuoren neuroneissa progressiivisessa MS-taudissa.

Transkriptiokofaktori PGC-1a.n ilmentymisen havaittiin korreloivan hermosolujen tiheyden kanssa. Kun otetaan huomioon havainto, että aivojen atrofian nopeus kasvaa, kun RRMS etenee SPMS-tautimuodoksi, PGC-1a: n lasku voi viitata mitokondrioiden toiminnan samanaikaiseen heikkenemisseen.

Taudin tässä etenemisvaiheessa toipuminen relapseista muuttuu asteittain huonommaksi. Mitokondrioiden toiminnan asteittainen heikkeneminen ja siitä johtuva ATP-saatavuuden heikkeneminen voi aiheuttaa aksonin sietokyvyn heikkenemisen, mikä tekee jokaisesta relapsista toipumisesta yhä vaikeampaa.

PGC-1a-tasojen laskua on havaittu myös muissa neurodegeneratiivisissa taudeissa, kuten Alzheimerin taudissa

Mitokondriot ja neurodegeneraatio


Tutkijapiireissä pidetään todennäköisenä mallia, jossa mitokondrioiden toimintahäiriöt ovat keskeisiä neurodegeneraatiivisten tapahtumien patogeneesissä. Tässä mallissa mitokondrioiden toimintahäiriöt edeltävät synaptista toimintahäiriötä, atrofiaa ja hermosolujen tuhoa.

Multippeliskleroosin eläinmallissa (enkefalomyeliitissä, EAE), mitokondriovaurion on osoitettu edeltävän tulehdusta ja laukaisevan neurodegeneraation. Vaikka mitokondrioiden vaurioihin johtavat tarkat molekyylireitit ovat edelleen tuntemattomia, oksidatiiviset vauriot ovat yksi mahdollinen reitti.

Varhaiset tutkimukset antioksidanttihoidoista MS-eläinmalleissa ovat antaneet lupaavia tuloksia. Superoksididismutaasi 2:n on osoitettu korjaavan aksonihäviön EAE: hen liittyvässä näköhermotulehduksessa.

Superoksididismutaasi eli SOD on entsyymi, joka katalysoi superoksidi-ionien disproportioitumista vetyperoksidiksi ja hapeksi. Superoksididismutaasi on tärkeä antioksidantti useissa soluissa.

Synteettisen antioksidantin, Mito-Q:n, on osoitettu olevan neuroprotektiivinen ja hidastavan taudin etenemistä EAE:ssa, vaikka sillä ei ole vaikutusta tulehdustapahtumaan. Tämä vahvistaa edelleen dissosiaatiota kahden erillisen tautiprosessin välillä ja osoittaa, että neurodegeneraation hillitsemistä tulisi harkita mahdollisena terapian kohteena etenevässä multippeliskleroosissa.

Tähän mennessä eräs harvoista etenevän MS-taudin hoitoon käytettävissä olevista vaihtoehdoista, joilla saattaa olla myönteisiä terapeuttisia vaikutuksia, on dimetyylifumaraatti tai DMF.

DMF on ainoa nykyinen lääke, joka immunomoduloivan vaikutuksen lisäksi on toimii voimakkaana antioksidanttina. Sen uskotaan vähentävän oksidatiivista stressiä NRF-2-reitin kautta, ja sillä on siten neuroprotektiivinen vaikutus. Tämä neuroprotektiivinen vaikutus on ollut ilmeinen myös muissa neurodegeneratiivisissa taudeissa.

5. Mitokondriot progressiivisen MS-taudin terapeuttisena kohteena


Mitokondrioiden toimintahäiriöiden rooli neurodegeneraatiossa viittaa siihen, että terapian kohdistaminen mitokondrioiden toimintaan voi olla hyödyllinen terapeuttinen strategia etenevän MS-taudin hoidossa.

Mitokondrioiden toimintaan kohdistuvien lääkkeiden toimivuudesta MS-taudin hoitona on vähän tutkimustietoa, mutta niiden tulokset ovat olleet lupaavia.

Koentsyymi Q10:llä on antioksidanttisia ominaisuuksia ja se on osa elektronin siirtoketjua, joka on vuorovaikutuksessa kompleksin I kanssa.

12 viikon satunnaistettu lumekontrolloitu kaksoissokkoutettu koentsyymi Q10 -lisäravinnetutkimus potilailla, joilla oli relapsoiva remittoiva MS (RRMS), osoitti IL-6:n ja MMP-9:n vähenemistä. Saman ryhmän toisen samanlaisen tutkimuksen tulokset osoittivat Q10-lisäravinteen vähentävän MS-potilaiden masennusta ja väsymystä.

Mito-Q on ubikinonia sisältävä antioksidantti, jonka on osoitettu hidastavan taudin etenemistä ja vähentävän hermosolujen tuhoa multippeliskleroosin hiirimallissa; toisaalta yhdessä tutkimuksessa, jossa käytettiin koentsyymi Q10:n synteettistä analogia, taudin eteneminen ei hidastunut.

Glukoosin hypometabolia


Jotkut tutkimukset ovat viitanneet siihen, että hermosolujen aineenvaihdunnassa voi tapahtua solujen glukoosinoton vähenemiseen vaikuttava bioenerginen muutos ennen neurodegeneraation kliinisten oireiden ilmaantumista.

Tämä glukoosin hypometabolia voi heijastua mitokondrioiden toiminnan heikkenemisenä. Muutoksen on havaittu tapahtuvan kauan ennen neurodegeneraation kliinisten oireiden ilmaantumista, mikä viittaa mahdollisuuteen, että glukoosin hypometabolia voi olla alkuvaihe, joka johtaa aksonin atrofiaan ja hermosolujen menetykseen vähentämällä ATP:n saatavuutta. Bioenerginen muutos näyttää vaikuttavan erityisesti glukoosin metaboliaan. Tällaista muutosta ei havaita ketoosiin perustuvassa aineenvaihdunnassa.

6.1. Glukoosin hypometabolia MS: ssä


Progressiivisen MS-taudin taustalla oleva neurodegeneratiivinen prosessi voi myös johtaa glukoosin hypometaboliaan. Tämä viittaa potentiaaliseen terapeuttiseen etuun energian saannin tehostamisessa vaihtoehtoisella reitillä, kuten ketoosiin perustuvalla metabolialla.

Tutkimus, jossa verrattiin 47 MS-potilasta, joilla oli vaihteleva vireystaso ja 16 tervettä kontrollia, osoitti, että potilailla oli kontrolleihin verrattuna heikentynyt aivojen glukoosimetabolia useilla aivojen eri alueilla, mukaan lukien prefrontaaliset-, premotoriset- ja täydentävät motoriset alueet sekä tyvitumake.

Vireysasteen ja glukoosin metabolisen nopeuden välillä oli käänteinen korrelaatio. Toinen tutkimus, johon osallistui 8 MS-potilasta ja 8 potilaita vastaavaa tervettä vertailuhenkilöä, osoitti MS-potilaiden hermosolujen glukoosinoton heikentyneen 40% terveisiin verrokkiin verrattuna.

Ekstramitokondrioiden metabolia lisääntyy, kun glukoosin mitokondrioiden metabolia on heikentynyt. Pilottitutkimuksessa, jossa verrattiin 85 potilasta, joilla oli relapsoiva remittoiva MS, 54 potilasta, joilla oli sekundaarisesti progressiivinen MS ja 18 tervettä kontrollia, ekstramitokondrioiden glukoosimetabolia osoitti korrelaation taudin etenemisen kanssa, mikä viittaa siihen, että heikentyneellä glukoosin mitokondrioiden metabolialla voi olla merkittävä rooli progressiivisessa MS-taudin etenemisessä.

Vastaavia tuloksia on saatu myös muiden neurodegeneratiivisten tautien, kuten dementian, Alzheimerin taudin ja Parkinsonin taudin tutkimuksissa.

Muita merkittäviä molekyylitodisteita heikentyneestä glukoosimetaboliasta MS-taudissa, nähdään glukoosin (GLUT) ja monokarboksylaattikuljettajien (MCT) muuttuneessa jakautumisessa. MS-tautiin liittyvien kroonisten leesioiden sisällä aksonaalisen GLUT3- ja MCT2-kuljetusmolekyylien määrä on selvästi vähentynyt.

Nämä biokemialliset muutokset hermoston metaboliassa voivat selittää glukoosinoton heikkenemistä demyelinoiduissa aksoneissa. Hermosolut näyttävät muuttuvan eräällä tavalla ”glukoosiresistenteiksi”, koska solujen glukoosinoton tarvitsemien kuljetusmolekyylien määrä romahtaa. Solujen heikentynyt glukoosinotto heijastuu solujen energianpuutteena, hypoglykemiana ja lopulta solujen tuhoutumisena, eli atrofiana.

Jos hermosoluille tarjotaan glukoosin sijaan vaihtoehtoinen polttoaine, hermoston rappeutuminen voi hidastua tai pysähtyä.

Tämä on mielenkiintoinen terapeuttinen mahdollisuus, sillä vielä tämän vuosituhannen alussa oltiin aivan varmoja siitä, että hermosolut tarvitsevat välttämättä glukoosia. Viimeaikaiset tutkimukset ovat osoittaneet, että aivot toimivat jopa tehokkaammin ketoaineilla kuin glukoosilla.

Ketoaineiden vaikutus on osoitettu kliinisesti erilaisilla aivojen kuvantamiseen perustuvilla menetelmillä sekä tutkittavien kognitiivisia kykyjä mittaavilla testeillä. MRI-kuvat ovat osoittaneet, että aivojen aktiivisuus lisääntyy ketoainella. Myös kognitiiviset kyvyt, kuten muisti paranevat ketoaineita saaneilla Parkinsonin ja Alzheimerin tautia sairastavilla potilailla.

Vuonna 1967 Cahill et al. osoitti, että pitkittyneen paaston aikana keho tarjoaa aivoille vaihtoehtoisen polttoainelähteen ketoaineiden muodossa. Keskushermosto ei pysty käyttämään rasvaa suorana energialähteenä. Pitkittyneen hiilihydraattirajoituksen jälkeen rasva muuttuu ketoaineiksi prosessissa, jota kutsutaan ketogeneesiksi.

Ketogeneesi tapahtuu ensisijaisesti maksassa olevien mitokondrioiden matriisissa. Ketogeneesi johtaa ketoaineiden (beetahydroksibutyraatin, asetoasetaatin ja asetonin) tuotantoon. Ne korvaavat glukoosin aivojen tärkeimpinä polttoaineiden lähteinä.

Hans Krebs erotti normaalin ”fysiologisen” ketoosin, jossa ketonipitoisuus ei ylitä 8 mmol / l, ja diabeettisen ketoasidoosin, eli happomyrkytyksen, joka on diabeteksen komplikaatio, jossa ketoaineineiden määrä voi olla yli 20 mmol / kg L ja voi johtaa kuolemaan.

Ketoaineet voivat helposti läpäistä veri-aivoesteen. Aivojen ketoaineiden hyödyntäminen lisääntyy, kun ketoneiden määrä seerumissa nousee 12 mmol / l:n pitoisuuteen. Eläintutkimusten meta-analyysi on osoittanut, että glukoosin aivojen aineenvaihdunnan nopeus laskee 9% jokaisen plasman ketonien 1 mmol / l kasvun jälkeen.

Ketonit ohittavat glykolyyttisen reitin ja siirtyvät suoraan trikarboksyylihapposykliin (TCA) mitokondrioissa, mikä osaltaan edistää anapleroosia.

Anapleroosi on trikarboksyylihapposyklin välituotteiden muodostumisprosessi. Omenahappoentsyymillä (mtME), fosfenopyruvaattikarboksikinaasilla (PEPCK), propionyyli-CoA-karboksylaasilla, pyruvaattikarboksylaasilla ja proliinidehydrogenaasilla on tärkeä rooli anapleroosissa.

Ketogeeninen ruokavalio progressiivisen MS-taudinn neurodegeneraation estäjänä?


Ketogeenistä ruokavaliota on perinteisesti käytetty resistentin epilepsian hoitoon, mutta on yhä ilmeisempää, että sen edut voivat koskea laajempaa neurologisten sairauksien kirjoa.

Vaikka tutkimus sen käytöstä epilepsian ulkopuolella on vielä alkuvaiheessa, havainnot ovat lupaavia ja niillä on merkittävä potentiaali neurodegeneraation hoidossa, erityisesti mitokondrioiden toiminnan suhteen.

Ketogeenisellä ruokavaliolla on suotuisa vaikutus mitokondrioiden toimintaan. Se vähentää reaktiivisten happiradikaalien määrää ja lisää ATP:n saatavuutta. Ruokavalio voi suojata hermosoluja atrofialta ja vähentää inflammaatiota. Ketogeenisen ruokavalion aikana tuotettuja ketoneja voidaan käyttää vaihtoehtoisena polttoaineen lähteenä heikentyneen glukoosimetabolian yhteydessä.

9. Ketogeenisen ruokavalion vaikutus oksidatiiviseen stressiin


Ketogeenisen ruokavalion on osoitettu vähentävän reaktiivisten happiradikaalien muodostumista vaikuttamalla UCP-
irroittajaproteiineihin. Se lisää myös antioksidanttien, mukaan lukien katalaasi ja glutationi, tasoja inhiboivan vaikutuksensa kautta histonideasetylaaseihin ja aktivoimalla Nrf2-reittiä.

Irrooittajaproteiini (UCP) on mitokondrioiden sisäkalvoproteiini, joka on säännelty protonikanava tai kuljettaja. Irrotettava proteiini kykenee siten hajottamaan protonigradientin, joka syntyy NADH-moottorilla pumppaamalla protoneja mitokondrioiden matriisista mitokondrioiden kalvojen väliseen tilaan.

9.1. Ketogeeninen ruokavalio lisää mitokondrioiden UCP-proteiinitasoja


Oksidatiivinen fosforylaatio tuottaa reaktiivisia happiradikaaleja (ROS). Reaktiivisten happiradikaalien ylituotanto korreloi voimakkaasti mitokondriomembraanien potentiaalisten erojen välillä. Proteiinien irrottaminen (UCP) voi vähentää tätä potentiaalieroa sallimalla protonien pääsyn mitokondrioiden matriisiin.

Vaikka tämä irtikytkentä voi vähentää hapettuvan fosforylaation kautta syntyvää ATP:tä, sen kokonaisnettovaikutuksena on parantaa soluhengitystä ja ATP-tasoja vähentämällä reaktiivisten happilajien muodostumista ja suojata solua apoptoottisilta tapahtumilta.

Ketogeeninen ruokavalio näyttää edistävän UCP-aktiivisuutta, erityisesti UCP2:n, UCP4:n ja UCP5:n aktiivisuutta vastaavalla reaktiivisten happilajien vähenemisellä.

9.2. Ketonit estävät histonideasetylaaseja


Betahydroksibutyraatilla on suora, annoksesta riippuva estovaikutus luokan I histonideasetylaaseihin (HDAC), mukaan lukien HDAC1, HDAC3 ja HDAC4.

Asetoasetaatin on myös osoitettu estävän luokan I ja luokan IIa HDAC: ita. Betahydroksibutyraatin HDAC-esto edistää histoni H3-lysiini 9:n ja histoni H3-lysiini 14:n asetylointia ja lisää FOXO3A:n säätelemien geenien transkriptiota.

Näihin kuuluvat geenit, jotka johtavat mitokondrioiden antioksidanttientsyymien, kuten superoksididismutaasin (SOD) ja katalaasin ilmentymiseen.

9.3. Ketogeeninen ruokavalio johtaa Nrf2-reitin aktivoitumiseen


Ketogeeninen ruokavalio nostaa glutationitasoja rottien hipokampuksessa. Tämän uskotaan tapahtuvan Nrf2 (tumatekijä erythroid 2:een liittyvä tekijä) -reitin kautta. Kun ketogeeninen ruokavalio aloitetaan ensimmäisen kerran, oksidatiivinen stressi lisääntyy väliaikaisesti. Tämä voi aktivoida Nrf2:ta, koska viikko oksidatiivisen stressin väliaikaisen nousun jälkeen Nrf2: n ilmentyminen on lisääntynyt.

Kolme viikkoa ruokavalion aloittamisen jälkeen oksidatiivinen stressi laskee alle perustason ja Nrf2 pysyy koholla.

10. Ketogeenisen ruokavalion vaikutus ATP-tasoihin


Ketogeeninen ruokavalio parantaa ATP-tuotantoa. Betahydroksibutyraatin anto aivojen iskemian hiirimallissa säilyttää solujen ATP-tasot. Hiirien ruokinta ketogeenisellä ruokavaliolla kolmen viikon ajan johti lisääntyneeseen ATP-pitoisuuteen ja ATP / ADP-suhteeseen aivoissa.

ATP-tasojen paraneminen voidaan osittain selittää ketogeenisen ruokavalion kyvyllä vähentää oksidatiivista stressiä. Vaikka ruokavalio voi vähentää reaktiivisten happiradikaalien muodostumista lisäämällä UCP-aktiivisuutta, mikä tahansa UCP-aktiivisuuden aiheuttama oksidatiivisen fosforylaation väheneminen on suurempi kuin soluhengityksen tehostuminen ja siihen liittyvä ATP-tuotanto, joka tapahtuu vähentyneen oksidatiivisen stressin seurauksena.

Ketogeeninen ruokavalio näyttää myös säilyttävän ATP-tasot mitokondrioiden soluhengitysketjun toimintahäiriöiden yhteydessä, mahdollisesti täydentämällä TCA-syklin välituotteita.

Betahydroksibutyraatti vaimentaa elektroninsiirtoketjun kompleksin I vaurion aiheuttamaa ATP-tuotannon vähenemistä. Sen uskotaan lisäävän TCA-välisukkinaatin tasoja, joka ohittaa kompleksin I tullessaan TCA-sykliin. Tällä on huomattavia seurauksia MS-taudissa, koska elektronin siirtoketjun sisällä olevan kompleksin I vikoja on havaittu sekä valkoisen aineen vaurioissa että motorisen aivokuoren ”normaaleilla” alueilla.

Ketonit voivat myös säilyttää ATP-tasot, jos elektronin siirtoketjun kompleksi II estetään, mutta tähän liittyy jonkin verran alueellista spesifisyyttä.

11. Ketogeenisen ruokavalion vaikutus mitokondrioiden biogeneesiin


Ketogeeninen ruokavalio lisää mitokondrioiden biogeneesiä rotan hippokampuksessa ja pikkuaivojen vermissä (vermis). Vaikka tarkkaa reittiä tälle ei tunneta, sen uskotaan liittyvän PGC1a-perheen transkriptiokoaktivaattoreihin, jotka edistävät transkriptiotekijöitä, mukaan lukien NRF-1, NRF-2 ja ERRa.

12. Ketogeenisen ruokavalion vaikutus tulehdukseen


MS-taudin rotamallissa ketogeeninen ruokavalio tukahdutti tulehduksellisten sytokiinien ilmentymisen ja lisäsi CA1-hippokampuksen synaptista plastisuutta ja pitkäaikaista potentiointia, mikä johti parantuneeseen oppimiseen, muistiin ja motoriseen kykyyn.

Ketogeenisen ruokavalion tulehdusta ehkäisevä vaikutus voidaan osittain selittää estämällä NLRP3-tulehdusta betahydroksibutyraatilla tavalla, joka on riippumaton nälän aiheuttamista mekanismeista, kuten AMPK, autofagia tai glykolyyttinen esto.

NLRP3-tulehdus on vastuussa prokaspaasi-1:n pilkkomisesta kaspaasi-1: ksi ja sytokiinien IL-1β ja IL-18 aktivaatiosta. Sen esto estää IL-1β: n ja IL-18: n muodostumisen ja niiden alavirran vaikutukset.

13. Ketogeenisen ruokavalion neuroprotektiiviset ominaisuudet


Ketoaineilla on hermosoluja suojaava, eli neuroprotektiivinen rooli neurodegeneraation eläinmalleissa. Neuronien solupinnalla sijaitsevat ATP-herkät kaliumkanavat (K ATP-kanavat) stabiloivat hermosolujen herkkyyttä.

Ketonit edistävät näiden kanavien ”avointa tilaa” ja lisäävät hermosolujen vakautta. K ATP-kanavilla on myös rooli mitokondrioiden toiminnassa ja solukuolemassa. Sisemmällä mitokondriokalvolla sijaitsevien K ATP-kanavien ”avoin tila” estää mitokondrioiden läpäisevyyden siirtymähuokosten (MPTP) muodostumisen, jotka voivat johtaa mitokondrioiden turvotukseen ja solukuolemaan.

Asetoasetaatin ja beetahydroksibutyraatin on osoitettu nostavan kynnystä kalsiumin aiheuttaman MPTP: n muodostumiselle.

14. Ketonien vaikutuksen alueellinen vaihtelu hiiren pikkuaivoissa


Huolimatta näistä näennäisesti positiivisista vaikutuksista mitokondrioiden bioenergeettisiin aineisiin, ketogeenisen ruokavalion vaikutukset hiiren aivojen mitokondrioihin eivät ole homogeenisia ja jotkut tulokset näyttävät ristiriitaisilta.

Tutkimuksessa rotilla, jotka saivat ketogeenistä ruokavaliota 8 viikon ajan, antioksidanttitaso kohosi hippokampuksessa, mutta ei aivokuoressa, ja antioksidanttiaktiivisuuden havaittiin vähenevän pikkuaivossa.

15. Havainnot ihmisillä


Toistaiseksi ihmisillä tehtyjä tutkimuksia ketonien / ketogeenisen ruokavalion vaikutuksista neurodeneratiivisissa häiriöissä on hyvin vähän.

On kuitenkin ainakin yksi satunnaistettu kaksoissokkoutettu lumekontrolloitu tutkimus, jossa tarkasteltiin ketonien vaikutuksia neurodegeneratiiviseen fenotyyppiin 152 lievää tai kohtalaista Alzheimerin tautia sairastavalla. Osallistujilla havaittiin kognitiivisten kykyjen parantumista, kun ketogeenista yhdiste AC-1202:ta käytettiin 90 päivän ajan.

Tämä parannus oli suurempi potilailla, joilla ei ollut APOE4-polymorfismia. Pienemmät tutkimukset muissa neurodegeneratiivisissa olosuhteissa ovat tuottaneet yhtä positiivisia tuloksia.

On todisteita glukoosinkuljettajan toimintahäiriöistä aksoneissa, joihin on muodostunut MS-taudin aiheuttamia kroonisia vaurioita. Tutkimukset ketogeenistä ruokavaliota noudattaneista perinnöllisistä glukoosinkuljettajan toimintahäiriöitä sairastavilla ovat myös antneet positiivisia tuloksia.

16. Päätelmä


Ketogeenisellä ruokavaliolla on potentiaalia hoitaa progressiivisen MS:n neurodegeneratiivista komponenttia seuraavien in vitro ja in vivo -tutkimuksista saatujen havaintojen perusteella:

  1. Neurodegeneraation uskotaan perustavan progressiivisen MS: n patogeneesin.
  2. Mitokondrioiden toimintahäiriö voi johtaa ATP: n saatavuuden heikkenemiseen. Tämä voi edistää aksonin atrofiaa, mikä johtaa rappeutumiseen.On todisteita mitokondrioiden toimintahäiriöistä ”normaalilta näyttävässä” harmaassa aineessa ja mitokondrioiden toiminta näyttää korreloivan aksonien eloonjäämisen kanssa.
  3. In vitro- ja eläintutkimusten mukaan ketogeeninen ruokavalio lisää ATP-tuotantoa, edistää mitokondrioiden biogeneesiä ja ohittaa toimintahäiriöt sisällä mitokondrioiden bioenergeettinen prosessi lisää antioksidanttitasoja ja vähentää oksidatiivisia vaurioita.Koska ATP: n lisääntyminen ja mitokondrioiden toiminnan yleinen paraneminen korreloivat aksonien eloonjäämisen kanssa, ketogeeninen ruokavalio voi tarjota terapeuttista hyötyä MS-taudin neurodegeneratiiviselle komponentille.EAE-eläinmallit eivät edusta tarkasti MS: n taustalla olevaa patogeneesiä, koska neurodegeneraatiolla ei ole merkittävää roolia EAE:ssä.Mitokondrioita kohdentavat aineet, ketonit ja ketogeeninen ruokavalio ovat kuitenkin osoittaneet positiivisia tuloksia useissa hermoston rappeutumismalleissa, ja kun otetaan huomioon progressiivisen MS-tautiin käytettävissä olevan hoidon täydellinen puuttuminen, ketogeeninen ruokavalio on turvallinen vaihtoehto taudin etenemisen hidastamiseen.


Runsaasta rasvan määrästä huolimatta ketogeeninen ruokavalio on turvallinen ja jopa hyödyllinen kardiometabolisten riskitekijöiden suhteen (A. F. Cicero, M. Benelli, M. Brancaleoni, G. Dainelli, D. Merlini, and R. Negri, “Middle and long-term impact of a very low-carbohydrate ketogenic diet on cardiometabolic factors: a multi-center, cross-sectional, clinical study,” ).

Se on ollut jatkuvassa käytössä lähes vuosisadan ajan epilepsian hoidossa, ja se on ollut hyvin siedetty jopa lapsilla. Nykyisiin ketogeenisiin ruokavalioprotokolliin sisältyy useita vaihtoehtoja, mikä kannustaa kokeilemaan itselleen parhaiten sopivaa mallia.

MS-taudin nykyiset hoitovaihtoehdot vaikuttavat immuunijärjestelmän toimintaan ja uusiutumisasteeseen vaikuttaen vain vähän taudin etenemiseen. Niihin liittyy joskus merkittäviä sivuvaikutuksia, kuten lymfopenia ja multifokaalinen leukoenkefalopatia.

Tämän vuoksi joillekin potilaille voi olla edullisempaa noudattaa riskitöntä ruokavaliota, jolla on potentiaalia hidastaa taudin etenemistä vaikuttamatta immuunivasteeseen. Yhteenvetona voidaan todeta, että ketogeeninen ruokavalio ansaitsee lisätutkimuksia progressiivisen MS-taudin potentiaalisena terapiana.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.812.402&rep=rep1&type=pdf




Insuliini ja terveys: Kolmas luku

Kuvasin kahdessa edellisessä artikkelissa (Insuliini ja terveys: Johdanto & Insuliini ja terveys: Hiilihydraatti-insuliinimalli) insuliinin toimintaperiaatteita ja vaikutuksia yleisellä tasolla. Insuliini on elintärkeä hormoni, joka vaikuttaa moniin aineenvaihduntatapahtumiin.

Insuliiniresistenssi liittyy useimpiin elintapasairauksiin lihavuudesta aikuistyypin diabetekseen. Amerikkalaisista jo lähes puolet sairastaa tietämättään insuliiniresistenssiä.

Insuliiniresistenssi ylläpitää nälkää ja lihomista kahdella tavalla:

  1. Veressä on syömisen jälkeen runsaasti glukoosia, mutta insuliiniresistenttien solujen glukoosinotto on häiriintynyt, jolloin ne eivät pysty hyödyntämään glukoosia energian tuotannossa. Veren sokeripitoisuus pysyy korkeana.

     

  2. Tämän vuoksi insuliini päästää verestä glukoosia rasvasoluihin, joiden insuliiniherkkyys säilyy pidempään kuin lihasten insuliiniherkkyys. Rasvasoluissa glukoosi muutetaan triglyserideiksi, eli läskiksi.

    Insuliiniresistenssi ylläpitää nälkää, koska solut eivät pysty tuottamaan glukoosista riittävästi energiaa ja elimistö reagoi solujen energianpuutteeseen hormonaalisesti.

Verestä glukoosi on siirrettävä johonkin, koska korkea verensokeri kasvattaa glykaation riskiä. Glykaatiossa glukoosi sokeroi aminohappoja ja rasvahappoja, jolloin niistä tulee melkein siirappia. Se ei ole ollenkaan toivottavaa.

Glykaation tuottamat AGE:t (Advanced Glycation End-products), eli glykaation lopputuotteet kasvattavat sairastumisen riskiä.

Myös diabetekseen liittyvä virtsaamistarpeen lisääntyminen liittyy siihen, että elimistö yrittää päästä eroon ylimääräisestä sokerista. Diabetes tunnettiin aluksi makeavirtsaisuutena ja monet lääkärit varmistuivat diabetes-diagnoosista haistamalla tai maistamalla potilaansa virtsaa.

Insuliinia käytetään yhä yleisemmin doping-aineena

Yhä useammat urheilijat ja kuntoilijat käyttävät insuliinia suorituskyvyn parantamiseksi, kertoo New Scientist. Insuliinia on käytännössä melkein mahdotonta havaita verestä dopingtesteillä.

Väärin annosteltuna insuliini voi tappaa

Kehonrakentajat olivat edelläkävijöitä insuliinin doping-käytössä jo vuosia sitten. Näyttöä insuliinin laajemmasta hyväksikäytöstä ei ole aiemmin juuri saatu, mutta näyttö on viime aikoina lisääntynyt erityisesti kuntoilijoille ja kehonrakentajille tarkoitetun neulanvaihtojärjestelmän kokoamien tietojen avulla.

Insuliini auttaa urheilijoita kahdella tavalla:

Kehonrakentajilla insuliini toimii anabolisten steroidien, kuten testosteronin tai ihmisen kasvuhormonin rinnalla lihaskudoksen vahvistajana. Steroidit rakentavat lihaskudosta ja insuliini estää lihasproteiinien hajoamisen.

Insuliini vahvistaa myös mm. keskimatkan juoksijoiden ja muiden urheilijoiden kestävyyttä mahdollistamalla tehokkaamman lihasglykogeenien sokeritankkauksen.

Mitä suuremmat glykogeenivarastot lihaksilla on, sitä kauemmpin lihakset jaksavat puurtaa väsymättä. Kestävyysurheilijoilla tankkaus voi vaikuttaa kilpailun lopputulokseen.

Tankatessa urheilijoiden on infusoitava insuliinia ja glukoosia samanaikaisesti muutaman tunnin ajan vereen. Menetelmä aiheuttaa tarkoituksellisen hyperinsulinemian.

Pitkällä aikavälillä anabolisten steroidien käyttö voi vahingoittaa mm. lisääntymisterveyttä ja mieskuntoa. Insuliinin yliannostus voi myös aiheuttaa kuolemaan johtavan kooman poistamalla verestä niin paljon sokeria, että aivosolut eivät saa riittävästi energiaa ja happea.

Houkutus insuliinin käyttöön on kuitenkin suuri. Sen teho on ilmeinen ja se häviää nopeasti verenkierrosta. Noin puolet insuliinista poistuu verenkierrosta vain neljässä minuutissa. Vaikka insuliinia havaittaisiin, sitä ei voida mitenkään erottaa ihmisen omasta insuliinista.

Hyperinsulinemia voi kasvattaa glukoosimetabolian nopeutta kaksinkertaiseksi

Kansainvälinen olympiakomitea kielsi insuliinin vuonna 1998. Kielto ei kuitenkaan koske diabeetikkoja, joiden terveys riippuu insuliinista. Diabetes UK, joka edustaa maan diabeetikkoja, myöntää, että joillakin diabeetikoilla saattaa olla taloudellinen houkutus myydä insuliinia doping-käyttöön.

Insuliini on anabolinen hormoni

Insuliini on anabolinen hormoni, jolla on metabolisia vaikutuksia koko kehossa. Haiman Langerhansin saarekkeiden beetasolut vastaavat insuliinisynteesistä.

Beetasolut säätelevät insuliinin tuotantoa seuraamalla plasman sisällä kiertävien energiaravinteiden, glukoosin, aminohappojen, ketohappojen ja rasvahappojen tasoja.

Insuliini orkestroi energiansäästöä ja -käyttöä ravinnonsaannin ja paaston aikana.

Insuliiniaineenvaihdunnan käsitteitä

  • Glukoneogeneesi: Glukoosin syntetisoiminen eräistä aminohapoista, glyserolista ja sitruunahappokierron väliaineista
  • Glykolyysi: Glukoosin hajoaminen pyruviinihapoksi* sekä energian tuottaminen glukoosista
  • Glykogeneesi: Glykogeenin synteesi glukoosista
  • Glykogenolyysi: Glykogeenin hajoaminen glukoosiksi
  • Lipogeneesi: Asetyylikoentsyymi-A:n muuttaminen rasvahapoiksi ja sitä seuraava triglyseridisynteesi
  • Lipolyysi: Lipidien ja triglyseridien hajoaminen vapaiksi rasvahapoiksi ja glyseroliksi. Vapaista rasvahappoista valmistetaan ketoaineita (asetoni, asetoasetaatti ja betahydroksibutyraatti). Glyserolia käytetään glukoneogeneesissä glukoosin syntetisoimiseen.

Pyruviinihappo ja pyruvaatti

*Termejä pyruvaaatti (pyruvate) ja pyruviinihappoa (pyruvic acid) käytetään usein rinnakkain. Niiden välillä on selvä ero. Pyruviinihappo on happo, joka voi vapauttaa vetyionin ja sitoutua positiivisesti varautuneeseen natrium- tai kaliumioniin happosuolan muodostamiseksi.

Happosuola tunnetaan nimellä pyruvaatti. Toisin sanoen pyruvaatti on pyruviinihapon suola tai esteri.

Keskeinen ero pyruviinihapon ja pyruvaatin välillä on, että karboksyylihapporyhmän vetyatomi puuttuu tai se on poistettu. Pyruviinihapon heikon happamuusluonteen vuoksi se dissosioituu helposti vedessä ja muodostaa siten pyruvaatin.

Pyruvaatti on tärkeä kemiallinen yhdiste ihmisen aineenvaihdunnassa ja biokemiassa. Pyruvaatti osallistuu glukoosin metaboliaan, eli glykolyysiin, jossa yksi glukoosimolekyyli hajoaa kahdeksi pyruvaattimolekyyliksi. Pyruvaattimolekyylejä käytetään edelleen muissa reaktiosarjoissa (sitruunahappokierrossa) energian tuottamiseksi.

Insuliinin solumetabolia

Lihaskudoksen, verisuonten endoteelin, sydämen ja maksan soluissa tapahtuu insuliinin aktivoima kaskadi.

Biokemiallinen kaskadi tunnetaan myös signalointikaskadina tai signalointireitinä. Kaskadi tarkoittaa yleensä jonkin ärsykkeen laukaisemia soluissa lineaarisesti eteneviä kemiallisia reaktioita. Suurin osa biokemiallisista kaskadeista on tapahtumasarjoja, joissa yksi biokemiallinen tapahtuma laukaisee seuraavan jne.

Insuliinin tuottama vaste näissä soluissa on kudosspesifinen. Rasvakudoksessa, luurankolihaksissa ja sydämessä insuliinin aktivoima kaskadi johtaa glukoosimetaboliaan,josa solut ottavat vastaan glukoosia.

Vasodilataatio ja erektion helppous

Vasodilataatio, eli verisuonten laajeneminen typpioksidin (NO) tuotannon kautta on insuliinisignaloinnin seuraus verisuonten endoteelissa ja sydämessä.

Typpioksidi ja vasodilataatio näyttelevät tärkeää roolia myös makuuhuoneissa vaikuttamalla erektioon.

Insuliiniresistenssi ennakoi aikuistyypin diabetesta, joka tunnetusti aiheuttaa erektiohäiriöitä, mutta insuliiniresistenssi on myös täysin itsenäinen erektiohäiriöiden aiheuttaja jo ennen diabetekseen sairastumista.

Erektiohäiriöt lisääntyvät selvästi 40 ikävuoden jälkeen. Erektiohäiriöiden syy ei ole itsenäinen sairaus, vaan siihen vaikuttavat erityisesti:

  • verenkiertoelinten sairaudet ja niiden hoitoon käytetyt lääkkeet
  • insuliiniresistenssi
  • metabolinen oireyhtymä
  • diabetes
  • lihavuus
  • tupakointi
  • testosteronipitoisuuden lasku
  • kilpirauhasen ali- tai ylitoiminta
  • neurologiset sairaudet

PDE5-estäjät, kuten sildenafiili, tadalafiili, vardenafiili ja avanafiili parantavat erektiota lisäämällä solunsisäistä syksista guanosiinimonofosfaattia, jolloin peniksen paisuvaiskudoksen, virtsarakon, eturauhasen ja virtsaputken sileä lihas rentoutuu.

Lyhyestä virsi kaunis: Seksi on kivaa. Lihominen, insuliiniresistenssi, metabolinen oireyhtymä ja diabetes tekevät seksistä kuitenkin hankalaa tai mahdotonta. Näiden ongelmien esiintyminen on signaali, johon miehen tulee kiinnittää huomiota. Erektiovaikeus voi kertoa sydän- ja verisuonitaudeista, diabeteksesta tai jostakin muusta sairaudesta.

Tämä vaiettu ongelma on hyvin yleinen. Noin 200 000 suomalaismiestä kärsii vaikeasta tai keskivaikeasta erektiohäiriöstä. 300 000 suomalaismiehellä on lievä erektiohäiriö. Pieni elintapojen korjaus voi siis parantaa terveyttä monin tavoin.

Kerrataan: Insuliiniresistenssi ja hyperinsulinemia ovat sydän- ja verisuonitautien itsenäisiä riskitekijöitä. Fokusointi LDL-kolesterolin vähentämiseen on johtanut tilanteeseen, jossa ihmiset sairastuvat ja kuolevat kardiometabolisiin sairauksiin, jotka saataisiin lääkkeettömään remissioon verensokeria ja insuliinia laskevilla pienillä elintapojen korjauksilla.

Aineenvaihdunta

Maksassa insuliinin määrä vaikuttaa glukoneogeneesiin, joka hidastuu ja loppuu. Sen sijaan glukoosin varastoiminen glykogeeneihin glykogeneesissä lisääntyy insuliinin vaikutuksesta.

Insuliinin vaikutus ulottuu myös lipidi- ja proteiinimetaboliaan. Se stimuloi lipogeneesiä ja proteiinisynteesiä ja päinvastoin estää lipolyysiä ja proteiinin hajoamista.

Molekyylinebiologia: tekninen ja huonosti suomennettu osa!

Insuliini on peptidihormoni, joka koostuu 51 aminohaposta, jotka  jakautuvat kahden peptidiketjun, 21 ja 30 aminohappotähteen A- ja B-ketjuiksi.

Kysteiinitähteiden disulfidisidokset yhdistävät nämä kaksi ketjua. Preproinsuliini on insuliinin alkuperäinen esiasteproteiini. Se on yksiketjuinen polypeptidi, joka koostuu proinsuliinista ja signaalipeptidisekvenssistä. Sen siirtyessä endoplasmiseen retikulumiin preproinsuliini pilkkoutuu sen signaalipeptidistä vapauttaen proinsuliinia. Yksiketjuinen proinsuliini sisältää A- ja B-ketjut ja C-peptidin (tai C-domeenin), kuten kuvassa.

C-peptidi muodostuu haiman Langerhansin saarekkeiden β-soluissa syntetisoidusta proinsuliinista sen pilkkoutuessa insuliiniksi ja C-peptidiksi. Sitä erittyy vereen insuliinin kanssa ekvimolaarisina määrinä.

Kaksiemäksiset tähteet reunustavat C-domeenia kummassakin päässä. Jokaisen kaksiemäksisen jäännöksen kohdalla trypsiinin kaltainen entsyymi katkaisee proinsuliinin.

Tämä vapauttaa lopulta insuliinin ja C-peptidin. Insuliinia varastoidaan sinkki-insuliiniheksameereinä glukoosille herkissä eritysrakkuloissa, kunnes sitä tarvitaan metabolisesti.

Muuttumattoman proinsulinin määrä korreloi merkitsevästi insuliiniresistenssin kanssa. Adiponektiiniarvot ovat insuliiniresistenteillä hieman normaalia alhaisemmat, mutta resistiini ei näytä korreloivan insuliiniresistenssin kanssa. Kohonnut proinsuliini kuvastaa pitkälle edennyttä solujen vauriota ja on hyvin spesifinen insuliiniresistenssin indikaattori. – Terve.fi

Insuliinin merkitys glukoosimetaboliassa

Glukoosimetabolian homeostaasia ylläpidetään kahdella signalointikaskadilla. Ne ovat: insuliinin välittämä glukoosinotto (IMGU) ja glukoosistimuloitu insuliinin eritys (GSIS).

IMGU-kaskadi antaa insuliinin lisätä glukoosin imeytymistä luurankolihaksissa ja rasvakudoksessa sekä estää glukoosin muodostumista maksasoluissa.

Insuliinikaskadin alavirran signaloinnin aktivointi alkaa, kun solun ulkopuolinen insuliini on vuorovaikutuksessa insuliinireseptorin alfa-alayksikön kanssa. Tämä vuorovaikutus johtaa konformaatiomuutoksiin insuliinireseptorikompleksissa, mikä edelleen johtaa insuliinireseptorisubstraattien tyrosiinikinaasifosforylaatioon ja sen jälkeiseen fosfatidyyli-inositoli-3-kinaasin aktivoitumiseen.

Fosfatidyyli-inositoli on fosfolipidi, joka koostuu glyserolista, rasvahaposta ja inositolista. Fosfatidyyli-inositoli ja sen fosforyloidut johdokset ovat solujen toisiolähettejä, jotka osallistuvat solun toiminnan säätelyyn. Fosfatidyyli-inositoli-4,5-bisfosfaatin plasmamebraanipää toimii solutukirangan proteiinien sekä joidenkin eksosytoosissa tarvittavien proteiinien kiinnityskohtana. Lipidi osallistuu myös solun signaalinvälitykseen. Tällöin se vapautuu solun reagoidessa solun ulkoiseen signaaliin tiettyjen reseptorien välityksellä. Signaalinvälitys tapahtuu reaktiosarjassa, joka alkaa lipidin fosfaattipään poistamisella ja päättyy proteiinikinaasi C:n aktivaatioon. – Wikipedia

Nämä alavirran tapahtumat aktivoivat GLUT-4-kuljettusmolekyylin siirtymisen solun plasmakalvolle. Solunsisäisesti GLUT4:ää esiintyy rakkuloissa. Näiden GLUT4-rakkuloiden eksosytoitumisnopeus kasvaa insuliinin toiminnan vuoksi. Lisäämällä GLUT-4-kuljetttimien läsnäoloa plasmakalvossa, insuliini sallii glukoosin pääsyn luurankolihassoluihin, jossa se voi metaboloitua glykolyysissä pyruvaateiksi tai varastoitua glykogeeniksi.

Insuliinin rooli glykogeenimetaboliassa

Maksassa insuliini vaikuttaa glykogeenimetaboliaan stimuloimalla glykogeenisynteesiä. Proteiinifosfataasi I (PPI) on avainmolekyyli glykogeenimetabolian säätelyssä.

Defosforylaation kautta PPI hidastaa glykogenolyysinopeutta inaktivoimalla fosforylaasikinaasin ja fosforylaasi A:n. Sitä vastoin PPI kiihdyttää glykogeneesiä aktivoimalla glykogeenisyntaasi B:n. Insuliini lisää PPI-substraattikohtaista aktiivisuutta glykogeenipartikkeleille puolestaan stimuloimalla glykogeenin synteesiä maksan glukoosista.

Insuliini hallitsee suoraan erilaisia maksan metabolisia entsyymejä geenitranskriptiolla. Tämä vaikuttaa geenien ilmentymiseen aineenvaihduntareiteillä

Glukoneogeneesissä insuliini estää nopeutta rajoittavan fosfoenolipyruvaattikarboksylaasin, samoin kuin fruktoosi-1,6-bisfosfataasin ja glukoosi-6-fosfataasin geeniekspressiota.

Glykolyysissä glukokinaasin ja pyruvaattikinaasin geeniekspressio kasvaa. Lipogeneesissä ilmentyminen lisääntyy rasvahapposyntaasista, pyruvaattidehydrogenaasista ja asetyyli-CoA-karboksylaasista.

Insuliinin rooli lipidien aineenvaihdunnassa

Kuten aiemmin todettiin, insuliini lisää joidenkin lipogeenisten entsyymien ilmentymistä. Tämä johtuu rasvasoluihin eli adiposyytteihin lipidiksi varastoituneesta glukoosista. Rasvasolujen kasvu lisää adiposyyttien glukoosinottoa.

Insuliini säätelee tätä prosessia edelleen defosforyloimalla ja estämällä sen jälkeen hormoniherkän lipaasin (HSL) erittymistä, mikä johtaa lipolyysin estoon. Viime kädessä insuliini vähentää näin seerumin vapaiden rasvahappojen määrää.

Tällä on välitön vaikutus painonhallintaan. Insuliini estää rasvasoluihin varastoidun energian hyödyntämisen estämällä triglyseridejä vapaiksi rasvahapoiksi pilkkovan lipolyysin kannalta välttämättömän hormoniherkän lipaasin vaikutuksen.

Lipolyysi pilkkoo rasvasoluihin varastoituneita triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi. Vapaista rasvahapoista maksa tuottaa ketoaineita. Glyserolia käytetään glukoneogeneesissä, joka tuottaa glukoosia. Ajan mittaan solut oppivat tuottamaan vapaista rasvahapoista energiaa beetaoksidaatiossa. 

Insuliinin rooli proteiinien aineenvaihdunnassa

Insuliini säätelee osittain proteiinien vaihtuvuutta. Lyhytketjuisten aminohappojen, kuten alaniinin, arginiinin ja glutamiinin soluunotto lisääntyy insuliinin vaikutuksesta. Tämä stimuloi proteiinisynteesiä.

Protein turnover rate is regulated in part by insulin. Protein synthesis is stimulated by insulin’s increase in intracellular uptake of alanine, arginine, and glutamine (short chain amino acids), as well as gene expression of albumin and muscle myosin heavy chain alpha.

Regulation of protein breakdown is affected by insulin’s downregulation of hepatic and muscle cell enzymes responsible for protein degradation. The impacted enzymes include ATP-ubiquitin-dependent proteases, and ATP-independent lysosomal proteases and hydrolases.

Insuliinin rooli tulehduksessa ja vasodilataatiossa

Insuliini vaikuttaa verisuonten endoteelisoluissa ja makrofageissa anti-inflammatorisesti, eli tulehdusta ehkäisevästi. Endoteelisoluissa insuliini stimuloi endoteelin typpioksidisyntaasin (eNOS) ilmentymistä. eNOS toimii vapauttamalla typpioksidia (NO), mikä johtaa verisuonten laajenemiseen.

Insuliini vaimentaa endoteelisolujen tumatekijä-kappa-B:tä (NF-kB). Endoteelin NF-KB aktivoi adheesiomolekyylien, E-selektiinin ja ICAM-1:n ilmentymisen, joka vapauttaa liukoisia soluadheesiomolekyylejä verenkiertoon.

Tutkimukset ovat yhdistäneet solujen adheesiomolekyylien esiintymisen verisuonten endoteelissa valtimoiden ateroskleroottisten plakkien muodostumiseen ja sydäntauteihin.

Insuliini estää reaktiivisten happiradikaalien (ROS) muodostumisen. Makrofagissa insuliini estää NADPH-oksidaasin ilmentymistä tukahduttamalla yhtä sen avainkomponenteista, p47phoxia.

NADPH-oksidaasia tarvitaan synnyttämään happiradikaaleja, jotka aktivoivat NF-kB:n estäjää, eli kinaasibeeta-inhibiittoria (IKKB). IKKB fosforyloi IkB:n, mikä johtaa sen hajoamiseen. Tämä hajoaminen vapauttaa NF-kB:n, mikä mahdollistaa sen translokaation makrofagin ytimessä.

Solun tumassa ollessaan NF-kB stimuloi verenkiertoon vapautuvien tulehdusta edistävien proteiinien geenien transkriptiota:

  • indusoituva typpioksidisyntaasi (iNOS)
  • tuumorinekroositekijä-alfa (TNF-alfa)
  • interleukiini-6 (IL -6)
  • interleukiini-8 (IL-8)
  • monosyyttien kemoattraktantiproteiini (MCP-1)
  • matriisimetalloproteinaasi (MMP)

Lääketieteellinen merkitys

Monet metaboliset sairaudet liittyvät krooniseen hyperglykemiaan, hyperinsulinemiaan ja insuliiniresistenssiin.

Tyypin 1 insuliinista riippuvainen diabetes mellitus (DM1) on tauti, jossa haiman insuliinin tuotanto on vähäistä tai kokonaan loppunut. Koska insuliinia tarvitaan solujen glukoosinottoon, diabeteksessa solujen kyky tuottaa glukoosista energiaa romahtaa. Tämän seurauksena hoitamaton tyypin 1 diabetes johtaa nälkiintymiseen ja kuolemaan.

Tyypin 2 insuliinista riippumaton diabetes mellitus (DM2) on metabolinen sairaus, jossa keho tuottaa yhä insuliinia, mutta jatkuvan hyperglykemian (korkean verensokerin) vuoksi solujen glukoosinotto vuosien mittaan heikentyy. Tämä tarjonnan ja kysynnän epäsuhta johtaa insuliiniresistenssiin ja epänormaaliin glukoosimetaboliaan.

Molemmat diabetekset ovat sokeriaineenvaihdunnan häiriöitä. Ruokailun jälkeen verensokeri pysyy koholla, koska haima ei tuota insuliinia (DM1) tai solujen insuliiniherkkyys on vaurioitunut (DM2). Kohollaan oleva verensokeri ja korkeat veren insuliinipitoisuudet vahingoittavat verisuonia ja elimiä. Tyypin 2 diabetes lisää erektiovaikeuksia, lihomista ja komplikaatioita, joihin kuuluvat mm. neuropatia, munuaisten vajaatoiminta, retinopatia, sydän- ja verisuonitaudit sekä perifeeriset verisuonisairaudet.

Tyypin 2 diabeteksen alkuvaiheessa haiman beetasolut tuottavat riittävästi insuliinia energia-aineenvaihdunnan ylläpitämiseksi, mutta insuliinin tuotanto muuttuu tehottomaksi, kun osa insuliinin välittämästä glukoosinottokaskadista ei enää toimi.

Erityisesti glukoosin kulkeutuminen plasmamembraanin läpi GLUT-4-kuljettimien kautta heikentyy, mikä kertoo solujen insuliiniresistenssista. Insuliiniresistenssi vaikuttaa ensin lihassoluihin. Rasvasolujen insuliinisensitiivisyys pysyy yleensä hyvänä varsin pitkään, minkä vuoksi glukoosia päätyy rasvasoluihin lihasten sijaan.

Pahoittelen, jos tekstiin jäi käännös- ja/tai asiavirheitä.


https://www.ncbi.nlm.nih.gov/books/NBK525983/




Insuliini ja terveys: Hiilihydraatti-insuliinimalli

Käsittelin edellisessä artikkelissa (Insuliini ja terveys: Johdanto) insuliinin aineenvaihduntaa ja toimintamekanismeja. Insuliini liittyy moniin elintapasairauksiin, kuten lihavuuteen, jota tarkastelen tässä hiilihydraatti-insuliinimallin kautta.

Insuliinin säätelemä anabolinen aineevaihdunta rakentaa uutta kudosta, kuten lihaksia ja rasvakudosta varastoimalla energiaa ja säätelemällä rasva- ja proteiinisynteesiä.

Rasvan varastoiminen läskinä ärsyttää monia, mutta se on fysiologisesti perusteltua. Lähes kaikki eläimet, mukaan lukien ihmiset, varastoivat energiaa rasvakudokseen. Niin luonto toimii. Läski on luonnon tapa varmistaa, että energiaa on saatavilla myös silloin, kun ravintoa ei ole saatavilla.

Kesällä lihova karhu ei pidä läskiä rumana. Läskin turvin karhu voi nukkua talven yli ja synnyttää talvipesässä terveitä ja vilkkaita karhunpentuja.

Koska läski on arvokasta energiaa, karhun ei tarvitse poistua pesästä etsimään ravintoa. Yhdessä grammassa karhun rasvakudokseen keräämää läskiä on yli tuplasti enemmän akkuvirtaa kuin grammassa hiilihydratteja tai proteiineja.

Rasvavarastojen täyttäminen kesällä ja talviuni talvella on karhun keino sopeutua talven ravintopulaan. Läski on ihmisen elimistön tapa turvata energian saanti. Lihominen on evoluution kannalta perusteltua.

Karhun lihomiseen kiteytyy läskin filosofia

Miten insuliini vaikuttaa lihomiseen?

Lihominen muuttuu herkästi sairaalloiseksi. Se vaikuttaa terveyteen ja  sosiaaliseen elämään.

Tri Fatima Cody Stanford käyttää lihavuudesta samanlaista terminologiaa, kuin muista sairauksista: ihmisellä voi olla diabetes, tai hän voi sairastaa lihavuutta. Hän siis haluaa poistaa lihavuuteen liittyvät laiskuuteen ja ylensyöntin viittavat stigmat. Lihavuus on elämäntapasairaus.

Lihavuus on usein seuraus aineenvaihdunnan häiriintymisestä aivan kuten diabetes.

Hormonit säätelevät aineenvaihduntaa ja kertovat aivoille ravinnontarpeesta. Jos ja kun tämä järjestelmä menee sekaisin, ihminen alkaa varastoida energiaa sen sijaan, että kuluttaisi sitä. Tähän vaikuttaa erityisesti insuliini.

Rasvakudoksella on tärkeä fysiologinen rooli. Sen lisäksi, että rasvakudos varastoi energiaa ja turvaa energiansaannin silloin, kun ravintoa ei ole tarjolla, rasvakudos säätelee aktiivisesti kylläisyyden tunnetta leptiini-hormonin välityksellä. Nälän tunnetta säätelee suolistosta erittyvä greliini.

Biologiaa ja kemiaa ei oikein voi paeta. Informaatioajan bittivirtojen some-olentoina olemme kuitenkin hormonien välittämiä signaaleja tyydyttäviä eläimiä.

Hormonien vaikutuksen ymmärtäminen voi auttaa ymmärtämään nälkää ja lihottavia mielihaluja. Hormonitoiminnan häiriintyminen auttaa ymmärtämään lihavuutta aineenvaihdunnan sairautena.


Rasvasotaa

Ihminen lihoo syömällä liikaa. Se ei ole mikään salaisuus. Todellinen mysteeri on se, miksi ihminen syö liikaa ja lihoo silloinkin, kun hänellä on rasvavarastoissaan kuukaudeksi energiaa.

Lihavien määrä on kolminkertaistunut vuoden 1980 jälkeen. Intensiivisestä tutkimuksesta huolimatta globaalin lihavuusepidemian syyt ovat yhä arvailujen ja kiistojen aihe.

Rasvasota ei päättynyt 1970-luvulla, vaan jatkuu siirappisena asemasotana. Tämän sodan sokereiden sairastuttamat siviiliuhrit kamppailevat nyt lihavuuden, metabolisen oireyhtymän, rasvamaksan ja aikuisyypin diabeteksen lisäksi muisti- ja suolistosairauksia vastaan ahmimalla samaa korkean glykeemisen kuorman sokeripitoista roskaa, joka sai heidät alun alkaenkin sairastumaan. John Yudkin ja monet muut varoittivat tästä jo 1970-luvulla.

Aineenvaihduntaan liittyvät sairaudet kuormittavat taloutta ja kasvattavat terveydenhoitomenoja. Yhdysvalloissa lihavia on pian yhtä paljon kuin television omistajia.

Perinteisillä kalorirajoitetuilla dieeteillä ei ole pitkäkestoista laihduttavaa vaikutusta. Lihavuustutkimukset osoittavat, että vain yksi kuudesta kaloreita rajoittamalla laihtunut onnistuu välttämään yli 10 prosentin lihomisen laihduttamista seuraavan vuoden aikana. Lähes kaikki kaloreiden rajoittamiseen perustuvat laihdutuskuurit epäonnistuvat.


Dieettien ympärille on kasvanut hedelmällisiä laihdutus- ja hyvinvointibisneksiä, joiden rahavirtoja ohjaa usko perinteiseen kaloriteoriaan.

Ajatus, että kaikki kalorit ovat samanarvoisia, on hieman harhainen. Kalorien rajoittaminen johtaa usein painon jojoiluun, koska se hidastaa perusaineenvaihduntaa.

Miksi lihavalla on nälkä, vaikka hän karhuemon tapaan olisi varastoinut rasvakudokseen riittävästi energiaa koko talveksi?

Nälkää ja kylläisyyttä säätelee hormonitoiminta (erityisesti greliini ja leptiini). Insuliinin ja glukagonin eritystä säätelee ruokaan liittyvät aistimukset ja verensokeripitoisuuden muutokset.

Hormonaalisesti ravinnon kalorimäärää tärkeämpi tekijä on ravinnon laatu. Laadullisilla valinnoilla voi vaikuttaa nälän tunteeseen ja ohjata elimistö rasvan aktiiviseen polttamiseen betaoksidaatiossa. Se on oikeastaan aika helppoa.

CIM (hiilihydraatti-insuliinimalli)

Lihomisen hiilihydraatti-insuliinimallin (CIM/Carbohydrate-Insulin-Model) mukaan pitkälle jalostettujen, korkean glykeemisen kuorman ruokien kulutuksen kasvu määrittelee syömistavoissa tapahtunutta muutosta ja korreloi lihavuusepidemian kanssa.

Vuoden 1980 jälkeen yhä suurempi osa päivittäisestä energiasta on saatu sokereista (hiilihydraateista). Rasvan ja aivan erityisesti tyydyttyneen rasvan kulutus on samaan aikaan laskenut. Hiilihydraatit eivät pidä nälkää loitolla läheskään niin hyvin, kuin rasva, ja siksi ihmiset puputtavat sokereita aamusta iltaan.

Jatkuvasti korkea verensokeri ja verenkierrossa raivoava insuliinimyrsky vaikuttavat nälkää ja kylläisyyttä säätelevien hormonien lisäksi terveyteen.

Korkea verensokeri ja insuliini ovat tunnettuja verisuonia ja elimiä vaurioittavia sydän- ja verisuonitautien riskitekijöitä. Nykyinen hiilihydraattipainotteinen elämäntapa altistaa insuliiniresistenssille, lihomiselle, aikuistyypin diabetekselle, sydän- ja verisuonitaudeille, suolistosairauksille ja muistisairauksile.

Tämä kaikki on todistettu lukemattomissa in vivo ja in vitro ihmis- ja eläinkokeissa sekä laboratorioiden solumaljoissa.

Kuinka korkean glykeemisen kuorman ruoka vaikuttaa?

Hiilihydraattipainotteinen ruokavalio aiheuttaa hormonaalisia muutoksia, jotka vaikuttavat aineenvaihduntaan. Ne edistävät energian varastoimista rasvakudokseen, kasvattavat nälkää ja vähentävät energiankulutusta.

Aineenvaihdunnan toimintaa ja terveyttä ei paranna se, että hiilihydraatit ja suositut siemenöljyt ylläpitävät inflammaatiota tuottamalla vapaita happiradikaaleja. Liiallinen omega6-rasvahappojen saanti johtaa arakidonihapon muodostumiseen, josta elimistö syntetisoi prostaglandiineja. Prostaglandiinien synteesi elimistössä kiihtyy tavallisesti kuumeen ja kivun seurauksena, sillä ne vaikuttavat tulehdusreaktion syntyyn.

Tutkimuksista

Tutkimustulokset tukevat hiilihydraatti-insuliinimallia. Eläinten ruokavalio vaikuttaa CIM-mallin antaman ennusteen mukaisesti eläimen aineenvaihduntaan ja kehon koostumukseen kalorien määristä riippumatta.

Rottakoe: Samat makrot ja kalorimäärä. 3 viikon koe. Ainoana muuttujana omega6, jota lihakarjan talissa on vähän, oliiviöljyssä hieman enemmän saffloriöljyssä on valtavasti.

Omegakutosten vaikutus painoon ja kehon rasvakoostumukseen.

Kalorimäärät, eli rottien energiansaanti oli täsmälleen sama ja omegakutosia paitsi myös ravinnonlähteet olivat samoja. Näin suuri vaikutus painoon oli pelkästään omegakutosilla.

Käyttäytymistutkimusten meta-analyysit kertovat tehokkaammasta painonpudotuksesta vähäisellä glykeemisellä kuormalla verrattuna vähärasvaiseen ruokavalioon.

Verensokerin laskeminen ja insuliinitasojen pitäminen matalina vähän hiilihydraatteja ja runsaasti rasvaa sisältävällä ruokavaliolla laihduttaa varmemmin ja terveellisemmin kuin kaloreiden rajoittaminen. Se on terveellisin tapa hoitaa alkoholista riippumatonta rasvamaksaa, metabolista oireyhtymää ja aikuistyypin diabetesta.

Lääkeresistenttiä epilepsiaa on hoidettu jo sata vuotta hiilihydraatteja rajoittamalla. Nyt positiivisia hoitotuloksia saadaan myös Parkinsonin taudin ja Alzheimerin taudin hoidossa.

Pienen glykeemisen kuorman ravinto ja ketoosi kiinnostavat NASA:a ja Yhdysvaltojen puolustusministeriötä. Äärioloissa ketoosi on osoittautunut ylivoimaiseksi aineenvaihduntamekanismiksi. Siksi ketoosia tutkitaan taistelusukeltajien ja astronauttien toimintakyvyn tehostajana.

Vielä vuosikymmen sitten luultiin, että aivosolut tarvitsevat välttämättä glukoosia, mutta nyt tiedetään, että betahydroksibutyraatti on aivosoluille optimaalista ravintoa. Elimistö valmistaa betahydroksibutyraattia rasvasta, kun sokerin saanti loppuu. Neurodegeneratiivisia tauteja sairastavien koehenkilöiden aivojen magneettikuvissa  sairauden hiljentämät alueet ovat aktivoituneet uudestaan ja kognitiiviset kyvyt parantuneet rasvapainotteisella ravinnolla. Erityisesti keskipitkät rasvahapot (MCT) ovat tutkimuksissa kohentaneet koehenkilöiden aivojen aktiivisuutta ja kognitiota.


Olemassaolevat tutkimukset vahvistavat kuitenkin matalan glykeemisen kuorman ruokien edistävän laihtumista ja terveyttä korkean glykeemisen kuorman ruokia paremmin.

Hiilihydraattien laadun ja määrän lisäksi hiilihydraatti-insuliinimallia voi hyödyntää käsitteellisenä kehyksenä, joka auttaa ymmärtämään, kuinka eräät ravintoaineet altistavat aineenvaihdunnan lihomista edistäville hormonaalisille muutoksille.

Korkean glykeemisen kuorman ruokien rajoittaminen on käytännöllinen laihdutusmenetelmä, jonka painopiste ei ole rasvan ja kaloreiden vähentämisessä, vaan verensokeri- ja insuliinitasojen madaltamisessa.

Syö vähemmän” ja ”liiku enemmän!

Me opimme tuon imperatiivin jo peruskoulussa. Voipaketti, pekoni ja kananmunat palauttavat mieleen vanhat pelot: yydyttynyt rasva on lihottavaa myrkkyä, joka murhaa sinut hitaasti, mutta varmasti tukkimalla verisuonesi.

Pelottavien kummitusjuttujen rinnalla olemme oppineet, että siemenöljyt ja margariinit ovat superhyperextraterveellisiä rasvoja, jotka laskevat vastenmielistä kolesterolia. Se on pitkälti roskaa!

Tieteellinen näyttö, ihmisen fysiologia ja miljoonien ihmisten henkilökohtaiset kokemukset osoittavat, että painonpudotuksen myötä nälkä lisääntyy ja energiankulutus laskee.

Toisin sanoen laihduttajan paino jumittaa nälkäkuurilla ja nälkä kurnii vatsanpohjassa. Useimmat kaloreita rajoittamalla laihduttavat lihovat lähtöpainoon pian laihdutuskuurin jälkeen. Tiukka kaloreiden rajoittaminen hidastaa perusaineenvaihduntaa, minkä vuoksi ihminen lihoo entistä helpommin. Se voi olla ongelma laihduttajalle, mutta ei laihdutusbisnekselle.

Hiilihydraattien rajoittaminen ei edellytä kallista kuntosalikorttia tai hintavia laihdutusruokia. Sen sijaan vähähiilihydraattinen, runsaasti rasvaa ja kohtuullisesti proteiinia sisältävä ruokavalio pudottaa tehokkaasti painoa, tehostaa rasvan polttoa, laskee verensokeria ja verenpainetta.

Rasvapainotteinen ruokavalio voi nostaa lipoproteiinien määrää (kolesterolia), mutta elimistö säätelee kolesterolin homeostaasia. Lipoproteiinien määrä lisääntyy, koska LDL ja HDL ovat rasvaa, kolesterolia ja rasvaliukoisia vitamiineja soluihin kuljettavia molekyylejä.

Kun solujen energia otetaan rasvasta, veressä kulkee luonnollisesti enemmän rasvaa kuljettavia molekyylejä

Lisääntyvä tutkimusnäyttö rauhoittelee kolesteroliin ja tyydyttyneisiin rasvoihin liittyviä pelkoja. Kolesteroli on elintärkeä aine ja tyydyttyneet rasvat ovat sydäntautien osalta pahimmillaankin neutraaleja.

On siis aika kääntää uusi lehti terveystiedoissa: sydän- ja verisuonitaudit johtuvat kasvavan näytön perusteella jatkuvasti korkeasta verensokerista ja insuliinista. Kolesteroli on todennäköisesti seuraus verisuonten vahingoittumisesta, ei syy vahintoittumiselle.

Ajatus laihdutuskuurista on muutenkin nurinkurinen. Teoria, että laihduttaja vähentää energian saantia, kunnes tavoitepaino saavutetaan ja palaa ihannepainoisena ruokavalioon, joka johti lihomiseen, on yksinkertaisesti kestämätön.

Pysyvä laihtuminen edellyttää elämäntaparemonttia. Pelkkä laihdutuskuuri ei riitä, koska paino palaa korkojen kera heti kun kuuri loppuu.

Matalan glykeemisen kuorman ruokavalio (esimerkiksi ketogeeninen ruokavalio) laskee painoa käyttämällä rasvakudokseen varastoitua energiaa.

Hiilihydraattipainotteinen ruokavalio estää rasvan käyttämisen energianlähteenä, koska insuliini on lipolyysin estäjä. Kaloreita rajoittamalla laihduttaja kannibalisoi lihaksiaan vähintään yhtä paljon kuin rasvakudosta. Ketogeeninen aineenvaihduntaan perustuva ruokavalio käynnistää lipolyysin, jolloin keho saa tarvitsemansa energian rasvakudoksesta, eikä elimistön tarvitse pilkkoa lihaksia ravinnoksi. Tämä on osoitettu mm. Minnesota Starvation Experimentissä 1944-1945.

Hiilihydraatti-insuliinimalli

Vaihtoehtoisen näkemyksen mukaan syömistottumusten ja syödyn ravinnon muutokset johtavat hormonaalisiin reaktioihin, jotka ohjaavat ravinnosta saatua energiaa rasvasoluihin.

Hiilihydraatti-insuliinimallissa rasvasolujen rooli on aktiivinen lihavuuden etiologian kannalta. Rasvakudos kertoo leptiinin välityksellä aivoille kehon energiabalanssista. Tämän mekanismin häiriintyminen, leptiiniresistenssi, johtaa tilaan, jolloin ihminen kokee itsensä nälkäiseksi, vaikka hän olisi hetkeä aimmin täyttänyt itsensä runsasenergisella aterialla.

Vaikka monet tekijät vaikuttavat rasvan kumuloitumiseen, anabolisena hormonina insuliini heiluttelee tahtipuikkoa energia-aineenvaihdunnan säätelyssä ja ravinteiden varastoimisessa.

Insuliini vähentää kaikkien energiaravinteiden kiertokonsentraatiota stimuloimalla glukoosinottoa kudoksiin, tukahduttamalla rasvahappojen vapautumista rasvakudoksesta, estämällä ketonien tuotantoa maksassa ja edistämällä rasvan ja glykogeenin varastoimista.

Insuliini on lipolyysin estäjä

Insuliini on kolmen lipolyysiin osallistuvan entsyymin estäjä. Estämällä hormonisensitiivistä lipaasia (HSL), rasvakudoksen triglyseridilipaasia (ATGL) ja epäsuorasti CPT1-entsyymiä, insuliini estää rasvasolujen purkamisen vapaiksi rasvahapoiksi lipolyysissä.

Veren kohonnut insuliinipitoisuus (hyperinsulinemia) esimerkiksi tyypin 2 diabeteksen insuliinihoitojen aloittamisen jälkeen ennustaa suurella todennäköisyydellä painonnousua.

Osa insuliinin aiheuttamasta painonnoususta liittyy aineenvaihdunnan muutoksiin. Tyypin 1 diabeteksen haiman Langerhansin saarekkeiden beetasolujen tuhoutuminen, riittämätön insuliinihoito tai insuliinin eritystä estävät lääkkeet aiheuttavat tunnetusti laihtumista. Insuliinin vaikutukset painoon on kattavasti dokumentoitu.

Haima on erityisen herkkä hiilihydraateille. Verensokerin kohoaminen johtaa moninkertaiseen insuliinin eritykseen muihin ravintoaineisiin verrattuna. Glukoosipitoisuuden kohoaminen veressä johtaa insuliinivasteeseen, joka on jotakuinkin kymmenkertainen rasvan aiheuttamaan insuliinivasteeseen nähden. Myös hiilihydraattien määrällä ja laadulla on selvä vaikutus insuliinin eritykseen.

Glykeeminen kuorma

Glykeeminen indeksi (GI) kuvaa, kuinka nopeasti tietyt elintarvikkeet nostavat verensokeria (ja siten insuliinia) 2 tunnissa syömisen jälkeen.

Suurin osa valkoisista jauhoista, perunaruoista ja lisätyistä sokereista sulavat nopeasti ja niillä on korkea GI, kun taas ei-tärkkelystä sisältävillä vihanneksilla, palkokasveilla, kokonaisilla hedelmillä ja täysjyvillä on yleensä matalampi GI.

Tähän liittyvä mitta, glykeeminen kuorma (GL, Glycemic Load) on paras ruokailun jälkeisen verensokerin ennustaja. Se selittää jopa 90% varianssista. Glykeeminen kuorma kertoo ruoan sisältämien hiilihydraattien laadusta ja määrästä.

Tämä on tuttua tyypin 1 diabetesta sairastaville, mutta monet tyypin 2 diabetekseen sairastuneet jatkavat lääkkeiden avustuksella lihottavan ja sairautta ylläpitävän ruokavalion noudattamista.

Tyypin 2 diabeteksen saa remissioon hiilihydraatteja rajoittamalla, esimerkiksi ketogeenisellä ruokavaliolla. Tätä hoitomuotoa suosittelee jo yli 10 000 lääkäriä ympäri maailman. Se on tehokkain tapa hoitaa tyypin 2 diabetesta, alkoholista riippumatonta rasvamaksaa ja metabolista oireyhtymää.

Glykemiakuormaa voidaan hyödyntää arvioitaessa aterian vaikutusta veren sokeriin ja veren insuliinivasteeseen. Vaikka aterialla nautittaisiin ruoka-aineita, joilla on korkea glykeeminen indeksi (GI), ei vaikutus veren sokeriin ole kovin suuri jos näitä ruoka-aineita on vain vähän suhteessa aterian kokoon. Tällöin aterian glykemiakuorma on pieni. Suuri hiilihydraattimäärä ja glykeeminen indeksi taas kasvattavat myös glykemiakuormaa.

Glykemiakuorma lasketaan seuraavasti: GI x imeytyvän hiilihydraatin määrä / 100. Aterian glykemiakuormaa määritettäessä lasketaan yhteen sen sisältämien ruoka-aineiden GL-arvot.

Proteiini stimuloi insuliinin eritystä aminohappokoostumuksesta riippuen, mutta proteiini vaikuttaa myös insuliinin vastavaikuttajan, katabolisen glukagonin, eritykseen. Ravinnon rasvalla on vain vähän suoraa vaikutusta insuliinin eritykseen, mikä muodostaa teoreettisen perustan runsaasti rasvaa sisältävien ruokavalioiden terveys- ja laihdutusvaikutuksille.

Hiilihydraatti-insuliinimallin mukaan runsashiilihydraattinen, erityisesti lisättyä sokeria ja/tai tärkkelystä sisältävä ruokavalio aiheuttaa aterianjälkeistä hyperinsulinemiaa, mikä lisää energian varastoimista rasvasoluihin altistaen lihomiselle.

Ylimääräinen glukoosi varastoidaan rasvasoluihin, koska veressä glukoosi voi aiheuttaa glykaation muiden ravinteiden kanssa.

Glykaatio

Glykaatio on mikä tahansa ei-entsymaattinen reaktio, jossa glukoosi tai mikä tahansa muu hiilihydraatti liittyy kovalenttisesti muunlaisiin molekyyleihin kuten proteiineihin, lipideihin tai DNA:han. Kehittynyt glykaation lopputuote (eng. advanced glycation end-product, AGE) on yleisnimitys suurelle joukolle erilaisia proteiineja tai rasvoja, jotka ovat glykatoituneet ei-entsymaattisesti altistuttuaan joillekin sokereille, eli liittyneet näihin sokereihin.AGE:ja voidaan myös kutsua glykotoksiineiksi ja ne saattavat olla pahentava osatekijä ikääntymisessä ja osallistua useiden rappeuttavien sairauksien kuten Alzheimerin taudin, diabeteksen, valtimonkovettumataudin ja kroonisen munuaisten vajaatoiminnan kehittymiseen. Lisäksi niiden on tutkittu osallistuvan harmaakaihin, lihasheikkouden ja syöpäkasvainten kehittymiseen.

CIM vs. kalorimalli

Kuten perinteinen kalorimalli, myös CIM pohjautuu termodynamiikan ensimmäiseen lakiin, jossa verrataan energiansaannin ja energiankulutuksen erotusta.

CIM pitää ylensyöntiä rasvan määrän lisääntymisen seurauksena, ei rasvan määrän ensisijaisena syynä.

Toisin sanoen hiilihydraatti-insuliinimallissa syy-seuraus-suhde, joka yhdistää energian tasapainon rasvakudokseen, virtaa vastakkaiseen suuntaan hormonaalisten signaalien ohjaamana. Tästä näkökulmasta kalorien rajoittamista voidaan pitää oireenmukaisena hoitona, joka valitettavan usein epäonnistuu nykyaikaisessa ravintoympäristössä.

Vähäkaloriset / vähärasvaiset ruokavaliot voivat pahentaa taustalla olevaa aineenvaihdunnan häiriötä rajoittamalla edelleen veressä olevan energian hyödyntämistä ja käynnistämällä nälkävasteen, johon liittyy kasvanut nälän tunne, aineenvaihdunnan hidastuminen ja kohonnneet stressihormonitasot.

Eläintutkimusten kertomaa

Insuliinin injektio keskushermostoon aiheuttaa ruokahaluttomuutta ja laihtumista, mutta insuliinin antaminen perifeerisesti edistää rasvan varastoitumista rasvakudokseen, kasvattaa nälän tunnetta ja aiheuttaa painonnousua.

Vaikka koe-eläinten kaloreita rajoitetaan painonnousun estämiseksi, insuliinia saaneilla eläimilä rasvakudokseen varastoituu yhä rasvaa, mikä vastaa CIM:n ennustetta energiatalouden muuttuneista painopisteistä.

Ruokavalioilla, jotka luontaisesti lisäävät insuliinin eritystä, on samanlaisia metabolisia vaikutuksia kuin insuliinin injektiolla.

Jyrsijöillä, joita ruokitaan korkean glykeemisen kuorman ruokavaliolla, ilmenee progressiivisia poikkeamia aineenvaihdunnasa. Näitä ovat:

  • hyperinsulinemia
  • rasvasolujen koon kasvu
  • lisääntynyt rasvan varastointi
  • pienempi energiankulutus
  • kasvanut nälkä

Kaloreiden rajoittaminen painonnousun estämiseksi eläimillä, jotka saivat korkean glykeemisen kuorman ravintoa, ei estänyt lihomista tai siihen liittyviä kardiometabolisia riskitekijöitä. Koe tuki insuliininantokokeiden tuloksia.

Sen sijaan jyrsijöiden energiankulutus kasvoi ja paino laski niillä hiirillä, jotka saivat hyvin vähän hiilihydraatteja verrattuna tavanomaisella ruokavaliolla ruokittuihin hiiriin. Tämä toteutui, vaikka hiirien ravinnon kalorimääräisessä saannissa ei ollut eroja.

Geneettiset mallit

Korkeat insuliinipitoisuudet veressä voivat johtua primaarisesta insuliinin ylierityksestä (joka usein aiheuttaa painonnousua) tai olla vaste insuliiniresistenssille (joka voi suojata painonnousulta, etenkin jos insuliiniresistenssiä esiintyy rasvakudoksessa. Siksi paastoinsuliiniin ja painoon perustuvat havainnointitutkimukset eivät anna luotettavaa CIM-ennustetta.

Geneettisten tutkimusten avulla voidaan havaita syy-seuraus-suhteita

”In a recent report, bi-directional Mendelian Randomization was used to examine the relationship between insulin secretion and BMI, potentially free from confounding by socio-demographic and behavioral factors inherent to most conventional associational analyses. This study found that genetically-determined insulin secretion strongly predicted BMI , whereas genetically-determined BMI did not predict insulin secretion. In addition, variants in the insulin promotor gene associated with insulin hypersecretion in humans predict weight gain during adolescence. Furthermore, transgenic mice with reduced insulin secretion had increased energy expenditure and were protected from diet-induced obesity, leading the investigators to conclude, in accordance with the CIM, that “circulating hyperinsulinemia drives diet-induced obesity and its complications.”

Käyttäytymiskokeet ja havainnointitutkimukset

Toisin kuin tavanomaisessa lihomismallissa ennustetaan, vähärasvaisten ruokavalioiden luonnostaan pienempi energiamäärä ei itsestään ylläpidä jatkuvaa laihtumista.

Useissa viimeaikaisissa meta-analyyseissä on osoitettu, että vähärasvaiset ruokavaliot ovat pitkällä aikavälillä huonompia laihdutusruokavalioita kuin korkeamman rasvapitoisuuden (vähähiilihydraattiset) ruokavaliot.

Of note, two major trials that employed special measures to improve compliance, Diogenes and the DIRECT trial found greater weight loss on low- vs high-GL diets A third major study, DIETFITS, reported non-significantly more weight loss on a Healthy Low-Carbohydrate Diet vs Healthy Low-Fat Diet, but both groups were counselled to avoid refined grains, sugar and other processed foods. Consequently, the GL of the Healthy Low-Fat Diet was exceptionally low for a higher-carbohydrate diet – similar to that of the lowest-GL diet in Diogenes.”

Suurissa, pitkäkestoisissa kohorttitutkimuksissa eräillä erittäin rasvaisilla elintarvikkeilla (esim. pähkinät ja täysrasvaiset maitotuotteet), on joko olematon tai käänteinen yhteys painonnousuun. S

itä vastoin monet runsaasti kulutetut korkean glykeemisen kuorman elintarvikkeet (esim. perunat, riisi, maissi, vaaleat viljat, makeat jälkiruoat, sipsit, sokerijuomat ja hedelmämehut) assosioituivat vahvasti lihomiseen.

Ravintotutkimukset

Hiilihydraatti-insuliinimallin mukaan korkean glykeemisen kuorman ateria rajoittaa energiaravinteiden saantia noin 3-5 tuntia syömisen jälkeen, vähentää rasvan polttoa, pienentää energiankulutusta, stimuloi stressihormonin eritystä ja kasvattaa nälkää.

Nämä vaikutukset on raportoitu useissa tutkimuksissa. Pitkällä aikavälillä rasvan varastointi lisääntyy korkean glykeemisen kuorman ruokavalion noudattamisen seurauksena.

Tavanomaisessa runsaasti hiilihydraatteja sisältävässä ruokavaliossa aivot ovat riippuvaisia glukoosista (yli 100 g / päivä). Ketogeenisen ruokavalion alkuvaiheessa aineenvaihdunnan on tuotettava glukoosia verenkierron vapaista aminohapoista, sitruunahappokierron väliaineista ja glyserolista maksassa tapahtuvassa glukoneogeneesissä.

Jos veressä ei ole riittävästi vapaita aminohappoja glukoneogeneesiin, kehon on väliaikaisesti katabolisoitava (tai kannibalisoitavat) lihasten proteiineja glukoneogeneesin lähtöaineiksi. Tämä on kuitenkin väliaikainen vaihe, koska ketogeneesin tuottamien ketonien pitoisuus ja merkitys aivojen ravintona lisääntyy muutamassa päivässä.

Hyvin vähähiilihydraattisen ruokavalion (ja pitkittyneen paaston) tunnusmerkki on ketoosin kehittyminen – josta on peräisin nimitys ”ketogeeninen ruokavalio”.

Nälkää käsittelevät tutkimukset kertovat rasva-aineenvaihduntaan sopeutumisen etenemisestä.

Owen et al., osoitti, että ketonipitoisuus: ß-hydroksibutyraatti, asetoetikkahappo ja asetoni lisääntyivät asteittain 10 päivän ajan ja saavuttavat vakaan tason vasta noin 3 viikon paaston jälkeen.

Yang et al. osoitti, että ketonien erittyminen virtsaan lisääntyi 10 päivän ajan hyvin vähähiilihydraattisella ruokavaliolla, mutta hitaammin kuin paaston aikana.

Vazquez et al. osoitti, että typpitasapaino oli negatiivisempi vähäkalorisella ketogeenisellä ruokavaliolla verrattuna ei-ketogeeniseen ruokavalioon noin 3 viikon ajan, ja saavutti sitten neutraalin nettotasapainon (eli ei lisännyt rasvattoman massan menetystä).

On hyvin dokumentoitu, että rasva-aineenvaihduntaan sopeutuminen edellyttää vähintään 2-3 viikon vähähiilihydraattisen ruokavalion noudattamista. Ehkä pidempäänkin. Lyhyemmät tutkimukset eivät osoita makroravintoaineiden aiheuttamia aineenvaihdunnan muutoksia.

Liiallinen syöminen aiheuttaa liikalihavuutta

Kalorien liiallinen kulutus johtaa painonnousuun, kuten termodynamiikan ensimmäisessä laissa määritellään. Keho pyrkii kuitenkinsäilyttämään painon tasapainossa. Pitkällä aikavälillä liiallinen energian saanti kasvattaa dynaamisesti energiankulutusta ja vähentää nälän tunnetta. Nämä fysiologiset mekanismit pyrkivät vähentämään jatkuvaa painonnousua.

Klassisissa yliruokintatutkimuksissa monet kokeisiin osallistuneet ilmoittivat tuntevansa olonsa epämukavaksi liiallisella energian saannilla. Useilla oli vaikeuksia jatkaa liian paljon energiaa sisältävää ruokavaliota. Kun ohjelmat päättyivät, useimpien kokeisiin osallistuneiden ruumiinpaino palasi spontaanisti lähtötasolle tai sen lähelle.

Eläimillä ja ihmisillä tehdyt tutkimukset vahvistavat, että fysiologiset tekijät rajoittavat liiallista lihomista ja liiallista painonlaskua. Näiden mekanismien häiriintyminen (sairastuminen) aiheuttaa lihomista.
Hiilihydraatti-insuliinimallin mukaan korkean glykeemisen kuorman ruokavalio muuttaa näitä luonnollisia homeostaattisia mekanismeja epäterveelliseen suuntaan.

Lihominen liittyy tyypillisesti verenkierron kohonneisiin glukoosi-, insuliini- ja rasvahappopitoisuuksiin

”Unfortunately, cross-sectional studies after development of obesity may also confound understanding of etiology. The CIM proposes that metabolic fuel concentration is reduced with a high-GL diet in the late postprandial period (approximately 2.5 to 5 hr after eating) due to excessive adipose anabolic activity during the dynamic stage of obesity development. Eventually, fat cells reach a limit, beyond which they cannot effectively expand storage capacity.At this stage, weight gain plateaus (at the cost of increasing insulin resistance and chronic inflammation) and circulating metabolic fuel concentrations consequently rise.”

Toisaalta Yhdysvalloissa proteiinin ja rasvan absoluuttinen saanti ei ole juurikaan muuttunut 1970-luvulta lähtien, kun taas hiilihydraattien, (pääasiassa korkean glykeemisen kuorman valkoisten jauhojen, perunoiden, pikakruoan ja lisätyn sokerin) saanti on lisääntynyt huomattavasti, mikä on kasvattanut merkittävästi kalorien kokonaissaantia.

Kansainväliset epidemiologiset tutkimukset eivät aina osoita selkeää rinnakkaisuutta korkean glykeemisen kuorman ja liikalihavuuden esiintyvyyden välillä.

Historiallisesti maatalousyhteisöjen aasialaiset pysyivät hoikkina runsashiilihydraattisella riisipohjaisella ruokavaliolla.Tätä voi selittää aasialaisten luonnollisesti vähäisempi rasvakudoksen määrä, niukka ravinnon saanti ja korkea energiankulutus.

Japanissa lihavia on nelisen prosenttia väestöstä, vaikka diabetesta sairastavia on yli seitsemän prosenttia. Lihavuus ja aikuistyypin diabetes kulkevat usein käsikkäin. Yhdysvalloissa lihavia on lähes kolmannes väestöstä ja diabetesta sairastavia yksi kymmenestä.

Kun fyysisen aktiivisuuden taso on laskenut kaupungistumisen myötä (esim. Kiina), lihavien ja diabetesta sairastavien määrät ovat nousseet dramaattisesti.

Kliiniset vaikutukset

CIM on käytännöllinen vaihtoehto lihavuuden, metabolisen oireyhtymän ja diabeteksen hoitoon. Viime aikoina on osoitettu, että tavanomaiset vähärasvaiset ja vähäkaloriset ruokavaliot eivät hillitse lihavuus- ja diabetesepidemioita.

Ensisijainen painopiste olisi asetettava kulutettujen kaloreiden laatuun eikä määrään, jotta kalorien jakaminen siirrettäisiin pois rasvakudoksen varastoinnista ja parannettaisiin energiaravinteiden saatavuutta muuhun kehoon. Tällä tavoin negatiivinen energiatasapaino ja laihtuminen voidaan saavuttaa helpommin ja kestävämmillä tuloksilla.

Ruokavalioilla, joilla on erilainen makroravinnekoostumus, on kaloripitoisuuden erojen lisäksi erilaisia vaikutuksia hormoneihin, aineenvaihduntareiteihin, geenien ilmentymiseen ja suolen mikrobiomeihin. Nämä vaikuttavat rasvan varastointiin.

Väittämällä, että kaikki kalorit ovat samanarvoisia keholle, perinteinen malli sulkee pois ympäristötekijät, jolla on kaikkein vahvin yhteys painonhallintaan. Mitkä muut tekijät voisivat selittää lihavuuden esiintyvyyden kasvua 1980-luvulta, kuin samaan aikaan tapahtuneet merkittävät muutokset syömistavoissa?

Hiilihydraatti-insuliinimalliin perustuvat ruokavaliosuositukset

  • Vähennä valkoisia viljoja, perunatuotteita ja lisättyjä sokereita sekä korkean glykeemisen kuorman hiilihydraatteja, joiden yleinen ravitsemuksellinen laatu on heikko
  • Suosi matalan glykeemisen kuorman hiilihydraatteja, mukaan lukien ei-tärkkelyspitoiset vihannekset, palkokasvit ja ei-trooppiset kokonaiset hedelmät (kuten omenat)
  • Jos syöt viljatuotteita, valitse kokojyväviljat ja perinteisesti jalostetut vaihtoehdot (esim. Kokonainen ohra, quinoa ja perinteiseen taikinajuureen tehty leipä
  • Lisää pähkinöitä, siemeniä, avokadoa, oliiviöljyä ja muita terveellisiä rasvaisia ruokia
  • Syö riittävästi proteiinia (myös kasviperäistä)
  • Hiilihydraattien saannin rajoittaminen ja korvaaminen rasvalla tuottaa suurimman hyödyn

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082688/

http://www.vivo.colostate.edu/hbooks/pathphys/endocrine/pancreas/insulin_phys.html

https://www.verywellhealth.com/how-insulin-works-in-the-body-1087716

https://www.ncbi.nlm.nih.gov/books/NBK525983/

https://thefastingmethod.com/understanding-joseph-kraft-diabetes-in-situ-t2d-24/

https://denversdietdoctor.com/diabetes-vascular-disease-joseph-r-kraft-md/

https://dopinglinkki.fi/en/info-bank/doping-substances/insulin

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038351/




Insuliini ja terveys: Johdanto

95-vuotiaana kuollut tohtori Joseph Kraft teki lääkärinurallaan yli 14 000 sokerirasitustestiä, joiden rinnalla hän mittasi potilaidensa insuliinitasoja. Kraftin kliiniset havainnot johtivat insuliiniresistenssin tunnistamiseen. Hän osoitti myös, että alkavan diabeteksen voi havaita insuliinipitoisuuden ja insuliiniherkkyyden muutoksista jo ennen kuin sokerirasitustestit viittaavat diabetekseen.

25 vuotta kardiologina työskennellyt Nadir Ali kertoo, että korkeat kolesterolipitoisuudet ja kolesterolin kumuloituminen verisuoniin on insuliiniresistenssin biomarkkeri.

Entä jos kolesteroli ei ole sydän- ja verisuonitautien ensisijainen syy, vaan seuraus verisuonten vahingoittumisesta? Korkea verensokeri ja hyperinsulinemia vahingoittavat tunnetusti verisuonia.

Diabeetikoilla on poikkeuksellisen suuri sydän- ja verisuonitautien riski, sillä noin 70 % diabeetikoista kuolee sydän- ja verisuonitauteihin. Voisiko jatkuvasti korkea veren insuliinipitoisuus (hyperinsulinemia) selittää tämän?

Kraft arveli, että suurin osa sydän- ja verisuonitaudeista johtuu diagnosoidusta tai diagnosoimattomasta diabeteksesta. Oliko Kraft oikeassa?

”Those with cardiovascular disease not identified with diabetes… are simply undiagnosed.” – Joseph Kraft

Tutkimukset ovat sittemmin osoittaneet, että nsuliiniresistenssi ja hyperinsulinemia ovat itsenäisiä sydän- ja verisuonitautien riskitekijöitä. Lisääntyvä kliininen potilasnäyttö viittaa siihen, että Kraft oli oikeassa.

Insuliiniin palautuvat häiriötilat, insuliiniresistenssi ja hyperinsulinemia, vaikuttavat terveyteen paljon uskottua enemmän.

Insuliini

Insuliini on elintärkeä hormoni, josta puhutaan melkeinpä vain sokeriaineenvaihdunnan ja diabeteksen yhteydessä. Erityisesti tyypin 1 diabetesta sairastaville 1920-luvulla keksitty insuliinilääkitys on elämän ja kuoleman kysymys.

Tieto insuliinin tärkeydestä on diabeteksen ansiota, mutta kääntöpuolena on se, että diabeteksen vuoksi moni ei tiedä, että insuliinilla on elimistössä muitakin tehtäviä, kuin sokeriaineenvaihdunnan säätely. Insuliini on anabolinen hormoni, jota hyödynnetään enenevässä määrin doping-aineena. Sitä tarvitaan moniin aineenvaihduntatapahtumiin proteiinisynteesistä lipogeneesiin, eli läskisynteesiin.

Ennen kuin Frederic G. Banting, Charles H. Best ja J.J. Macleod löysivät insuliinin1921, tyypin 1 diabetes oli kuolemantuomio. Haiman Langerhansin insuliinia tuottavien betasolujen tuhoutuminen aiheutti sen, että diabeetikon elimistö ei pystynyt hyödyntämään ravintoa.

Ilman insuliinilääkitystä diabeetikot kuihtuivat ja kuolivat nälkään syödyn ravinnon määrästä riippumatta.


Haima: eksokriininen ja endokriininen osa

Haima tuottaa ruoansulatusnestettä, insuliinia ja insuliinin vastavaikuttajaa, glukagonia.

Haima muodostuu kahdesta kudostyypistä. Eksokriininen, eli avoeritteinen osa käsittää jopa 98 % haimasta. Eksokriininen kudos erittää ruoansulatusnesteitä haimatiehyen välityksellä pohjukaissuoleen.

Haimasta erittyy noin puolitoista litraa haimanestettä vuorokaudessa. Neste sisältää tiehytsolujen emäksistä eritettä ja rauhassolujen entsyymipitoista eritettä. Haimanesteen sisältämä natriumvetykarbonaatti neutraloi mahasta tulevan ruokasulan happamuutta.

Haimaneste sisältää ravinnon pilkkomisen kannalta tärkeitä entsyymejä:

Haimaneste sisältää myös trypsiininestäjää, joka estää trypsiiniä aktivoitumasta liian aikaisin niin, ettei se pilkkoisi elimistön omia proteiineja.

Haimanesteen eritystä ohjailevat pohjukaissuolen limakalvon vereen erittämät hormonit sekä parasympaattinen hermosto.

  • Hapan mahaneste saa pohjukaissuolessa aikaan sen, että vereen erittyy sekretiiniä, joka aiheuttaa natriumvetykarbonaattipitoisen haimanesteen erityksen tiehytsoluista
  • Rasvojen ja valkuaisaineiden pilkkoutumistuotteet saavat aikaan pankreotsymiinin eli kolekystokiniinin erityksen, joka taas aiheuttaa entsyymipitoisen haimanesteen erityksen

Haiman endokriininen osa

Umpieritteinen, eli endokriininen osa käsittää vain pari prosenttia koko haimasta. Endokriininen osa koostuu noin miljoonasta Langerhansin saarekkeesta (haimasaarekkeesta), jotka ovat levittäytyneet eri puolille haimaa.

Langerhansin saarekkeiden alfasolut erittävät glukagonia, beetasolut insuliinia ja deltasolut somatostatiinia, joka on kasvuhormonia hillitsevä hormoni. Lisäksi PP-solut tuottavat haiman polypeptidejä.

Katabolinen ja anabolinen aineenvaihdunta

Katabolinen aineenvaihdunta kuluttaa energiaa. Anabolinen aineenvaihdunta rakentaa lihasmassaa ja varastoi energiaa glykogeeneihin ja/tai rasvasoluihin.

Katabolisen aineenvaihdunnan aikana haiman erittämä glukagoni tehostaa maksan glykogenolyysiä ja maksassa (sekä munuaisten kuoriosassa) tapahtuvaa glukoneogeneesiä.

Glykogenolyysi pilkkoo tuhansista glukoosimolekyyleistä muodostuvia maksan ja lihasten sokerivarastoja (glykogeenejä) glukoosiksi. Lihassolujen glykogeeneistä pilkotut glukoosimolekyylit jäävät lihassolujen ravinnoksi.

Maksa erittää glykogeeneistä purettuja glukoosimolekyylejä vereen, jolloin verensokeri kohoaa.

Glukoneogeneesi valmistaa glukoosia mm. maitohaposta, rasvojen glyseroliosasta sekä eräistä aminohapoista. Tämä mekanismi ylläpitää elimistön glukoosihomeostaasia.

Glukagoni nostaa veren glukoosipitoisuutta silloin, kun ravinnon syömisetä on kulunut aikaa ja/tai kun ravintoa ei ole saatavilla (kuten paaston aikana). Glukagonin eritys alkaa, kun veren insuliinipitoisuus laskee riittävän matalaksi.

Katabolinen ja anabolinen aineevaihdunta vaihtelevat jatkuvasti

Katabolisessa aineenvaihdunnassa glukagoni ohjaa elimistön energiavarastojen purkamista ensiksi glukoosiksi ja myöhemmin yhdessä lipolyyttisten hormonien kanssa vapaiksi rasvahapoiksi.

Anabolisessa aineenvaihdunnassa insuliini ohjaa energiaravinteiden oksidaatiota ja varastoimista sekä proteiini- ja rasvasynteesiä.

Insuliini säätelee anabolista aineenvaihdutaa, jossa elimistöön varastoidaan enemmän energiaa kuin sitä kuluu. Anabolisen aineenvaihdunnan aikana insuliini toimii energia-aineenvaihdunnan kapellimestarina: se avaa solukalvot niin, että ravinteet pääsevät soluihin.

Kehon kaikki solut osaavat tuottaa glukoosista energiaa glykolyysissä. Suurin osa soluista (punasoluja paitsi) tuottaa energiaa glykolyysissä, sitruunahappokierrossa ja elektroninsiirtoketjussa.

Lihas- ja maksasoluissa glukoosista syntetisoidaan glykogeenejä, eli kymmenistä tuhansista glukoosimolekyyleistä muodostuvia sokerivarastoja.

Insuliinituotannon heikkeneminen tai sen loppuminen johtaa diabetekseen.

Mitä insuliini on?

Insuliini on haiman Langerhansin saarekkeiden betasolujen erittämä hormoni, joka säätelee mm. sokeriaineenvaihduntaa.

Insuliini on keskeinen vaikuttaja useissa aineenvaihduntareaktioissa. Insuliini ohjaa energiaravinteiden oksidaatiota ja varastoimista. Se säätelee sekä hiilihydraattien että rasvojen energia-aineenvaihduntaa ja sillä on keskeinen rooli proteiinien ja mineraalien aineenvaihdunnassa.

Insuliinisignallointi vaikuttaa merkittävällä tavalla monien elinten ja kudosten toimintaan.

Tyypin 1 diabetes on autoimmuunitauti, jossa kehon immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden betasoluja. Näin haiman kyky tuottaa insuliinia heikkenee ja loppuu. Aikuistyypin diabeteksessa solujen insuliiniherkkyys häiriintyy, jolloin insuliinin teho heikkenee.

Insuliini on proteiinihormoni, jonka reseptorit sijaitsevat solukalvoilla. Reseptorit muodostuvat kahdesta disulfidisidoksen liittämästä alfa-alayksiköstä ja kahdesta beta-alayksiköstä.

Insuliinimolekyylit kiinnittyvät solunulkoisiin alfaketjuihin, jotka puolestaan läpäisevät solukalvon ja yhdistyvät solunsisäisiin betaketjuihin.

Insuliinin synteesi ja eritys

Insuliini on pieni kahdesta disulfidisidoksen yhdistämästä ketjusta muodostuva proteiini. Selkärankaisten insuliinin aminohapposekvenssi on erittäin konservoitunut (pysynyt eri lajeilla samanlaisena), joten yhden nisäkkään erittämä insuliini on yleensä biologisesti aktiivinen myös muilla nisäkkäillä. Vielä nykyäänkin monia diabetesta sairastavia potilaita hoidetaan sian haimasta saadulla insuliinilla.

Insuliinin biosynteesi

Insuliinia syntetisoidaan haiman betasoluissa. Insuliinin mRNA muunnetaan yksiketjuiseksi esiasteeksi, jota kutsutaan preproinsuliiniksi, ja sen signaalipeptidin poisto endoplasman verkkokalvoon insertoinnin aikana tuottaa proinsuliinia.

Proinsuliini muodostuu kolmesta jaksosta:

  • aminoterminaalinen B-ketju
  • karboksiterminaali A-ketju
  • C-peptidi, joka yhdistää edellisiä

Endoplasmisessa verkkokalvossa proinsuliini altistetaan useille erityisille endopeptidaaseille, jotka leikkaavat C-peptidin, jolloin muodostuu kypsän insuliinin rakenne. Insuliini ja vapaa C-peptidi pakataan Golgin laitteen eritysrakkuloihin, jotka kertyvät sytoplasmaan.

Kun betasolua stimuloidaan, insuliini erittyy solusta eksosytoosin avulla ja sekoittuu saarekkeen kapillaarivereksi. C-peptidi erittyy myös vereen, mutta sillä ei ole tunnettua biologista aktiivisuutta.

Insuliinin rakenne

Insuliini muodostuu kahdesta peptidiketjusta, joihin viitataan A- ja B-ketjuina. A- ja B-ketjut kytkeytyvät toisiinsa kahdella disulfidisidoksella, ja A-ketjussa muodostuu ylimääräinen disulfidi.

Useimmilla nisäkkäillä insuliinin A-ketju koostuu 21 aminohaposta ja B-ketju 30 aminohaposta. Vaikka insuliinin aminohapposekvenssi vaihtelee lajeittain, molekyylin tietyt segmentit ovat erittäin konservoituneita. Erityisesti kolmen disulfidisidoksen asemat, A-ketjun molemmat päät ja B-ketjun C-terminaaliset tähteet vastaavat useilla lajeilla toisiaan. Nämä samankaltaisuudet insuliinin aminohapposekvenssissä johtavat insuliinin kolmiulotteiseen konformaatioon, joka on hyvin samanlainen lajien välillä.

Yhden eläimen insuliini on hyvin todennäköisesti biologisesti aktiivista muilla lajeilla

Sian insuliinia on käytetty laajalti ihmispotilaiden hoidossa. Insuliinimolekyyleillä on taipumus muodostaa dimeerejä liuoksessa johtuen vety-sitoutumisesta B-ketjujen C-päiden välillä. Lisäksi sinkki-ionien läsnä ollessa insuliinidimeerit sitoutuvat heksameereiksi.

Näillä vuorovaikutuksilla on merkittäviä kliinisiä seurauksia. Monomeerit ja dimeerit sekoittuvat (diffundoituvat) helposti vereksi, kun taas heksameerit diffundoituvat huonosti. Siksi suurta osaa heksameerejä sisältävien insuliinivalmisteiden imeytyminen on hidasta. Tämä havainto on stimuloinut useiden rekombinanttien insuliinianalogien kehitystä.

Ensimmäinen tällaisista molekyyleistä – lisproinsuliini – on suunniteltu siten, että lysiini- ja proliinitähteet B-ketjun C-terminaalisessa päässä ovat päinvastaiset; tämä modifikaatio ei muuta reseptoriin sitoutumista, mutta minimoi taipumuksen muodostaa dimeerejä ja heksameerejä.

Insuliinin erityksen hallinta

Insuliinin eritystä säätelee erityisesti veren glukoosipitoisuuden muutokset. Tämä on perusteltua, koska insuliini säätelee glukoosin pääsyä solukalvon läpi soluihin.

Eräät hermoston ärsykkeet (esim. ruoan näkeminen, haistaminen ja maistaminen) sekä muiden energiaravinnemolekyylien, aminohappojen ja rasvahappojen lisääntyneet veripitoisuudet lisäävät myös insuliinin eritystä, mutta selvästi vähemmän kuin glukoosi.

Tieto insuliinin erityksen taustalla olevista mekanismeista on edelleen hajanaisia. Aineenvaihduntaprosessin tietyt piirteet on kuitenkin osoitettu selvästi ja toistuvasti, mikä antaa seuraavan mallin:

  • Glukoosi kuljetetaan beetasoluun helpotetun diffuusion avulla glukoosin kuljettajamolekyylin (GLUT4) kautta; kohonneet glukoosipitoisuudet solunulkoisissa nesteissä johtavat kohonneisiin glukoosipitoisuuksiin beetasolussa.
  • Kohonnut glukoosipitoisuus beetasolussa vaikuttaa solukalvon depolarisaatioon, eli solukalvon jännitteen purkautumiseen ja solunulkoisen kalsiumin soluun pääsyyn.Kalsiumin lisääntyminen solussa on yksi insuliinia sisältävien eritysrakkuloiden (granuloiden) ensisijaisista laukaisijoista. Mekanismeja, joilla beetasolun kohonnut glukoosipitoisuus aiheuttaa solukalvojen jännitteen purkamisen (depolarisaation), ei täysin tunneta, mutta ne näyttävät johtuvan glukoosin ja muiden solun sisällä olevien energiaravinemolekyylien aineenvaihdunnasta.Tähän reaktioon voi vaikuttaa myös ATP:ADP-suhde, joka vaikuttaa solukalvon läpäisevyyteen.
  • Beetasolujen lisääntynyt glukoosipitoisuus näyttää myös aktivoivan kalsiumista riippumattomia reittejä, jotka osallistuvat insuliinin eritykseen.


Haiman insuliinivaste voidaan tarkistaa helposti. Ihmisillä ja useilla nisäkkäillä normaali paastoverensokeripitoisuus on 4,5-5,5 mmol /l, mikä assosioituu vähäiseen insuliinin eritykseen.

Glukoosin infuusiolla (glukoosin tiputuksella vereen) haiman insuliinivatetta tai insuliinin erittymistä voidaan mitata

Melkein heti glukoosiinfuusion jälkeen plasman insuliinipitoisuudet kohoavat dramaattisesti. Tämä pitoisuuden kohoaminen johtuu ennalta muodostetun insuliinin erityksestä. Valmis insuliini kuitenkin ehtyy nopeasti.

Toissijainen insuliinipitoisuuden kohoaminen heijastaa välittömästi erittyvää vasta syntetisoitua insuliinia. Kohonnut glukoosi vaikuttaa insuliinin erityksen lisäksi myös insuliinigeenin transkriptioon ja sen mRNA:n translaatioon.

Insuliinireseptori on tyrosiinikinaasi. Se toimii entsyyminä, joka siirtää fosfaattiryhmät ATP:stä solun sisäisten kohdeproteiinien tyrosiinitähteisiin.

Insuliinin sitoutuminen alfa-alayksiköihin saa beeta-alayksiköt fosforyloimaan itsensä (autofosforylaatio) aktivoiden siten reseptorin katalyyttisen aktiivisuuden. Aktivoitu reseptori fosforyloi sitten useita solunsisäisiä proteiineja, mikä puolestaan muuttaa niiden aktiivisuutta ja tuottaa siten biologisen vasteen.

Useat solunsisäiset proteiinit on tunnistettu insuliinireseptorin fosforylaatiosubstraateiksi. Näistä tunnetuin ja tutkituin on insuliinireseptorisubstraatti 1 tai IRS-1. Kun IRS-1 aktivoidaan fosforylaatiolla, tapahtuu useita asioita.

IRS-1 toimii muun muassa telakointikeskuksena muiden insuliinin vaikutuksia välittävien entsyymien rekrytoinnissa ja aktivoinnissa.

Glukoosia saadaan hiilihydraateista ohutsuolessa tapahtuvan hydrolyysin avulla. Glukoosi imeytyy ohutsuolesta verenkiertoon.

Kohonnut veren glukoosipitoisuus stimuloi insuliinin eritystä. Insuliini vaikuttaa soluihin kehon ulkopuolella stimuloiden glukoosin imeytymistä, käyttöä ja varastointia. Insuliinin vaikutukset glukoosimetaboliaan vaihtelevat kohdekudoksesta riippuen. Kaksi tärkeää vaikutusta ovat:

  1. Insuliini helpottaa glukoosin pääsyä lihas- ja rasvasoluihin sekä muihin kudoksiin. Ainoa mekanismi, jolla useimmat solut voivat ottaa glukoosia, on helpotettu diffuusio heksoosikuljettajaperheen kautta.Monissa kudoksissa glukoosin ottoon käytetty kuljettajamolekyyli (GLUT4) on insuliinin vaikutuksesta saatavilla plasmakalvossa.Alhaisilla insuliinipitoisuuksilla, GLUT4-glukoosinkuljetusmolekyylejä on solujen sytoplasmisissa rakkuloissa.Insuliinin kiinnittyminen solujen insuliinireseptoreihin johtaa näiden rakkuloiden plasmakalvoon fuusioitumiseen ja GLUT4-kuljetusmolekyylien esiintyöntymiseen, mikä antaa solulle mahdollisuuden ottaa glukoosia tehokkaasti solun sytoplasmaan.

    Kun veren insuliinitasot laskevat ja insuliinireseptorit eivät enää ole käytössä, glukoosinkuljettajat kierrätetään takaisin sytoplasmaan.

    On eräitä sellaisia kudoksia, jotka eivät edellytä insuliinia tehokkaaseen glukoosinottoon: tällaisia ovat aivot ja maksa.

    Tämä johtuu siitä, että nämä solut eivät käytä GLUT4-kuljetusmolekyylejä glukoosin tuontiin, vaan toista kuljetusmolekyyliä, jonka aktivaatio ei vaadi insuliinia.

  2. Insuliini stimuloi maksaa varastoimaan glukoosia glykogeeneiksi. Suuri osa ohutsuolesta imeytyneestä glukoosista imeytyy välittömästi maksasoluihin, jotka muuttavat sen varastointipolymeeriglykogeeniksi.Insuliini stimuloi glykogeenisynteesiä maksassa monin tavoin. Ensinnäkin insuliini aktivoi heksokinaasientsyymin, joka fosforyloi glukoosin, vangitsemalla sen soluun.Samalla insuliini estää glukoosi-6-fosfataasin aktiivisuutta. Insuliini aktivoi entsyymejä, jotka osallistuvat suoraan glykogeenisynteesiin:- fosfofruktokinaasi
    – glykogeenisyntaasi

    Vaikutus on selvä: kun glukoosia on runsaasti saatavilla, insuliini ”käskee” maksaa tallentamaan mahdollisimman suuren määrän glukoosia myöhempää käyttöä varten.

  3. Insuliini vähentää glukoosipitoisuutta veressä, mikä on ymmärrettävää ottaen huomioon edellä kuvatut mekanismit.Toinen tärkeä huomio on, että verensokeripitoisuuden laskiessa insuliinin eritys vähenee.Jos veren insuliinipitoisuus laskee, suurin osa kehon soluista ei pysty ottamaan glukoosia energiakäyttöön. Näiden solujen on siirryttävä käyttämään vaihtoehtoisia polttoaineita, kuten rasvahappoja.Kun veren insuliinipitoisuus laskee, maksan glykogeenisynteesi vähenee ja glykogeenin hajoamisesta vastaavat entsyymit aktivoituvat.

    Glykogeenin hajoamista stimuloi paitsi insuliinipitoisuudern lasku, myös glukagoni, jota erittyy, kun verensokeritaso laskee normaalin pitoisuuden alle.

Insuliinin ja lipidien aineenvaihdunta

Aineenvaihduntareitit rasvojen ja hiilihydraattien hyödyntämiseksi ovat monimutkaisia. Insuliinin vaikutukset hiilihydraattien aineenvaihduntaan ovat kiistattomasti osoitettu ja elintärkeä.

Insuliinilla on myös merkittäviä vaikutuksia lipidien aineenvaihduntaan, mukaan lukien seuraavat:

  1. Insuliini edistää rasvahappojen synteesiä maksassa. Insuliini stimuloi glykogeenin synteesiä maksassa. Kun glykogeenivarastojen koko kasvaa suureksi (noin 5% maksan massasta), synteesi jatkuu tukahdutettuna.Kun maksan glykogeenivarastot ovat täyttyneet, kaikki maksasolujen ottama ylimääräinen glukoosi siirtyy aineenvaihduntareitille, joka johtaa rasvahappojen synteesiin. Rasvahappoja viedään maksasta lipoproteiineina (esim. LDL, HDL). Lipoproteiinit kuljettavat vapaita rasvahappoja ja kolesterolia maksasta verenkierron välityksellä muihin kudoksiin. Esimerkiksi adiposyyteissä, eli rasvasoluissa, lipoproteiinien kuljettamat vapaat rasvahapot syntetisoidaan triglyserideiksi.
  2. Insuliini estää triglyseridien purkamista rasvakudoksesta estämällä solunsisäistä lipaasia, joka hydrolysoi triglyseridejä rasvahappojen vapauttamiseksi. Toisin sanoen insuliini on lipolyysin estäjä.
    Veren korkea insuliinipitoisuus estää rasvasolujen purkamisen vereen vapaiksi rasvahapoiksi, joita maksa voi muuttaa energiaksi kelpaaviksi ketoaineiksi.

    Insuliini myös helpottaa glukoosin pääsyä rasvasoluihin. Rasvasoluissa glukoosia voidaan käyttää glyserolin syntetisoimiseksi.

    Lipogeneesissä glyseroliin liitetääna vapaita rasvahappoja, jolloin rasvasoluun muodostuu triglyseridejä – kolmesta rasvahappoketjusta ja glyseroliosasta koostuvia rasvamolekyylejä.

    Yllä kuvattujen mekanismien avulla insuliini lisää triglyseridien eli rasvan kertymistä rasvasoluihin, ja rasvasolujen purkamista verenkiertoon.

    Elimistössä insuliinilla on rasvaa säästävä vaikutus

    Paitsi että insuliini ohjaa useimpia soluja hapettamaan ensisijaisesti hiilihydraatteja rasvahappojen sijaan, se stimuloi epäsuorasti rasvan kertymistä rasvakudokseen.

Insuliinin muita vaikutuksia

Sen lisäksi, että insuliini vaikuttaa glukoosin soluihin viemiseen ja rasva-aineenvaihduntaan, se stimuloi myös aminohappojen imeytymistä, mikä osaltaan edistää insuliinin yleistä anabolista vaikutusta.

Insuliini lisää myös solujen läpäisevyyttä kalium-, magnesium- ja fosfaatti-ioneille. Vaikutus kaliumiin on kliinisesti tärkeä.

Insuliini aktivoi natrium-kalium-ATPaaseja monissa soluissa aiheuttaen kaliumvirtauksen soluihin. Tietyissä olosuhteissa insuliinin injektio voi tappaa potilaan, koska se kykenee tukahduttamaan plasman kaliumpitoisuuden.

Tämä oli johdanto insuliinia käsittelevään artikkelisarjaan. Tulevissa katsannoissa avaan täsmällisemmin insuliinin toimintaa ja merkitystä aineenvaihdunnan ja terveyden säätelijänä.




Ruokasotaa ja anarkiaa osa 3

Diet Heart-hypoteesin jälkeinen ravitsemuspolitiikka hukutti kuluttajat kelvottomaan teolliseen mönjään ja väitti monityydyttämätöntä hydrattua mönjää sydänterveyttä edistäväksi rasvaksi. Kovat tyydyttyneet rasvat voivat olla mainettaan parempia.

Ruokasotaa ja anarkiaa osa 3 jatkaa ravinnosta räksytyttämistä, annettujen tosiasioiden kyseenalaistamista ja ravitsemussuositusten solvaamista. Suhtaudun ravintoon aiheellisen asenteellisesti.

Tiesitkö, että

  • Ranskassa syödään enemmän tyydyttyneitä rasvoja, kuin missään muussa Euroopan maassa, mutta ranskalaisilla esiintyy vähiten sydäntauteja Euroopassa.
  • Ranskalaisten jälkeen sveitsiläiset syövät toiseksi eniten tyydyttyneitä rasvoja. Vastaavasti sveitsiläisten sydäntautikuolleisuus on toiseksi matalin Euroopassa.
  • Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautien ja sydäntautikuolleisuuden esiintyvyys on alhaisinta.
  • Vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä Euroopassa.

Edelliset tilastolliset tosiasiat eivät todista, että tyydyttyneet ravat olisivat terveellisiä. Tällaiset tilastot ovat ns. ekologista dataa, johon voi vaikuttaa sadat tai tuhannet tunnistetut ja tunnistamattomat muuttujat. Näistä ei saa vetää hätiköityjä johtopäätöksiä. Havainnot julkaisi British Journal of Nutrition.

Ne ovat kuitenkin tosiasioita, jotka osoittavat, että ravintosuositusten ja todellisuuden välillä on kiusallinen ristiriita.

Miksi niissä maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautikuolleisuus on vähäistä, kun niissä maissa, joissa syödään eniten pehmeitä ja terveellisiä monityydyttämättömiä kasvirasvoja, sydäntautikuolleisuus on Euroopan korkeinta. Se on hämmentävää.

Tällaiset tosiasiat eivät mahdu ravitsemussuosituksiin. Mikä tällaisen selittäisi?

Aikahyppy

1950-luvulla amerikkalainen tutkija, Ancel Keys päätyi hypoteesiin, jonka mukaan kolesteroli ja tyydyttyneet eläinrasvat selittävät valtimonkovettumatautia.

Ensin tieteellinen yhteisö huvittui Keysin absurdeista väitteistä, mutta seitsemän maan tutkimus sai joidenkin tutkijoiden silmät avautumaan. Entä jos Keys on oikeassa?

Sydäntautikuolleisuus oli lisääntynyt Yhdysvalloissa kiihtyvästi 1900-luvun alusta alkaen, mutta syytä ilmiölle ei tunnettu. Sydänkohtauksia oli ilmassa, kortisolia veressä ja paniikin hajua kongressin käytävillä. Jotain pitäisi kai tehdä!

Jo 1950-luvulla saatiin osviittaa siitä, että runsas sokereiden saanti assosioituu sydän- ja verisuonitautien lisäksi moniin syöpiin. Tämä havahdutti sokeriteollisuuden johtajat. Sugar Research Foundation ei piitannut tutkimuksista tai terveydestä, mutta sokeriteollisuuden voitot piti turvata ja maksimoida. Business as usual!

Poliittinen ilmasto muuttui eläinrasvojen vastaiseksi 1960- ja 1970-luvuilla. Yleiseen mielialaan vaikuttivat sokeriteollisuuden aggressiivinen lobbaus Washingtonissa ja ja tyydyttyneitä rasvoja mustamaalaava tutkimus, jonka Sugar Research Foundation rahoitti.

Ancel Keysin teoria vaikutti hyväksyttävältä ja se sai taakseen vaikutusvaltaisia tukijoita ja tutkijoita.

Keys tarjosi yksinkertaisen ratkaisun: jos eläinrasvat ja kolesteroli aiheuttavat sydän- ja verisuonitauteja, eläinrasvojen ja kolesterolin kulutuksen vähentäminen väestötasolla laskee sydän- ja verisuonitautien esiintyvyyttä väestötasolla. Ihmisiä pitäisi kehottaa välttämään rasvaa ja erityisesti kovia eläinrasvoja.

Sugar Daddy Cool

Tyydyttyneiden rasvojen haittoja korostava näkemys sopi mainiosti Mark Hegstedille, joka oli kansallisten ravitsemussuositusten laatimisen aikaan (1977) Yhdysvaltojen maatalousministeriön ravitsemusasioista vastaava johtaja.

Kymmenen vuotta aikaisemmin Hegsted toimi tutkijana Harvardissa. Hän oli yksi niistä kolmesta tutkijasta, jotka Sugar Research Foundation (Sugar Association) palkkasi nykyrahassa 49 000 dollarin korvausta vastaan kirjoittamaan sokereiden haittoja vähättelevän ja eläinrasvojen haittoja liioittelevan tutkimuksen sokeriteollisuuden kokoaman aineiston pohjalta. Maatalousministeriön kansalaisille laatimat yleiset ravitsemussuositukset olivat Hegstedin vastuulla. Lue tästä.

Suositusten läpimeno Yhdysvalloissa perustui enemmänkin aggressiiviseen lobbaukseen ja politiikkaan kuin tieteesen ja terveyteen.

Kansikuvapoika ja ravitsemustieteen supertähti

Keys oli ravitsemustieteen kansikuvapoika ja aikalaisten palvoma komea ja karismaattinen supertiedemies. Seitsemän maan tutkimuksessa seurattiin kahdenkymmenenkahden maan rasvalla lotraamista, mutta vain ne seitsemän maata, joissa lotrattiin paljon tyydyttyneillä rasvoilla ja kuoltiin riittävän usein sydäntauteihin, täyttivät Keysin vaatimukset tyydyttyneiden rasvojen vaaroista. Tällaista tutkimusmetodia kutsutaan ”kirsikoiden poimimiseksi” (cherry picking).

Keys poimi tutkimusaineistosta vain alkuperäistä hypoteesiaan tukevat tulokset (kirsikat) ja sivuutti tulokset, jotka olivat ristiriidassa hypoteesin kanssa. Näin lopullisessa tutkimuksessa tutkimusaineistosta hylättiin yli puolet. Jos koko Keysin tutkimusaineisto analysoidaan, tutkimuksen johtopäätökset muuttuvat.

Tarkemmin analysoituna Keysin aineisto osoittaa, että sydäntautien ja sokerin korrelaatio on vahvempi kuin sydäntautien ja tyydyttyneiden rasvojen korrelaatio, mutta sellainen mahdollisuus ei sopinut Keysin todellisuuteen. Se hylättiin.

Keysin alkuperäinen data sisältää mielenkiintoisia havaintoja. Tyydyttyneiden rasvojen saanti Ranskassa oli samalla tasolla tai korkeampi kuin Suomessa, mutta sydäntautikuolleisuuden esiintyvyys oli Ranskassa hyvin alhainen. Tämä ilmiö tunnetaan ranskalaisena paradoksina.

Ranska on mielenkiintoinen kuriositeetti muutenkin. Runsaasta tyydyttyneiden rasvojen kulutuksesta huolimatta simerkiksi ärtyvän suolen oireyhtymä, närästys ja sydäntaudit ovat selvästi harvinaisempia Ranskassa, kuin Suomessa ja Yhdysvalloissa.

Myös muissa pohjoismaissa tyydyttyneitä rasvoja syötiin enemmän kuin Suomessa, mutta sydäntautien esiintyvyys ja sydäntautikuolleisuus oli Suomeen verrattuna vähäistä. Kuinka se voi olla mahdollista, jos tyydyttyneet rasvat aiheuttavat sydäntauteja?

Rasvateorian kritiikki

Rasvan ja erityisesti tyydyttyneiden rasvojen saannin vähentämistä suosittava diet-heart-hypoteesi on ollut ankaran kiistelyn kohteena vuosikymmenten ajan.

Vähärasvainen ja runsaasti hiilihydraatteja sisältävä ruokavalio, jollaista Yhdysvaltojen kansalliset terveysjärjestöt (NCEP, NIH ja AHA) ovat suositelleet vuoden 1984 LCR-CPPP:n (Lipid Research Clinics-Primary Prevention Program) ja Yhdysvaltojen maatalousministeriön 1977 julkaisemien ravintosuositusten jälkeen, saattoi hyvinkin osaltaan vaikuttaa nykyisten elintapasairauksien nopeaan yleistymiseen.

Aikuistyypin diabetes, lihavuus, metabolinen oireyhtymä ja erilaiset suolistosairaudet lähtivät laukalle 1980-luvun alussa. Miksi? Voisiko liika sokerinsaanti selittää elämäntapasairauksien epidemiaa?

Sydäntautien esiintyvyys ja sydäntautikuolleisuus ovat hieman laskeneet. Lasku voidaan selittää esimerkiksi tupakoinnin ja ilmansaasteiden vähenemisellä, vähäisemmällä altistumisella terveydelle haitallisille kemikaaleille sekä paremmilla lääkkeillä ja tehokkaammilla hoitomuodoilla.

Sydäntautikuolleisuuden lasku selitetään nimenomaasn tyydyttyneiden rasvojen käytön vähenemisen seurauksena ja sillä perustellaan yhä tyydyttyneiden rasvojen välttämiseen kehottavia toimia.

Esimerkiksi Pekka Puskan mukaan Pohjois-Karjala-projekti pelasti neljännesmiljoona suomalaista. Se on roskaa, sillä sydäntaudit olivat kääntyneet laskuun jo ennen Pohjois-Karjala-projektia, ja laskivat nopeammin Länsi-Suomessa, joka ei ollut interventiotutkimuksen piirissä!

Tyydyttyneiden rasvojen ja hiilihydraatteja rajoittavien ruokavalioiden haittoja korostavaa narratiivia ruokitaan jatkuvasti uusilla absurdeilla valheilla: insuliiniresistenssi ja aikuistyypin diabetes ovat viimeisimpien mielikuvituksellisten satujen mukaan seurausta tyydyttyneistä rasvoista ja – Herra tietää – karppaamisesta.

Tyydyttyneiden rasvojen tuotanto, käyttö ja myynti ovat laskeneet tasaisesti 1980-luvulta alkaen. Samaan aikaan monityydyttämättömien kasvirasvojen ja hiilihydraattien kulutus on lisääntynyt. Vaikka runsasenergisten rasvojen saanti kääntyi 1980-luvulla laskuun, amerikkalaisten kaloreiden saanti lisääntyi huomattavasti.

Kaloreiden saannin kasvu USA:ssa

Ketogeenistä ruokavaliota noudattavia on kourallinen maailman ihmisistä, mutta diabetesta sairastaa jo lähes 10 % maailman väestöstä, ja suurin osa diabetesta sairastavista ei karpannut sairastuessaan. Väite siitä, että ketogeeninen ruokavalio lisäisi insuliiniresistenssin ja diabeteksen riskiä esiteltiin taannottain erään iltapäivälehden terveyssivuilla. Se on epätieteellistä roskaa.

Tällaisen epätieteellisen roskan mukaan kaikki karppaaminen on saatanasta.

Ketoilusta maalataan käsittämättömiä kauhukuvia. Syy voi olla se, että ketoilu uhkaa perinteisten ravitsemussuositusten legitimiteettiä. Ketoilu on anarkismia, jossa valistuneet yksilöt uskaltavat kyseenalaistaa norsunluutorneissa elävien viranomaisten antamien ohjeiden legitimiteettiä.

Maailmassa jo yli 10 000 lääkäriä hoitaa lihavuutta ja aikuistyypin diabetesta ketogeenisellä ruokavaliolla. Pelkästään Kanadassa on yli 4000 naistentautien lääkäriä, jotka suosittelevat potilailleen vähän hiilihydraatteja ja runsaasti rasvaa sisältävää ruokavaliota. Jatkuvasti kasvava evidenssi tukee tätä lähestymistapaa. Valitettavasti vakiintuneet paradigmat kumoutuvat hitaasti.

Ketogeenisen ruokavalion terveyshyötyjä osoittavia kontrolloituja satunnaistettuja tutkimuksia julkaistaan kiihtyvällä tahdilla, mutta ne tunnetaan yhä valitettavan huonosti.

Surulliset tilastot

Maailman terveysjärjestön (WHO) raportin mukaan lihavien määrä on kolminkertaistunut vuoden 1975 jälkeen. Jopa 39 % kaikista aikuisista (n.1,9 miljardia) oli ylipainoisia 2016. Ylipainoisista lihavia oli yli 650 miljoonaa. 340 miljoonaa lasta ja nuorta (5-19) ja 38 miljoonaa alle 5-vuotiasta oli ylipainoisia tai lihavia vuoden 2016 raportin mukaan.

Lihavuus tappaa enemmän ihmisiä kuin nälkä

Diabetesta sairastavien määrä on kasvanut 108 miljoonasta (1980) 422 miljoonaan (2014). Taudin esiintyvyys lähes tuplaantui 4,7 % > 8,5 %. Vuosien 2000 ja 2016 kuolleisuus diabetekseen kasvoi 5 %.

Diabetes aiheuttaa mm. sokeutta, munuaissairauksia ja sydän- ja verisuonitauteja. Vuonna 2016 diabetes oli globaalisti seitsemänneksi yleisin kuolinsyy.

Insuliiniresistenssin tunnistanut tri Joseph Kraft uskoi, että lähes kaikki sydän- ja verisuonitaudit johtuvat diagnosoidusta tai diagnosoimattomasta diabeteksesta.

Sydän- ja verisuonitaudit ovat ”terveelliseen” mönjään siirtymisestä huolimatta yhä maailmanlaajuisesti yleisin kuolinsyy.

Sydäntautikuolleisuus on hitaasti laskenut, mutta lasku voidaan selittää mm. tupakoinnin vähenemisellä, aiempaa paremmilla lääkkeillä ja hoitojen kehittymisellä.

Diabeetikoista suurin osa sairastuu ja kuolee sydän- ja verisuonitauteihin

Ehkä Kraft oli oikeassa? Aikuistyypin diabetes voi olla paljon laajempi ongelma kuin halutaan tunnustaa.

Diabetes ei ole vain kansanterveydellinen ongelma, vaikka se on todennäköisesti tärkein sydän- ja verisuonitaudeille altistava riskitekijä. Aikuistyypin diabetes on myös kansantaloudellinen ongelma, jonka kustannukset syövät leijonanosan terveydenhoitomenoista ja -resursseista.

Kraft on purkanut pitkän lääkärinuransa aikana hyperinsulinemiaa ja osoittanut kuinka jatkuvasti koholla oleva insuliini (hyperinsulinemia) altistaa sydän- ja verisuonitaudeille. Tämä ei voi olla yllätys, kun tiedetään, että diabetes vahingoittaa verisuonia ja on yleisin syy verenkiertohäiriöistä johtuville raajojen amputaatioille. Jatkuvasti korkea verensokeri ja insuliini vahingoittavat verisuonia ja elimiä.

Vähärasvaisia ravintosuosituksia ei voi perustella ohjeilla, jotka nojaavat auttamattomasti vanhentuneeseen dataan ja epäluotettaviin tutkimuksiin.

Kasvava kliininen näyttö kiistää opit tyydyttyneiden rasvojen haitoista ja monityydyttämättömien rasvojen eduista. Vahvistuva näyttö osoittaa, että paljon parjattu vähän hiilihydraatteja sisältävä ruokavalio on paljon mainettaan parempi. Se on tutkimusten valossa tehokas tapa hoitaa lihavuutta, metabolista oireyhtymää, aikuistyypin diabetesta ja verenpainetautia.

Ketogeeninen ruokavalio vähentää elimistön hiljaista tulehdusta, joka assosioituu lähes kaikkiin nykyisiin sairauksiin. Viimeaikainen näyttö viittaa siihen, että ketogeeninen ruokavalio voi hillitä Covid-19-tautiin liittyvää sytokiinimyrskyä. Lue tästä. Aihetta tutkitaan ja palaan siihen myös Ruokasodassa.

Enemmän monityydyttyneitä rasvoja, enemmän sydäntauteja

Ancel Keysin kokoaman aineiston olisi pitänyt herättää kriittisiä kysymyksiä jo viime vuosisadalla. Hypoteesin heikkouksia ei korjattu. Seitsemn maan tutkimus vahvisti mielikuvaa tyydyttyneiden rasvojen ja kolesterolin haitoista, vaikka tutkimuksesta johdetut päätelmät vuotavat kuin seula. Surullista kyllä, se on ravitsemussuositusten perusta.

Diet-heart-hypoteesi juntattiin ravitsemustieteen perustaksi kirsikoita poimimalla ja tutkimusaineistoa manipuloimalla.

Ranskalainen paradoksi on eurooppalainen paradoksi, joka ei oikeastaan ole paradoksi lainkaan, jos hyväksytään, ettei tyydyttyneet rasvat ole sydäntautien tärkein syy.

Ranskalaiset syövät paljon tyydyttyneitä rasvoja, mutta eivät sairastu tai kuole sydäntauteihin samassa suhteessa kuin vähemmän tyydyttyneitä rasvoja syövät. Kuinka se on mahdollista?

Ehkäpä ranskalaisten sydänterveyden perusta on punaviinin sisältämä resvetratoli?

Tehtyä virhettä on piiloteltu vuosikymmeniä. On helpompi keksiä erilaisia hassuja meriselityksiä ranskalaiselle paradoksille, kuin myöntää, että rasvojen suhteen tehtiin virhe, joka on vaikuttanut negatiivisesti satojen miljoonien ihmisten terveyteen.

Punaviini ehkäisee sydäntauteja ja syöpiä Ranskassa yhtä todennäköisesti kuin Koskenkorva ehkäisee alkoholismia Suomessa. Riittävä määrä kossua poistaa alkoholismin luonnollisen poistuman kautta. Ehkä meidän kaikkien pitäisi juoda enemän punaviiniä tai kossua ja sairastua maksakirroosiin ranskalaisten tapaan.

Resveratroli on tärkeä antioksidantti. Sydänterveydelle hyödylliset vaikutukset edellyttäisivät annostusta, jonka saa 400 viinilasillisesta. Kyllä minä kannatan punaviinin juomista, mutta ei se sydäntäni suojaa, paitsi sydänsuruilta.

On hyväksyttävä mahdollisuus, että tyydyttyneet rasvat eivät ole sydäntautien pääasiallinen syy. Jos sydäntauteja aiheuttaa jokin muu tekijä, silloin ranskalaisen paradoksin ongelma ratkeaa kuin itsestään.

Ongelmaksi jää se, että meitä on viety kuin pässiä narussa viimeiset viisikymmentä vuotta.

Onko ranskalainen paradoksi totta?

Ranskalainen paradoksi on totta, mutta se on eräänlainen tilastollinen illuusio. Laajoja populaatioita käsittelevistä tilastoista voi vetää jännittäviä korrelaatioita. Isojen väestöjen kohdalla vaikuttavia muuttujia on kuitenkin valtavasti. Jonkin havaitun ilmiön ja valitun muuttujan välille on helppoa vetää korrelaatio, mutta syy- ja seuraussuhteen osoittaminen onkin jo vaikeampaa.

Esimerkiksi margariinien kulutus korreloi avioerojen kanssa Mainen osavaltiossa. Suomessa jäätelön kulutus korreloi hukkumistapausten kanssa. Nämä ovat tosiasioita, mutta niiden välillä ei vallitse suoraa syy- ja seuraussuhdetta.

Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntaudit ja sydäntautikuolleisuus on vähäisintä. Vastaavasti on totta, että sydäntautien esiintyvyys ja sydäntautikuolleisuus on korkeinta maissa, joissa tyydyttyneitä rasvoja syödään vähiten. Kansallisia ja alueellisia muuttujia on paljon, eikä korrelaatiosta voi johtaa kausaliteettia.

Joissain vanhoissa seurantatutkimuksissa tyydyttyneiden rasvojen ja sydäntautien esiintyvyyden välillä on havaittu heikko korrelaatio

Vähemmän tyydyttyneitä rasvoja syöneet ihmiset ovat todennäköisesti noudattaneet muutenkin terveellisempiä elämäntapoja. Terveellisiä elämäntapoja noudattavan ihmisen efekti on hyvin tunnettu ilmiö.

Terveelliset elämäntavat ovat yleisiä muitakin terveellisiä elämäntapojan noudattavassa ihmisryhmässä. Tähän ryhmään kuuluvat liikkuvat enemmän, ovat hoikempia, sairastavat vähemmän diabetesta, tupakoivat vähemmän, juovat vähemmän alkoholia jne.

Sydänterveyttä ylläpitää yleisesti terveellisemmät elintavat. Ihminen, joka välttää tyydyttyneitä rasvoja sen vuoksi, että viranomaiset ovat kehottaneet välttämään epäterveellisiä rasvoja, välttää usein myös muita epäterveellisiksi luokiteltuja elämäntapoja, kuten tupakointia, yletöntä alkoholilla läträämistä, ylimääräistä suolaa tai sokeria jne.

Totuus on ranskalaisen paradoksin ja seurantatutkimusten välillä. Tyydyttyneet rasvat eivät ole sydäntautien merkittävin aiheuttaja. Elämäntapojen kokonaisuus vaikuttaa sairastumisriskiin enemmän, kuin yksittäinen muuttuja, kuten tyydyttynyt rasva.

 Ruokavalion ja muiden elämäntapojen lisäksi terveyteen vaikuttaa geeneistä ja ympäristöstä alkaen suuri määrä tunnettuja ja tuntemattomia muuttujia, joiden kontrollointi tutkimuksissa on hankalaa.

Oheinen kaavio, jonka julkaisi British Journal of Nutrition, perustuu Maailman terveysjärjestön (WHO) ja YK:n elintarvike- ja maatalousjärjestön (FAO) tilastoihin tyydyttyneiden rasvojen keskimääräisestä saannista 41 Euroopan maassa vuonna 1998, sekä ikään mukautetusta riskistä kuolla sydänsairauksiin. Se kertoo sen, mitä kysyin tekstin aluksi.

  • Ranskassa syödään enemmän tyydyttyneitä rasvoja, kuin missään muussa Euroopan maassa, mutta ranskalaisilla esiintyy vähiten sydäntauteja Euroopassa.
  • Ranskalaisten jälkeen sveitsiläiset syövät toiseksi eniten tyydyttyneitä rasvoja. Vastaavasti sveitsiläisten sydäntautikuolleisuus on toiseksi matalin Euroopassa.
  • Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautien ja sydäntautikuolleisuuden esiintyvyys on alhaisinta.
  • Vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä Euroopassa.

Vähemmän tyydyttynyttä rasvaa, enemmän sydäntauteja

Euroopassa vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä.

Tämä ei tietenkään todista, että tyydyttynyt rasva suojaisi sydänsairauksilta.

Tämä havainto nostaa esiin aiheellisen kysyyksen: Jos tyydyttyneiden rasvojen kulutus assosioituu suurempaan sydäntautikuolleisuuteen, kuten viranomaiset väittävät, miksi niissä maissa, joissa tyydyttyneitä rasvoja syödään eniten, sydäntautikuolleisuus on todellisuudessa harvinaisempaa, kuin maissa, jossa tyydyttyneitä rasvoja syödään vähiten?

Ovatko tyydyttyneet rasvat sittenkin haitallisia?


Paleoruokavalion johtava teoreetikko, Loren Cordain arvioi, että varhaisten metsästäjä-keräilijöiden energiansaannista 15 % oli peräisin tyydyttyneistä rasvoista. Jos se on totta, kehomme on hyvin adaptoitunut käyttämään tyydyttyneistä rasvoista saatavaa energiaa.

Ihminen voi Cordainin hypoteesin mukaan syödä yli kaksi kertaa enemmän tyydyttyneitä rasvoja, kuin mitä Yhdysvalloissa suositellaan. Ranskassa ja Sveitsissä ihmisten energiansaannista jo noin 15 % saadaan tyydyttyneistä rasvoista, mikä tukee Cordainin näkemystä.

Onko raskalaisten ja sveitsiläisten parempi sydänterveys vain ilahduttava sattuma, vai voisiko se liittyä tyydyttyneisiin rasvoihin?

Savua ja peilejä

Ravitsemustieteessä käytetään paljon savua ja peilejä. Tilastollisten silmänkääntötemppujen soveltaminen taloudellisten ja poliittisten päämäärien saavuttamiseksi on yleistä.

Joskus iltapäivälehtien ravitsemusta käsittelevät jutut ovat yhtä epätieteellisiä, kuin astrologiset väittämät, joiden mukaan ravuilla on erityinen alttius suolistotaudeille, koska kuun merkeissä syntyneet ravut stressaavat muita tähtimerkkejä enemmän.

Kritiikkiä kovista rasvoista

Rasvojen merkitystä ateroskeloosin patogeneesissä on tutkittu siitä alkaen, kun Anitschkow kidutti kaneja monilla mielikuvituksellisilla menetelmillä. Hänen tutkimuksensa osoittivat, että kolesteroli ja tyydyttyneet rasvat aiheuttavat kanien valtimoissa ateroskleroosiin viittaavia muutoksia.

Kriittinen pilkunnussija voisi kysyä: pitäisikö tämän yllättää? Tyydyttyneet eläinrasvat ja kolesteroli eivät ole kanien luontaista ravintoa. Kanin aineenvaihdunnalta puuttuu keinot hyödyntää eläinrasvoja ja kolesterolia.Ihmisen aineenvaihdunta sen sijaan osaa hyödyntää kovia eläinrasvoja ja kolesterolia.

Seerumin kohonneen kolesterolin ja sepelvaltimotaudin suhde on vuosikymmenten aikana vakiintunut tieteelliseksi paradigmaksi, mutta ruokavalion rooli sepelvaltimotaudin ehkäisyssä ja hoidossa on edelleen epäselvä ja kiistelty aihe.

Mann kirjoitti vuonna 1977: ”Vuosikymmenen jatkunut kiista ruokavalion yhteydestä sydäntauteihin on johtanut kaaokseen”. E.H. Ahrens, Jr., joka oli yksi diet-heart-hypoteesin alullepanijoista, totesi vuonna 1985, että vielä ei ole osoitettu ruokavalion muuttamisen ehkäisevän sepelvaltimotautia.

Ancel Keysin 1950-luvulla tekemät tutkimukset keskittyivät tyydyttyneitä rasvoja sisältäviin ruokavalioihin.

1960-luvulla senaattori George McGovern johti senaatin molempien puolueiden komiteaa, joka yhdessä Yhdysvaltain maatalousministeriön (USDA) kanssa päätyi suosittelemaan Ancel Keysin mallin mukaista ruokavaliota, jossa kovat rasvat korvataan monityydyttämättömillä kasvirasvoilla.

Väestötasolla ravitsemuksen ohjaaminen vähärasvaiseen, ja erityisesti vähän kovia rasvoja sisältävään suuntaan alkoi toden teolla, kun Kansallisen terveysjärjestön (NIH) rahoittamien Lipiditutkimusklinikoiden sepelvaltimotaudin ennaltaehkäisyyn tähtäävä ohjelma (LRC-CPPT) valmistui.

Silmänkääntötemppuja

LRC-CPPT osoitti, että kolestyramiini, jota annettiin koehenkilöille noin seitsemän vuoden ajan, laski seerumin kolesterolia 10% ja sepelvaltimotautikuolleisuutta 24%. Tämä oli tilastollisesti merkittävä tulos.

Absoluuttinen sepelvaltimotaudin väheneminen oli selvästi maltillisempi ja lumelääkettä saavassa ryhmässä tulokset olivat jopa hieman paremmat: sepelvaltimotaudin esiintyvyys laski 2 % lumelääkettä saaneessa, ja 1,6 % kolestyramiinia saaneessa kohortissa.

Tämän tutkimuksen perusteella LRC-CPPT-tutkijat päättelivät kuitenkin, että seerumin kolesterolin laskeminen oli merkittävä tekijä sydäntautien ehkäisyssä ja hoidossa. Tämä päätös vahvistettiin, kun statiinikokeissa seerumin kolesterolia onnistuttiin laskemaan 30% – 35%.

Tämä antoi vahvaa näyttöä siitä, että seerumin kolesterolin laskeminen vaikuttaa positiivisesti sydäntautien ennusteeseen.

Nykyään toisaalta tunnustetaan, että osa statiinien hyödyistä voi johtua mekanismeista, jotka eivät liity rasva-aineenvaihduntaan ja kolesteroliin.

LCR-CPPT oli lääketutkimus. Se ei tutkinut ruokavalion vaikutuksia terveyteen.

LRC-CPPT:n tutkijat, NIH, kansallinen kolesterolikoulutusohjelma (NCEP) ja Amerikan sydänliitto (AHA) tekivät tulosten pohjalta uskoon perustuvan hypoteesin:

Jos seerumin kolesterolin lasku lääkkeillä on tehokas tapa ehkäistä sydäntauteja, silloin ravinnosta saatavan rasvan ja kolesterolin saannin vähentäminen laskee seerumin kolesterolia ja vaikuttaa myönteisesti sydän- ja verisuoniterveyteen.

Tämä oli tutkijoiden valistunut arvaus. Vain arvaus. Päätelmä ei perustunut kliiniseen näyttöön ruokavalion sisältämien rasvojen vaikutuksista sydänterveyteen.

Päätelmää seurasi eräs Yhdysvaltojen laajimmista PR-kampanjoista. Tutkijoiden ja viranomaisten oli vakuutettava ammattilaiset, lääkärit, organisaatiot ja kansalaiset siitä, että ravinnon sisältämän rasvan vähentäminen on tehokkain tapa ehkäistä sydän- ja verisuonitauteja.

Elintarviketeollisuus liittyi terveysjärjestöjen (NIH, NCEP, AHA), maatalousministeriön (USDA) ja lukemattomien lääketieteellisten järjestöjen kanssa edistämään tätä konseptia.

Lyhyessä ajassa marketit täyttyivät sydänterveellisistä vähärasvaisista tuotteista, joissa kovat eläinrasvat oli korvattu pehmeillä monityydyttämättömillä kasvirasvoilla ja sokerilla.

Viesti oli selvä: vähärasvaisten ruokien syöminen on turvallista

Valitettavasti 1980-luvun ihminen ei ymmärtänyt, että vähärasvaisissa tuotteissa rasvat korvattiin sokereilla. Rasvojen saannin väheneminen johti hiilihydraattien saannin kasvuun.

Mozaffarianin vuoden 2010 meta-analyysin eräs avainhuomioista oli, että tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla saattaa pitkällä aikavälillä suojata sydänterveyttä, mutta vastaavaa vaikutusta ei ole, jos tyydyttyneet rasvat korvataan hiilihydraateilla. Ja juuri näin tehtiin iloisella 1980-luvulla.

Valitettavasti tämä ei ollut ainoa ongelma. Prosessoitujen öljyjen, margariinien ja lähes kaikkien rasvaa sisältävien elintarvikkeiden mukana tuli transrasvoja, jotka ihan aikuisten oikeasti ovat helvetin haitallisia terveydelle.

”I hope that when you have read this book I shall have convinced you that sugar is really dangerous.” – John Yudkin (Pure, White and Deadly)

Lääketieteellisestä kirjallisuudesta löytyi varoituksia, mutta ne jätettiin suurelta osin huomiotta. John Yudkin kamppaili 1970-luvulla Keysin hypoteesia vastaan ja varoitti sokereiden vaaroista mm. kirjassa Pure, White and Deadly (1972). Yudkin oli oikeassa ja hänen pelkonsa toteutuivat valitettavan tarkasti. Yudkinin varoitukset kaikuivat kuitenkin kuuroille korville.

Rosenman totesi laaja-alaisessa katsauksessa, että ruokavalio ei juurikaan vaikuta seerumin kolesteroliin. Hän mainitsi myös ristiriitaiset uskomukset ruokavalion kausaalisesta roolista sydäntautien patogeneesissä.

Hu et al.wrote that replacing saturated and trans-unsaturated fats with unhydrogenated mono-unsaturated and poly-unsaturated fats was more effective in preventing CAD in women than in reducing overall fat intake. They noted that low-fat–high-carbohydrate (LF-HCarb) diets were widely recommended to reduce the risk of CAD by reducing low-density lipoprotein (LDL) by limiting dietary fat. However, because of its high-Carb content, LF-HCarb diets also decrease high-density lipoprotein (HDL) and increase triglycerides, well-established independent risk factors for coronary disease.”

Yancey et al. kirjoitti: ”Tiedot parhaasta ruokavaliosta sydäntautien ehkäisemiseksi ovat puutteellisia, epätieteellisiä ja usein ristiriitaisia.”
Elämäntapoihin liittyvät epidemiat (lihavuus, tyypin II diabetes ja metabolinen oireyhtymä) ovat vähän rasvaa ja runsaasti hiilihydraatteja sisältävän LFHC-ruokavalion väistämätön seuraus.

Yudkin varoitteli tämänkaltaisesta kehityksestä jo 1970-luvulla. Monista varoituksista, kliinisestä näytöstä ja lihavuus- yms. epidemioista piittaamatta lääketieteelliset organisaatiot ja viranomaiset jatkavat aggressiivista kampanjaa vähärasvaisen elämäntavan edistämiseksi.

Välillä minusta tuntuu siltä, kuin järkevät ihmiset olisivat itsesuggestion avulla hypnotisoineet itsensä uskomaan täysin absurdeja väitteitä.

Covid-19 pandemian rinnalla yhteiskunnan rajallisia resursseja syövät lihavuuteen, aikuistyypin diabetekseen, suolistosairauksiin ja kardiometabolisiin sairauksiin liittyvät pandemiat. Niiden taloudellista rasitetta yhteiskunnille voi vain arvailla.

Yhdysvalloissa lähestytään tilannetta, jossa kaikilla kuolevilla on diabetes. Tämä ei tarkoita, että kaikki kuolevat diabetekseen, mutta se kertoo kuinka nopeasti tauti on yleistynyt. Se kertoo, että pian kaikki amerikkalaiset sairastuvat diabetekseen. Se on aivan sairasta!

Samaan aikaan Yhdysvalloissa tiedostetaan, että lihavuuden ja diabeteksen hoitoon ei pian riitä resursseja.

Ei siis ole lainkaan yllättävää, että miljoonat lihavuuden ja kardiometabolisten sairauksien kanssa kamppailevat ihmiset ovat löytäneet avun ketogeenisistä ruokavalioista, jotka kääntävät viralliset suositukset ylösalaisin ja nurinkurin. Jatkan tätä anarkistista ruokasotaa pian. Siihen asti hyvää syksyä. Pysykää terveinä!

https://www.researchgate.net/publication/322861096_The_Diet-Heart_Hypothesis_Changing_Perspectives

https://www.sciencedirect.com/science/article/pii/S0735109703016310

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950931/

https://www.nutritioncoalition.us/there-is-concern-about-the-dietary-guidelines

https://www.ncbi.nlm.nih.gov/books/NBK190354/

https://www.repository.cam.ac.uk/bitstream/handle/1810/247312/Chowdhury_et_al-2014-Annals_of_Internal_Medicine.pdf?sequence=1

https://pubmed.ncbi.nlm.nih.gov/28526025/




Ruokasotaa ja anarkiaa osa 2

Jatkan anarkistista tutustumista ravinnon ympärillä käytävään ruokasotaan. Artikkelisarjan ensimmäisessä osassa pohjustin näkemystä, jonka mukaan ravintoon liittyviä väestötason ravintosuosituksia pitäisi kriittisesti uudelleenarvioida.

Jatkan kiukuttelua referoimalla LessLikely-sivustolla julkaistun kriittisen analyysin paljon siteeratusta Mozaffarianin meta-analyysistä.

Laajat ravitsemustutkimukset antavat ristiriitaisia tuloksia eri ravintoaineiden terveysvaikutuksista. Vallitsevat ravitsemussuositukset eivät hillitse maailmanlaajuista elämäntapasairauksien epidemiaa. Vaikuttaa pikemminkin siltä, että vallitsevat ravitsemussuositukset ylläpitävät ja lisäävät kardiometabolisten sairauksien riskiä.

Epidemiologisissa tutkimuksissa yksittäisten ravinteiden erottaminen ravintokokonaisuudesta ei anna kovin luotettavaa kuvaa ravintoaineen merkityksestä ihmisen terveydelle.

Ravinteet vaikuttavat elimistössä usein yhdessä. Riskienhallinnan kannalta kokonaisuuksilla on suurempi merkitys kuin yksittäisillä ravinteilla. Mikro- ja makroravinteet vaikuttavat keskenään eri tavoin. Esimerkiksi

  • C-vitamiini hidastaa lihan sisältämän raudan imeytymistä
  • Tyydyttyneen rasvan korvaaminen monityydyttämättömillä rasvoilla voi suojata sydänterveyttä, mutta vastaava hyöty ei toteudu, jos tyydyttyneet rasvat korvaa hiilihydraateilla
  • Fruktoosin ja glukoosin aineenvaihdunta eroaa toisistaan kuin yö ja päivä
  • Kaikki kalorit eivät ole elimistölle samanarvoisia (vrt. etanoli*)
  • Hiilihydraattien ja rasvan yhteisvaikutus on se, että solut käyttävät energiaksi ensin glukoosia ja varastoivat rasvaa. Solut eivät voi hapettaa samaan aikaan glukoosia ja rasvahappoja

*Etanoli ei tiettävästi varastoidu läskinä, vaikka etanoli (7 kcal/g) on melkein yhtä energiatiheää kuin rasva (9 kcal/g). Maksa priorisoi etanolin aineenvaihdunnan ennen kuin keho alkaa prosessoida muita ravintoaineita. Maksa polttaa alkoholin ennen kuin aineenvaihdunta ryhtyy polttamaan tai varastoimaan muita ravinteita.

Entä jos aineenvaihdunta prosessoi energianlähteet myrkyllisyysjärjestyksessä: ensin etanolin, sitten glukoosin ja lopuksi rasvan?

Sellainenkin näkemys on esitetty. Kyse on mielipiteestä, mutta sen taustalla on järkevä ajatusketju. Alkoholin aineenvaihduntatuotteena on mm. karsinogeenisiä aldehydejä. Veren korkea sokeripitoisuus altistaa verisuoni- ja elinvaurioille sekä tyypin 2 diabetekselle.

Lähes koko nykyihmisen 200 000-vuotisen historian ajan eläinrasva oli ihmisen tärkein energianlähde.

Hiilihydraattien merkitys energianlähteenä lisääntyi vasta maanviljelyn kehittymisen ja kaupungistumisen jälkeen noin 10 000 vuotta sitten. Viime vuosisadalla hiilihydraattien osuus päivittäisestä energiansaannista kasvoi nopeasti ja lisättyjen sokereiden saanti moninkertastui.

Syömämme ravinto on muuttunut enemmän ja nopeammin kuin ihmisen fysiologia ja aineenvaihdunta.

Rasvaista lihaa

Kriittinen analyysi Mozaffarianin meta-analyysistä

Viittasin juttusarjan ensimmäisessä osassa Suomalaiseen mielisairaalatutkimukseen. Se on eräs vahvimmista tyydyttyneiden rasvojen ja kolesterolin haittoja puoltavista tutkimuksista.

Suomalainen mielisairaalatutkimus saa toimia aasisiltana LessLikely-sivustolla julkaistulle analyysille, jota referoimalla jatkan kriittistä syventymistä ravitsemuksen taustoihin.

Suomalaisessa mielisairaalatutkimuksessa (1959-1971) verrattiin ravinnon sisältämien rasvojen vaikutuksia kahdella potilasryhmällä, joista toisessa tyydyttyneiden rasvojen saantia ei rajoitettu, ja toisessa tyydyttyneet rasvat korvattiin monityydyttämättömillä rasvoilla.

Kahdessa Helsingin lähellä sijaitsevassa mielisairaalassa tehtiin valvottu interventiotutkimus, jonka tarkoituksena oli testata hypoteesia, jonka mukaan sepelvaltimotautien (CHD) ilmaantuvuutta voidaan vähentää käyttämällä seerumin kolesterolia alentavaa (SCL) ruokavaliota.

Koehenkilöt olivat sairaalahoidossa olevia mielenterveyspotilaita. Toisessa sairaalassa potilaat noudattivat vain vähän tyydyttyneitä rasvoja, kolesterolia, sekä suhteellisen runsaasti tyydyttymättömiä rasvoja sisältävää SCL-ruokavaliota.

Toisen sairaalan potilaat olivat normaalia sairaalaruokaa saava kontrolliryhmä. Kokeen ensimmäinen vaihe kesti kuusi vuotta. Sen jälkeen seurantaryhmien noudattamat ruokavaliot vaihdettiin ja koetta jatketiin toiset kuusi vuotta.

Suomalaisessa mielisairaalatutkimuksessa seurattiin miehiä ja naisia, mutta naisia käsitellään saman tutkimusryhmän laatimassa erillisessä tutkimuskatsauksessa.

Kahden suomalaisen mielisairaalatutkimuksen, (jotka ovat vain yksi tutkimus, josta laadittiin erilliset raportit miesten ja naisten tuloksista) kokonaisotanta oli 818 potilasta.

Tutkimusmenetelmät: Mitä meta-analyysillä tarkoitetaan (Wikipedia)

Haluan kirjoittaessani oppia jotain uutta, joten selvitän teksteissä iteellisiä menetelmiä ja käsitteitä, joista voi myöhemmin olla apua.

Tutkimusmenetelmät kuuluvat yleissivistykseen, mutta niiden ymmärtäminen ei ole itsestäänselvää. Minä käyn tätä kirjoittaessani läpi yleisimpiä tutkimusmenetelmiä ja niiden tulosten tulkitsemista.

Meta-analyysi on tilastollinen menetelmä, jolla pyritään johtamaan kvantitatiivisia päätelmiä yhdistelemällä systemaattisesti aiempia yksittäisiä tutkimuksia. Tarkoituksena on koota tutkimusten synteesi, joka antaa tutkittavasta kysymyksestä vahvempaa näyttöä kuin yksittäiset tutkimukset.

Tutkimustyypit – Lähde: Duodecim

Meta-analyysiin valittavat tutkimukset voivat olla johtopäätöksiltään ristiriitaisia.

Meta-analyysin tarkoitus on yhdistää aihetta käsittelevät tutkimukset tilastollisesti, jolloin voidaan tehdä luotettavampia johtopäätöksiä. Tilastollista lähestymistapaa sovelletaan useiden aikaisempien tulosten yhdistämiseen. Käytännössä meta-analyysi kokoaa painotetun keskiarvon useista tutkimuksista.

Lähestymistavan hyötyjä:

  • Tulokset ovat yleistettävissä laajempaan tilastolliseen populaatioon
  • Tulosten tarkkuus paranee kun käytettävissä on enemmän dataa
  • Aikaisempien tutkimusten erot voidaan kvantifioida ja analysoida.
  • Hypoteesien testaus voidaan tehdä aikaisemmista tutkimuksista muodostetuille yhteisestimaateille
  • Julkaisuharhan olemassaoloa voidaan arvioida

Meta-analyysia kritisoidaan yleensä seuraavista puutteista:

  • menetelmä ei pyri kontrolloimaan aikaisempien tutkimusten harhaa: jos huonosti toteutetuista tutkimuksista tehdään meta-analyysi, meta-analyysikin on huono.
  • julkaisuharha. Tutkijoille ei ole insentiivia (kannustinta/motivaatiota) julkaista tuloksia, jotka eivät ole mielekkäitä. Tutkimukset, joita ei julkaista eivät päädy meta-anayyseihin, mikä heikentää meta-analyyseja.
  • tavoite-harha. Meta-analyysiin poimitaan vain sellaisia tutkimuksia, jotka sopivat tutkijan omiin tavoitteisiin.

Cochrane-verkosto käyttää oppaassaan Cochrane Handbook for Systematic Reviews of Interventions seuraavaa vaiheistusta meta-analyysiin pohjautuvan systemaattisen kirjallisuuskatsauksen luomisessa:

  1. Tutkimusongelman muodostaminen ja meta-analysoitavien tutkimusten valintakriteerin määrittäminen
  2. Tutkimuskirjallisuuteen tutustuminen
  3. Tutkimusten valinta ja datan kerääminen valituista tutkimuksista
  4. Valittujen tutkimusten harhan riskiarviointi
  5. Datan analysointi ja varsinaisten meta-analyysiestimointien suorittaminen
    1. Yhdistettyjen estimaattien laskenta
    2. Tutkimusten heterogeenisuuden mallintaminen
    3. Sensitiivisyysanalyysi
  6. Raportointiharhojen käsittely
  7. Tulosten esittely ja yhteenveto
  8. Johtopäätökset

Meta-analyysin havaintoja voidaan esittää esimerkiksi forest plot -diagrammilla, joka on tapa visualisoida meta-analyysin tilastollista synteesiä.

Yleensä forest ploteissa on kaksi saraketta. Vasemmanpuoleisessa sarakkeessa esitetään tutkimusten nimet aikajärjestyksessä. Oikeanpuoleisessa sarakkeessa esitetään yksittäisten tutkimusten tulokset. Yksittäisen tutkimuksen tuloksessa on kaksi komponenttia:

  • Jana, joka kuvaa tutkimuksen luottamusväliä
  • Neliö, jonka sijainti kuvaa yksittäisen tutkimuksen keskimääräistä vaikutusta. Neliön koko kuvaa yksittäisen tutkimuksen painoarvoa yhdistetyssä meta-analyysissä.

Kuvaajan alaosassa oleva timantti kuvaa yhdistettyjä tuloksia. Sen pystydiagonaalin sijainti kuvaa yhdistettyä keskimääräistä vaikutusta ja neliön leveys tutkimusten yhdistettyä luottamusväliä. Keskimääräistä vaikutus piirretään yleensä myös katkoviivalla, jotta sitä voi vertailla yksittäisiin tutkimuksiin.

Kuvaajaan merkitään yhtenäisellä pystyviivalla tilanne, jossa vaikutusta ei ole. Jos timatti on tämän viivan päällä, voidaan todeta että vaikutusta ei ole havaittavissa kyseisellä luottamusvälillä.

Mozaffarianin meta-analyysin tulokset

Funnel plot-kuvaajaa käytetään meta-analyyseissä harhan ja systemaattisen heterogeenisuuden tarkasteluun. Hajontakuviolla piirretään yksittäisten tutkimusten vaikutus vaaka-akselille ja tutkimuksen koko pystyakselille. Pystysuoralla katkoviivalla merkitään meta-analyysin yhdistettyä keskimääräistä vaikutusta.

”Hyvin käyttäytyvässä” funnel plotissa tuloksena on tasasivuinen kolmio. Tämä johtuu siitää, että isokokoisten tutkimusten tulisi olla lähempänä yhdistettyä vaikutusta kuin pienikokoisten. Pyramidin vinous tai huipukkuuden puute taas implikoivat mahdollisista ongelmista. Tutkimuksen koon mittana voidaan käyttää esim. vaikutuksen keskihajontaa tai otoksen kokoa.

Mozaffarian – funnel plot

LessLikely: Mozaffarianin meta-analyysin kritiikki

Kokoan Ruokasotaan kriittisiä havaintoja ravitsemuksesta ja terveydestä. Perustelen kantani tutkitulla tiedolla ja luotettavilla lähteillä. Opiskelen samalla ravitsemukseen liittyviä ilmiöitä ja tutkimusmenetelmiä.

Hämmentävissä ruokajutuissa tutustu vallitseviin suosituksiin kriittisesti suhtautuviinravitsemusoppeihin

Erilaiset meta-analyysit antavat erilaisia tuloksia monityydyttämättömien ja tyydyttyneiden rasvojen terveysvaikutuksista. Siri-Tarinon ja Chowdhuryn meta-analyysit eivät löytäneet yhteyttä tyydyttyneiden rasvojen ja sydäntautien väliltä. Sen sijaan Mozaffarianin tutkimus osoitti, että monityydyttämättömät rasvat laskevat sydäntautien riskiä. Tilastollisia tutkimuksia kriittisesti tulkitseva LessLikely havaitsi Mozaffarianin meta-analyysissä virheen, joka vähentää meta-analyysin luotettavuutta.

”Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.” – Chowdhury

Sydän- ja verisuonitautitapahtumien osalta Suomalaisen mielisairaalatutkimuksen painoarvo on varsin merkittävä useita tutkimuksia käsittävissä meta-analyyseissä. Tämä selviää mm. Mozaffarianin & Wallacen meta-analyysistä (2010), joka on yksi tieteellisissä lähteissä eniten siteeratuista tämän aihepiirin meta-analyyseistä.

Mozaffarianin metaanalyysin tutkimusten sisällyttämis- ja poissulkemiskriteerejä kuvatan suurin piirtein näin:

Etsimme tutkimukseen kaikkia kontrolloituja satunnaistettuja tutkimuksia (RCT), jotka satunnaistivat aikuisten monityydyttämättömien omega6-rasvojen saannin vähintään vuodeksi ilman muita kontrollitoimia (tupakointi, verenpaine, muut ruokavalion toimenpiteet tms.).

Avokado

Mozaffarianin meta-analyysiin kelpasivat vain satunnaistetut vähintään vuoden mittaiset tutkimukset. Lisäksi meta-analyysi poissulki ei-satunnaistetut tutkimukset ja seurantatutkimukset.

Seuraavassa Mozaffarianin meta-analyysin sisältämien tutkimusten lista. Huomioi suomalaisten tutkimusten tutkimussuunnitelma.

Mozaffarianin meta-analyysin tutkimukset

Millaisia tutkimuksen tulokset olivat?

Vuoden 2010 meta-analyysissä havaittiin, että ruokavalion tyydyttyneiden rasvojen (SFA) korvaaminen monityydyttämättömillä rasvoilla (PUFA) laskee tilastollisesti merkittävällä tavalla sydän- ja verisuonitautitapahtumia.

19%:n lasku sydäntautitapahtumissa on sen verran merkittävä, että tulosta ei voi sivuuttaa. Luottamusväli (CI) kallistuu kohti luotettavaa.

Sydänterveyden kannalta tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla vaikuttaa siis lupaavalta ruokavaliointerventiolta. Tämän vuoksi Mozaffarianin meta-analyysiin viitataan ahkerasti. Metaanalyysiin sisältyvien tutkimusten laatu oli heikko tai kohtalainen.

Many of the trials had design limitations, such as single-blinding, inclusion of electrocardiographically defined clinical endpoints, or open enrollment. All trials utilized blinded endpoint assessment. Quality scores were in the modest range and relatively homogeneous: all trials had quality scores of either 2 or 3.”

Mikä sitten meni metsään?

Suurin ongelma Mozaffarianin meta-analyysissä on se, että kahta kvantitatiiviseen analyysiin sisältyvää suomalaista tutkimusta ei ole satunnaistettu. Tutkijat tekivät sisällyttämisperusteillaan selväksi, että he halusivat sisällyttää meta-analyysiin vain satunnaistettuja tutkimuksia. Mitä se tarkoittaa?

Satunnaistettu kontrolloitu tutkimus (Randomized Controlled Trial, RCT)

Satunnaistettu kontrolloitu tutkimus on terveyttä selvittävien interventiotutkimusten laadullisesti paras ja luotettavin tutkimusasetelma.

Satunnaistetun kontrolloidun tutkimuksen perusidea on, että verrataan interventioryhmää ja kontrolliryhmää keskenään. Kontrolliryhmän avulla ruokavalioon tehtävien muutosten, lääkityksen tai muiden interventioiden vaikutuksista voidaan tehdä päätelmiä intervention vaikutuksista.

Kontrolliryhmän lisäksi tärkeää on satunnaistaminen (randomointi). RCT-asetelmassa koehenkilöt jaetaan kahteen tai useampaan ryhmään niin, että tutkija ei itse vaikuta millään tavoin ryhmäjakoon, vaan se tapahtuu satunnaisesti, arpomalla. Tämä takaa sen, että tuloksiin (tutkittavan intervention lisäksi) mahdollisesti vaikuttavat tekijät jakautuvat ryhmien välillä satunnaisesti.

Ihannetapauksessa toteutetaan koe lisäksi sokkoutettuna, jolloin tutkimukseen osallistuja ja tutkimushenkilökunta eivät tiedä kuuluuko osallistuja interventio- vai kontrolliryhmään, lääketutkimuksien ulkopuolella tämä tosin on usein vaikeaa tai mahdotonta toteuttaa.

Edes RCT ole täysin aukoton tutkimusasetelma. Julkaistujen tutkimusten metodien sekä tulosten raportoinnissa havaitaan usein puutteita (Montgomery, 2018). RCT-asetelmaan voi liittyä myös eettisiä haasteita.

Satunnaistetulla kontrolloidulla tutkimuksella on kuitenkin vahva asema tutkimusmenetelmien joukossa.

Kaksi suomalaista mielensairaalatutkimusta merkittiin ryvästetyksi (cluster) satunnaistetuksi tutkimukseksi”. Kun tämä meta-analyysi julkaistiin, monet tutkijat suhtautuivat kriittisesti siihen, että ryvästetty satunnaistettu tutkimus oli merkitty satunnaistetuksi tutkimukseksi, etenkin kun ryhmiä oli vain kaksi (kahden sairaalan potilaat).

Tämä on pätevä ja perusteltu kritiikki, koska ryvästetty satunnaistettu tutkimus, jossa on vain yksi klusteri ehtoa kohden, ei kelpaa ryhmien välisiin tilastollisiin vertailuihin. Brown ym., 2015 selittävät tässä kattavassa artikkelissa,

A particularly pernicious and invalid design that requires recognition is the inclusion of only one cluster per condition… Such designs are unable to support any valid analysis for an intervention effect, absent strong and untestable assumptions. In such designs, the variation that is due to the cluster is not identifiable apart from the variation due to the condition.

A one-cluster-per-condition design is analogous to assigning one person to the treatment and one person to the control in an ordinary (nonclustered) RCT, measuring each person’s outcome multiple times, treating the multiple observations per person like independent observations, and interpreting the results like a valid RCT. In such a situation, the observations on person A can be tested as to whether they are significantly different from those on person B but cannot support an inference about the effect of treatment per se.

Joten on selvää, että yhden klusterin ehtoa koskeva malli ei ole pätevä antamaan luotettavaa tietoa interventiosta. Monet eivät kuitenkaan kiinnittäneet huomiota siihen, että Suomalaiset mielisairaalatutkimukset eivät edes olleet ryvästettyjä satunnaistettuja tutkimuksia.

Yhdessäkään näiden kahden tutkimuksen viidestä julkaisusta ei ole viitteitä satunnaistumisesta. Voit tarkistaa kaikki viisi artikkelia täältä:


Journal

Year

Title

International Journal of Epidemiology

1983

Dietary Prevention of Coronary Heart Disease in Women: The Finnish Mental Hospital Study

Circulation

1979

Effect of Cholesterol-Lowering Diet on Mortality from Coronary Heart Disease and Other Causes

American Journal of Clinical Nutrition

1968

Dietary Prevention of Coronary Heart Disease: Long-Term Experiment: I. Observations on Male Subjects

International Journal of Epidemiology

1979

Dietary Prevention of Coronary Heart Disease: The Finnish Mental Hospital Study

The Lancet

1972

Effect of Cholesterol-Lowering Diet on Mortality from Coronary Heart-Disease and Other Causes a Twelve-Year Clinical Trial in Men and Women


Ryvästetyt satunnaistetut tutkimukset eivät oleet Suomalaisten mielisairaalatutkimusten aikaan tilastollisessa analyysissä vielä yleisesti käytössä. Tämän vuoksi on aiheellista suhtautua skeptisesti ryvästettyihin satunnaistettuihin tutkimuksiin.

Nämä kaksi tutkimusta kuitenkin nimettiin virheellisesti ryvästetyiksi satunnaistetuiksi tutkimuksisksi ja sisällytettiin siksi metaanalyysiin. Tutkimusten painoarvo meta-analyysissä oli 16 %.

Tekijät havaitsivat melko merkittävän laskun CVD-tapahtumissa (RR: 0,81, 95% CI 0,70 – 0,95, p = 0,008)

 


LessLikely korjasi tutkimusasetelman virheen

Mitä tuloksille tapahtuu, kun virhe korjataan poistamalla meta-analyysistä kaksi tutkimussuunnitelman kannalta epäkelpoa tutkimusta?

Kuten havaitaan, analyysin uudelleentarkastelu suomalaisten tutkimusten poistamisen jälkeen johtaa siihen, että intervention vaikutuksen koko supistuu 19%:n alenemisesta 13%:n pienenemiseen (RR: 0,87, 95% CI 0,76 – 1,00). Tuo on suuri ero!

LessLikely – korjattu tutkimus

Suomalaisten mielisairaalatutkimusten poistamisen jälkeen Mozaffarianin meta-analyysin tulokset eivät ole enää tilastollisesti merkittäviä.

Tilastofilosofiasta riippumatta tämä on merkittävä objektiivinen virhe. Kahden tutkimusaineistolle määriteltyihin kriteereihin sopimattoman tutkimuksen merkitseminen sisällyttämiskriteerien mukaisiksi oli virhe.

Tämän virheen korjaaminen johtaa tulosten tilastollisesti merkittävään muutokseen. Mozaffarianin meta-analyysia ei ole korjattu, vaikka virheestä on tekijöille tiedotettu.

Monet, jotka lukevat artikkelin tai lainaavat sitä, eivät tiedä, että yhteenvetovaikutukset ovat virheelliset ja että joitain analyysiin liittyviä tutkimuksia ei pitäisi olla mukana meta-analyysissä!

On tärkeää korostaa, että tämän tutkimuksen virheiden korjaaminen ei johda täysin erilaisiin johtopäätöksiin.

Vaikka vaikutus ei ole enää tilastollisesti merkitsevä, vaikutus on silti olemassa vaikutuksen koon ja luottamusvälien kattavuuden perusteella.

Systematic reviews by other groups including Cochrane did not include the Finnish studies in their meta-analyses because the authors didn’t believe that a “cluster randomized trial” with so few clusters (2) met the inclusion criteria for a randomized trial (also worth remembering, that there is no indication in any of the papers that this was even cluster randomized!). Some of these systematic reviews that exclude the Finnish studies still find a benefit to replacing saturated fats in the diet with polyunsaturated fats.

Assosiaatio monityydyttämättömien rasvojen ja paremman sydänterveyden välillä on puutteellisesti osoitettu. Steven Hamleyn meta-analyysi ei pystynyt osoittamaan sydän- ja verisuonitautien vähenemistä, jos tyydyttyneet rasvat korvatiin monityydyttämättömillä rasvoilla.

Conclusion: Available evidence from adequately controlled randomised controlled trials suggest replacing SFA with mostly n-6 PUFA is unlikely to reduce CHD events, CHD mortality or total mortality. The suggestion of benefits reported in earlier meta-analyses is due to the inclusion of inadequately controlled trials. These findings have implications for current dietary recommendations.

Rasvojen vaikutuksista sydän- ja verisuoniterveydelle vallitsee yhä valtavasti erimielisyyksiä. Tieteellinen näyttö ei ole lainkaan selvä. Tutkimukset eivät osoita, että tyydyttyneet rasvat kasvattaisivat sydän- ja verisuonitautien riskejä, tai että tyydyttyneiden rasvojen korvaaminen monityydyttämättöukkö rasvoilla laskisi sydäntautien riskiä.

Mozaffarianin meta-analyysi teki merkittävän virheen. Se on ongelma, vaikka sen yleiset päätelmät eivät muuttuisi korjauksen jälkeen. Ongelma on olemassa, koska:

  • Kaksi merkittävää tutkimusta luokiteltiin väärin
  • Tutkimukset eivät täyttäneet tutkimukselle asetettuja kriteerejä, mutta niitä käytettiin analyysissä
  • Tutkimusten hyväksyminen analyysiin johti merkittävästi erilaiseen lopputulokseen
  • Tutkimusta siteerataan muissa tutkimuksissa ja sillä perustellaan vallitsevia rasvasuosituksia

Mozaffarianin meta-analyysia lainataan muissa tutkimuksissa jatkuvasti. Sen katsotaan tukevan ja perustelevan vallitsevia oppeja tyydyttyneiden rasvojen terveyshaitoista ja monityydyttämättömien rasvojen terveyshyödyistä. Näin ei ole. Mozaffarianin tutkimuksen korjatun analyysin tulokset eivät ole tilastollisesti merkittäviä, tai tue vallitsevia ravintosuosituksia.




Ruokasotaa ja anarkiaa osa 1

Ravintoon liittyy väärinkäsityksiä ja myyttejä. Eräiden ravitsemusoppien tieteellinen perusta on vuosikymmenten jälkeen kyseenalainen. Tyydyttynyt rasva ei ehkä olekaan niin vaarallista kuin meille uskotellaan. Ruokasotaa ja anarkiaa kompuroi ravitsemusteorian sudenkuoppiin.

Noam Chomsky sanoo, että anarkismin pitää haastaa, kyseenalaistaa ja ravistella vallitsevien sosiaalisten rakenteiden ja normien legitimiteettiä.

Asioiden vallitsevasta tilasta ei nimittäin voi päätellä, että vallitseva asioiden tila on ainoa oikea, paras mahdollinen tai edes toivottavin tila. Chomskyn ja veljeni määritelmän mukaan minä taidan olla anarkisti.

Uskon, että maailmassa on aina korjattavaa. Monet ravitsemusohjeet vaikuttavat lähemmin tarkasteltuna pikkiriikkisen puskaabeleilta. Jätän tuon termin määrittelemättä.

Myös ravitsemusohjeita pitää aika ajoin ravistella, pureskella ja töniä, ettei ohjeita automaattisesti kuvitella muuttumattomiksi tosiasioiksi. Täysin kiistattomat tosiasiat ovat harvinaisia.

Kaikkien ravitsemusohjeiden tieteellinen perusta ei kestä kirkasta päivänvaloa

Tutkimuksissa ilmeneviä aukkoja tilkitään, mutta esimerkiksi oppi tyydyttyneeen rasvan ja kolesterolin haitoista vuotaa. Nähdäkseni ravintotieteessä soudetaan venellä, jonka toinen airo on poikki.

Ravitsemusoppeja voidaan perustella vääriin tietoihin perustuneilla päätöksillä, eettisillä, ideologisilla ja polittisilla mielipiteillä sekä tutkimustulosten tietoisella tai tiedostamattomalla vääristelyllä ja peittelyllä.

Kansanterveyden ja taloudellisen kantokyvyn vuoksi ravintoa koskeavien ohjeiden pitäisi kuitenkin perustua viimeisimpään tieteelliseen dataan. Näin ei aina tapahdu.

Vallitsevat ohjeet ovat osaltaan vaikuttaneet kardiometabolisten tautien nopean lisääntymiseen. Suolistosairaudet ovat yleistynet tyypin 2 diabeteksen ja lihavuuden rinnalla nopeasti vuoden 1980 jälkeen.

SARS-CoV-2 ei ole ainoa yhteiskunnan voimavaroja kuluttava globaali terveysuhka.

Lihavuuden yleistyminen

Lisääkö punainen liha suolistosyöpien riskiä?

Lihansyöjiä varoitettiin jälleen 17. huhtikuuta 2019 punaisen ja prosessoidun lihan syömiseen liittyvistä riskeistä. Se ei ollut ensimmäinen, eikä varmasti viimeinen kerta, jolloin kasvissyöjät korottavat ääntään. 

Terveyspommi räjähti, kun the Guardian uutisoi, että ”jopa maltillinen punaisen lihan syöminen lisää syöpäriskiä”. CNN heitti bensaa liekkeihin raportoimalla, että ”vain yksi pekoniviipale päivässä on yhteydessä suurempaan paksusuolen syövän riskiin”. The Telegraph kasvatti uhkaa varoittamalla, että ”punaisen lihan syöminen kerran päivässä lisää syöpäriskiä viidenneksellä”.

Luotettavien uutistoimistojen syöpäpeloilla leikittelevät jutut nostivat monen lihansyöjän niskakarvat pystyyn. Jeremy Braude kiinnostui syöpäpelkoja lietsovista uutisotsikoista niin paljon, että päätti hillitä lihapaniikkia avaamalla uutisten taustalla vaikuttavaa tilastotiedettä.

Tilastot ovat tehokkaita vaikuttamisvälineitä, koska ne voivat olla uskomattoman petollisia.

Alkuperäisessä tutkimuksessa, joka julkaistiin International Journal of Epidemiology -lehdessä, todettiin, että ”ihmisillä, jotka syövät punaista ja prosessoitua lihaa neljä kertaa viikossa tai useammin, on 20 % suurempi paksusuolen syövän riski verrattuna niihin, jotka yövät punaista tai prosessoitua lihaa vähemmän kuin kahdesti viikossa.”

Selvä homma! Punaisen ja prosessoidun lihan syöminen on hemmetin vaarallista

Näissä tutkimuksissa 20 % on kuitenkin suhteellinen ja tilastollinen, ei absoluuttinen arvo. On toinenkin tapa tarkastella täsmälleen samoja lukuja.

Kaikista tutkimukseen osallistujista, jotka söivät punaista tai prosessoitua lihaa vähemmän kuin kaksi kertaa viikossa, 0,40 %:lle kehittyi paksusuolen syöpä. Ihmiset, jotka söivät punaista ja prosessoitua lihaa enemmän kuin neljä kertaa viikossa, 0,63 %:lle kehittyi paksusuolen syöpä.

Ero paksusuolen syövän kehittymisen todennäköisyydessä vähän punaista lihaa ja paljon punaista lihaa syövien väestöryhmien välillä oli vain 0,23 %. Harvempi kuin 1 % ”korkeamman riskin” ryhmästä sairastui paksusuolen syöpään.

Punaisen ja prosessoidun lihan kulutus voi tilastollisesti lisätä suolistosyövän riskiä, mutta syy-seuraussuhde ei ole selvä ja todellinen riski sairastua suolistosyöpään punaisen lihan vuoksi on hyvin pieni.

Vertailun vuoksi paksusuolen syöpää havaittiin samassa tutkimuksessa 0,48 prosentilla osallistujista, jotka käyttivät vähemmän kuin gramman alkoholia päivässä, ja 0,68 prosentilla osallistujista, jotka käyttivät yli 16 grammaa alkoholia päivässä.

Tilastollisesti oluen tai viinilasillisen juomisella joka päivä on yhtäläinen vaikutus paksusuolen syövän riskiin kuin punaisen tai prosessoidun lihan syömisellä neljä kertaa viikossa. Riski oli kuitenkin selvästi alle prosentin ja mahtuu tutkimuksen virhemarginaaliin.

Laajennetaan katsantoa

Verrataan lihan syömisen riskejä tupakoinnin riskeihin. Länsimaissa keuhkosyövän riski on 9,4 – 23,2 kertainen tupakoitsijoilla tupakoimattomiin verrattuna. Punaisen ja prosessoidun lihan syöminen neljä kertaa viikossa voi lihapaniikkia lietsovan uutisoinnin mukaan kasvattaa paksusuolen syövän riskiä noin 20 %, mutta tupakointi kasvattaa keuhkosyövän riskiä jopa 840–2220%.

Punaisen lihan syömisen riskit ovat siedettäviä tupakointiin verrattuna.

Experimental Biology and Medicine kertoo tutkimuskatsauksessaan, että havaintojen mukaan hemirauta ja heterosykliset amiinit kasvattavat paksusuolen syövän riskiä. Hemirautaa saa punaisesta lihasta. Heterosyklisiä amiineja kehittyy, kun liha valmistetaan korkeassa lämpötilassa.

Monet tutkimukset tehdään laboratorio-oloissa joko soluviljelmillä tai koe-eläimillä. Näissä tutkimuksissa käytetään lihakomponenttitasoja, jotka ylittävät selvästi ihmisten normaalin punaisen lihan kulutuksen. Tutkimukset eivät yleensä huomioi muista ravinteista saatavien biologisesti aktiivisten yhdisteiden vaikutuksia. Esimerkiksi C-vitamiini hidastaa hemiraudan imeytymistä.

Kausaalista ja mekaanista yhteyttä punaista lihaa sisältävän monipuolisen ruokavalion ja lisääntyneen suolistosyövän riskin välillä on hankala osoittaa.

Muistelen, että punaisen lihan syöpäriskiä kasvattavan ideologian lanseerasi maailman medioille ja Maailman terveysjärjestölle pelkästään vegetaristeista ja vegaaneista koostuva tieteellinen paneeli. Vaikuttiko punaisen lihan mustamaalaamiseen eettiset, ideologiset ja poliittiset syyt?

Suattaapi olla, että vaikutti, mutta suattaapi olla ettei vaikuttanut, sanoisi poliittisesti korrekti savolainen.

Kyselykaavakkeisiin perustuvat epidemiologiset väestötutkimukset eivät yleensäkään anna täsmällistä ja luotettavaa tietoa tutkittavan väestön todellisista elintavoista. Ihmiset unohtavat, liioittelevat, väheksyvät ja valehtelevat tietoisesti tai tietämättään syömistään ruoista. Tämän vuoksi epidemiologisista väestötason kyselytutkimuksista ei pitäisi johtaa muuta kuin yleisiä suuntimia ja väestötason tendenssejä.

Australialaistutkimuksessa osoitettiin, että punaisen lihan syöminen osana Välimeren ruokavaliota laskee MS-tautiin sairastumisen riskiä 38 % (1).

Okei. Minä olen multippelisklerootikko ja lihansyöjä. Minulla kävi sitten vain helvetin huono tsägä!

Vastaavat tutkimukset ovat osoittaneet, että Mainen osavaltiossa margariinien syönti korreloi avioerojen kanssa. Onko ilmiö yleistettävissä ja voisiko voihin siirtyminen vähentää avioerojen riskiä globaalisti?

Minä kokeilin, mutta ei se toiminut. Voihin siirtyminen ei pelastanut minun avioliittoani, joten syy erolle taisi olla jokin muu kuin margariini.

Vastaavasti voidaan kysyä, vähentääkö punaisesta lihasta luopuminen paksusuolen syövän riskiä yhtä paljon kuin punaisesta lihasta luopuminen lisää multippeliskleroosin riskiä? Entä lisääkö punaisesta lihasta luopuminen diabeteksen riskiä?

Nämä ovat hankalia monivalintatehtäviä: ms, diabetes vai syöpä? Siinäpä pulma.

Tyydyttynyt rasva ja rasvaisia ruokajuttuja

Kova tyydyttynyt rasvat ja kolesteroli voivat nykytiedon mukaan kasvattaa sydän- ja verisuonitautien riskiä. Kolesterolin vaarallisuutta ei epäillä juuri koskaan.

Kolesteroli tappaa yhtä varmasti kuin glyfosaatti, mutta hitaammin kuin syanidi tai arsenikki. Näyttö ja ihmisen historia ei yksiselitteisesti ja kiistattomasti tue tällaisia uskomuksia. Epäilylle jää tilaa.

Elämä tarvitsee vältämättä kolesterolia ja tyydyttynyttä rasvaa. Kaikissa ihmisen solujen rakenteissa on kolesterolia.

Kolesteroli vaikuttaa steroidihormonien, kuten sukupuolihormonien synteesiin. Hermoston ja aivojen normaali kehitys edellyttää, että imeväisikäiset vauvat saavat äidinmaidosta tärkeitä eläinrasvoja ja kolesterolia.

Rintaruokittavat vauvat noudattavat ketogeenistä ruokavaliota. Karppaus on kaikesta siihen liittyvästä pelottelusta huolimatta ihmisen ensimmäinen ruokavalio.

Jos tyydyttynyt rasva ja kolesteroli olisivat yhtä haitallisia, kuin uskotaan, evoluutio olisi miljoonien vuosien kehityshistorian aikana muuttanut rintamaidon rasvakoostumusta terveellisempään suuntaan. Ei pelkästään ihmisellä, vaan kaikilla muillakin nisäkkäillä.

Miksi nisäkkäät tuottavat kolesterolia kolesterolisynteesissä, jos se on kovin haitallista?

Kolesterolia tuotetaan asetyylikoentsyymi-A:sta nelivaiheisessa synteesissä. Ensimmäisessä vaiheessa kolme asetyyli-KoA:ta yhdistetään mevalonaatiksi.

Mevalonaatista syntyy kaksi fosfaattiryhmillä aktivoitua isopreenimolekyyliä. Kuusi tällaista isopreenimolekyyliä polymerisoituu ketjuksi, jossa on useita kaksoissidoksia. Nämä kaksoissidokset muutetaan hiiliatomien välisiksi sidoksiksi, jolloin syntyy nelirenkainen rakenne, joka on kaikkien sterolien perusrakenne.

Suurin osa maksasolun tuottamasta kolesterolista kuljetetaan ulos solusta esimerkiksi sappihappoina tai kolesteryyliesterinä. Kolesteryyliesteri on kolesterolia hydrofobisempi molekyyli, joka kuljetetaan maksasta muualle elimistöön lipoproteiinipartikkeleissa, erityisesti LDL-partikkeleissa

Lisämunuaisessa kolesterolista valmistetaan steroidihormoneja, kuten lisämunuaiskuoren mineralokortikoideja ja glukokortikoideja, jotka säätelevät munuaisten ionien imeytymistä ja glukoneogeneesiä. Sukupuolihormoneja, kuten androgeenejä, estrogeenejä ja progesteronia, tuotetaan sukupuolirauhasissa ja istukassa.

Pahaa kolesterolia ei ole – on vain kolesterolia, joka on elimistön välttämättä tarvitsema aine

”Kolesteroli on ihmisen ja muiden eläinten kudoksissa, etenkin maksassa, tuotettu steroideihin kuuluva tyydyttymätön, rengasrakenteinen, veteen liukenematon kiteinen alkoholi.

Kolesteroli on ihmisen kaikkien kudosten toiminnalle välttämätön aine, jota esiintyy runsaasti varsinkin äidinmaidossa, rasvakudoksessa, aivoissa, hermoissa, maksassa ja munuaisissa. Usein puhutaan kansanomaisesti ”hyvästä” ja ”pahasta” kolesterolista, mutta kaikki kolesteroli on silti kemialliselta rakenteeltaan täysin samanlaista.” – Wikipedia/Kolesteroli

LDL ja HDL ovat rasvaa, rasvaliukoisia vitamiineja ja kolesterolia kuljettavia lipoproteiineja. Lyhenteet viittaavat Low Density Lipoprotein- ja High Density Lipoprotein -kuljetusmolekyyleihin.

Keho tarvitsee pieniä määriä omega6-rasvoja, kuten linolihappoa. Mutta käynnissä oleva tutkimus viittaa siihen, että linolihapon runsas saanti voi ylläpitää kehon hiljaista tulehdusta (inflammaatiota) ja altistaa monille sairauksille. Omega3- ja omega6 rasvahappojen tasapainoinen saanti lienee terveyden kannalta tärkeämpää kuin kiista kovista tyydyttyneistä ja pehmeistä tyydyttämättömistä rasvahapoista.

Ihminen, läski ja kolesteroli – miksi?

Ihmisen suolisto ja ruoansulatus käyttää vähemmän energiaa kuin useinpien muiden eläinten suolisto. Mikään muu laji ei toisaalta käytä niin paljan ravinnosta saatua energiaa aivojen toiminnan ylläpitoon kuin ihminen.

Tyydyttynyt rasva on erinomainen ja runsaasti energiaa sisältävä ravintoaine. Rasvan sisältämä energia, 9 kcal/g, piti varhaiset metsästäjä-keräilijät hengissä ennen maanviljelyn ja säilöntämenetelmien kehittymistä.

On selvää, että puolukoiden kerääminen talvihangilla ei taannut pohjoisten ihmisten selviytymistä. Minä uskon, että eläinrasvan sisältämä energia joudutti ihmisaivojen kehittymistä ja auttoi ihmislajin selvitymään.

Rasva on syntyvän ihmisen ensimmäistä ravintoa, joten ihmisen aineenvaihdunta virittyy rasvaan ravinnonlähteenä jo hyvin varhain.

Rintaruokinnassa olevat vauvat ovat ketoosissa. Vauvat karppaavat.

Tyydyttynyt rasva on ollut osa ihmisten ruokavaliota koko ihmislajin kehityshistorian ajan. Ihmisen aivot eivät ehkä olisi koskaan kehittyneet nykyihimisen suuriksi ja runsaasti energiaa kuluttaviksi ihmisaivoiksi, jos kaukaiset esivanhempamme eivät olisi saaneet riittävästi energiaa eläinrasvoista. 

Maanviljely kehittyi noin 10 000 vuotta sitten. Ennen maanviljelyn kehittymistä eläneet varhaiset metsästäjä-keräilijät saivat suuren osan ravinteista ja energiasta eläinproteiineista ja eläinrasvoista lähes 200 000 vuoden ajan.

Tyydyttyneistä rasvoista varoittelevat ravitsemussuositukset julkaistiin Yhdysvalloissa alle 50 vuotta sitten. Onko ihmisen aineenvaihdunta ratkaisevasti muuttunut viimeisen vuosisadan kuluessa?

Syömämme ravinto on muuttunut enemmän kuin aineenvaihduntamme. Monityydyttämättömiä siemenöljyjä on hyödynnetty ravinnossa vain noin sata vuotta.

Ravinto on osatekijänä monissa nopeasti yleistyvissä sairauksissa. Lihavuus, metabolinen oireyhtymä, aikuistyypin diabetes, suolistosairaudet, sydän- ja verisuonitaudit ja monet syövät voidaan tietyin varauksin palauttaa syötyyn ravintoon, ja aivan erityisesti sellaiseen prosessoituun ruokaan, jonka käyttöön aineenvaihduntamme ei ole ehtinyt adaptoitua.

60– ja 70-luvuilla rasvojen terveysvaikutuksista tehtiin kiinnostavia kontrolloituja satunnaistettuja tutkimuksia (CRT). Nämä tutkimukset eivät kuitenkaan mahtuneet vallitsevaan hypoteesiin kovien rasvojen haitallisuudesta, joten ne niiden annettiin unohtua.

Minnesota Coronary Experiment

Hiljattain pölyisestä kellarista löydetty vuosikymmeniä vanha tutkimus herättää kysymyksiä vallitsevista ravitsemusohjeista.

Minnesota Coronary Experiment, oli kontrolloitu satunnaistettu tutkimus (CRT), joka toteutettiin vuosina 1968 – 1973.

Valtion mielisairaaloissa ja vanhainkodeissa tutkittiin yli 9000 ihmisen avulla ruokavalion sisältämien rasvojen vaikutuksia terveyteen, kolesterolitasoihin sekä sydäntautien ja sydänkuolemien riskiin.

Kansallisen sydän-, keuhko- ja veri-instituutin (National Heart, Lung and Blood Institute) rahoittamaa tutkimusta johti Minnesotan yliopiston lääketieteellisen koulun tohtori Ivan Frantz Jr.

Institutionalisoituneiden tutkimushenkilöiden ruokavalion sisältämiä rasvoja kontrolloitiin. Puolet koehenkilöistä sai ravintoa, jossa oli runsaasti maidon, juuston ja naudanlihan sisältämiä tyydyttyneitä rasvoja (SFA – saturated fatty acids).

Vertailuryhmän ruokavaliosta tyydyttyneet rasvat poistettiin lähes täysin ja korvattiin monityydyttämättömillä kasvirasvoilla (PUFA – poly unsaturated fatty acids).

Tutkimuksen tavoitteena oli todistaa, että tyydyttyneiden eläinrasvojen korvaaminen kasviöljyistä saatavilla tyydyttymättömillä rasvoilla laskee sydäntautien ja -kuolleisuuden riskiä.

Tietoja ei koskaan analysoitu täysin, vaikka Minnesota Coronary Experiment oli eräs laajimmista kontrolloiduista satunnaistetuista ruokavaliotutkimuksista, joita koskaan on tehty.

Joitain vuosia sitten Kansallisen terveysinstituutin (National Health Institute) lääketutkija Christopher E. Ramsden kuuli unohdetusta tutkimuksesta. Hän kiinnostui aiheesta ja otti yhteyttä Minnesotan yliopistoon tutustuakseen julkaisemattoman tutkimuksen aineistoon.

Vuonna 2009 kuollut tohtori Frantz oli elinaikanaan tyydyttyneiden rasvojen terveysvaikutuksiin perehtynyt tutkija Minnesotan yliopistossa. Eräs Frantzin läheisistä kollegoistaan oli vaikutusvaltainen ravitsemustutkija Ancel Keys.

Ancel Keysin alkuperäistä dataa 7 maan tutkimuksesta. Maita oli 22, mutta tutkimukseen Keys hyväksyi vain ne 7 maata, joiden data tuki hänen ennakkohypoteesiaan. Esimerkiksi Ranskassa tyydyttyneiden rasvojen kulutus on runsasta, mutta sydätaudit ja -kuolemat harvinaisia. Tämä tunnetaan ranskalaisena paradoksina.

Keys uskoi kolesterolin ja tyydyttyneiden rasvojen lisäävän sydäntautien riskiä. Häntä voi pitää nykyisten ravitsemussuositusten isänä.

Tohtori Frantz uskoi Keysin tavoin tyydyttyneiden rasvojen haitallisuuteen, kertoi tutkijan poika, sydänlääkäri tohtori Robert Frantz, joka löysi Minnesotan pölyttyneen tutkimusraportin vanhempiensa kellarista.

Minnesota Coronary Experiment oli yllättävä. Koehenkilöillä, joiden ravinto sisälsi vain vähän tyydyttyneitä eläinrasvoja, kolesteroli laski keskimäärin 14 prosenttia. Vertailuryhmässä muutos kolesterolitasoissa oli vain prosentin luokkaa.

Vähän tyydyttyneitä rasvoja sisältävä ruokavalio ei kuitenkaan laskenut sydänkuolleisuutta. Päinvastoin. Tutkimuksen havainnot osoittivat, että mitä enemmän kolesteroli laski, sitä korkeammaksi sydäntautikuoleman riski kasvoi. Toisin sanoen kolesterolin laskeminen lisäsi kuolleisuutta.

Framingham Heart Study oli tehnyt samankaltaisen havainnon 1960-luvulla, mutta sekin jäi muiden Framinghamin tutkimusten varjoon.

Tulokset ovat ristiriidassa tyydyttyneiden rasvojen välttämiseen ohjaavien neuvojen kanssa. Kellarista löydetty tutkimus aiheutti melkoisen pöhinän ja pienimuotoisen skandaalin tutkijapiireissä. Pian ravitsemuspiireissä alkoi kiivas selittely ja tutkimuksen vähättely.

Huoli: institutionalisoidut opit vaarassa?

Analyysi, joka julkaistiin BMJ-lehdessä, nostatti ravitsemustutkijoiden keskuudessa kiivaita vastalauseita. Kritiikin mukaan Minnesotan tutkimus oli puutteellinen.

Walter Willett, Harvardin yliopiston ravitsemusosaston puheenjohtaja, väitti tutkimusta merkityksettömäksi. Willett tunnetaan mm. siitä, että hän laati monissa nykyisissä epidemiologisissa ravitsemustutkimuksissa käytettävät kyselykaavakkeet, joiden tutkimuksellista arvoa pidetään epäluotettavana.

Vuoden 2015 kansallisten ravintosuositusten päivittämiseen osallistunut ravitsemusasiantuntija Frank Hu väitti puolestaan, että Minnesotan tutkimus ei ollut tarpeeksi pitkäkestoinen osoittamaan monityydyttämättömien kasviöljyjen sydän- ja verisuonitautien riskiä alentavaa vaikutusta, koska koehenkilöitä seurattiin keskimäärin vain noin 15 kuukautta. Ehkäpä Hu on oikeassa, tai sitten ei ole.

Mozaffarianista Chowdhuryyn ja Zamoraan

Frank Hu viittasi Mozaffarianin vuoden 2010 metaanalyysiin, jonka mukaan ihmisillä oli 10 % vähemmän sydänkohtauksia, kun he korvasivat 5 % päivittäisistä tyydyttyneistä rasvoista monityydyttymättömillä rasvoilla vähintään neljän vuoden ajan.

Mozaffarianin tutkimuksessa oli kiinnostava havainto: jos tyydyttyneiden rasvojen saanti korvattiin hiilihydraateilla, hyötyä ei saavutettu.

Mozaffarian ja Skeaff/Miller (2009) suosittavat meta-analyysiensa perusteella tyydyttyneiden rasvojen korvaamista monityydyttämättömillä kasvirasvoilla. Siri-Tarino (2010), ja Chowdury (2014) saivat meta-analyyseissaan tuloksia, jotka eivät tue nykyisiä ravitsemussuosituksia ja väitteitä tyydyttyneiden rasvojen haitoista.

Tohtori Zamora ja hänen kollegansa puolestaan analysoivat neljä vastaavaa ravitsemuskoetta, joissa tutkittiin tyydyttyneen rasvan korvaamista kasviöljyillä ja rasvatyypin vaihdon terveysvaikutuksia.

Zamoran ryhmän analysoimat kontrolloidut satunnaistetut tutkimukset eivät tukeneet vallitsevia ravitsemussuosituksia tai väitettä, että monityydyttämättömät rasvat vähentävät sydänsairauksiin kuolleisuutta.

Vallitseva näkemys on, että matalat kolesterolitasot ovat yhteydessä pienempään sydäntautien riskiin ja sydäntautikuolleisuuteen.

Minnesota Coronary Experiment havaitsi kuitenkin täysin päinvastaisen yhteyden. Tutkimus osoitti, että kolesterolin lasku lisää kuolleisuutta.

Minnesotan tutkimuksessa interventio-ryhmän seerumin kolesteroli laski merkittävästi verrattuna kontrolliryhmään.

Jokainen 0,78 mmol / l seerumin kolesterolipitoisuuden lasku kasvatti sydäntautikuoleman riskiä 22%.

Interventioryhmässä ei saatu näyttöä monityydyttämättömien rasvahappojen ateroskleroosilta ja sydäninfarkteilta suojaavasta vaikutuksesta. Systeemisessä katsauksessa huomioitiin viisi satunnaistettua kontrolloitua tutkimusta. Meta-analyyseissä nämä kolesterolia laskevat interventiot eivät osoittaneet sepelvaltimotautikuolleisuuden tai kokonaiskuolleisuuden laskua.

Satunnaistettujen kontrolloitujen tutkimusten käytettävissä olevat todisteet osoittavat, että ruokavalion tyydyttyneiden rasvojen korvaaminen linolihapolla alentaa tehokkaasti seerumin kolesterolia, mutta ei tue hypoteesia, jonka mukaan kolesterolin lasku vähentäisi sepelvaltimotaudin, sydäninfarktien tai kaikkien syiden aiheuttamaa kuoleman riskiä.

Minnesota Coronary Study on osa kasvavaa näyttöä siitä, että monityydyttämättömien kasviöljyjen ja tyydyttyneiden rasvojen vaikutuksia sydänterveydelle on liioiteltu.

Tyydyttyneiden rasvojen vaihtaminen monityydyttämättömiksi kasvirasvoiksi voi tutkimuksesta riippuen olla jopa sydänterveydelle haitallista.


Eräs selitys yllättävälle havainnolle voi olla omega6-rasvahapot, joita on korkeina pitoisuuksina maissi-, soija-, puuvillansiemen- ja auringonkukkaöljyissä.

Johtavat ravitsemusasiantuntijat korostavat, että ruoanlaitto kasviöljyillä laskee kolesterolia ja estää sydänsairauksia.

Mutta on sellaistakin tutkimusnäyttöä, että runsas omega6-rasvojen saanti voi ylläpitää hiljaista tulehdusta (inflammaatiota) ja siten lisätä sairastumisalttiutta ja kuolleisuutta.

Inflammaatioon kytkeytyvät terveysriskit voivat olla suurempia kuin kolesterolin alentamiseen liittyvät edut.

Ramsden ja Sydney Diet Heart Study

Vuonna 2013 tohtori Ramsden kollegoineen julkaisi hämmennystä herättäneen selvityksen Australiassa 1960-luvulla toteutetusta kliinisestä tutkimuksesta. Tämän tutkimuksen tuloksia ei koskaan julkaistu tai analysoitu.

Australialaisessa tutkimuksessa havaittiin, että miehillä, jotka korvasivat tyydyttyneet rasvat monityydyttämättömillä omega6-rasvoilla, kolesteroli laski, mutta sydänkuolleisuus vastaavasti kasvoi enemmän kuin tyydyttyneitä rasvoja syövällä kontrolliryhmällä. Tulos on nykyisten suositusten vastainen.

Ramsden korosti, että havaintoja tulee tulkita varovaisesti. Tutkimus ei osoittanut, että tyydyttyneet rasvat olisivat terveellisempiä kuin monityydyttämättömät rasvat, hän sanoi. Mutta ehkä ne eivät ole niin haitallisia kuin yleisesti uskotaan.

Ravintorasvojen taustalla oleva tiede on monimutkaisempaa kuin ravitsemussuositukset antavat ymmärtää. Rasvojen ja kolesterolin vaikutukset eivät ole yksinkertaisia ja mustavalkoisia. Syöty ravinto on aina monista ravintoaineista muodostuva kokonaisuus.

Sata vuotta sitten amerikkalaisten päivittäisestä energiasta vain 2 prosenttia tuli linolihaposta. Nykyään amerikkalaiset saavat linolihaposta keskimäärin yli kolminkertaisen määrän energiaa.


Suuri osa omega6-rasvoista saadaan prosessoiduista ruoista, kuten makeisista, pizzasta, ranskalaisista, välipaloista, perunalastuista, kekseistä ja salaattikastikkeista.

Luonnollisemmat rasvalähteet, kuten oliiviöljy, voi ja munankeltuaiset, sisältävät myös linolihappoa, mutta vähemmän kuin monet kasviöljyt ja margariinit.

Alkuperäisen jutun lähde: New York Times

Sydney Diet Heart Study

Linolihappoa (omega6) saaneessa interventioryhmässä oli korkeampi kuolleisuus sydäntauteihin ja kaikkiin syihin kuin verrokkiryhmässä.

Suositukset tyydyttyneiden rasvojen korvaamisesta tyydyttämättömillä kasvirasvoilla ovat keskeinen osa kansainvälisiä ravitsemusohjeita. Ohjeiden tavoite on laskea sepelvaltimotaudin ja muiden sydänsairauksien riskiä.

Sydneyn tutkimuksessa ei havaittu linolihapon (omega6) kliinisiä etuja sydänterveydelle.

Tässä kohortissa tyydyttyneiden rasvojen korvaaminen linolihapolla itse asiassa lisäsi kuolleisuutta sepelvaltimotautiin, sydän- ja verisuonisairauksiin ja kaikkiin syihin.

Linolihappojen terveydellisten vaikutusten interventiotutkimuksen päivitetty meta-analyysi ei löytänyt näyttöä, joka tukisi nykykäsitystä monityydyttämättömien rasvojen eduista sydän- ja verisuoniterveydelle.

Muita tutkimuksia tyydyttyneiden ja tyydyttymättömien rasvojen vaikutuksista terveyteen

Suomalainen mielisairaalatutkimus

Kellokosken ja Nikkilän mielisairaaloissa tehtiin 1959-71 kontrolloitu interventiotutkimus, jonka tarkoituksena oli selvittää, voiko sepelvaltimotaudin (CHD) ilmaantuvuutta laskea seerumin kolesterolia alentavalla ruokavaliolla.
Suomalainen mielisairaalatutkimus on eräs vahvimmista Keysin Diet-Heart-hypoteesia tukeva tutkimus.

Koehenkilöt olivat sairaalahoidossa olevia naisia ja miehiä. Osa koehenkilöistä sai kolesterolia laskevaa ravintoa. Ruokavalio sisälsi vain vähän tyydyttyneitä rasvoja ja kolesterolia sekä runsaasti tyydyttymättömiä rasvoja.

Toinen potilasryhmä sai normaalia sairaalaruokaa. Kuusi vuotta myöhemmin koehenkilöiden ruokavaliot vaihdettiin ja tutkimusta jatkettiin vielä kuusi vuotta.

Vähän tyydyttyneitä rasvoja sisältävä ruokavalio laski koehenkilöiden kolesterolia huomattavasti. Sepelvaltimotauti ja sepelvaltimotautikuolemat laskivat noin puoleen normaalia sairaalaruokaa syövään kontrolliryhmään nähden.

Johtopäätöksenä oli, että seerumin kolesterolia alentavan ruokavaliolla oli huomattava ehkäisevä vaikutus sepelvaltimotaudin esiintymiseen.

Suomalaisessa mielisairaalatkimuksessa maitorasvan vaihtaminen soijaöljyyn laski tyydyttyneen rasvan saantia 27 grammaan päivässä, jolloin veren kokonaiskolesteroli laski n. 13 % naisilla ja 16 % miehillä.

Sepelvaltimotautitapahtumat lähtökohtaisesti sydänterveillä vähenivät seuraavasti:

Miehillä 44 % (p=0,008)
Naisilla 37 % (p=0,04)

Lisäksi yhteisanalyysinä erikseen julkaistussa tutkimuksessa sydänperäinen kuolleisuus laski miehillä 53 % mutta naisilla ei.

Siri-Tarino 2010

Oletusarvoisesti ruokavalion tyydyttyneiden rasvojen vähentämisen uskotaan parantavan sydän- ja verisuoniterveyttä.

Siri-Tarinon meta-analyysin tavoitteena oli koota yhteenveto epidemiologisten tutkimusten näytöstä, jonka mukaan ruokavalion sisältämät tyydyttyneet rasvat lisäävät sepelvaltimotaudin (CHD), aivohalvauksien ja sydän- ja verisuonisairauksien riskiä. Analyysiin koottiin 24 tutkimusta MEDLINE- ja EMBASE-tietokannoista

5–23 vuoden aikana seurattiin 347 747 henkilöä, joista 11 006:lle kehittyi sepelvaltimotauti tai aivohalvaus.

Tyydyttyneen rasvan saanti ei liittynyt lisääntyneeseen sairastumisriskiin.

Prospektiivisten epidemiologisten tutkimusten meta-analyysin näyttö ei tue oletusta, jonka mukaan tyydyttyneet rasvat kasvattavat sydän- ja verisuonitautien riskiä

Mozaffarian 2010

Sydäntautien riskejä kartoittavien satunnaistetujen kontrolloitujen tutkimusten, suurten kohorttien taudin päätetapahtumien ja kontrolloitujen satunnaistettujen tutkimusten tulokset viittaavat siihen, että tyydyttyneiden rasvojen merkitys sydäntautien selittäjänä on puutteellinen.

Merkittävät todisteet osoittavat, että tyydyttyneiden rasvojen vähentämisen terveysvaikutukset vaihtelevat korvaavasta ravintoaineesta riippuen.

Ihmistutkimuksista saatujen parhaiden todisteiden perusteella tydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvahapoilla (esim. margariinit, kasviöljyt) vähentää sydän- ja verisuonitautien riskiä, kun taas tyydyttyneiden rasvojen korvaaminen hiilihydraateilla ei tuo minkäänlaisia terveysetuja.

Mozaffarianin meta-analyysin mukaan merkittävät todisteet osoittavat, että tyydyttyneiden rasvahappojen (SFA) vähentämisen terveysvaikutukset vaihtelevat korvaavien ravintoaineiden mukaan.

Seurantatutkimusten perusteella tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvahapoilla (PUFA) vähentää sydäntautien riskiä, mutta tyydyttyneiden rasvojen korvaaminen hiilihydraateilla (CHO) ei tuottanut mitään terveysvaikutuksia.

Tyydyttyneiden rasvojen korvaaminen kertatyydyttämättömillä rasvoilla antoi tutkimuksissa epävarmoja tuloksia.

Tyydyttyneiden rasvojen korvaaminen hiilihydraateilla, kuten tavallisesti tehdään, ei vaikuta sydäntautiriskiä alentavasti. Mozzaffarianin tutkimuksen mukaan ei ole perusteltua nostaa hiilihydraattien saantisuosituksia ja laskea tyydyttyneen rasvan saantisuosituksia.

Tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla vaikuttaa Mozaffarianin tutkimusaineiston ja muuttujien huomioimisen jälkeen laskevan sydäntautien riskiä 10 %, kun tyydyttyneiden rasvojen saantia vähennetään 5 % päivittäisestä kokonaisenergiansaannista. Yhdysvalloissa kansanterveydellisen hyödyn toteutuminen edellyttäisi, että väestötasolla ltyydyttyneiden rasvojen saanti putoiaisi 11,5 %:sta 6,5 %:iin.

Suositukset tyydyttyneiden rasvojen korvaamisesta tyydyttämättömillä rasvoilla voi tuntua tarkoituksenmukaiselta, mutta sydäntautiriskin kannalta tyydyttyneiden rasvojen kulutusta merkittävämpiä tekijöitä ovat matalat omega3-tasot, hedelmien ja vihannesten vähäinen saanti, transrasvojen saanti, sokeri ja runsas suolan kulutus.

Lopuksi haluan todeta, että ravitsemussuositukset eivät ole aivan niin ristiriidattomia ja kiistattomia kuin monet haluavat uskoa.




SARS-CoV-2, lapset ja immuniteetti

Koulut avataan torstaina 14.5. Se on todennäköisesti virhe, mutta ei sille enää mitään voi. Toivon, että ihmisillä, joilla on selkärankaa tehdä näitä päätöksiä, on myös selkärankaa kantaa vastuu tehdyistä virheistä.

SARS-CoV-2 tunnetaan yhä huonosti. Yliopistot ja tutkimuslaitokset ympäri maailmaa selvittävät viruksen alkuperää, leviämistä, genomia ja vaikutuksia ihmiseen. Satakunta tutkijaryhmää valmistelee kovalla kiireellä koronavirusrokotetta. Monissa tutkimuslaboratorioissa tutkitaan olemassaolevien lääkkeiden tehoa uuden koronaviruksen vakavampien oireiden hoitoon. Toistaiseksi hyviä uutisia on paljon vähämmän kuin huonoja uutisia.

Ensimmäisessä kuvassa ovat maat, jotka ovat lähes selvittäneet koronaepidemian.

Toisessa kuvassa ovat valtiot, jotka ovat lähes tavoitteessa.

Kolmannessa ovat maat, joiden on tehtävä enemmän koronaepidemian kitkemiseksi. Tämä on viimeksi päivitetty 4.5. Miksi Suomi on huonoimmin selvinneiden kategoriassa? Luultavasti, koska taudin eteneminen ei ole lähtenyt toivotulla tavalla laskuun.  Lähde: End Coronavirus.org

Epidemian vaikutuksia väestöön voidaan hillitä joko hidastamalla tai tukahduttamalla

Nyt olisi erinomainen aika tukahduttaa virus, totesivat arvovaltaiset asiantuntijat vetoomuksessa hallitukselle. Kun tauti olisi mahdollista tukahdutttaa, hallitus päätti THL:n ohjeistuksella avata koulut ja baarit, että infektiomäärät saadaan kasvuun.

Se on toki hallittua hidastamista. Yhteiskuntaa karaistaan vähitellen korona-arkeen. Rajoitteiden purkaminen lisää tartuntoja, mikä johtaa uusiin sosiaalisiin rajoituksiin. Taloudellisesti ja inhimillisesti tällaisesta soutamisen ja huopaamisen mallista on vaikea löytää sitä kantavaa ideologiaa. Minusta siinä ei ole järjen hiventä. Tukahduttaminen olisi mahdollista nyt ja siihen mahdollisuuteen pitäisi tarttua.

Nykyiessa mallissa yhteiskunta pidetään on koko ajan varpaillaan. Poikkeusolot ja ees-taas-veivaaminen voivat jatkua vuosia.

Jos tauti tukahdutetaan koko massa, riittää, että ulkomaan matkailua rajoitetaan vain sellaisiin maihin, joissa virus on niinikään tukahdutettu. Maat voidaan luokitella liikennevaloilla: punaiset maat ovat matkustus- ja maahantulokiellossa, keltaisista maista saapuvat asetetaan valvottuun karanteeniin. Turvalliset maat merkitään vihreällä.

Tukahduttamalla yhteiskunta saadaan jaloilleen parissa kuukaudessa. Ivan Puopolo selittää tukahduttamisen idean selvästi oheisella videolla.

”Tulevat kaksi viikkoa antavat Anderssonin mukaan hyvää aikaa opetella uuden normaalin sääntöjä tilanteessa, jossa koronavirus ei ole nopeasti katoamassa minnekään.– Meidän on löydettävä tapoja päästä normaalimpaan arkeen. Siksi painotan, että kaikki mitä teemme nyt näitä viikkoja varten tehdään myös syksyä varten. Andersson valaa uskoa siihen, että kunnissa ollaan valmiita avaamaan koulut, vaikka opettajien ammattijärjestö OAJ on sitä vastustanut. Ministeri on käynyt asiasta keskusteluja tälläkin viikolla keskeisten tahojen kanssa.” – IS

Rajoitusten varhainen purkaminen lisää tartuntoja

”– Liian aikainen avaaminen tekee tilanteesta vain huonomman. Se johtaa vääjäämättä uusiin tartuntoihin, tehohoitopotilaiden määrän kasvuun ja kuolemiin, molekyylilääketieteen professori Eric Topol sanoi Guardianille. – Suuri osa ihmisistä on menettänyt henkensä turhaan. Miksi haluamme kasvattaa sitä lukemaa?” – IL

Kirjoittaessani tätä Yhdysvalloissa on virallisten tilastojen mukaan kuollut jo yli 80 000 ihmistä. Eric Topol on oikeassa. Rajoitusten avaaminen liian aikaisin johtaa inhimilliseen katastrofiin.

Nebraskassa rajoitusten liian varhainen poistaminen kasvatti tartuntoja heti 57 % ja teki Nebraskasta uuden kriisipesäkkeen. Etelä-Koreassa oireeton tai vähä-oireinen supertartuttaja on tartuttanut mahdollisesti kymmeniä ihmisiä.

Kysymyksiä on edelleen paljon. Monet vastaukset antavat aihetta huoleen

Voinko saada koronaviruksen uudelleen? Miksi jotkut ihmiset ovat sairaampia kuin toiset? Toistuuko epidemiat joka talvi? Kehitetäänkö tähän virukseen rokote? Kuinka hallitsemme virusta pitkällä tähtäimellä?

Yritän tässä laajassa SARS-CoV-2-katsauksessa vastata joihinkin virukseen liittyviin kysymyksiin. Toistaiseksi tiedetään hyvin vähän.

Vetoan hallitukseen, että se harkitsee uudelleen koulujen avaamisen mielekkyyttä. Virus tulisi tukahduttaa Suomessa ja koulujen avaaminen siirtää syksyyn. Ymmärrän, että päätösten peruuttaminen ei oikeasti ole enää mahdollista riittävän nopealla aikataululla. Toivon, että sitä kuitenkin harkitaan seuraavien parin viikon aikana. Etäopetus toimi hyvin ja kahden viikon koulujakso on kaiken kaikkiaan aivan tarpeeton.

sosiaalinen eristys

Taudin tukahduttamien helpottuisi, jos hengityssuojien (myös itsetehtyjen) käyttöön julkisilla paikoilla kannustettaisiin. Hengityssuojien laaja käyttö tekisi yhteiskunnan vaiheittaisesta avaamisesta nopeampaa ja turvallisempaa.

Taudin tukahduttaminen ei estä epidemian toista aaltoa. Näyttöä pitkäaikaisesta immuniteetista SARS-CoV-2-virukseen ei ole olemassa. Suurten populaatioiden sairastamisella ei ehkä saavuteta mitään konkreettista hyötyä. Syksyllä virus voi olla jo muuntunut sen verran, että tähän viruskantaan kehittyvä vastustuskyky ei takaa vastustuskykykyä toisessa aallossa saapuvalle virukskannalle. Kukaan ei varmasti tiedä.

Mielestäni on vahvoja perusteita epäillä pitkäkestoisen immuniteetin kehittymistä. Jos immuniteettia ei synny, opettajat ja oppilaat altistetaan aivan turhaan infektiolle. Se on sikälikin outoa, että jokkokokoontumisia kehotetaan edelleen välttämään. Kouluissa ei ole joukkoja. Kouluissa on lapsia.

Velvoittavatko Espoo ja Lohja opettajia riskeeraamaan terveytensä irtisanomisen uhalla?

”Opetusalan Ammattijärjestö OAJ:n tietojen mukaan ainakin Espoossa ja Lohjalla on annettu opettajille ohjeistus, jonka perusteella riskiryhmään kuuluminen ei oikeuta jäämään pois töistä. Näiden ohjeiden mukaan kotiin jääminen katsotaan tällöin luvattomaksi poisjäämiseksi, joka on myös irtisanomisperuste.” – IL

Opettajille suunnatuissa ohjeissa riskiryhmään kuulumista ei pidetä riittävänä poissaolon edellytyksenä. Opettajia ja oppilaita kielletään erikseen myös käyttämästä hengityssuojia. Ehkä näin halutaan luoda illuusio turvallisesta työympäristöstä. Koronaepidemian aikana koulu on kaikkea muuta kuin turvallinen työympäristö.

Kuvaannollisesti riskiryhmään kuuluvat opettajat pakotetaan irtisanomisen uhalla viruksia laukovan yhmään eteen kahden viikon ajaksi. Nyt jännitetään kuinka moni opettaja ottaa osumaa. Jos opettaja kuuluu riskiryhmään, infektio voi tappaa hänet. Pahoittelen kielikuvaa, mutta tässä on venäläisen ruletin meininki.

Lapsi ja ulkona vaaniva virus

Huhtikuun 13. päivänä TIME kirjoitti

Huolestuttavia uutisia kantautuu kaikkialta Aasiasta. Potilaat, jotka olivat sairastaneet koronavirustaudin ja toipuneet siitä, sairastuivat tautiin uudestaan. Etelä-Korean viranomaiset ilmoittivat 111 tällaisesta tapauksesta.

Muiden koronaviruskantojen kohdalla potilaiden tuottamat vasta-aineet kehittävät infektion aiheuttaneelle virukselle kuukausien, ehkä jopa vuosien immuniteetin.

Tutkijat eivät kuitenkaan vielä tiedä kehittyykö vastustuskyky nykyistä SARS-CoV-2-virusta vastaan. Jos immuniteetti syntyy, kuinka pitkän suojan se antaa? Kysymyksiä, kysymyksiä,..

Asiantuntijat uskovat, että raportit infektiosta toipuneista, jotka sairastuvat uudestaan, eivät ole esimerkkejä saman viruksen uudesta tartunnasta, vaan tapauksia, joissa pitkittynyt infektio ja jäänyt tutkimuksissa havaitsematta.

On epätodennäköistä, että virus voisi uudelleeninfektoida sellaisia ihmisiä, joiden vasta-ainevaste ko. virusta vastaan on käynnistynyt.

Immuunijärjestelmän primaarivaste tutustuu patogeenin ja kehittää patogeenia tuhoavia vasta-aineita. Osa B-soluista kypsyy spesifejä vasta-aineita tuottaviksi plasmasoluiksi ja osa erikoistuu B-muistisoluiksi, jotka säilyttävät patogeenin rakenteen. Vasta-aineita tuotetaan yleensä 7-10 päivää tartunnan jälkeen.

Sekundaarivasteessa immuunijärjestelmä reagoi muistisolujen tunnistamaan taudinaiheuttajaan nopeasti ja tehokkaasti.

Positiivisen tuloksen antava testi infektiosta toipumisen jälkeen voi merkitä sitä, että aiemmin otettu testi on ollut väärä negatiivinen, eikä potilas testien välissä ollut täysin toipunut infektiosta. Tämä voisi johtua mm. näytteen laadusta.

Immuunijärjestelmän toiminta on oleellista koronavirusta koskevissa kysymyksissä. Ongelmana on, että tiedämme viruksesta yhä varsin vähän.Kenestä tulee immuuni koronavirusta vastaan ja kuinka se tapahtuu?

Immuunijärjestelmän solut

Immuunijärjestelmä suojaa infektioilta ja se jakautuu kahteen osaan

Luontainen (synnynnäinen) immuunijärjestelmä aktivoituu heti, kun elimistössä havaitaan potentiaalinen uusi taudinaiheuttaja. Luontainen immuunijärjestelmä toimii hyvin yleisellä tasolla ja laajalla alueella. Se ei tunnista spesifejä viruksia ja anna immuniteettia näitä vastaan, kuten adaptiivinen immuunijärjestelmä.

Oppivan adaptiivisen immuunijärjestelmän toiminta perustuu siihen, että osa immuunisoluista ylläpitää patogeenin rakenteen immunologisessa muistissa, niin että sekudaarivaste kyseistä virusta vastaan käynnistyy hyvin nopeasti.

Ero immuunijärjestelmän mekanismien välillä on kuvaannollisesti se, että luontainen immuunijärjestelmä mattopommittaa elimistöä uhkaavia patogeenejä laajalla, mutta ei niin täsmällisellä hyökkäyksellä. Adaptiiivinen immuunijärjestelmä merkitsee spesifit kohteet ja täsmäpommittaa vain merkittyjä kohteita.

Adaptiiviseen immuunivasteeseen kuuluu B-soluja, jotka tuottavat kohdennettuja vasta-aineita (kuten immunoglobuliineja) ja T-soluja, jotka voivat tuhota tartunnan saaneita soluja.

B-plasmasolut levittävät virukselle spesifejä vasta-aineita verenkiertoon ja imusuoniin. B-solut ovat vasta-ainevälitteisen immuunijärjestelmän perusta. T-solujen aktivaatio on soluvälitteinen: T-solut kiinnittyvät infektion saaneisiin soluihin ja tuhoavat ne. Uusi koronavirus pystyy kiinnittymään ja sulautumaan T-soluihin, mikä estää T-solujen toiminnan.

Tehokkaan immuunivasteen kehittyminen vie aikaa. Tutkimusten mukaan tartunnan saamisesta kestää 7-10 päivää vasta-aineiden valmistamisen aloittamiseen. Tämän ns. primaarivasteen aikana adaptiivinen immuunijärjestelmä tallentaa taudinaiheuttajan molekyylirakenteen immunologiseen muistiin.

Vasta-ainevälitteinen immuniteetti suojaa elimistöä viikkoja tai kuukausia, ehkä jopa vuosia. Pitkäkestoinen immuniteetti muodostuu erityisesti sellaisia patogeenejä vastaan, joiden rakenne säilyy immunologisessa muistissa. Joidenkin patogeenien kohdalla immunologinen muisti tarjoaa elinikäisen suojan.

Tyyypit muovipuvuissa

Kukaan ei tiedä kehitttääkö adaptiivinen immuunijärjestelmä immuniteetin ihmisille, joilla on vain lieviä oireita.

Myöskään kehittyvän vastustuskyvyn kestoa tai vahvuutta ei tunneta. Immuniteetti voi suojata infektion sairastanutta muutamista viikoista vuosiin. Immunologinen muisti muistuttaa omaa muistiamme: se muistaa jotkin infektiot hyvin ja unohtaa toiset nopeasti.

Tuhkarokko on infektio, jonka immunologinen muisti muistaa. Sairastettu tuhkarokko ja rokotus antaa elinikäisen suojan tuhkarokkoa aiheuttavalle virukselle.

On kuitenkin monia sellaisia patogeenejä, jotka immunologinen muisti unohtaa hyvin nopeasti. Lapset voivat saada RSV:n (respiratory syncytial virus) useita kertoja saman talven aikana. Pisaratartuntana leviävä RSV kuuluu paramyksoviruksiin ja se aiheuttaa hengitysteiden infektioita.

SARS-CoV-2 on vielä niin uusi virus, että immuniteetti ja sen kesto on täysin arvailujen varassa. Kuusi muuta tunnettua koronavirusta voivat kuitenkin antaa vihjeitä siitä kuinka uusi koeonvirus käyttäytyy.

Neljä ihmisillä leviävistä koronaviruksista aiheuttaa tavallisia jokatalvisia vilustumisia. Immuniteetti näitä vastaan on hyvin lyhytaikainen. Tutkimusten mukaan tartunta voi uusiutua vielä saman vuoden sisällä.

Vilustumiset ovat yleensä lieviä infektioita. Uuden koronaviruksen lisäksi SARS ja MERS ovat koronaviruksia, jotka aiheuttavat vakavamman akuutin hengitysoireyhtymän. Näissä vasta-aineita on havaittu vielä vuosien päästä.

Kysymys ei ole siitä, kehittyykö immuniteetti, vaan kuinka pitkäksi aikaa, sanoi Itä-Anglian yliopiston lääketieteen professori Paul Hunter. Hänen mukaansa on epätodennäköistä, että immuniteetti SARS-CoV-2-virusta vastaan kestäisi koko elämän.

SARS-vasta-aineetutkimusten perusteella on mahdollista, että immuniteetti kestää vain noin kaksi-vuotta. Mutta tätä ei tiedetä varmasti. Siinäkin tapauksessa, että immuniteetti ei tarjoa täyttä suojaa, on mahdollista, että toinen infektio on ensimmäistä lievempi. On raportteja ihmisistä, jotka näyttävät sairastaneen useita koronavirusinfektioita lyhyen ajan sisällä. On raportteja, joiden mukaan ihmiset ovat todella saaneet Covid-19-tartunnan kahdesti. Erään hypoteesin mukaan virus voi piiloutua elimistöön menemällä ikään kuin horrokseen ja aktivoitua uudestaan myöhemmin.

Tietenkään kukaan ei ole tartuttanut itseensä virusta immuniteetin testaamiseksi. Reesus-apinoilla tätä on testattu. Parille apinalle infektoitiin SARS-CoV-2 vasta-ainetuotannon aktivoimiseksi. Kolme viikkoa myöhemmin apinat infektoitiin toistamiseen. Tämä rajallinen koe osoitti, että apinoille ei kehittynyt uutta koronavirustautia niin lyhyen aikaikkunan sisällä.

ulkoilijat naamareissaan

Jos minulla on vasta-aineita, olenko immuuni?

Tätä ei tiedetä varmasti. Maailman terveysjärjestö on tämän epävarmuuden vuoksi varoittanut useita valtioita ottamasta käyttöön ns. immuniteettipasseja, jotka todistavat sairastetusta Covid-19-infektiosta.

Myös eurooppalaisten ja amerikkalaisten nuorten keskuudessa trendi-ilmiöksi muodostuneita korona-bileitä kehotetaan välttämään, koska immuniteettia ei voida taata ja todennäköisesti infektion saanut tartuttaa muita viruksen itämisaikana ennen omien oireiden kehittymistä.

Immuunipassin idea on, että ihminen, joka läpäisee vasta-ainetestin voi palata turvallisesti töihin. Jos voitaisiin olla varmoja, että immuniteetti muodostuu, tämä olisi arvokas tieto esimerksi vanhusten ja sairaiden parissa työskenteleville ja tehostaisi yhteiskunnan palaamista normaaliin arkeen. Mutta immuniteetin muodostumisesta ja kestosta ei ole riittävästi tietoa, jotta immuunipasseja voitaisiin jakaa.

Vain aika näyttää. Siihen asti sokea luottamus omaan tai muiden immuniteettiin on venäläistä rulettia.

Toisaalta vasta-aineita löydetään monilta potilailta, mutta kaikki vasta-aineet eivät ole samanarvoisia.Neutraloivat vasta-aineet pystyvät kiinnittymään SARS-CoV-2-virukseen ja estämään virusta infektoimasta uusia soluja.

Kiinassa 175 toipuneesta potilaasta tehty tutkimus osoitti, että 30 prosentilla potilaista oli erittäin matala neutraloivien vasta-aineiden pitoisuus. Adaptiivisen immuunijärjestelmän muodostama soluimmuniteetti voi näytellä tässä kriittistä osaa.

On myös tärkeää, että vaikka ihmisellä olisi vasta-aineiden tuottama vastustuskyky, se ei vielä todista, etteikö hän voisi tartuttaa muita. Immuniteetti vaikuttaa siihen, kuinka vakavan sairauden virus aiheuttaa. Epätäydellinenkin immuniteetti lieventää taudin oireita.

Jos pitkäaikaisen immuniteetin hankkiminen on vaikeaa, myös rokotteen kehittäminen voi kohdata haasteita. Immuniteetin kesto vaikuttaa ainakin siihen riittääkö yksi rokotus antamaan elinikäisen suojan vai tarvitseeko ihminen uuden rokotuksen esimerkiksi vuoden välein.

SARS-CoV-2

Mitä SARS-CoV-2:n vasta-ainetestit kertovat meille immuniteetista?

Seeruminäytteistä tehdyt tutkimukset voivat muuttaa käsitystämme Covid-19:n leviämisestä, mutta ei ole lainkaan selvää, mitä vasta-aineet kertovat immuniteetista.

Koronaviruspandemia käynnistyi alle puoli vuotta sitten, mutta terveysviranomaiset eivät vieläkään tiedä kuinka moni ihminen on tosiasiallisesti saanut tartunnan.

Testauskapasiteetti on osoittautunut monissa maissa hyvin puutteelliseksi. Monet ovat saaneet Covid-19-infektion oireita, mutta heitä ei ole testattu. Ihmiset, jotka ovat saaneet oireettoman tartunnan ja levittävät infektiota, eivät näy virallisissa luvuissa, koska oireettomia ei aktiivisesti testata.

Yhdysvalloissa liittovaltio ja osavaltiot työskentelevät kellon ympäri luotettavien vasta-ainetestien kehittämiseksi, jotta SARS-CoV-2-viruksen todellisesta leviämisestä saataisiin luotettava kuva.

Vaikka tapausten diagnosointiin käytetyillä PCR-testeillä havaitaan kohtuullisen varmasti viruksen geneettinen materiaali, vasta-ainetesteillä voidaan seuloa  väestöstä infektion aiheuttamia vasta-aineita. Nämä vasta-aineet pysyvät veressä yleensä melko kauan. Näin voitaisiin selvittää kuinka tauti on populaatiossa levinnyt ja kuinka moni on sairastanut koronavirustaudin lieväoireisena tai oireettomasti.

Saksalaisessa kaupungissa tehtyjen kyselyiden ja vasta-ainetestien perusteella jopa 14 % kaupungin asukkaista oli todennäköisesti sairastanut koronavirustaudin.

Päättäjillä on toinenkin syy harkita vasta-ainetestien käyttöönottoa: jos vasta-aineet osoittavat immuniteetin kehittymisen, yhteiskuntaa voitaisiin avata turvallisesti virukselle vastustuskykyisten ihmisten toimesta. Erilaisten sosiaalisten rajoitusten piirissä on lähes puolet maailman ihmisistä ja paineet paluusta normaaliin kasvavat päivä päivältä.

Immuniteettipassi

Viime viikkoina poliitikot ovat ehdottaneet henkilön vastustuskyvyn todistavan immuniteettipassin käyttöä. Immuniteettipassi vapauttaisi SARS-CoV-2-virukselle immuunin henkilön yhteiskunnallisista rajoitteista.

Saksan, Iso-Britannian, Italian ja Yhdysvaltojen virkamiehet kehittävät tällaista järjestelmää, mutta Maailman terveysjärjestö (WH) kehottaa malttiin, sillä vastustuskyvyn kestoa ei vielä tunneta ja on hyvin mahdollista, että virukselle immuunit voivat kuitenkin levittää tautia.

Tällaisen ohjelman onnistuminen riippuu siitä, kehittääkö jokainen SARS-CoV-2-virukselle altistunut vasta-aineita ja suojaavatko nämä vasta-aineet sekundaarisia infektioita vastaan.

Kuten aiemmin kirjoitin, kiinalaistutkimuksen mukaan vajaalla kolmanneksella neutraloivien vasta-aineiden määrä oli hyvin vähäinen.

Jos vasta-aineet tuottavat immuniteetin – kuinka pitkäksi aikaa?

Toistaiseksi tutkijoilla ei ole varmaa vastausta mihinkään näistä kysymyksistä. Vaikka vasta-aineetutkimukset ympäri maailmaa sijaitsevista yhteisöistä voisivat tuottaa tietoa, joka on välttämätöntä taudinaiheuttajan leviämisen ymmärtämiseksi, jotkut pitävät ajatusta immuniteettitiedoista ennenaikaisina.


Vasta-ainevaste SARS-CoV-2:lle

On saatu vahvaa näyttöä siitä, että Covid-19-potilaat kehittävät vasta-aineita SARS-CoV-2-virukselle. Tutkimukset ovat vahvistaneet, että vasta-aineita muodostuu toisen ja viidennentoista vuorokauden välillä. Useimmilla potilailla vaste muistuttaa patogeenien aiheuttamaa tyypillistä reaktiota. Ensin verenkiertoon erittyy IgM-vasta-aineita ja myöhemmin pidempään kestäviä ja spesifimpiä IgG-vasta-aineita.

Muut tutkimukset ovat antaneet samanlaisia tuloksia ja viittaavat siihen, että vasta-aineet kiertävät Covid-19-potilaiden veressä vähintään kahden viikon ajan. Tutkimusaineistoon liittyy kuitenkin vinouma. Aineisto on kerätty sairaalahoitoa tarvitsevilta potilailta, mutta se ei kerro kehittyykö lieväoireisille ja oireettomille riittävästi vasta-aineita.

Äskettäin Shanghain Fudan-yliopiston tutkijat analysoivat 175 lievistä Covid-19-oireista toipuvan potilaan plasmaa. Suurimmalle osalle potilaista kehittyi vasta-aineita, jotka kohdistuivat SARS-CoV-2-viruksen piikkiproteiiniin noin 10–15 päivää oireiden alkamisen jälkeen.

Huolta herätti se, että kymmeneltä potilaalta ei löydetty vasta-aineita ollenkaan. La Jolla -instituutin immunologi Shane Crotty rauhoittelee, että nämä potilaat olivat todennäköisesti saaneet Covid-19-testissä väärän positiivisen ja sairastivat aluksi todennäköisesti jotain muuta hengitystieinfektiota.

Ulkoilijoita hengityssuojissa.

On mahdollista, että jotkut potilaat eivät yksinkertaisesti kehitä vasta-aineita

Vuosia sitten lähes kaikki SARS-tartunnat tuottivat vasta-ainevasteen, mutta MERSin suhteen tilanne oli erilainen. Eräät MERS-tutkimukset havaitsivat, että PCR-positiiviset lievät- tai oireettomat infektiot tuottivat vasteita, joita ei havaittu vasta-ainetesteissä.

Monissa virusinfektioissa vasta-ainevasteen vahvuus korreloi hyvin sen kanssa, kuinka vakava infektio on. Immunologinen muisti muistaa paremmin vakavat infektiot. Tämän vuoksi on epäily, että lievät tai oireettomat infektiot eivät kehitä vahvaa immuniteettia.

Potilaiden iän ja vasta-ainepitoisuuksien välillä vallitsee positiivinen korrelaatio. Ikä korreloi voimakkaasti oireiden vakavuuden kanssa. Jos lievemmät SARS-Cov2-infektiot tuottavat vähemmän havaittavia vasta-aineita, mikä hyöty vasta-ainetesteistä on oireettomien tai lieväoireisten seulomisessa väestöstä. Saavatko oireettomat ja lieväoireiset immuniteetin?

Kiinalaiset testasivat 175 lievistä oireista toipunutta. Melkein kaikilla oli selkeitä vasta-ainevasteita ja havaittavia neutraloivia vasta-aineita. Tämä on sopusoinnussa äskettäin makakeilla tehdyn tutkimuksen sekä eräiden muiden tutkimusten kanssa, joissa koronavirustaudista elviytyneiden verestä on uutettu neutraloivia vasta-aineita, eli sellaisia vasta-aineita, jotka pystyvät sitoutumaan virukseen ja estämään sen kiinnittymisen isäntäsoluun.

Nämä kokeet ovat tärkeitä ja tulokset ovat rohkaisevia. Näyttää siltä, että vaikka vasta-aineet eivät olisi neutralisoivia, eivätkä estäisi viruksen pääsyä isäntäsoluihin, vasta-aineet saattavat toimia tärkeässä roolissa muiden immuunijärjestelmän mekanismien aktivaatiossa. On luultavaa, että immuunijärjestelmän auttaja-T-soluilla ja tappaja-T-soluilla on keskeinen vaikutus SARS-CoV-2-viruksen vastaisessa immunologisessa sodassa.

Kaiken kaikkiaan on liian aikaista sanoa, mikä on vasta-aineiden merkitys SARS-CoV-2:lle. Vielä ei tiedetä kuinka merkittävä osuus vasta-aineilla on primaaritaudin kukistamisessa tai suojaavatko infektion aikana tuotetut vasta-aineet sekundaari-infektiolta.

Ja vaikka vasta-aineet olisivat suojaavia, ne eivät välttämättä ole suojaavia kaikille. Vasta-aine-vasteet voivat vaihdella suuresti henkilöiden välillä.

Kuinka kauan vasta-ainepitoisuudet kestävät?

Ihannetapauksessa ihmisen vasta-ainevaste SARS-CoV-2:lle rinnastuisi tuhkarokkoon. Yksi kerta-altistus (tuhkarokkoinfektio tai rokotus) riittää, neutraloivien IgG-vasta-aineiden tuottamiseen. Tuhkarokon vasta-aineet säilyvät koko elämän ajan ja tarjoavat elinikäisen suojan.

Mutta immuunivasteet koronaviruksille näyttävät olevan erilaisia.

Vuoden 2003 SARS-epidemiasta selviytyneiden tutkimukset viittaavat siihen, että neutraloivien vasta-aineiden pitoisuudet kestivät ainakin kolme vuotta. Äskettäin vielä vertaisarvioimattomat raportit ovat löytäneet neutraloivia vasta-aineita SARS-eloonjääneiltä 17 vuotta epidemian jälkeen.

MERS-infektion tuottamien neutraloivien vasta-aineiden tasojen on havaittu heikentyvän kolmen vuoden jälkeen. Vähemmän tappaville, vilustumisia aiheuttaville koronaviruksille neutraloivat vasta-ainepitoisuudet vähenevät kahden tai kolmen vuoden aikana.

Yhdessä vuonna 1990 tehdyssä pienessä tutkimuksessa havaittiin, että ihmisillä, jotka olivat altistuneet kahdesti koronavirukselle, kehittyi paljon lievempiä oireita verrattuna ihmisiin, jotka altistuivat infektiolle ensimmäistä kertaa. Tämä viittaa siihen, että uudelleeninfektio voi tapahtua, mutta oireet heikkenevät.

Se, kuinka kauan nämä vasta-aineita tuottavat solut ja niiden tuottamat vasta-aineet pysyvät verenkierrossa, ei ole varma osoitus siitä, kuinka kauan joku on immuuni toissijaiselle infektiolle.

Tämä johtuu siitä, että alkuperäinen infektio ei ainoastaan pakota veressä olevia B-soluja muuttumaan spesifisiä vasta-aineita tuottaviksi plasmasoluiksi. Se myös stimuloi muisti B-soluja. Nämä B-muistisolut voivat elää vuosikymmeniä piiloutuneen imusolmukkeisiin, pernaan, luuytimeen ja keuhkoihin.

Kun sama taudinaiheuttaja uhkaa elimistöä toistamiseen, vasta-aineita tuottavat solut aktivoituvat. Taudinaiheuttajalle spesifien neutraloivien vasta-aineiden tuottaminen alkaa 2-4 päivässä. On arveltu, että kerran infektion sairastanut henkilö voi saada uuden SARS-CoV-2-tartunnan heti, kun neutraloivien vasta-aineiden vaikutus 1-2 vuodessa heikkenee. Toinen infektio on kuitenkin ensimmäistä lievempi, koska immunologinen muisti voi aktivoida vahvan immuunivasteen virusta vastaan.

Muisti B-solut voisivat toimia vaihtoehtoisena immuniteetin indikaattorina vasta-ainetasojen lisäksi.

Ongelmana on se, että muisti-B-soluja on vaikeampi löytää. Eräässä vuonna 2011 tehdyssä tutkimuksessa tutkijat onnistuivat eristämään SARS-epidemiasta toipuneiden potilaiden muisti-B-soluja. Ryhmä havaitsi, että muisti-B-solut eivät kuitenkaan reagoineen viruksen proteiineihin, mutta 60 prosentilla immunologisen muistin T-solut aktivoituivat.

Mitä tämä tarkoittaa immuniteettipasseille?

Monet tutkijat, mukaan lukien Kansallisen allergia- ja tartuntatautien instituutin johtaja Anthony Fauci, sanovat, että useimmista muista tartuntataudeista olevien tietojen perusteella on todennäköistä, että ihmisille muodostuu ainakin jonkinlainen lyhytaikainen immuniteetti SARS-CoV-2-virukselle.

Faucin mukaan on tärkeää, että SARS-CoV-2:n RNA-genomi näyttää olevan suhteellisen vakaa, mikä tarkoittaa, että immuunijärjestelmällä on paremmat mahdollisuudet kehittää kestävämpi immuniteetti verrattuna esimerkiksi usein mutatoiviin influenssaviruksiin.

Kysymys on kuitenkin siitä, riittävätkö pelkästään vasta-aineet immuniteettiarvioinnissa. Jos immuniteeettipassi määrittelee kenen on pysyttävä karanteenissa ja kuka voi palata töihin, voiko pelkästään havaittavat vasta-aineet muodostaa riittävän luotettavan perustan immuniteetista.

Vaikka voi olla totta, että suurin osa ensimmäisestä altistumisesta vaarallisille patogeeneille johtaa suojaavaan immuniteettiin, on tieteellisesti vaikeaa todistaa, että henkilö on immuuni virukselle.

Usko immuniteetista voi johtaa riskikäyttäytymiseen sekä muiden vaarantamiseen. Ei tiedetä voiko immuuni henkilö kuitenkin yhä tartuttaa muita. Teoriassa henkilö voi saada tartunnan ja levittää virusta muutaman päivän ennen kuin immuunivaste tuhoaa viruksen.

Tässä vaiheessa kaikki vasta-ainetestit auttavat meitä keräämään tietoja. Kun kerättyä tietoa on riittävästi, voidaan tehdä riskiarvioita.

Muuttaako esimerkiksi IgG-vasta-aineiden esiintyminen tartuntariskiä? Nouseeko riski vai laskeeko se? Tämä on perustavanlaatuinen kysymys, johon on vastattava, jotta tiedämme, kuinka vahvan suojan vasta-aineet antavat.

Vasta-ainepositiivisten osuus on pysynyt toistaiseksi matalana, tiedottaa Terveyden ja hyvinvoinnin laitos THL. Se tarkoittaa, että koronavirus ei ole levinnyt Suomessa niin laajalle, kuin on aiemmin luultu. Tämän viikon satunnaisnäytteiden otannassa vasta-ainetta löytyi vain 2,86 prosentilla testatuista. – Neutraloivat vasta-aineet ovat varmin merkki uuden koronaviruksen tartunnasta, mutta on mahdollista, että osalla tartunnan saaneista ei muodostu neutraloivia vasta-aineita, kertoo erikoistutkija Merit Melin.” – IL

Tämä opettajille toimitettu aiheellinen ja hyvää tarkoittava ohje sisältää paljon tyhjiä lupauksia. Tosiasiassa opettajat laitetaan puun ja kuoren väliin. Vaihtoehdot ovat potkut tai oman terveyden vaarantaminen!Vaikean tai keskivaikean infektion riski sairastuneilla lapsilla on 6 %. Se tarkoittaa, että keskimäärin yksi lapsi jokaista luokkaa kohden voi sairastua niin vakavasti, että tarvitsee sairaalahoitoa. Sairaalahoitoa tarvitsevista lapsista osa tarvitsee tehohoitoa ja osa kuolee. Tämä ei ole äärimmäisen harvinaista.
Koronavirus tarttuu pisaratartuntana ja pinnoilta, joihin tartunnan saanut on koskenut. Tarpeettomien fyysisten kontaktien välttäminen ei riitä estämään viruksen leviämistä. Espoossa ainakin osa kouluista jatkaa opetusta kuin koronaepidemiaa ei olisikaan.

Opetuksen porrastaminen ja riittävän väljät luokat kuulostavat erinomaiselta idealta, jonka toteutuksesta ei ole mitään takeita. 20-30 oppilaan luokissa väljyyttä ei juuri ole.


Näissä ohjeissa on aika paljon itsestäänselvyyksiä hygienian osalta. Sitä hämmästelen, että kasvosuojien käyttöä ei suositella. Espoo jopa kieltää hengityssuojien käytön. Ongelma ohjeissa on se, että lapsi voi tietämättään kantaa ja tartuttaa virusta. Jos opettaja sairastaa verenpainetautia, diabetesta, on ylipainoinen tai sydänsairas, hän on hengenvaarassa. Riskiryhmään kuuluvat ihmiset joutuvat infektion seurauksena sairaalaan, osa joutuu viikoiksi hengityskoneeseen ja osa kuolee. Näiden ohjeiden oletuksena on
a) lapset eivät sairastu vakavasti ja
b) lapset eivät levitä tautia
Molemmat oletuksista ovat tutkimustiedon valossa virheellisiä. Siksi koulujen avaaminen kahdeksi viikoksi juuri ennen kesälomaa on aivan älytöntä.

Covid-19 on helvetin vakava sairaus. Se on tätä kirjoittaessani tappanut virallisten lukujen mukaan 277 477 ihmistä. Todellinen luku on moninkertainen.

Venäjällä koronatartunnan saaneet kuolleet merkitään muihin sairauksiin kuolleiksi, jos kuolleen keuhkoista ei ruumiinavauksessa löydetä koronaviruksen aiheuttamia tuhoja.

Ruumiinavaukset tehdään Venäjällä 2-3 viikkoa uhrin kuoleman jälkeen. Venäjän tilastot eivät ole ajan tasalla. Kuolleiden todellinen määrä Venäjällä on luultavasti monikymmenkertainen.

Samanlaisia huhuja kiertää Ruotsin tilastointimenetelmistä; jos diabeetikko kuolee koronavirustartuntaan, kuolemansyyksi merkitään diabetes. Tämä on tosin vain huhu.

Minun sympatiani on opettajien puolella. Ymmärrän hyvin, jos riskiryhmään kuuluvasta opettajasta tuntuu, että hänet pakotetaan virusmyrskyyn ilman riittäviä suojavarusteita.

Venäjällä Covid-19 on tappanut vähintään 113 lääkäriä puutteellisten suojavarusteiden vuoksi. Sairaaloissa, kouluissa ja päiväkodeissa virukset leviävät kaikkein tehokkaimmin.


Viruksilla on jälkitauteja

Tiedämme SARS-CoV-2-viruksen pitkäaikaisvaikutuksista vielä aivan liian vähän. Tutkimukset eri puolilta maailmaa tukevat sekä sosiaalisten rajoitusten jatkamista että hengitysuojainten laajempaa käyttöä julkisilla paikoilla.

Oletus siitä, että lapset eivät tartuttaisi virusta, on virheellinen. Usko siihen, että opettajat saisivat immuniteetin SARS-CoV-2-virusta vastaan ei perustu tieteelliseen näyttöön. Sellaista ei tämän viruksen kohdalla ole.

Pyörää ei tarvitse keksiä uudestaan. Esimerkiksi Saksan tiedeakatemian näkemyksiä on viisasta kuunnella. Saksan tiedeakatemia suosittaa vaiheittaista koulujen avaamista, mutta tietyin varauksin:

”Kun sulkuja puretaan, oppilasryhmien pitäisi olla korkeintaan 15 lapsen kokoisia, ja välitunnit pitäisi viettää saman ryhmän parissa, tiedeakatemia suosittaa. Lähiopetuksen määrä olisi normaalia pienempi ja koulupäivät lyhyempiä. Lukioihin suositellaan itseohjautuvaa opiskelua.

Päiväkodeissa pitäisi suosituksen mukaan olla vain viisi lasta kerrallaan samassa huoneessa. Pienimpiä lapsia ei rajoitusten purun alkuvaiheessa voisi tutkijoiden mukaan tuoda päiväkoteihin. Syynä päiväkotien hitaampaan avaamiseen on se, että pienimpien lasten hengityssuojaimen käyttö on käytännössä mahdotonta, mutta lapsetkin voivat levittää virusta.

Saksan tiedeakatemia suosittaa koulujen vaiheittaisen avaamisen lisäksi hengityssuojien käyttöä yleisissä tiloissa. Suomessa arvellaan, että lapset, jotka kyllä osaavat solmia kengännauhansa, eivät pukea hengityssuojia.

Saksan lisäksi monissa muissa Euroopan ja Aasian maissa sekä Yhdysvalloissa hengityssuojien käyttö yleisillä paikoilla on, jos ei pakollista, niin ainakin vahvasti suositeltavaa. Miksi ei meillä?

”–Sulkemista ei voi tehdä varmuuden vuoksi tai siksi, että paikallisesti oltaisiin eri mieltä hallituksen kanssa. Kyse ei ole kunnanhallituksen tai opetustoimen vallasta.” – Li Andersson

Koska Covid-19 tartunnan pitkäaikaisvaikutuksista lapsiin ei tunneta, ”varmuuden vuoksi” olisi perusteltu ratkaisu. Ihmiset käyttävät turvavöitä ja kondomeja varmuuden vuoksi.

Lasten ja opettajien tietoinen altistaminen sairastumiselle sisältää riskejä, joita emme tunne ja joihin emme ole varautuneet. Julkisesti ei ole esimerkiksi keskusteltu, Covid-19-infektion mahdollisista jälkitaudeista lapsille vuoden tai kahden vuoden päästä sairastumisesta.

Voi olla, että infektio ei aiheuta jälkitauteja, mutta niin kauan kun olemme epätietoisia, on parempi pelata varman päälle ja välttää turhia tartuntoja.

H1N1 aiheutti narkolepsiaepidemian ja pilasi monen lapsen ja nuoren elämän. Kukaan ei varmasti halua sellaista. Yritetään välttää inhimillisesti raskaat virheet.

Helsingin yliopiston tutkijatohtori Tuomas Aivelon mukaan THL:n mallinnuksissa on aliarvioitu koronataudin vakavuutta. Sen lisäksi THL:n mallinnukset ovat epäselviä.

”Aivelon mukaan mallinnukset käyttävät oletuksena huomattavasti matalampaa taudin vakavuutta kuin monissa muissa mallinnuksissa on käytetty. Toisin sanoen koronaviruksen vakavuutta on aliarvioitu. – IS

Kaikkia ei voi suojella, mutta tarpeettomien riskien ottaminen ei ole viisasta

Autoimmuunitaudit kuten multippeliskleroosi ja tyypin 1 diabetes edellyttävät geneettisen alttiuden sairastua sekä yhden tai useamman ympäristötekijän, jotka laukaisevat autoimmuunitaudin.

Vahvana pidetyn hypoteesin mukaan autoimmuunitaudin voi laukaista jokin infektio, kuten Epstein-Barrin virus tai herpes zoster.

Molemmat virukset aiheuttavat hyvin tavallisia infektioita suurella osalla väestöä. Sikainfluenssa laukaisi narkolepsian lapsilla ja nuorilla, joilla oli geneettinen alttius sairastua.

Selkäydinnesteen vasta-aineiden muutokset (oligoklonaaliset immunoglobuliinit) ovat vahva indikaattori virusinfektion ja autoimmuunitaudin välillä. Useimpien autoimmuunitautien syntymekanismia ei kuitenkaan vielä tunneta.

Entä jälkitaudit? On todennäköistä, että Covid-19 aiheuttaa osalle sairastuneista jälkitauteja

Tunnetuin ja ikävin esimerkki jälkitaudeista on mainitsemani H1N1-sikainfluenssan aiheuttama narkolepsia. Usein uskotaan virheellisesti, että narkolepsian aiheutti Pandemrix-rokote. Se on toisaalta totta ja toisaalta harhaanjohtava tulkinta.

Tutkimukset osoittivat, että narkolepsian laukaisi rokotteen sisältämä H1N1-viruksen tumaproteiini, jota Pandemrix-rokotteessa käytettiin rokotettavan immuunivasteen aktivoimiseksi. Narkolepsia yleistyi rokottamattomilla H1N1-infektion sairastaneilla rokotettuja nopeammin mm. Kiinassa.

Tuhkarokko on paramyksoviruksen aiheuttama koko kehon vakava yleisinfektio, joka voi aiheuttaa erittäin ikäviä jälkitauteja. Yleisimpiä ovat kuumekouristukset, korvatulehdukset, ripuli, keuhkokuume ja hengitysteiden bakteeri-infektio.

Aivojen yleistulehdus eli subakuutti sklerosoiva panenkefaliitti (SSPE) on äärimmäisen harvinainen jälkitauti (1:100 000), mutta se voi tappaa tuhkarokon sairastaneen vuosia tai vuosikymmeniä infektion sairastamisen jälkeen.

Vyöruusun aiheuttaa lapsena saadun vesirokkoinfektion elimistöön pysyvästi jättämä herpes zoster-virus. Sama virus on tutkimuksissa liitetty myös tyypin 1 diabeteksen kehittymiseen.

Myös influenssa voi aiheuttaa useita jälkitauteja, joihin sairastuvat erityisesti vanhukset ja pienet lapset. Näitä ovat lapsilla korvatulehdus, keuhkoputkentulehdus ja keuhkokuume. Olisi hyvin ajattelematonta ja suorastaan sinisilmäistä olettaa, että Covid-19 kulkisi väestön läpi jättämättä taakseen jälkitauteja.

Aiheuttaako infektio kasvavan autoimmuunitautien riskin? Lisääkö se aivotulehdusten riskiä? Millaisia ovat Covid-19-infektion jälkitaudit? Me emme vielä tiedä.

Niin kauan kuin olemme epävarmoja, on turvallisinta olettaa, että jälkitaudit ovat mahdollisia tai jopa todennäköisiä. Siksi infektion välttäminen on oikeasti järkevämpää kuin sille altistuminen. Lapset ovat jokaisen yhteiskunnan arvokkain voimavara. Ei altisteta lapsia virukselle, jonka pitkäaikaisvaikutuksia lapsille ei vielä tunneta.

Vuoden päästä tiedämme varmasti enemmän, mutta sitten voi olla jo myöhäistä korjata tilannetta. Toistaiseksi tiedetämme, että Covid-19 hyvin todennäköisesti lisää lapsen riskiä sairastua harvinaiseen toksiseen sokkioireyhtymään ja kawasakin tautiin.

New Yorkin pormestari Andrew Cuomon torstaina 8.5.2020 julkaiseman twiitin mukaan New Yorkissa on todettu kawasakin taudin oireita 73:lla kriittisesti sairaalla lapsella, joista yksi 5-vuotias oli menehtynyt.

Nyt toksisen sokkioireyhtymän ja kawasakin taudin oireisiin menehtyneitä lapsia on jo enemmän ympäri maailmaa. On sanomattakin selvää, että yksikään vanhempi ei halua lapselleen toksisen sokkioireyhtymän ja kawasakin taudin oireita, mutta meidän on varauduttava siihen, että osa lapsista sellaisia saa.

”Mysteerinen kawasakin tauti sairastuttaa pääasiassa viisivuotiaita tai sitä nuorempia lapsia. Tauti aiheuttaa valtimoiden tulehdusta, joiden oireina ovat muun muassa kuume, ihon kesiminen ja nivelkivut. Myös Britanniassa, Ranskassa, Italiassa ja Espanjassa on havaittu tapauksia, joissa koronatartunnan saaneella lapsella on toksisen sokkioireyhtymän ja kawasakin kaltaisia oireita. Kawasakin tautiin on olemassa hoito, ja suurin osa potilaista paranee.”

Olennaista on, että suurin osa paranee,.. Osa ei parane.

”New Yorkissa lähes 40 lasta on sairastunut vakavaan tulehdustautiin, jonka epäillään olevan yhteyksissä koronavirukseen. Vastaavia oireita on raportoitu kourallinen myös muualla Yhdysvalloissa. Euroopassa tapauksia on todettu 50, muun muassa Britanniassa, Ranskassa ja Italiassa.” – IL

Saavatko lapset tartuntoja ja levittävätkö lapset infektiota?

Helsingin kasvatuksen ja koulutuksen toimialajohtaja Liisa Pohjolainen muistuttaa kuitenkin, että hallituksen linjaus kouluun paluusta perustuu käsitykseen, että lapset eivät tartuta koronavirusta helposti.HS

SARS-CoV-2 tarttuu lapsiin ja lapset levittävät virusta eteenpäin siinä missä aikuiset. Tästä on paljon tutkimusnäyttöä, jota käsittelen hieman myöhemmin.

”Valtaosa lapsista sairastaa taudin hyvin lievänä tai kokonaan oireettomana, eivätkä he myöskään tartuta sitä samassa mitassa kuin aikuiset, kertoi THL:n ja STM:n Valtioneuvostolle tekemä selvitys. Suomessa koulut avataan 14. toukokuuta.Maailmalla liikkuu myös tietoa koulujen merkittävästä roolista viruksen levittäjänä. Berliinin Humboldt-yliopiston mallinnusten mukaan korona tarttuisi hyvin kouluissa. Berliinin Charité-sairaalan johtava virologi Christian Drosten julkaisi Twitterissä Saksassa tehtyjä tutkimuksia, joiden mukaan lasten kantamat virusmäärät eivät merkittävästi eroa aikuisten vastaavista.Tanskassa koulut avattiin 15.–16. huhtikuuta. Noin kaksi viikkoa sen jälkeen tanskalaistutkijat havaitsivat muutoksen maan R0-luvussa. Tanskan yleisradion DR:n mukaan valtion seerumi-instituutin tutkijat kertoivat tartuttavuusluvun olevan nyt 0,9, kun se ennen koulujen avaamista oli 0,6. Epidemian kiihtymisestä ei kuitenkaan ole merkkejä.” – IS

Lapsilla Covid-19 on lähes poikkeuksetta lieväoireinen tai oireeton ylähengitysteiden tulehdus. Sairastuminen muistuttaa lapsilla oireiltaan tavallista vilustumista. Joskus siihen ei liity edes kuumetta, joten se voi helposti jäädä lapsen vanhemmiltakin huomaamatta. Lievät oireet tai oireettomuus ei kuitenkaan tarkoita, etteikö lapsi voisi levittää virusta vanhempiinsa ja isovanhempiinsa tai luokanopettajiin.

Opettajat ovat välittömässä riskiryhmässä. Niille opettajille, jotka korkean verenpaineen, ylipainon, astman, diabeteksen tai iän perusteella kuuluvat Covid-19-taudin riskiryhmään, koulujen avaaminen on äärimmäisen ahdistavaa.

Seitsemästä tunnetusta ihmisillä leviävästä koronaviruksesta neljä aiheuttaa 10-30 % säännöllisistä nuhakuumeista. Lasten nuori ja yhä kehittyvä immuunijärjestelmä on tutkijoiden arvion mukaan vastustuskykyisempi SARS-CoV-2-infektiolle. On myös mahdollista, että jokin neljästä tavallisista vilustumisia aiheuttavasta koronaviruksesta antaa lapsille ristisuojaa.

Myös sitä pidetään merkittävänä, että lapsilla on vähemmän ACE2-reseptoreita keuhkoissa ja enemmän ylähengitysteissä, eli suussa, nielussa ja nenässä. ACE2-reseptori on se, mihin SARS-CoV-2 kiinnittyy infektoidessaan solun.

SARS-Cov-2 osaa tuhota T-soluja

Eräs pelottavimmista havainnoista Covid-19-taudin osalta on se, että SARS-CoV-2 voi tuhota immuunijärjestelmän T-soluja hieman samaan tapaan kuin HIV. Tämä heikentää potilaiden immuunijärjestelmää, sillä T-solut ovat niitä, joiden tulisi tuhota infektoituneita soluja.

Lääkäreiden ja hoitohenkilökunnan kertomukset toistavat samoja pelkoja Kiinasta Yhdysvaltoihin: tämä virus on pahempi kuin kerrotaan. Lääkärit eivät hypi huvikseen ikkunoista Venäjälläkään. Lääkärien itsemurhat kertovat äärimmäisestä pelosta, ahdistuksesta ja stressistä. Monet lääkärit ovat eronneet suojavarusteiden heikon laadun tai puutteiden vuoksi. He ymmärtävät, mitä pahimmassa skenaariossa on odotettavissa.

Vanhempien tehohoitoon päätyvien potilaiden immuunijärjestelmää säätelevät auttaja-T-solut käynnistävät elimistössä sytokiinimyrskyksi kutsutun immuunivasteen, joka voi johtaa monielinvaurioon ja potilaan kuolemaan.

Lasten kypsymätön immuunijärjestelmä ei aiheuta sytokiinimyrskyä. Northwestern Universityn Vadim Backmanin mukaan koronavirustauti ei juurikaan vaikuta lapsiin, koska lasten hankittu immuniteetti ei ole vielä täysin kehittynyt ja lapsilla tärkeimpänä puolustuksena toimii syntymässä saatu luontainen immuniteetti, joka ei synnytä sytokiinimyrskyn kaltaisia immuunijärjestelmän ylireagointeja niin helposti.

Ruumiinavaukset osoittavat, että Covid-19-infektioon menehtyneiden immuunijärjestelmä on täysin romahtanut ennen kuolemaa ja elimelliset vauriot muistuttavat AIDS:iin menehtyneillä havaittavia kliinisiä löydöksiä.

Entäpä jos virus piiloutuu elimistöön samaan tapaan kuin herpes, vesirokkovirus, borrelioosi tai HIV ja aktivoituu vuoden, kahden,.. tai kymmenen vuoden päästä? Sellainen on pelottava skenaario.

Me emme voi tietää ja niin kauan kuin emme tiedä, varovaisuus on viisasta. Tunti sitten uutisoidun kiinalaistutkimuksen mukaan virusta on löydetty kuuden kiinalaismiehen siemennesteestä. Tämän pitäisi soittaa hälytyskelloja. Tutkijat rauhoittelivat, että ei tauti varmaankaan tartu sukupuoliteitse. Eipä tietenkään, miksi tarttuisi, jos se tarttuu pisara- ja kosketustartuntana!

”WHO:n mukaan vielä ei ole varmaa tietoa, miten immuniteetti koronavirusta vastaan syntyy ja kauanko se säilyy. Koronatartunnan saaneet alkavat kehittää vasta-aineita noin viikkoa tartunnan tai oireiden alkamisen jälkeen. Toistaiseksi ei vielä tiedetä, syntyykö taudista parantuneiden kehossa riittävästi vasta-aineita torjumaan viruksen uusi hyökkäys ja jos, niin kauanko vastustuskyky säilyy.”

Useat merkittävät immunologiaa tutkivat laitokset ja tutkijat ovat varoittaneet, että immuniteettiä ei mahdollisesti kehity. Tämä tarkoittaa, että laumasuoja jää saavuttamatta ja tehokkaan rokotteen kehittäminen ei ehkä ole mahdollista.

SARS ja MERS eivät tiettävästi antanut sairastuneille pysyvää immuniteettia. Tosin molempiin kehittynyt immuniteetti kesti useampia vuosia.

Myöskään tavallisia vilustumisia aiheuttaviin koronaviruksiin ei ole kehittynyt immuiteettia. On siis varauduttava siihen ikävään vaihtoehtoon, että tämä virus kiertää maailmaa vielä vuosia. Ehkäpä virus heikkenee tavalliseksi jokatalviseksi vilustumiseksi. Sitä enen tämä vain on kestettävä. Olen kiitollinen, että joukko arvovaltaisia asiantuntijoita vetoaa päättäjiin taudin tukahduttamisen puolesta.

Epidemia uusiutuu joka tapauksessa syksyllä hyvin suurella todennäköisyydellä.

Lopulta tärkeää on se, että lapsia kuolee koronavirustartunnan seurauksena. Euroopassa on uollut useampia lapsia, joista viimeinen saattoi olla alle vuoden ikäinen lapsi Britanniassa. Ruotsissa tutkitaan alle viisivuotiaan mahdollista kuolemaa koronaviruksen seurauksena.

Lapsia kuolee myös liikenneonnettomuuksiin ja lukemattomiin muihin syihin, eikä niiden vuoksi tarvitse sulkea yhteiskuntaa ja kouluja. Tämä on totta. Vetoan päättäjiin siksi, että taudin todellista vakavuutta ja potentiaalisia jälkitauteja ei vielä tunneta.

Ylimielisyys  ja liika itsevarmuus on kohtalokkainta. Johtajat, jotka eivät uskoneet asiantuntijoita ovat vieneet maansa syvään inhimilliseen kriisiin. Donald Trumpilla, Boris Johnsonilla ja Vladimir Putinilla oli kolme kuukautta aikaa valmistautua epidemiaan. Edes Italian ja Espanjan tilanne ei avannut silmiä. Nyt sitten syytellään kilvan Kiinaa, vaikka olisi syytä etsiä syyllisiä peilistä.

Tältä pandemia näytti Donald Trumpin silmin katsottuna.

Tutkimuksista


Myös lapsille voi kehittyä vakava koronavirusinfektio. Mitä nuoremmasta lapsesta on kyse, sitä suurempi riski lapsella on sairastua vakavasti, osoittaa vertaisarvioitu tutkimus, jossa analysoitiin 2000 lapsen saamaa tartuntaa Kiinassa.

Tutkimuksessa havaittiin, että 4 prosentilla lapsista ei esiintynyt lainkaan oireita. Puolet tartunnan saaneista sai vain lieviä oireita. 6 prosentille lapsista kehittyi vakava tai kriittinen infektio. Vakavat tai kriittiset infektiot olivat yleisempiä pikkulapsilla. Vanhemmilla lapsilla ja teini-ikäisillä vakavat infektiot olivat harvinaisempia.

Koronaviruspandemian alkuvaiheessa arveltiin, että lapset saattavat olla vähemmän alttiita Covid-19:lle, koska niin harvat näyttivät sairastuvan tai päätyvän sairaalahoitoon.

Joillekin lapsille kehittyy vakava koronavirusinfektio ja nuorimmilla on suurin riski, tutkimus kertoo

Kiinassa tehty uusi tähän mennesä suurin vertaisarvioitu tutkimus osoittaa, että monet lapset saavat infektion usein ilman selviä koronavirusoireita. Pienelle osalle lapsista kehittyy vakava tai kriittinen infektio.

Maailman terveysjärjestö varoitti kehotti suojelemaan lapsiaan koronavirukselta.

Meidän on varauduttava siihen, että lapset voivat myös sairastua vakavasti, WHO:n uusien sairauksien ja zoonoosien yksikön päällikkö tri Maria Van Kerkhove varoitti.

Pediatrics-lehti julkaisi tutkimuksen jo ennen virallista julkaisupäivää, koska piti tutkimusta erittäin tärkeänä.

Tutkimuksessa useiden kiinalaisten yliopistojen tutkijat tarkastelivat tietoja yli 2 000 covid-19-diagnoosin 16.1. ja 8.2. välillä saaneesta lapsipotilaasta seitsemässä Kiinan maakunnassa. Lasten mediaani-ikä oli seitsemän vuotta.

Havaintojen mukaan 90 % lapsista sairasti infektion oireettomana tai lieväoireisena. 39 prosentille lapsista kehittyi lievä ja vähäoireinen keuhkokuume, 50 prosenttia lapsista kuumeili ja heillä esiintyi väsymystä, kurkkukipua, yskää ja hengenahdistusta. 4 prosentilla lapsista ei ollut mitään oireita. Huolestuttavin havainto oli, että 6 prosentille lapsista kehittyi vakava tai kriittinen infektio. Ainakin yhden 14-vuotiaan pojan tiedetään menehtyneen Hubein maakunnassa.

Infektiot olivat vakavimpia nuorimmilla lapsilla: Kiinan tautien torjunta- ja ehkäisykeskus havaitsi vaikeita infektioita hieman yli 10 prosentilla vauvoista, 7 prosentilla 1-5-vuotiaista lapsista, 4 prosentilla 6–10-vuotiaista, 4 prosentilla 11–15-vuotiaista ja 3 prosentilla teini-ikäisistä.

Vaikka lasten Covid-19-tapausten kliiniset oireet olivat yleensä lievempiä kuin aikuisilla, pienet lapset, erityisesti imeväiset, olivat alttiita infektiolle, tutkijat kirjoittivat.

Tutkijat eivät ole varmoja siitä, miksi Covid-19-tartunta on harvinaisempaa lapsilla

Tutkijat arvelivat, että koska lapset altistuvat talvikuukausina useille hengitystieinfektioille, lapsilla voi olla enemmän tartunnalta suojaavia vasta-aineita veressään.

Asiantuntijoiden mukaan tutkimus osoittaa, että on tärkeää ajatella lapsia toteutettaessa viruksen torjuntastrategiaa.

Jos lapsille kehittyy oireita, he levittävät viruksen muille joko prekliinisen ajanjakson aikana tai heti kun oireet alkavat, kertoo Kalifornian yliopiston tartuntatautien osaston lääkäri Lee W. Riley.


Miehillä ja lapsilla on korkeampi riski sairastua vakavasti

Suuri lasten koronatartuntoja tarkasteleva tutkimus osoittaa, että miehillä ja pienillä lapsilla on selvästi suurentunut riski sairastua vakavasti. CDC (Centers for Disease Control) julkaisi Yhdysvalloissa tutkimuksen, jossa tutkittiin yli 2500 alle 18-vuotiaan lapsen tartuntoja 12.2. ja 8.4. välisenä aikana. Toistaiseksi tämä on suurin lasten tartuntoja koskeva tutkimus.

Tiedot osoittivat, että lapsille kehittyy vakavia oireita selvästi harvemmin kuin aikuisille. Rekisteröidyistä tartunnoista vain 1,7 % oli lapsia, vaikka lasten suhteellinen osuus väestöstä on 22 %. Lapsista, joista oli saatavilla eniten tietoa, vain 73 prosentille kehittyi kuume, yskä tai hengenahdistus. 18-64-vuotiailla ikuisilla selviä oireita todettiin 93 prosentilla.

Havainnot tukevat aikaisempaa kiinalaistutkimusta, jonka mukaan infektio aiheuttaa useimmille lapsille oireettoman tai lievän taudin.

Joillekin lapsista kehittyy kuitenkin vakava sairaalahoitoa edellyttävä infektio. Tämän tutkimuksen yli 2500 lapsesta 147 joutui sairaalahoitoon, viisi tehohoitoon ja kolme kuoli.

Yhdysvalloissa vauvojen infektiot edellyttivät useammin sairaalahoitoa kuin infektiot muissa lasten ikäryhmissä. 95 lapsesta 62 prosenttia oli sairaalahoidossa. Arvioitu osuus lapsista 1–17-vuotiailla oli korkeintaan 14 prosenttia.

Lasten immuunivasteet kehittyvät vähitellen, kertoi tohtori Yvonne Maldonado, Amerikan lastentautiakatemian tartuntatautien komitean puheenjohtaja. Ensimmäisenä elinvuoden aikana lasten immuunivaste on vielä hyvin heikko.

Voisiko ”biologiset tekijät” tehdä miehistä alttiimpia Covid-19:lle

Kasvava tutkimusnäyttö osoittaa, että miehet kuolevat Covid-19-infektioon naisia useammin. WHO kertoi 20. maaliskuuta, että Länsi-Euroopassa menehtyneistä potilaista jopa 70 prosenttia oli miehiä.

Roomalaisen lääketieteellisen instituutin yli 25 000 koronavirustapausta koskevasta analyysistä kävi ilmi, että miesten koronaviruspotilaiden kuolleisuusaste oli Italiassa 8 prosenttia, kun taas italialaisten naisten osuus oli 5 prosenttia.

Samassa analyysissä havaittiin, että miehet edustivat 58 prosentin osuudella pientä enemmistöä Italian koronainfektioista. Eräät asiantuntijat ovat ehdottaeet syyksi miesten elämäntapoja. Miehet polttavat ja juovat enemmän, huolehtivat hygieniastaan vähemmän ja sairastavat naisia useammin kardiometabolisia sairauksia.

Mutta miesten tupakointi, alkohlin käyttö, huonompi hygienia ja suurempi kardiometabolisten sairauksien esiintyvyys eivät selitä miesten korkeampaa alttiutta sairastua Covid-19-infektioon.

57 prosenttia CDC-tutkimuksen tartunnan saaneista lapsista oli poikia. Tulos on samansuuntainen kuin miesten osuus tartunnoista. Myös tartunnan saaneista imeväisistä suurin osa oli poikia. Se viittaa siihen, että biologiset tekijät ja sukupuoli vaikuttavat sairastumisriskiin.

Tutkimus on alustava. Tekijät työskentelivät puutteelliste tietojen varassa. Tutkijoiden analysoimien 2572 lastentartunnasta vain 9,4 prosenttia sisälsi tietoja potilaan oireista ja vain 33 prosentissa tapauksista selvisi onko potilas turvautunut sairaalahoitoon.

Tutkijat kehottavat hoitohenkilökuntaa tarkkailemaan lapsia, joilla voi olla Covid-19. Erityisesti vauvojen ja perussairaiden lasten tarkempi tautiseuranta on tärkeää. Maldonado korosti, että meidän on oltava erittäin varovaisia, sillä me emme oikeastaan tunne tätä virusta.

8.5.2020 kello 4.46 rekisteröityjä Covid-19-tartuntoja oli globaalisti jo 3 915 600. Pandemiaan on kuollut vähintään 270 661 ihmistä. Yhdysvalloissa rekisteröityjä tartuntoja on 1 292 623 ja kuolemantapauksia 75 928. Olen kuullut huhuja, että kaikissa maissa koronavirukseen kuolleita ei rekisteröidä koronavirukseen kuolleiksi, jois potilas on sairastanut esimerkiksi diabetesta tai verenpainetautia. Oli se totta eli ei, lukuihin ei kannata luottaa liikaa. Sairastuneita on mahdollisesti monikymmenkertaisesti enemmän kuin rekisteröityjä tartuntoja. On myös uskottavaa, että ainakin osa Covid-19-infektioon menehtyneistä rekisteröidään muihin kuolinsyihin. Luultavasti Venäjällä toimittiin näin epidemian alussa.

Yhdysvaltojen väestöstä 22 % on alle 18-vuotiaita vauvoja, taaperoita, esikoululaisia, koululaisia ja teinejä. Kiinasta saatujen tietojen perusteella lasten Covid-19-tapaukset ovat yleensä lievempiä kuin aikuisten tartunnat. Lasten oireet ovat myös erilaisia kuin aikuisilla. Lapsipotilaista on ollut hyvin vähän tietoa.

Tämän tutkimuksen tiedot analysoitiin 12. helmikuuta ja 2. huhtikuuta 2020 väliseltä ajalta yhteensä 149 760 laboratoriossa vahvistetusta Covid-19-tartunnasta . Tartunnoista 149 082 (99,6%) potilaan ikä tunnettiin ja 2 572 (1,7%) oli alle 18-vuotiaita lapsia.

Tärkeistä muuttujista oli saatavilla vain puutteellisia tietoja. Tällaisia puutteellisia muuttujia olivat oireet (9,4 %), perussairaudet (13 %) ja potilaan vointi sairaalassa (33 %). Potilaita, joiden oireet oli kartoitettu kattavasti oli vähän. Potilaskertomusten kirjoittamatta jättäminen kertoo sairaaloiden armottomasta työtaakasta Yhdysvalloissa.

Tiedot tukevat aiempia havaintoja, joiden mukaan Covid-19-lasten oireet ovat usein niin lieviä, että ne eivät rekisteröidy terveydenhuollon järjestelmiin. Tämänkin tutkimuksen mukaan suurin osa lapsista ei saa vakavia oireita, mutta osa lapsista saa niin vakavia oireita, että sairaalahoitoa ja jopa tehohoitoa tarvitaan. Covid-19 tappaa valitettavasti myös lapsia, vaikka onneksi hyvin harvoin.

Tutkimuksen päätelmä on, että sosiaalisten rajoitustoimien jatkaminen ja muut taudin leviämistä ehkäisevät toimet kaikissa ikäryhmissä ovat perusteltuja, koska oireettomat ja lieväoireiset levittävät tautia.


SARS-CoV-2-tartunnat imeväisillä, lapsilla, teini-ikäisillä

Koska tietoa Covid-19-infektioista saadaan hyvin erilaisista lähteistä, kaikki tiedot eivät ole yhteismitallisia tai luotettavia, Bostonin lastensairaalan asiantuntijat haluavat tuoda lukijoille tosiasiat siitä, kuinka lapset ja teini-ikäiset reagoivat tartuntaan.

Viime viikkoina useat arvostetut lääketieteelliset lehdet ovat julkaisseet tutkimuksia ja kommentteja, jotka perustuvat Covid-19-potilaista tehtyihin havaintoihin Kiinassa. Nämä raportit on vertaisarvioitu, mikä tarkoittaa, että muut alan asiantuntijat ovat tarkastaneet ne huolellisesti.

Tähän mennessä suurin Pediatrics-lehdessä julkaistu tutkimus, käsitti 2214 koronavirustautiin sairastuneen lapsen potilaskertomukset ja niistä tehdyt analyysit. Havainnot tehtiin 16.tammikuuta ja 8. helmikuuta välisenä aikana.

Tutkimuksessa todetaan, että koronavirustaudin oireet olivat aikuisiin verrattuna yleensä lievempiä lapsilla ja teini-ikäisillä. 4,4 prosentilla lapsista ja nuorista ei ollut oireita, 50,9 prosentilla oli lievä tauti ja 38,8 prosentilla oli kohtalaisia oireita.

Oireita saaneista lapsista vain 0,6 prosentilla kehittyi akuutti hengitysvaikeusoireyhtymä tai monien elinten toimintahäiriö (ARDS). On huomattava, että pienillä – etenkin alle vuoden ikäisillä lapsilla – oli suurempi riski sairastua vakavasti. Kymmenellä prosentilla vauvoista oli vakava sairaus, kuin yli 15-vuotiaista vain 3 prosenttia sairastui vakavammin.

On tietenkin aivan liian myöhäistä vaikuttaa tehtyihin päätöksiin. Koulut avataan ja pelkään sen aiheuttavan vakavia tartuntoja osalle opettajista ja oppilaista. Toivon, että olen väärässä. Minusta vain tuntuu, että STM ja THL eivät vieläkään ymmärrä taudin vakavuutta. Nyt olisi oikea aika tukahduttaa tauti. Samalla yleisten matkustus- ja maahantulorajoitusten ja karanteenien käyttöön otto estäisi uutta epidemiaa kehittymästä.

Tartuntojen kiihdyttäminen kesäksi ei todennäköisesti vaikuta mitenkään epidemian toiseen aaltoon. Vaikka immuniteetti on teoriassa mahdollinen, kukaan ei vielä tiedä kuinka vahva vastustuskyky tartunnasta seuraa ja kauanko vahvistunut vastustuskyky säilyy. Hybridimallin tarkoituksena lienee, että mahdollisimman moni olisi syksyyn mennessä sairastanut taudin ja yhteiskunta voitaisiin avata. Toistaiseksi tuo perustuu arvailuihin. Harvardin tutkijoiden mukaan uusien laskelmien perusteella laumasuoja vaatii, että 82 prosenttia väestöstä sairastaa infektion. Sellaiseen on niin pitkä matka, että parasta perustaa jo nyt arkku- ja uurna-tehtaita, koska muuten niistä tulee vastaava pula kuin suojavarusteista, joita Suomella oli riittävästi.

Rakkautta ja terveyttä!

Lähteet:

https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e4.htm

https://hms.harvard.edu/news/covid-19-children

https://pediatrics.aappublications.org/content/pediatrics/early/2020/03/16/peds.2020-0702.full.pdf

https://www.nejm.org/doi/full/10.1056/NEJMc2005073?query=TOC

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30360-3/fulltext

https://www.frontiersin.org/articles/10.3389/fped.2020.00104/full

https://www.gastrojournal.org/article/S0016-5085(20)30282-1/pdf

https://www.worldometers.info/coronavirus/coronavirus-age-sex-demographics/

https://ourworldindata.org/covid-deaths

https://www.businessinsider.com.au/some-children-develop-severe-infections-from-coronavirus-2020-3

http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/weekly-surveillance-report

https://hyvatyo.ttl.fi/koronavirus/tietoa-itse-tehdyista-kasvomaskeista

https://www.bbc.com/news/health-52446965

https://www.the-scientist.com/news-opinion/what-do-antibody-tests-for-sars-cov-2-tell-us-about-immunity–67425

https://www.nature.com/articles/s41577-020-0311-8

https://www.nytimes.com/2020/04/13/opinion/coronavirus-immunity.html

https://time.com/5810454/coronavirus-immunity-reinfection/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161502/

https://www.smithsonianmag.com/science-nature/can-you-become-immune-sars-cov-2-180974532/

https://science.sciencemag.org/content/early/2020/04/24/science.abb5793.long

https://www.nature.com/articles/s41467-020-15562-9?elq=03a7e0300359475c8c8458e122634958&elqCampaignId=10607&elqTrackId=3f6d0c397d4d41f6ab5cf222b0f07cd2&elqaid=27834&elqat=1




Koronapäiväkirja –sunnuntai – sunnuntai 26-3.5.2020

Vapun jälkeen olo on hyvä ja vahva. En tiedä johtuuko se Valmarin-shoteista vai Irish coffeesta, mutta taannun nuoremmaksi päivä päivältä. Koronakriisiä paitsi tämä on ollut inspiroiva kevät.

Rajoitusten purkaminen on alkanut. Opettajat palaavat kouluihin 14.5. Tämän päätöksen logiikasta en saa mitään otetta. Mitä sillä halutaan saavuttaa? Monia opettajia paluu kouluun pelottaa ja pelko on aiheellista.

Koulujen avaamisessa halutaan seurata muiden Pohjoismaiden esimerkkiä. Myös Espanja raottaa hieman sosiaalisten rajoitusten ovea. Ranskassa tiukka koronaviruksen vastainen politiikka ulkonaliikkumiskieltoineen jatkuu ainakin kaksi kuukautta. Italiassa pääministeri Giuseppe Conti kertoi, että koska lapset kantavat erittäin korkeaa tartuntariskiä, kouluja ei avata. Opettajien korkea keski-ikä ja koronariski pitävät koulut suljettuina Italiassa syyskuuhun asti. Samaa selkärankaa toivoisin suomalaisilta poliitikoilta.

Taloudellisen paineet ovat varmasti raskaita kaikkialla, mutta hätiköinnin inhimillinen hinta voi olla välittömiä hyötyjä korkeampi.

Lapset, opettajat ja Covid-19

Koulut ja päiväkodit ovat perinteisiä viruslinkoja, joissa taudit tarttuvat lapselta toiselle hyvin nopeasti. Kouluista ja päiväkodeista taudit kulkeutuvat kotehin ja vanhempien kantamina työpaikoille. Tästä on pitkä kollektiivinen muisti esimerkiksi influenssojen ja norovirusten kohdalla, mutta ilmeisestikään eräät eivät näe puita metsältä. Jokainen vanhempi tietää millaisia ongelmia syntyy jos koulussa tai päiväkodissa puhkeaa täikriisi. Covid-19 ei ole mikään tavallinen täihärdelli. Se leviää yhtä helposti tai helpommin kuin täit ja siitä on vieläkin vaikeampi päästä eroon.

Covid-19 on monta kertaluokkaa kriittisempi ongelma kuin täit, kihomadot, norovirusten aiheuttamat oksennus- ja ripulitaudit tai influenssat. Kaikki edellämainitut leviävät päiväkodeista ja kouluista muualle yhteiskuntaan. Miksi ei sitten Covid-19? Se ei tietenkään leviä, koska STM ja THL eivät usko sen leviävän.

Uskon varassa ne suuretkin laivat ovat seilanneet ja niin seilaa Suomi-laivakin. Mutulla mennään eikä meinata.Kohti syvempiä vesiä ja terävämpiä karikoita; hiiohoi!

Osaamattomuus on määrittänyt STM:n, THL:n ja HVK:n kykyjä tämän kriisin hoidossa. Onneksi suuremmalta painajaiselta ollaan vielä  onnenkaupalla vältytty. Saamme olla kiitollisia siitä,. että esimerkiksi HUS:in, TYKS:in ja Helsingin yliopiston palveluksessa on ihmisiä, joilla on yhä järki päässä. He ovat omilla julkisilla kannanotoillaan ohjanneet epidemian hoitoa oikeaan suuntaan ja korjanneet STM:n ja THL:n kurssia jatkuvasti. Näin suurimmilta karikoilta on vältytty.

Ehkä opettajien immuniteettia halutaan koulujen avaamisella vahvistaa tulevaa syksyä varten? Ratkaisua on perusteltu muun muassa sillä, että lapset eivät saa tartuntaa ja levitä sitä eteenpäin yhtä tehokkaasti kuin vanhemmat. Tämä ei ole totta.

Lisäksi koko maailmassa ole ainuttakaan tutkimusta, joka vahvistaisi laumasuojan ja immuniteetin kehittymisen SARS-CoV-2-virukselle. On olemassa hypoteesi, että immuniteetti ja laumasuoja voivat kehittyä, mutta sitten on olemassa se realiteetti, että laumasuojan kehittyminen tälle virukselle, jos se edes on mahdollista, edellyttää, että 82 % väestöstä sairastaa viruksen (Harvardin tutkimus). Tällä hetkellä emme ole lähelläkään laumasuojaa, joten opettajien ja oppilaiden terveyden riskeeraaminen vaikuttaa hyvin huonosti perustellulta päätökseltä.

Ratkaisua on perusteltu kahdella koulujen avaamista puoltavalla tutkimuksella. Toisaalta tarkempi tutkimuskatsaus osoittaa, että lapset saavat tartuntoja ja levittävät niitä jopa tehokkaammin kuin aikuiset. Lapsilla tauti jää yleensä lievääoireiseksi tai oireettomaksi, mutta taudin levittäjinä he voivat olla aikuisia tehokkaampia.

Mitä lasten altistumisesta ja tartunnan levittämisestä tiedetään?

Wuhanissa todetuissa ensimmäisissä 425 Covid-19-tartunnassa ei ollut ainuttakaan alle 15-vuotiasta lasta, kirjoittaa New England Journal of Medicine. Sairastuneiden keski-ikä oli 59 vuotta ja 56 % tartunnan saaneista oli miehiä.

Ranskan Alpeilla yhden henkilön tiedetään tammikuun loppupuolella tartuttaneen yksitoista ihmistä. Eräs tartunnan saaneista oli 9-vuotias poika. Tutkijat jäljittivät tartuntaketjut hyvin tarkasti. Poika oli palannut kouluun normaalisti. Tartuntaketjujen seuranta päätteli, että koulussa yli 60 ihmistä oli vakavasti altistunut pojan kantamalle koronavirukselle. Altistuneita seurattiin 5 viikkoa, mutta yksikään ei sairastunut uuden koronaviruksen aiheuttamaan tautiin. Myös pojan sisarukset välttivät tartunnan. (1) Tutkijat päättelivät, että lapset eivät ole erityisen alttiita tälle virukselle ja jos saavat tartunnan, se on yleensä hyvin lieväoireinen.

Yhdysvalloissa huhtikuun 2. päivään mennessä diagnosoiduista ikävarmistetuista 149 082 koronatartunnasta vain 2572, eli 1,7 % oli alle 18-vuotiaita.

Vaikuttaa siltä, että virus vaikuttaa lapsiin eri tavalla kuin aikuisiin. Miksi?

Lastentautien professori Andrew Pollard Oxfordin yliopistosta kertoo, että SARS-CoV-2 tarttuu lapsiin aivan yhtä helposti kuin aikuisiin, mutta lapsilla taudin oireet ovat lähes aina hyvin lieviä.

Kiinan tartuntatautien viraston raportin mukaan 2 % helmikuun 20 päivään mennessä diagnosoiduista 72 314 tartunnasta oli alle 19-vuotiailla. Yhdysvaltalaisen raportin mukaan 508 sairaalaan joutuneen potilaan seurantaryhmässä ei todettu ainuttakaan lapsen kuolemaan johtanutta tartuntaa. Otanta vastasi alle 1 % Yhdysvalloissa sairaalaan päätyneistä potilaista.

Voi olla, että virus on vaikuttanut tällä hetkellä ensisijaisesti aikuisiin, koska tauti on levinnyt matkoilla ja työpaikoilla, sanoo Southamptonin lastensairaalan lasten tartuntatautien konsultti Sanjay Patel. Nyt kun aikuiset viettävät enemmän aikaa lastensa kanssa, saatamme nähdä infektioiden lisääntymisen lapsilla.

”On selvää, että useampi lapsi on saanut tartunnan kuin tiedämme. Emme aktiivisesti testaa lieviä tartuntoja ja lapsia,” sanoo Patel.

Tutkimusraporteista voidaan tehdä kiinnostava havainto. Jopa erittäin vakavasti sairaat, immunosupressiivista lääkitystä tai syöpähoitoja saavat lapset, sairastavat Covid-19-taudin lievempioireisena kuin aikuiset, kertoo Andrew Pollard, joka johtaa Oxfordin Covid-19-rokoteohjelmaa.

Lapsilla vakavat tartunnat ovat äärimmäisen harvinaisia. Sadasta varmistetusta Covid-19-tartunnasta lasten osuus on yhden ja viiden tartunnan välillä. Sairaalahoitoa vaativat tartunnat ovat harvinaisia. Lapsen riski kuolla koronaviruksen aiheuttamaan tautiin on tilastojen valossa häviävän pieni. Valitettavasti riski on kuitenkin olemassa.

Kiinalaistutkimuksen mukaan yli puolella tartunnan saaneista lapsista oireet ovat hyvin lieviä: lämpö, lievä yskä, kurkkukipu, aivastelu ja vuotava nenä ovat tavallisia oireita. Kolmanneksella lapsista voi olla hakkaavaa yskää ja korkeampaa kuumetta ja jopa keuhkokuumetta, mutta ei hengitysvaikeuksia, jotka ovat merkkejä vakavammasta tartunnasta.

Pediatri Graham Roberts Southamptonin yliopistosta kertoo, että lapsilla Covid-19 vaikuttaa ylähengitysteissä (nenä, suu, kurkku) samaan tapaan kuin tavallinen vilustuminen. Lapsilla tartunta ei yleensä leviä keuhkoihin ja siksi vakavammat oireet, kuten keuhkokuume, ovat harvinaisempia. Noin yksi kahdestakymmenestä lapsesta sairastuu vakavammin. Aikuisista vakavasti sairastuu jopa yksi viidestä tartunnan saaneesta.

Niiden lasten osuus, joille kehittyi vakava tai kriittinen Covid-19-sairaus (hengenahdistus, akuutti hengitysvajausoireyhtymä (ARDS) ja sokki), oli paljon pienempi (6%) kuin kiinalaisten aikuisten (19%) – ja etenkin vanhempien aikuisten, joilla oli jokin krooninen sydän- ja verisuoni- tai hengityselinten sairaus. Pienellä osalla lapsia (1%) ei havaittu mitään infektion oireita huolimatta siitä, että he olivat viruksen kantajia.

Miljoonan dollarin kysymys on, kehittyykö suurimmalle osalle tartunnan saaneista lapsista vain erittäin lieviä oireita, vai ovatko lapset vähemmän alttiita tartunnalle”, Patel sanoo.

Miksi koronavirustartunnan saaneet lapset sietävät virusta paremmin kuin aikuiset?

Virus on niin uusi, että emme oikein tiedä, kertoo Roberts, joka on myös David Hide Astma- ja allergiatutkimuskeskuksen johtaja Newportissa, Iso-Britanniassa.

Todennäköinen syy tälle on, että virus tarvitsee solun pinnalla olevaa proteiinia (reseptoria) päästäkseen solun sisäpuolelle, Roberts sanoo. Koronavirus käyttää angiotensiiniä konvertoivan entsyymin II (ACE-2) reseptoria tähän tarkoitukseen. Voi olla, että lapsilla on vähemmän ACE-2-reseptoreita alemmissa hengitysteissä (keuhkoissa) kuin ylähengitysteissä, minkä vuoksi virus infektoi pääasiassa lasten ylähengitysteiden soluja (nenä, suu ja kurkku).


Kyse ei ole siitä, että lapset olisivat immuuneja taudille, vaan siitä, että tauti ei aiheuta lapsille niin vakavia oireita kuin aikuisille. Jokin muuttuja tekee vanhemmista ihmisistä taudille herkempiä. – Andrew Pollard

Tämä saattaa selittää, miksi koronavirustartunnan saaneilla lapsilla esiintyy yleensä tavallisen vilustumisen oireita eikä keuhkokuumetta.

Koronaviruksen affiniteetti ACE-2-reseptoriin osoitettiin solulinjojen, hiirimallien sekä RsSHC014- jaRS3367-virusten genomien laboratoriotutkimuksissa jo vuonna 2003.

Pollard arvelee immuunijärjestelmän ikääntymisen (immunosenescence) heikentävän kykyä torjua uusia infektioita. Mutta koska nuorilla aikuisilla havaitaan vakavia tartuntoja, vaikka heillä ei esiinny immuunijärjestelmän ikääntymiseen liittyviä muutoksia, tämä ei voi olla ainoa vakavan taudin riskiä selittävä tekijä.

Lasten immuunijärjestelmä eroaa aikuisten immuunijärjestelmästä monin tavoin.

Lasten immuunijärjestelmä on keskeneräinen: lapset, etenkin päiväkoti- tai kouluikäiset, altistuvat valtavalle määrälle hengitystieinfektioita. Tämän vuoksi lapsilla voi olla korkeammat virusten vasta-aineiden lähtötasot kuin aikuisilla.

Lapset näyttävät reagoivan voimakkaammin virusinfektioihin kuin aikuiset. Lapsilla kuume voi nousta hyvin korkeaksi, mikä on harvinaista aikuisilla. On mahdollista, että lasten immuunijärjestelmä pystyy tehokkaammin hillitsemään viruksen leviämistä ylähengitysteistä ja tuhoamaan viruksen ja että altistuminen tavallisia vilustumisia aiheuttaville neljälle yleiselle koronavirukselle tai jollekin niistä, antaa lapsille osittaisen risti-immuniteetin SARS-CoV-2-virukselle.

Kiinassa tehdyn lapsuustapaustutkimuksen tekijät muistuttavat, että koska lapsilla on vähemmän kroonisia sydän- ja verisuoni- sekä hengityselinten tauteja, lapset ovat resistentimpiä vakavalle koronavirusinfektiolle kuin iäkkäämmät ja kroonisesti sairaat henkilöt.

Lasten kypsymätön immuunijärjestelmä ei kehitä sytokiinimyrskyjä torjumaan virusinfektioita

Hyvin harvat lapset sairastuvat vakavaan Covid-19-tautiin, Pollard sanoo. Tämä viittaa siihen, että lasten immuunijärjestelmä käsittelee infektiota eri tavalla kuin aikuisten immuunijärjestelmä.

On kolmaskin syy sille, miksi lapset eivät sairastu vakavasti. Kriittisesti sairailla aikuisilla viruksen torjumisekseen tähtäävä sytokiinimyrskyksi kutsuttu ylimitoitettu immuunivaste, aiheuttaa enemmän haittaa kuin hyötyä, ja voi johtaa useiden elinten vajaatoiminnan. Lasten kypsymätön immuunijärjestelmä ei kehitä sytokiinimyrskyjä infektion torjumiseksi. Tämä on vasta hypoteesi, mutta vuoden 003 SARS-epidemian yhteydessä osoitettiin, että lasten sytokiinivaste ei infektion seurauksena kohonnut samalla tavalla kuin aikuisilla.

Voivatko lapset, joilla on lievä sairaus tai joilla ei ole oireita, levittää koronavirusta muille? Kyllä he voivat!

Tämä on tärkeä asia, Roberts sanoo. Monet ajattelevat, että koska lapsilla on alhainen riski sairastua, meidän ei tarvitse huolehtia heistä. Ihmiset unohtavat, että lapset ovat luultavasti yksi tärkeimmistä reiteistä, joilla tämä tartunta leviää koko yhteisöön.

Koronavirus välittyy tartunnan saaneelta henkilöltä pisaratartuntana, suoran kosketuksen kautta ja pinnoilta, joihin tartunnan kantaja on levittänyt virusta. Koronavirustartunnan saaneet oireettomat tai lieväoireiset lapset levittävät tartuntaa perheenjäsenille. Erityisen suuressa vaarassa ovat iäkkäämmät perheenjäsenet, kuten isovanhemmat.

Lapset, joilla on vain lievä tai oireeton tauti, ovat todennäköisesti yksi viruksen leviämisen tärkeimmistä kanavista” , Roberts sanoo. Tästä syystä koulujen sulkeminen on välttämätöntä pandemian leviämisen nopeuden vähentämiseksi.

Samalla perusteella koulujen avaaminen Suomessa kahdeksi viikoksi on aivan hullua. Covid-19 leviää lasten keskuudessa ja lapset kantavat tartunnan koteihinsa. Tietenkin välitön riski koskee myös opettajia. En tiedä kuka mahdollisista uhreista ja tartuntojen lisääntymisestä on ajatellut kantaa vastuun ja miten. On selvää, että 14.5 avautuvissa kouluissa tartunnat lisääntyvät, mutta viruksen pitkän itämisajan vuoksi tartunnat näkyvät vasta kesälomien alettua. Kyllä tämä koulujen liian varhainen avaaminen on aivan helvetin tyhmä idea. Suututtaa!

Onko muita viruksia, joissa infektiota levittävien lasten tartunnat ovat lievempiä kuin aikuisilla?

Kyllä. Influenssa on yksi viruksista, jonka useimmat meistä tuntevat. Influenssa aiheuttaa monilla lapsilla vain nuhaa. Vanhemmilla väestöryhmillä influenssa voi johtaa sairaalahoitoon, tehohoitoon ja ennenaikaisesti hautaan, Roberts sanoo.

Muutama vuosi sitten Isossa-Britanniassa lapsille annettiin influenssarokotus. Rokotusta ei annettu ensisijaisesti lasten suojelemiseksi, vaan tartuntojen leviämisen estämiseksi ja riskiryhmään kuuluvien turvaamiseksi.

Sama periaate pätee koronavirukseen. Covid-19:n riski lapsille itselleen on pieni, mutta vaara, että he välittävät tartunnan haavoittuville vanhuksille tai riskiryhmään kuuluville sukulaisille, on hyvin korkea.

Kiinalaisten tietojen mukaan pienet lapset ovat alttiimpia Covid-19: lle kuin muut ikäryhmät

Toinen esimerkki on sikainfluenssa (H1N1) -virus, joka aiheutti vuosien 2009 ja 2010 influenssapandemiaa. H1N1-tartunta oli erityisen vaarallinen raskaana oleville naisille ja vanhuksille, mutta lapsille se aiheutti lähinnä vatsaoireita, sanoo. Patel.

Vaikuttaako Covid-19 ikäisiin lapsiin eri tavalla?

Vaikuttaa siltä. Kiinalaisten tietojen mukaan vastasyntyneet ja vauvat ovat alttiimpia Covid-19:lle kuin muut ikäryhmät. Vakavaa tai kriittistä sairautta havaittiin yhdellä kymmenestä vastasyntyneellä ja vauvalla, mutta määrät laskivat dramaattisesti iän kasvaessa.Yli viisivuotiailla vakava tai kriittinen sairaus kehittyi vain kolmelle tai neljälle sadasta tartunnan saaneesta.

Entä teini-ikäiset?

Joissain vaiheissa lapsista tulee aikuisia, Roberts sanoo. ”Teini-ikäisillä havaitaan immuunijärjestelmän kypsyminen aikuisemmiksi, mikä saattaa olla vähemmän tehokas viruksen torjunnassa.

Kiinalaisessa tutkimuksessa yhdeksän-vuotiaiden ja nuoremmpien lasten osalta ei rekisteröity yhtään kuolemantapausta. Yhden alle 19-vuotiaan todettiin kuolleen. Myös Britanniassa on kuollut ainakin yksi alle 18-vuotias, mutta tällä tiedetään olleen muita vakavia terveysongelmia. Lasten kuolemaan johtavat Covid-19-tartunnat ovat erittäin harvinaisia.

Voiko Covid-19 vaikuttaa vastasyntyneisiin?

Kyllä. Pandemian ollessa edelleen käynnissä suuressa osassa maailmaa, vastasyntyneillä on todettu ainakin kaksi vahvistettua tartuntaa – yksi Wuhanissa ja toinen Lontoossa. Ei ole tiedossa, sairasivatko nämä vauvat tartuntaa jo kohdussa vai sairastuivatko vauvat vasta syntymän jälkeen. Molemmissa tapauksissa vastasyntyneiden äiti oli saanut tartunnan.

Mitä tiedämme koronaviruksen vaikutuksesta syntymättömiin lapsiin?

Ei paljon. Koronavirukset, jotka aiheuttivat vakavan akuutin hengitysoireyhtymän (SARS) ja Lähi-idän hengitysoireyhtymän (MERS) saattoivat aiheuttaa raskaana olevaan naiselle keskenmenoja, ennenaikaisia synnytyksiä ja vauvan hidastunutta kasvua, mutta vielä ei tiedetä kuinka SARS-CoV-2 vaikuttaa odottaviin äiteihin ja syntymättömiin lapsiin.

Nämä havainnot perustuvat kahteen pieneen tutkimukseen ja kansallisia ohjeita, jotka koskevat Covid-19-viruksen riskiä odottaville äideille ja syntymättömille lapsille, päivitetään jatkuvasti. Siitä huolimatta todetaan, että raskaana olevilla naisilla on lisääntynyt riski koronaviruksen (Covid-19) aiheuttamille vakavammille infektioille. , On suositeltavaa, että odottavien äitien kohdalla noudatetaan samaa varovaisuutta kuin ikääntyneiden ja perussairaiden kohdalla. (4, 5, 6, 7, 8, 9, 10, 11)

 

ACE2 ja nuori immuunijärjestelmä

SARS-CoV-2 infektoi soluja kiinnittymällä solujen ACE2-reseptoriin, joita lapsilla on alemmissa hengitysteissä vähemmän kuin aikuisilla. Lasten parempi vastustuskyky on siis selitettävissä myös biologisesti. Jos lasten hengitysteissä on vähemmän ACE2-reseptoreita kuin aikuisilla, viruksen tartuntapaikkoja on vähemmän ja virus ei pääse tehokkaasti infektoimaan soluja ja leviämään lasten elimistössä. Lapsilla tartunta infektoi lähinnä ylähengitysteiden soluja. Tämä on yksi hypoteesi. Lue tästä.

Tartunnan saaneet lapset voivat kantaa SARS-CoV-2-virusta, vaikka he oireilevat vähemmän kuin aikuiset.Nuuori kehittyvä immuunijärjestelmä, lasten matalammat ACE2-reseptoritasot ja jopa altistuminen muille koronaviruksille saattavat selittää lasten parempaa resistenssiä SARS-CoV-virukselle.

SARS-CoV-2 tunnistettiin vuonna 2003 epidemian aiheuttaneen SARS-viruksen läheiseksi sukulaiseksi. Tutkijat ovat analysoineet SARS-epidemiaa ymmärtääkseen uutta koronavirusta paremmin.

Vuoden 2003 SARS-epidemiassa lapset eivät juurikaan altistuneet taudille. Hongkongissa ei ollut ainuttakaan alle 24-vuotiaita kuolonuhria. Yli 65-vuotiaista useampi kuin joka toinen sairastui. Globaalisti alle 10 prosenttia SARS-diagnoosin saaneista oli lapsia ja vain 5 prosenttia heistä tarvitsi tehohoitoa.

Eläimistä ihmisiin leviäviä virustartuntoja tapahtuu säännöllisesti. Se, että eläimeltä ihmiseen tarttunut virus muuntuu ihmisestä toiseen tarttuvaksi on harvinaisempaa. SARS tarttui sivettikissoista ja MERS kameleista. SARS- ja MERS-epidemioiden kohdalla uskottiin, että lapset eivät altistuneet viruksia levittäville eläimille.

Hyvin samanlainen tartuntakaava on havaittu uuden COVID-19-epidemian yhteydessä. Wuhanissa yksikään lapsi ei antanut testeissä positiivista näytettä marraskuun 2019 ja tammikuun toisen viikon välillä, mutta iäkkäät ihmiset osoittautuivat erityisen haavoittuviksi.

Kiinan tautien torjunta- ja ehkäisykeskukset ilmoittivat helmikuun puolivälissä, että 44 672 vahvistetusta COVID-19-tapauksesta 86,6 prosenttia oli 30–79-vuotiaita. Heistä vanhimmilla oli suurin kuoleman riski. Kiinassa tehdyssä 1099 potilaan tutkimuksessa vain 0,9 prosenttia vahvistetuista tapauksista oli alle 9-vuotiaita ja 1,2 prosenttia tartunnan saaneista oli 10–19-vuotiaita.

Nyt on saatu todisteita siitä, että vaikka lapset saavat tartunnasta harvoin vakavia oireita, he eivät ole immuuneja virukselle. Äskettäisessä tutkimuksessa löydettiin todisteita tartunnoista lapsilta otetuista ulostenäytteistä.

Tällä hetkellä COVID-19 ei näytä aiheuttavan vaikeita oireita nuorille ja lapsille, sanoo Lontoon Imperial Collegen virologi Robin Shattock. Hän kuitenkin lisää, että todennäköisesti lapset ovat keskeisessä roolissa viruksen levitessä. On todisteita siitä, että lapset saavat tartunnan ja että heillä esiintyy melko runsaasti viruksia, mutta heille ei vain yleensä kehity vakavaa tautia, myöntää Ralph Baric, Pohjois-Carolinan yliopistosta.

Hän todisti samanlaisen ilmiön hiiritutkimuksissa alkuperäisellä SARS-koronaviruksella (SARS-CoV). Vaikka SARS-CoV replikoituu tehokkaasti, ”nuoremmat eläimet olivat todella resistenttejä taudin suhteen”, Baric sanoo. Kun Baric testasi vanhempia eläimiä, SARS-oireiden vakavuus nousi. Yhdessä kokeessa viidesosa 3–4 viikon ikäisistä SARS-tartunnan saaneista hiiristä kuoli, kun taas kaikki toisen kokeen 7–8 viikon ikäiset hiiret kuolivat.

Subbarao on havainnut, että kuuden viikon ikäiset nuoret aikuiset hiiret voivat parantua SARS-CoV-viruksesta ilman merkittäviä kliinisiä oireita. Kun käytimme samaa virusta 12 kuukauden ikäisissä hiirissä, jotka eivät missään nimessä ole todella vanhoja, kliinisiä oireita oli enemmän, hän kertoo. Nämä tulokset osoittavat, että sekä alkuperäinen SARS-CoV että nyt liikkeellä oleva voi tartuttaa lapsia, mutta johtaa vain harvoin vakavaan sairastumiseen.

”Eläinkokeet tukevat oletusta, että lapset ovat saaneet tartunnan, mutta heille ei kehity tautia. Hiirikokeissa nuorilla hiirillä oli samat virustasot kuin vanhoilla hiirillä, mutta nuoret hiiret eivät sairastuneet,” kertoo Iowan yliopiston immunologi Stanley Perlman.

Kyse ei ole siitä, että SARS-CoV-2 ei tarttuisi lapsiin.

Lisääntyvä epidemiologinen näyttö tukee hiirillä tehtyjä havaintoja. MedRxiv:iin 4. maaliskuuta lähetetty tutkimuspaperi analysoi 391 COVID-19 -tapausta ja 1 286 tartunnan saaneiden läheistä kontaktia. Tutkijat päättelivät, että lapsilla on samanlainen infektioriski kuin muulla väestöllä, vaikkakin vakavien oireiden esiintyminen lapsilla on epätodennäköistä.

Voi olla, että lapsilla ja nuorilla vallitseva T-solutyyppi suojelee virukselta

Yksi huomionarvoinen selitys iän ja sairauden vakavuuden väliselle korrelaatiolle on, että ihmisen immuunijärjestelmän ikääntyessä osa immuunijärjestelmän soluista passivoituu. Ikääntymisen seurauksena immuunijärjestelmä vanhenee ja sen säätely heikkenee. Näin immuuniijärjestelmä menettää kykynsä regoida patogeeneihin yhtä tehokkaasti kuin nuorena, Baric sanoo.

Toinen selitys, jota Perlman kannattaa, liittyy ikääntyvään keuhkoympäristöön. Jotta ikääntyvälle ihmiselle ei kehittyisi astmaa tai ympäristön allergeenien, kuten siitepölyn aiheuttamaa immuunijärjestelmän ylireagointia, ikääntyneet keuhkot estävät tavanomaisen immuunivasteen. Perlman kertoo, että tämän vuoksi keuhkot eivät reagoi riittävän nopeasti virusinfektioon.

Vuonna 2010 Perlman ja hänen kollegansa osoittivat hiirikokeissa, että T-solut ovat erityisen tärkeitä SARS-CoV-tartunnan vastaisessa taistelussa. On todennäköistä, että immuunipuolustus tarvitsee sekä vasta-aine- että T-soluvasteen COVID-19-tartuntaa vastaan.

Perlman uskoo, että nuori immuunijärjestelmä ja sen aggressiiviset T-solut ovat ylivoimaisia SARS-CoV-2-viruksen torjunnassa. Subbaraon johtamassa vuoden 2010 tutkimuksessa korostettiin myös CD4 +-auttaja-T-solujen tärkeyttä. Nämä stimuloivat B-soluja tuottamaan vasta-aineita patogeenejä vastaan.

Voi olla, että T-solutyyppi, joka on vallitseva lapsilla ja nuorilla, tuhoaa tehokkaammin tämän viruksen, sanoo immunologi Kingston Mills (Trinity College / Dublin). Hän arvelee, että pienten lasten korkeampi auttaja-T2-solujen (Th2) tuotanto voi hillitä SARS-CoV-2-viruksen aiheuttamia voimakkaita tulehdusreaktioita. Perlman ei tue Millsin oletusta Th2-solujen merkityksestä tämän infektion kohdalla, mutta on samaa mieltä siitä, että immuunijärjestelmän ylireagointi on vakava ongelma.

ACE2-reseptori

SARS-CoV ja SARS-CoV-2 käyttävät molemmat samaa reittiä soluihin pääsyyn. Ne kiinnittyvät ACE2-reseptoriin. Näitä reseptoreita on runsaasti keuhkojen soluissa, mikä voi selittää keuhkokuumeen ja keuhkoputkentulehdusten esiintyvyyden potilailla, joilla on vaikea COVID-19-infektio.

Äskettäinen tutkimus osoitti, että ACE2-reseptoreita esiintyy runsaasti myös suussa ja kielessä, minkä vuoksi virus on erityisen tarttuva.ACE2-reseptorien määrä vähenee vanhuksilla kaikissa kudoksissa, mutta yllättäen tämä saattaa asettaa ikääntyneiden riskiä saada vakavampi tauti.

Tämä johtuu siitä, että ACE2-entsyymi on tärkeä immuunivasteen ja tulehduksen säätelijä.

Hiirikokeissa ACE2 suojaa hiiriä sepsiksen aiheuttamlta akuutilta keuhkovauriolta. Vuoden 2014 tutkimuksessa todettiin, että ACE2-entsyymi suojaa tappavaa lintuinfluenssaa vastaan.

ACE2-aktiivisuuden vähentyminen vanhuksilla on osittain vastuussa heikommasta tulehdusvasteesta. Heikentynyt kyky laittaa jarrut tulehdusvasteeseelle ikääntyessämme voi johtaa sytokiinimyrskyksi kutsuttuun immuunijärjestelmän tuhoisaan ylireagointiin. Vähentynyt ACE2-reseptorien lukumäärä vanhemmilla aikuisilla saattaa siis heikentää heidän kykyään selviytyä  SARS-CoV-2:sta, Baric sanoo, vaikka hypoteesi vaatii vielä enemmän tutkimusta.

Altistuminen muille koronaviruksille

On olemassa neljä muuta ihmisillä leviävää koronavirusta. Oireet, kuten nuha, yskä ja kuume ovat tyypillisiä tavalliselle vilustumiselle. Nämä koronavirukset ovat hyvin yleisiä lapsilla. ”Emme tiedä muodostaako joku näistä vilustumisia aiheuttavista koronaviruksista osittaisen Covid-19-taudin vakavammalta muodolta suojaavan risti-immuuniteetin”, Subbarao sanoo. On mahdollista, että tavallisten vuosittain kiertävien vilustumista aiheuttavien koronaviruksien sairastaminen hillitsee COVID-19:n oireita ja leviämistä elimistössä.

Äskettäin on ehdotettu, että COVID-19:sta toipuneiden ihmisten plasma voitaisiin siirtää SARS-CoV-2-tartunnan saaneisiin potilaisiin. Kiinassa menetelmää on ymmärtääkseni sovellettu kohtuullisella menestyksellä.

SARS-CoV-2-viruksen S-proteiini valtaa soluja kiinnittymällä solujen ACE2-reseptoriin. ACE2-reseptorit ovat infektiossa keskeisessä roolissa. Niiden vaikutus ei kuitenkaan rajoitu vain viruksen reittinä soluun. Virus joka kiinnittyy solun ACE2-reseptoriin vie reseptoripaikan angiotensiini II-molekyyliltä, jolloin tämän normaali aineenvaihduntareitti katkeaa. Tämä ylläpitää oksidatiivista stressiä, sillä angiotensiini II:den eli aineenvaihduntatuote hillitsee superoksidaasia, joka on reaktiivinen happiradikaali. (4)

Angiotensiini

Angiotensiinit (AT) ovat peptidihormoneja, joita on neljää päätyyppiä (I, II, III, IV). AT II supistaa verisuonia ja kohottaa verenpainetta. Se lisää myös aldosteronin tuotantoa. Maksassa muodostuva angiotensinogeeni on angiotensiinien esiaste, joka pilkkoutuu munuaisista tulleen veren reniinin avulla AT I:ksi.

AT I pilkkoutuu angiotensiinikonvertaasin (ACE) vaikutuksesta AT II:ksi. Se voidaan edelleen pikkoa muiksi angiotensiineiksi.

Reniini, aldosteroni ja AT II ovat osa verenpainetta säätelevää reniini-angiotensiini-aldosteroni-järjestelmää. SARS-CoV-2 vaikuttaa tähän järjestelmään kiinnittymällä ACE2-reseptoriin, mikä estää angiotensiini I pilkkomisen angiotensiini II:ksi.

Ihmisillä veren angiotensiini II sitoutuu agonistina (aktivoijana) angiotensiini II reseptorin alatyyppeihin 1 ja 2 eli AT1- ja AT2-reseptoreihin. Sitoutuminen suonten endoteelisolujen AT1-reseptoreihin saa aikaan suonten supistumisen ja verenpaineen nousun kehossa. Angiotensiinin II sitoutuminen lisämunuaisten pintakerroksen AT1-reseptoreihin lisää kolesterolin tuontia lisämunuaissolujen mitokondrioihin ja aldosteronisyntaasien tuotantoa. Syntaasit tuottavat kolesterolin aineenvaihduntatuotteista vereen aldosteronia, joka sitoutuu munuaisten distaalisissa tiehyissä aktivoivasti mineralokortikoidirseptoreihin. Näiden tumareseptorien aktivointi vähentää natriumin ja veden päätymistä virtsaan sekä lisää kaliumin poistumista virtsaan. Vesi lisää veren tilavuutta ja siten verenpainetta. – Wikipedia

Verenpainetautia sairastavien kasvanut Covid-19 riski voidaan ymmärtääkseni palauttaa ACE2-reseptoreihin ja viruksen häiritsemään reniini-angiotensiini-aldosteroni-järjestelmän. ACE-estäjät ovat pääasiassa kohonneen verenpaineen hoitoon käytettäviä lääkkeitä, joilla estetään angiotensiinin muodostumista. Vaikutus perustuu angiotensiinikonvertaasin (ACE) estoon. Kun ACE-estäjät estävät verisuonia supistavien aineiden vaikutuksen reniini-angiotensiinijärjestelmässä, verisuonet laajenevat ja verenpaine alenee. ACE-estäjiä käytetään myös diabetesta sairastavien munuaistautiin ja korkeaan verenpaineeseen metabolista oireyhtymää sairastavilla. Tästä enemmän ja tarkemmin oheisella videolla.

Mitäpä muuta?

Tutkimusryhmä tarkastelee kolmea skenaariota: todennäköisesti pandemia jatkuu aalloittain laantuen yhdessä paikassa samalla kun se valtaa uusia alueita. Toisen skenaarion mukaan suurin ja tuhoisin aalto tapahtuu tulevana syksynä ja muut aallot ovat selvästi pienempiä. Kolmannen skenaarion mukaan pandemia etenee hiljakseen seuraavat kaksi-neljä vuotta.

Lopuksi: Suu- ja nenäsuojien käytöstä

STM:n Kirsi Varhilan valitsema linja suu- ja nenäsuojien käytön merkityksen vähättelystä julkisilla paikoilla herättää kummastusta. Yksi peräänantamaton virkamies vastustaa useiden lääkäreiden, tutkijoiden, tukimusten ja kokonaisten valtioiden valitsemaa kasvosuojien käyttöä suosivaa linjaa. Miksi?

Saksassa suun ja nenän peittävä maski on nyt pakollinen joukkoliikenteessä, suurimmassa osassa maata myös ruokakaupoissa. Sama velvoite tulee viikon päästä voimaan Italiassa ja Belgiassa. Myös Tšekissä, Slovakiassa ja Puolassa kasvosuojan käyttäminen on pakollista. Itävallassa maskipakko kaupoissa ja joukkoliikenteessä on ollut voimassa viikon. Alueellisia maskipakkoja on käytössä myös muualla, esimerkiksi Ranskassa.

THL:n Tervahaudan lisäksi ainakin Helsingin yliopiston zoonoosivirologian professori Olli Vapalahti ja Helsingin ja Uudenmaan sairaanhoitopiirin Husin toimitusjohtaja Juha Tuominen ovat todenneet, että maskit kyllä estäisivät julkisilla paikoilla oireettomia taudinkantajia tartuttamasta virusta muihin.

Vapalahti kertoo uskovansa Saksan tiedeakatemian näkemykseen, että maskien käyttö on yksi tärkeä keino taistelussa virusta vastaan. Suositukset tekee Suomessa sosiaali- ja terveysministeriön (STM) alainen Terveyden ja hyvinvoinnin laitos (THL). STM:n kansliapäällikön Kirsi Varhilan mukaan ministeriö ei tällä hetkellä valmistele sote-henkilöstön ulkopuolelle ulottuvia maskisuosituksia, eikä sellaisista myöskään ole suunnitelmia.

Suurin hyöty maskeista olisi Vapalahden mukaan juuri estämässä oireettomien taudinkantajien tartuttavuutta tilanteissa, joissa ihmiset joutuvat olemaan tekemisissä keskenään. Useat tutkimukset ovat Vapalahden mukaan viitanneet siihen, että oireettomia kantajia on paljon.

Tuoreen hongkongilaistutkimuksen mukaan erilaiset korona- ja influenssavirukset jäävät tehokkaasti maskin sisäpuolelle, vaikka maski ei olisi erikoisvalmisteinen, Vapalahti kertoo.

THL:n Tervahauta on suositellut kansalaisten käyttöön vain kangasmaskeja, mutta kirurgiset suu-nenäsuojat olisivat Tuomisen mukaan selvästi tehokkaampia. Tuomisen mielestä niiden myyminen kansalaisille ei olisi välttämättä pois terveydenhuollon työntekijöiltä, vaan kaupalliset toimijat voisivat hankkia niitä Suomeen ulkomailta siinä missä valtiokin. Näin maskeja saataisiin Suomeen enemmän.

”Jos maskin käyttäjän ajatellaan vievän suojan terveydenhuollon työntekijältä, ei päästä koskaan siihen tilanteeseen, että kansalaiset uskaltavat maskeja käyttää. Vaikka suositusta ei annettaisi, kannustaisin rohkeuteen pitää maskia.”

THL:n kyvyttömyyden taustalla vaikuttaa se, että laitos on taloudellisesti ajettu alas, mutta ehkä sitäkin enemmän se, että THL toimii täysin ammattitaidottoman STM:n alaisuudessa. Sama koskee Huoltovarmuuskeskusta: todellinen vastuu Huoltovastuukeskuksen epäonnistumisesta lankeaa Sosiaali- ja terveysministeriölle.

Terveyttä ja mukavaa alkanutta kevättä kaikille!




Koronapäiväkirja – pangoliinien koston päivät 16-23.4.2020

Lämmin kevät toi viime torstaina talven etelään. Lumi pumpuloi hirenkorvaiset oksat ja jalkakäytävät nietostuivat puuterilla. Yhdessä yössä jouluinen maisema piirtyi taianomaisesti joulukortista kotipihalle. Talvisesta kuvasta puuttuivat vain joulupukki, tontut ja porot.

Iltapäivällä poutapilven pehmeä lumi suli yhtä nopeasti kuin usko pikaiseen toipumiseen pandemiasta. Tänään on taas torstai. Leon syntymäpäivä. Onnea Hämähäkkimies! Aurinko paistaa ja lähiön linnut laulavat.

Tulella leikkivät viranomaiset

Hallitus avasi Uudenmaan rajat. Oliko se liian aikaista? Mielestäni kyllä. Laillisesti sulku ei ollut enää perusteltu, joten sitä ei Sanna Marinin mukaan voinut pitää voimassa. Vaara ei kuitenkaan ole vielä ohi. Taloudelliset ja sosiaaliset paineet ajavat hallituksen nurkkaan,josta ainoa ulospääsy on poikkeustoimien purkaminen. Se on lyhytnäköinen ratkaisu, joka voi vielä kostautua.

Pangoliinien kosto elää yhä oireettomien kadunkuluttajien uloshengittämässä ilmassa Keravalta Kairoon. Tautia ei ole voitettu.

Pangoliinien kosto? Aivan. Nämä syötävän söpöt ja erittäin uhanalaiset muurahaiskävyt kuuluvat kiinalaisen keittiön kulinaarisiin ihmeisiin. Ennen patoihin paahtumista pangoliinit välittivät SARS-CoV-2-viruksen lepakoilta kiinalaisille herkkusuille. Ihmiskunta sai enemmän kuin tilasi, mutta vähemmän kuin ansaitsee. Luonto voi olla hyvin julma. Niin kyyniseltä kuin se kuulostaakin, luonto sai kaipaamansa hengähdystauon.

HUS:n Lasse Lehtonen varoitti Uudenmaan liian aikaisesta avaamisesta ja toivoi uusia kiristyksiä sosiaalisiin rajoituksiin. Yhteiskunnan avaaminen liian aikaisin voi olla lyhyin polku ojasta allikkoon.

”Koronavirus ja sen aiheuttama covid-19-tauti kulkevat maailmalla vielä pitkään. Maailman terveysjärjestö WHO varoitti keskiviikkona, että suurin osa maista on vasta alkuvaiheessa pandemian vastaisessa taistelussa. WHO:n johtaja Tedros Adhanom Ghebreyesus sanoi, että jotkin maat uskoivat jo taltuttaneensa uuden viruksen, mutta sitten niissäkin tartuntojen määrä alkoi jälleen kasvaa. Myös Afrikassa, Etelä- ja Keski-Amerikassa ja Itä-Euroopassa trendi on hänen mukaansa ollut huolestuttava. –Älkää erehtykö, meillä on vielä pitkä matka edessämme. Virus tulee olemaan kanssamme vielä pitkään, hän lausui. ” – IS

Japanin Hokkaidossa rajoitusten varhainen purkaminen johti taudin uuteen heräämiseen alle 30 päivää arkeen palaamisen jälkeen. Sama voi toistua täällä.

Jos unohdamme sen, että niin kauan kuin vaikkapa Kauniaisissa, Korsossa, Oulussa tai Juvalla elää yksikin oireeton viruksenkantaja, epidemia on valmis uuteen kierrokseen. Uudenmaan avaamisen jälkeen muitakin sosiaalisia rajoituksia puretaan asteittain. Nyt näyttää siltä, että alaluokkien kouluopetukseen palataan 14. toukokuuta. Toivon, että se ei ole liian aikaista. Vaikka Covid-19 on lapsilla (yleensä) lievä, he voivat kuljettaa tartunnan koteihinsa vanhemmille, sisaruksille, isovanhemmille jne., jotka vievät sen edelleen työpaikoille.

Jos SARS-CoV-2 kiertää jossain päin maailmaa, se voi palata ja todennäköisesti palaa Suomeen. Tuleeko sen jonkun onnettoman maailmanmatkaajan tennareissa vai bisnesmogulin salkussa on lopulta aivan samantekevää. Ennemmin tai myöhemmin virus palaa vahvempana tai heikompana, olimme siihen valmiita tai emme.

Täydellinen eristäytyminen ja itsekkään nationalistiset ratkaisut johtavat pidemmällä syklillä vain entistä syvempiin sisä- ja ulkopoliittisiin ongelmiin. Yksikään valtio ei selviä tästä ilman muiden apua. Koko maailma on riippuvainen Kiinalaisista suojavarusteista. Pandemia päättyy sitten kun valtiot pystyvät tekemään solidaarisesti yhteistyötä viruksen kukistamiseksi.

Jos EU:n jäsenvaltiot eivät löydä keskinäistä solidaarisuutta tämän taudin kitkemisessä, Lissabonin sopimus on vain arvoton kasa paperia. Kilpailu ja katkera kyräily yhteistyön sijaan murentaa EU:n perustuksia, mutta sama toteutuu Yhdysvalloissa, joissa osavaltiot taistelevat ankarasti rajallisista suoja- ja hoitovarusteista.

Vihaa ja rakkautta koronaviruksen aikaan?

Auttajat, pettäjät ja selkäänpuukottajat elävät kansojen kollektiivisessa muistissa vuosikymmeniä tai vuosisatoja. Anteeksi voidaan antaa, mutta selkänsä kääntäneet eivät koskaan unohdu. Suomalaiset muistavat katkerasti kuinka Ruotsi käänsi meille selkänsä Suomen sodassa 1808-1809 ja talvisodassa 1939-1940. Se tuntui pahalta ja se muistetaan, vaikka vain kourallinen nykyään elävistä suomalaisista koki henkilökohtaisesti talvisodan. Katkeristakin muistoista tulee osa kansallista identiteettiä. Yhteinen katkeruus yhdistää.

EU on sodassa pandemiaa vastaan. Pohjoisen rikkaat valtiot käänsivät selkänsä köyhempien etelän maiden hädälle silloin, kun avun tarjoaminen olisi jo pitänyt aloittaa. Vaikka se on ymmärrettävää, sitä voi olla vaikea antaa anteeksi. Tämä pohjoisen piittaamattomuus ei etelässä kovin nopeasti unohdu.

Saksa on sittemmin tehnyt enemmän kuin oman osuutensa tarjoamalla tehohoitopaikkoja ja avustuslähetyksiä sadoille italialaisille, espanjalaisille ja ranskalaisille, vaikka Saksakaan ei ole immuuni epidemialle. Saksa ei voi yksin kantaa vastuuta koko Euroopasta. Ahneuden, itsekkyyden ja minä-minä-minä turhasta piipityksen pitää loppua! Me olemme tässä yhdessä, Eurooppa ja koko maailma.

Afrikan ja Aasian köyhien maiden auttamatta jättäminen lähestyvien raamatullisiin vitsauksiin rinnastuvien nälänhätien kanssa on täysin kestämätön ratkaisu. EU:n rajoille voi pian saapua neljän miljoonan syyrialaispakolaisen seuraksi jopa kymmeniä miljoonia pakolaisia Afrikasta ja Aasiasta.

Kriisin pitkittyessä solidaarisuutta on löytynyt Euroopan unionin sisältäkin. Ursula von der Leyenin vetoaminen EU:n yhteistyön tiivistämisen puolesta ei ole jäänyt vain puheen tasolle. EU:n toiminta on tehostunut koko ajan ja etenkin taloudelliset valmiudet tulevan taantuman vaikutusten minimoimiseksi jäävät herkästi kaiken muun uutisoinnin jalkoihin. EU:n kriisitoiminnan hitaus selittyy osin jäsenvaltioiden omilla laeilla, jotka monissa tapauksissa kieltävät huoltovarmuuden kannalta tärkeiden varusteiden viemisen muihin maihin kriisin aikana tai sen välittömästi uhatessa. Näitä lakeja on sittemmin muutettu mm. Saksassa.

Virheitä, erheitä ja enemmän mokia

Suomi jättäytyi ainoana EU-maana esittämänsä yhteishankintamekanismin ulkopuolelle syistä, joita voi vain arvailla. Hankinnat korvattiin kaupoilla, joiden välittäjäksi palkattiin rikoksista tuomittuja kohuyrittäjiä. Tulos oli odotusten mukainen. Yrittäjä sai hyvät rahat ja valtio rekkalasteittain jätettä. Nyt vähän tolkkua tähän toimintaan!

Business Finlandin valtava tukipaketti näyttää satavan yrittäjille, jotka vähiten tarvitsevat tukea. Samalla eniten tukea tarvitseville jää luu kouraan. Onneksi monien paremmin pärjäävien selkäranka on tallella ja turhia tukia on palautettu. Pienet ja keskisuuret yritykset kampaajista ravintoloihin ovat suurimmissa vaikeuksissa. Harvat IT-yritykset tarvitsevat koronan vuoksi tukia.

Eilen, tänään ja huomenna

Pandemiaan liittyvää politiikkaa ja taloutta ei voi määritellä eilisen opeilla. Tänään on katsottava myös tulevaisuuteen. Millaisessa maailmassa haluamme elää, kun pandemia päättyy! Päätöksemme tänään vaikuttavat tulevaisuuteen ja tulevien sukupolvien elämään. Pyydämmekö jo valmiiksi anteeksi tulevilta sukupolvilta?

Haluammeko keskenään kyräilevän, katkeran vihamielisen ja solidaarisuudesta piittaamattoman tilkkutäkki-Euroopan, jota hallitsee kansallisilla tasoilla ksenofobia ja totalitäärinen fasismi?

Pandemia voi vahvistaa tai kaataa Euroopan unionin

”Saksan liittokansleri Angela Merkel sanoo olevansa valmis kasvattamaan merkittävästi EU:n yhteistä budjettia, jotta talouden toipumista koronaviruskriisistä pystytään tukemaan. Merkelin mukaan solidaarisuuden nimissä on oltava valmis tekemään jotain täysin erilaista, kuten kasvattamaan merkittävästi maksuosuuksia EU:n budjetissa määrätyksi ajaksi.”

Olen kiukkuisena pannut merkille,että THL:n ja STM:n välille on kehittynyt kitkaa. Tuo kitka ei palvele ketään, mutta vaarantaa monia. STM:n Varhila ja THL:n Tervahauta ovat eri linjoilla hengityssuojien yleisen käytön hyödyistä.

Kyse on vertauskuvallisesti siitä, että Tervahaudan mukaan sateella on järkevää käyttää sateenvarjoa, koska mitä useampi suojautuu sateelta sateenvarjolla, sitä harvempi kastuu. Varhilan mielestä Tervahauta puhuu ihan höpölööperiä, koska sateenvarjon hyödyistä ei ole kiistatonta näyttöä. Kovalla tuulella sade piiskaa kuitenkin sateensuojan alle, joten on ihan perusteltua kysyä miksi kannatella varjoa päänsä päällä, kun käsiä tarvitaan muuhunkin. Logiikan ydin on oikeastaan, että vaikka sateenvarjo sinänsä suojaa sateelta, sen liikuttaminen voi johtaa kastumiseen ja kaiken lisäksi sateenvarjo on ukkosenjohdatin. Varjosta voi olla siis enemmän haittaa kuin hyötyä.

”Tiistaina THL:n pääjohtaja Markku Tervahauta suositteli kangasmaskin käyttöä viruksen leviämisen estämiseksi, mutta vielä samana iltana sosiaali- ja terveysministeriön kansliapäällikkö Kirsi Varhila tyrmäsi kehotuksen Tervahaudan yksityisajatteluksi.”

Markku Tervahaudan takinkäännön taustalla vaikuttanee mm. HUSin Lasse Lehtonen ja toimitusjohtaja Juha Tuominen, jotka puoltavat hengityssuojaimien yleistä käyttöä. En tiedä mihin Varhila perustaa kantansa, mutta minusta STM:n logiikka on ollut hieman ontuvaa epidemian alusta alkaen. STM:n kasvosuoja-logiikalla kondomien käyttö ei ole perusteltua, koska vaurioitunut kondomi voi johtaa ei-toivottuun raskauteen, eivätkä kondomit takaa sataprosenttisesti suojaa sukupuolitaudeilta.

Jättäkää jumalauta kondomit, sateenvarjot ja hengityssuojat ammattilaisille!

Tyhmät analogiat ja säälittävä sarkasmi sikseen. Mielestäni se, että riittävän suuri osa väestöä käyttää jonkinlaista hengityssuojaa on parempi kuin se, että kukaan ei käytä minkäänlaista suojaa. Hong Kong, Singapore, Taivan, Japani ja Etelä-Korea luottavat hengityssuojiin ja minä kumarran aasialaisille, jotka ovat tarpeeksi rohkeita peittääkseen kasvonsa julkisesti.

Uutisia: epidemia saattoi alkaa jo syyskuussa, sanovat brittitutkijat

  • Tutkimus paikansi ihmiseen tarttuneen viruksen alkuperän syys-joulukuun välille
  • SARS-CoV-2 on lähtöisin todennäköisemmin eteläisestä Kiinasta kuin Wuhanista, mutta lepakoiden ja muiden potentiaalisten isäntäeläinten analyysejä viruksen evoluutioreiteistä tarvitaan lisää

Cambridgen yliopiston johtaman tutkijaryhmän mukaan koronavirusepidemia on voinut puhjeta kauempana Wuhanin eteläpuolella. Viruksen alkuperää tutkinut ryhmä analysoi suuren määrän viruskantoja ympäri maailmaa ja laski, että viruksen on täytynyt ilmaantua 13. syyskuuta ja 7. joulukuuta välisenä aikana.

Virus on voinut mutatoitua nykyiseen tehokkaasti leviävään muotoonsa jo kuukausia sitten, mutta se pysyi pitkään piiloutuneena eläimeen tai ihmiseen, eikä tartuttanut muita, Cambridgen yliopiston geneetikko Peter Forsterin mukaan.

SARS-CoV-2 alkoi levitä ihmiseltä toiselle 13. syyskuuta ja 7. joulukuuta välisenä aikana. Tarkempi selvitys viruksen leviämisestä on julkaistu Proceedings of the National Academy of Sciences (PNAS) -lehdessä. Cambridgen ryhmä analysoi viruskantoja fylogeneettisen verkon, eli erään matemaattisen algoritmin avulla. Tällä pystyy kartoittamaan organismien globaalit liikkeet geenimutaatioiden perusteella.

Näin ryhmä yritti paikallistaa potilas-nollan. Eräät varhaiset merkit saivat tutkijat suuntaamaan katseensa Wuhanin eteläpuolelle, jossa ensimmäiset infektiot raportoitiin joulukuussa.

Tutkijaryhmä rekonstruktioi viruksen varhaisen leviäimisen ihmisten keskuudessa. Saman ryhmän edellinen havainto oli, että suurin osa Yhdysvalloissa ja Australiassa havaituista viruksista on geneettisesti lähempänä lepakoiden viruskantoja kuin Itä-Aasiassa leviävät viruskannat. Yleisin virustyyppi Euroopassa on Itä-Aasian virustyypin variantti.

Mutta ensimmäisen tutkimuksen aineistona oli vain 160 viruskantaa epidemian joulukuun lopulta. Pieni otoskoko ei osoittanut missä ja milloin tauti siirtyi eläimistä ihmisiin. Uusi tutkimus, jota ei ole vertaisarvioitu, käsittää laajemman otoksen virusnäytteitä eri puolilta maailmaa. Näytteitä on saatu useista lähteistä, kuten Saksan Munsterin oikeuslääketieteen instituutista. Tämän tutkimuksen tietokanta sisältää 1001 virusnäytteen täydellisen genomisekvenssin.

Mitä enemmän viruskantoja analysoitiin, sitä tarkemmin tutkijaryhmä pystyi kartoittamaan viruksen globaalia leviämistä. Laskemalla mutaatiot ja selvittämällä missä ja milloin mutaatiot ovat syntyneet ryhmä pääsi ähemmäksi ensimmäistä tartunnan saanutta henkilöä, eli myyttistä potilas-nollaa.

SARS-CoV-2, joka aiheuttaa Covid-19-taudin on lähtöisin lepakoista. Ihmisillä tavattava viruskanta on 96 prosenttisesti identtinen lepakoiden ulosteista Yunnanissa 2013 löydetyn koronaviruksen kanssa. Ihmisillä ja lepakoilla löydettyjen SARS-CoV-2 virusten välillä on kuitenkin satoja mutaatioita. Koronavirukseen kehittyy keskimäärin yksi mutaatio kuukaudessa.

Tämän perusteella eräät tutkijat ovat pohtineet, olisiko virus voinut levitä vuosien ajan kaikessa hiljaisuudessa eläimillä ja ihmisillä ennen kuin se adaptoitui ihmisillä tehokkaasti leviäväksi viruskannaksi.

Cambridge-ryhmän mukaan ensimmäisten tartuntojen ilmaantuminen voi olla tapahtuma, jonka seurauksena kehittyneet mutaatiot johtivat nykyiseen tehokkaasti leviävän ja aggressiivisen kannan kehittymiseen.

Viruksesta tuli nopeasti politiittisen propagandan ja salaliittoteorioiden väline. Donald Trumpin mukaan kyse on ”kiinalaisesta viruksesta” ja monien hänen kannattajiensa mielestä Kiina on vastuussa koko pandemiasta. Peking on vastannut väittämällä, että sotilaiden olympialaisiin osallistuneet amerikkalaiset olisivat tuoneet taudin mukanaan. Fox News ja CNN ovat pohtineet mahdollisuutta, että virus olisi lähtöisin Wuhanissa toimivasta biologisesta tutkimuskeskuksesta. Luulen, että venäläisten mielestä suomalaiset ovat kaiken pahan alku ja juuri. Eli tarinoita riittää.

Salaliittoteorioista huolimatta mikään ei viittaa siihen, että virus olisi laboratoriosta peräisin. Tutkijoiden mukaan kaikki todisteet viittaavat luonnolliseen alkuperään.

Yunnanin Kunmingin eläintieteen laitoksen geenitutkija Su Bing kertoi, että fylogeneettiset verkot ovat luotettavia työkaluja, joita geenitutkijat ovat käyttäneet vuosikymmenien ajan. Tutkijat ovat löytäneet fylogeneettisille verkoille sovelluksia monilta tutkimusalueilta, kuten esihistoriallisen ihmisen liikkeiden jäljittämisessä. Mutta menetelmällä on rajat, Su Bing sanoi. Fylogeneettiseen verkkoon perustuvan aika-arvion tarkkuuteen vaikuttavat näytteen koko ja oletus mutaation nopeudesta.

Uudenlaisen virusepidemian aikana virus voi muuttua arvaamattomilla tavoilla, joten menetelmä ei ole kovinkaan tarkka. Tällä menetelmällä rakennettuihin malleihin sisältyy selvä virhemarginaali. Siitä huolimatta fylogeneettisilla verkoilla laaditut mallit voivat antaa tärkeitä vihjeitä tuleville tutkimuksille. Malleista tehtäviin johtopäätöksiin on kuitenkin suhtauduttava varauksella.

Cambridge-tutkimus nosti esiin myös joitain uusia kysymyksiä. Kiinalaisten tutkijoiden eristämä ja raportoima ensimmäinen kanta oli nuorempi kuin alkuperäinen virustyyppi, joka aiheutti epidemian puhkeamisen. Miksi Yhdysvalloissa on enemmän viruskantaa, joka on geneettisesti lähempänä lepakkovirusta kuin Wuhanissa havaittu viruskanta?

Forsterin mukaan voi olla, että alkuperäinen kanta on saattanut aluksi syntyä Kiinassa, mutta se on paremmin sopeutunut Yhdysvaltojen väestöön ja ympäristöön.

Uutisia: Covid-19-okote voi olla turhaa optimismia, vroittaa asiantuntija

Lontoon Imperial Collegen professori varoittaa, että meidän on ehkä mukauduttava SARS-Cov-2-virukseen.

Toimivan rokotteen kehittämiselle ei ole takeita, varoittaa maailman johtaviin virusasiantuntijoihin kuuluva professori David Nabarro. Ihmiskunnan on tulevaisuudessa ehkä elettävä koronaviruksen uhan alla ja mukauduttava virukseen.

Masentavan arvion kertoi Lontoon Imperial-yliopiston professori ja Maailman terveysjärjestön (WHO) Covid-19 lähettiläs David Nabarro samaan aikaan, kun Britanniassa tautiin kuolleiden määrä ylitti 15 000.

Pelkästään lauantaina koronaviruksen aiheuttamaan tautiin menehtyi 888 ihmistä. Ministeri Robert Jenrick kuvaili lukuja ”silmät avaaviksi”. Tartunnan saaneiden kokonaismäärä kasvoi 5525:llä.

Lukuihin ei sisälly hoivakotien kuolemantapauksia. Tartunnat ja kuolemantapaukset ovat aiheuttaneet kasvavaa hallintoon kohdistuvaa närkästystä, koska sairaala- ja hoivakotien henkilökunnalta puuttuu suojavarusteita.

Maaliskuun lopulla hallituksen terveysneuvonantajat arvioivat optimistisesti, että jos Iso-Britannian Covid-19 kuolemat jäävät epidemian kestäessä alle 20 000 ihmiseen, sitä voitaisiin pitää ”hyvänä tuloksena”. Mutta koska hoivakodeissa on jo menehtynyt koronaviruksen aiheuttamaan tautiin arviolta 6000 ihmistä, virallinen tavoite on jo ylitetty.

Nabarro korosti The Oberver -lehden haastattelussa, että rokotteen suhteen ei pidä olla liian luottavainen. Joihinkin viruksiin tai tarkemmin saman viruksen eri muunnoksiin on hänen mukaansa lähes mahdotonta kehittää yhtä turvallista ja tehokasta rokotetta.

Ihmisten on lähitulevaisuudessa varauduttava elämään jatkuvan virusuhan alla ja sopeuduttava viruksen olemassaoloon.

”Tämä tarkoittaa, että meidän on eristettävä sekä sellaiset ihmiset, joilla on taudin oireita, että näiden ihmisten kanssa tekemisissä olevat. Vanhempia ihmisiä on suojeltava tartunnalta. Lisäksi on varmistettava terveydenhuoltojärjestelmän kantokyky ja valmiudet. Se on uusi normaali meille kaikille.”

Britannian entinen terveysministeri Jeremy Hunt sanoi, että kansakuntien ainoa tie eteenpäin on tukea uutta globaalia terveysjärjestelmää. Sen puitteissa kansainvälistä yhteistyötä lisättäisiin ja tiivistettäisiin. Tämä edellyttäisi rikkaita maita kantamaan suuremman vastuun koko maailman terveydestä ja hyvinvoinnista. Jeremy Hunt korosti, että globaali terveysjärjestelmä kuuluu samalla tavalla kansainvälisen yhteisön kiireellisiin toimiin, kuin ilmastonmuutoksen torjunta. Molemmissa voidaan voidaan saavuttaa tuloksia vain kansainvälisellä yhteistyöllä, Hunt kertoi Observerille.

Hunt kritisoi selväsanaisesti Donald Trumpin päätöstä luopua WHO:n rahoituksesta. Hän totesi, että koronan opetus on ”parantaa, ei tuhota”, eikä nyt ole oikea aika heikentää Maailman terveysjärjestelmää.

Yksi isoista opetuksista tästä on se, että kun puhutaan terveydenhuoltojärjestelmistä ympäri maailmaa, olemme vain niin vahvoja kuin ketjun heikoin lenkki.”

”Vaikka Kiinaa voidaan perustellusti kritisoida epidemian peittelystä taudin alkuvaiheessa, tilanne olisi ollut paljon pahempi, jos SARS-CoV-2 olisi alkanut Afrikassa. Kansainvälisen yhteistyön ja köyhimpien maiden terveydenhuoltojärjestelmien tukemisen on oltava ensisijainen tavoite. Meidän on opittava, että pärjäämme seuraavalla kerralla!”

Nabarron viesti ei surullista kyllä jäänyt ainoaksi synkäksi uutiseksi.

WHO:n uusien sairauksien ja zoonoosien (eläimistä ihmisiin ja ihmisistä eläimiin siirtyvien patogeenien) yksikön päällikkö Maria Van Kerkhove varoitti viime perjantaina, että ei ole todisteita, että nyt kehitteillä olevat vasta-ainetestit osoittaisivat, onko henkilöllä immuniteetti SARS-CoV-2-virukselle, tai ettei hänellä ole riskiä sairastua uudelleen Covid-19-viruksen aiheuttamaan tautiin.

Lauantaina selvisi, että lääkäreillä ja sairaanhoitajilla on pulaa täyspitkistä suojapuvuista. Suuttumus kohdistuu viranomaisiin, jotka eivät ole tilanteen tasalla ja ovat epäonnistuneet tarvittavien varastojen hankinnassa ja ylläpidossa.

Edellinen tilann kuulostaa jo melko kotoisalta. No me emme ole ainoita, jotka säheltää. Samaa sekoilua esiintyy kaikkialla. Vieläkään ei oikein ymmärretä kuin helvetin vakavasta taudista on kyse. Tämä tilanne, jossa olemme nyt, voi olla uusi normaali.

Rokotetta ei ehkä onnistuta kehittämään. Tautiin ei mahdollisesti kehity immuniteettia ja laumasuojakin lienee toiveajattelua. Voi olla, että tauti aikanaan kesyyntyy tavalliseksi yskäksi, mutta siihen voi mennä vuosia.


Uutisia: tauti levisi alussa jopa kaksi kertaa luultua nopeammin

  • Amerikkalaistutkijoiden mukaan jokainen kantaja tartutti keskimäärin 5,7 ihmistä. Edellinen arvio perustui puutteelliseen dataan.

Koronavirus oli epidemian alussa jopa kaksi kertaa tarttuvampi kuin aiemmin tiedettiin. Alkuvaiheessa epidemiologit laskivat, että jokainen tartunnankantaja tartuttaa 2-3 ihmistä. Yhdysvaltalaistutkijoiden mukaan virhettä selittää epidemian alun kaaos Wuhanissa. Sekasorron keskellä luotettavan aineiston saaminen oli haastavaa ja kuva taudin leviämisestä vääristyi.

Viime viikolla Emerging Infectious Diseases -lehdessä julkaistussa tutkimuksessa Steven Sanchen ja Lin Yen-tingin johtamat tutkijat kirjoittivat: ”Diagnostisten reagenssien puuttuminen varhaisessa vaiheessa, muutokset tarkkailun intensiteetissä ja tapausmäärittelyissä sekä terveydenhoitojärjestelmän ylikuormittuminen vääristivät alustavia arvioita taudin tarttuvuudesta.”

Los Alamosin tutkimuksessa analysoitiin noin 140 varhaista potilasta Hubein maakunnan ulkopuolella. Näiden avulla arvioitiin kuinka nopeasti virus levisi taudin keskuksesta. Suurin osa alkuperäisistä tartunnoista oli epidemiologisesti yhteydessä Wuhaniin.

Siihen mennessä, kun tapaukset vahvistettiin Hubein ulkopuolella sijaitsevissa provinsseissa kaikilla Kiinan provinsseilla oli jo saatavilla diagnostiikkavälineitä ja he seurasivat aktiivisesti Wuhanista lähteviä matkustajia.

Hubein provinssin ulkopuoliset terveydenhuoltojärjestelmät eivät vielä olleet hukkumassa potilastulvaan, joten niissä etsittiin ja testattiin aktiivisesti tartuntoja. Tämä johti raporttien vääristymiseen, mikä näkyi huomattavasti todellista alhaisempana tarttuvuutena.

Tutkijat havaitsivat, että sen sijaan, että tartunnan saaneiden määrä kaksinkertaistuisi 6-7 päivän sykleissä, kuten aiemmin oletettiin, tartuntojen kaksinkertaistuminen kesti todellisuudessa vain 2,3-3,3 päivää.

Tutkijoiden uuden laskelman pohjalta arvioitiin, että laumasuojan saavuttaminen edellyttäisi, että vähintään 82 % väestöstä saa immuniteetin joko infektion tai rokotuksen kautta. Alkuperäisessä tarttuvuusarviossa laskettiin, että laumasuoja saavutetaan jos 60 % väestöstä sairastaa Covid-19:ta tai saa rokotuksen. Ensimmäinen arvio oli liian optimistinen.

Laumasuoja olisi tehokkain tapa suojata väestö epidemian toiselta aallolta, mutta laumasuojan saavuttamisesta liikkuu ristiriitaisia arvioita. Jotkut pitävät immuniteetin ja laumasuojan kehittymistä epätodennäköisen.

Lontoon Imperial Collegen 11 Euroopan maan tilastoihin nojaavan laskelman mukaan tarttuvuus on 3,87. Teheranin Payame Noor yliopisto laski, että yksi potilas tartutti keskimäärin 4,86 ihmistä Iranissa epidemian ensimmäisellä viikolla. Lähinnä Kiinassa ja Hong Kongissa levinneen SARSin R0, eli tarttuvuus oli arvioiden mukaan 3.

Tutkimuksen tekijät lisäsivät, että korkeampi tarttuvuus merkitsee sitä, että jos oireettomien kantajien osuus taudin leviämisestä on merkittävä, silloin oireilevien karanteeni ja kontaktien jäljittäminen eivät riitä pysäyttämään viruksen leviämistä. Jos viidennes tartunnoista leviää oireettomien henkilöiden kuljettamana, sosiaaliset rajoitukset, eristäytyminen ja kokoontumisten estäminen ovat tehokkaimmat tavat hillitä viruksen leviämistä.

Tartuntojen vähäinen esiintyvyys Taiwanissa, Hong Kongissa ja Singaporessa sekä uusien tartuntojen määrän väheneminen Kiinassa ja Etelä-Koreassa viittaavat vahvasti siihen, että varhaiset ja asianmukaiset rajoitukset toimivat.

Uutisia: SARS-CoV-2 on uhka vuoteen 2024 asti, kertoo Harvardin tutkimus

  • Sosiaalisiiin rajoituksiin ja eristykseen on hyvä tottua. Niihin joudutaan turvautumaan tulevina vuosina ehkä useampaankin kertaan, vaikka SARS-CoV-2 vaikuttaisi lyödyltä.
  • Donald Trump ehdotti, että sosiaalisista rajoituksista voidaan vähitellen luopua.
  • Harvardin tutkijat varoittavat, että uusi Covid-19 pandemia voi vaania nurkan takana mahdollisesti vuoteen 2024 asti.

Tämä on hyvin erilainen arvioi, kuin Donald Trumpin esittämä optimistinen ennuste, jonka mukaan joidenkin osavaltioiden rajoitukset voidaan purkaa huhtikuun loppuun mennessä.

Science-lehden julkaiseman Harvardin tutkimusraportin mukaan SARS-CoV-2 epidemia voi uusiutua neljän seuraavan vuoden aikana. Raportissa ei kehoteta pitämään sosiaalisia rajoituksia yllä neljää vuotta – liekö se mahdollistakaan. Raportti kehottaa kuitenkin varautumaan pitkiinkin ajoittaisiin sosiaalisiin rajoituksiin tulevien kahden vuoden aikana, jos sitä ennen ei onnistuta kehitettämään toimivaa rokotetta ja tehokasta hoitoa.

Jopa siinä tapauksessa, että virus vaikuttaa hävinneen, Sars-CoV-2 -valvontaa on ylläpidettävä, koska tartunnan uusiutuminen voi olla mahdollista vielä 2024, raportissa todetaan.

Koronaviruksen leviämisen hillitsemiseksi useimmat maailman valtiot ovat ottaneet käyttöön joukon sosiaalisia rajoitustoimenpiteitä kokoontumisrajoituksista koulujen ja ravintoloiden sulkemisiin sekä ulkoiluaktiviteettien ja liikkumisen minimoimiseen vain välttämättömiin kauppa- ja apteekkikäynteihin.

Pandemia on toisen maailmansodan jälkeen pahin globaali kriisi. Se on tappanut yli 190 000 ihmistä maailmanlaajuisesti. Tartuntojen määrä on jo 2,73 miljoonaa tapausta. Todellinen määrä voi olla 20-50 kertaa suurempi. Pahimmin Covid-19 koettelee Yhdysvaltoja, jossa epidemia o laukalle lähtenyt hevonen. Kolmannes tartunnoista on USA:ssa, jossa menehtyneitä on jo yli 50 000. Espanja on tämän surullisen tilaston kakkosena 213 000 tartunnalla ja yli 22 000 kuolleella. Italiassa tartuntoja on noin 190 000 ja uhreja 25 549.

Ranskassa 158 000 / 21856
Saksassa 153 000 / 5581
Britanniassa 138 000 / 18 738
urkissa n. 102 000 / 2491
Venäjällä 62 770 / 555
Ruotsissa 16 755 / 2021
Suomessa 4284 / 172

Las Vegasin asunnottomat on majoitettu paikoitusalueelle. WHO varoitti, että Covid-19 ei ole saavuttanut tautihuippua. Kansainvälisen valuuttarahaston (IMF) mukaan koronaviruksen aiheuttama taantuma/lama on pahin sitten 1930-luvun Suuren laman. Kiina on alkanut vaiheittain purkaa rajoituksia ja karanteenejä. Myös Euroopassa on otettu varovaisia askeleita rajoitusten poistamiseksi ja normaaliin arkeen palaamiseksi.

Trump fantasioi paluusta normaaliin viimeistään vappuna.

Harvardin tutkimuksessa käytettiin yhdysvaltalaisia tietoja kahdesta edellisestä koronavirus-epidemiasta (SARS, MERS) mallinnettaessa Sars-CoV-2:n mahdollisia leviäämistapoja erilaisissa skenaarioissa siten, että muuttujina olivat vuodenajan muutokset ja immuniteetin kestot.

Kaikissa mallinnetussa skenaarioissa virus pystyi leviämään vuodenajoista riippumatta. Raportissa todetaan että jos pysyvää immuniteettia virukselle ei synny, se todennäköisesti tulee kiertämään maailmaan pitkään ja toistumaan säännöllisesti, mutta jos pysyvä immuniteetti saavutetaan, virus häviää viidessä vuodessa.

Viitaten Kiinan, Etelä-Korean ja Singaporen kokemuksiin raportti totesi, että intensiiviset sosiaaliset rajoitustoimenpiteet mahdollistavat tartuntojen ja kontaktien riittävän jäljittämisen, tarvittavat karanteenitoimenpiteet ja helpottavat näin sairaanhoitojärjestelmien taakkaa.

The authors said their goal was not to endorse social distancing policies, but to identify likely transmission trajectories, complementary interventions such as increasing intensive care unit capacity, and treatments to reduce ICU demand, as well as to expand the options for bringing the pandemic under long-term control.”

 

https://www.theguardian.com/world/2020/apr/22/french-study-suggests-smokers-at-lower-risk-of-getting-coronavirus

https://www.scmp.com/news/china/article/3080096/could-existing-vaccines-help-fight-covid-19-researchers-are-trying-find

https://www.scmp.com/news/world/united-states-canada/article/3080131/coronavirus-vaccine-incomplete-immunity-could-offer

https://www.scmp.com/news/china/society/article/3080156/coronavirus-re-emergence-will-be-threat-until-2024-harvard-study

https://www.scmp.com/news/china/science/article/3080380/coronavirus-outbreak-may-have-started-september-say-british

https://www.scmp.com/news/china/science/article/3079879/chinas-initial-coronavirus-outbreak-wuhan-spread-twice-fast-we

https://www.theguardian.com/world/2020/apr/18/dont-bet-on-vaccine-to-protect-us-from-covid-19-says-world-health-expert




Koronapäiväkirja – pääsiäisen jälkeen maanantaina 13.4.2020

”Jeesuksen veri peittää minua,” kertoi luottavainen kirkossakävijä CNN:lle Yhdysvaltojen Ohiossa. Nainen silminnähden hermostui toimittajan kysymyksistä. Hän ei hyväksynyt väitettä, että hän kristittynä voisi saada tartunnan kirkossa ja tartuttaa myöhemmin muita. Sellainen ei ole mahdollista, koska häntä ”peittää Jeesuksen veri”.

Boris Johnsonia suojaa narsismi tai silkka typeryys – ja ehkä Jeesuksen veri. Itsepäisesti ja tyhmärohkeasti hän julisti jatkavansa kättelemistä niin pitkään kuin häntä huvittaa asiantuntijoiden varoituksista piittaamatta. Tulokset nähtiin.

Boris Johnson sairastui muistaakseni 26.3. Reilun viikon jälkeen hänet otettiin sairaalaan, jossa hän vietti kolme päivää tehohoidossa. Hän ei ole vielä työkuntoinen ja on kertonut, että mahdollisuudet selvitä olivat pahimmillaan vain 50:50. Kiva, että äijä selvisi, mutta entä ne kaikki, jotka hänen typeryytensä ja itsepäisyytensä vuoksi ovat saaneetCovid-19-tartunnan?

Boris Johnson insisted that he would continue to shake hands even when advised not to. He shook hands with hospital workers days before being admitted to the hospital himself with a persistent and worsening case of coronavirus. The above photo was taken in November 2019. Who knows how many patients Boris may have infected when he visited a hospital in March.

Veri, joka voi suojata pahimmalta tautimuodolta ei ole Jeesuksen verta. Geenit ja veriryhmä näyttävät kuitenkin vaikuttavan sairastumisalttiuteen ja taudin patologiaan. O-veriryhmässä vakavat tartunnat ovat harvinaisempia kuin A-veriryhmässä. Oletan, että tätä korrelaatiota selvitetään monessa tutkimusryhmässä.

Miehet ja iäkkäät sairastuvat useammin ja vakavammin, koska koronavirus kiinnittyy hengitysteiden solujen ACE2-reseptoreihin. Miehillä näitä reseptoreita on enemmän kuin naisilla. Ikääntyneillä on enemmän ACE-2reseptoreja kuin nuoremmilla. Tämän vuoksi virus infektoi ärhäkkäämmin miesten ja iäkkäiden ihmisten soluja. Infektoidut solut kuolevat lopulta, joten mitä suuremman osan hengitysteiden soluista SARS-CoV-2 valtaa, sitä rajummat oireet. Luin tällaisen selityksen ja se vaikuttaa mahdolliselta.

Tappavasta koronaviruksesta on ainakin kolme viruskantaa,

  • Saksalaisten ja britannialaisten geneetikkojen raportin mukaan koronavirustyypit A, B ja C ovat kaikki kehittyneet eri tavoin lepakoilla tavattavista patogeeneistä.
  • Tulokset osoittavat, että virus on sopeutunut hyvin ihmisiin isäntinä ja mutatoituu leviäessään, kertoo kiinalainen epidemiologi.
  • Tämän artikkelin ensimmäisen osan lähteenä on Guo Rui’n artikkeli South China Mornig Post-lehdessä.

Iso-Britannian ja Saksan geneetikot ovat kartoittaneet koronaviruksen evoluutiota ja havainneet, että taudista kiertää kolme tappavaa viruskantaa.

Erilaisten viruskantojen kehittymisen ja leviämisen selvittäminen vie tutkijat lähemmäksi taudin alkuperää. Havainnot voivat myös selittää miksi tämä koronavirus on niin tarttuva ja tappava.

Tutkijat analysoivat ensimmäiset 160 kokonaista virusgenomia. Nämä sekvensoitiin ihmispotilaista 24. joulukuuta – 4. maaliskuuta. Viruksen mutaatioiden avulla laadittiin rekonstruktio taudin evoluutiosta ja leviämisestä.

Nopeita mutaatioita oli liian paljon, jotta niistä olisi voinut muodostaa täsmällisen COVID-19-sukupuun. Sen sijaan tutkijat mallinsivat samanaikaisesti kaikki viruksen todennäköiset sukupuut matemaattisella algoritmilla, kertoi tutkimusta johtanut Cambridgen yliopiston geneetikko Peter Forster. Vastaavaa tekniikkaa on aiemmin sovellettu esihistoriallisten ihmispopulaatioiden kartoittamiseen DNA:n avulla.

Tutkimusryhmä nimesi viruskannat A-, B- ja C-tyypeiksi. Virustyyppi-A muistutti eniten lepakoiden kantamaa koronavirusta. Vaikka tämä virustyyppi löydettiin Wuhanista, jossa epidemia käynnistyi, se ei ollut Wuhanissa tartunnan saaneiden yleisin virustyyppi.

Tutkimuksessa havaittiin, että Wuhanissa yleisin virustyyppi oli virustyyppi-B. Tämä ei näytä levinneen Itä-Aasiasta muualle, mikä voi johtua siitä, että aasialaisista poiketen Aasian ulkopuolella elävät ihmiset ovat tälle virustyypille vastustuskykyisempiä, kertoi Forster.

Virustyyppi-C oli Ranskan, Italian, Ruotsin ja Englannin virusnäytteiden perusteella Euroopassa yleisimmin esiintyvä virusvariantti. Tätä virustyyppiä ei havaittu Manner-Kiinan tartunnoissa, mutta sitä on havaittu Singaporessa, Hong Kongissa ja Etelä-Koreassa.

Tutkijat päättelivät, että variantti A oli epidemian juuri, koska se liittyi läheisimmin lepakoiden ja pangoliinien (muurahaiskäpyjen) virukseen. Tyyppi B johdettiin A: sta, erotettuna kahdella mutaatiolla, kun taas tyyppi C oli variantin B ”tytär”.

Wuhan B-tyypin virus voidaan liittää immunologisesti tai maantieteellisesti suureen osaan Itä-Aasian väestöä, Forster sanoi. Vaikuttaa siltä, että mutaatiot tapahtuivat epidemian alkuvaiheessa Itä-Aasiassa hitaammin kuin muualla. On mahdollista, että virustyyppi-B:n leviäminen muualle estyi, koska ihmiset Aasian ulkopuolella olivat sille vastustuskykyisempiä. Kun virustyyppi-B sai ”tyttären”, virustyyppi C, jolle luontaista resistenssiä ei löytynyt, pääsi leviämään nopeasti Euroopassa.

Tutkijoiden mukaan SARS-CoV-2-virus kulkeutui Italiaan mahdollisesti meksikolaisen matkailijan mukana. Hänellä tartunta diagnosoitiin 28. helmikuuta. Tämä tartunta voitiin edelleen johtaa yhteen ensimmäisistä Saksassa todetuista tartunnoista. Münchenissa työskennellyt saksalainen sai tartunnan kiinalaiselta kollegaltaan, joka oli vieraillut vain vähän aikaisemmin vanhempiensa luona Shanghaissa. Tutkijat pystyivät rekonstruoimaan kymmenen mutaatiota viruksen matkalla Wuhanista Meksikoon. Tämä on jännittävää salapoliisityötä. Tutkimus osoittaa myös kuinka helposti virus leviää.

Nyt kun ihmisillä leviävän SARS-CoV-2-viruksen sukupuu (evoluutiohistoria) on mallinnettu, viruksen sukupuuta voidaan käyttää infektioreittien jäljittämiseen. Tämä on tilastollinen työkalu, jota voidaan hyödyntää erityisesti, jos pandemia laantuu ja käynnistyy uudestaan. Sen avulla viruksen leviämiseen ja mutatoitumiseen osataan siis varautua paremmin.

Forsterin mukaan nyt valmistunut viruksen sukupuu auttaa kehittämään paremmin viruksen leviämistä ja mutaatioita mallintavia tietokonesimulaatioita. Näin voidaan löytää tehokkaampia vastatoimenpiteitä riittävän ajoissa ja oikein kohdennettuina.

Kantonin (Guangzhoun) Sun Yat-senin yliopiston epidemiologi Lu Jiahai kertoi, että tutkimuksen analyysi viruksen genomista ja molekyylin variaatiosta on alustava, mutta tärkeä. Virus mutatoituu infektion ja tartuntojen levitessä. SARS-CoV-2 on mutaatioiden kautta sopeutunut hyvin leviämään ihmiseltä ihmiselle ja populaatiosta toiseen ihmisten asettamista maantieteellisistä rajoista piittaamatta.

Tutkimus osoittaa, että tämä virus on hyvin mukautumiskykyinen ja siksi pandemia on otettava hyvin vakavasti, Lu sanoi. Lisäksi Lu korosti,. Että viruksen torjuntaan ja leviämisen ehkäisyyn on kiinnitettävä enemmän huomiota. Hän myös muistutti, että tämä virus voi kiusata ihmisiä hyvin pitkään.

Koronavirus voi hyökätä immuunijärjestelmää vastaan kuten HIV

  • Kiinalaisten ja amerikkalaisten tutkijoiden mukaan Covid-19:tä aiheuttava virus voi tuhota immuunijärjestelmän T-soluja.
  • Erään lääkärin mukaan huoli siitä, että koronavirus käyttäytyy samoin kuin HIV kasvaa tutkija- ja terveydenhoitopiireissä.
  • Tämä osa on kirjoitettu Stephen Chenin South China Morning Postin artikkelia mukaillen

Tuoreen tutkimuksen mukaan SARS-CoV-2 voi infektoida immuunijärjestelmän T-soluja

Tutkijat varoittavat, että SARS-CoV-2 saattaa tappaa immuunisoluja, joiden pitäisi puolustaa elimistöä viruksia vastaan.

Shanghaissa ja New Yorkissa työskentelevien tutkijaryhmien yllättävä löytö osui samaan aikaan etulinjan lääkäreiden havaintojen kanssa. Covid-19 voi hyökätä ihmisen immuunijärjestelmää vastaan ja aiheuttaa samanlaisia elimellisiä vaurioita kuin HIV.

Lu Lu Shanghain Fudanin yliopistosta ja Jang Shibo New Yorkin verikeskuksesta liittivät laboratoriossa kasvatettuihin T-lymfosyytteihin Sars-CoV-2-viruksen. Tutkijoiden yllätykseksi T-solusta tuli koronaviruksen saaliita, eikä päinvastoin, kuten tutkijat ennakoivat.

T-lymfosyytit, eli T-solut ovat adaptiivisen immuunijärjestelmän tehokkain ase viruksia vastaan. Ne tunnistavat solujen proteiineihin kiinnittyneitä antigeenejä ja infektoituneita soluja. Näitä T-solujen toiminnan kannalta välttämättömiä elimistön omia proteiineja kutsutaan MHC-molekyyleiksi, ja ne jaetaan kahteen pääluokkaan: MHC I ja MHC II.

  • Sytoksiset T-solut tunnistavat antigeenin osana MHC I-kompleksia. Sytoksiset T-solut voidaan tunnistaa solun pinnalla olevan CD8-proteiinin avulla (CD8+).
  • Auttaja T-solut tunnistavat MHC II-molekyyliin kiinnittyneen antigeenin. Auttaja-T-solut eroavat sytoksisista T-soluista, sillä niiden pinnalla on CD4-proteiinia (CD4+).

T-auttaja-solut (Th) auttavat muita valkosoluja immunologisissa prosesseissa, kuten B-solujen erikoistumisessa plasmasoluiksi ja muisti B-soluiksi sekä sytotoksisten T-solujen ja makrofagien kehityksessä ja aktivaatiossa.

Th-solut aktivoivat muita T-soluja erittämällä solujen välisen viestinnän mahdollistavia sytokiinejä ja näin Th-solut säätelevät tai vaimentavat immuunivastetta.

Täysin kehittyneet T-auttaja-solut tunnetaan myös (positiivisina) CD4+ T-soluina, koska niiden pinnalla on CD4-proteiinia.

CD4+ T-solujen reseptoreilla on herkkyys luokan II MHC-proteiineille. CD4-proteiineja on mukana T-solujen kateenkorvassa tapahtuvassa kehityksessä (maturaatio), ja niiden avulla CD4+ T-solujen herkkyys määräytyy luokan II MHC-proteiineille.

T-auttaja-solujen aktivaatio tapahtuu luokan II MHC-molekyylien antigeenejä-esittelevien solujen (APC [antigen-precenting-cell]) pinnalla esittelemien antigeenipeptidien avulla.

Kun T-auttaja-solut aktivoituvat, ne jakautuvat nopeasti ja erittävät sytokiinejä, jotka säätelevät ja auttavat aktiivista immuunivastetta. Immuunijärjestelmää ohjaavat sytokiinit ovat proteiinirakenteisia solujen välisen viestinnän välittäjäaineita, jotka voidaan edelleen jakaa toimintansa perusteella viiteen pääryhmään:

  • tuumorinekroositekijät
  • interferonit
  • interleukiinit
  • hematopoieettiset kasvutekijät
  • muut kasvutekijät

T-auttaja-solujen merkitystä voidaan havainnollistaa HIV:lla, joka infektoi ensisijaisesti CD4+ auttaja-T-soluja. HIV:n myöhemmissä vaiheissa toimivien CD4+ T-solujen puutoksen seurauksena on AIDS (Acquired ImmunoDeficiency Syndrome). HIV siis tappaa immuunijärjestelmän T-soluja.

Terveessä immuunijärjestelmässä T-solut kiinnittyvät infektoituneisiin soluihin ja ruiskuttavat niihin myrkyllisiä kemikaaleja, jotka tuhoavat viruksen ja tappavat solun. Sen jälkeen kuollut solu hajotetaan.

Tutkijat tunnistivat viruksen piikkiproteiinissa ainutlaatuisen rakenteen, joka näytti käynnistävän viruskuoren ja solukalvon fuusioitumisen, kun ne olivat kosketuksissa. Näin viruksen geenit pääsivät T-soluun estäen sen toiminnan. Tutkijat toistivat kokeen SARS-virukselle, mutta se ei pystynyt infektoimaan T-soluja.

Tutkijat arvelivat, että SARS ei pysty infektoimaan T-soluja, koska siltä puuttuu SARS-CoV-2-viruksen poikkeuksellinen solukalvofuusion mahdollistava proteiinirakenne. SARS voi infektoida ainoastaan sellaisia soluja, joiden pinnalla on erityinen ACE2-proteiini (reseptori). T-soluissa ACE2-reseptoreita ei juurikaan ole.

Ensisijaisesti T-soluja infektoivien koronavirustartuntojen jatkotutkimukset herättävät ”uusia ideoita patogeenisistä mekanismeista ja terapeuttisista interventioista”, tutkijat sanoivat vertaisarvioidussa Cellular & Molecular Immunology -lehdessä julkaistussa artikkelissa.

T-solut hyökkäävät haitallisia soluja, kuten viruksia ja syöpäsoluja vastaan

Pekingissä Covid-19-potilaita hoitavassa julkisessa sairaalassa työskentelevä lääkäri kertoi, että havainto lisäsi todisteita lääkäreiden ja hoitohenkilökunnan jatkuvasti kasvavaan huoleen, siitä, että koronavirus voi joskus käyttäytyä kuten eräät kaikkein pahamaineisimmista viruksista, kuten HIV, joka hyökkää suoraan ihmisen immuunijärjestelmää vastaan.

”Yhä useammat ihmiset vertaavat koronavirusta HIViin”, sanoi lääkäri, joka pyysi, että häntä ei artikkelissa mainita nimeltä aiheen herkkyyden vuoksi.

Chen Yongwen ja hänen kollegansa PLA:n immunologian instituutissa julkaisivat helmikuussa kliinisen raportin, jossa varoitettiin, että T-solujen määrä voi laskea merkittävästi Covid-19-potilailla, etenkin jos potilaat ovat vanhoja tai tarvitsevat hoitoa tehohoitoyksiköissä. Mitä pienempi T-solujen määrä, sitä suurempi kuoleman riski.

Kiinalaisissa raporteissa havainto vahvistettiin myöhemmin yli 20 kuolleelle tehdyillä ruumiinavaustutkimuksilla. Ruumiinavaukset osoittivat, että potilaiden immuunijärjestelmä oli melkein täysin tuhoutunut.

Koronavirustartuntaan menehtyneitä nähneet lääkärit ja hoitajat ovat kertoneet, että kuolleiden sisäelinten vauriot ovat samanlaisia kuin SARSiin ja AIDSiin kuolleilla.

SARS-CoV-2: n solukalvofuusiofunktion takana olevaa geeniä ei löytynyt muista ihmisten tai eläinten koronaviruksista. Ihmisillä leviäviä koronaviruksia on seitsemän, mutta virusperhe kaiken kaikkiaan on aika suuri. Tutuimmat koronavirukset ennen tätä pandemiaa olivat SARS ja MERS. Kaksi tai kolme muuta koronavirusta aiheuttaa 10–30 % tavallisista joka talvi leviävistä ns. ”vilustumisista” (nuha, yskä, kuume).

Eräillä tappavilla ihmisviruksilla, kuten AIDSilla ja Ebolalla, on vastaavia geneettisiä sekvenssejä, minkä vuoksi on spekuloitu, että uusi koronavirus on voinut levitä huomaamatta ihmisten keskuudessa jo kauan ennen tämän pandemian puhkeamista.

Uuden tutkimuksen mukaan SARS-CoV-2:n ja HIV: n välillä oli yksi merkittävä ero.

SARS-CoV-2: n ja HIV:n välillä oli kuitenkin yksi merkittävä ero. HIV voi replikoitua T-soluissa ja tehdä T-soluista viruksia kopioivia tehtaita muiden solujen tartuttamiseksi.

Mutta Lu ja Jiang eivät havainneet koronaviruksen kasvua sen jälkeen, kun se valtasi T-solut, mikä viittaa siihen, että virus ja T-solut saattavat lopulta kuolla yhdessä. Tämä nostaa esiin uusia kysymyksiä. Esimerkiksi: eräät tartunnan saaneet oivat kantaa virusta viikkoja ilman mitään oireita. Millainen vaikutus tartunnalla on näiden ihmisten T-soluihin?

Eräillä kriittisesti sairailla potilailla esiintyi sytokiinimyrskyjä, joissa immuunijärjestelmåä ylireagoi ja kohdistaa hyökkäyksen terveisiin soluihin. Syytä tällaisiin reaktioihin ei tunneta.

Koronavirus: Lisää näyttöä siitä, että BCG-rokote (Calmette-Guerin)saattaa suojata Covid-19: tä vastaan

Tutkimuksen mukaan maissa, joiden rokoteohjelmassa on BCG (Bacillus Calmette-Guérin), koronavirustartuntoja ja vakavia sairastumisia esiintyy merkittävästi vähemmän kuin maissa, joissa tämä rokote ei ole kuulunut kansalliseen rokoteohjelmaan.

BCG-rokote on suunnattu tuberkuloosia vastaan. Suomalaisvauvojen BCG-rokotukset aloitettiin 1940-luvulla ja lopetettiin 2006. Britannialaisen tutkimuksen mukaan rokote säilytti 78 % suojan kaikkia tuberkuloosin muotoja vastaan vielä 15 vuoden jälkeen ja 100-prosenttisen suojan yleisintä tuberkuloosia vastaan.

Tuoreen 178 maan tilastollisen tutkimuksen mukaan BCG-rokote näyttäisi tarjoavan ainakin jonkinasteisen suojan SARS-CoV-2-viruksen aiheuttamaa tautia vastaan. Maissa, joissa tämä rokote on kuulunut yleiseen rokoteohjelmaan, tartuntoja ja kuolemantapauksia on verrokkimaita jopa 10-20 kertaa vähemmän.

Tutkimus on kiinnostava, mutta siinä voi olla aukkoja. Tutkimuksessa havaittiin, että 15 päivän aikana Covid-19-tartuntoja oli BCG-rokotetuissa maissa keskimäärin 38 tartuntaa /miljoonaa asukasta kohden ja 358 / miljoona maissa, joissa rokote ei kuulunut yleiseen rokoteohjelmaan.

BCG-rokotetuilla vanhemmilla ihmisillä koronaviruksen aiheuttamat hengitystieinfektiot ovat tutkimuksen mukaan lievempiä. Tämä on alustava tutkimus, mutta professori Luke O’Neill (Trinity College) kertoo, että valmisteilla on ainakin 7 laajempaa BCG-rokotetutkimusta, joissa selvitetään millanen hyöty siitä on Covid-19-tartuntoja vastaan. Kaikkinensa kehitteillä on 70 rokotetta SARS-CoV-2-virusta vastaan.

Lupaava Remdesivir

Varhaiset tutkimukset osoittavat, että koronaviruksen kokeellinen hoito Remdesivirillä voi auttaa hyvin sairaita potilaita parantamaan hengitystään. Remdesivir on antanut lupaavia tuloksia, mutta lisätutkimuksia tarvitaan yhä

New England Journal of Medicine -lehdessä julkaistussa tutkimuksessa tarkasteltiin 53 koronaviruspotilasta, joille oli annettu Remdesiviriä vakaviin oireisiin.

”Of the 61 patients who received at least one dose of remdesivir, data from 8 could not be analyzed (including 7 patients with no post-treatment data and 1 with a dosing error). Of the 53 patients whose data were analyzed, 22 were in the United States, 22 in Europe or Canada, and 9 in Japan. At baseline, 30 patients (57%) were receiving mechanical ventilation and 4 (8%) were receiving extracorporeal membrane oxygenation. During a median follow-up of 18 days, 36 patients (68%) had an improvement in oxygen-support class, including 17 of 30 patients (57%) receiving mechanical ventilation who were extubated. A total of 25 patients (47%) were discharged, and 7 patients (13%) died; mortality was 18% (6 of 34) among patients receiving invasive ventilation and 5% (1 of 19) among those not receiving invasive ventilation.”

Useimmilla potilailla (68%) Remdesivir vähensi lisähapen tarvetta. 17 hengityskoneen apua tarvinutta potilasta 30:sta voitiin irrottaa hengityskoneesta parantuneen hengityksen ansiosta. Tämä on tärkeää, sillä hengityskonetta tarvitsevien potilaiden terveysongelmat kestävät yleensä hyvin pitkään ja heidän todennäköisyytensä selvitä taudista hengissä on huono.

Hengityslaitteeseen kytketyistä potilaista vain noin 20 % selviää hengissä. (Suomessa luku taitaa olla 30-50 %). Mitä kauemmin potilas on hengityskoneen varassa, sitä suuremmaksi kuoleman riski kasvaa.

Remdesivir-tutkimus oli pieni, eikä vertailuryhmää ollut. On mahdollista, että potilaat, jotka näyttivät hyötyvän lääkkeestä, olisivat parantuneet ilmankin. Asiantuntijat ovat kuitenkin varovaisen optimistisia.

Remdesivir on antiviraalinen (viruksia tuhoava) lääke, joka estää virusta kopioitumasta soluissa. Tutkimus ei kuitenkaan kerro vähenikö potilaiden virusten määrä toivotulla tavalla.

Aikaisemmat tutkimukset eläimillä olivat osoittaneet, että Gilead Sciencesin kehittämä lääke saattaa toimia MERSiä vastaan.

Sitten tuli COVID-19, joka on tartuttanut nyt jo noin 600 000 ihmistä Yhdysvalloissa. Remdesiviriä käytettiin kokeellisena terapiana ensimmäiselle Yhdysvalloissa sairastuneelle henkilölle. Se näytti auttaneen tätä potilasta. Sittemmin Remdesiviriä on annettu muille hyvin sairaille potilaille ”myötätuntoisena hoitona”, kun mitään muita hoitomuotoja ei ole ollut.

Gilead on aloittamassa Remdesivirin kliiniset tutkimukset Covid-19-tartunnan hoidossa yli 1000 potilaalla, joten tarkempia ja luotettavampia tietoja on luvassa.

Paljon on hälinää ja hässäkkää, mutta ehkäpä toivon siemen piilee 70 rokotetutkimuksessa ja muissa lääketutkimuksissa. Itse suhtaudun sekä laumaimmuniteettiin, että toimivaan rokotteeseen äärimmäisen skeptisesti. Tauti muuttuu liian nopeasti. Toivon, että olen väärässä. On kuitenkin hyvä henkisesti varautua siihen, että tätä virusta väistellään helvetin pitkään, eikä maailma koskaan palaa ennalleen. Pysykää terveinä!

Aiheesta lisää:

https://medium.com/@joelkj.yong/why-is-there-a-mad-dash-to-manufacture-effective-drugs-to-combat-the-covid-19-coronavirus-b5f615c46d8

https://www.scmp.com/news/china/science/article/3079491/deadly-coronavirus-comes-three-variants-researchers-find

https://www.wired.com/story/why-does-covid-19-make-some-people-so-sick-ask-their-dna/

https://www.theguardian.com/world/2020/apr/07/what-happens-to-lungs-coronavirus-covid-19

https://www.medicalnewstoday.com/articles/novel-coronavirus-your-questions-answered#1.-What-is-the-new-virus

https://www.sciencedaily.com/releases/2020/04/200407131453.htm