1

Infektiot ja autoimmuunitaudit osa 3: COVID-19 ja lapset

Lasten harvinaista tulehduksellista oireyhtymää (MIS-C) tutkitaan

Yli 12-vuotiaiden lasten rokotukset herättävät vanhemmissa huolta. Huoli ei ole täysin aiheeton, koska rokotuksiin liittyy aina marginaalisia riskejä. Rokotukset eivät takaa 100-prosenttista suojaa koronaviruksen deltavariantilta. Tuoreen tutkimuksen mukaan sairastetun infektion antama immuniteetti on vahvempi kuin kahdella Pfizerin rokotteella saavutettava immuniteetti. Lue tästä!

Sairastetun infektion antama vahva immuniteetti voi tuntua rokotuksia houkuttelevammalta vaihtoehdolta etenkin kun lapsilla koronainfektio on yleensä hyvin lievä tai oireeton. Rokotukset antavat kuitenkin vahvan suojan vakavilta sairaalahoitoa edellyttäviltä taudeilta ja siksi rokotuksen ottaminen on perusteltua.

Kolikolla on kaksi puolta. COVID-19-infektioon liittyy vakavien jälkitautien riski myös lapsilla ja nuorilla. Lasten suojeleminen rokotteiden mahdollisilta haitoilta voi altistaa lapset koronainfektion jälkitaudeille. Toistaiseksi tietoa koronainfektion pitkäaikaisoireista on vielä vähän.

Millaisia riskejä koronainfektio aiheuttaa lapsille?

Tuore tutkimus auttaa ymmärtämään mekanismeja, jotka selittävät monisysteemisen tulehdusoireyhtymän syntyprosessia lapsilla SARS-CoV-2-infektion jälkeen, kertoo MedicalNewsToday.

  • Mount Sinai Health Systemin tutkijat esittelivät genomin laajuisen tutkimuksen, jossa selvitettiin harvinaisen mutta vakavan tulehduksellisen oireyhtymän syytä lapsilla SARS-CoV-2-infektion jälkeen.
  • Verinäytteiden RNA-sekvensointi paljasti, että eräiden immuunijärjestelmän solujen pitoisuus oli matalampi lapsilla, joille kehittyi monisysteeminen tulehdusoireyhtymä SARS-CoV-2 -infektion jälkeen.
  • Tutkimuksen tulokset antavat tutkijoille uusia menetelmiä lasten monisysteemisen tulehdusoireyhtymän (MIS-C) havaitsemiseen ja hoitoon.

Tutkimuksessa sekvensoitiin verinäytteitä monisysteemistä tulehdusoireyhtymää (MIS-C) sairastavilta potilailta ja terveiltä kontrolleilta. Tutkimuksen on julkaissut Nature Communications.

Tulokset osoittavat, että luonnollisten tappajasolujen (NK) ja sytotoksisten T-solujen matalammat määrät voivat selittää MIS-C:n kehittymistä.

Sytotoksisten T -solujen pitkä altistuminen taudinaiheuttajalle saa solut nääntymään. Sytotoksisten T-solujen nääntyminen heikentää niiden kykyä ylläpitää immuunijärjestelmän tehokkuutta ja vähentää uusien T-solujen muodostumista.

Tri Noam D. Beckham kertoi Medical News Todaylle, että jatkotutkimuksissa voidaan löytää mekanismi, jolla koronainfektion eteneminen monisysteemiseksi tulehdusoireyhtymäksi voidaan estää.

Mikä on MIS-C?

MIS-C, tunnetaan myös nimellä PIMS (pediatric inflammatory multisystem syndrome) tai Kawasakin taudin tyyppinen oireyhtymä. MIS-C on vakava, mutta harvinainen tauti. Siihen sairastuu keskimäärin 11,4 alle 20-vuotiasta 100 000 ihmistä kohden. Kesäkuuhun (2021) mennessä Yhdysvalloissa oli raportoitu 4041 MIS-C-tapausta.

Monisysteemisen oireyhtymän oireisiin liittyy usein kipuja, kuumetta ja inflammaatiota kehon eri osissa. Oireet vaikuttavat sydämeen, keuhkoihin, aivoihin, silmiin, ihoon ja ruoansulatuskanavan elimiin.

Tutkijat uskovat, että monisysteeminen oireyhtymä lapsilla on autoimmuunisairaus, mutta taudin tarkka syntymekani ei ole tiedossa. Sen tutkiminen on haastavaa, koska oireyhtymä on harvinainen.

Luonnolliset tappajasolut (NK) ja nääntyneet T-solut

Tutkijat havaitsivat NK-solujen ja ”nääntyneiden” sytotoksisten T-solujen vähentyneen tuotannon ja alassääntelyn (downregulation) lapsilla, jotka olivat sairastuneet monisysteemiseen oireyhtymään koronainfektion jälkeen.

Luonnollinen tappajasolu eli NK-solu (Natural killer cell) on immuunijärjestelmään kuuluva valkosolu eli leukosyytti. Sen tehtäviin kuuluu tunnistaa ja tuhota suoraan elimistössä sellaisia soluja, joiden solukalvojen pinta-antigeenit ovat muuttuneet, mikä indikoi virusinfektiota tai muuttumista syöpäsoluksi. Tyypillinen tällainen muutos on MHC-I -proteiinin katoaminen isäntäsolun pinnalta. Veren lymfosyyteistä 10-20 % on NK-soluja.

Erityisen selvä vaikutus havaittiin sytotoksisten T -solujen, eli CD8+ T -solujen määrässä. Näillä soluilla on keskeinen rooli puolustautumisessa taudinaiheuttajia, kuten viruksia vastaan.

Tutkijat havaitsivat, että NK -solut ja CD8+ T -solut säätelevät toisiaan. NK-solujen ehtyminen vaikuttaa CD8+ T-solujen nääntymiseen. Tutkijat selittävät:

”CD8+ T-solujen nääntymiseen liittyvät häiriöt voivat aiheuttaa vakavan, jopa kuolemaan johtavan T-solujen immunopatologian virusinfektion jälkeen. CD8+ T-solujen läsnäolo sen sijaan voi parantaa tulehduksellisia oireita.”

Laaja geeniekspressiotutkimus tunnisti yhdeksän sytotoksisiin soluihin liittyvää keskeistä säätelijää. Näiden säätelijöiden ekspressio on yleensä korkea CD8+ T-soluissa, mutta ne ovat alisäänneltyjä lapsilla, joilla on MIS-C.

Immuunijärjestelmän sääntelijöiden joukosta tutkijat pitivät TBX21:tä erityisen tärkeänä, koska se osallistuu loppuun käytettyjen (nääntyneiden) sytotoksisten T -solujen erilaistumiseen. TBX21 voi toimia terapeuttisena kohteena MIS-C:ssä COVID-19: n jälkeen.

Pediatri Danielle Fisher (Providence Saint Johns’s Health Center) selitti Medical News Todaylle, että tutkimukset ovat välttämättömiä ”immuunivasteen sekä CD8 +- ja NK-solujen merkityksen luonnehtimiseksi ja niiden toiminnan tehostamiseksi, jotta lapset saisivat vahvemman immuniteetin SARS-CoV-2-infektiota vastaan. Tämän toivotaan myös ehkäisevän lasten altistumista MIS-C:lle.”.

Kroonistuva koronainfektio ja lapset: pandemian unohdetut uhrit

Lasten alttius vakavalle koronainfektiolle on hyvin vähäinen. Tämän vuoksi lasten sairastumisista ja oireista raportoidaan melko harvoin. Osalla lapsista esiintyy pitkittyneitä koronaoireita. Oireet voivat jatkua kuukausia sairastetun COVID-19-infektion jälkeen.

Havaintojen mukaan lasten koronainfektiot ovat yleensä lieviä tai jopa oireettomia. Ääritapauksissa lasten koronainfektio voi kuitenkin johtaa johonkin vakavaan jälkitautiin, kuten monisysteemiseen tulehdusoireyhtymään (MIS-C).

Olemassa olevien tietojen mukaan MIS-C/PIMS voi ilmetä 2–6 viikon kuluttua SARS-CoV-2-infektiosta. MIS-C/PIMS (Pediatric inflammatory multisystem syndrome) aiheuttaa lapsilla:

  • jatkuvaa kuumetta
  • ruoansulatuskanavan oireita
  • ihottumia ja/tai punasilmäisyyttä (conjunctivitis)
  • päänsärkyä

Useimmissa tapauksissa lasten koronaoireet paranevat ja häviävät täysin parin viikon kuluttua oireiden alkamisesta. Jotkut lapset voivat kuitenkin kokea jatkuvia oireita viikkoja tai jopa kuukausia sairastumisensa jälkeen. Tätä oireilua kutsutaan ”pitkäksi COVIDiksi”.

Immuunijärjestelmän solut

Miten COVID-19-oireet vaikuttavat niitä kokeneiden lasten ja nuorten jokapäiväiseen elämään ja hyvinvointiin?

Medical News Today selvitti asiaa haastattelemalla neljän pitkistä koronaoireista kärsivän lapsen vanhempia. Vanhemmat kertoivat vaikeuksista diagnoosin ja lääketieteellisen tuen saamiseksi.

Lääketieteellistä näkökulmaa lasten pitkittyneisiin koronaoireisiin tiedusteltiin Kennedy Krieger -instituutissa työskentelevältä kuntoutuslääkäri Amanda Morrow’lta ja neurologi Laura Malone’lta.

Kuinka moni lapsi sairastaa pitkittyneitä koronaoireita?

Long Covid-oireita sairastavista lapsista on edelleen hyvin vähän kattavaa tietoa, joten on vaikea arvioida, kuinka yleinen pitkittynyt korona on alle 18-vuotiaiden keskuudessa.

Tarkimmat tiedot on toistaiseksi kerännyt Britannian kansallinen tilastotoimisto (ONS). ONS:n tammikuussa 2021 julkaisemien päivitettyjen kokeellisten arvioiden mukaan noin

12,9 prosenttia 2–11 -vuotiaista lapsista
14,5 prosenttia 12–16 -vuotiaista
17,1 prosenttia 17–24 -vuotiaista nuorista

sairasti pitkittyneitä COVID -19 oireita vielä 5 viikon kuluttua taudin alkamisesta.

Naisten ja lasten terveyden ja kansanterveysosaston (Fondazione Policlinico Universitario A. Gemelli IRCCS) tutkijoiden johtama tutkimus viittaa siihen, että pitkä COVID voi olla ennakoitua selvästi yleisempää lapsilla ja nuorilla. Italialaistutkimus on vielä julkaisematon, eikä sitä ole vertaisarvioitu.

Italialaistutkimuksessa analysoitiin 129 vuoden 2020 maaliskuun ja marraskuun välillä koronadiagnoosin saaneen lapsen terveystietoja. Tämän kohortin lapsista 52,7% ilmoitti kokeneensa vähintään yhden COVID-19-oireen vielä neljä kuukautta uperäisen diagnoosin jälkeen.

We assessed persistent symptoms in pediatric patients previously diagnosed with COVID-19. More than a half reported at least one persisting symptom even after 120 days since COVID-19, with 42.6% being impaired by these symptoms during daily activities. Symptoms like fatigue, muscle and joint pain, headache, insomnia, respiratory problems and palpitations were particularly frequent, as also described in adults. Preliminary Evidence on Long COVID in children

BMJ:n äskettäisessä webinaarissa tohtori Elizabeth Whittaker (Imperial College London) hahmotteli oireita, joita pitkittynyttä koronainfektiota sairastavat lapset voivat kokea. Hän siteerasi riippumattoman Long Covid Kids –tutkimuksen tietoja, jotka osoittavat, että lapsilla pitkittyneisiin COVID-19-oireisiin sisältyy usein:

  • kurkkukipua
  • nivelkipua
  • voimakasta väsymystä (fatiikkia)
  • päänsärkyjä
  • rintakipuja
  • ruoansulatuskanavan onireita
  • pahoinvointia
  • mielialan vaihteluita
  • huimausta
  • ihottumia

Puheensa päätteeksi tohtori Whittaker totesi, että vaikka ”lapset kokevat vähemmän vakavia koronainfektioita kuin aikuiset”, on ”tärkeää tukea pitkittynyttä koronainfektiota ja monisysteemistä tulehdusoireyhtymää sairastavia lapsia”.

9-vuotias poika päätyi pitkittyneiden koronaoireiden vuoksi käyttämään rollaattoria ja pyörätuolia

Pitkistä koronaoireista kärsivien lasten ja nuorten vanhemmat korostivat MNT:lle, että lääkäreille on tiedotettava paremmin lasten pitkästä koronataudista ja että kiireellistä erikoishoitoa tarvitaan pitkistä koronaoireista kärsiville lapsille.

Teksasilainen Gemma, jonka 9-vuotias poika on sairaalahoidossa pitkän COVID-taudin vuoksi, kertoi lapsensa vaikeista oireista ja ongelmista tehokkaan hoidon löytämiseksi.

Hänen poikansa sai positiivisen COVID-19-tuloksen 21. helmikuuta 2021. Gemma kertoi, että hänen poikansa oli saanut vatsakipuja sairaalassa viikkoa ennen testiä. Kun poika alkoi kokea päänsärkyä, vatsakipuja, kurkkukipua ja väsymystä sairaalasta päästyään, Gemma tiesi, että jotain oli pielessä.

”Kaksi pojan sisaruksista oli saanut positiivisen COVID-19-tuloksen, joten veimme pojan testattavaksi koronainfektion poissulkemiseksi. Ajattelimme oireiden olevan aiempien oireiden uusiutumista. Koronatesti oli positiivinen”, Gemma kertoi.

Gemma huolestui, kun pojan oireet pahenivat diagnoosin jälkeen: käsien ja jalkojen vapinaa, epäselvää puhetta ja aivosumua viikko positiivisen testin jälkeen. Kahden viikon jälkeen pojalla oli vaikeuksia seistä ja kävellä.

”Pojan tilaa on arvioitu COVID-19-diagnoosin jälkeen neljän sairaalakäynnin yhteydessä, mutta lähes kaikki testimarkkerit ovat muuttuneet diagnoosin jälkeen normaaleiksi”, Gemma kertoi.

”Kuulin lapsen pitkästä COVID-oireista pojan neljännen ja viidennen sairaalahoitojakson välisenä aikana ja ymmärsin, että hänen oireensa vastasivat täydellisesti aiheesta julkaistun tutkimuksen kuvailemia oireita ja muiden pitkistä koronaoireista kärsivien lasten kokemuksia.”

Gemman pojan neurologiset oireet alkoivat viikon kuluttua positiivisesta COVID -testistä.

Pojan ahdistus ja stressi johtuvat oireista, ei toisinpäin

Huolimatta pojan positiivisista testituloksista ja vakavista oireista, lääkärit eivät uskoneet, että pojalla voisi olla pitkittynyt korona.

Kun kävimme viimeisimmän kerran sairaalassa (viides kerta kahden kuukauden aikana), pojan koronanäyte oli negatiivinen neljän aiemmilla sairaalakäynneillä otettujen positiivisten näytteiden jälkeen.”

Useat Gemman tapaamat lääkärit väittivät, ettei pojalla ole koskaan ollut COVID-19-infektiota huolimatta pojan positiivisista testituloksista, komplikaatioiden ajoituksesta, koronainfektioon viittaavista oireista ja altistumisesta samassa taloudessa eläville tartunnankantajille.

Gemma kertoi lääkäreille, että Mount Sinai Hospital -sairaalan tutkimuksen mukaan kahdella kolmesta pitkittynyttä koronaa sairastavasta aikuisesta SARS-CoV-2-vasta-ainekoe antoi negatiivisen tuloksen.

Eräät Gemman tapaamista lääkäreistä arvelivat, että pojan oireet olivat stressin vaikutusta. Aika kului. Gemman poika menetti vähitellen liikuntakykynsä ja joutui käyttämään pyörätuolia.

Pian pyörätuolin käyttäminenkin alkoi olla pojalle liian raskasta. Oireet pahenivat edelleen kotona vietettyjen viikkojen aikana.

Vaikka poika voi nyt hyvin kuntouttavassa sairaalahoidossa, pojasta erossa olemisesta kärsii koko perhe.

Gemma pelkää, ettei hänen poikansa kuntoudu nykyisellä hoidolla. Poikaa kuntouttavat terapeutit soveltavat perinteisiä kognitiivisia käyttäytymistekniikoita, jotka eivät ehkä ole parhaita kuntoutusmenetelmiä pitkittyneen koronan hoitoon. Tutkimusnäytön mukaan pitkittynyt korona muistuttaa läheisesti kroonista väsymysoireyhtymää (molemmpien oireina on mm. liikuntakyvyn heikkeneminen).

Krooninen väsymysoireyhtymä, eli myalginen enkefalomyeliitti (ME), on lihaskipuja aiheuttava ja myeliiniä tuhoava aivo-selkäydintulehdus tai virusinfektiota seuraava väsymysoireyhtymä. ME on neurologinen sairaus, jolle on ominaista pitkäaikainen uupumustila tai uupumisalttius sekä uupumuksen tai yleisen huonovointisuuden paheneminen rasituksen jälkeen. Sairauteen liittyy usein myös kognitiivisen suorituskyvyn laskua, yleistä huonovointisuutta, särkyjä ja unihäiriöitä. Sairaudesta käytetään myös nimeä systeeminen rasitusintoleranssisairaus (systemic exertion intolerance disease, SEID).

Vaikka kognitiivisilla käyttäytymistekniikoilla, kuten ”kehosi voi tehdä vaikeita asioita” ja ”paranet joka päivä hieman enemmän”, on varmasti hyötyä merkitystä paranemisprosessissa, on olemassa vaara, että todelliset fysiologiset ja neurologiset vauriot jäävät kuntoutuksessa havaitsematta.

Tapasimme viisi lääkäriä neljällä sairaalakäynnillä

Tohtori Whittaker totesi BMJ:n webinaarissa, että COVID-19-oireet ja lasten pitkittyneet koronaoireet voivat olla erilaisia kuin aikuisilla. Hän kehotti tutkimaan tarkemmin, miten COVID-19 vaikuttaa lapsiin.

Elizan tytär oli 9 -vuotias, kun hän alkoi oireilla. 2020 maaliskuun lopussa tytölle kehittyi kivulias ihottuma. Hän alkoi kärsiä jatkuvasta päänsärystä, huulien rohtumista ja halkeilusta, näköhäiriöistä ja väsymyksestä muiden oireiden ohella. Tässä vaiheessa Elizan tyttärelle ei ollut tehty COVID-19-testiä.

Eliza haki tyttärelleen lääketieteellistä apua muutamaa päivää myöhemmin. ”Me näimme viisi lääkäriä neljällä sairaalavierailulla kymmenen päivän sisällä. Elizan tytär lähetettiin lasten ensiapuun.

”Se tuntui pelottavalta, koska se oli vain niin outoa, ettei kukaan lääkäreistä ollut nähnyt tällaista ihottumaa aikaisemmin, eivätkä he oikein tienneet, mitä tehdä”, Eliza sanoi.

Vaikka Elizan tytär oli tuskissaan viikkoja, Britanniassa asuva Eliza ei saanut tarvitsemaansa apua koronaepidemian ylikuormittaman terveydenhuoltosektorin (NHS) vuoksi.

Tyttären tila paheni jatkuvasti. Marraskuussa 2020 tyttö alkoi ontua ja hänellä oli turvonneet imusolmukkeet sekä muita oireita, joiden vuoksi hänet palautettiin lasten ensiapuun. Helmikuussa 2021 pediatrian osaston lääkärit kertoivat Elizalle, että hänen tyttärellään saattaa olla PIMS.

”Olin järkyttynyt,.. En usko, että ymmärsin diagnoosia ennen kuin saavuimme kotiin. Diagnoosi tarkoitti, että tyttäreni oli sairastunut koronainfektioon ennen maaliskuun loppua 2020. Olin pettynyt siihen, että oli liian myöhäistä tehdä vasta-ainetesti. Tytär oli koronainfektion aikaan hyvässä kunnossa, enkä tuolloin ollut huolissani hänen ajoittaisista lievistä oireistaan.”

Helmikuussa 2021 tyttären optikko kertoi Elizalle järkyttyneenä, että tyttären näkö oli heikentynyt vakavasti kolmen kuukauden kuluessa. Maaliskuusta 2021 lähtien Elizan tytär on alkanut kokea uudelleen voimakasta väsymystä, ihon herkkyyttä, kivuliaita ihottumia, ja päänsärkyä. Hänelle kehittyi myös ruoansulatushäiriöitä ja maku- ja hajuhäiriöitä – kaikki nämä olivat uusia oireita.

Hoidon saaminen voi olla vaikeaa ja uuvuttavaa

Tällä kertaa tuntui turhauttavalta tajuta, että olimme palanneet alkupisteeseen ja että kenelläkään ei edelleenkään ollut vastauksia kysymyksiimme. Mikään ei tuntunut auttavan tyttären tunteja kestäviin koviin kipuihin. On huolestuttavaa, kun emme tiedä milloin oireiden paheneminen loppuu”, Eliza kertoi MNT:lle.

Elizalle sanottiin, että tyttären oireet voivat johtua ahdistuksesta. Tyttären viimeisimmän oireiden uusiutumisen aikana perheen lääkäri lähetti tytön klinikalle, jossa keskitytään pitkän koronan hoitoon. Isossa-Britanniassa yli 60 erikoisklinikkaa tarjoavat nyt toipumisapua ihmisille, joilla on pitkittyneitä COVID-19-oireita.

sosiaalinen eristys

Tapasimme lääkäriä välillä kahdesti viikossa

Isobritannialainen Rachel kertoi, että hänen 10-vuotias tyttärensä on ollut huonossa kunnossa COVID-oireiden jälkeen lokakuusta 2020 lähtien.

”Hän oli aiemmin erittäin aktiivinen, kilpaili tanssissa ja voimistelussa ja harrasti tae kwon do’a”, Rachel kertoi. Normaalisti aktiivinen tytär ei ole jatkuvien oireiden vuoksi voinut osallistua harrastuksiin, joista hän yleensä nauttii.

Viimeviikkoihin asti tytär on kamppaillut jopa portaissa. Tytön pahimmat oireet ovat vatsakipu, pahoinvointi, äärimmäinen väsymys ja hengenahdistus.

Muiden vanhempien tavoin myös Rachel yritti pitkään löytää apua tyttärelleen. Kun hän sai tukea, tämä ei näyttänyt parantavan tyttärensä oireita.

Rachel uskoi tyttären oireiden olevan yhdenmukaisia pitkän COVID -taudin kanssa, mutta lääkärit, joiden kanssa hän keskusteli, olivat eri mieltä.

Lopulta eräs asiantuntija ehdotti, että tytär tekee vasta-ainetestin, joka varmistaisi, että tytöllä todella oli COVID-19. Testitulos oli positiivinen. Tyttären öntgenkuvat paljastivat, että hänelle oli kehittynyt keuhkovaurio, vaikka ei ollut missään vaiheessa kärsinyt yskästä.

Lisätestien ja arviointien jälkeen 10-vuotias sai Long COVID-diagnoosin ja hänet lähetettiin jatkohoitoon krooniseen väsymykseen erikoistuneeseelle hoitotiimille.

Tällä hetkellä tyttären on joskus käytettävä pyörätuolia, mutta hänen kuntonsa on kohentunut sen verran, että tyttö jaksaa tehdä 12 minuutin iltapäiväkävelyitä. Toistaiseksi tyttö ei selviydy normaalista koulunkäynnistä oireiden vuoksi.

Diagnoosia etsimässä

Jane kertoi, että hänen 15-vuotiaalla pojallaan on ollut pitkittyneitä koronaoireita viimeisten 13 kuukauden ajan. Poika pääsi PCR-testiin vasta yli 8 viikkoa koronaoireiden alkamisen jälkeen. Testin tulos oli negatiivinen.

Myös covid -vasta -ainetesti, joka otettiin 3-4 kuukautta pojan oireiden alkamisen jälkeen, antoi negatiivisen tuloksen. ”Minulle sanottiin, että vasta-aineita ei välttämättä löydetä kun oireet ovat jatkuneet useita kuukausia,” Jane kertoi.

Janen poika kokee 13 kuukautta oireiden alkamisen jälkeen väsymystä, aivosumua, pahoinvointia ja päänsärkyä. Hän on oireiden seurauksena laihtunut alipainoiseksi.

Jane otti ensin yhteyttä lastenlääkäriin, joka määritteli pojan oireet influenssaaksi. Sen jälkeen hän pyysi lausuntoa tartuntatautiasiantuntijalta, joka suoritti joitain verikokeita ja arveli, että pojalla saattaa olla laaksokuume (sieni-infektio), joka on yleistä heidän alueellaan. Myöhemmät testit osoittivat, että laaksokuume ei ollut oikea diagnoosi.

”Tässä vaiheessa poikani oli saanut kohtauksia, jotka alkoivat tahattomasta vapinasta hartioissa, joten varasin tapaamisen lasten neurologille.”

Jane ja hänen poikansa menivät tapaamaan uutta lastenlääkäriä ja näyttivät hänelle päivittäisen päiväkirjan, jota he olivat pitäneet poijan oireista.

Neurologi arveli, että syy on todennäköisesti ”psykologinen”. Jane pyysi mielipidettä toiselta lasten neurologilta ja keuhkolääkäriltä. Heidän diagnoosinsa ja diagnoosiin liittyvät lääkkeet eivät auttaneet poikaa, vaan päinvastoin jopa pahensivat pojan oireita.

”Lääkkeisiin, verikokeisiin, kuvantamisiin, jatkuviin testeihin jne. liittyvien negatiivisten kokemusten seuauksena pojalleni on kehittynyt traumaattisia pelkoja”, Jane lisäsi.

Auttaakseen poikaansa tuntemaan olonsa paremmaksi, Jane etsi lopulta apua holistisista vaihtoehtohoidoistaa, punavaloterapiasta, tulehduskipulääkkeistä, tulehduksia hillitsevistä ravintoaineista ja hengitysharjoituksista. Nämä näyttivät auttaneen jossain määrin.

Jane mainitsi, että hänen poikansa oli löytänyt turvapaikan ja ystävän videopelien kautta. Online -videopelit ovat olleet erinomainen tapa selviytyä ja seurustella ihmisten kanssa näinä vaikeina pandemian aikoina”.




Ketogeeninen ruokavalio syövän terapiana

Hae-Yun Chung, Yoo Kyoung Park

Suomentajan saatesanat

Ystäväni pyysi minua etsimään tutkimuksia ketogeenisen ruokavalion vaikutuksista pahanlaatuisiin kasvaimiin ja erityisesti keuhkosyöpään. Yleensä yksittäisten ravintoaineiden tai ruokavalioiden parantaviin vaikutuksiin kannattaa suhtautua varauksella, mutta ketogeeninen ruokavalio vaikuttaa useilla aivan erityisillä tavoilla aineenvaihduntaan ja solujen signalointiin. Jatkuvasti lisääntyvä tutkimusnäyttö vahvistaa ketogeenisen ruokavalion metaboliset hyödyt. Hoitosuunnitelma kannattaa kuitenkin laatia hoitavan syöpälääkärin kanssa.

Disclaimer

Ketogeeninen ruokavalio ei ole maaginen enkelihoito, joka parantaa kaikki sairaudet. Sen terapeuttinen hyöty perustuu siihen, että KD minimoi sokereiden tarpeen käyttämällä sokerin sijaan rasvaa energian ensisijaisena lähteenä. Kroonisesti korkea verensokeri ja veren korkea insuliinipitoisuus altistavat monille sairauksille. Hiilihydraattien rajoittaminen auttaa elimistöä korjaamaan korkeiden sokeri- ja insuliinipitoisuuksien aiheuttamia vaurioita.

En väitä, että ketogeeninen ruokavalio parantaa syövän. Sellainen väite olisi julkeaa liioittelua, koska parantumisesta ei voi antaa takeita. Tutkimusten perusteella on vahvaa näyttöä siitä, että ketogeeninen ruokavalio parantaa syövän ennustetta. Ketogeeninen ruokavalio hidastaa syöpäsolujen kasvua ja lisääntymistä. Se vahvistaa immuunijärjestelmää, tehostaa aineenvaihduntaa ja hillitsee matala-asteista tulehdusta.

Ketogeenisen ruokavalion metaboliset hyödyt syöpien ja monien muiden sairauksien terapiana on laajasti tunnustettu ja osoitettu useissa tutkimuksissa. Tieteellinen näyttö ketogeenisen ruokavalion metabolisista hyödyistä lisääntyy jatkuvasti. Avaan joitain aihetta käsitteleviä tutkimuksia ja selitän, mihin ketogeenisen ruokavalion terapeuttiset hyödyt perustuvat. Ketogeenistä ruokavaliota on käytetty vuosisadan ajan lääkeresistentin epilepsian kohtausten ehkäisyyn. Hiljattain saatiin näyttöä, jonka mukaan niukasti hiilihydraatteja sisältävä ketogeeninen ruokavalio voi toimia lääkehoitoja vahvistavana terapiana Alzheimerin ja Parkinsonin tautien sekä eräiden syöpien hoidossa.

Ketogeeninen ruokavalio vaikuttaa selektiivisesti syöpäsolujen näännyttämiseen estämällä niiden glukoosin ottoa, vaikuttamalla mTOR-signalointireittiin ja sotkemalla pahanlaatuisten solujen energiametaboliaa.

Ketogeenisen ruokavalion mahdollisia terapeuttisia etuja:

  • hillitsee matala-asteista tulehdusta ja oksidatiivista stressiä

  • vahvistaa immuunijärjestelmää

  • tehostaa aineenvaihduntaa ja solujen sisäistä signalointia

  • lisää kehon antioksidanttien, kuten superoksidaasidismutaasin tuotantoa

  • laihduttaa tehokkaasti; lihavuus on syöpien itsenäinen riskitekijä

  • laskee veren sokeri- ja insuliinipitoisuutta

  • parantaa veren lipidiarvoja

  • lisää solujen insuliinisensitiivisyyttä ja vähentää insuliiniresistenssiä

  • lisää glutamaatin synteesiä GABA:ksi

  • vähentää stressihormoni kortisolia

  • muttaa elimistön metabolian sokeripolttoisesta rasvapolttoiseksi

  • käynnistää soluja puhdistavan ja kuona-aineita kierrättävän autofagian

  • syöpäsolut ovat riippuvaisia glukoosista ja glutamiinista

  • tuumorisolut eivät saa energiaa ketoaineista tai vapaista rasvahapoista

  • KD estää mTOR signalointireitin

  • hillitsee insuliinin kaltaisen kasvutekijän (IGF 1) tuotantoa


Syöpäsolut tarvitsevat ravinnoksi glukoosia ja/tai glutamiinia

Ketogeenisen ruokavalion tarkoitus on näännyttää syöpäsoluja nälkään. Ajatus on, että syöpäsolut eivät elä ilman glukoosia tai glutamiinia, eivätkä voi käyttää ketoaineita ja vapaita rasvahappoja energian tuotantoon, kuten melkein kaikki elimistön terveet solut.

Puutteellinen ravinnonsaanti hillitsee ketogeenisellä ruokavaliolla syöpäsolujen aggressiivista kasvua ja lisääntymistä. Ketogeenisen ruokavalion noudattaminen ei kuitenkaan todennäköisesti paranna syöpää. Se voi hidastaa syövän pahenemista eräiden metaboliareittien välityksellä.

Ravintoon perustuvat terapiat kompastuvat herkästi siihen, että syöpäsolut osaavat tuottaa energiaa glukoosin lisäksi myös glutamiinista, joka on eräs yleisimmistä aminohapoista. Pelkkä sokereiden saannin rajoittaminen ei riitä tukahduttamaan syöpäsoluja.

Glutamiinia saa monista arkisista ravintoaineista (liha, kala, munat, monet raa’at vihannekset, palkokasvit jne,..). Glutamiini ei kestä kypsennystä, joten kypsennetyt ruoat eivät juurikaan lisää kehon glutamiinitasoja, mutta koska keho tarvitsee glutamiinia, se valmistaa sitä itse.

Glutamiini on määrällisesti kehon yleisin aminohappo. Elimistö käyttää sitä mm. lihaskunnon ylläpitämiseen. Glutamiini voi toimia glukoneogeneesin lähtöaineena ja solujen polttoaineena. Glutamiini myös ylläpitää suoliston terveyttä ja nopeuttaa lihasten palautumista rasituksesta.

Jos soluille tarjotaan energian lähteiksi ketoaineita ja vapaita rasvahappoja, glutamiinin synteesin tarve todennäköisesti vähenee. Tämä voi olla yksi syöpäsolujen kasvua ja leviämistä hillitsevä mekanismi.

Solut osaavat valmistaa glutamiinia mm. glutamaatista ja ammoniakista. Ketogeeninen ruokavalio lisää glutamaatin synteesiä gamma-aminovoihapoksi (GABA), mikä teoriassa voisi vähentää glutamaatin biosynteesiä syöpäsoluja ruokkivaksi glutamiiniksi.

Hermostoa rauhoittava gamma-aminovoihappo on hormoni ja glutamaatin vastavaikuttaja. Ketogeeninen ruokavalio laskee stressihormoni kortisolin eritystä. Myös tämä metabolinen reitti voi tuottaa myönteisen vasteen kamppailussa syöpäsoluja vastaan. Solutasolla KD lisää elimistön valmistamien antioksidanttin, kuten superoksidaasidismutaasin tuotantoa. Tämä voi vaimentaa syövän leviämiselle otollista matala-asteista tulehdusta ja oksidatiivista stressiä.

Lähes kaikki terveet solut veren punasoluja paitsi voivat hyödyntää ketoaineita ja/tai vapaita rasvahappoja energianlähteenä. Tuumorisolut saavat energiaa vain glukoosista ja glutamiinista.

Veren glukoosipitoisuuden laskiessa haiman erittämän insuliinin pitoisuus verenkierrossa vähenee. Insuliini on elimistölle välttämätön anabolinen hormoni, mutta korkea insuliinipitoisuus eli hyperinsulinemia assosioituu vahvasti moniin sairauksiin, kuten sydän- ja verisuonitauteihin, aikuistyypin diabetekseen sekä syöpiin (tutkimuksia insuliinin ja syövän yhteydestä: a, b, c, d, e). On näyttöä siitä, että syöpäsolut voivat valjastaa insuliinin kuljettamaan niille energiaa.

”Endogenous hyperinsulinemia has been proposed as one of the causal factors contributing to the association between obesity, diabetes, and increased cancer risk and mortality. Previous studies have examined the mechanisms through which hyperinsulinemia promotes cancer progression, but it is not understood how hyperinsulinemia contributes to cancer incidence. Disruption of cell polarity is an early event in epithelial cancers, and cells that lose polarity are usually eliminated through tumor-suppressive cell competition. Sanaki and colleagues used Drosophila with scrib (scribble planar cell polarity protein) mutant cell clones in the eye disc to understand the mechanisms underlying tumor-suppressive cell competition. They discovered that hyperinsulinemia gives epithelial cancer cells a competitive advantage. – Hyperinsulinemia and insulin receptor signaling allow cancer cells to evade cell competition.

Glukagoni ja katabolinen aineenvaihdunta

Rasvaan perustuva ketogeeninen aineenvaihdunta lisää glukagonin (katabolinen hormoni) eritystä. Glukagonia erittyy haiman alfasoluista verensokerin laskiessa.

Yksinkertaistettuna anabolinen (insuliinin ohjaama) aineenvaihdunta rakentaa yksinkertaisemmista molekyyleistä monimutkaisempia molekyylirakenteita (proteiineja, sokerivarastoja ja rasvakudosta), kun katabolinen aineenvaihdunta puolestaan purkaa monimutkaisempia molekyylejä yksinkertaisemmiksi. Insuliini ja insuliinin kaltainen kasvutekijä 1 vaikuttavat syöpään.

Glukagoni purkaa sokeri- ja rasvavarastoja energiakäyttöön. Glykogeenien tyhjennyttyä lipolyyttiset hormonit alkavat purkaa rasvasolujen sisältämiä triglyseridejä energiakäyttöön.

Glukagoni saa aineenvaihdunnan purkamaan ja polttamaan varastoitua energiaa (läskiä). Muiden lipolyyttisten hormonien kanssa glukagoni käynnistää rasvasolujen lipogeneesiin, jossa triglyseridit puretaan vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon. Niistä elimistö voi tuottaa energiaa (betaoksidaatio) ja energiaravinteita (ketogeneesi ja glukoneogeneesi).

Rasvakudos toimii kuin itsenäinen elin vaikuttamalla kylläisyyshormoni leptiinin erityksen lisäksi tulehduksellisten sytokiinien eritykseen, mikä ylläpitää syövälle otollista matala-asteista tulehdusta.

Lihavuus on itsenäinen syövälle altistava riskitekijä, joka lisää syöpäkuolleisuutta. Matala-asteista tulehdusta ylläpitävän rasvakerroksen haihduttaminen ketogeenisellä ruokavaliolla laihduttaa, parantaa veren rasva- ja sokeriarvoja sekä verenpainetta. KD lisää solujen insuliinisensitiivisyyttä, hillitsee matala-asteista tulehdusta ja oksidatiivista stressiä. Insuliiniresistenssi auttaaa syöpäsoluja kaappaamaan verestä glukoosia.

Näiltä osin on runsaasti hyvin perusteltua ja uskottavaa evidenssiä, että ketogeeninen ruokavalio voi parantaa syövän ennustetta.

Hiilihydraattien saannin rajoittamisella glukoosin määrää ei voi täysin nollata, koska elimistö tarvitsee glukoosia ja valmistaa sitä tarpeen mukaan glukoneogeneesissä itse mm. veren punasoluille. Elimistö tarvitsee myös glutamiinia, jota solut valmistavat tarvittaessa.

Kaikki eivät kuitenkaan ketogeenisen ruokavalion hyötyihin usko. Osa tutkijoista suhtautuu ketogeeniseen ruokavalioon hyvin kriittisesti. He perustelevat kriittistä kantaansa sillä, että ketogeeninen ruokavalio voi laukaista ja ylläpitää kakeksiaa, eli sairaalloista laihtumista. Tästä syystä ruokavalioterapian aloittamisesta on hyvä keskustella hoitavien lääkäreiden ja onkologien kanssa.

Kakeksia tarkoittaa vaikeasta sairaudesta tai ravinnon puutteesta aiheutuvaa kuihtumista, väsymistä, lihaskudoskatoa, vaikeaa aliravitsemusta ja laihtumista. Mahdollisia tilaan johtavia sairauksia ovat krooniset infektiot ja syövät.

Tämän tutkimuskatsauksen aineistoon on koottu vuosien 1985 ja 2017 välillä tehtyjä kontrolloituja ihmistutkimuksia. Tutkimuskatsauksessa analysoitiin 10 kriteerit täyttävää tutkimuspaperia. Katsaus koottiin syöpäpotilaiden ihmiskokeiden tuloksista ja se tarkasteli ketogeenisen ruokavalion käyttökelpoisuutta syöpäpotilaiden hoitoa tehostavana ravintoterapiana.

Tulokset osoittivat potilaiden painon ja antropometristen muutosten sekä seerumin veriprofiilien paranemista. Ketogeenisellä ruokavaliolla elimistön laktaattipitoisuus laski. Merkittäviä muutoksia potilaiden elämänlaatua arvioivissa mittauksissa ei raportoitu.

Ketogeeninen ruokavalio on muita onkologisia hoitoja tehostava terapiavaihtoehto tietyissä syövän alatyypeissä, joiden tulokset näyttävät korreloivan elimistön metabolisen tilan kanssa, mutta tulokset eivät ole aivan kiistattomia ja johdonmukaisia. Siksi tämä aihe edellyttää lisätutkimuksia.

Johdanto

Ruokavalioon ja liikuntaan perustuvat interventiot ovat hyödyllisiä syöpään ja sen hoitoon liittyvien haittatapahtumien lieventämisessä. Ruokavalio- ja liikuntainterventiot näyttävät lisäävän syöpään sairastuneen odotettavissa olevaa elinaikaa [3].

Syövän aineenvaihduntaprosessit ovat monimutkaisia ja hyvin säänneltyjä. On yhä enemmän todisteita siitä, että ruokavalion mukauttamisesta voi olla runsaasti hyötyä hoidettaessa syöpää.

Runsaasti rasvaa, maltillisesti proteiineja ja niukasti hiilihydraatteja sisältävä ruokavalio [4] tai energiaa rajoittava ruokavalio [5,6] tehostavat syöpään sairastuneen hoitoa. Ketogeeniseen ruokavalioon perustuva pätkäpaasto sekä niukkaenerginen ketogeeninen ruokavalio vaikuttavat hidastavan tehokkaasti syövän leviämistä. Joidenkin tutkimusten mukaan paasto ja pätkäpaasto ehkäisevät tehokkaasti syövän kehittymistä.

Kalorirajoituksen on havaittu vähentävän kasvua edistävää signalointia laskemalla väliaikaisesti glukoosipitoisuutta ja hillitsemällä insuliinin kaltaista kasvutekijää 1 (IGF 1), joka assosioituu vahvasti ikääntymiseen ja syöpään [7].

Molekyylireittien manipulointi kalorirajoituksella tehostaa syöpäsolujen altistumista sytotoksiselle sädehoidolle ja kemoterapialle muun muassa rintasyövän hoidossa. Monet syöpäpotilaat eivät kuitenkaan jaksa noudattaa kaloreiden rajoittamista.

Perinteinen ketogeeninen ruokavalio ei rajoita ravinnosta saatavan energian määrää. Viime aikoina hyvin vähäkalorisen ketogeenisen ruokavalion (VLCKD) ja niukasti hiilihydraatteja sisältävän pätkäpaaston noudattamisen terveyshyödyistä on saatu paljon uutta tietoa. Ketogeenisen ruokavalion tarkoitus on käynnistää energianlähteiksi kelpaavien ketoaineiden (asetoasetaatin, asetonin ja betahydroksibutyraatin) tuotanto ketogeneesissä.

Niukka energiansaanti ja ketoosi käynnistävät solujen puhdistus- ja kierrätysjärjestelmän, eli autofagian. Autofagia tehostaa solujen energiansaantia ja terveyttä kierrättämällä soluihin kerääntyneitä kuona-aineita, kuten vaurioituneita ja keskeneräisiä proteiiniketjuja energiaksi ja uusiksi soluelimiksi. Autofagiaa tutkitaan syövän hoitona.

Ketoosin käynnistämisen tarkoituksena on vähentää syöpäsolujen tarvitseman glukoosin määrää elimistössä tuottamalla elimistön terveille soluille energiaksi kelpaavia ketoaineita ja vapaita rasvahappoja, joita syöpäsolut eivät voi käyttää energianlähteinä.

Vander Heiden et al. [8] havaitsivat, että pahanlaatuiset kasvaimet käyttävät huomattavan suuria määriä glukoosia ympäröivään kudokseen verrattuna ja tuottavat lopulta laktaattia aerobisen glykolyyttisen reitin kautta.

Glukoosin saatavuuden rajoittaminen voi vähentää syöpäsolujen energiantuotantoa ja siten hidastaa syövän leviämistä [9].

Tapaus glutamiini

Aminohappo glutamiini on vähemmän tunnettu ravintoaine, joka vaikuttaa syöpäsolujen kasvuun.

Glutamiini on ehdollisesti välttämätön aminohappo, jota käytetään laajalti ravintolisänä, erityisesti sen immunomoduloivan roolin vuoksi. Glutamiinilla on useita biologisia toimintoja, kuten solujen lisääntyminen, energiantuotanto, glykogeneesi, ammoniakkipuskurointi ja happo-emästasapainon ylläpito.

Glutamiini ehkäisee lihassolujen väsymistä. Tärkeimmät väsymyksen syyt ovat: protonien kertyminen lihassoluihin, energialähteiden (esim. Fosfokreatiinin ja glykogeenin) ehtyminen, ammoniakin kertyminen vereen ja kudoksiin, oksidatiivinen stressi, lihasvauriot ja muutokset välittäjäaineiden synteesissä, kuten serotoniinin lisääntyminen ja dopamiinin väheneminen.

Glutamiini voi viivästyttää väsymystä useilla mekanismeilla: (i) se on yksi yleisimpiä glykogeenisiä aminohappoja, jolla on merkittävä vaikutus sitruunahappokierron anapleroosiin ja glukoneogeneesiin, (ii) glykogeenisyntaasin aktivaatio (glutamiinia pidetään glykogeenisynteesin suorana stimulaattorina), (iii) glutamiini on tärkein myrkytön ammoniakkipuskuri (se sitoo ammoniakkia) välttäen tämän metaboliitin kertymistä, (iv) glutamiini liittyy myös lihasvaurioiden korjaamiseen ja sitä pidetään epäsuorana antioksidanttina muun muassa stimuloimalla glutationisynteesiä.

Vuonna 1955 Harry Eagle teki yllättävän löydön laboratoriossa kasvatetuista syöpäsoluista. Hän havaitsi, että syöpäsolut tarvitsivat hyvin suuria määriä glutamiinia. Ilman glutamiinia syöpäsolut lopettivat kasvun ja lopulta kuolivat huolimatta kaikista muista syöpäsoluihin vaikuttavista tunnetuista tekijöistä.

Glutamiini on aminohappo. Se on yksi kahdestakymmenestä molekyylistä, joista solut kokoavat proteiineja. Glutamiini sisältää runsaasti typpeä ja se voidaan hajottaa luovuttamaan typpi muiden molekyylien, kuten DNA:n rakentamiseen. Syöpäsolujen riippuvuus glutamiinista on pitkään tunnettu potentiaalisena syövän ”Akilleen kantapäänä”.

”Solut ovat riippuvaisia glutamiinista monella tavalla”, kertoo Natasha Pavlova, biokemisti, joka tutkii syövän aineenvaihduntaa MSK:n laboratoriossa Sloan Kettering -instituutissa. ”Se ei ole vain mukana DNA-nukleotidien ja muiden molekyylien tuotannossa, vaan se vaikuttaa myös muiden aminohappojen soluun tuontiin.”

Vaikuttamalla syöpäsolujen glutamiinin saantiin syövän etenemistä voi hidastaa. Ongelma on, että terveet solut tarvitsevat myös glutamiinia. Siksi lääkkeet, jotka vaikuttavat glutamiinin pitoisuuksiin elimistössä, ovat liian vaarallisia käytettäväksi syöpähoitona.

Samalla kun tutkijat oppivat lisää siitä kuinka syöpäsolut käyttävät glutamiinia, he toivovat löytävänsä uusia tapoja kohdistaa syöpähoito syöpäsolujen erityiseen glutamiiniriippuvuuteen selektiivisesti säästämällä elimistön terveitä soluja.

Glutamiini on välttämätön ei-välttämätön aminohappo

Glutamiini on teknisesti ei-välttämätön aminohappo. Toisin kuin välttämättömät aminohapot, joita solut eivät osaa itse valmistaa ja joita meidän on saatava ravinnosta, solut voivat helposti syntetisoida glutamiinia muista lähtöaineista, kuten glutamaatista ja ammoniakista.

Glutamiinin ominaisuudet tekevät siitä ainutlaatuisen aminohapon. ”Glutamiinissa on erityistä se, että kaikki muut ei-välttämättömät aminohapot voidaan tehdä glutamiinista, mutta välttämättömät aminohapot eivät voi korvata glutamiinia”, Dr. Pavlova selittää.

Glutamiini on tärkeä useille biokemiallisille reiteille, joita syöpäsolut hyödyntävät uusien soluosien rakentamiseen. Syövän tarve glutamiinille on niin suuri, että eräät syöpää aiheuttavat onkogeenit vaikuttavat siihen, kuinka paljon solut ottavat ja tuottavat glutamiinia.

MYC-geeni, vahvistaa syöpää lisäämällä syöpäsolujen tasaista pääsyä glutamiinivarastoon. Solut, joissa on monistettu MYC-geeni, muodostavat enemmän entsyymiä, joka syntetisoi glutamiinia loppupään tuotteiksi. Tällaiset solut ovat olennaisesti riippuvaisia MYC-monistuksesta.

Natasha Pavlova kertoo, että solut ovat riippuvaisia glutamiinista monin tavoin. IDH1- ja IDH2-geenien mutaatiot, jotka muuttavat sitä, miten glutamiinituotteita käytetään solussa, ovat yleisiä tietyntyyppisissä aivosyövissä ja leukemiassa.

Korkea glutamiinin kysyntä tarkoittaa, että sen tarjonta kasvaimen sisällä on melko vähäistä. Syöpäsolut onnistuvat kuitenkin kasvamaan kasvaimen sisällä. Tämä viittaa siihen, että soluilla on vaihtoehtoisia tapoja korvata ja täydentää glutamiinitarjontaa: glukoosi. Tri Pavlovan kollegat Thompsonin laboratoriosta ja yhteistyökumppanit Princetonin yliopistosta ja New Yorkin yliopistosta (NYU) ovat havainneet, että syöpäsolut voivat ryöstää niitä ympäröivien terveiden solujen ravintoaineita omaan käyttöön.

Kohdennettu deprivaatio ja mTOR-signalointi

Rapamysiinin nisäkäskohde (mTOR) säätelee solujen lisääntymistä, autofagiaa ja apoptoosia (ohjattua solukuolemaa) osallistumalla moniin solujen signalointireitteihin.

Tutkimukset ovat osoittaneet, että mTOR-signalointireitti liittyy myös syöpään, niveltulehdukseen, insuliiniresistenssiin, osteoporoosiin ja moniin muihin sairauksiin. Tuumorissa usein aktivoituva mTOR-signalointireitti ohjaa geenien transkriptiota ja proteiinisynteesiä solujen lisääntymisen ja immuunisolujen erilaistumisen säätelemiseksi, mutta sillä on myös tärkeä rooli kasvaimen aineenvaihdunnan säätelijänä.

Ketogeeninen ruokavalio estää mTOR-reitin signalointia. mTOR, joka on fosfatidyyli-inositolikinaasiin liittyvän proteiinikinaasiperheen jäsen, on tärkeä säätelijä ravintoaineiden saatavuudessa ja keskeinen välittäjä solun kasvumekanismissa insuliinin, insuliinin kaltaisen kasvutekijä 1 (IGF 1) ja muiden kasvu-tekijäsignaaleiden välillä. mTOR-signalointireitin tukahduttaminen auttaa ymmärtämään ketogeenisen ruokavalion metabolisia ja terapeuttisia vaikutuksia.

Syöpäsolut ovat ravinnon hankinnassa hyvin sopeutumiskykyisiä. Vaikka syöpäsolujen joustavuus ravinnonlähteiden suhteen on heikko, glutamiinin rajoittaminen on äärimmäisen vaikea toteuttaa käytännösssä.

On olemassa muita mahdollisia lähestymistapoja. Yksi on estää glutamiinin tuonti tuumorisoluihin kohdentamalla lääkehoito proteiinikuljettajiin. Jotkut tutkimukset viittaavat siihen, että proteiinikuljettaja, jota kasvainsolut käyttävät glutamiinin tuontiin, eroaa normaalien solujen käyttämästä ja että tätä kuljettajaa on enemmän tuumorisoluissa. Nämä syöpäspesifiset kuljettajat voivat olla hyvä kohde lääkkeille.

Syöpäsolujen riippuvuus glutamiinista voi myös toimia perustana terapioiden räätälöimiseksi. Yksi glutamiinista riippuvainen aminohappotuote on glutationi. Tämä tärkeä antioksidantti hajottaa elimistöön päässeitä vaarallisia kemikaaleja ja reaktiivisia happilajeja (ROS).

”Glutationi voi kiinnittyä haitalliseen kemikaaliin tai molekyyliin ja ikään kuin liputtaa sen solusta poistettavaksi.

NYU:n tutkijat ovat osoittaneet, että eräät keuhkosyövän geneettiset mutaatiot ovat riippuvaisia glutationista. Glutationin häiritseminen (glutaminaasi-inhibiittoreiksi kutsuttujen lääkkeiden välityksellä) voi olla potentiaalinen keuhkosyövän hoitomenetelma. Useissa meneillään olevissa kliinisissä tutkimuksissa näitä glutamiiniin vaikuttavia lääkkeitä yhdistetään immuunipisteen estäjien ja reseptorityrosiinikinaasi-signaloinnin estäjien kanssa. Jälkimmäiset vaikuttavat solusignalointiin ja kehottavat solua hankkimaan ravintoa ja kasvamaan.

Tri Pavlova suhtautuu kuitenkin varauksella ravintoterapian hyötyihin, koska glutamiinin määrään vaikuttaminen on hyvin vaikeaa. Hän muistuttaa, että pelkkä sokereiden rajoittaminen ei syöpää paranna.

© 2021 Memorial Sloan Kettering Cancer Center

Yhteenveto tutkimuksista

Tässä tutkimuskatsauksessa seurattiin ketogeenisen ruokavalion vaikutuksia 214 syöpäpotilaaseen. Suurin osa tutkimuksista oli interventiotutkimuksia lukuun ottamatta yhtä kohorttitutkimusta. Tutkimukseen osallistuvien ikä oli enimmäkseen 50-65. Kahdeksan kymmenestä tutkimusraportista toimitettiin Euroopan maista (Saksa ja Italia) ja kaksi Yhdysvalloista.

Ketogeenisen interventiohoidon kesto vaihteli 5 päivästä 2 vuoteen, ja tulosmittaukset keskittyivät pääasiassa painoon, kehon koostumukseen ja veriprofiiliin.

Yksi raportti mitasi elämänlaatua (QOL). Raportoidut ketogeenisen ruokavalion haittavaikutukset olivat suhteellisen lieviä (ummetus, jalkakrampit, ripuli jne.).

Lyhyissä interventiotutkimuksissa ketogeenistä ruokavaliota noudattaneilla ei todettu merkittäviä muutoksia tutkimusmarkkereissa, kuten painossa ja veren lipidiprofiilissa lukuun ottamatta laktaattipitoisuuden vähenemistä kasvainkudoksessa. (2 weeks in the study by Rossi-Fanelli et al.,(12); 1 week in the study by Fearon et al. (11); 5 days in the study by Schroeder et al.(16)).

Ketogeenisen ruokavalion pidempi noudattaminen; 8 viikkoa, ketogeeninen ruokavalio (normaali ateria + rasvaa sisältävä nestemäinen ruokavalio) vaikutti positiivisesti potilaiden energisyyteen ja painoon (13). Ketogeenistä ruokavaliota käytettiin tutkimuksessa esimerkiksi aliravituilla maha-suolikanavan syöpäpotilailla, joille oli kehittynyt syövän etäpesäkkeitä.

Syöpälääkkeiden biomarkkereiden arviointia ei mitattu useimmissa artikkeleissa lukuun ottamatta Jansenin ja Walachin tutkimusta (18); siinä havaittiin, että TKTL1, eli kasvaimen etenemiseen liittyvä markkeri väheni 2 vuoden ketogeenisellä ruokavaliolla.

Erityisesti Fine et al. ., (15) Rieger et al., (17) sekä Klement ja Sweeney (19) osoittivat, että ketoniruokavalio vaikutti merkittävästi painon laskuun. Nämä tulokset osoittivat, että toisin kuin johdonmukaiset ketogeeniset vaikutukset epilepsiapotilailla, ketogeeniset vaikutukset syöpäpotilailla eivät olleet johdonmukaisia tässä katsauksessa.

Ketogeenisen ruokavalion vaikutus eri syöpätyyppeihin

KETOGEENINEN RUOKAVALIO TERAPEUTTISENA STRATEGIANA

Viime aikoina ketogeeninen ruokavalio on nostettu vaihtoehdoksi syövän hoidossa sekä ihmisillä ja syöpähoitojen eläinmalleissa. Jotkut prekliinisistä tutkimuksista ovat osoittaneet ketogeenisen ruokavalion vähentävän kasvaimen kasvua ja parantavan selviytymistä pahanlaatuisen gliooman (21–23), eturauhassyövän (24–26), paksusuolisyövän (27) ja maha-suolikanavan syövän eläinmalleissa (28).

Vähäkalorinen ruokavalio, kuten paaston indusoima ketoositila tehostaa syöpäsolujen reaktiota kemoterapiaan ja parantaa joitain kemoterapian aiheuttamia sivuvaikutuksia normaaleissa kudoksissa (29).

Viime aikoina on julkaistu useita tapausraportteja. Ensimmäinen raportti saatiin vahvistetusta glioblastooman multiformista, jota hoidettiin tavanomaisella hoidolla yhdessä rajoitetun ketogeenisen ruokavalion kanssa; tapauksessa havaittu vaste viittasi kalorirajoitetun ketogeenisen ruokavalion potentiaalisiin hyötyihin (30).

Ketogeenistä ruokavaliota on tutkittu intensiivisesti Euroopan maassa, kuten Saksassa. Näissä tutkimuksissa potilaan fyysistä olotilaa parannettiin onnistuneesti. Kasvaimet kutistuivat ketogeenisellä ruokavaliolla (14).

Tässä käsitellyistä tutkimuksista puuttuu syöpätyypin, syövän sijainnin, syövän vaiheiden ja syövän hoidon kulku, joten tuloksia ei voida yleistää.

Ketogeeninen ruokavalio johtaa yleensä lisääntyneeseen laihtumiseen. Sairaalloinen laihtuminen aiheuttaa syöpäpotilaiden kohdalla huolta, mutta tässä katsauksessa havaitsimme, että ketogeenisellä ruokavaliolla ei ollut merkittäviä haitallisia vaikutuksia. Se voi johtua siitä, että tutkittavat olivat aikuisia, kun taas lasten pitkäaikainen ketogeeninen ruokavalio voi aiheuttaa munuaisvaurioita, kuten munuaiskiviä (31). Tässä katsauksessa ilmoitetut haittavaikutukset olivat ummetus, ripuli, uupumus jne.

Terveillä lihavilla aikuisilla, hiilihydraatteja rajoittavan ruokavalion ilmoitetut haittavaikutukset kuuden kuukauden jälkeen olivat matalatiheyksisen lipoproteiinikolesterolin (LDL) tason nousu ja jonkin verran vapinaa ja levottomuutta (32).

Tässä katsauksessa kuvatuissa tutkimuksissa arvioitiin ketogeenisen ruokavalion vaikutuksia syöpäpotilailla. Ainoastaan kymmenen tutkimusta analysoitiin, ja ominaisuudet ja tutkimuksen suunnittelu, ketogeeninen ruokavalio, tutkimuksen pituus, syöpätyyppi ja -vaihe sekä kasvainten sijainti olivat heterogeenisiä, mikä osaltaan johti puutteellisiin johtopäätöksiin. Tällä hetkellä on käynnissä ainakin 62 ketogeenisen ruokavalion vaikutuksia syöpään selvittävää tutkimusta.
Näistä 13 tutkimuksessa arvioidaan ketogeenistä ruokavaliota syöpähoitoa tehostavana terapiana.

Loppupäätelmiä ja ajatuksia

Katsauksen tavoite oli arvioida ketogeenisen ruokavalion toteutettavuutta ja soveltuvuutta syöpäterapiana sekä arvioida muuttujia, kuten vartalon koostumus, veriprofiilit ja QOL. Tämän tarkastelun perusteella saatiin lisää näyttöä siitä, että ketogeeninen ruokavalio on syöpäpotilailla turvallinen ja hyvin siedetty syöpähoitoja tehostava terapiavaihtoehto.

Jotta luotettavia päätelmiä ketogeenisen ruokavalion vaikutuksista syövän etenemiseen voidaan tehdä tarvitaan kuitenkin uusia pitkäkestoisia ruokavaliointerventioita, joissa huomioidaan syöpään liittyviä muuttujia ja biomarkkereita laajemmalti.

Johtopäätöksenä on, että ketoniruokavalion tehokkuus ja siedettävyys voi olla parempi eräissä syöpätyypeissä (parempi glioblastoomassa kuin mahasyövässä) .Ketogeenistä ruokavaliota voidaan käyttää turvallisesti syöpäpotilailla, jos sitä seurataan huolellisesti. On tärkeää luoda standardoitu ketogeeniseen ruokavalioon perustuva hoitoprotokolla.

Ketogeenisen ruokavalion arvellaan olevan tehokas syöpäterapia. Pelkästään ketogeenisen ruokavalion vaikutukset vaihtelevat syövän tyypistä riippuen, mutta ketogeenisen ruokavalion ja kemoterapian tai sädehoidon yhteisvaikutus on lupaava.

Toisaalta syöpäpotilaiden ketogeenisen ruokavalion kliinisten tutkimusten tulokset olivat kiistanalaisia. Tämä johtuu siitä, että tiukkoja ruokavalion rajoituksia, esimerkiksi ketonisuhdetta 2: 1 – 4: 1, ei voida jatkaa aikuisilla syöpäpotilailla.

Jos hiilihydraattirajoitus on riittämätön, esimerkiksi glukoosirajoitus 50–70 g:aan päivässä, seerumin ketoaineet eivät indusoidu kokonaan ja kasvainten vastainen vaikutus on epäselvä. Lisäksi ei ole selvää, kuinka kauan potilaiden on jatkettava ketogeenistä ruokavaliota kasvaimen vastaisen vaikutuksen osoittamiseksi.

Ketogeenisen ruokavalion kliinistä vaikutusta syöpäpotilailla on arvioitu myös käyttämällä PET-CT:tä ja pitkäaikaisia havaintoja. Nykyisellä ketogeenisellä ruokavaliohoidolla näyttää olevan myönteinen vaikutus pitkälle edenneiden syöpäpotilaiden elinajan odotteeseen.

Ketogeenisestä ruokavaliosta saadaan jatkuvasti uutta tietoa. Se vaikuttaa monimutkaisesti aineenvaihduntaan ja solujen signalointireitteihin. On useita mekanismeja, joilla KD voi hillitä syövän etenemistä. Tutkimusten valossa KD näyttää tehostavan kemoterapian ja sädehoidon vaikutuksia ja lisäävän pitkälle edenneitä syöpiä sairastaneiden elinajan odotetta. Tämä hieman laajennettu tutkimuskatsaus on vain pintaraapaisu, joka tarjoaa monimutkaisesta asiasta yksinkertaistetun kuvan.

Tutkimuksia ja lähdeaineisto

https://www.mdpi.com/2072-6643/12/5/1473/htm

https://clincancerres.aacrjournals.org/content/19/14/3905.full

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842847/

https://meridian.allenpress.com/radiation-research/article-abstract/187/6/743/150766

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624453/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842847/

https://www.sciencedirect.com/science/article/pii/S2213231714000925

https://www.mskcc.org/news/beyond-sugar-what-cancer-cells-need-grow

https://stm.sciencemag.org/content/12/547/eabc8942

https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-020-00396-1

1. Demark-Wahnefried W, Morey MC, Sloane R, Snyder DC, Cohen HJ. Promoting healthy lifestyles in older cancer survivors to improve health and preserve function. J Am Geriatr Soc 2009;57 Suppl 2:S262–4.10.1111/j.1532-5415.2009.02507.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Kushi LH, Kwan ML, Lee MM, Ambrosone CB. Lifestyle factors and survival in women with breast cancer. J Nutr 2007;137: 236S–42S. [PubMed] [Google Scholar]

3. Patterson RE, Cadmus LA, Emond JA, Pierce JP. Physical activity, diet, adiposity and female breast cancer prognosis: a review of the epidemiologic literature. Maturitas 2010;66:5–15.10.1016/j.maturitas.2010.01.004 [PubMed] [CrossRef] [Google Scholar]

4. Imoberdorf R, Rühlin M, Ballmer PE. Cancer and nutrition: a paradigma shift. Laryngorhinootologie 2017;96:514–8. [PubMed] [Google Scholar]

5. Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 2017;9:eaai8700.10.1126/scitranslmed.aai8700 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Champ CE, Baserga R, Mishra MV, Jin L, Sotgia F, Lisanti MP, et al. Nutrient restriction and radiation therapy for cancer treatment: when less is more. Oncologist 2013;18:97–103.10.1634/theoncologist.2012-0164 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA, Westbrook R, et al. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS One 2009;4:e4567.10.1371/journal.pone.0004567 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029–33.10.1126/science.1160809 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Huebner J, Marienfeld S, Abbenhardt C, Ulrich C, Muenstedt K, Micke O, et al. Counseling patients on cancer diets: a review of the literature and recommendations for clinical practice. Anti-cancer Res 2014;34:39–48. [PubMed] [Google Scholar]

10. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0. http://handbook.cochrane.org. [updated March 2011].

11. Fearon KC, Borland W, Preston T, Tisdale MJ, Shenkin A, Calman KC. Cancer cachexia: influence of systemic ketosis on substrate levels and nitrogen metabolism. Am J Clin Nutr 1988;47:42–8. [PubMed] [Google Scholar]

12. Rossi-Fanelli F, Franchi F, Mulieri M, Cangiano C, Cascino A, Ceci F, et al. Effect of energy substrate manipulation on tumour cell proliferation in parenterally fed cancer patients. Clin Nutr 1991;10:228–32.10.1016/0261-5614(91)90043-C [PubMed] [CrossRef] [Google Scholar]

13. Breitkreutz R, Tesdal K, Jentschura D, Haas O, Leweling H, Holm E. Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study. Wien Klin Wochenschr 2005;117:685–92.10.1007/s00508-005-0455-3 [PubMed] [CrossRef] [Google Scholar]

14. Schmidt M, Pfetzer N, Schwab M, Strauss I, Kämmerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab (Lond) 2011;8:54.10.1186/1743-7075-8-54 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012;28:1028–35.10.1016/j.nut.2012.05.001 [PubMed] [CrossRef] [Google Scholar]

16. Schroeder U, Himpe B, Pries R, Vonthein R, Nitsch S, Wollenberg B. Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 2013;65:843–9.10.1080/01635581.2013.804579 [PubMed] [CrossRef] [Google Scholar]

17. Rieger J, Bähr O, Maurer GD, Hattingen E, Franz K, Brucker D, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 2014;44:1843–52.10.3892/ijo.2014.2382 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Jansen N, Walach H. The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: a case series in general practice. Oncol Lett 2016;11:584–92. [PMC free article] [PubMed] [Google Scholar]

19. Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes 2016;9:143.10.1186/s13104-016-1959-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Tan-Shalaby JL, Carrick J, Edinger K, Genovese D, Liman AD, Passero VA, et al. Modified Atkins diet in advanced malignancies – final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr Metab (Lond) 2016;13:52.10.1186/s12986-016-0113-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011;11:315.10.1186/1471-2407-11-315 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 2003;89: 1375–82.10.1038/sj.bjc.6601269 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond) 2010;7:74.10.1186/1743-7075-7-74 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Freedland SJ, Mavropoulos J, Wang A, Darshan M, Demark-Wahnefried W, Aronson WJ, et al. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 2008;68:11–9.10.1002/pros.20683 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Masko EM, Thomas JA, 2nd, Antonelli JA, Lloyd JC, Phillips TE, Poulton SH, et al. Low-carbohydrate diets and prostate cancer: how low is “low enough”? Cancer Prev Res (Phila) 2010;3:1124–31.10.1158/1940-6207.CAPR-10-0071 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Mavropoulos JC, Buschemeyer WC, 3rd, Tewari AK, Rokhfeld D, Pollak M, Zhao Y, et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila) 2009;2:557–65.10.1158/1940-6207.CAPR-08-0188 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Beck SA, Tisdale MJ. Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Res 1989;49:3800–4. [PubMed] [Google Scholar]

28. Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R, et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008;8:122.10.1186/1471-2407-8-122 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 2012;4:124ra27.10.1126/scitranslmed.3003293 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab (Lond) 2010;7:33.10.1186/1743-7075-7-33 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. McNally MA, Pyzik PL, Rubenstein JE, Hamdy RF, Kossoff EH. Empiric use of potassium citrate reduces kidney-stone incidence with the ketogenic diet. Pediatrics 2009;124:e300–4.10.1542/peds.2009-0217 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Yancy WS, Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 2004;140:769–77.10.7326/0003-4819-140-10-200405180-00006 [PubMed] [CrossRef] [Google Scholar]

Articles from Journal of Cancer Prevention are provided here courtesy of Korean Society of Cancer Prevention





Ravinto ja evoluutio: Lucy & fat of the land

Miten meistä tuli ihmisiä ja mikä erottaa ihmiset muista luontokappaleista? Entä mitä ensimmäiset esi-ihmiset ja ihmiset söivät? Näihin kysymyksiin on esitetty monia kiinnostavia vastauksia. Yritän rekonstruoida esihistorian ja Homojen historian kompaktiin ja helposti pureskeltavaan pikaruokapamflettiin.

Viimeisen vuosisadan aikana syömämme ravinto on muuttunut valtavasti, mutta geenien ja aineenvaihdunnan toiminnan osalta emme ole muuttuneet juuri lainkaan kymmeniin tuhansiin vuosiin.

Yritän hahmotella johdonmukaisen selvityksen esihistoriallisten ihmisten ruokavaliota avaavien luentojen pohjalta. Neil Armstrongin sanoja mukaillen: arvoitukset herättävät ihmetystä ja ihmetys johtaa haluun ymmärtää.

Pamfletti ei olisi pamfletti ilman poliittista ja ideologista motiivia, joten katsotaan kuinka kuivin jaloin tästä selvitään. Olen omien vahvistusharhojeni uhri.

Planeetta Helvetti

Alussa oli Helvetti. Satoja miljoonia vuosia myrskyävä kahden miljardin kuutiokilometrin hornankattila ja vulkaanisesti aktiivinen kiehuva planeetta. Neljä miljardia vuotta sitten nuori maailmamme muistutti enemmän helvettiä kuin paratiisia. Nuori maa oli painajaismainen, kaoottinen ja villi kurimus, jonka kaasukehän toiseksi yleisin aine oli hiilidioksidi.

Ensimmäinen solu kehittyi tässä noidankattilassa noin 3,5 miljardia vuotta sitten. Se oli ehkä kemoheterotrofi, joka hyödynsi elinympäristönsä orgaanisia yhdisteitä. Alkusoluille muodostui kyky valmistaa orgaanisia yhdisteitä hiilidioksidista muuttamalla valoenergiaa kemialliseen muotoon. Soluista tuli fotosynteettisiä.

Miljoonia vuosia, muutamaa hetkeä ja yhtä epookkia myöhemmin soluille kehittyi kyky käyttää vettä fotosynteettisenä elektronilähteenä. Näin muodostui kehittyneemmän elämän kannalta kriittinen happea tuottava fotosynteesi. Happea kertyi nuoren planeetan kaasukehään. Jotkin organismit sopeutuivat happeen ja alkoivat käyttää sitä energianlähteenä.

Prokaryootit, eli esitumalliset tumattomat yksisoluiset eliöt eriytyivät jo varhain bakteereihin ja arkeoneihin.

LUCA

Viimeinen tunnettu yhteinen esivanhempamme LUCA (Last Universal Common Ancestor) ei ollut ensimmäinen eliö, mutta se oli viimeisin yhteinen alkusolu, josta kaikki maapallolla nykyisin elävät eliöt ovat polveutuneet. LUCA kehittyi noin 3,5–3,8 miljardia vuotta sitten (paleoarkeeisen maailmankauden aikana).

Aitotumaisia eukaryootteja kehittyi alkuemereen 1,5–2 miljardia vuotta sitten. Niiden syntytapaa ei tunneta. Monisoluiset eliöt kehittyivät vasta 600-800 miljoonaa vuotta sitten. Soluille energiaa tuottava mitokondrio oli varhaisen esieukaryoottisolun kanssa endosymbioosissa elänyt aerobinen bakteeri.

Solu on elämän perusyksikkö

Elämä tarkoittaa yksinkertaisimmillaan soujen aineenvaihduntaa. Solu on kaikkien elävien organismien sähköisesti varautunut perusyksikkö.

Ihmisillä ja muilla suvullisesti lisääntyvillä eläimillä solut voidaan jakaa somaattisiin soluihin ja ituradan sukusoluihin eli gameetteihin. Somaattiset solut syntyvät mitoosissa ja sukusolut meioosissa. Olen käsitellyt syntymän ihmettä tarkemmin täällä.

Ihmisen kudoksesta yli 96 % muodostuu neljästä alkuaineesta. Vedyn, hiilen, typen ja hapen lisäksi kudoksissa on pieniä pitoisuuksia natriumia, magnesiumia, fosforia, rikkiä, klooria, kaliumia ja kalsiumia. Solut ovat 60–90 prosenttisesti vettä. Solujen tärkeimpiä orgaanisia yhdisteitä ovat lipidit, hiilihydraatit, proteiinit sekä nukleiinihapot (DNA ja RNA).

Paratiisin puutarhassa elämä on paikka, jossa elektroni lepää

Kaikki elämä edellyttää ravintoa. Ravintoon ja sitä hyödyntävään lajistoon vaikuttaa ilmasto, joka vaihtelee eri paikoissa. Ilmastolliset tekijät, kuten lämpötila ja sademäärä, aiheuttavat eroja eri alueiden kasvillisuudessa, mikä perusteella maapallo jaetaan ilmasto- ja kasvillisuusvyöhykkeisiin.

Tuulet tuovat kosteutta maalle. Pasaatituulet kohtaavat tropiikissa ja aiheuttavat ukkosilmoja, kosteutta ja monsuuneja. Pasaatituulten pohjois- ja eteläpuolella noin 30. leveysasteen kohdalla on vain vähän tuulia, minkä johdosta valtameriltä ei tule mantereille paljon kosteutta. Paratiisin puutarhan suuret aavikkoalueet sijaitsevat näillä leveysasteilla.

Valtameret tuovat kosteutta, joka synnyttää sademyrskyjä ja tasaa rannikkoseutujen lämpötiloja. Elämää esiintyyy lähes kaikkialla ilmakehästä aina viiden kilometrin syvyyteen asti. Tiedetään, että elämä ja ihmiset ovat sopeutunut hyvin erilaisiin olosuhteisiin, mutta mitä se elämä on?

Erwin Schrödinger määritteli 1940-luvulla elämän negatiiviseksi entropiaksi. Albert Szent-Györgyi kuvasi elämän paikaksi, jossa elektroni voi levätä. Biologiassa elämän ominaisuudeksi mainitaan yleensä kyky tuottaa uusia kopioita itsestään. Astrobiologi André Brackin mukaan elämä on “vesiliukoinen kemiallinen systeemi, joka siirtää molekyylirakenteisiin sisältyvän informaation ja kehittyy”. Addy Pross ja Robert Pascal toteavat, että elämä on toiminnallisuuteen perustuva stabiili tila, joka toimii ulkopuolelta tulevan energian varassa.

Elämä, mitä ikinä sillä tarkoitetaankaan, syntyi noin 3,5-4,0 miljardia vuotta sitten. Alkellista elämää oli aluksi vain merissä. 800 miljoonaa vuotta sitten kehittyivät ensimmäiset alkueläimet, jotka käyttivät ravintonaan muita eliöitä. Toisten eliöiden käyttäminen ravintona on yksi elämän kiertokulkua ylläpitävistä luonnon perusmekanismeista.

Alkueläimet kehittyivät 120 miljoonan vuoden kuluessa monimutkaisiksi ja monisoluisiksi eläimiksi. Selkärangattomien eläinten perusryhmät ilmestyivät proterotsooisen kauden lopulla ja paleotsooisen kauden alussa noin 540 miljoonaa vuotta sitten.

Ensimmäiset maakasvit kehittyivät noin 450 miljoonaa vuotta sitten. Sammakkoeläimiä alkoi nousta maalle devonikaudella. Triaskaudella 245–200 miljoonaa vuotta sitten ilmestyivät nisäkkäät, sisiliskot, dinosaurukset, kilpikonnat ja krokotiilit. Dinosaurusten valtakausi kesti 160 miljoonaa vuotta. Ensimmäiset ädelliset kehittyivät dinosaurusten joukkosukupuuton jälkeen 65 miljoonaa vuotta sitten.

Kuvan lähde: Wikipedia

Miten solut saavat energiaa?

Solujen rakenne ja aineenvaihdunta ovat käytännössä hyvin samanlaisia nyt kuin alkumeren ensimmäisillä soluilla:

  • vettä 50–90 prosenttia
  • hiili, vety, typpi ja happi
  • samoja sokereita, aminohappoja, nukleotideja, rasvahappoja, fosfolipidejä, vitamiineja ja entsyymejä
  • tärkeimpinä makromolekyyleinä proteiinit, lipidit, hiilihydraatit ja nukleiinihapot
  • samanlainen solujen kaksinkertainen solukalvo
  • entsyymien välityksellä tapahtuvat solujen reaktiot
  • samanlainen prosessi energian tuottamiseksi ja saamiseksi
  • välireaktioista koostuvat aineenvaihdunnan reaktiot
  • DNA:sta koostuva solujen perimä
  • kaikissa soluissa olevat ribosomit, joissa proteiinisynteesi tapahtuu
  • perimässä tapahtuvat mutaatiot, jotka voivat muuttaa kaiken elollisen ilmiasua.

Solujen energialähteinä toimivat hiilihydraatit ja rasvahapot. Myös proteiineja voidaan käyttää energianlähteinä, mutta silloin aminohapoista on syntetisoitava glukoosia glukoneogeneesissä.

Aitotumallisissa soluissa rasvahapot hapetetaan mitokondrioissa β-oksidaatiossa, jolloin syntyy pelkistyneitä elektroninsiirtäjäkoentsyymejä NADH:ta ja FADH2:ta. Hiilihydraatit pilkotaan ja muokataan ensin glukoosiksi tai sen johdannaisiksi. Solulimassa tapahtuvassa glykolyysissä glukoosimolekyylit hajotetaan pyruvaatiksi, mikä tuottaa NADH:ta ja ATP:tä.

Sekä pyruvaateista että rasvahappojen hapetustuotteista muodostetaan asetyylikoentsyymi-A:ta, joka on kaikkien energiaravinteidren yhteinen välimuoto mitokondrioiden sitruunahappokierrossa. Asetyylikoentsyymi-A pilkotaan hapettamalla sitruunahappokierrossa, mikä tuottaa NADH:ta ja FADH2:ta.

Sitruunahappokierron jäännöstuotteina ovat vesi ja hiilidioksidi. Kun läski palaa, suurin osa osa haihtuu ulos hengitetyn hiilidioksidin ja ihon hikoilun välityksellä.

Aerobisten eli happea käyttävien solujen mitokondrion elektroninsiirtoketjussa aiemmissa reaktioissa tuotetut NADH ja FADH2 luovuttavat elektroninsa eli hapettuvat NAD+:ksi ja FAD:ksi pelkistäen hapen vedeksi ketjureaktion jälkeen.

Seurauksena mitokondrion sisemmän kalvon eri puolille syntyy protonikonsentraatiogradientti, jossa matriisi on emäksisempi kuin solulima. Proteiinikanavat eli ATP-syntaasit antavat protonikonsentraation tasoittua tekemällä samalla protonivirrasta saatavalla energialla ADP:sta ja fosfaatista ATP:ta oksidatiivisessa fosforylaatiossa.

ATP on solun perusenergiamolekyyli, jota entsyymit käyttävät reaktioihinsa.

Solu ottaa aineita ympäristöstään endosytoosilla, joka voidaan jakaa kahteen mekanismiin: fagosytoosiin (”solusyönti”) ja pinosytoosiin (”solun juominen”). Molemmissa tapahtumissa solun ulkopuolella olevat molekyylit kiinnittyvät solukalvon reseptoreihin ja saavat aikaan solukalvon vetäytymisen kuopalle. Kuoppa syvenee, ja lopulta kuoppa irtoaa solun sisälle endosomina ja solukalvo umpeutuu kiinnittymällä vastakkaiseen reunaan. Endosomi yhdistyy solussa lysosomin kanssa.

Lysosomi sisältää entsyymejä, jotka hajottavat endosomin sisällön solun käyttöön. Esimerkkinä fagosytoosista on, kun fagosytoivat solut (makrofagit, neutrofiilit) syövät bakteereja ja tappavat ne sisällään. Fagosytoosin jälkeen ns. myöhäinen endosomi liitetään yleensä uudestaan kalvolle eksosytoosilla, jolloin sen sisältämät kuona-aineet vapautuvat soluvälitilaan. Eksosytoosi on käänteinen endosytoosille. Wikipedia

Solujen syntymä

Solut syntyvät soluista jakautumalla joko mitoottisesti tai meioottisesti. Mitoosissa solu jakautuu kahdeksi identtiseksi kopioksi. Solunjakautuminen kestää noin tunnin, ja sitä seuraa välivaihe, joka on mitoosia paljon pitempi.

Meioosia esiintyy ainoastaan sukusolujen eli munasolujen ja siittiöiden muodostuessa. Meioosissa on kaksi peräkkäistä solunjakautumista, joista syntyy neljä haploidista sukusolua.

Verisolut, monet epiteelisolut ja siittiöt jakautuvat hyvin nopeasti. Suolen epiteelisolut uusiutuvat noin kerran viidessä vuorokaudessa. Maksan solut uusiutuvat keskimäärin kerran kuukaudessa. Hermosolujen kyky jakautua päättyy yleensä hermosolun erikoistumiseen. Suurin osa hermosoluista syntyy jo sikiövaiheessa. Uusia hermosoluja syntyy jonkin verran hippokampuksessa. Jos hermosolujen regeneraatiota tapahtuu, se on ilmeisen hidasta.

Ihmisen elämä on lyhyt kuin päivänkorennon lento

Evoluution ajallista perspektiiviä on vaikea hahmottaa. Elinaikamme on lyhyt kuin päivänkorennon lento. Näemme tuokion maailmasta. Henkilökohtainen elämämme on tuskin muuta kuin silmänräpäys ihmisen kehityshistoriaan.

Evoluutiossa havaittaviin muutoksiin ja lajiutumiseen vierähtää tuhansia sukupolvia. Ympäristössä ja ravinnossa tapahtuneet muutokset voivat vaikuttaa epigeneettisesti lajien sopeutumiseen ja kehitykseen hyvin lyhyessä ajassa.

Lajina päivänkorennot ovat meitä ihmisiä vanhempia. Vanhimmat päivänkorentojen fossiilit on ajoitettu permikauteen kahden- tai kolmensadan miljoonan vuoden päähän menneisyyteen. Permikausi oli matelijoiden, kuten synapsidien, pelykosaurien ja nisäkkäitä muistuttavien terapsidien aikaa. Päivänkorennot olivat olemassa ennen dinosauruksia ja ovat olemassa luultavasti kauan sen jälkeen, kun nykyihmisen jättämät jäljet ovat peittyneet ajan tomuun.

Varhaisia terapsoideja kutsuttiin nisäkäsmäisiksi matelijoiksi. Terapsidit korvasivat muut synapsidit permikauden aikana noin 269 miljoonaa vuotta sitten. Terapsidien valtakausi kesti keskiselle triaskaudelle asti. Sen jälkeen (noin 245–216 milj. v. sitten) alkoi Archosauromorpha-matelijoiden kuten krokotiilien varhaisten sukulaisten ja dinosaurusten vuoro hallita maailmaa suurimpina maaeläiminä. Terapsidit nousivat nisäkkäinä uudelleen hallitsevaan asemaan kenotsooisella maailmankaudella noin 65 milj. v. sitten.

Elämän uusi aika, eli kenotsooinen maailmankausi

Ihmisten kantamuodot alkoivat kehittyä noin 65 miljoonaa vuotta sitten mesotsooisen maailmankauden lopulla kissaa pienemmistä pitkäkuonoisista kädellisistä.

Kenotsooisen kauden kahdeksan epookkia on nimetty eläimistön monimuotoisuuden mukaan kreikaksi. Ihmisen kehittymiseen johtanut ajanjakso alkoi hieman ennen pleistoseenikauden alkua.

  • Paleoseeni paleos, muinainen (66-56 miljoonaa vuotta sittten)
  • Eoseeni eos, sarastus (56-33,9 miljoonaa vuotta sitten)
  • Oligoseeni oligos, muutama (33,8-23,8 miljoonaa vuotta sitten)
  • Mioseeni meion, vähemmän (23-5,33 miljoonaa vuotta sitten)
  • Plioseeni pleion, enemmän (5,3-2,6 miljoonaa vuotta sitten)
  • Pleistoseeni pleistos, eniten (2,588 miljoonaa -11 560 vuotta sitten)
  • Holoseeni, holos, kokonaan, kaikki (alkoi 11 560 vuotta sitten, eli 9600 eaa.)


Kenotsooinen maailmankausi on geologinen ajanjakso, joka alkoi liitukauden lopun joukkosukupuutosta noin 65 miljoonaa vuotta sitten ja jatkuu edelleen.

Kauden alussa ilmasto oli hyvin lämmin ja kostea, mutta alkoi kauden edetessä viiletä ja kuivua. Metsää kuivemmat ruohoa kasvaneet savannit ja arot valtasivat maa-alaa. Tämä mahdollisti monien suurten maanisäkkäiden, kuten hevosten ja norsueläinten kehityksen. Kauden aikana kädelliset kehittyivät ihmisapinoiksi ja edelleen ihmisiksi.

Paleoseenikauden alkukädelliset olivat kissaa pienempiä ja pitkäkuonoisia. Eoseenikauden nykyisiä makeja ja kummituseläimiä muistuttavien kädellisten etuna oli ruumiinpainoon nähden suuret aivot ja kyky hyödyntää monipuolisesti erilaisia ravinnonlähteitä.

DNA-mallien perusteella itä- ja länsiapinat erkanivat varhain eoseenikauden lopulla. Häntä- ja ihmisapinat erkanivat oligoseenikauden lopulla. Ihmiset ja ihmisapinat, kuten simpanssi, erkanivat omiksi kehityslinjoikseen noin seitsemän miljoonaa vuotta sitten.

Suuri joukkosukupuutto pyyhki Maata eoseeni-kauden lopulla. Samoihin aikoihin tapahtui myös merivirtojen muutoksia. Ilmasto viileni ja heinäkasvit yleistyivät. Valtavat ruohotasangot levittäytyivät Maan pinnalle.

Oligoseenikaudella ruohoaroille ilmestyi erilaisia laiduntajia sekä niitä saalistavia kissa- ja koiraeläimiä. Sapelihampaat kehittyivät moneen kertaan eri eläinlajeille. Norsueläimistä kasvoi hyvin suuria.

Kauden lopulla kädellisten kehitys johti ihmisapinoiden, apinaihmisten ja ihmisen syntyyn. Plioseenilla Afrikassa eli eteläapinoita, joista kehittyi jo ennen pleistoseenia nykyihmisen edeltäjiä.

Kasviravintoa syövä Ramapithecus oli enemmän apina kuin apinaihminen. Hieman myöhemmin (2-3 miljoonaa vuotta sitten) elänyt Australopithecus africanus oli ruumiinrakenteensa ja hampaidensa perusteella sekasyöjä.

Eräs mielenkiintoinen huomio on se, että eräillä villikoirilla esiintyvät laakamadot yleistyivät näihin aikoihin ihmisapinoilla.

Ilmasto muuttuu ja muutos vaikuttaa lajien migraatioon ja kehitykseen

Ilmaston muuttuminen on ohjannut kaikkien lajien sopeutumista ja kehittymistä. Kenotsooisella kaudella Afrikan ja Euroopan välissä kulki lämmin merivirta. Meri oli selvästi korkeammalla ja peitti suuremman osan maapallosta.

Esimerkiksi Saharassa ilmaston vaihtelu kosteasta kuivaan on ollut syklistä miljoonien vuosien ajan. Viimeisimmän jääkauden jälkeen Saharan alue oli vehreää savannia, jossa asui kirjava eläinkanta ja ihmisyhteiskuntia. Ihmisten pääasiallinen elinkeino alueella oli maanviljely ja metsästäminen. Monsuunisateet olivat alueella yleisiä, mutta ne alkoivat vähentyä noin 8000 vuotta sitten. Saharan alueen ilmastonmuutos johtui muutoksista maapallon kiertoradassa ja kallistuskulmassa. Vielä 10 000 vuotta sitten Saharan alue oli täynnä jokia ja järviä.

Paleoseenikauden lopussa kenotsooisen kauden ilmasto lämpeni yhä. Noin 55,5 miljoonaa vuotta sitten lämpötila nousi ~10 000 vuoden aikana keskileveyksillä 4–8 °C. Tämän lämpöhuipun (PETM) aiheutti todennäköisesti tulivuorenpurkausten ja syvänmeren metaanikatraattimineraaleihin sitoutuneen metaanin vapautumisen aiheuttama kasvihuoneilmiö. Kuuman lämpöhuipun jälkeen maailma koki vielä pitkän ja lämpimän eoseenin lämpöoptimin, minkä jälkeen maapallo alkoi jäähtyä.

Mioseeni oli Euroopassa lämmin ja kostea, mutta trooppiset lajit alkoivat kauden edetessä kadota. Palmut hävisivät Alppien pohjoispuolisesta Euroopasta. 7–5 miljoonaa vuotta sitten Afrikka viileni ja aavikoitui.

Maapallon lämpötila romahti ~2,74 miljoonaa vuotta sitten kylmään jääkausitilaan, jossa jääkauden ja lämpökaudet vuorottelivat. Pleistoseenikaudella oli arviolta 26 jäätiköitymistä, joista kymmenen olivat suuria. Pitkät jääkaudet alkoivat viimeistään 0,9 miljoonaa vuotta sitten.

Sään armoilla

Ihmisten kehityslinjan eritymiseen vaikutti miljoonien vuosien aikana muuttunut ilmasto ja ympäristö. Selviytyminen edellytti sopeutumista ja sopeutuminen johti kehitysaskeliin, kuten kahdella jalalla liikkumiseen, aivojen kasvuun, tulen keksimiseen ja kieleen perustuvaan kommunikaatioon.

Ensimmäinen merkittävä kehitysaskel tapahtui 7–8 miljoonaa vuotta sitten, kun ilmasto muuttui kuivemmaksi ja viileämmäksi. Metsät vähenivät ja savannit laajenivat. Muutoksen seurauksena ihmisen kantamuodon oli laskeuduttava puista ja sopeuduttava elämään savanneilla. Näihin aikoihin ihmisen kantamuodot erkanivat ihmisapinoiden kantamuodoista.

Jotkut apinalajit sopeutuivat elämään savanneilla nousemalla kahdelle jalalle. Tällaisesta oli selviä etuja. Pystyasennossa liikkuminen vapautti kädet, pitkät etäisyydet taittuivat tehokkaammin kahdella jalalla ja pystyasento paransi lämmönsäätelyä kuumilla ja kuivilla ruohotasangoilla. Kahdelle jalalle nousemisen uskotaan johtaneen työkalujen tehokkaampaan käyttöön.

Savannilla kahdella jalalla kulkevat apinat näkivät kauemmaksi. Seksuaalista valintaa ei myöskään voi sivuuttaa. Naaraat suosivat kookkaita ja vahvoja uroksia kaikissa apina- ja ihmispopulaatioissa.

Seuraava merkittävä kehitysaskel oli työkalujen käyttö. Savanneilla elävät ihmisapinat oppivat hajottamaan luita hakkaamalla niitä kivillä.

Tämä vaihe ihmisen evoluutiossa sivuutetaan usein hyppäämällä puista suoraan työkaluja taidokkaasti hyödyntäviin metsästäjäkeräilijöihin. Apinaihmiset eivät aloittaneet suurriistan metsästämistä heti savanneille sopeuduttuaan, vaikka saattoivat pyydystää ravinnoksi pienriistaa samaan tapaan kuin simpanssit.

Toban vaikutus?

73 800 votta sitten Sumatralla purkautui jättitulivuori Toba. Yhdellä kertaa taivaalle räjähti 8000 kuutiokilometriä vulkaanista tuhkaa ja kiveä. Toban kraateri on 100 km pitkä ja 35 km leveä.

Rikkikaasut levisivät ilmakehään ja heijastivat suuren osan auringon lämpösäteilystä avaruuteen 5-6 vuoden ajan. Lähes valkoinen tuhka levisi ainakin 21 miljoonan neliökilometrin alalle, mutta todennäköisesti ohut tuhkakerros levisi paljon laajemmalle. Vaaleaa tuhkaa on löydetty 10 cm tasainen kerros esimerkiksi yli 400 neliökilometrin alueella tehdyissä kaivauksissa Intiassa. Vaalean tuhkan albedovaikutus heijasti lämpösäteilyä maan pinnalta samaan tapaan kuin jäätiköt.

Hiili-isotooppianalyysin perusteella tuhkakerroksen alapuolinen maa-aines on peräisin metsistä (C3), kun tuhkan päällä oleva maakerros on peräisin ruohokasveista (C4). Tämä tiedetään, koska maatuneiden metsien hiili-isotoopit eroavat maatuneiden ruohokasvien hiili-isotoopeista.

Alueilla, johon Toban purkaus vaikutti oli aiemmin metsiä ja purkauksen jälkeen ruohoa kasvavia aroja. Toba aiheutti vuosia kestäneen ydintalven.

Apinoiden, apinaihmisten ja ensimmäisten ihmisten kehitystä on tarkasteltava muuttuvan ilmaston, ympäristön ja lajiston viitekehyksessä. Lämpötilan muutokset ja Toban kaltaiset luonnonmullistukset vaikuttivat ravinnon laatuun, saatavuuteen ja migraatioon.

Muutokset pakottavat lajit sopeutumaan uudenlaiseen ilmastoon ja uusiin ravinnonlähteisiin. Evoluutiolla on monia mekanismeja, mutta muuttuva ilmasto johtaa adaptaatioihin ja luonnonvalintaan, joka karsii heikommin ympäristöön sopeutuvat geenit geenipoolista.

Ihmisen evoluutio

Perinteinen evoluutiopuu on geneettisen tiedon lisäännyttyä muuttunut sotkuisemmaksi. Adam Rutherford kuvaa nykyihmisen kehitykseen johtavaa puolen miljoonan vuoden epookkia termillä ”clusterfuck”.

Käytännössä hän tarkoittaa, että pitkään vallalla ollut kuva ihmisen kehityshistoriasta erilaisten kehitysharppausten kautta etelänapinoista valkoiseksi mieheksi kuvaa huonosti todellisuutta. Geneettisen datan perusteella ajallisesti päällekkäin lomittuvia ihmislajeja oli ainakin kahdeksan ja ne sekoittuivat keskenään useita kertoja eri aikoina (clusterfuck).

Rutherfordin mukaan massiiviset muuttoliikkeet Afrikasta Aasiaan ja Eurooppaan tapahtuivat hyvin hitaasti kymmenien tuhansien vuosien aikana. Pienet populaatiot vaelsivat luultavasti ravinnon perässä ja lisääntyivät kohtaamiensa muiden ihmispopulaatioiden kanssa.

Länsi- ja itä-Neandertalin ihmisten geenit sekoittuivat Homo sapiensin geeneihin useita kertoja Euroopassa ja Euraasiassa. Aasiassa Denisovan ihmisten geenejä sekoittui Aasiaan vaeltaneisiin populaatioihin. Ja toisiin ihmislajeihin sekoittuneet lajit sekoittuivat myös keskenään. Se oli kaikin tavoin hyvin sekavaa.

Ihmisapinasta apinan tavoin käyttäytyvään ihmiseen

Sahelinapinaihminen eli Tšadissa 6-8 miljoonaa vuotta sitten. Sen kallo muistutti joiltain osin simpanssia ja joiltain osin ihmistä. Sahelinapinaihminen eli aikana, jolloin ihmisen ja simpanssin kehityslinjat alkoivat erkaantua. Se saattoi olla molempien kantamuoto tai kuulua jompaankumpaan kehityslinjaan. Luultavasti Sahelinapinaihminen käytti samanlaista ravintoa kuin ihmisapinat.

Tugeeniapinaihminen eli mioseenikaudella 5,7-6,2 miljoonaa vuotta sitten. Tugeeniapinaihminen voi olla ihmisen suora edeltäjä, mutta voi olla olemattakin. Todennäköisesti samaan aikaan eli muitakin apinaihmislajeja, jotka saattoivat olla rinnakkaisia kehityslinjoja tai ihmisen suoria esivanhempia.

Australopithecus

Varhaisin tunnettu etelänapina (Australopithecus) eli 4,1-5,1 miljoonaa vuotta sitten. Sukuun kuului 5-6 lajia. Tunnetuin Australopithecus-fossiili on Beatlesin ”Lucy in the sky with diamonds” -kappaleen mukaan Lucyksi nimetty 3,2 miljoonaa vuotta sitten elänyt Australopithecus afarensis.

Tutkijat päättelivät Lucyn luista, että se oli kuollut putoamalla puusta noin 12 metrin korkeudesta. Se ei ollut yhtä taitava kiipeilijä kuin apinat. Lucyn aivojen tilavuus oli noin kolmanneksen nykyihmisen aivojen tilavuudesta.

Dart ja tappaja-apinat

Raymond Dartin 1924 löytämä Australopithecus africanus oli lihansyöjä, mikä johti tappaja-apina hypoteesiin. Ihmisen luontainen väkivaltaisuus sai Raymond Dartin vakuuttumaan siitä, että ihmisellä oli saalistamiseen pystyvät esivanhemmat.

Robert Ardrey kirjoitti: ”Not in innocence and not in Asia was mankind born”. Stanley Kubrick kuljetti ihmisen evoluution tappaja-apinasta avaruuteen muutamalla vaikuttavalla kuvalla elokuvassa 2001 Avaruusseikkailu.

Varhaisilla savanneilla oli suurten saaliseläinten osin syötyjä raatoja. Ne tarjosivat etelänapinoille luiden sisältämää herkkua. On perusteltua olettaa, että Australopithecus käytti kiviä löytämiensä luiden hajottamiseen. Luissa on runsaasti energiaa sisältävää luuydintä, joka säilyy luissa pilaantumatta hyvin pitkään.

Kenyanthropys platyops

Joidenkin tutkijoiden mukaan Australopithecukset ovat ihmisen esivanhempia, mutta ne saattoivat myös olla rinnakkaismuoto varhaisten ihmisten edeltäjälle Kenyantropukselle.

Australopithecus oli selvästi ihmisen ja apinan välimuoto. Australopithecukset kävelivät pystyssä ihmismäisillä jaloillaan, mutta sillä oli apinan käsivarret ja suuret apinamaiset poskihampaat.

Kenianesi-ihminen (Kenyanthropus platyops, eli litteänaamainen kenianihminen) eli ~3,5 miljoonaa vuotta sitten. Kenianesilla oli ihmismäisiä piirteitä, kuten litteät kasvot. Joidenkin tutkijoiden mukan Kenianesi on ihmisen edeltäjä, mutta jos näin on, Australopithecuksen täytyy olla rinnakkainen kehityslinja. Kenianihmistä seurasi Turkananihminen (Homo rudolfensis) 1,9 miljoonaa vuotta sitten.

Ihmisten suvun (Homo) eriytyminen apinaihmisten ja ihmisten yhteisestä kantamuodosta ajoitetaan tavallisesti 2,0-2,5 miljoonan vuoden taakse. Ensimmäisenä varsinaisena Homo-suvun edustajana pidetään yleensä yksinkertaisia kivityökaluja käyttänyttä Homo habilista, eli käteväihmistä, jonka aivojen tilavuus oli noin puolet nykyihmisen aivojen tilavuudesta.

Homo habilis

1,9-1,5 miljoonaa vuotta sitten elänyt Homo habilis ei ehkä ollut mikään ruudinkeksijä, mutta ei enää ihan täysi apinakaan.

Australopithecusten, Homo habiliksen ja Homo erectuksen kallon lihaksia ja hampaita vertailemalla havaitaan, että samaan aikaan eli kasviravintoa ja sekaravintoa syöviä Australopithecuksia. Kasviravintoa syövillä ihmisapinoilla on selvästi isommat juurien ja puunverrsojen jauhamiseen soveltuvat poskihampaat.

Hampaat jauhavat, aivot ajattelevat

Elektronimikroskoopeilla voidaan kuvata tarkasti fossiilien hampaiden pintoja, joihin eri ravintoaineet jättävät erilaisia mikroskooppisen pieniä jälkiä. Löydettyjen kallojen mekaniikkaa voidaan mallintaa tietokoneilla, jolloin saadaan tietoa mm. purentalihaksista. Näiden avulla tieto apinaihmisten ja varhaisten ihmisten syömästä ravinnosta on jatkuvasti tarkentunut.

Itä-Afrikasta löytyneiden kallojen (hampaiden ja kallonlihasten) perusteella Australopithecus boisei (Zinjanthropus boisei tai Paranthropus boisei) söi ensisijassa kasviravintoa. Mary Leakeyn 1959 Tansaniasta löytämä vankka-apinaihminen tunnetaan nimellä ”Nutcracker Man” vahvojen leukojen ja poskihampaiden vuoksi. 2,6-1,2 miljoonaa vuotta sitten eläneen lajin arvellaan olevan ensimmäinen kivityökaluja käyttänyt apinaihminen. Vankka-apinaihmisen kallon tilavuus oli 500-550 kuutiosenttimetriä, mikä on isompi kuin simpansseilla, Australopithecus afarensiksella ja Australopithecus africanusilla. Kallossa on yhtäläisyyksiä gorillan kalloon ja se on selvästi kehittynyt tehokkaaseen pureskeluun. Lajin takahampaat ovat noin neljä kertaa nykyihmisen hampaita kookkaammat ja ne sopivat hyvin juurien, pähkinöiden, lehtien ja erilaisten kasvinversojen jauhamiseen.

Selvästi isompikalloisten Homo habiliksen ja Homo erectuksen hampaat ja kallojen lihakset eivät sen sijaan sovellu samanlaisen kasviravinnon syömiseen. Homo habilis ja Homo erectus puolestaan erottuvat kallojen koon, pienempien hampaiden ja – kallon lihasten puolesta työkaluja valmistavina ja ajattelevina sekasyöjinä.

Alkeellisten apinaihmisten ja ihmisten ruokavalio

Savanneilla oli alkuihmisille jotain hyvin arvokasta ja helposti saatavaa: suurten eläinten raatoja, joiden luista varhaiset apinaihmiset saivat rasvaista, ravitsevaa ja herkullista luuydintä. Luuydin sisältää noin kaksi kertaa enemmän energiaa kuin liha tai hedelmät. Se myös säilyy luissa pilaantumatta pitkiä aikoja. Varhaiset apinaihmiset käyttivät ravinnoksi luuydintä rikkomalla luita kivillä.

Apinaihmisten ruumiinrakenne kehittyi yhä ihmismäisemmäksi.Afrikan pystyihminen (Homo ergaster / Homo erectus) levittäytyi Afrikasta Aasiaan ja Eurooppaan.

Tulen ja parempien kivityökalujen käyttöönotto tapahtui 1,5-1,8 miljoonaa vuotta sitten. Homo erectus käytti tulta jo ~1,5 miljoonaa vuotta sitten itä-Afrikassa. Tulenkäyttö oli yleistä kaikilla ihmispopulaatioilla viimeistään 125 000 vuotta sitten. Tulen käyttö yleistyi eri aikoina eri puolilla maailmaa.

Ihmisapinat ja ihmiset ovat aina syöneet raakaravintoa, mutta uskomus raakaravinnon merkityksestä varhaisten ihmisten pääasiallisena ravinnonlähteenä ei perustu arkeologiseen näyttöön tai ihmisen metabolian ja ruoansulatuselimistön toimintaan.

Ihmiset eivät ole koskaan olleet raaka-ravinnolla eläviä fruitaristeja yhtään sen enempää kuin manteleita, banaaneja, kahvia, suklaata, tonnikalaa ja sisäfilettä sisältävällä paleoruokavaliolla. Ravinteiden osalta molemmat ovat hyviä ruokavalioita, mutta hyvin kaukana siitä, mitä ihmisen esivanhemmat söivät.

Ravinnon kypsentäminen tulella alkoi yli miljoona vuotta ennen nykyihmisten kehittymistä. Ruoan kypsentäminen vaikutti ihmisen ruoansulatuskanavan rakenteeseen.

Ihmisen ruoansulatuskanava, maha ja suolisto eroavat hedelmiä ja kasviksia syövien sukulaistemme simpanssien, orankien ja gorillojen ruoansulatuselimistöstä. Ruoansulatuselimistömme ei myöskään muistuta lihansyöjien ruoansulatuselimistöä. Useimmat kasvissyöjät käyttävät suuren osan hereilläoloajasta syömiseen. Ihmisen aineenvaihdunta on kehittynyt niin, että ihminen selviää ilman ravintoa viikkoja. Pätkäpaasto ja ketogeeninen ruokavalio muistuttavat hieman alkuihmisten tapaa syödä, mutta jalostettujen ruokien maailmassa todellisen paleoruokavalion noudattaminen on mahdotonta.

Ihminen ei pysty hyödyntämään ruohoa ravintona niin kuin laiduntavat eläimet. Jos ihmisen ravinto ei sisällä muuta kuin vähärasvaista lihaa, ihminen kuolee nälkään. Ihminen pystyy syömään ruohonsyöjiä ja muita eläimiä sekä monipuolisesti erilaisia kasveja.

Tulen keksimisen seurauksena varhaiset esivanhempamme oppivat kypsentämään juuria ja muita vaikeasti sulavia kasveja. Näin ravinto esikäsiteltiin ruoansulatuselimistöä varten. Kypsytetystä ravinnosta elimistö sai irti enemmän energiaa ja ravinteita.

Neljäs ja ehkä tärkein kehitysaskel oli aivojen kasvu. Aivojen paino on vain muutaman prosentin kehon painosta, mutta aivot käyttävät viidenneksen elimistön tarvitsemasta energiasta. Aivojen kehitys ei olisi ollut mahdollista ilman runsasenergistä ravintoa. Tämän perusteella rasvainen liha ja kypsytetyt tärkkelystä sisältävät mukulajuuret ja muut hiilihydraattien lähteet näyttelivät tärkeää roolia ihmisen kehityksessä.


Aivot tarvitsevat paljon energiaa. Simpanssin aivojen tilavuus on 350-400 kuutiosenttimetriä. Simpanssin aivojen lepokulutus on 10 % energian kokonaiskulutuksesta. Ihmisen aivojen koko on 1350-1400 kuutiosenttimetriä. Ihmisen aivot kuluttavat levossa 20 % ihmisen päivittäisestä energiasta. Se on paljon kun aivojen paino suhteutetaan kokonaispainoon. Aivojen osuus ihmisen painosta on vain pari prosenttia.

Lihansyönti ei yksin selitä aivojen kasvua. Entä hiilihydraatit ja rasvat? Hyviä hiilihydraattien lähteitä, kuten hedelmiä, marjoja, siemeniä ja pähkinöitä on saatavilla vain osan vuotta. Hedelmät ovat varmasti olleet osa ihmisen ravintoa koko evoluutiohistorian. Rasvaa saatiin luuytimistä, pähkinöistä ja rasvaisesta lihasta.

Australopithecusten poskihampaat soveltuivat juurten, kovien siementen ja pähkinöiden syömiseen. Mukulajuuret sisältävät hiilihydraattien lisäksi runsaasti imeytymättömiä kuituja.

Mukulajuurten hyödyntäminen ravintona on yleistä, mutta raakojen mukulajuurien käyttö energianlähteenä on lähes yhtä tehotonta kuin elimistön ruokkiminen männyn juuria jauhamalla.

Nyt siis puhutaan sellaisista juurista, joita apinaihmiset ja varhaiset metsästäjä-keräilijät söivät. Jalostetut runsaasti tärkkelystä sisältävät perunat ja mehevät porkkanat muistuttavat hyvin vähän luonnollisia juurikasveja.

Paleoideologian kompastuskivi on se, että kaikki kasvikset, joita me nykyään syömme, on pitkälle jalostettuja. Paleoruokavalion uskottavuutta lisäisi, jos siinä suosittaisiin vain paikallisia luonnosta kerättyjä marjoja, juuria, lehtikasveja, sieniä jne. runsaasti jalostettujen vihannesten ja hedelmien sijaan. Kivikautiset ihmiset söivät eläimistä kaiken (silmät, aivot, posket, kielen, sisäelimet, rasvan ja luuytimen jne.) eivät vain rasvattomia sisäfilepihvejä.

Varhaisten metsästäjä-keräilijöiden ravinto oli vahvasti sidottu vuodenkiertoon. Talvisin riista saattoi olla ainoa ravinnonlähde, mutta kesäisin syötiin hyvin monipuolisesti erilaisia kasveja. Metsästäjä-keräilijät söivät myös hunajaa.

Mukulajuuria syötiin varmasti ainakin nopeasti kypsennettyinä tai kypsentämättä, kuten hadzat vieläkin tekevät. Nopeakin kypsentäminen lisää mukulajuurten maukkatta. Pidempi kypsennys tekee juuriin sidotun tärkkelyksen paremmin imeytyväksi.

Varhaiset esivanhempamme saivat aivojen kasvun edellyttämän energian kypsennetyistä juurista (ja kausittaisista hiilihydraateista, kuten hedelmistä), hunajasta, lihasta, sisäelimistä ja eläinrasvasta. On hyvin luultavaa, että eläinperäiset rasvat olivat aivojen kehitykselle kriittisen tärkeitä, kuten Jessica Thompson kertoo. Samaan päätelmään päätyy rintamaidon koostumuksen perusteella.

Rintamaito on kasvavan ihmisen parasta ravintoa. Maidossa on noin 7,3 prosenttia laktoosia, 3,4 % rasvaa ja prosentin verran proteiinia. Äidinmaidon rasvahappokoostumus vaihtelee yksilöllisesti, mutta näillä eroilla ei ole havaittu olevan vaikutusta lapsen kasvuun.

Suurin osa rintamaidon rasvoista on tyydyttyneitä, mutta siinä on myös monityydyttämättömiä ja kertatyydyttämättömiä rasvoja, omega-3 ja omega-6-rasvoja, DHA:ta ja EPAa sekä ~10-14 mg kolesterolia / 100 g. Yli puolet rintamaidon energiasisällöstä tulee maidon sisältämistä rasvoista. Rintamaidon proteiineista noin 36 % on kaseiineja, toiset 36 % alfa-laktalbumiinia, noin 9 % immunoglobuliineja ja noin 18 % laktoferriiniä. Äidinmaito sisältää lisäksi entsyymejä, hormoneja ja kasvutekijöitä.

Hadzat

Hadzat ovat nykyihmisen synnyinseuduilla Tansaniassa elävä pieni alkuperäiskansa, joka saa ravintonsa metsästyksestä ja keräilystä, kuten varhaiset esivanhempamme ennen maanviljelyn kehittymistä. Hadzat eivät juurikaan varastoi ruokaa.

Miehet heräävät aamuisin ja lähtevät metsästämään. Naiset keräävät juuria, hedelmiä ja marjoja. Joskus ruokaa löydetään enemmän ja joskus vähemmän. Keskimäärin hadza-naiset keräävät enemmän ravintoa pöytään kuin miehet saavat pyydettyä. Ihmisen aineenvaihdunta on hyvin sopeutunut siihen, että elimistö ei saa jatkuvasti ravintoa. Se on oikeastaan pätkäpaastoilun perusta.

Jos miehet onnistuvat pyytämään suuren riistaeläimen kuten seepran, hadzat syövät usein koko eläimen kerralla. He voivat syödä lihaa ja eläinrasvaa jopa 15 000 kilokaloria päivässä silloin kun sellaisia on saatavilla. Aina niitä ei ole saatavilla. Vuodenajat vaikuttavat luonnon antimiin ja hadzojen syömään ravintoon. Tällä on vaikutuksia mikrobiomiin.

Hadzat eivät syö juuri mitään viljeltyä tai kasvatettua. He eivät kasvata eläimiä ravinnoksi. Käytännössä lähes kaikki hadzojen syömä ravinto löytyy luonnosta.

Hadzojen ruoka on tyyppiesimerkki oikeasta paleoruokavaliosta, tai siitä, mitä paleoideologiassa tavoitellaan. Se ei sisällä prosessoituja hiilihydraatteja, vliljoja. runsaasti tärkkelystä sisältäviä tai teollisesti valmistettuja ruokia.

Teollistuneessa maailmassa paleo-, keto- ja pätkäpaasto-dieetit muistuttavat hieman hadzojen ruokavaliota. Hadzojen elintapoja ei tietenkään voi toisintaa teollistuneissa maissa, mutta ravinto, joka sisältää runsaasti kasviksia, tyydyttyneitä eläinrasvoja ja maltillisesti eläinproteiineja toimii aineenvaihdunnan ja mikrobiomin kannalta paremmin kuin runsaasti tärkkelystä, viljoja ja teollisia rasvoja sisältävä arkiruokavalio.

Hadzat ovat mielenkiintoinen kansa, sillä heillä ei tiettävästi esiinny aineenvaihduntaan liittyviä sairauksia, autoimmuunitauteja tai sydäntauteja, eli sairauksia, jotka liittyvät vahvasti länsimaiseen elämäntapaan.

Ulostenäytteiden perusteella hadzojen mikrobiomi on lajikirjoltaan runsaampi ja elinvoimaisempi kuin meillä, jotka saamme ravintomme tehoviljelystä, teollisista lihavalmisteista ja tehtaissa valmistetuista rasvoista.

Hadzojen mikrobiomi muistuttaa muiden alkuperäiskansojen mikrobiomia, vaikka kansojen viimeinen yhteinen esi-isä on saattanut elää kymmeniä tuhansia uosia sitten. Jos hadzojen mikrobiomi rinnastetaan meidän mikrobiomiimme, se muistuttaa elämää sykkivää viidakkoa, kun meidän mikrobiomimme muistuttaa avohakkuiden raiskaamaa metsää. Ruokavalioltaan ja mikrobiomiltaan hadzat muistuttavat Stanfordin tutkijoiden mukaan maanviljelyn kehittymistä ennen eläneitä metsästäjäkeräilijöitä. He ovat ikkuna siihen, kuinka varhaiset esivanhempamme elivät.

Hadzojen runsaasti kuituja (100-150 g / vrk) sisältävä ruokavalio ravitsee suoliston satoja mikrobilajeja ja biljoonia mikrobeja, joiden aineenvaihdunta tuottaa suolistosta verenkiertoon imeytyviä kemikaaleja, kuten lyhytketjuisia rasvahappoja, joiden tiedetään vaikuttavan kaikkeen immuunijärjestelmän toiminnasta mielialaan. Itse asiassa 97 % ihmisen mukanaan kantamasta geneettisestä materiaalista ei ole omaamme. Elämme täysin mutualistisessa suhteessa suoliston mikrobipopulaation kanssa. Kun ihmisen genomissa on parikymmentä kuitujen aineevaihduntaan vaikuttavaa geeniä, mikrobiomissa on satoja kuitujen pilkkomista ohjaavia geenejä.

https://www.youtube.com/watch?v=tcBtNbFFjMA

https://www.youtube.com/watch?v=miEngVBrrIc

https://www.youtube.com/watch?v=iSCV_XFcVPU

https://www.youtube.com/watch?v=Cuyp1bvuaxA

https://www.youtube.com/watch?v=41IfdwLqtkA

https://www.youtube.com/watch?v=FNIoKmMq6cs

https://www.youtube.com/watch?v=SsSHzTsG4wY

https://www.youtube.com/watch?v=Me5LFbPrEe0

https://www.youtube.com/watch?v=r7rKKFOui8w

https://www.youtube.com/watch?v=Lt3cY9i7kgQ

https://www.youtube.com/watch?v=LScfRoudcC4

https://www.youtube.com/watch?v=koTIBNRqMIA

https://www.youtube.com/watch?v=ZrJb7R1u5Iw




Mikä on paras ruokavalio sydänterveydelle?

Silvia Migliaccio, Caterina Brasacchio, Francesca Pivari, Ciro Salzano, Luigi Barrea, Giovanna Muscogiuri, Silvia Savastano, Annamaria Colao
Kääntänyt, editoinut ja kriittisesti kommentoinut: Sami Raja-Halli

Tiivistelmä

Sydän- ja verisuonitaudit (CVD) ovat yleisin kuolinsyy kehittyneissä maissa. Tutkimuksissa sydän- ja verisuonitaudit assosioituvat usein ravitsemustottumuksiin ja elintapoihin, kuten runsaaseen alkoholinkäyttöön, stressiin ja tupakointiin sekä liian vähäiseen liikuntaan.

Liikunta- ja ruokailutottumuksia korjaamalla sydän- ja verisuonitautien riskiä voi laskea. Ravinto vaikuttaa sydän- ja verisuonitautien riskitekijöihin, kuten veren rasva- ja sokeriprofiileihin, verenpaineeseen ja lihavuuteen. Terveyden optimoimiseksi on kehitelty erilaisia ruokavalioita.

Miten DASH, kasvisruokavalio, ketogeeninen ruokavalio ja japanilainen ruokavalio vaikuttavat sydän- ja verisuonitautien riskiin? Entä millaisia vaikutuksia eri ravintoaineilla on  sydämen terveyteen?

Useimmat terveelliset ruokavaliot korostavat samojen ravintoaineiden hyötyjä. Elimistö tarvitsee runsaasti hedelmiä ja vihanneksia, täysjyväviljoja, hyviä rasvoja ja palkokasveja. Tämä on usein kuultu mantra; lisättyä sokeria, punaista ja prosessoitua lihaa sekä runsaasti kovaa rasvaa ja sokereita sisältäviä prosessoituja valmisruokia tulisi välttää.

Yksittäisten ravintoaineiden vaikutukset terveydelle eivät ole yksiselitteisiä. Sen lisäksi, että ravintoaineet vaikuttavat yhdessä ja toisiinsa, ne vaikuttavat hormonitoiminnan välityksellä aineenvaihduntaan, solujen signalointiin, geeniekspressioon, hormonien yms. tuotantoon, elimistön uusiutumiseen ja suolistomikrobiomin välityksellä immuunijärjestelmän toimintaan. Ihminen tarvitsee välttämättä esimerkiksi steroidihormoneja, joiden esiaste on kolesteroli.

Tasapainoisella välttämättömät ravintoaineet sisältävällä ruokavaliolla on kokonaisvaltaisempia ja terveellisempiä vaikutuksia kuin yksittäisillä superfoodeilla. Elimistö on tarkka laadusta, mutta laatua ei määrittele ruoan hinta, vaan elimistön tarvitsemien ravinteiden laatu.

Monien ravintoaineiden yksipuolinen ja liiallinen saanti altistavat aineenvaihdunnan häiriöille. Minkälaisia ravitsemusprotokollia hyödyntäen lihomista, matala-asteista tulehdusta, diabetesta ja sydän- ja verisuonitauteja voidaan ehkäistä?

Tutkimusstrategia

Löysin kiinnostavan ja pätevältä vaikuttavan tutkimuskatsauksen erilaisten ruokavalioiden yhteydestä sydän- ja verisuonitauteihin. Kiinnitin pian huomiota katsauksessa käytettyjen lähteiden heikkoon laatuun. Tiesin, että on olemassa tieteellisesti laadukkaampia, tuoreempia ja arvostetumpia tutkimuksia kuin tässä katsauksessa lähteinä toimivat vanhat ja konservatiiviset tutkimukset.

Päädyin laajentamaan tätä katsausta täsmennyksillä, kriittisillä huomioilla ja viittauksilla tuoreempiin tutkimuksiin. Tämä teki artikkelista hyvin pitkän, mutta myös kattavan.

Kukin tämän tutkimuskatsauksen kirjoittajista haki PubMedistä (MEDLINE)tutkimusraportteja elokuuhun 2019 asti käyttäen erikseen seuraavia hakutermejä: sydän- ja verisuonitaudit, lihavuus, ruokavalio, ravitsemus, glukoosimetabolia, välimeren ruokavalio ( MeDi), ketogeeninen ruokavalio (KD), japanilainen ruokavalio, kasvisruokavalio (VegDiet) ja verenpainetautia ehkäisevä ruokavalio (DASH).

Asiaan liittyvien artikkeleiden ja arvostelujen viiteluetteloita haettiin myös manuaalisesti. Yhteensä haulla tunnistettiin kahdeksansataa tutkimuspaperia, joista 136 valittiin ja sisällytettiin tähän tutkimuskatsaukseen. Minuun määrä teki vaikutuksen.

Johdanto

Sydän- ja verisuonitaudit ovat monitekijäisiä sairauksia, jotka aiheutuvat useista päällekäisistä häiriöistä, kuten liiallisesta viskeraalisesta rasvasta (keskivartalolihavuudesta), kohonneesta verenpaineesta, dyslipidemiasta ja glukoosi-intoleranssista [1]. Nämä lisäävät sydän- ja verisuonitapahtumien, kuten aivohalvauksen ja sydänkohtausten riskiä.

Insuliiniresistenssi ja diabetes luokitellaan itsenäisiksi sydän- ja verisuonitautien riskitekijöiksi. Alkavat sydän- ja verisuonitaudit voivat piileskellä ja kehittyä rauhassa harmittomilta tuntuvien aineenvaihdunnan häiriöiden taustalla. Korkea verensokeri- ja insuliinipitoisuus (hyperinsulinemia) vahingoittavat verisuonia.

Sokerin aiheuttamat verisuonivauriot alkavat pienistä verisuonista, mutta kehon jatkuva tulehdustila ja verisuonivauriot lisäävät kolesterolin ateroskleroottista kumuloitumista myös valtioiden seinämiin. Erityisen haitallista sydän- ja verisuoniterveydelle ovat jatkuva inflammaatio ja glykaation kehittyneet lopputuotteet (AGE:t).

Elintärkeä LDL-kolesteroli muuttuu vahingolliseksi, kun se hapettuu. Oksidoituneet LDL-partikkelit ovat ateroskleroottisia. Sydän- ja verisuonitaudit seuraavat matala-asteista tulehdusta, hyperglykemiaa, dyslipidemiaa ja glykaatiota [2].

Jatkuvasti korkean glykaatiota ja verisuonivaurioita aiheuttavan verensokerin laskemiseksi on yksi ylivoimainen keino: ravinnon sisältämien sokereiden rajoittaminen. Sillä on monia terveydellisiä vaikutuksia matala-asteisen tulehdustilan hillitsemisestä laihtumiseen ja energiametabolian korjaantumiseen.

Glykaation kehittyneet lopputuotteet: glykotoksiinit

Korkean verensokerin aiheuttamista terveysriskeistä glykaatio tunnetaan valitettavan huonosti. Glykaatiota aiheuttaa jatkuvasti korkea verensokeri, joka reagoi muun muassa vapaisiin aminohappoihin, proteiineihin ja rasvahappoihin. Tutuin esimerkki glykaagiosta on aikuistyypin diabetes ja siihen liittyvä pitkäsokerin mittaus, jossa mitataan hemoglobiinin glykaatiota (hemoglobiini (HbA1C).

Glykaatiossa punasolujen hemoglobiinimolekyyleihin kiinnittyy (glykatoituu) glukoosia. Glukoosin kiinnittymisvauhti riippuu veren glukoosin määrästä. Mitä enemmän veressä on sokeria, sitä enemmän sitä tarttuu happea kuljettavien punasolujen hemoglobiiniin. Veren punasolujen glykatoituminen tekee verestä kuvaannollisesti siirappimaista.

Kehittynyt glykaation lopputuote (eng. advanced glycation end-product, AGE) on yleisnimitys suurelle joukolle erilaisia proteiineja tai rasvoja, jotka jotka ovat glykatoituneet ei-entsymaattisesti altistuttuaan joillekin sokereille.

Glykotoksiinit osallistuvat moniin soluja rappeuttaviin sairauksiin, kuten Alzheimerin ja Parkinsonin tauteihin. Niiden tiedetään lisäävän diabeteksen, ateroskleroosin, kroonisen munuaisten vajaatoiminnan, harmaakaihin, lihasheikkouden ja eräiden syöpien riskiä.

Glykotoksiinit vaikuttavat useinpiin kehon solutyypppeihin ja molekyyleihin. Haitallisia AGE:ista tekee niiden kyky reagoida verkkoutumisreaktioiden kautta muun muassa kehon rakenneproteiinien kuten kollageenin ja elastiinin kanssa. Näin glykaation lopputuotteet polymerisoivat proteiineja yhteen suuriksi ryppäiksi estäen niiden normaalia toimintaa. Glykotoksiinit altistavat valtimonkovettumataudille, koska ne ryppäyttävät verisuonten pintojen kollageeniä, minkä seurauksena suonet kovettuvat.

Verisuonien kovettuminen lisää kolesterolin kertymistä suonten sisäpintaan. Glykotoksiinit edistävät LDL:n hapettumista. Hapettunut LDL-kolesteroli on eräs valtimokovettumataudin tärkeimmistä riskitekijöistä.

Glykaation synnyttämät glykotoksiinit lisäävät kehon matala-asteista tulehdusta aktivoimalla syöjäsoluja (makrofageja) RAGE/NF-κB-signalointireitin kautta. AGE:t voivat sitoutua monista soluista löytyviin AGE-reseptoreihin (RAGE), joiden välityksellä ne lisäävät oksidatiivista stressiä ja aiheuttavat makrofagivälitteisiä tulehdusreaktioita. Tämä johtaa tuman transkriptiotekijä kappa B:n (NFκB) aktivoitumiseen, joka puolestaan ohjaa monia tulehdusreaktioihin liittyviä geenejä.

Tulehdusreaktiot liittyvät moniin elämäntapasairauksiin. Esimerkiksi valtimonkovettumatauti alkaa makrofageja houkuttevilla tulehdusreaktioilla. Osa makrofageista muuntuu tulehduskohtaan jääviksi vaahtosoluiksi syödessään hapettunutta LDL-kolesterolia. Nämä toimivat alustana suonen pintaan kerääntyvälle plakille. Plakin kasvaessa verisuoneen voi lopulta muodostua veritulppa.

Korkean verensokerin tuottamat glykotoksiinit vaikuttavat ihon vanhenemiseen kollageenin ja elastiinin välityksellä, mikä lisää ryppyjä ja heikentää ihon joustavuutta. Ihon nuorekkuuden säilyttämiseksi on halpa menetelmä, joka ei edellytä hintavia ihonhoitotuotteita: rajoita sokereita!

Glykotoksiinien ihoa vanhentavat ja rappeuttavat vaikutukset heikentävät haavojen parantumista ja ihon kykyä syntetisoida D-vitamiinia. Nämä ilmiöt liittyvät todennäköisesti useiden soluja rappeuttavien vaikutusten yhteisvaikutukseen, jossa glykaation kehittyneet lopputuotteet osaltaan heikentävät muun muassa solujen DNA:n korjausprosesseja ja DNA-synteesiä, mitokondrioiden energiametaboliaa, solukalvojen lipidien biosynteesiä, hormonien tuotantoa jne.

Sydän- ja verisuonitaudit ovat yleisin kuolinsyy erityisesti teollistuneissa länsimaissa [3]. Suomessa ja Ruotsissa on kuitenkin havaittu, että jatkuvasti lisääntyvä statiinien käyttö sydäntautien ehkäisemiseksi ei ole tilastollisesti laskenut sydänkuolleisuutta. Onko sota kolesterolia vastaan jo hävitty, vai onko vuosikymmeniä haukuttu väärää puuta?

Sydän- ja verisuonitautien ongelma on mutkikkaampi kuin yleisesti tunnustetaan. Sydän- ja verisuonitaudit eivät johdu tyydyttyneistä rasvoista ja kolesterolista. Eivät ainakaan yksin niistä. Jatkuvasti korkea verensokeri ja veren kohonneet triglyseridipitoisuudet altistavat varmasti sydän- ja verisuonitaudeille. Kuitenkin vain tyydyttynyt rasva on nostettu tikunnokkaan. Miksi?

Se on harmillista, koska runsaasti hiilihydraatteja sisältävä ravinto ylläpitää veren korkeita triglyseriditasoja lisäämällä maksan de novo lipogeneesiä. Runsaasti rasvaa sisältävä ruokavalio itse asiassa laskee veren triglyseridejä, nostaa HDL-kolesterolia, mutta ei juuri vaikuta LDL-kolesterolin pitoisuuteen. Hiilihydraattien rajoittaminen korjaa verensokeria, verenpainetta, veren lipidiprofiileja ja solujen energiametaboliaa.

Vaikka musta puhutaan valkoiseksi, aineenvaihdunnan tasolla on aivan samantekevää onko sokeri peräisin perunasta, täysjyväleivästä vai pullasta. ruoansulatuskanava hajottaa hiilihydraatittien sisältämän tärkkelyksen yksittäisiksi sokerimolekyyleiksi, jotka imeytyvät elimistöön. Verenkierrossa leivästä, pullasta, perunasta, marmeladista ja suklaasta peräisin olevat sokerimolekyylit vaikuttavat aineenvaihduntaan samalla tavoin. Toki täysjyväleivässä on enemmän ravinteita kuin pullassa ja sen sisältämät kuidut hidastavat sokereiden imeytymistä, mutta täysjyväleivässäkin on melkoisesti sokeria.

Jatkuvasti korkea verensokeri, insuliiniresistenssi, runsas eläinproteiinien ja eläinrasvojen saanti kasvattavat sydäntautien riskiä. Sairaudet ovat monitekijäisiä.

Glykaation vaikutuksista sydän- ja verisuonitauteihin ollaan korvia huumaavan hiljaa, vaikka puoli miljoonaa suomalaista sairastaa diabetesta ja diabeetikkojen sydäntautikuoleman riski ei-diabeetikkoihin verrattuna on tilastollisesti 2-4 kertaa korkeampi.


Kolesteroli on elimistön välttämättä tarvitsema biologinen komponentti. Lähes kaikki solut voivat valmistaa kolesterolia monimutkaisessa 37-osaisessa reaktioketjussa. Eniten kolesterolia valmistaa maksa. Kolesterolia on kaikkien kehon solujen solukalvoissa. Se osallistuu solujen signalointiin ja sitä tarvitaan aivojen viejähaarakkeita suojaaviin myeliinikalvoihin. Kolesteroli on myös steroidihormonien, kuten testosteronin ja estrogeenin, sekä immuunijärjestelmää ja kalsiumin homeostaasia säätävän D-vitamiinin esiaste.

Kuolleisuus lisääntyy laakean U-käyrän mukaisesti matalilla ja hyvin korkeilla kolesterolitasoilla. Matalien kolesterolitasojen riskeistä ei useinkaan puhuta, vaikka dementia ja kuolleisuus lisääntyvät asteittain, mitä matalammille kolesterolitasoille mennään.

Hapettunut LDL-kolesteroli on tunnettu ateroskleroosin riskitekijä. Sydänterveyden kannalta suurin ongelma ei ole kolesteroli itsessään, vaan korkean verensokerin aiheuttama oksidatiivinen stressi, glykaation kehittyneet lopputuotteet ja LDL-kolesterolin oksidaatio. LDL-kolesterolin hapettumista ja oksidatiivista stressiä voi hillitä verensokeria laskemalla.

Kuluneiden kolmen vuosikymmenen aikana lisääntyneestä sydän- ja verisuonitautien ilmaantuvuudesta on tullut polttava sosioekonominen prioriteetti. Tarve ehkäistä sydän- ja verisuonitauteja elämäntapamuutoksilla on tänään yhtä ajankohtainen kuin vuonna 1977, jolloin USDA määritteli tyydyttyneet rasvat ja kolesterolin kansakunnan vihollisiksi no:1 [4].

Sydän- ja verisuonitautien kehitys assosioituu epäterveellisiin elämäntapoihin [5, 6]:

  • ravinto sisältää liikaa natriumia (suolaa)
  • syödään liikaa prosessoituja elintarvikkeita
  • syödään liikaa/lisättyä sokeria
  • ravinto sisältää epäterveellisiä rasvoja ja erityisesti teollisia transrasvoja
  • ravinnon vähäinen hedelmien ja vihannesten osuus
  • vähäinen täysjyvätuotteiden ja kuidun osuus
  • vähäinen palkokasvien osuus
  • vähäinen kalan osuus
  • vähäinen pähkinöiden ja siementen osuus
  • runsas alkoholin käyttö
  • stressi
  • tupakointi
  • vähäinen liikunta

Useimmat ravitsemustutkimukset tukevat edellisiä havaintoja. Rasvojen ja esimerkiksi punaisen lihan terveysvaikutuksista on kuitenkin olemassa ristiriitaista näyttöä. Viimeisimmät meta-analyysit ovat joiltain osin puhdistaneet tyydyttyneiden rasvojen mainetta. Todennäköisesti tyydyttyneet rasvat eivät yksin kasvata sydän- ja verisuonitautien riskiä.

Hiljattain runsaasti mediahuomiota saanut punaisen lihan ja paksusuolensyövän yhteyttä korostava tutkimus oli uutisankka; tai tarkemmin se oli tilastollinen silmänkääntötemppu, jossa sovellettiin taikasanoja suhteellisen riskin alenema. Tosiasiassa punainen liha lisäsi suolistosyövän riskiä 0,63 % ja ei-lihaa sisältävä ruokavalio 0,40 %. Todellinen riski jäi alle prosenttiin ja tutkimuksen virhemarginaaliin.

Terveysvaikutuksiltaan tyydyttyneet (kovat) rasvat ovat monien tutkimusten mukaan neutraaleja. Tämä on naturalistinen lähestymistapa: kädellisten evoluutio on jatkunut miljoonia vuosia. Nykyihmisten ravintoon on kuulunut tyydyttyneitä rasvoja 200 000 vuoden kehityshistorian ajan. Monityydyttymättömät teolliset siemenöljyt keksittiin hieman yli sata vuotta sitten. Tekeekö tehdas parempaa ravintoa kuin äiti? En tarkoita Saarioisten äitejä, vaan rintamaitoa, joka sisältää runsaasti kolesterolia ja tyydyttyneitä rasvoja. Naturalistina minä luotan luonnollisiin rasvoihin ja äidin maitoon enemmän kuin teollisiin rasvoihin.

Tutkimusnäyttö tukee hypoteesia, jonka mukaan elämäntapamuutokset, kuten liikunnan lisääminen ja ruokavalion muuttaminen voivat ehkäistä sydän- ja verisuonitauteja. Se, mitä tämä käytännössä tarkoittaa on monen tekijän summa. Ravinnon terveysvaikutuksista kinastellaan ja siitä Ruokasodassa on kyse.

Iäkkäiden ihmisten määrä kasvaa teollistuneissa maissa nopeasti. Trendi lisää terveydenhoitoon kohdistuvia taloudellisia ja sosiaalisia paineita. Tämän vuoksi on perusteltua selvittää aineenvaihdunnan patofysiologiset mekanismit sellaisten toimenpiteiden kehittämiseksi, jotka vähentävät elintapoihin liittyvien kardiometabolisten tautien sairastumisalttiutta, ja jotka voidaan helposti toteuttaa väestötason suosituksilla.

Yhteiskunnallisena prioriteettina tulee olla ikääntyvien ihmisten terveiden elinvuosien lisääminen ja sydäntauteihin liittyvien sosioekonomisten kustannusten vähentäminen. Tämä tavoite keventää yhteiskunnalle sydäntaudeista koituvaa sosioekonomistista painolastia ja lisää ikääntyvien ihmisten elämänlaatua. Samalla meidän on taisteltava diabetes- ja lihavuusepidemioita vastaan. Diabetes ei ole ikääntymiseen, vaan elintapoihin liittyvä sairaus.

Energian ylimäärä

On tunnettua, että lihottavat ruokavaliot lisäävät sydän- ja verisuonitautien riskiä. Energiansaannin vähentäminen 20–50%:lla hillitsee tutkimusten mukaan sairastuvuutta aineenvaihduntasairauksiin, kuten lihavuuteen ja tyypin 2 diabetekseen. Tämä pätee ainakin kokeellisissa eläinmalleissa [7].

Julkaistut kliiniset tutkimukset vahvistavat, että energiansaannin rajoittaminen laskee sydän- ja verisuonitautien riskiä. Kiinnostavaa on, että pieni koetutkimus, johon osallistui 24 koehenkilöä, osoitti, että vain 10 viikon energianrajoitus (80% normaalista energiansaannista) laski merkittävästi sekä systolista että diastolista verenpainetta [8].Korkean verenpaineen tiedetään altistavan sydän- ja verisuontitaudeille.

Lisäksi havaittiin merkittävä verensokerin lasku vastaavan 10 viikon energianrajoitusta koskevan ruokavaliointervention jälkeen [9]. Verensokerin lasku tarkoittaa sokerimetabolian parantumista. Korkea verensokeri on eräs tunnettu kardiometabolisten häiriöiden riskitekijä.

Useat tutkimukset osoittavat, että pidempiaikainen energiaa rajoittava ravintomalli laskee sydän- ja verisuonitautien riskiä parantamalla seerumin lipidiprofiilia, paasto-glykemiaa ja verenpainetasoja [10–12]. Ravinnon sisältämän energian rajoittamisen hyödyistä voit lukea täältä.

Hiljattain Comprehensive Assessment of the Long-term Effect of Reducing Intake of Energy -tutkimusohjelmassa arvioitiin pitkäkestoisen energianrajoituksen vaikutusta sydän- ja verisuoniterveyteen. Tähän satunnaistettuun tutkimukseen osallistui 218 koehenkilöä. Koehenkilöt jaettiin kahteen ryhmään, joista toinen noudatti rajoitetun energiansaannin ruokavaliota -25 % energiansaannilla 2 vuoden ajan ja toinen ryhmä noudatti tavanomaista ruokavaliota ilman energiarajoituksia 2 vuoden ajan.

Havainnot osoittivat, että jo kuuden kuukauden vähäenergisen ruokavalion aikana paino laski merkittävästi ja lipidiprofiilit sekä verenpainetasot paranivat [13]. Molemmat tekijät liittyvät kasvaneeseen kardiovaskulaariseen riskiin.

Tyydyttyneet rasvat (SFA) ja sydäntaudit

Runsas tyydyttyneen rasvan saanti yhdistetään usein kasvaneeseen sydän ja verisuonitautien riskiin erityisesti siksi, että se lisää matalatiheyksisen kolesterolin (LDL) pitoisuutta seerumissa. Tyydyttyneitä rasvoja sisältävät ravinto kasvattaa ateroskleroosin riskiä [14] ja insuliiniresistenssiä lisäämällä aterogeenisten lipoproteiinien LDL ja erittäin matalatiheyksisten lipoproteiinien ( VLDL) määrää ja vähentämällä suurtiheyksisten lipoproteiineja (HDL) [15].

Ancel Keysin seitsemän maan tutkimus oli yksi ensimmäisistä tutkimuksista, joissa arvioitiin tyydyttyneiden rasvojen saantiin liittyvää CVD-riskiä. Tutkimuksessa arvioitiin sydän- ja verisuonikuolleisuutta 11 579 miehellä, joita seurattiin 15 vuoden ajan. Tulokset osoittivat positiivisen korrelaation sydän- ja verisuonikuolemien ja tyydyttyneiden rasvojen saannin välillä [21].

Näin tapahtui kuitenkin vain, koska Ancel Keys hylkäsi 22 maan tutkimusaineistosta 15 maata, joissa positiivinen korrelaatio tyydyttyneiden rasvojen ja sydänkuolleisuuden välillä ei toteutunut. Seitsemän maan tutkimus on eräs räikeimmistä esimerkeistä tieteellisestä kirsikanpoiminnasta. Valitettavasti se on ravitsemussuositusten kiveen hakattu paradigma. Ranskalainen paradoksi näkyy selvästi Ancel Keysin alkuperäisessä datassa.

Kovat rasvat vs. pehmeät rasvat Euroopassa

Seuraavina vuosina tutkittiin Japanissa ja länsimaissa asuvia japanilaisia miehiä. Tutkimuksissa havaittiin japanilaismiesten sydän- ja verisuonikuolleisuuden lisääntyneen länsimaissa, minkä arveltiin johtuvan runsaasti tyydyttynyttä rasvaa sisältävän ruokavaliosta. Korrelaatio on olemassa, mutta kausaalisuuden osoittamisesta ei ole jälkeäkään. [14, 22].

Muistutan, että Mainen osavaltiossa margariinin kulutus liittyy avioerojen lisääntymiseen. Se on fakta, mutta ei siltä pohjalta voi voita suositella avioerojen ehkäisemiseen. Vai voiko?

Tyydyttyneiden rasvojen ja sydäntautien välisestä syy-yhteydestä ei vallitse tieteellistä yksimielisyyttä. Totesin jo tekstin alussa, että yksittäisten ravintoaineiden terveysvaikutusten osoittaminen ei ole aivan yksiselitteistä.

Tyydyttyneiden rasvojen vaaroja tukeva L. Robertsonin ja kumppaneiden tutkimus, johon tässä tutkimuskatsauksessa viitataan (14), on vuodelta 1977. Se on epidemiologinen väestötutkimus japanilaisten miesten sydänkuolleisuudesta Japanissa, Hawajilla ja Kaliforniassa.

Tutkimus osoitti, että Kaliforniassa ja Hawajilla elävät japanilaismiehet kuolivat useammin sydäntauteihin kuin samanikäiset Japanissa elävät miehet. Tämän uskottiin johtuvan runsaammasta tyydyttyneiden rasvojen saannista. Kriittisesti arvioiden: japanilaiset söivät ja syövät yhä edelleen terveellisemmin ja liikkuvat enemmän kuin amerikkalaiset. Määrällisesti amerikkalaiset kuluttavat keskimäärin lähes 1000 kilokaloria enemmän energiaa päivässä kuin japanilaiset. Yhdysvalloissa elävien japanilaismiesten elämäntapojen amerikkalaistuminen lisäsi siis tyydyttyneiden rasvojen lisäksi raffinoitujen sokereiden ja transrasvojen saantia sekä kokonaisenergian määrää, mutta vähensi kasvisten saantia ja arkiliikuntaa. Viitattu tutkimus ei todista, että Yhydsvaltoihin muuttaneet japanilaismiehet kuolivat sydäntauteihin tyydyttyneiden rasvojen vuoksi – se vain väittää niin.

Epidemiologisten tutkimusten todistusarvo on parhaimmillankin ”suuntaa antava”. Tiedetään, että vuonna 1977 USDA julkaisi tyydyttyneiden rasvojen ja kolesterolin rajoittamiseen tähtäävät ravintosuositukset, jotka perustuivat Ancel Keysin 7 maan tutkimukseen. Tässä tieteellisessä ilmapiirissä julkaistut epidemiologiset tutkimukset noudattivat tuloksiltaan yleisesti hyväksyttyä linjaa ja kallistuivat varmasti muista muuttujista riippumatta yleisesti hyväksytyn linjan kannalle. Korrelaatio on helppo osoittaa, mutta se ei osoita syy-yhteyttä.

Euroopassa eniten tyydyttyneitä rasvoja kuluttavien ranskalaisten ja sveitsiläisten sydänkuolleisuus on Euroopan alhaisinta. Vastaavasti eniten monityydyttämättömiä rasvoja syövien itäeurooppalaisten sydänkuolleisuus on Euroopan korkeinta. Tämä ilmiö tunnetaan ranskalaisena paradoksina. Se ei sovi vallitseviin ravitsemusoppeihin tyydyttyneiden rasvojen ja kolesterolin sydäntauteja lisäävästä vaikutuksesta. Tällaisista ekologisista faktoista ei kuitenkaan voi ja pitäisi vetää kovin pitkälle meneviä johtopäätöksiä, koska muuttujia on niin paljon.

P. M. Cliftonin systemaattinen kirjallisuuskatsaus (2017) kallistuu tyydyttyneiden rasvojen haittojen puolelle


P. M. Cliftonin systemaattinen kirjallisuuskatsaus analysoi tärkeimmät sydäntautien ja rasvojen suhdetta selvittävät tutkimukset. Katsaus on niin pitkä, että sivuan sitä vain lyhyesti. Se antaa hyvän kuvan siitä, kuinka vaikea yksittäisen ravintoaineen terveysvaikutuksia on selvittää.

Siri-Tarino et al. 2010

toteutti meta-analyysin tyydyttyneiden rasvojen saannin assosiaatiosta sydäntauteihin ja sydäntautikuolleisuuteen 16 kohorttitutkimuksesta. Viimeisin näistä oli vuodelta 2007. Dataa päivitettiin kuudesta kohortista.

Siri-Tarinon meta-analyysissä käytettiin mukautettua mallia, joka sisälsi kuuden kohortin mukauttamisen muihin rasvoihin ja rasvojen korvaamisen hiilihydraatteilla. Kuusi Siri-Tarinon analysoimaa kohorttitutkimusta osoitti tyydyttyneiden rasvojen ja sydäntautien välillä positiivisen yhteyden. Kymmenen analysoitua tutkimusta ei löytänyt yhteyttä sydäntautien ja tyydyttyneiden rasvojen väliltä. Siri-Tarinon johtopäätös oli, että tutkimukset antavat ristiriitaisia tuloksia, jotka eivät osoita selvää yhteyttä tyydyttyneiden rasvojen ja sydäntautien välillä ja siten tue yleistä näkemystä tyydyttyneiden rasvojen haitallisuudesta.

R. Chowdhuryn

20 tutkimuksen (283 963 henkilön) meta-analyysi vuodelta 2014 ei löytänyt näyttöä tyydyttyneiden rasvojen yhteydestä sydäntauteihin. Chowdury et al. havaitsi, että tyydyttyneet rasvahapot eivät liity CHD-tapahtumiin ja kuolemiin verrattuna hiilihydraatteihin. Sen sijaan transrasvahappojen saanti lisäsi sydäntauteja. Monityydyttymättömien rasvojen saanti ei myöskään laskenut sydäntautien ja -kuolleisuuden riskiä tilastollisesti merkittävästi.

”The evidence did not clearly support cardiovascular guidelines that encouraged high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.” – Chowdhury

De Souza et al. (2015)

analysoi tyydyttyneiden rasvojen ja transrasvojen saannin vaikutuksia kardiovaskulaarisiin tapahtumiin ja sydänkuolleisuuteen 41 erillisen tutkimuksen meta-analyysissä. Yksitoista analysoitua kohorttia osoitti tyydyttyneen rasvan ja sydäntautikuolleisuuden välille yhteyden.

Johtopäätös: runsas tyydyttyneiden rasvojen saanti ei lisää sydänkuolleisuutta verrattuna hiilihydraatteihin. Runsas tyydyttyneiden rasvojen saanti hiilihydraatteihin verrattuna ei myöskään näytä lisäävän muita sydäntautitapahtumia. Transrasvojen kokonaissaanti liittyi kuitenkin kaikkien syiden kuolleisuuteen.

Zong et al. (2016)

tutki yksittäisten rasvahappojen saannin vaikutuksia sairaanhoitajien terveystutkimuksen (Nurses Health Study) ja terveydenhuollon ammattilaisten seurantatutkimuksen (Health Professionals Follow Up Study) aineiston pohjalta. Verrattaessa tyydyttyneiden rasvojen saannin korkeinta ja matalinta kvintiiliä, sepevaltimotaudin riskisuhde tyydyttyneillä rasvoilla oli korkeampi kuin monityydyttymättömillä rasvoilla tai täysjyvähiilihydraateilla. Monityydyttämättömät rasvat ja täysjyvähiilihydraatit laskivat sepelvaltimotaudin riskiä.

Sekä maitotuotteista että teollisista lähteistä peräisin olevat transrasvat nostavat selvästi LDL-kolesterolia ja alentavat HDL-kolesterolia, mutta niiden vaikutukset sydän- ja verisuonitauteihin ovat kiistanalaisia.

Bendsen et al. 2011

analysoi kuusi julkaistua ja kaksi julkaisematonta prospektiivista kohorttitutkimusta transrasvojen (TFA) kokonaissaannin ja sydäntautiriskien yhteydestä vertaamalla ääri-kvintiilejä.

Eläinperäinen transrasvojen saanti ei kasvattanut merkittävästi sydänsairauksien riskiä. Teollisten transrasvojen saanti viittasi positiiviseen yhteyteen sydäntautien ja teollisten transrasvojen välillä.

Kirjoittajat päättelivät, että teollinen TFA voi olla positiivisesti yhteydessä sydänsairauksiin, kun taas luonnollinen eläinperäinen TFA ei ole. Käytettävissä olevien tutkimusten rajallisen määrän vuoksi ei kuitenkaan voida olla varmoja, onka transrasvojen lähteellä merkitystä.

Praagman et al. 2016

analysoi EPIC-Alankomaat-kohorttia (1807 IHD*-tapahtumaa) ja havaitsi, että tyydyttyneiden rasvojen saanti liittyi pienempään sydän- ja verisuonitautien riskiin. SFA:n (tyydyttyneiden rasvojen) korvaaminen eläinproteiinilla, cis-MUFA:lla (kertatyydyttymättömällä rasvalla), PUFA:lla (monityydyttämättömällä rasvalla) tai CHO:lla (hiilihydraateilla) liittyi tutkimuksessa korkeampaan iskeemisen sydäntaudin riskiin.

Matalammat sydäntautien (IHD) riskit havaittiin maitotuotteista, kuten voista, juustosta, maidosta ja muista meijerituotteista peräisin olevien SFA-yhdisteiden suuremmilla saannoilla.

Rotterdamin tutkimuksessa Praagman et al. 2016 ei löytänyt yhteyttä tyydyttyneiden rasvojen ja sydäntautien välillä. He havaitsivat kuitenkin korkeamman sydäntautiriskin palmitiinihapon saannilla, mutta eivät tyydyttyneiden rasvojen muilla rasvahappoketjujen pituuksilla.

* IHD= Ischemic Heart Disease

EPIC-Alankomaat-tutkimuksessa tyydyttyneiden rasvojen korvaaminen eläinproteiinilla liittyi korkeampaan sydän- ja verisuonitautien riskiin. Rotterdamin tutkimuksessa tyydyttyneiden rasvojen korvaaminen eläinproteiineilla lisäsi sydäntautien riskiä, mutta muiden makroravinteiden suhteen yhteyttä ei havaittu.

Blekkenhorts et al. 2015

Australialaisessa tutkimuksessa, jossa seurattiin 1469 ikääntynyttä naista, tyydyttyneiden rasvojen saannin korkeimmalla kvartiililla kumulatiivinen ateroskleroottinen verisuonikuolleisuusriski verrattuna alimpaan kvartiilin oli noin 16 % korkeampi.

Guasch-Ferre et al. 2015

Predimed-havainnointiraportissa tyydyttyneiden rasvahappojen ja transrasvojen saannin äärimmäisten kvintiilien vertailussa eniten tyydyttyneitä rasvoja saaneilla havaittiin 81% suurempi kardiovaskulaaristen sairauksien riski (336 tapahtumaa).

Farvid et al. 2014

analysoi linolihapon (omega-6) ja sepelvaltimotautien välistä yhteyttä (kaikki sepelvaltimotaudin lopputulokset: sydäninfarkti, iskeeminen sydänsairaus, sepelvaltimon ohitusleikkaus, äkillinen sydämenpysähdys, akuutti sepelvaltimo-oireyhtymä ja sydän- ja verisuonitauteihin liittyvät kuolemat).

Tutkijat sisällyttivät meta-analyysiin 6 kohorttia dieetin ja sepelvaltimotaudin kohorttitutkimusten Pooling-projektista: ateroskleroosiriski yhteisöissä -tutkimus (ARIC), Suomen liikkuvan klinikan terveystutkimus (FMC); Israelin iskeemisen sydänsairauden tutkimus (IIHD); Iowan naisten terveystutkimus (IWHS); Västerbottenin interventio-ohjelma (VIP) ja naisten terveystutkimus (WHS). Malmön ruokavalion ja syöpäkohortin (Malmö Diet and Cancer Cohort) tutkijat toimittivat tutkimukselle dataa. NHS (Nurses Health Study) ja HPFS (Health Professionals Follow Up Study) päivitettiin: NHS:ssä 20 vuodesta 30 vuoteen ja HPFS:ssä 6 vuodesta 24 vuoteen. ATBC-tutkimuksen tiedot analysoitiin uudelleen sekoittavien muuttujien mukauttamiseksi samalla tavalla kuin muut tähän meta-analyysiin sisältyvät kohorttitutkimukset. Muita tutkimuksia olivat Monica-tutkimus Tanskassa ja Morgen-tutkimus Alankomaissa sekä MRFIT-tutkimus.

Tutkimuksen tarkoituksena oli arvioida omega-6-linolihapon (LA) yhteyttä sydän- ja verisuonitauteihin ja näiden aiheuttamiin kuolemantapauksiin.

Meta-analyysi ei sisältänyt Kuopion tai Glostrupin tietoja, jotka ovat molemmat pieniä. 13 kohorttitutkimuksessa oli yhteensä 310 602 henkilön terveystiedot ja 12 479 CHD-tapahtumaa, mukaan lukien 5882 CHD-kuolemaa.

Kymmenessä kohortissa raportoitiin kardiovaskulaaristen tapahtumien tulokset. Kahdessa tutkimuksessa ei raportoitu kardiovaskulaarikuolemia. Verrattuna korkeimpaan alimpaan luokkaan, ruokavalion linolihappo (omega-6) liittyi 15% pienempään kardiovaskulaaristen tapahtumien riskiin ja 21% pienempään sydänsairauskuolemien riskiin.

Korvaamalla 5%:n tyydyttyneiden rasvojen energiansaannista omega-6-rasvoilla laski 9% CHD-tapahtumien riskiä ja 13% pienempään CHD-kuolleisuuden riskiin. Verrannollisia arvioita saatiin, kun linolihappovan korvaavasi hiilihydraateista saatavaa energiaa.

Vastakkaisia tuloksia saatiin Chowduryn meta-analyysistä, jossa ruokavalion omega-6-rasvat eivät laskeneet sydäntautiriskiä kahdeksassa kohorttitutkimuksessa, jotka sisälsivät 206 376 henkilön terveystietoja. Kohortit olivat Morgen, MRFIT, Glostrup, Kuopio, Malmo, ATBC, NHS ja HPFS. Farvidin meta-analyysi sisälsi kuusi kohorttitutkimusta enemmän kuin Chowdhuryn meta-analyysi. Nämä 6 kohorttia olivat Pooling-projektista plus Tanskan Monica. Chowdury et al. ei tutkinut erikseen Willett-ryhmän suorittamaa makroravinteiden korvaamista ja tutki vain tyydyttyneiden ja tyydyttymättömien rasvojen saannin tertiilejä suhteessa sydämen päätepisteisiin.

Wang et al. 2016

raportoi yhdistettyjen sairaanhoitajien ja terveydenhuollon ammattilaisten seurantatutkimuksesta. Tutkimus keskittyi kokonaiskuolleisuuteen (3 439 954 henkilöä ja 33 304 kuolemaa). Runsas rasvan saanti ja pienempi hiilihydraattien saanti assosioitui 16%:n pienempään kuolleisuuteen.

Li et ai., 2015

tarkasteli samoja kahta kohorttia päivitetyssä analyysissä (84 628 naista (sairaanhoitajien terveystutkimus, 1980-2010) ja 42 908 miestä (terveydenhuollon ammattilaisten seurantatutkimus, 1986-2010) ruokavalion rasvaa suhteessa CHD-riskiin. 24–30 seurantavuoden aikana esiintyi 7667 CHD-tapausta. Suuremmat monityydyttymättömien rasvahappojen saannit liittyivät merkittävästi pienempään sydäntauti-riskiin.

Hiilihydraatit (puhdas tärkkelys / lisätty sokeri) liittyivät positiivisesti lisääntyneeseen sydänsairauden riskiin. Valkoisten viljojen ja lisätyn sokerin korvaaminen täysjyväviljoilla assosioitui pienempään sydäntautiriskiin. PUFA ei eronnut merkittävästi MUFA:sta, mutta se poikkesi täysjyvästä.

Mozaffarianin meta-analyysi, 2010

Usein viitattu Mozaffarianin meta-analyysi päätyi tulokseen, että pitkällä aikavälillä tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla parantaa sydänterveyttä, mutta tyydyttyneiden rasvojen korvaaminen hiilihydraateilla ei Mozaffarianin meta-analyysin mukaan paranna sydänterveyttä.

Mozaffarianin tutkimuksessa on mukana kaksi tutkimusta (suomalaiset mielisairaalatutkimukset), jotka eivät täytä Mozaffarianin tutkimukselleen asettamia kriteereitä. Kun ne poistetaan, myös hatara yhteys sydäntautien ja tyydyttyneiden rasvojen välillä katoaa.

Ramsdenin löytämät unohdetut tutkimukset

Sydneyn ruokavalio-sydäntutkimus (Sydney Diet Heart Study)

Sydneyn ruokavalio-sydäntutkimus oli kontrolloitu satunnaistettu tutkimus, johon osallistui 458 miestä vuosina 1966–1973. Tutkimuksen tavoitteena oli selvittää kuinka tyydyttyneen rasvan korvaaminen safloriöljystä (ja margariinista) saatavilla monityydyttämättömillä rasvahappoilla (PUFA) vaikuttaa terveyteen. Safloriöljy sisältää vain linolihappoa (omega-6).

Interventiotutkimus jatkui 2-7 vuotta, mediaanin ollessa hieman yli 3 vuotta.Tutkimuksesta julkaistiin yksi raportti vuonna 1978, jonka jälkeen Sydney Diet Heart Study unohdettiin vuosikymmeniksi. Julkaistussa raportissa todettiin, että vaikka omega-6-rasvaa saaneen ryhmän seerumin kokonaiskolesteroli laski hieman verrattuna kontrolliryhmään, interventioryhmässä kuolleisuus kaikkiin syihin lisääntyi.

Interventioryhmän 221 miehestä 37 kuoli. Kontrolliryhmän 237 miehestä 28 kuoli. Tutkijat totesivat, että omega-6-PUFAa saavassa interventioryhän miehillä oli 70-74 % korkeampi sydän- ja verisuonitautikuolleisuuden riski.

Sydney Diet Heart Studyn päivitetty analyysi, jossa yhdistettiin kolme vastaavaa tutkimusta, vahvisti, että tyydyttyneiden rasvojen korvaaminen vain omega-6 PUFA:lla liittyi 33% suurempaan sydän- ja verisuonitautikuolleisuuden riskiin.

Sydneyn tutkimusta on kritisoitu siitä, että safloriöljyä sisältävä margariini sisälsi runsaasti haitallisia transrasvoja. Se voi selittää omega-6 rasvojen kuolleisuutta lisäävän vaikutuksen. Transrasvat kuitenkin lisäävät yleensä kolesterolia, mutta interventioryhmässä kolesteroli sen sijaan laski. Se herättää kysymyksiä.

Minnesotan sepelvaltimotutkimus (Minnesota Coronary Study)

Minnesotan sepelvaltimotutkimus on suurin tutkimus, jossa on tutkittu millaisia vaikutuksia tyydyttyneen rasvan korvaaminen n-6 PUFA:lla aiheuttaa. Se oli kaksoissokkoutettu kontrolloitu satunnaistettu tutkimus, joka toteutettiin vuosina 1968–1973. Siihen osallistui 4393 miestä ja 4664 20–97-vuotiasta naista kuudesta mielisairaalasta ja yhdestä hoitokodista. Kyse oli ensisijaisesti ennaltaehkäisevästä tutkimuksesta, koska vain 392:lla oli elektrokardiografisia todisteita aikaisemmasta sydäninfarktista.

Interventioryhmän jäsenet noudattivat ruokavaliota, jossa tyypilliset rasvalähteet (voi ja muut eläinperäiset tyydyttyneet rasvat) korvattiin maissiöljyllä ja maissiöljypohjaisella margariinilla. Koska laitosten ruokaa tarjoillaan kahvila-tyyliin, tutkijat pystyivät tekemään kaksoissokkoutetun tutkimuksen.

Vain noin neljännes koehenkilöistä oli kokeessa vähintään vuoden. Mielenkiintoinen tosiasia tässä tutkimuksessa on, että vaikka se päättyi vuonna 1973, tulokset julkaistiin akateemisessa lehdessä vasta vuonna 1989. Tuossa julkaisussa kirjoittajat eivät ilmoittaneet eroja sydän- ja verisuonitapahtumissa tai kuolleisuudessa koko tutkimuspopulaatiossa huolimatta seerumin kokonaiskolesterolitason merkittävästä 15 prosentin laskusta interventioryhmässä.

Yksityiskohtaisempi analyysi tutkimusaineistosta ja monet alaryhmätulokset, jotka eivät sisältyneet vuoden 1989 julkaisuun, sisältyivät vuonna 1981 julkaistuun diplomityöhön. Työssä esitetyt taulukkoanalyysit viittasivat lisääntyneeseen kuolleisuusriskiin ≥ 65-vuotiaiden keskuudessa interventioryhmässä. Tuloksia ei kuitenkaan koskaan julkaistu akateemisessa lehdessä.

Ramsden et al. palautti osan alkuperäisistä tiedoista, jotka oli tallennettu magneettinauhoille ja paperiasiakirjoihin, ja julkaisi vuonna 2016 kumulatiivisen kuolleisuuden taulukot koko tutkimuspopulaatiosta ja ennalta määritellyistä alaryhmistä, jotka oli julkaistu alun perin vasta opinnäytetyössä vuonna 1981.

Palautetut tiedot eivät osoittaneet tilastollisesti merkitseviä eroja interventio- ja vertailuryhmien välillä aortan ja sepelvaltimoiden ateroskleroosissa 298 päivän mediaaniseurannan jälkeen, mutta sen sijaan havaittiin, että sydäninfarktin esiintyvyys oli interventioryhmän ruumiinavausdatan perusteella 90 % korkeampi.

Näiden tulosten lisäksi kirjoittajat tekivät myös meta-analyysin, jossa he yhdistivät Minnesotan sepelvaltimotutkimuksen tulokset neljään vastaavaan, mutta huomattavasti pienempään tutkimukseen, joissa tyydyttynyt rasva oli korvattu omega-6 (PUFA)-rikkailla kasviöljyillä.

Yhdistetyt tulokset eivät osoittaneet vaikutusta sydän- ja verisuonitauteihin tai kaikkien syiden kuolleisuuteen huolimatta seerumin kokonaiskolesterolipitoisuuksien keskimääräisestä 8-14% laskusta interventioryhmissä verrattuna kontrolliryhmiin.

Tutkimuksen merkittävä rajoitus, kuten myös Ramsden on todennut, on, että vain pieni osa rekrytoiduista henkilöistä pysyi tutkimuksessa vähintään vuoden. Esimerkiksi uusin Cochrane-katsaus ei sisältänyt Minnesotan sepelvaltimotutkimusta tästä syystä. Kuten myös kirjoittajat huomauttivat, näiden analyysien tuloksia tulisi tulkita varovaisesti, koska palautettujen tietojen kohteiden lukumäärä on pieni. Kevyesti hydratun maissiöljymargariinin, tärkeimmän transrasvojen lähteen käyttö interventioryhmässä on saattanut vaikuttaa tuloksiin.

Rasvasota näyttää jatkuvan: Tyydyttyneet rasvahapot (SFA) eivät lisää sydän- ja verisuonitautien (CVD) riskiä osoitti kaksi äskettäin julkaistua satunnaistettujen kontrolloitujen tutkimusten (RCT) analyysiä. SFA:n korvaaminen linolihapolla lisäsi CVD-riskiä yhdessä tutkimuksessa. Lisäksi äskettäin tehdyssä suuressa prospektiivisessa kohorttitutkimuksessa raportoitiin pienemmästä sydän- ja verisuonitautiriskistä lisääntyneellä SFA-energian saannilla, ja kohorttitutkimusten viimeaikaisissa meta-analyyseissä todettiin, että SFA ei lisännyt sydän- ja verisuonitautien riskiä.

Tyydyttyneiden ja trans-rasvahappojen pelkistämisestä johtuviin terveyshyötyihin viittaavia vastalauseita on kuitenkin lukuisia, mukaan lukien äskettäin julkaistut RCT:t, prospektiiviset kohorttitutkimukset ja ekologiset tutkimukset. Vaikuttaakin siltä, että tieteellä ei ole selkeää vastausta tyydyttyneiden rasvojen terveysvaikutuksista huolimatta valtavasta työstä. Jos joku väittää, että on kiistattomia todisteita siitä, että tyydyttyneet rasvat lisäävät sydäntautien riskiä, hän ei tiedä mistä puhuu tai valehtelee. Tiedot ovat hajanaisia ja ristiriitaisia.

Tutkimukset eivät ole samanarvoisia. Luotettavimpia tutkimuksia ovat systemaattiset kirjallisuuskatsaukset, meta-analyysit ja satunnaistetut kontrolloidut tutkimukset (erityisesti sokkoutetut satunnaistetut kontrolloidut tutkimukset).

Epidemiologiset seurantatutkimukset antavat epäluotettavia tietoja, koska ravitsemusta käsittelevissä seuranta- ja kyselytutkimuksissa ihmiset unohtavat ja valehtelevat tietoisesti tai tietämättään.

Mihin jäinkään?

Ai niin! Tämän tutkimuskatsauksen mukaan tyydyttyneitä rasvoja sisältävät ruokavaliot johtavat matala- asteiseen tulehdustilaan (inflammaatio) ja insuliiniresistenssiin. Tästä, kuten rasvojen vaikutuksista terveyteen on myös päinvastaisia tutkimustuloksia. Avataan tätä hieman.

Insuliiniresistenssin havainnut Joseph Kraft uskoi, että lähes kaikki sydän- ja verisuonitaudit johtuvat diagnosoidusta tai diagnosoimattomasta diabeteksesta.

Insuliiniresistenssi vaikuttaa tyypin 2 diabeteksen sekä sydän- ja verenkiertoelimistön sairauksien kehittymiseen.

Insuliiniresistenssi on monien elämäntapasairauksien taustalla vaikuttava juurisyy. Lihas-, rasva- ja maksasolujen heikentynyt kyky ottaa vastaan glukoosia ylläpitää veren korkeaa glukoosipitoisuutta. Samalla puutteellisesti energiaa saavat solut surkastuvat, sairastuvat ja kuolevat.

Jatkuvasti korkea verensokeri edistää sokereiden glykatoitumista rasvojen ja proteiinien kanssa. Glykotoksiinit aiheuttavat oksidatiivista stressiä, joka puolestaan kasvattaa sydän- ja verenkiertoelimistön sairauksien riskiä. Elimistö yrittää päästä eroon ylimääräisistä sokereista lisäämällä virtsan eritystä. Diabetes, eli sokeritauti tunnettiin tämän vuoksi aiemmin makeavirtsaisuutena.

Insuliiniresistenssin riskitekijöitä on useita, kuten ylipaino, lihavuus, verenpaine, vaihteleva vuorokausirytmi, D-vitamiinin puute ja vähän liikuntaa sisältävä elämäntapa. Erilaiset geneettiset ja epigeneettiset tekijät voivat laukaista insuliiniresistenssiin johtavan aineenvaihduntahäiriön.

Ruokavaliotekijät vaikuttavat insuliiniresistenssiin, mutta kausaatiota eri ravintoaineille on vaikea määrittää ravintotutkimuksen rajoitusten vuoksi. Ruokiin, jotka liittyvät insuliiniresistenssiin, lukeutuvat runsaasti sokeria sisältävät korkean glykeemisen indeksin ruoat, runsaasti rasvaa ja fruktoosia sisältävät ruoat sekä vähän omega-3-rasvoja ja kuitua sisältävät ruoat.

Yksinkertaistaen: insuliiniresistenssiä lisäävät erityisesti herkut, kuten pikaruoat, makeiset, keksit jne. jotka sisältävät runsaasti sokereita ja huonoja rasvoja. Runsaasti rasvaa ja sokeria sisältäviä ruokia sekä sokeroituja juomia pidetään perustekijöinä metabolisen oireyhtymän taustalla.

Ruokavalio voi myös muuttaa monityydyttymättömien ja tyydyttyneiden fosfolipidien suhdetta solukalvoissa. Monityydyttymättömien rasvahappojen (PUFA) prosenttiosuus korreloi käänteisesti insuliiniresistenssin kanssa. Oletetaan, että solukalvon juoksevuuden lisääminen lisäämällä PUFA-pitoisuutta saattaa johtaa lisääntyneeseen insuliinireseptorien määrään, insuliinin lisääntyneeseen affiniteettiin sen reseptoreihin ja parempaan insuliinisensitiivisyyteen. Solukalvojen rakenteelliset muutokset voivat toisaalta altistaa inflaamaatiolle ja heikentää immuunijärjestelmän toimintaa.

D-vitamiinin puute ja monet hormonit, kuten kortisoli ja kasvuhormoni vaikuttavat insuliiniresistenssiin, Kortisoli vastustaa insuliinia. Stressihormonina tunnetun kortisolin eritys vähenee ketogeenisellä ruokavaliolla. Sokereiden rajoittamisen seurauksena autonomista hermostoa kiihdyttävästä glutamaatista syntetisoidaan hermostoa rauhoittavaa GABAa. Tällä on suotuisia terveysvaikutuksia. Edelleen tämä johtaa lisääntyneeseen maksan glukoneogeneesiin, vähentää glukoosin perifeeristä hyödyntämistä ja lisää insuliiniresistenssiä. Kortisoli tekee tämän vähentämällä glukoosikuljettajien (erityisesti GLUT4) siirtymistä solukalvoon.

Myös leptiinin aineenvaihdunnan häiriöt liittyvät insuliiniresistenssiin. Leptiini on rasvakudoksen erittämä hormoni, jonka fysiologisena tehtävänä on säädellä kylläisyyden tunnetta. Tutkimukset osoittavat, että leptiinin puute ja leptiiniresistenssi lisäävät sairaalloista lihavuutta ja liittyvät vahvasti insuliiniresistenssiin, metaboliseen oireyhtymään ja diabetekseen.

Akuutti ja krooninen tulehdus voivat aiheuttaa insuliiniresistenssia. Esimerkiksi tulehdukseen liittyvä TNF-a voi edistää insuliiniresistenssiä edistämällä lipolyysiä, häiritsemällä insuliinin signalointia ja vähentämällä GLUT4:n ilmentymistä.

Monen geneettisen lokuksen on todettu liittyvän insuliiniherkkyyteen. Tähän sisältyy vaihtelu paikoissa lähellä NAT2-, GCKR- ja IGFI-geenejä, jotka liittyvät insuliiniresistenssiin. Tutkimukset ovat vahvistaneet, että näiden geenien lähellä olevat lokit ovat yhteydessä insuliiniresistenssiin. Näiden lokusten arvioidaan kuitenkin muodostavan vain 25–44% insuliiniresistenssin geneettisestä vaikutuksesta.

Insuliiniresistenssi ylläpitää lipogeneesiä, jossa insuliini laskee veren korkeaa sokeripitoisuutta varastoimalla glukoosia rasvasoluihin. Glukoosi muutetaan rasvasoluissa triglyserideiksi. Tämä kasvattaa rasvakudosta ja heikentää rasvakudoksen leptiinisignalointia. Lihassolujen puutteellinen energiansaanti kasvavan rasvakudoksen heikentämän leptiinisignaloinnin kanssa vaikuttaa lisäksi nälkähormoni greliinin eritykseen.

Greliini informoi aivoja ravinnon tarpeesta. Häiriintyneen greliinisignaloinnin seurauksena ihmisellä voi olla jatkuva nälkä, vaikka veressä olisi riittävästi energiaa koko päiväksi ja rasvakudokseen varastoitu energia kattaisi viikkojen energiantarpeen.

Energian tallentaminen rasvakudokseen on luonnollista.Varhaisilla ihmisillä ravinnon saanti ei ollut samalla tavoin turvattua kuin nykyihmisillä. Metsästäjä-keräilijät sattoivat elää hyvin niukalla tai olemattomalla ravinnolla päivistä viikkoihin, mutta kun ravintoa oli tarjolla, sitä tankattiin myös huonompien aikojen varalle.

Energian varastoimisessa insuliinilla on keskeinen rooli. Laihduttaessa insuliinin rooli on rasvan polttamista estävä, koska se ylläpitää lipogeneesiä ja estää lipolyysin käynnistymistä. Jatkuvasti korkea insuliinipitoisuus estää rasvsasoluihin varastoidun energian purkamisen vapaiksi rasvahapoiksi, joita solut voisivat käyttää energianlähteenä. Veren insuliinipitoisuus laskee lipolyysin käynnistymisen kannalta riittävästi keskimäärin 8 tuntia syömisen jälkeen. Se tarkoittaa, että keho voi hyödyntää rasvasolujen energiaa vain yöaikaan. Tehokkaan rasvanpolton aikaikkuna jää silloin melko lyhyeksi.

Insuliiniresistenssi lihottaa koska insuliini on anabolinen hormoni, joka säätelee energiaravinteiden käyttöä ja varastoimista. Jatkuvasti korkea veren insuliinipitoisuus ja solujen heikentynyt insuliinisensitiivisyys ohjaavat ylimääräistä verensokeria rasvasoluihin. Samalla korkea insuliinipitoisuus ja solujen heikentynyt energiansaanti lisäävät nälästä kertovan greliinin eritystä ja laskevat kylläisyydestä kertovan leptiinin eritystä.

Matala-asteinen tulehdus

Tämän tutkimuskatsauksen mukaan tyydyttyneiden rasvojen saanti edistää lipopolysakkaridien imeytymistä suolistossa, mikä voi aiheuttaa tulehdusta [16, 17] sitoutumalla TLR-4:een, mikä liittyy korkeampaan CVD-riskiin. Lipopolysakkaridi on rasvahapon ja suurimolekyylisen hiilihydraatin muodostama molekyyli. Lipopolysakkaridit voivat aktivoida immuunijärjestelmän, sillä niitä on esimerkiksi monien gramnegatiivisten bakteerien ulkokalvossa. TLR-2:n aktivaatio, keramidituotanto ja lipidilauttojen muodostuminen näyttävät liittyvän myös tulehdusprosessiin tyydyttyneen rasvan vuoksi [18–20].

Matala-asteinen tulehdus on sydän- ja verisuonitautien riskitekijä. Ateroskleroosiin liittyy jatkuva tulehdusvaste. Viimeaikaiset perustutkimuksen havainnot ovat vahvistaneet matala-asteisen tulehduksen perustavan roolin ateroskleroosin kehittymisessä. Inflammaatio välittää kaikkia ateroskleroosin vaiheita taudin alusta aina tromboottisiin komplikaatioihin asti.

Tutkimuksissa on havaittu selkeitä yhteyksiä riskitekijöiden ja aterogeneesimekanismien välillä. Kliiniset tutkimukset osoittavat, että ateroskleroosiin liittyvät tulehdusmekanismit toteutuvat myös ihmisillä. Tulehduksesta kertovien markkereiden lisääntyminen kertoo kasvaneesta sydän- ja verisuonitautien riskistä. Krooninen matala-asteinen tulehdus (kohonnut C-reaktiivisen proteiinin CRP-taso) määrittelee prospektiivisesti ateroskleroottisten komplikaatioiden riskiä. Yhdessä muiden tunnettujen riskitekijöiden kanssa tulehdusmarkkerit voivat auttaa tunnistamaan korkeamman riskin henkilöitä entistä aiemmin.

Eräät sepelvaltimotaudin hoidot hillitsevät myös kroonista matala-asteista tulehdusta. Statiineihin liittyvän lipiditason alenemisen tulehdusta estävä vaikutus ei korreloi pienitiheyksisten lipoproteiinitasojen laskun kanssa. Uudet havainnot ateroskleroosiin liittyvistä tulehdustekijöistä lisäävät ymmärrystämme ateroskleroosin mekanismeista ja tarjoavat kliinisiä sovelluksia riskien kartoittamiseen ja hoitojen kohdistamiseen.

Krooninen inflammaatio on keskeinen tekijä sydän- ja verisuonitautien patogeneesissä, mutta se assosioituu vahvasti myös diabeteksen, dementian ja masennuksen kasvaneeseen alttiuteen. Matala-asteinen tulehdus lisää riskiä kuolla mihin tahansa syyhyn. Sellaisten riskitekijöiden tunnistaminen, jotka voisivat tehokkaasti vähentää kroonista tulehdusta, edistäisi tehokkaasti kroonisten sairauksien ehkäisyä.

Sokeri

Runsaasti sokeria sisältävä ruokavalio (erityisesti sokerilla makeutetut juomat voivat olla yksi subkliinisen C-reaktiivisella proteiinilla (CRP) mitattavan matala-asteisen tulehduksen aiheuttajista. Sokeria kulutetaan runsaasti länsimaisissa ruokavalioissa. 18 kehittyneen maan lisätyn sokerin kulutusta verrattaessa havaittiin, että lisätyn sokerin kokonaissaanti prosentteina energiasta vaihteli aikuisilla 13,5–24,6 % välillä.

Yhdysvalloissa valtakunnalliset elintarvikkeiden kulutuskyselyt (NHANES) ovat arvioineet, että fruktoosimaissisiirapin (HFCS) prosenttiosuus makeutusaineena kasvoi16 prosentista (1978) 42 prosenttiin (1998) ja vakiintui sille tasolle. Samanlainen suuntaus havaittiin myös fruktoosin kokonaiskulutuksessa.

Tuoreimmat tiedot osoittavat, että yleisen tietoisuuden lisääntyessä lisätyn sokerin kulutus Yhdysvalloissa on laskenut vuosina 1999–2008 keskimäärin 18,1 prosentista 14,6 prosenttiin. Sokerista saatavan energian kokonaissaanti on kuitenkin edelleen paljon suurempi kuin Yhdistyneen kuningaskunnan ravitsemuksellisen neuvoa-antavan komitean (SACN) ohjeet, joissa suositellaan, että listättyjen sokereiden enimmäismäärä on 5% päivittäisestä energiansaannista. Myös Maailman terveysjärjestön (WHO) suositus lisätylle sokerille on 5 % päivittäisestä energiasta.

Runsas sokeri edistää maksassa olevien vapaiden rasvahappojen (FFA) de novo -synteesiä, mikä lipotoksisuusteorian mukaan tuottaa FFA-metaboliitteja, jotka voivat laukaista tulehdusprosesseja. ja reaktiivisten happilajien (ROS) muodostumista.

Elimistön kaikki solut osaavat hyödyntää glukoosia. Fruktoosin aineenvaihdunta, eli fruktolyysi tapahtuu maksassa. Koska ei ole olemassa negatiivisia takaisinkytkentämekanismeja, jotka kontrolloivat ja estävät fruktoosin ylimääräisen saannin maksan mitokondrioissa, fruktoosi muuttuu itsenäisesti osittain asetyyli-CoA: ksi, joka on rakennusosa rasvahapposynteesille.

Fruktoosin metabolinen reitti tukee lipotoksisuuden teoriaa, mutta vielä ei tiedetä onko sakkaroosin sisältämä fruktoosi merkittävämpi inflammaation aiheuttaja kuin glukoosi.

Interventiotutkimuksista saatu näyttö todistaa, että fruktoosiannokset, jotka tuottavat ylimääräistä energiaa (+ 21–35% ) nostavat maksarasvoja. Tätä vaikutusta näyttää kuitenkin sekoittavan liiallinen energian saanti.

Ruokavalion fruktoosimetabolian on vahvistettu edistävän vapaiden rasvahappojen de novo -synteesiä maksassa, kun fruktoosin saanti on runsasta. Vaikka triglyseridien lisääntyminen maksassa näyttää olevan hyvänlaatuisen steatoosin oire, on alustavaa näyttöä siitä, että vapaiden rasvahappojen (FFA) metaboliitit voivat edistää alkoholista riippumattoman rasva-maksasairauden (NAFLD) etenemistä alkoholista riippumattomaksi steatohepatiitiksi (NASH) lisäämällä vapaiden happiradikaalien (ROS) määrää ja käynnistämällä tulehdusprosesseja, jotka johtavat maksasolujen apoptoosiin ja maksan arpeutumiseen eli kirroosiin.

Kudosbiopsioiden tutkimukset vahvistavat tulehduksellisten biomarkkereiden, kuten CRP, IL-6 ja IL-1RA systeemisten tasojen asteittaisen kasvun terveestä rasvakudoksesta runsaasti immuunisoluja sisältävään rasvakudokseen ja terveestä maksasta alkoholista riippumattomaan steatohepatiittiin (NASH).

On perusteltua olettaa, että erityisesti runsas fruktoosin saanti rasittaa ja vaurioittaa maksaa. Laajassa systemaattisessa kirjallisuuskatsauksessa (lue tästä) ei havaittu merkittävää eroa sillä, onko maksan metaboloima fruktoosi peräisin sakkaroosista (pöytäsokeri), fruktoosista vai fruktoosisiirapista (HFCS). Tämä vahvistaa sen, että ylimääräinen sokeri lähteestä riippumatta vaurioittaa maksaa.

Tulevissa tutkimuksissa maksan rasvoittumista ja de novo lipogeneesia pitäisi tarkastella NAFLD:n mrkkerina, samalla kun mitataan sellaisia spesifisempiä tulehdusmarkkereita, jotka ovat yhteydessä maksarasvaan, esim. fetuiini A. Se viittaa fruktoosinkulutuksen ja lisääntyneen viskeraalisen rasvakudoksen väliseen yhteyteen.

Viskeraalinen rasvakudos tuottaa tulehduksellisia sytokiineja, kuten TNF-a ja IL-6, jotka puolestaan voivat lisätä C-reaktiivisen proteiinin vapautumista maksassa. Runsas sokerin saanti lisää erityisesti viskeraalista rasvaa, joka ylläpitää matala-asteista tulehdusta erittämällä tulehdussytokiinejä.

Eläintutkimuksissa fruktoosi on aiheuttanut suoliston eräiden mikrobipopulaatioiden ylikasvua ja lisääntynyttä suoliston läpäisevyyttä. Tämän seurauksena lipopolysakkaridien endotoksiinitasot siirtyvät ja aktivoivat Tollin kaltaisen reseptorin 4 maksan Kupffer-soluissa. Aktivaatio johtaa useiden sytokiinien, kuten TNF-a:n eritykseen.

Gersch et al. raportoi, että runsaasti fruktoosia sisältävä ruokavalio lisää merkittävästi munuaisten MCP-1-ekspressiota rotilla. In vitro -tutkimus ihmisen epiteelin tubulaarisoluilla viittasi fruktoosin, mutta ei glukoosin, indusoimaan MCP-1-tuotannon aktivaatioon.

Glukoosin erityisestä roolista oksidatiivisissa tapahtumissa on todisteita

Korkean glykeemisen indeksin ravinto liittyy nopeasti syömisen jälkeen (postbrandiaalisesti) ilmeneviin lisääntyneisiin tulehdusvasteisiin vasteena hyperglykemialle. Myöhemmässä postbrandiaalisessa vaiheessa vapaiden rasvahappojen määrä lisääntyy. Molemmat tekijät lisäävät vapaiden radikaalien tuotantoa ja proinflammatoristen sytokiinien vapautumista, mikä aiheuttaa inflammaatiota ja vaihingoittaa verisuonia.

Fruktoosilla on alhainen glykeeminen indeksi (GI). Matalan glykeemisen indeksin ravinnon tiedetään hillitsevän inflammaatiota. Voi siis olla, että fruktoosi osittain hillitsee runsaasti sokeria sisältävän ravinnon aiheuttamaa tulehdusreaktiota. Näin voi tapahtua tietyillä metaboliareiteillä vasteena muihin ravinteisiin.

Koska lihominen ja runsas sokerin saanti liittyvät toisiinsa ja toisaalta lihavuus ja matala-asteinen tulehdus liittyvät toisiinsa, on mahdollista, että painonnousu on välittäjä sokerin ja matala-asteisen tulehduksen välillä.

Vertaamalla sokereiden eukalorisia ja hyperkalorisia vaikutuksia tulehdusmarkkereihin saadaan merkityksellistä tietoa sokerin matala-asteiseen tulehdukseen yhdistävistä metabolisista reiteistä. Havaintoja voidaan hyödyntää kansanterveyden parantamisessa. Vielä ei ole varmuutta johtaako liika energian saanti (rasvasta tai proteiineista) samanlaisiin negatiivisiin terveyshaittoihin kuin liika sokereista saatu energia?

Sievenpiper et al. havaitsi, että fruktoosi vaikutti painonnousuun vain hyperkalorisissa ja isokalorisissa kokeissa. Eli lihottava vaikutus ei johtunut yksin fruktoosista, vaan ylimääräisestä energiasta.

Kun huomioidaan lihavuuden ja matala-asteisen tulehduksen välinen suhde, keskustelu painon muutoksesta mukana olevissa kokeissa olisi tarkoituksenmukaista. Energiarajoitetuista ruokavalioista johtuva painonpudotus liittyi tulehdusmarkkereiden parempaan parantumiseen (fruktoosin saannin määristä riippumatta) kahdessa tutkimuksessa.

Lisätyt sokerit ja puhdistetut tärkkelykset

Joidenkin tutkimusten mukaan ylipainoiset ja lihavat ihmiset syövät normaalipainoisia enemmän sokeria ja puhdasta tärkkelystä sisältäviä elintarvikkeita.

Ylipainon ja lihavuuden riski kasvaa ~14 % jos päivittäistä sokerin saantia lisätään vain viidellä grammalla [23 ]. Ruokavaliot, joissa on paljon lisättyjä sokereita ja puhdistettua tärkkelystä liittyvät korkeampaan veren paasto-triglyseridien pitoisuuteen. Triglyseridit assosioituvat vahvasti sydäntautien riskiin. Sen sijaan tiedot tärkkelyksen ja sokerin vaikutuksista LDL-kolesteroliin ovat ristiriitaisia.

American Heart Associationin (AHA) lausunnossa suositeltiin vähentämään lisättyjen sokereiden määrää ja välttämään fruktoosilla makeutettuja elintarvikkeita. Fruktoosin tiedetään lisäävän alkoholista riippumattoman rasvamaksan riskiä [24– 27].

Ruokavaliot, joissa on paljon tärkkelystä ja lisättyjä sokereita lisäävät glukoosin de novo lipogeneesiä ja maksan rasvoittumista. Insuliiniresistenteillä ihmisillä solujen insuliiniherkkyys on heikentynyt. Solujen heikentynyt kyky ottaa glukoosia vastaan ylläpitää korkeaa verensokeria. Ylimääräinen sokeri varastoidaan ensisijaisesti maksan ja lihasten glykogeeneihin, mutta koska glykogeeneihin mahtuu vain ~250 g glukoosia, ne täyttyvät sokeripitoisella ruokavaliolla hyvin nopeasti. Jos veren korkeaa sokeripitoisuutta ei voida käyttää energiaksi tai varastoida glykogeeneihin, se varastoidaan rasvasoluihin.

Lisättyjen sokereiden ja puhdistetun tärkkelyksen muuttuminen rasvaksi tuottaa triglyseridejä, jotka liittyvät kohonneeseen CVD-riskiin. Fruktoosi on tärkein sokeri, joka liittyy de novo lipogeneesiin sen maksassa tapahtuvan aineenvaihdunnan vuoksi. Glukoosi metaboloituu pääasiassa maksan ulkopuolisissa kudoksissa, kuten lihaskudoksessa [28]. Fruktoosi liitty insuliiniresistenssiin [29].

Kirjallisuudessa on ristiriitaisia tietoja lisättyjen sokereiden vaikutuksesta verenpaineeseen, mutta viime aikoina on saatu vahvaa näyttöä siitä, että sokereita rajoittava ketogeeninen ruokavalio laskee verenpainetta ja verensokeria. Hiljatain julkaistu meta-analyysi osoitti, että lisättyjen sokereiden käytöllä isoenergeettisessä ruokavaliossa ei ole kielteisiä vaikutuksia verenpaineeseen [30]. Eli tästäkään ei vallitse selvää yksimielisyyttä. Luultavasti selitystä voidaan etsiä ruokavaliosta kokonaisuutena, eikä vain yhdestä ravintoaineesta.

Ravintokuidut

Ravinnon sisältämien kuitujen vähäinen saanti liittyy kohonneeseen sydän- ja verisuonitautien riskiin. Hedelmiä, vihanneksia ja täysjyviä sisältävissä ruokavalioissa on runsaasti kuituja. [31].

Kuitujen myönteiset vaikutukset sydän- ja verisuoniterveyteen johtuvat useista tekijöistä, kuten:

  • sappihappojen erittymisen lisääntymisestä
  • kolesterolitasojen alentamisesta [32]
  • rasvahapposynteesin vähenemisestä maksassa fermentaation tuloksena syntyvien lyhytketjuisten rasvahappojen tuotannolla [33]
  • insuliiniherkkyyden lisääntymisestä [34]
  • kylläisyyden tunteen lisääntymisestä, mikä johtuu siitä, että kuitu lisää ruokamassaa, mikä johtaa ruoan saannin vähenemiseen ja edelleen pienempään energiansaantiin [35].


Kirjallisuuskatsaustiedot osoittavat ravintokuitujen saannin, CVD:n ja kokonaiskuolleisuuden välisen korrelaation. Hiljattain tehty tutkimus vahvisti, että vähän kuituja sisältävää ruokavaliota (~ 15,0 g / vrk) noudattavien ihmisten kokonaiskuolleisuus oli 23% suurempi kuin ihmisillä, jotka söivät runsaasti kuituja (∼26,9 g / vrk). Sukupuoli tai etninen tausta eivät vaikuttaneet tähän korrelaatioon [36].

Tuoreessa meta-analyysissä analysoitiin 15 kohorttitutkimusta, joissa oli 1 409 014 potilaan tiedot. Tämä tuki käsitystä ravintokuitujen ja CVD-kuolleisuuden käänteisestä korrelaatiosta [37].

Kuten aiemmin osoitettiin, kuitujen saanti ~ 29,6 g / vrk, joka on lähellä suositeltua 30 g / vrk -tasoa, liittyi CV-kuolleisuuden 23%: n laskuun verrattuna kuitujen vähäiseen saantiin ~ 14,0 g / vrk.

Hedelmät ja vihannekset

Vähäistä hedelmien ja vihannesten saantia pidetään yhtenä ennenaikaisen kuoleman tärkeimmistä syistä maailmanlaajuisesti. Liian vähäisen hedelmien ja vihannesten saannin arvioidaan johtaneen 25,5 miljoonaan ennenaikaiseen kuolemaan vuonna 2013 [38].

Hedelmien ja vihannesten hyödylliset vaikutukset johtuvat ravintokuiduista, vitamiineista, kivennäisaineista, polyfenoleista ja antioksidanteista, jotka hillitsevät matala-asteista tulehdusta ja vähentävät kroonisia sairauksia, kokonaiskuolleisuutta, sekä vaikuttavat suotuisasti suoliston mikrobiomiin [39, 40].

Lisäksi julkaistut tutkimusraportit antavat todisteita ravintokuitujen, hedelmien ja vihannesten saannin positiivisesta vaikutuksesta seerumin kolesterolitasoon, verenpainetasoon, tulehdukseen ja verihiutaleiden aggregaatioon [41].

Verrattain uusi meta-analyysi, jossa arvioitiin 95 ainutlaatuista kohorttitutkimusta, osoitti, että:

  • sepelvaltimotaudin suhteellinen riski laskee 8–16% jokaisesta päivittäisestä 200 g:n hedelmien tai vihannesten sekä hedelmien ja vihannesten yhteissaantia kohden (suhteellisen riskin alenema? Se ei tarkoita mitään)
  • Aivohalvauksen suhteellisen riski laski 13–18%
  • CVD:n suhteellinen riski laski 8–13% [42]
  • Ihmisillä, joiden ruokavalio sisältää runsaasti hedelmiä ja vihanneksia (∼500 g / päivä), sydän- ja verisuonitautien riski laskee 22% verrattuna ihmisiin, joiden saanti on vähäistä (0–40 g / päivä).

Suhteellisen riskin alenema on tilastollinen silmänkääntötemppu, jolla musta saadaan valkoiseksi ja valkoinen mustaksi. Sitä käytetään erityisesti lääkkeiden markkinoinnin välineenä. Esimerkiksi: Lipitor (statiini) laskee sydänkuolleisuutta 36 %. Huimaa, eikö totta?

Absoluuttisen riskin alenema on jotain ihan muuta. Lipitorian saaneessa ryhmässä sydänkuolleisuus oli 2 %, kun kontrolliryhmässä kuolleisuus oli 3,1 %. Absoluuttinen ero kuolleisuudessa oli 1,1 %, mikä mahtuu kaiken lisäksi virhemarginaaliin. Menisikö lääke kaupaksi väitteellä: laskee sydänkuolleisuutta ehkä 1,1 % ja voi aiheuttaa joukon vakavia sivuoireita? Kehotan suhtautumaan varauksella väitteisiin, joissa puhutaan suhteellisesta riskistä.

Keskustelua ravintokuiduista

Useat tutkimukset ovat korostaneet ravintokuidun etuja sydän- ja verisuoniterveydelle, koska kuidut parantavat lipidiprofiilia ja laskemavat verenpainetta. Ravintokuitujen vähäinen saanti liittyy suurempaan CVD-riskiin [43].

Ravintokuitujen runsas saanti liittyy pienempään kuolleisuuteen kaikista syistä [44]. Vaikka erityisiä toimintoja ja toimintamekanismeja ei ole täysin ymmärretty, ehdotetut mekanismit ovat, että ravintokuitu laskee kolesterolia, glukoosin imeytymistä ja vähentää oksidatiiviseen stressiin liittyvien sytokiinien tai suoliston mikrobiomin välittämää tulehdusreaktiota [45, 46].

Ravintokuidun suojaavaan rooliin näyttää vaikuttavan paitsi kuidun määrä myös kuidun tyyppi ja lähde [47]. Itse asiassa erityyppiset ravintokuidut tai -lähteet voivat olla vastuussa erilaisista fysiologisista vaikutuksista: liukoiset kuidut ovat vastuussa kolesterolia alentavasta vaikutuksesta, kun taas liukenemattomat kuidut vaikuttavat ruoan imeytymiseen suolistossa ja glykeemiseen vasteeseen [33, 48].

Äskettäin tehty tutkimus hypertensiivisten (hypertensio – verenpainetauti) hiirien kokeellisessa eläinmallissa osoitti, että kuidut ja asetaatti johtivat monien järjestelmien homeostaasia säätelevän transkriptiotekijän Egr1:n alasregulointiin. Egr1 moduloi useiden geenien ilmentymistä ja CVD-prosesseihin liittyviä signaalireittejä. Egr1 liittyy sydämen hypertrofiaan, munuaisfibroosiin ja inflammaatioon [49].

Lipidejä alentavan vaikutuksen osalta täysjyvät, siemenet ja pähkinät ovat sisältämänsä liukoisen kuidun vuoksi tärkeitä [50]. Monet tutkimukset ovat nostaneet esiin beeta-glukaanin (liukoinen kuitu) potentiaaliset terveyshyödyt. Beeta-glukaania saa enimmäkseen kaurasta ja ohrasta. Beeta-glukaanin kulutukseen on liittynyt ~5–10% alhaisempia triglyseridi- ja LDL-kolesterolitasoja [51–53].

Whitehead et al. korosti, että ruokavalio, joka sisälsi ~ 3 g kauran beeta-glukaania/ vrk, laski triglyseridien ja LDL-kolesterolin tasoja, mutta ilman merkittävää vaikutusta HDL-kolesteroliin. HDL ei laskenut, vaikka beeta-glukaanin saanti oli hyvin korkea (jopa 12,4 g / vrk).

Korkeampi LDL-kolesterolia alentava vaikutus havaittiin tyypin 2 diabetesta sairastavilla ja sellaisilla potilailla, joilla oli korkeampi lähtötason LDL-kolesteroli [54], mikä viittaa parempaan tehoon niillä, joiden metabolinen profiili on huonompi.

Mirman et al. teki prospektiivisen kohorttitutkimuksen 2295 terveellä koehenkilöllä, joita tutkimus seurasi 4,7 vuoden ajan. Tutkimuksen mukaan ravintokuitujen saannilla erityisesti palkokasveista, hedelmistä, vihanneksista ja pähkinöistä oli sydän- ja verisuonitaudeilta suojaava vaikutus.

Kasvikuitujen myönteiset vaikutukset CVD-riskin vähentämisessä näyttivät liittyvän triglyseridien vähenemiseen ja parantuneeseen triglyseridi-HDL-suhteeseen [55].

Toinen äskettäin tehty tutkimus korosti ravintokuitujen, suolen mikrobiomin ja sydän- ja verisuonitautien riskin pienentämisen välistä yhteyttä, mikä viittaa mikrobiomin mahdolliseen rooliin CVD-riskin moduloinnissa [56].

Monityydyttämättömät rasvahapot (PUFA): omega-3

Jatkuvasti lisääntyvä tutkimusnäyttö osoittaa, että omega-3-PUFA:lla on erilaisia kardioprotektiivisia ominaisuuksia, kuten plasman triglyseridien laskeminen, verenpaineen säätely, rytmihäiriöiden ja tulehdusten hillitseminen sekä endoteelin toimintahäiriöiden parantaminen [57].

Omega-3, erityisesti eikosapentaeenihappo (EPA) ja dokosaheksaeenihappo (DHA), ovat olleet pitkään tutkijoiden mikroskoopin alla. Havainnot ovat osoittaneet useita erilaisia mekanismeja, joilla kiertävät ja yhdistetyt omega-3-PUFA:t voivat toimia solu- ja molekyylitasoilla, mukaan lukien geneettiset ja epigeneettiset modulaatiot [58].

Esteröimättömät omega-3-rasvahapott tai niiden asyyli-CoA-tioesterit voivat sitoa ja moduloida suoraan tumareseptorien toimintaa ja transkriptiotekijöitä, jotka säätelevät geeniekspressiota useissa kudoksissa [59]. Nämä reseptorit ovat keskeisiä säätelijöitä monille CVD:hen liittyville solutoiminnoille, mukaan lukien lipidimetabolia, glukoosi-insuliinihomeostaasi ja inflammaatio [60].

On mielenkiintoista, että omega-3-PUFA:n vaikutukset näihin signalointireitteihin vaikuttavat todennäköisesti triglyseridien alenemiseen [61] ja lisääntyneeseen ”hyödyllisten adipokiinien, batokiinien” tuotantoon. Niiden tiedetään parantavan metabolista homeostaasia [62]. Lisäksi omega-3 PUFA voi vähentää tumatekijä-kappa B:n (NF-κB) translokaatiota tumaan, mikä vähentää tulehduksellisten sytokiinien tuotantoa [63].

Omega-3 PUFA:n rytmihäiriöitä hillitsevät vaikutukset näyttävät välittyvän sellaisten mekanismien kautta, joihin sisältyy ionikanavan suora ja epäsuora modulointi, solukalvon koostumus ja juoksevuus sekä tulehdusta ja fibroosia estävät vaikutukset [64].

Pitkäaikainen omega-3-PUFA-lisäravinteen saanti aiheuttaa pitkittynyttä eteisrefraktiivisuutta ja vähentää haavoittuvuutta indusoitavalle eteisvärinälle [65]. PUFA:n kulutus voi myös vaikuttaa leposykkeeseen ja sekä systoliseen että diastoliseen verenpaineeseen [66]. Lyhytaikaisissa kokeissa omega-3-PUFA:n saanti lisäsi typpioksidituotantoa, lievitti vasokonstriktiivisia reaktioita noradrenaliinille ja angiotensiini II:lle, tehosti vasodilatoivaa vastetta ja paransi valtimoiden yhteensopivuutta [67–70]. Tällaiset vaikutukset voivat vähentää systeemistä verisuoniresistenssiä ja verenpainetta.

Kertatyydyttämättömät rasvat (MUFA)

Kiistanalaisempia ovat käytettävissä olevat tiedot kertatyydyttämättömien rasvojen sydän- ja verisuonitaudeilta suojaavasta vaikutuksesta, koska julkaistujen tutkimusten määrä on pieni.

Elintarvikkeissa yleisimpiä MUFA-rasvoja ovat oleiinihappo, palmitoleiinihappo ja vakseenihappo. Esimerkiksi oliiviöljyssä on noin 70 prosenttia kertatyydyttymättömiä, 14 prosenttia monityydyttymättömiä ja 11 prosenttia tyydyttyneitä rasvahappoja. Runsas monityydyttymättömien rasvahappojen määrä pitää oliiviöljyn nestemäisenä. Oliiviöljyn tyypillinen rasvahappokoostumus:

  • omega 9 -oleiinihappoa 63–83%
  • palmitiinihappoa 7–17%
  • palmitoleiinihappoa 0,3–3%
  • omega 6 -linolihappoa 3,5–14%
  • steariinihappoa 0,5–5%
  • omega 3 -linoliinihappoa 0,01–1,5%
  • myristiinihappoa 0–0,1%
  • arakidihappoa 0–0,8%

Tokoferoleja oliiviöljyn painosta on 15–17 prosenttia. Oliiviöljyssä on runsaasti E-vitamiinia sekä esimerkiksi fenoleja, polyfenoleja, fenolihappoa, steroleja, kuten Beeta-sitosteroleja, skvaleenia, beetakaroteenia, terpeenejä, a-klorofylliä ja beetaklorofylliä.

Tuoreen meta-analyysin tulosten perusteella [71] oliiviöljyyn näyttää liittyvän pienempi CVD-riski. Itse asiassa useat muut tutkimukset osoittavat, että ekstra-neitsytoliiviöljy (EVOO) näyttää olevan merkityksellinen tekijä sydän- ja verisuonitapahtumien, kuten sydäninfarktin ja aivohalvauksen, esiintyvyyden vähentämisessä [72, 73].

Vaikka EVOO:n käyttämiä molekyylimekanismeja ei olekaan täysin ymmärretty, EVOO:n terveellistä roolia voidaan viitata sen korkeaan MUFA-tasoon ja useisiin biologisesti aktiivisiin fenoliyhdisteisiin, joilla tiedetään olevan tärkä kardioprotektiivinen rooli [74].

Antosyaanit

Antosyaanit ovat vesiliukoisia flavonoideja ja monia niistä pidetään terveyttä edistävinä. Esimerkiksi mustikassa on paljon antosyaaneja, joista monet ovat antioksidantteja. Antosyaaneita käytetään myös elintarvikkeiden väriaineina, jolloin niiden E-koodi on E 163.

  • Syanidiini E-koodi E 163a, oranssinpunainen
  • Delfinidiini E-koodi E 163b, violetti tai sininen
  • Malvidiini E-koodi E 163c, violetti
  • Pelargonidiini E-koodi E 163d, harmaansininen tai sinipunainen
  • Peonidiini E-koodi E 163e, harmaansininen/sinipunainen
  • Petunidiini E-koodi E 163f, tummanpunainen tai violetti

Antosyaanin varsinaista flavonoidiosaa kutsutaan antosyanidiiniksi. Antosyaani tarkoittaa tarkasti ottaen antosyanidiinin ja sokerin yhdistettä.

Antosyaanit ovat polyfenoliyhdisteitä, jotka ovat vaikuttavat kukkien, marjojen, hedelmien ja vihannesten punaiseen, violettiin ja siniseseen väriin ja joita esiintyy myös punaviinissä. Useat epidemiologiset tutkimukset tukevat sekä antosyaanien että polyfenolien sydäntaudeilta ennaltaehkäisevää vaikutusta [75, 76]. Sydäntaudeilta suojaava vaikutus johtuu antosyaanien sisältämistä fenoleista, polyfenoleista ja antioksidanttiominaisuuksista [77, 78].

Prekliinisiset tutkimukset, kokeellisiset eläinmallit ja in vitro -näyttö, tukevat antosyaanien roolia vaikutusta lipidiprofiiliin, joka on yleisesti käytetty CVD-riskin biomarkkeri. Antosyaanit voivat hidastaa tai estää lipidien ja glukoosin imeytymistä suolistossa ja estää kolesterolisynteesiä, mikä johtaa seerumin triglyseridien, kokonaiskolesterolin ja muun kuin HDL-kolesterolin laskuun ja seerumin HDL-pitoisuuden nousuun [78, 79].

Fenoliyhdisteiden biologinen hyödyntäminen on erittäin heikkoa: vain 10% imeytyy ohutsuolessa, kun taas noin 90% poistuu ulosteen mukana tai metaboloituu suoliston mikrobin kautta [80].

Antosyaanien suojaava vaikutus ei voi johtua ensisijaisesti antioksidanttiominaisuuksista, jotka ovat aktiivisia vain suoliston tasolla (missä fenoliyhdisteiden pitoisuus on korkea), mutta niiden sydäntaudeilta suojaava vaikutus voi selittyä sillä, että antosyaanit vaikuttavat sekundaarisesti solunsisäisinä välittäjinä eri signalointireiteillä.

Muut tutkimukset korostivat antosyaanien kardioprotektiivista ja anti-inflammatorista vaikutusta. Antosyaanien saanti edistää erityisesti typpioksidituotantoa, joka parantaa verenkiertoa ja toisaalta voi estää NF-kB-transkriptiota, mikä vähentää tulehdusta edistävien molekyylien tuotantoa [81].

Zhu et al. korosti antosyaanien anti-inflammatorista vaikutusta satunnaistetussa kontrolloidussa kliinisessä tutkimuksessa (RCT) [82]. Tässä tutkimuksessa yhteensä 150 hyperkolesterolemiaa sairastavaa potilasta sai puhdistettua antosyaaniseosta (320 mg / vrk) tai lumelääkettä kahdesti päivässä 24 viikon ajan.

Antosyaanien kulutus vähensi merkittävästi seerumin C-reaktiivisen proteiinin (−21,6% vs. −2,5%), liukoisen verisuonisolun adheesiomolekyylin 1 (−12,3% vs. 0,4%) ja plasman IL-1β: n (−12,8% vs. −1,3%) verrattuna lumelääkkeeseen. Tutkijat havaitsivat myös merkittävän eron LDL-kolesterolin (−10,4% vs. 0,3%) ja HDL-kolesterolin tason muutoksissa (14,0% vs. −0,9%) kahden ryhmän välillä.

Jos hivenravinteilla on tärkeä rooli CVD-riskin moduloinnissa , on myös hyvin tunnettua, että normaalipainon ylläpitäminen on sydän- ja verisuonitaudeilta suojaava tekijä. Bertoia et al. teki kolme prospektiivista kohorttitutkimusta 124 086 miehellä ja naisella arvioidakseen, liittyikö eräiden flavonoidien alaluokkien saanti painon muutoksiin ajan myötä. Useimpien flavonoidien alaluokkien, mukaan lukien antosyaanit, lisääntynyt kulutus liittyi käänteisesti painon muutokseen 4 vuoden ajanjaksolla. Suurin korrelaatio havaittiin antosyaanien, flavonoidipolymeerien ja flavonolien kohdalla [83]. Siten tässä yhteydessä korkean flavonoidin hedelmien ja vihannesten, kuten omenoiden, päärynöiden, marjojen ja paprikoiden syöminen voi auttaa painonhallinnassa ja CVD: n ehkäisyssä.

Vitamiinit

Useat tutkimukset osoittavat, että E-, C-vitamiinit ja muut antioksidantit voivat vähentää sydän- ja verisuonitautialttiutta neutraloimalla orgaanisia vapaita radikaaleja ja deaktivoimalla virittyneitä happimolekyylejä kudosvaurioiden estämiseksi [84].

Antioksidanteilla voi olla kyky hidastaa tai estää ateroskleroottisten plakkien muodostumista todennäköisesti estämällä LDL-kolesterolin hapettumista [85]. Tiedot C-vitamiinin ja E-vitamiinin roolista sydän- ja verisuonitautien ehkäisyssä ihmisillä tehdyissä tutkimuksissa ovat kuitenkin edelleen kiistanalaisia.

Yhdeksän kohortin koontitutkimuksessa yli 700 mg / vrk C-vitamiinilisän käyttö liittyi vahvasti sepelvaltimotautiriskin 25 prosentin laskuun [86]. Sesso et al. teki kontrolloidun satunnaistetun tutkimuksen 4641 yhdysvaltalaiselle keski-ikäiselle miehelle arvioidakseen, vähentääkö pitkäaikainen (8vuoden seuranta) E-vitamiinin tai C-vitamiinin käyttö merkittävien sydän- ja verisuonitapahtumin riskiä. E- tai C-vitamiinilisät eivät vähentäneet suurten kardiovaskulaaristen tapahtumien riskiä [87].

Ellulu et al. toteutti satunnaistetun kontrolloidun tutkimuksen 64 lihavalla, verenpainetautia ja / tai diabetesta sairastavalla. Tutkimus osoitti, että kahdesti päivässä otettu 500 mg C-vitamiinilisä voi hillitä matala-asteista tulehdusta. C-vitamiini vaikutti terveyteen indusoimalla CRP:n, IL-6: n ja paasto-verensokerin laskua 8 viikon hoidon jälkeen [88].

Tähän mennessä on tehty vain vähän tutkimuksia ruokavalion sisältämien vitamiinien (ei lisäravinteiden) vaikutuksista terveyteen. Suuri kiinalaistutkimus (Zhao et al.) selvitti ruokavalion karoteenin, C-vitamiinin ja E-vitamiinin yhdistelmän vaikutusta kaikista syistä johtuvan kuolleisuuden sekä syöpä- ja CVD- kuolleisuuden riskiin yli 130 000 kiinalaisella aikuisella [89]. Tulokset osoittivat karoteenin ja C-vitamiinin käänteisen yhteyden miesten kuolleisuuteen. Alimpiin kvintiileihin verrattuna vastaava riskin pieneneminen korkeimmassa kvintiilissä oli 17% sekä karoteenilla että C-vitamiinilla.

Vaikka nämä assosiaatiot olivat naisilla heikompia kuin miehillä, tulokset olivat mielenkiintoisia ja tilastollisesti merkittäviä. Toisessa tutkimuksessa arvioitiin 7 vuoden ajan antioksidanttien saantia (E-, C- ja A-vitamiinit) ravinnosta ja lisäravinteista yli 3000 postmenopausaalisella naisella, joilla ei ole sydän- ja verisuonitautia. Tutkimuksen havainnot osoittivat, että E-vitamiinin saanti ravinnosta liittyi käänteisesti kuolemaan johtavan sepelvaltimotaudin riskiin. Sen sijaan A- ja C-vitamiinien saanti ei tutkimuksessa liittynyt pienempiä sydän- ja verisuonitautikuoleman riskiin [90].

Ikä aiheuttaa muutoksia kehon koostumuksessa, aineenvaihduntatekijöissä ja hormonaalisissa tasoissa. Muutokset liittyvät erityisesti fyysisen aktiivisuuden vähenemiseen, mikä lisää kehon rasvamassaa ja vähentää lihasmassaa. Tämä vaikuttaa subkliiniseen tulehdustilaan, jota pidetään yhtenä ateroskleroosin ja CVD:n mekanismeista [1, 2]. Pitkään jatkuva epätasapaino energian saannin ja kulutuksen välillä sekä siihen liittyvä lihavuus on tunnustettu aineenvaihduntasairauksien ja sydän- ja verisuonitautien riskitekijä [91, 92]. Tämä on perinteinen muna vai kana -ongelma. On näyttöä, että ruokavalion ja suoliston mikrobiomin indusoimat hormonaaliset ja metaboliset muutokset altistavat lihomiselle. Lihavuus voi olla oire aineenvaihdunnan ja hormonitasojen häiriintymisestä, eikä niiden syy.

Vähäinen liikunta

Elämäntapa vaikuttaa kroonisten sairauksien kehittymiseen [93, 94]. Liikunta ja fyysinen aktiivisuus voivat parantaa terveyttä ja vähentää sydän- ja verisuonitautien riskiä [95].

Joissain tutkimuksissa on arvioitu päivittäisen istumiseen käytetyn ajan yhteyttä sydän- ja verisuonitautien riskiin. Tiedot perustuvat lähinnä itsearviointiin. Hiljattain julkaistu tutkimus seurasi yli 5000 iäkkään henkilön elintapoja ja osoitti, että istumiseen käytetty aika korreloi positiivisesti lisääntyneen sydän- ja verisuonitautien riskin kanssa [96].

Suuressa tutkimuksessa verrattiin149 077 henkilön fyysistä aktiivisuutta, istumiseen käytettyä aikaa ja sydäntautikuolleisuutta ~9 vvuoden seurannassa. Seurantaan osallistuneista 8689 kuoli seurannan aikana. Näistä 1644 johtui sydän- ja verisuonitaudeista. Tutkimus vahvisti tilastollisesti merkittävän yhteyden vähän liikuntaa sisältävän elämäntavan ja korkeamman sydänkuolleisuusriskin välillä [97 ].

Erilaiset ruokavaliot

Sydän- ja verisuonitautien riskitekijöiden ehkäisemiseksi ja vähentämiseksi on ehdotettu useita ruokavaliotyyppejä vähärasvaisesta ruokavaliosta runsasrasvaiseen ruokavalioon ja kaikkea siltä väliltä.

Kreikkalaisessa lääketieteessä sana dieetti tarkoitti alunperin joukkoa ohjeita, joilla ylläpidetään terveyttä ja hyvinvointia. Näihin ohjeisiin lukeutuivat ohjeet syömisestä ja liikunnasta.

MeDi (välimeren ruokavalio), DASH, vegetaristinen / vegaaninen ruokavalio, ketogeeninen ruokavalio ja japanilainen ruokavalio kuuluvat terapeuttisiin ruokavalioihin, joiden tavoitteena on terveyden ylläpitäminen ja kroonisten aineenvaihduntasairauksien ja niihin liittyvien oireiden ehkäisy [98, 99]. Ruokavaliot painottavat eri ravintoaineiden merkitystä, mutta tavoite on sama: terveys ja painonhallinta. On monta tapaa syödä oikein ja onta tapaa syödä väärin.

Välimeren ruokavalio (MeDi)

Välimeren ruokavalio on useissa vertailuissa arvioitu terveellisimmäksi ruokavalioksi. Tätä on yritetty hyödyntää Itämeren ruokavalion markkinoimisessa ihmisille. Koko idea haisee hapansilakalta.

Välimeren ruokavalion yksi keskeinen terveyttä edistävä tekijä on runsas oliiviöljyn käyttö. Oliiviöljy on luonnollinen, runsaasti hyviä ravinteita sisältävä suurimmaksi osaksi kertatyydyttämättömiä rasvoja sisältävä öljy, joka rinnalla prosessoitu rypsiöljy on traktori-öljyä. Monityydyttämättömät rasvat ovat molekyylirakenteeltaan hyvin epävakaita, minkä vuoksi ne hajoavat kuumennettaessa erilaisiksi aldehydeiksi ja polymerisoituvat herkästi. Itämeren ruokavaliossa voi on hyviäkin ideoita, mutta teollisten koneöljyjen myyminen ihmisille on maatalous- ei terveyspolitiikkaa.

MeDi-ruokavaliolle on ominaista runsas hedelmien, pähkinöiden, vihannesten, täysjyvätuotteiden, oliiviöljyn, kalan ja äyriäisten syöminen. Ravintokuitujen sisältävien täysjyvätuotteiden sekä hedelmien ja vihannesten kulutuksen on raportoitu vähentävän liikalihavuuden, tyypin 2 diabeteksen ja CVD: n riskiä.

Välimeren ruokavalioon sisältyy maltillisesti punaista lihaa ja puhdistettuja sokereita [100]. MeDi laskee sydän- ja verisuonitautialttiutta ja siihen liittyvää kuolleisuutta [101, 102]. Välimeren maissa suosittu ruokavalio on todistetusti hyödyllinen sekä sydän- ja verisuonitautien ensisijaisessa että toissijaisessa ehkäisyssä.

Yksi MeDi:n tärkeimmistä näkökohdista on ruokavalion sisältämien tyydyttymättömien rasvojen korkea pitoisuus, hyvät kuidun ja proteiinin lähteet sekä vähäinen tyydyttyneiden rasvojen saanti. Italialaiset saavat karkeasti puolet päivittäisestä energiasta hiilihydraateista, kolmanneksen kertatyydyttämättömistä rasvoista (oliiviöljy) ja 20 % proteiineista. Ranskalaiset ja sveitsiläiset puolestaan saavat lähes 15 % päivittäisestä energiasta tyydyttyneistä rasvoista (voi, kerma jne.). Koska ranskalaisten ja sveitsiläisten sydänkuolleisuus on pienintä Euroopassa tyydyttyneiden rasvojen saanti ei yksin selitä sydän- ja verisuonitautikuolleisuutta. Välimeren ruokavalioon sisältyy luonnollisia rasvoja ja puhtaita raaka-aineita, mutta ei teollisia koneöljyjä ja paljon raffinoituja elintarvikkeita. Myös Ranskassa suositaan puhtaita raaka-aineita. Se on keskeinen ero. Suomalaisten sydänongelmien taustalla ei ole tyydyttyneet rasvat, vaan teolliset siemenöljyt, jotka eivät kuulu ihmisen ruokavalioon. Ne ovat traktoreiden ravintoa.

Sekä American Heart Association / American College of Cardiology (AHA / ACC) että Euroopan kardiologisen seuran suuntaviivat tukevat voimakkaasti tyydyttyneiden rasvojen korvaamista kerta- ja monityydyttymättömillä rasvoilla [103]. AHA ja ACC ovat kuitenkin yksityisiä yhdistyksiä, jotka rahoittavat toimintansa taloudellisilla lahjoituksilla. Esimerkiksi sokeri- ja maissiteollisuus rahoittavat AHAa. Euroopan kardiologisen seuran rahoittajista en tiedä, mutta vanha viisaus kannattaa muistaa: Kenen leipää syöt, sen lauluja laulat!

MeDi:n positiivisista vaikutuksista osoittavat tiedot on johdettu RCT Lyonin sydäntutkimuksessa, joka osoitti, että CVD-tapahtumat ja kuolemaan johtavat päätetapahtumat vähenivät jopa 4 vuoden ajan niillä koehenkilöillä, jotka satunnaistettiin MeDi-ryhmään [104, 105].

Äskettäin PREvenciòn con Dieta MEDiterànnea -tutkijat osoittivat, että Välimeren ruokavaliota noudattavilla koehenkilöillä oli vähemmän monosyyttejä, tulehdusmarkkereita ja LDL-kolesterolin hapettumiseen liittyvää geeniekspressiota [106].

Oliiviöljyn, kalaöljyn ja pähkinöiden tyydyttymättömien rasvapitoisuuksien sydän- ja verisuonitauteihin liittyvien myönteisten vaikutusten taustalla oleviin mekanismeihin kuuluvat parantuneet lipidiprofiilit, vähentynyt matala-asteinen tulehdus ja alentunut verenpaine [107].

Välimeren ruokavaliolla lisääntynyt hedelmien ja vihannesten saanti on yhdistetty alempaan painoindeksiin ja reaktiivisten happilajien (ROS) tasoon. Niinpä Unesco on tunnustanut MeDin ”ihmiskunnan aineettomaksi kulttuuriperinnöksi” hyvin osoitettujen terveysvaikutusten vuoksi.

Dietary Approaches to Stop Hypertension (DASH) diet

DASH-ruokavalio kehitettiin USA:ssa verenpaineen alentamiseksi ja sydän- ja verisuonitautien ennaltaehkäisemiseksi [103]. DASH suosittelee verenpainetta kohottavan suolan vähentämistä. Ruokavaliossa korostetaan hedelmien, vihannesten, kasviproteiinien, täysjyvätuotteiden, vähärasvaisten maitotuotteiden saantia ja kehotetaan vähentämään tyydyttyneiden rasvojen ja rasvoista saatavan kokonaisenergian määrää.

DASH-ruokavalion edut on tunnustettu yhdysvaltalaisen National Heart, Lung and Blood Institute (NHLBI):n ja Yhdysvaltain maatalousministeriön (USDA) yleisissä ruokavalio-ohjeissa.

Kansainväliset diabeteksen ja kardiovaskulaaristen kliinisten käytäntöjen suuntaviivat ovat myös suosittaneet DASH-ruokavaliota kardiovaskulaaristen riskien vähentämiseksi [108]. Itse asiassa DASH-ruokavalion kontrolloidut satunnaistetut tutkimukset osoittivat LDL-kolesterolin laskevan muiden kardiometabolisten riskitekijöiden ohella. Prospektiiviset kohorttitutkimukset osoittavat, että DASH-ruokavalio laskee diabetekseen ja kardiovaskulaarisiin syihin liittyvää kuolleisuutta [109].

Kasvisruokavalio (Veg Diet)

Kasvisruokavalioille on ominaista eläinperäisen ravinnon kulutuksen minimoiminen tai eläinravinnosta luopuminen. Erilaisia vegetaristisia ruokavalioita on useita, enkä lähde niitä tässä tarkemmin yksilöimään. Osa kasvisruokavalioista sallii kananmunien ja kalan syömisen. Vegaaneja paitsi useimmat vegetaristit sallivat meijerituotteiden syömisen. Mustana hevosena voidaan mainita joustava fleksasaminen (fleksetaarinen ruokavalio), jossa osa ruokavalion lihasta korvataan kasvisvaihtoehdoilla. Se, missä arkisen sekaruokavalion ja fleksaamisen raja kulkee, taitaa olla semantinen ongelma.

Kasvisruokavalio korostaa vihannesten, hedelmien, jyvien, palkokasvien, siementen ja pähkinöiden saantia. Vaikka vegetarismi voidaan määritellä monin tavoin, kasvisruokavalio tarkoittaa yleensä lakto-ovo-kasvisruokavaliota, joka ei sisällä lihaa, siipikarjaa ja kalaa.

Kasvissyönti voi tarkoittaa selvästi rajoittavampaa tai spesifimpiä ruokavaliota, kuten vegaani-ruokavaliota, johon ei kuulu mikään eläinperäinen ravinto, puolikasvissyöjiä (vaihteleva määritelmä) ja kala-kasvissyöjiä (voi syödä kalaa, mutta ei lihaa).

Lihan kulutuksen rajoittamisen oletetaan yleensä laskevan sydän- ja verisuonitautien riskiä [110]. AHA / ACC antoi ravitsemussuosituksia, jotka korostavat runsaasti hedelmiä ja vihanneksia sisältäviä ruokavalioita, ja kehottavat välttämään punaista lihaa ja tyydyttynyttä rasvaa.

Perinteisiä kasvipohjaisia ruokavaliota noudattavilla populaatioilla (Afrikan maaseudulla ja Aasiassa) sydän- ja verisuonitautien riski on vähäinen. Myös perinteistä liha-rasva-maito-sisäelin-ruokavaliota noudattavien Masai-sotureiden sydäntautien riski on käytännössä olematon. Näitä yhdistää puhtaat, luonnolliset ja hyvin vähän jalostetut ravintoaineet, liikkuva elämäntapa ja syöminen silloin kun on nälkä. Itse asiassa eroja länsimaiseen elämäntapaan on niin paljon, että ei niitä ole mielekästä verrata toisiinsa. Esimerkiksi eräät Amazonin alkuperäiskansat eivät syö edes päivittäin, kun meitä länkkäreitä kehotetaan syömään muutaman tunnin välein runsaasti prosessoituja ja helvetisti sokeria sisältäviä ruokia.

Yhdysvalloissa ensimmäinen suuri tutkimus kasvisruokavalion noudattamisesta, tehtiin seitsemännen päivän adventistien keskuudessa, Tutkimus vahvisti annos-vastesuhteen lihan kulutuksen ja sydän- ja verisuonitautien riskin välillä [111].

EPIC-Oxfordin tutkimus osoitti, että kasvissyöjien sydän- ja verisuonitautien riski on 32% pienempi kuin ei-kasvissyöjien riski. Veg-ruokavaliossa on runsaasti fytoravinteita, kuten karotenoideja, lykopeeneja, flavonoideja, antosyaaneja jne., jotka toimivat synergistisesti ja kardioprotektiivisesti matala-asteisen tulehduksen ja oksidatiivisen stressin hillitsemisessä [112].

Veg-ruokavaliolle on tavallista kasviproteiinien sekä raudan, sinkin, jodin, D-vitamiinin ja kalsiumin alhaisempi hyötyosuus ja imeytyminen. Vegaanien kohdalla B12-vitamiinin ainoa lähde on lisäravinnepurkki.

Nämä ovat terveyden ja hyvinvoinnin ylläpitämisen kannalta tärkeitä elinmineraaleja ja vitamiineja. Kasvisruoat sisältävät runsaasti antinutritionaalisia tekijöitä, joita voi esiintyä luonnossa (esim. ruoansulatusentsyymin estäjät, tanniinit, fytaatti, glukosinolaatit ja isotiosyanaatit), jotka muodostuvat prosessoinnin aikana (esim. d-aminohapot, lysinoalaniini) tai johtuen geneettisestä muunnoksesta (esim. lektiinit).

Palkokasvit, viljat, perunat ja tomaatit sisältävät ruoansulatuskanavan proteolyyttisten entsyymien estäjiä. Soijapavut ovat keskittynein trypsiinin estäjien lähde, kun taas herneet ja jalostetut soijapaputuotteet sisältävät trypsiinin estäjiä huomattavasti alhaisempia määriä [113–115].

Ketogeeninen ruokavalio (KD)

Ketogeeninen ruokavalio kehitettiin 1920-luvulla epilepsian kohtausten hallitsemiseksi. Se sisältää runsaasti rasvaa (60–80%) ja proteiinia (10–20%) ja vain hyvin vähän hiilihydraatteja (5–10%). S

Ketogeeninen ruokavalio imitoi aineenvaihdunnan tasolla paastoa. Myönteiset vaikutukset johtuivat enimmäkseen ketonien, kuten β-hydroksibutyraatin, asetoasetaatin ja asetonin tuotannosta maksassa [116].

Ketogeenisen ruokavalion kliiniseen terapiakäyttöön kiinnitettiin enemmän huomiota 1990-luvulla. Nykyään KD on vakiintunut ei-farmakologinen hoito vaikeasti hoidettaville epilepsioille. Tämän lisäksi ketogeenistä ruokavaliota käytetään laajemmin erilaisissa neurologisissa häiriöissä, kuten Alzheimerin ja Parkinsonin tautien terapiana, sekä aineenvaihduntasairauksien, kuten metabolisen oireyhtymän ja diabeteksen hoitona.

Viime aikoina KD:tä on käytetty myös lihavuuden hoitona ja sydän- ja verisuonitautien ehkäisyyn [117]. Ketogeenisen ruokavalion ja sydän- ja verisuonitautien riskitekijöiden ehkäisyä koskevat tutkimukset ovat edelleen kiistanalaisia [118]. Sharman et al. tutkimus osoitti, että aikuisten miesten sopeutuminen tähän ruokavalioon johti merkittävään plasman paasto-triasyyliglyserolien (TAG) vähenemiseen (−33%), aterianjälkeiseen hyperlipidemian laskuun rasvapitoisen aterian jälkeen (−29%) ja paasto-insuliinipitoisuuksien vähenemiseen (−34%).

Ketogeenisellä ruokavaliolla LDL-partikkelikoko kasvoi merkittävästi ilman muutoksia oksidatiivisissa LDL-konsentraatioissa. Kiinnostavaa kyllä, kirjoittajat kuvasivat HDL-kolesterolin merkittävän nousun 3 viikon ketogeenisen ruokavalion jälkeen. Seerumin lipidien, insuliinin ja lipidien alaluokkien vasteet ketogeeniseen ruokavalioon olivat suotuisat yleisen CVD-riskiprofiilin kannalta.

Lisäksi ketogeeninen ruokavalio auttaa painon hallinnassa ja laihduttamisessa erityisesti. Eläinkokeissa on havaittu, että KD lisää eläinten energian kulutusta. Ihmiskokeissa on havaittu, että KD vähentää nälkää ja siten myös energiansaantia.

Painonpudotus johtuu todennäköisesti suuremmasta energiavajeesta, mutta ketoosin metabolisia mekanismeja ei vielä täysin tunneta. Pitkäaikaisia tutkimuksia tarvitaan painonpudotuksen selvittämiseksi ja siihen liittyvien aineenvaihduntamekanismien ymmärtämiseksi.

Maksan rasvapitoisuuden osoitettiin lisääntyneen isoenergeettisen rasvaisen vähähiilihydraattisen ruokavalion aikana. Tämä tapahtuma viittaa siihen, että runsasrasvainen ravinto voi lisätä alkoholittoman rasvamaksa (NAFLD) riskiä, vaikka muut tutkimukset, joissa käytettiin runsaasti hiilihydraatteja sisältävää (”tavanomaista”) hypoenergeettistä ruokavaliota ja hypoenergeettista vähähiilihydraattista ruokavaliota (KD), osoittivat, että maksan rasvapitoisuus väheni merkittävästi ketogeenisen ruokavalion aikana [119–121].

KD:hen liittyy maksan koon ja massan pieneneminen verrattuna tavalliseen hypokaloriseen ruokavalioon. Tämä johtuu todennäköisesti maksan glykogeenien, eli sokerivarastojen tyhjenemisestä.

Rasvamaksan kehittymiseen ketogeenisellä ruokavaliolla vaikuttaa geneettinen alttius henkilöillä, joilla on PNPLA3-geeni [122].

Alkoholiin liittymätön rasvamaksatauti (NAFLD) lisää maksa- ja sydäntautikuolleisuutta ja on tärkein nopeasti yleistyvän maksasolusyövän syy. NAFLD on yhtä yleinen kuin metabolinen oireyhtymä, ja sitä sairastavien potilaiden joukosta tulisikin löytää ne, joiden fibroosiriski on lisääntynyt ja joilla on kirroosi tai maksasolusyöpä. Noin 40 %:lla suomalaisista on PNPLA3-geenin I148M-variantti ja 15 %:lla TM6SF2-geenin E167K-variantti. Molemmat lisäävät NASH:n ja maksasolusyövän riskiä.” – Duodecim

Tutkittavilla, joilla oli PNPLA3-muunnelmia, maksan rasvapitoisuus oli matalampi kuin verrokkeilla, kun he noudattivat ketogeenistä ruokavaliota [123]. KD:n ongelmana pidetään usein kuitujen saannin vähäisyyttä. Joskus, mutta nykyisin varsin harvoin, esiin nostetaan tyydyttyneiden rasvojen potentiaaliset riskit. Se puolestaan on taistelu tuulimyllyjä vastaan; ketogeenistä ruokavaliota noudattavien lipidiprofiilit, verenpaine, verensokeri ja sydänterveys näyttävät olevan paremmalla tasolla kuin monilla vähemmän rasvaa syövillä. Kuitujen vähäisen saannin vaikutuksista ei ole saatavilla tietoja, joten tarvitaan muita pitkittäistutkimuksia, jotta kaikki tämäntyyppiseen ravitsemustapaan liittyvät kysymykset voidaan luonnehtia pitkällä aikavälillä.

Japanilainen ruokavalio

Japanilainen ruokavalio sisältää laajan valikoiman puhtaista ja tuoreista raaka-aineista valmistettuja ruokia, kuten papuja, tofua, tuoretta kalaa, vihanneksia, japanilaisia suolakurkkua, sieniä, merilevää ja hedelmiä [124]. Vaikka ruokavalio eroaa länsimaisista ruokavalioista, japanilaisella ruokavaliolla on samanlaisia ominaisuuksia kuin Välimeren ruokavaliolla.

Aikaisemmin julkaistut tutkimukset osoittivat, että yksittäisten ruokaryhmien, kuten hedelmien, vihannesten, papujen ja kalojen, saanti liittyi käänteisesti sydän- ja verisuonitautikuolleisuuteen ja kuolleisuuteen kaikkiin syihin Japanissa [125, 126].

Japanilaiselle ruokavaliolle on ominaista runsas natriumin saanti ja matala kaliumin saanti, mikä osaltaan lisää korkeaa natrium / kalium (Na – K) -suhdetta, mikä voi olla vahva indikaattori sydän- ja verisuonitautien kuolleisuuden riskille [127].

Tutkimukset osoittavat, että Na – K-suhde assosioituu positiivisesti aivoverenvuotoon liittyvään aivohalvaukseen, mutta ei tilastollisesti merkittävästi iskeemisen aivohalvauksen riskiin.

Japanilainen ruokavalio sisältää runsaasti happamoitettuja (fermentoituja) ruokia, kuten kalaa ja juustoa, mutta vähän emäksisiä elintarvikkeita, kuten hedelmiä ja vihanneksia, jotka voivat johtaa endogeenisen hapon tuotantoon [128].

Ruokavalion korkea happokuormitus on yhdistetty kardiometabolisten riskitekijöiden, kuten insuliiniresistenssin [129], korkean verenpaineen tai verenpainetaudin [130, 131], suuren vyötärön ympärysmitan, korkeiden triglyseridien ja LDL-kolesterolin sekä tyypin 2 diabeteksen [132] riskeihin133].

Mutta vastoin odotuksia viimeaikaiset tutkimukset ovat osoittaneet, että japanilainen ruokavalio voi vähentää kuolleisuutta sekä syöpään että sydän- ja verisuonitauteihin [134, 135], mikä viittaa potentiaaliseen vaihtoehtoiseen kardiometaboliset riskit arvioivaan ravitsemukselliseen malliin.

Lopuksi

Sydän- ja verisuonitaudit ovat monitekijäisiä, epäterveellisiin elintapoihin ja huonoihin ravitsemustottumuksiin liittyvä sairaus. Monet tutkimukset viittaavat siihen, että liiallinen natriumin ja prosessoitujen elintarvikkeiden saanti, lisätyt sokerit, epäterveelliset rasvat, vähäinen hedelmien ja vihannesten, täysjyvätuotteiden, kuidun, palkokasvien, kalan ja pähkinöiden saanti, alkoholin runsas kulutus, stressi, tupakointi ja liikunnan puute lisäävät sydän- ja verisuonitautien riskiä.

Tässä katsauksessa analysoitavien erityyppisten ruokavalioiden joukossa MeDi näyttää olevan paras ravitsemuksellinen malli, koska se sisältää täysjyvätuotteita, palkokasveja, kuituja, kerta- ja monityydyttämättömiä rasvoja sulkematta kokonaan pois eläinperäisiä elintarvikkeita, kuten lihaa, kalaa, maitotuotteita, munia, ja rajoittamatta alkoholinkulutusta.

Lisäksi MeDi-elämäntavassa otetaan huomioon paitsi elintarvikkeet, myös mielialat ja fyysinen aktiivisuus, mikä tarkoittaa tiettyä elämäntapaa, joka ei rajoitu ruokaan. Useat tutkimukset osoittavat, että MeDiä noudattavilla koehenkilöillä on pienempi lihavuuden ja tyypin 2 diabeteksen riski, sekä LDL-kolesterolin hapettumiseen liittyvän geeniekspression hyödyllinen modulointi [106].

Kiinnostavista keskusteluista ja pienistä tutkimuksista huolimatta muista analysoiduista ruokavalioista ei vielä ole riittävästi tutkimustietoja ja näyttö, jotta niitä voitaisiin pitää parempina ruokavalioina kuin MeDi sydän- ja verisuonitautien ehkäisyssä.


Pahoittelen, jos tekstiin jäi kirjoitus- tai käännösvirheitä. Korjaan niitä hiljalleen. Artikkelin tavoite ei ole pahoittaa kenenkään mieltä. Toin esiin tutkimusten tukemia näkökulmia ja omia näkökulmia.

Lähteet

1. Garcia-Arellano A, Martínez-González MA, Ramallal R, Salas-Salvadó J, Hébert JR, Corella D, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr. 2019;38:1221–31. [PubMed] [Google Scholar]

2. LaCroix AZ, Bellettiere J, Rillamas-Sun E, Di C, Evenson KR, Lewis CE, et al. Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2:e190419. [PMC free article] [PubMed] [Google Scholar]

3. Vincent L, Leedy D, Masri SC, Cheng RK. Cardiovascular disease and cancer: is there increasing overlap? Curr Oncol Rep. 2019;21:47. [PubMed] [Google Scholar]

4. Doughty KN, Del Pilar NX, Audette A, Katz DL. Lifestyle medicine and the management of cardiovascular disease. Curr Cardiol Rep. 2017;19:116. [PubMed] [Google Scholar]

5. Konstantinidou V, Daimiel L, Ordovás JM. Personalized nutrition and cardiovascular disease prevention: from Framingham to PREDIMED. Adv Nutr. 2014;5:368S–71S. [PMC free article] [PubMed] [Google Scholar]

6. Lanier JB, Bury DC, Richardson SW. Diet and physical activity for cardiovascular disease prevention. Am Fam Physician. 2016;93:919–24. [PubMed] [Google Scholar]

7. Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003;78:361–9. [PubMed] [Google Scholar]

8. Velthuis-te Wierik EJ, van den Berg H, Schaafsma G, Hendriks HF, Brouwer A. Energy restriction, a useful intervention to retard human ageing? Results of a feasibility study. Eur J Clin Nutr. 1994;48:138–48. [PubMed] [Google Scholar]

9. Loft S, Velthuis-te Wierik EJ, van den Berg H, Poulsen HE. Energy restriction and oxidative DNA damage in humans. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 1995;4:515–9. [PubMed] [Google Scholar]

10. Verdery RB, Walford RL. Changes in plasma lipids and lipoproteins in humans during a 2-year period of dietary restriction in Biosphere 2. Arch Intern Med. 1998;158:900–6. [PubMed] [Google Scholar]

11. Walford RL, Harris SB, Gunion MW. The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci USA. 1992;89:11533–7. [PMC free article] [PubMed] [Google Scholar]

12. Walford RL, Mock D, Verdery R, MacCallum T. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol Ser A Biol Sci Med Sci. 2002;57:B211–224. [PubMed] [Google Scholar]

13. Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009;203:206–13. [PMC free article] [PubMed] [Google Scholar]

14. Robertson TL, Kato H, Rhoads GG, Kagan A, Marmot M, Syme SL, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. Am J Cardiol. 1977;39:239–43. [PubMed] [Google Scholar]

15. Nuno DM, Lamping KG. Dietary fatty acid saturation modulates sphingosine-1-phosphate-mediated vascular function. J Diabetes Res. 2019;2019:1–11. [PMC free article] [PubMed] [Google Scholar]

16. Moreira APB, Texeira TFS, Ferreira A. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108:801–9. [PubMed] [Google Scholar]

17. Clifton PM, Keogh JB. A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutr Metab Cardiovasc Dis. 2017;27:1060–80. [PubMed] [Google Scholar]

18. Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. J Biol Chem. 2004;279:16971–9. [PubMed] [Google Scholar]

19. Wong SW, Kwon M, Choi AMK, Kim H, Nakahira K, Hwang DH. Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284:27384–92. [PMC free article] [PubMed] [Google Scholar]

20. Gault C, Obeid L, Hannun Y. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1–23. [PMC free article] [PubMed] [Google Scholar]

21. Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124:903–15. [PubMed] [Google Scholar]

22. Julibert A, Bibiloni MDM, Tur JA. Dietary fat intake and metabolic syndrome in adults: a systematic review. Nutr Metab Cardiovasc Dis. 2019;29:887–905. [PubMed] [Google Scholar]

23. Skop-Lewandowska A, Zając J, Kolarzyk E. Overweight and obesity vs. simple carbohydrates consumption by elderly people suffering from diseases of the cardiovascular system. Ann Agric Environ Med. 2017;24:575–80. [PubMed] [Google Scholar]

24. Miller M, Stone N, Ballantyne C, Bittner V, Criqui M, Ginsberg H, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333. [PubMed] [Google Scholar]

25. Rippe JM, Angelopoulos TJ. Added sugars and risk factors for obesity, diabetes and heart disease. Int J Obesity. 2016;40:S22–7. [PubMed] [Google Scholar]

26. Obarzanek E, Sacks F, Vollmer W, Bray G, Miller E, III, Lin P, et al. DASH Research Group. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr. 2001;74:80–9. [PubMed] [Google Scholar]

27. Howard B, Van Horn L, Hsia J, Manson J, Stefanick M, Wassertheil-Smoller S, et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295:655–66. [PubMed] [Google Scholar]

28. Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Ann Rev Nutr. 1996;16:523–57. [PubMed] [Google Scholar]

29. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Investig. 2009;119:1322–34. [PMC free article] [PubMed] [Google Scholar]

30. Ha V, Sievenpiper J, de Souza R, Chiavaroli L, Wang D, Cozma A, et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension. 2012;59:787–95. [PubMed] [Google Scholar]

31. Jones JR, Lineback DM, Levine MJ. Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America Fiber Workshop, June 1–2, 2004, Washington, DC. Nutr Rev. 2006;64:31–8. [PubMed] [Google Scholar]

32. Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Andersson H. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–51. [PubMed] [Google Scholar]

33. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69:30–42. [PubMed] [Google Scholar]

34. Chen JP, Chen GC, Wang XP, Qin L, Bai Y. Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. Nutrients. 2018;10:24. [PMC free article] [PubMed] [Google Scholar]

35. Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients. 2019;11:1155. [PMC free article] [PubMed] [Google Scholar]

36. Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180:565–73. [PubMed] [Google Scholar]

37. Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016;109:39–54. [PubMed] [Google Scholar]

38. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71. [PMC free article] [PubMed] [Google Scholar]

39. Bohn SK, Myhrstad MC, Thoresen M, Holden M, Karlsen A, Tunheim SH, et al. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Med. 2010;8:54. [PMC free article] [PubMed] [Google Scholar]

40. Anderson JW, Baird P, Davis RH, Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fibre. Nutr Rev. 2009;67:188–205. [PubMed] [Google Scholar]

41. Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr. 2017;57:1950–62. [PubMed] [Google Scholar]

42. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46:1029–56. [PMC free article] [PubMed] [Google Scholar]

43. Sánchez-Muniz FJ. Dietary fibre and cardiovascular health. Nutr Hosp. 2012;27:31–45. [PubMed] [Google Scholar]

44. Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015;13:59. [PMC free article] [PubMed] [Google Scholar]

45. Casas R, Castro-Barquero S, Estruch R, Sacanella E. Nutrition and Cardiovascular Health. Int J Mol Sci. 2018;19:3988. [Google Scholar]

46. Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9:3057–68. [PubMed] [Google Scholar]

47. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004;27:538–46. [PubMed] [Google Scholar]

48. Liu S, Buring JE, Sesso HD, Rimm EB, Willett WC, Manson JE. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J Am Coll Cardiol. 2002;39:49–56. [PubMed] [Google Scholar]

49. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964–77. [PubMed] [Google Scholar]

50. Surampudi P, Enkhmaa B, Anuurad E, Berglund L. Lipid lowering with soluble dietary fiber. Curr Atheroscler Rep. 2016;18:75. [PubMed] [Google Scholar]

51. Ripsin CM, Keenan JM, Jacobs DR, Jr, Elmer PJ, Welch RR, Van Horn L, et al. Oat products and lipid lowering. A meta-analysis. JAMA. 1992;267:3317–25. [PubMed] [Google Scholar]

52. Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr. 2016;116:1369–82. [PubMed] [Google Scholar]

53. Othman RA, Moghadasian MH, Jones PJ. Cholesterol-lowering effects of oat beta-glucan. Nutr Rev. 2011;69:299–309. [PubMed] [Google Scholar]

54. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol lowering effects of oat beta-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100:1413–21. [PMC free article] [PubMed] [Google Scholar]

55. Mirmiran P, Bahadoran Z, Khalili Moghadam S, Zadeh Vakili A, Azizi F. A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran Lipid and Glucose Study. Nutrients. 2016;8:686. [PMC free article] [PubMed] [Google Scholar]

56. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40. [PMC free article] [PubMed] [Google Scholar]

57. Mizia-Stec K, Haberka M, Mizia M, Chmiel A, Gieszczyk K, Lasota B, et al. N-3 Polyunsaturated fatty acid therapy improves endothelial function and affects adiponectin and resistin balance in the first month after myocardial infarction. Arch Med Sci. 2011;7:788–95. [PMC free article] [PubMed] [Google Scholar]

58. Tribulova N, Szeiffova Bacova B, Egan Benova T, Knezl V, Barancik M, Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. [Google Scholar]

59. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–92. [PubMed] [Google Scholar]

60. Schroeder F, Petrescu AD, Huang H. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids. 2008;43:1–17. [PubMed] [Google Scholar]

61. Sheena V, Hertz R, Nousbeck J, Berman I, Magenheim J, Bar-Tana J. Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4alpha. J Lipid Res. 2005;46:328–41. [PubMed] [Google Scholar]

62. Lee MW, Lee M, Oh KJ. Adipose tissue-derived signatures for obesity and type 2 diabetes: adipokines, batokines and microRNAs. J Clin Med. 2019;8:854. [PMC free article] [PubMed] [Google Scholar]

63. Li H, Ruan XZ, Powis SH. EPA and DHA reduce LPSinduced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005;67:867–74. [PubMed] [Google Scholar]

64. Nodari S, Triggiani M, Campia U, Dei Cas L. Omega-3 polyunsaturated fatty acid supplementation: mechanism and current evidence in atrial fibrillation. J. Atr. Fibrillation. 2012;5:718. [PMC free article] [PubMed] [Google Scholar]

65. Den Ruijter HM, Verkerk AO, Coronel R. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids. Front. Physiol. 2010;1:1–5. [PMC free article] [PubMed] [Google Scholar]

66. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67. [PubMed] [Google Scholar]

67. Dangardt F, Osika W, Chen Y. Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents. Atherosclerosis. 2010;212:580–5. [PubMed] [Google Scholar]

68. Rizza S, Tesauro M, Cardillo C. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206:569–74. [PMC free article] [PubMed] [Google Scholar]

69. Goodfellow J, Bellamy MF, Ramsey MW, Jones CJ, Lewis MJ. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol. 2000;35:265–70. [PubMed] [Google Scholar]

70. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102:1264–9. [PubMed] [Google Scholar]

71. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154. [PMC free article] [PubMed] [Google Scholar]

72. Guasch-Ferré M, Hu FB, Martínez-González MA, Fitó M, Bulló M, Estruch R. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med. 2014;12:78. [PMC free article] [PubMed] [Google Scholar]

73. Violi F, Loffredo L, Pignatelli P, Angelico F, Bartimoccia S, Nocella C, et al. Extra virgin olive oil use is associated with improved post-prandial blood glucose and LDL cholesterol in healthy subjects. Nutr Diabetes. 2015;5:e172. [PMC free article] [PubMed] [Google Scholar]

74. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, Laguardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18:98–112. [PubMed] [Google Scholar]

75. Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane A-M. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96:781–8. [PubMed] [Google Scholar]

76. Du G, Sun L, Zhao R, Du L, Song J, He G, et al. Polyphenols: potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther. 2016;162:23–34. [PubMed] [Google Scholar]

77. Qin Y, Xia M, Ma J, Hao Y, Liu J. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90:485–92. [PubMed] [Google Scholar]

78. Wallace T, Slavin M, Frankenfeld C. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients. 2016;8:32. [PMC free article] [PubMed] [Google Scholar]

79. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J Transl Med. 2016;14:186. [PMC free article] [PubMed] [Google Scholar]

80. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24:370. [PMC free article] [PubMed] [Google Scholar]

81. Kruger M, Davies N, Myburgh K, Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int. 2014;59:42–52. [Google Scholar]

82. Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23:843–9. [PubMed] [Google Scholar]

83. Bertoia ML, Rimm EB, Mukamal KJ, Hu FB, Willett WC, Cassidy A. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124086 US men and women followed for up to 24 years. BMJ. 2016;352:i17. [PMC free article] [PubMed] [Google Scholar]

84. Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr. 1991;53(4 Suppl):1050S–1055S. [PubMed] [Google Scholar]

85. Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation. 1997;95:1062–71. [PubMed] [Google Scholar]

86. Knekt P, Ritz J, Pereira MA, O’Reilly EJ, Augustsson K, Fraser GE, et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr. 2004;80:1508–20. [PubMed] [Google Scholar]

87. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33. [PMC free article] [PubMed] [Google Scholar]

88. Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Dev Ther. 2015;9:3405–12. [PMC free article] [PubMed] [Google Scholar]

89. Long-Gang Zhao, Xiao-Ou Shu, Hong-Lan Li, Wei Zhang, Jing Gao, Sun JW, et al. Dietary antioxidant vitamins intake and mortality: a report from two cohort studies of Chinese adults in Shanghai. J Epidemiol. 2017;27:89–97. [PMC free article] [PubMed] [Google Scholar]

90. Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med. 1996;334:1156–62. [PubMed] [Google Scholar]

91. Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an Endocrine Society Scientific Statement. Endocr Rev. 2018;39:79–132. [PMC free article] [PubMed] [Google Scholar]

92. KK Ryan, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15:137–49. [PMC free article] [PubMed] [Google Scholar]

93. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135. [PMC free article] [PubMed] [Google Scholar]

94. Schmitt A, Maurus I, Rossner MJ, Röh A, Lembeck M, von Wilmsdorff M, et al. Effects of aerobic exercise on metabolic syndrome, cardiorespiratory fitness, and symptoms in schizophrenia include decreased mortality. Front Psychiatry. 2018;9:690. [PMC free article] [PubMed] [Google Scholar]

95. Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis. 2019;1865:728–34. [PubMed] [Google Scholar]

96. Bellettiere J, LaMonte MJ, Evenson KR, Rillamas-Sun E, Kerr J, Lee IM, et al. Sedentary behavior and cardiovascular disease in older women: the Objective Physical Activity and Cardiovascular Health (OPACH) Study. Circulation. 2019;139:1036–46. [PMC free article] [PubMed] [Google Scholar]

97. Stamatakis E, Gale J, Bauman A, Ekelund U, Hamer M, Ding D. Sitting time, physical activity, and risk of mortality in adults. J Am Coll Cardiol. 2019;73:2062–72. [PubMed] [Google Scholar]

98. US department of Health and Human services. Dietary Guidliness for Americans, Washington, DC; US Government Printing Office; 2005.

99. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a mediterranean diet and survival in a Greek Population. N Eng J Med. 2003;348:2599–608. [PubMed] [Google Scholar]

100. Åkesson A. Go nuts and go extra virgin olive oil! Mediterranean diets reduce blood pressure. Hypertension. 2014;64:26–7. [PubMed] [Google Scholar]

101. Mozaffarian D, Appel LJ, Van Horn L. Components of a cardioprotective diet: New insights. Circulation. 2011;123:2870–91. [PMC free article] [PubMed] [Google Scholar]

102. Sacks FM, Campos H. Dietary therapy in hypertension. N Engl J Med. 2010;362:2102–12. [PubMed] [Google Scholar]

103. Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, et al. American Heart Association Nutrition Committee. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96. [PubMed] [Google Scholar]

104. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, et al. European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG). European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts) Eur Heart J. 2007;28:2375–414. [PubMed] [Google Scholar]

105. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90. [PubMed] [Google Scholar]

106. Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9. [PMC free article] [PubMed] [Google Scholar]

107. Razquin C, Martinez-Gonzalez MA. A traditional mediterranean diet effectively reduces inflammation and improves cardiovascular health. Nutrients. 2019;11:1842. [PMC free article] [PubMed] [Google Scholar]

108. Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113:1–15. [PubMed] [Google Scholar]

109. Schwingshackl L, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2015;115:780–800. [PubMed] [Google Scholar]

110. Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82. [PubMed] [Google Scholar]

111. Larsson SC, Orsini N. Red meat and processed meat consumption and all-cause mortality: a meta-analysis. Am J Epidemiol. 2014;179:282–9. [PubMed] [Google Scholar]

112. Kwok CS, Umar S, Myint PK, Mamas MA, Loke YK. Vegetarian diet, seventh day Adventists and risk of cardiovascular mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;176:680–6. [PubMed] [Google Scholar]

113. Crowe FL, Appleby PN, Travis RC, Key TJ. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr. 2013;97:597–603. [PubMed] [Google Scholar]

114. Liu RH. Dietary bioactive compounds and their health implications. J Food Sci. 2013;78:A18–A25. [PubMed] [Google Scholar]

115. Gilani GS, Wu XC, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. 2012;108:S315e32. [PubMed] [Google Scholar]

116. Friedman M, Brandon DL. Nutritional and health benefits of soy proteins. J Agric Food Chem. 2001;49:1069e86. [PubMed] [Google Scholar]

117. Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57:315–29. [PubMed] [Google Scholar]

118. Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, et al. On behalf of the Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Investig. 2019. 10.1007/s40618-019-01061-2. [PubMed]

119. Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012;3:59. [PMC free article] [PubMed] [Google Scholar]

120. Matthew JS, William JK, Dawn ML, Neva GA, Ana LG, Timothy PS, Jeff SV. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002;132:1879–85. [PubMed] [Google Scholar]

121. Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Mayurranjan MS, Patterson BW, et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136:1552–60. [PMC free article] [PubMed] [Google Scholar]

122. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011;93:1048–52. [PMC free article] [PubMed] [Google Scholar]

123. Sevastianova K, Kotronen A, Gastaldelli A, Perttilä J, Hakkarainen A, Lundbom J, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr. 2011;94:104–11. [PubMed] [Google Scholar]

124. Shen J, Wong GL-H, Chan HL-Y, Chan RS-M, Chan H-Y, Chu WC-W, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46. [PubMed] [Google Scholar]

125. Katanoda K, Kim HS, Matsumura Y. New Quantitative Index for Dietary Diversity (QUANTIDD) and its annual changes in the Japanese. Nutrition. 2006;22:283–7. [PubMed] [Google Scholar]

126. Iso H, Kobayashi M, Ishihara J. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113:195–202. [PubMed] [Google Scholar]

127. Takachi R, Inoue M, Ishihara J. Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. Am J Epidemiol. 2006;167:59–70. [PubMed] [Google Scholar]

128. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30:416–21. [PubMed] [Google Scholar]

129. Akter S, Eguchi M, Kuwahara K, Kochi T, Ito R, Kurotani K, et al. High dietary acid load is associated with insulin resistance: the Furukawa Nutrition and Health Study. Clin Nutr. 2016;35:453–9. [PubMed] [Google Scholar]

130. Moghadam SK, Bahadoran Z, Mirmiran P, Tohidi M, Azizi F. Association between dietary acid load and insulin resistance: Tehran Lipid and Glucose Study. Prev Nutr Food Sci. 2016;21:104–9. [PMC free article] [PubMed] [Google Scholar]

131. Haghighatdoost F, Najafabadi MM, Bellissimo N, Azadbakht L. Association of dietary acid load with cardiovascular disease risk factors in patients with diabetic nephropathy. Nutrition. 2015;31:697–702. [PubMed] [Google Scholar]

132. Zhang L, Curhan GC, Forman JP. Diet-dependent net acid load and risk of incident hypertension in United States women. Hypertension. 2009;54:751–5. [PMC free article] [PubMed] [Google Scholar]

133. Kiefte-de Jong JC, Li Y, Chen M, Curhan GC, Mattei J, Malik VS, et al. Diet-dependent acid load and type 2 diabetes: pooled results from three prospective cohort studies. Diabetologia. 2017;60:270–9. [PMC free article] [PubMed] [Google Scholar]

134. Tada N, Maruyama C, Koba S, Tanaka H, Birou S, Teramoto T, Sasaki J. Japanese dietary lifestyle and cardiovascular disease. J Atheroscler Thromb. 2011;18:723–34. [PubMed] [Google Scholar]

135. Okada E, Nakamura K, Ukawa S, Wakai K, Date C, Iso H, Tamakoshi A. The Japanese food score and risk of all-cause, CVD and cancer mortality: the Japan Collaborative Cohort Study. Br J Nutr. 2018;120:464–71. [PubMed] [Google Scholar]


Articles from International Journal of Obesity Supplements are provided here courtesy of Nature Publishing Group





Runsas kahvin kulutus assosioituu kahden riippumattoman tutkimuksen mukaan pienentyneeseen multippeliskleroosin riskiin

Viimeisten 5-7 vuoden aikana multippeliskleroosissani ei ole tapahtunut suuria muutoksia. Selkein oire taudin etenemisestä on voimakkaasti heikentynyt tasapaino. Muilta osin olen jokseenkin samassa fyysisessä kunnossa kuin 5 tai 7 vuotta sitten.

Eräs oire on kulkenut mukanani taudin varhaisvaiheista alkaen. Kyse on oikean jalkaterän lepovapinasta. Se valvottaa minua kaikki yöt. En tiedä liittyykö se MS-tautiin, vai onko se jokin MS-taudista riippumaton essentiaalinen vaiva. Ehkä lepovapina johtuu kahvista.

Järjettömästä väsymyksestä huolimatta nukahtaminen ei onnistunut, koska jalkateräni, jolla selvästi on oma tahto vastusti nukahtamista väkivaltaisesti. Vaihtoehdot tällaisessa tilanteessa ovat vähissä: voisin ryypätä itseni syvään uneen, pelata uhkapelejä ajankuluksi tai tehdä jotain järkevältä tuntuvaa. Keitin yöllä kahvia ja avasin tietokoneen. Kettuuntuneena ja hyvin väsyneenä kirjoitin kahvista ja MS-taudista.

Käänsin ja editoin pikkuisen tutkimuksen. Tutkimus on julkaistu arvostetussa lääketieteen julkaisussa (BMJ) vuonna 2016. Se kuvaa kahta kahvin ja ms-taudin korrelaatiota selvittävää epidemiologista tutkimusta, joista toisen toteutti ruotsalainen Karoliininen instituutti ja toisen yhdysvaltalainen Johns Hopkins -yliopisto. Kahvista enemmän täällä.

Tiivistelmä

Aikaisemmat kofeiinin kulutuksen ja multippeliskleroosin yhteyttä (MS) selvittävät tutkimukset ovat tuottaneet kiinnostavia tuloksia. Tavoitteenamme oli tutkia, kuinka kahvin kulutus vaikuttaa MS-taudin riskiin.

Kahvi sisältää yli tuhat biologisesti aktiivista yhdistettä, joista keskushermostoa stimuloiva kofeiini on tutkituin aine. Kofeiinin saanti korreloi tutkimuksissa käänteisesti sydän- ja verisuonitautien (1), aivohalvauksen (2) ja tyypin 2 diabeteksen (3) sairastamisen kanssa. Hiljattain annos-vaste-meta-analyysi osoitti, että kahvin kulutus laskee kuolleisuusriskiä kaikkiin syihin, mukaan lukien sydän- ja verisuonitaudit (4, 5).

Alzheimerin taudin eläinmalleissa kofeiinilla on suojaavia vaikutuksia, jotka liittyvät siihen, että kofeiini vähentää veri-aivoesteen vuotoa (6). Adenosiini A1 -reseptoreiden säätelyn avulla kofeiinin kulutus heikentää neuroinflammatiota ja demyelinaatiota MS-taudin eläinmalleissa (EAE).

Kofeiinin kulutuksen ja multippeliskleroosin riskin välistä suhdetta on tutkittu useissa tapaus-vertailututkimuksissa, jotka tuottivat epäjohdonmukaisia tuloksia (10–12). Yksi prospektiivinen tutkimus ei löytänyt mitään ilmeistä yhteyttä kahvin kulutuksen ja MS-taudin väliltä (13). Käyttämällä kahden suuren tapaus-kontrollitutkimuksen tietoja halusimme selvittää, kuinka kahvin kulutus vaikuttaa MS-taudin riskiin.

Menetelmät

Tutkimussuunnitelma ja tutkittava populaatio

Tämä tutkimusraportti perustuu kahteen tapaustutkimukseen MS-tautiin assosioituvista ympäristö- ja geneettisistä riskitekijöistä. Ensimmäinen tutkimus on EIMS (multippeliskleroosin epidemiologinen tutkimus), johon sisältyy tutkimuspohja Ruotsin 16–70-vuotiaasta väestöstä. Potentiaaliset MS-tapaukset, mukaan lukien henkilöt, joilla oli diagnosoitu kliinisesti eriytynyt oireyhtymä rekrytoitiin 40 tutkimuskeskuksen kautta. Näihin tutkimuskeskuksiin lukeutuivat kaikki Ruotsin yliopistolliset sairaalat.

Kaikki tapaukset tutki ja diagnosoi neurologi, joka työskenteli siinä yksikössä, johon tutkimukseen osallistuva henkilö saapui. Hoitava neurologi toimitti tietoja potilaan sairauden alkamisesta ja siitä, täyttääkö potilas McDonald-kriteerit (14). Kullekin mahdolliselle tutkittavalle valittiin kansallisesta väestörekisteristä satunnaisesti kaksi iän, sukupuolen ja asuinpaikan mukaan vastaavaa verrokkia.

Analyyseihin otettiin mukaan vain tapaukset, jotka täyttivät McDonald-kriteerit. Tapaukset, jotka eivät täyttäneet kriteerejä tämän katsauksen tekohetkellä, suljettiin tutkimuksesta, mutta ei tutkimukseen liittyvästä seurannasta. Karoliinisen instituutin alueellinen eettinen arviointilautakunta hyväksyi tutkimuksen suunnitelmat ja metodit.

Toisessa tutkimuksessa rekrytoitiin henkilöitä, jotka tunnistettiin Pohjois-Kalifornian Kaiser Permanenten lääketieteellisen hoitosuunnitelman (KPNC) jäsenten keskuudessa käyttäen sähköisiä terveystietoja.

KPNC on integroitu terveyspalvelujen toimitusjärjestelmä, jonka jäsenmäärä on 3,3 miljoonaa ja joka edustaa noin 25–30% Pohjois-Kalifornian 22 läänin palvelualueen väestöstä. 18-vuotiaiden ja 69-vuotiaiden MS-potilaiden oli oltava nykyisiä KPNC-jäseniä, jotka olivat saaneet MS-diagnoosin neurologilta. Diagnoosit validoitiin mm. lääkärin, neurologin, radiologin ja apteekkien asiakirjoilla McDonaldin kriteerien mukaisesti (15).

Jokaisen MS-potilaan hoitavaan neurologiin otettiin yhteyttä tutkimusmenettelyn hyväksymiseksi. Neurologit sulkivat siten pois tapaukset, joilla ei ollut MS-tautia, tai joiden katsottiin olevan liian sairaita tutkimukseen sekä potilaat, jotka eivät enää olleet KPNC:n jäseniä.

Kontrollit valittiin satunnaisesti KPNC:n jäsenistä. Kontrolleilla ei ollut MS-diagnoosia tai siihen liittyviä sairauksia ja heidät sovitettiin sukupuolen, syntymäpäivän, etnisen alkuperän ja asuinpaikan mukaan vastaamaan tutkittavaa populaatiota.

Tutkimusprotokollan hyväksyivät KP:n tutkimusosaston ja Kalifornian yliopiston Berkeleyn instituutioiden arviointilautakunnat.

Tietojen kerääminen

EIMS:ssä elämäntapatekijöitä ja tietoa erilaisista altistumisista kartoitettiin käyttämällä tutkittaville annettua standardoitua kyselylomaketta pian sen jälkeen, kun he olivat saaneet MS-diagnoosin.

Tutkimusjakson aikana (huhtikuusta 2005 maaliskuuhun 2013) täytetyt kyselylomakkeet saatiin 2055 tapauksesta, jotka täyttivät McDonald-kriteerit (13), ja 4518 vastaavasta kontrollista, mikä vastaa 93% tutkimukseen osallistuneista. Marraskuussa 2013 täydentävät kysymykset lähetettiin kaikille osallistujille, jotka olivat vastanneet vakiolomakkeeseen edellä mainitun ajanjakson aikana. Muiden kysymysten joukossa osallistujia pyydettiin ilmoittamaan kahvin kulutuksestaan eri ikäkausina kysymällä:

Kuinka monta kuppia kahvia joit yleensä päivässä, kun olit 15–19, 20–29, 30–39 ja yli 40-vuotias? . Kullakin ikäkaudella vastausvaihtoehdot olivat 0, 1–3, 3–4, 5–6, 7–8 ja 8 tai useamman kupillisen kahvia päivässä. Ne, jotka ilmoittivat päivittäin 7–8 tai vähintään 8 kupillista kahvia, yhdistettiin yhteen luokkaan, koskavain harvat osallistujat kuluttivat päivittäin yli 8 kupillista kahvia.

Täydentäviin kysymyksiin vastasi 82% tutkittavista ja 66% kontrolliryhmästä. Tietoja kahvin kulutuksesta puuttui 57 henkilön ja 166 kontrollihenkilön osalta. Nämä henkilöt suljettiin tutkimuksesta pois.

Taudin alkaessa alle 15-vuotiaat tapaukset ja niitä vastaavat kontrollit suljettiin myös pois. Esillä oleva tutkimus käsittää siis 1620 tutkittavaa ja 2788 kontrollia. KPNC-tutkimuksen koulutustilaisuudessa osallistujat suorittivat kouluttajien valvomana tietokoneohjatun puhelinhaastattelun elämäntapatekijöistä ja erilaisista altistuksista.

Elokuussa 2014 koottu tutkimus sisälsi yhteensä 1479 tapausta ja 1185 kontrollia. Tässä tietojoukossa oli 1163 tutkittavaa ja 1178 kontrollia. Tutkimukseen osallistumisaste oli noin 80% tutkittavista ja 66% kontrolleista. Tietoja kahvin kulutustottumuksista saatiin kyselemällä osallistujilta korkeinta annosten määrää päivässä, jota on käytetty vähintään 6 kuukauden ajan. Vastausvaihtoehtoja olivat 0, 1, 2-3 ja 4 tai useampi kupillinen päivittäin. Henkilöiden, jotka ilmoittivat juoneensa yhden tai useamman kahvin päivittäin, pyydettiin ’arvioimaan, missä iässä he alkoivat juoda kahvia säännöllisesti.

Tietoja kahvin kulutuksesta puuttui neljältä tutkittavalta ja kuudelta kontrollihenkilöltä. Nämä henkilöt suljettiin tutkimuksesta. KPNC-tutkimukseen perustuvat tulokset koostuvat siis 1159 tapauksesta ja 1172 kontrollista.

Molemmissa tutkimuksissa jokaiselle tutkittavalle määritettiin MS-tautiin viittaavien oireiden alkamisvuosi indeksivuodeksi. Kahvinkulutus otettiin huomioon ennen indeksivuotta tutkittavilla ja saman ajanjakson aikana kontrollihenkilöiltä. Molempien tietojoukkojen osallistujat luokiteltiin ryhmiin päivittäisen kahvinkulutuksen (kahvikuppien lukumäärä) perusteella. Yhden kupin kahvikoko vaihteli maittain. Ruotsissa yksi kuppi kahvia määriteltiin 150 ml:ksi, kun taas Yhdysvalloissa kuppi kahvia määriteltiin 237 ml:ksi (8 oz).

Huomioidut muuttujat

Kaikki EIMS-analyysit mukautettiin asiaankuuluvien demografisten tekijöiden sekä MS-riskiin liittyvien tekijöiden mukaan. Näitä tekijöitä olivat: ikä, sukupuoli, asuinalue, syntyperä, tupakointi (16), altistuminen passiiviselle tupakoinnille (17), altistuminen auringolle (18) ja painoindeksi 20-vuotiaana (20).

Lisäksi EIMS-tutkimuksessa huomioitiin koulutustaso, sosioekonominen asema, alkoholin kulutus, mononukleoosi-tartunta ja HLA-DRB1 * 15-geenimuunnos. Nämä tekijät eivät vaikuttaneet merkittävästi kahvin kulutuksen ja MS-taudin väliseen yhteyteen, eikä niitä sisällytetty lopulliseen tutkimusraporttiin.KPNC-tutkimuksessa sukupuoli, syntymäaika, etninen tausta ja tutkittavan asuinseutu huomioitiin vastaavalla analyysillä. Samat elämäntapoihin liittyvät muuttujat huomioitiin KNPC-tutkimuksessa kuin EIMS-tutkimuksessa (21).

Tilastollinen analyysi

Logistista regressiota käyttämällä verrattiin MS:n esiintymistä osallistujilla, joilla oli erilaisia kahvin kulutustottumuksia, niihin, jotka eivät koskaan juoneet kahvia. EIMS:ssä tutkimme kahvin kulutuksen vaikutusta indeksivuoteen sekä aikaan 5 ja 10 vuotta ennen indeksivuotta. Tutkimus analysoitiin myös meta-analyysinä, jossa kahden tapaus-vertailututkimuksen tulokset yhdistettiin laskemalla niiden painotettu keskiarvo. Kaikki analyysit tehtiin käyttämällä tilastollista analyysijärjestelmää (SAS) V.9.2.

Tulokset

EIMS- ja KPNC-kohorteissa kahvin kulutus liittyi sukupuoleen, tupakointiin, passiiviseen tupakointiin ja murrosiän painoindeksiin sekä tutkittavien että kontrollien keskuudessa. Tapausten ja kontrollien ominaisuudet päivittäisen kahvinkulutuksen määrän mukaan indeksivuonna on esitetty taulukossa 1.

Taulukko 1

EIMS-tutkimuksessa kahvin kulutus sekä indeksivuonna että 5 tai 10 vuotta indeksivuotta ennen assosioitui merkittävästi pienempään MS-taudin riskiin, jos kahvia kuluttavia verrattiin henkilöihin, jotka eivät juoneet kahvia.

Mukautettu sairastumisriski, eli odds ratio (OR) oli 0,70 (95%:n luottamusväli 0,49 – 0,99, p = 0,04) niiden joukossa, jotka joivat vuoden aikana yli kuusi kupillista kahvia päivässä (yli 900 ml).

Vastaava OR niille, jotka ilmoittivat suuren kahvinkulutuksen 5 tai 10 vuotta ennen indeksivuotta, oli 0,72 (95%:n luottamusväli 0,51 – 1,03, p = 0,08) ja 0,71 (95%:n luottamusväli 0,47 – 1,06, p = 0,09) ( taulukko 2).

Samanlaisia tuloksia havaittiin KPNC-tutkimuksessa. Henkilöillä, jotka olivat alkaneet juoda kahvia ennen indeksivuotta ja kuluttaneet vähintään neljä kupillista kahvia (yli 948 ml) päivittäin, MS-taudin riskin OR oli 0,69 (95%:n luottamusväli 0,50 – 0,96, p = 0,05) verrattuna niihin, jotka eivät koskaan juoneet kahvia.

Vastaavasti neljän tai useamman kahvikupin juominen päivittäin vähintään 5 vuotta ennen indeksivuotta assosioitui MS-taudin kehittymisen todennäköisyyden laskuun (OR 0,64, 95%:n luottamusväli 0,45 – 0,91, p = 0,04) (taulukko 2).

Mitään todisteita tällaisesta assosiaatiosta ei havaittu muiden juomien, kuten teen tai soodan määrän ja MS-taudin välillä. Tutkimukset osoittivat MS-taudin todennäköisyyden pienenevän kasvavan kahvinkulutuksen kanssa (taulukko 2).

Kun molempien tutkimusten tulokset yhdistettiin meta-analyysiin, OR oli 0,71 (95%:n luottamusväli 0,55 – 0,92), kun osallistujat, jotka kuluttivat eniten kahvia (> 900 ml kahvia päivässä ruotsalaisessa tutkimuksessa ja> 948
ml kahvia päivässä) amerikkalaisessa tutkimuksessa) verrattiin osallistujiin, jotka eivät koskaan juoneet kahvia.

Taulukko 2

Ajatuksia

Verrattuna niihin osallistujiin , jotka eivät juoneet kahvia, MS-taudin riski laski selvästi niiden joukossa, jotka ilmoittivat suuresta kahvin kulutuksesta. Nämä tulokset ovat yhdenmukaisia vastaavien havaintojen kanssa tutkimuksissa, joissa käytettiin MS-taudin eläinmalleja (7).

Tulokset ovat mielenkiintoisia, kun otetaan huomioon, että sekä kahviin että kofeiiniin liittyy selvästi pienempi Parkinsonin taudin riski (22, 23). Kahvin neurodegeneraatiota alentavan vaikutuksen taustalla voi olla monia aineenvaihduntamekanismeja.

Adenosiini 1A -reseptorien säätely kofeiinihoidolla näyttää estävän kokeellisen autoimmuunienkefalomyeliitin (EAE)kehittymistä MS-taudin eläinmalleissa. Kofeiinin on havaittu hidastavan invalidisoitumisen etenemistä EAE:n RRMS-mallissa.

Tämä tutkimus oli poikkileikkauksellinen, eikä syy-yhteyttä (kausaliteettia) voitu vahvistaa (24). Kofeiinin kulutuksen ja MS-riskin suhdetta on tutkittu useissa tutkimuksissa, jotka ovat tuottaneet epäjohdonmukaisia tuloksia.

Esimerkiksi tapaus-vertailututkimuksessa, jossa verrattiin 93 MS-potilasta ja 186 verrokkiin (92 oli sairaala- ja 94 populaatiokontrollia), MS-taudin lisääntynyt riski havaittiin potilailla, jotka olivat aloittaneet kahvin juomisen ennen kuin olivat 15-vuotiaita, verrattuna MS-riskiin niillä, jotka aloittivat kahvin juomisen 15 vuoden iän jälkeen (10).

Sairaalapohjainen tapaustarkastustutkimus (210 tutkittavaa ja 210 verrannollista kontrollia) totesi MS-taudin riskin kasvavan runsaalla kavin kulutuksella (11). Käänteinen yhteys elintapojen, kuten kahvin kulutuksen välillä havaittiin puolestaan tapaus-vertailututkimuksessa, joka käsitti 75 tutkittavaa ja 75 kontrollia (12). Kahvin kulutusta ei kuitenkaan tutkittu erikseen tässä tutkimuksessa.

Ainoa prospektiivinen kohorttitutkimus (Nurses ’Health Study, NHS) ei löytänyt yhteyttä kofeiinin saannin ja MS-taudin riskin välillä (13). Toisaalta tätä voi selittää se, että NHS-tutkimuksessa oli mukana varsin pieni MS-tautia sairastavien populaatio (n = 282) NHS:n MS-tautia sairastavista vain 44 joi vähintään kolme kupillista kahvia päivittäin (eli NHS:n korkein altistumisluokka joi selvästi vähemmän kahvia kuin tämän tutkimuksen eniten kahvia juova ryhmä). Muita eroja tutkittavissa potilasryhmissä olivat esim. vain naishoitajien ottaminen mukaan NHS-tutkimukseen.

Molemmissa analyyseissämme käytetyissä tapaus-kontrollitutkimuksissa on rajoituksia. Koska altistustiedot kerättiin takautuvasti, palautusvirhe voi olla merkittävä. Validoitujen välineiden puuttuessa myöskään väärinkäyttövaiheita ei voi täysin poissulkea.

Vaikka potentiaalinen valintapoikkeama voi johtua siitä, että verrokeista suhteellisen suuri osuus vastasi EIMS:n täydentäviin kysymyksiin, puolueellisuus on todennäköisesti vaatimaton, koska elämäntavat, kuten tupakointi ja alkoholin kulutus kontrollien keskuudessa olivat vastaavia kuin vastaavan ikäisellä väestöllä yleensä (25).

Täydentäviin kysymyksiin vastanneiden ja vastaamatta jättäneiden elämäntavoissa (tupakointi, passiivinen tupakointi, painoindeksi ja aurinko) ei ollut merkittäviä eroja . Mahdollisuus, että kahvin kulutuksen ja MS-taudin riskin välinen käänteinen suhde voisi johtua käänteisestä syy-yhteydestä, näyttää vähemmän todennäköiseltä, koska korkeampi kahvin kulutus liittyi MS-taudin todennäköisyyden laskuun jopa useita vuosia ennen indeksivuotta, kuten EIMS: ssä havaittiin.

Ruotsin tiedoissa ei tapahtunut merkittäviä muutoksia kahvinkulutuksen tai kontrollien keskuudessa indeksivuotta edeltävän vuosikymmenen aikana. Indeksin ja 5 vuotta ennen indeksiä tapahtuneen kahvin kulutuksen korrelaatio oli tapausten ja kontrollien kohdalla 0,9 (p <0,0001). Vastaava korrelaatio kahvin kulutuksen ja indeksiä edeltäneen 10 vuoden välillä oli 0,8 (p <0,0001; katso myös taulukko 1). Saman oletettiin olevan totta myös KPNC-kohortissa tässä tutkimuksessa.

On mahdollista, että kahvin saannin aliraportointi ennen MS-taudin puhkeamista johti assosiaation voimakkuuden yliarviointiin. Tällainen riski on suurempi KPNC-kohortissa. Kun otetaan huomioon viive MS-taudin diagnosoinnin ja tiedonkeruun välillä molemmissa aineistoissa, käänteisen syy-yhteyden mahdollisuutta ei voida täysin sulkea pois.

KPNC-kohortin lisärajoituksia ovat se, että kahvin kulutetun määrän oletettiin olleen vuosien ajan jatkuvasti tasainen ja että kahvin kulutuksen oletettiin alkaneen iässä, jossa osallistujat alkoivat kuluttaa kofeiinia sisältäviä juomia.

Käyttämällä samanlaista menetelmää ja samoja oletuksia kuin kahvin arvioinnissa, ei löydetty mitään todisteita teen tai soodan suuremman kulutuksen ja pienentyneiden MS-riskien välisestä yhteydestä.

Tutkimuksessa on myös useita vahvuuksia. Tapausten ja kontrollien huolellinen rekrytointi samasta vertailupopulaatiosta molemmissa kohorteissa vähentää huolta siitä, että ilmeiset assosiaatiot johtuvat mistä tahansa muusta kuin tapaus- tai kontrolliasemasta.

Lisäksi analyyttisiä malleja mukautettiin monilla mahdollisilla muuttujilla, kuten MS:lle vakiintuneet ympäristöriskitekijät. Lisätutkimuksia tarvitaan sen selvittämiseksi, onko MS-taudin riskiä alentavan vaikutuksen taustalla tosiasiallisesti kofeiini vai onko löydösten taustalla kahvin sisältämä jokin toinen yhdiste.

Lähteet

      1. O’Keefe JH,
      2. Bhatti SK,
      3. Patil HR, et al

. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol 2013;62:1043–51. doi:10.1016/j.jacc.2013.06.035

CrossRefPubMedWeb of ScienceGoogle Scholar

      1. Larsson SC

. Coffee, tea, and cocoa and risk of stroke. Stroke 2014;45:309–14. doi:10.1161/STROKEAHA.113.003131

FREE Full TextGoogle Scholar

      1. van Dam RM,
      2. Hu FB

. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005;294:97–104. doi:10.1001/jama.294.1.97

CrossRefPubMedWeb of ScienceGoogle Scholar

      1. Crippa A,
      2. Discacciati A,
      3. Larsson S, et al

. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol 2014;180:763–75. doi:10.1093/aje/kwu194

Abstract/FREE Full TextGoogle Scholar

      1. Loftfield E,
      2. Freedman ND,
      3. Graubard BI, et al

. Association of coffee consumption with overall and cause specific mortality in a large U.S. prospective cohort. Am J Epidemiol 2015;182:1010–22. doi:10.1093/aje/kwv146

Abstract/FREE Full TextGoogle Scholar

      1. Chen X,
      2. Ghribi O,
      3. Geiger JD

. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer’s and Parkinson’s disease. J Alzheimers Dis 2010;20(Suppl 1):S127–41. doi:10.3233/JAD-2010-1376

PubMedGoogle Scholar

      1. Tsutsui S,
      2. Schnermann J,
      3. Noorbakhsh F, et al

. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 2004;24:1521–9. doi:10.1523/JNEUROSCI.4271-03.2004

Abstract/FREE Full TextGoogle Scholar

      1. Chen GQ,
      2. Chen YY,
      3. Wang XS, et al

. Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res 2010;1309:116–25. doi:10.1016/j.brainres.2009.10.054

CrossRefPubMedWeb of ScienceGoogle Scholar

      1. Mills JH,
      2. Thompson LF,
      3. Mueller C, et al

. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2008;105:9325–30. doi:10.1073/pnas.0711175105

Abstract/FREE Full TextGoogle Scholar

      1. Tola MR,
      2. Granieri E,
      3. Malagù S, et al

. Dietary habits and multiple sclerosis. A retrospective study in Ferrara, Italy. Acta Neurol 1994;16:189–97.

Google Scholar

      1. Pekmezovic T,
      2. Drulovic J,
      3. Milenkovic M, et al

. Lifestyle factors and multiple sclerosis: a case-control study in Belgrade. Neuroepidemiology 2006;27:212–16. doi:10.1159/000096853

CrossRefPubMedWeb of ScienceGoogle Scholar

      1. Jahromi SR,
      2. Toghae M,
      3. Jahromi MJ, et al

. Dietary pattern and risk of multiple sclerosis. Iran J Neurol 2012;11:47–53.

PubMedGoogle Scholar

      1. Massa J,
      2. O’Reilly EJ,
      3. Munger KL, et al

. Caffeine and alcohol intakes have no associations with risk of multiple sclerosis. Mult Scler 2013;19:53–8. doi:10.1177/1352458512448108

Abstract/FREE Full TextGoogle Scholar

      1. Thompson AJ,
      2. Montalban X,
      3. Barkhof F, et al

. Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol 2000;47:831–5. doi:10.1002/1531-8249(200006)47:6<831::AID-ANA21>3.0.CO;2-H

CrossRefPubMedWeb of ScienceGoogle Scholar

      1. Briggs F,
      2. Acuna B,
      3. Shen L, et al

. Adverse socioeconomic position during the life course is associated with multiple sclerosis. J Epidemiol Community Health 2014;68:622–9. doi:10.1136/jech-2013-203184

Abstract/FREE Full TextGoogle Scholar

      1. Hedström AK,
      2. Hillert J,
      3. Olsson T, et al

. Smoking and multiple sclerosis susceptibility. Eur J Epidemiol 2013;28:867–74. doi:10.1007/s10654-013-9853-4

CrossRefPubMedGoogle Scholar

      1. Hedström AK,
      2. Bäärnhielm M,
      3. Olsson T, et al

. Exposure to environmental tobacco smoke is associated with increased risk for multiple sclerosis. Mult Scler 2011;17:788–93. doi:10.1177/1352458511399610

Abstract/FREE Full TextGoogle Scholar

      1. Bäärnhielm M,
      2. Hedström AK,
      3. Kockum I, et al

. Sunlight is associated with decreased multiple sclerosis risk: no interaction with human leukocyte antigen-DRB1*15. Eur J Neurol 2012;19:955–62. doi:10.1111/j.1468-1331.2011.03650.x

CrossRefPubMedGoogle Scholar

      1. Munger KL,
      2. Chitnis T,
      3. Ascherio A

. Body size and risk of MS in two cohorts of US women. Neurology 2009;73:1543–50. doi:10.1212/WNL.0b013e3181c0d6e0

CrossRefPubMedGoogle Scholar

      1. Hedström AK,
      2. Olsson T,
      3. Alfredsson L

. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler 2012;18:1334–6. doi:10.1177/1352458512436596

Abstract/FREE Full TextGoogle Scholar

      1. Gianfrancesco MA,
      2. Acuna B,
      3. Shen L, et al

. Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors. Obes Res Clin Pract 2014;8:e435–47. doi:10.1016/j.orcp.2014.01.002

CrossRefPubMedGoogle Scholar

      1. Liu R,
      2. Guo X,
      3. Park Y, et al

. Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol 2012;175:1200–7. doi:10.1093/aje/kwr451

Abstract/FREE Full TextGoogle Scholar

      1. Qi H,
      2. Li S

. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int 2014;14:430–9. doi:10.1111/ggi.12123

CrossRefPubMedGoogle Scholar

      1. D’hooghe MB,
      2. Haentjens P,
      3. Nagels G, et al

. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur J Neurol 2012;19:616–24. doi:10.1111/j.1468-1331.2011.03596.x

CrossRefPubMedGoogle Scholar

Copyright information:

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/




Ympäristö- ja mikrobitoksiinien, lääkkeiden, orgaanisten liuottimien ja raskasmetallien vaikutukset multippeliskleroosin puhkeamiseen ja etenemiseen

Kliinisten tieteiden laitos, College of Medicine, immuno-onkologinen ryhmä, Sharjahin lääketieteellisen tutkimuksen instituutti (SIMR), Sharjahin yliopisto, Sharjah, United Arab Emirates

28. tammikuuta 2019 / Tarkistettu: 13. helmikuuta 2019 / Hyväksytty: 28. helmikuuta 2019 / Julkaistu: 5. maaliskuuta 2019

Tiivistelmä

Multippeliskleroosi on nuorten aikuisten yleisin neurologinen sairaus. Se aiheuttaa sairastuneen ja tämän läheisten elämään sosiaalisia, terveydellisiä ja taloudellisia haasteita. MS-tauti lisää sosiaali- ja terveyspalvelujen taloudellista taakkaa. Mikä multippeliskleroosin aiheuttaa?

MS-taudin syistä on esitetty monenlaisia väittämiä. Osa väitteistä on hyvin perusteltuja. Sen sijaan eräät MS-taudin syistä esitetyt hypoteesit sotkevat korrelaation ja kausaation keskenään.

Multippeliskleroosi on osoittautunut lääketieteellisesti vaikeaksi ongelmaksi. Kyseessä on oireiltaan ja patologialtaan monimutkainen ja monitekijäinen sairaus. Tautiin vaikuttavia geenimuunnoksia tunnetaan toista sataa. Näiden geenimuutosten erilaiset variantit vaikuttavat eri tavoin eri potilaisiin. Osalla sairastuneista tauti etenee aggressiivisesti ja nopeasti, kun taas toiset voivat elää lähes oireettomasti vuosikymmeniä.

Kaikille MS-tautia sairastaville potilaille sopivaa farmakologista hoitoa on vaikea kehittää, koska tautiin liittyy valtavasti geneettisiä, epigeneettisiä ja ekologisia muuttujia. Multippeliskleroosiin sairastuminen on surullisten sattumusten sarja.

Yritykset ymmärtää MS-taudin etiopatologiaa eivät ole löytäneet vedenpitävää vastausta peruskysymykseen: Mikä MS-taudin aiheuttaa?

Yleisestä epätietoisuudesta syntyy helposti ajatus, että taudin aiheuttaja tunnetaan, mutta sitä ei kerrota, koska MS-potilaat ovat hyvä tulojen lähde lääketeollisuudelle. Se ei varmaankaan ole totta.

Kymmeniä tai satoja taudin etiologiaan liittyviä geenimuunnoksia, epigeneettisiä vaikuttajia ja ympäristötekijöitä on tunnistettu, mutta selkeää vastausta sairauden syistä ja siihen vaikuttavista solutason mekanismeista ei täysin ymmärretä. Tehostuneet tutkimusmenetelmät kuitenkin näkevät tarkemmin ja syvemmälle ihmisen keskushermostoon. Molekyylibiologian ja solujen aineenvaihdunnan tutkimuksen sekä tehostuneiden tutkimusvälineiden myötä käsityksemme taudin syistä ja mekanismeista tarkentuu.

Tässä katsauksessa tutustutaan MS-autoimmuniteetin taustalla vaikuttaviin geneettisiin, epigeneettisiin ja ekologisiin tekijöihin. Katsauksen pääpaino kohdistetaan sellaisten toksiinien, kemikaalien tai lääkkeiden käyttöön, jotka voivat laukaista, muuttaa, hidastaa tai ehkäistä MS-tautia ja siihen liittyviä oireita.

1. Johdanto

Multippeliskleroosi (MS) vaurioittaa keskushermostoa (CNS). Tauti johtaa aivojen ja selkäytimen valkeassa ja harmaassa aineessa primaariseen multifokaaliseen demyelinaatioon ja diffuusiin neurodegeneraatioon [1].

Multifokaalinen demyelinaatio viittaa monesta paikasta alkaviin viejähaarakkeita suojaavien myeliinituppien vaurioihin aivojen valkeassa aineessa (demyelinaatio). Diffuusilla neurodegeneraatiolla tarkoitetaan epätarkkarajaisia ja epäselviä soluvauriota ja -surkastumia erityisesti aivojen harmaassa aineessa (neurodegeneraatio).

Suurin osa MS-tautiin sairastuneista sairastaa aaltomaisesti etenevää, eli relapsoivaa-remittoivaa tautimuotoa, jossa taudin pahenemisvaiheita seuraa toipumis- ja vakausjaksot [2].

Sekä patologiset että radiologiset havainnot viittaavat neuroinflammation ja neurodegeneraation varhaiseen rinnakkaisvaikutukseen taudin patogeneesissa [3].

MS-tauti on eräs yleisimmistä nuorten aikuisten invalidisoitumista aiheuttavista neurologisista häiriöistä [4]. Globaalisti multippeliskleroosia sairastaa arviolta 2,5 miljoonaa ihmistä. Tautiin sairastuvat yleensä nuoret aikuiset. Naisilla tautia esiintyy noin kaksi kertaa enemmän kuin miehillä [5].

Multippeliskleroosi aiheuttaa merkittävän henkilökohtaisen ja sosioekonomisen taakan, sillä suurin osa potilaista tarvitsee apuvälineitä, farmakologista hoitoa, seurantaa ja henkilökohtaista apua [6].

Multippeliskleroosi on arvaamaton sairaus, jonka potilaskohtaisesta etenemisestä voidaan antaa vain tilastollisia suuntaviivoja. Yleisesti ottaen oireiden kirjo ja taudin eteneminen ovat yksilöllisiä. Multippeliskleroosiin vaikuttavat geneettiset, epigeneettiset ja ekologiset tekijät voivat kiihdyttää tai hidastaa taudin kulkua [7].

Vaikka kokeellinen malli taudista on olemassa, se ei selitä taudin vaihtelevia kliinisiä, patologisia tai immunologisia piirteitä [8].

MS-taudin hoito- ja terapiamenetelmät ovat muuttuneet vuosien varrella. Taudin oireita ja pahenemisvaiheita pyritään hillitsemään immuunijärjestelmän toimintaa modifioivilla ja oireenmukaisilla lääkehoidoilla. Toimintakykyä ylläpidetään erilaisilla kuntoutushoidoilla, joiden toivotaan hidastavan sairastuneen invalidisoitumista [9].

Multippeliskleroosin syistä tiedetään edelleen aivan liian vähän. Ymmärrys taudin etiologiasta on pysynyt paljolti samana kuin William Boydin aikana. Boyd totesi vuonna 1958:

”Aikaa ja rahaa, joka on käytetty multippeliskleroosin syy-tekijöiden määrittämiseen, ei voida laskea … tulos on ollut nolla” [10].

Tietämättömyys taudin syistä on omiaan lisäämään villejä arvauksia. Joissain tapauksissa villit arvaukset perustuvat tieteellisesti validiin ja loogisesti koherenttiin päättelyyn. Tällaisissa tapauksissa voidaan havaita vahva korrelaatio jonkin patogeenin tai ymäristötekijän ja MS-taudin väliltä, vaikka kausaatiota ei pystyttäisi osoittamaan.

Esimerkiksi D-vitamiinin puute ja eurooppalainen perimä korreloivat vahvasti MS-taudin kanssa. On saatu vahvaa näyttöä siitä, että odottavan äidin matalat D-vitamiinitasot altistavat lapsen myöhemmin kehittyvälle MS-taudille. Ascherio yms. on tutkinut tätä korrelaatiota varsin kattavasti. Toisaalta on myös havaittu, että odottavan äidin Epstein-Barr-infektio (mononukleoosi) ja sikiön kohonneet IgG-vasta-ainepitoisuudet korreloivat lapsen kasvaneen MS-riskin kanssa.

Interpretation: Offspring of mothers with high viral capsid antigen IgG during pregnancy appear to have an increased risk of MS. The increase in MS risk among women with elevated prediagnostic EBNA-1 IgG levels is consistent with previous results.”

2. Kateenkorva, T-solut & immunologinen toleranssi

Immuunivälitteisellä patogeneesillä on keskeinen rooli MS-taudissa [11]. Huolimatta siitä, että veri-aivoesteen tulisi estää immuunisolujen pääsy keskushermostoon, multippeliskleroosia sairastavien keskushermostosta löydetään merkkejä T-soluista ja B-solujen tuottamia immunoglobuliineja. MS-taudissa veri-aivoeste vuotaa ja päästää lävitseen immuunisoluja [12]. Mekanismi tunnetaan, mutta syistä on vain valistuneita arvauksia.

T-solut kypsyvät ja erilaistuvat kateenkorvasssa (thymus). Kypsyminen tuottaa valtavasti eri antigeeneille herkistyneitä T-soluja. Samalla kehittyy aina jonkin verran autoreaktiivisia T-soluja. Immunologisen toleranssin negatiivisen selektion pitäisi ohjata nämä omille kudoksille herkistyneet T-solut apoptoosiin, eli ohjattuun solukuolemaan.

Autoimmuunitaudeissa myös immunologinen toleranssi falskaa. Immunologisen toleranssin negatiivinen selektio ei jostain syystä poista autoreaktiivisia T-soluja, minkä seurauksena verenkiertoon vapautuu elimistön omille soluille herkistyneitä immuunisoluja. Nämä voivat kohdistaa aktivaationsa kehon omia kudoksia, kuten myeliiniä vastaan.

Kateenkorva ja immunologinen toleranssi vaikuttavat autoimmuunitautien patogeneesiin.

Immunologinen toleranssi tarkoittaa immuunijärjestelmän kykyä olla reagoimatta elimistön omiin kudoksiin ja harmittomiin vieraisiin rakenteisiin. Toleranssin häiriöt voivat johtaa allergioihin tai autoimmuunitauteihin.

Immunologinen toleranssi jaetaan sentraaliseen ja perifeeriseen toleranssiin, ja se on hankinnaisen eli adaptiivisen immuunijärjestelmän ominaisuus. Lymfosyytteihin kuuluvien CD4-positiivisten T-solujen merkitys on tärkeä, sillä niiden erilaistuminen Th1-, Th2- tai Th17-efektorisoluiksi tai säätelijä-T-soluiksi ohjaa koko immuunijärjestelmän toimintaa.

Th1-tyypin immuunivaste on soluvälitteinen. Th2-vasteessa korostuu B-lymfosyyttien IgE-luokan vasta-aineiden tuotanto. Jälkimmäisen yhteys allergioihin tunnetaan hyvin. Th17-vaste tukee neutrofiilien toimintaa ja vahvistaa epiteelejä. Säätelijä-T-solut puolestaan pitävät yllä toleranssia estämällä haitallisia immuunivasteita ja huolehtivat immuunivasteen sammuttamisesta, kun taudinaiheuttaja on saatu hävitetyksi elimistöstä.

T-solujen toiminta perustuu T-solupopulaation kykyyn tunnistaa peptidejä mistä tahansa vieraasta tunkeutujasta mutta olla samalla reagoimatta elimistön omiin rakenteisiin. Yksittäinen T-solu tunnistaa reseptorillaan vain tietyn peptidin sitoutuneena tiettyyn MHC-molekyyliin, mutta T-solupopulaation suuri koko ja reseptorien monimuotoisuus takaavat sen, että minkä tahansa vieraan proteiiniin pilkkomistuotteisiin reagoi ainakin muutama T-solu. Nämä piirteet ovat peräisin T-solujen maturaatiosta kateenkorvassa.

Kateenkorvassa lymfosyyttien esiasteiden kehitys T-soluiksi alkaa T-solureseptoria koodaavien geenisegmenttien uudelleenjärjestelyllä eli rekombinaatiolla. Koska geenisegmenttejä on suuri määrä ja yhdistelyyn liittyy sattumanvaraista epätarkkuutta, rekombinaation tuloksena syntyy antigeenispesifisyydeltään erittäin monimuotoinen kehittyvien T-solujen populaatio. Onnistuneen beetaketjun rekombinaation jälkeen solut jakautuvat muutaman kerran ja alkavat sitten ilmentää pinnallaan CD4- ja CD8-proteiineja.

Positiivinen selektio on välttämätön T-solureseptorin toimivuuden testaamiseksi, mutta sentraalinen toleranssi perustuu reseptorin autoreaktiivisuuden testaamiselle prosessissa, jota kutsutaan negatiiviseksi selektioksi.

Kateenkorvan epiteelisolut tuottavat AIRE-geenin ohjaamina myös sellaisia proteiineja, jotka normaalisti esiintyvät vain tietyissä elimistön osissa, kuten hermostossa tai umpirauhasissa. Näistä elimistön omista proteiineista pilkottuja peptidejä esitellään MHC-molekyyleihin sitoutuneina kehittyville T-soluille. Jos kehittyvä T-solu sitoutuu voimakkaasti oman MHC-molekyylin ja oman peptidin yhdistelmään, solu tulee negatiivisesti valikoituneeksi ja kuolee apoptoottisesti.

Negatiivinen selektio karsii T-solupopulaatiosta voimakkaasti autoreaktiiviset solut ja synnyttää sentraalisen toleranssin. – Duodecim

Tieteellinen yhteisö ei kuitenkaan ole yksimielinen siitä, onko MS klassisen määritelmän mukaan ensisijaisesti autoimmuunisairaus, tulehdustekijöihin liittyvä demyelinoiva tauti, johon liittyy autoimmmuuni-ilmentymiä, mitokondrioiden häiriintyneeseen toimintaan liittyvä neurodegeneratiivinen sairaus vai kaikkia näitä tai jotain näiden väliltä [3].

Havainto, että puolet MS-taudin immuunitoimintaan liittyvistä geneettisistä muunnoksista liittyy myös muiden autoimmuunisairauksien patologiaan, tukee autoimmuunimallia [6,7].

Viime aikoina tautia on kutsuttu prototyyppiseksi autoimmuunikeskushermostosairaudeksi [8, 9, 10], jossa autoimmuunivälitteiset myeliinivauriot liittyvät esimerkiksi epigeneettiseen alttiuteen [11]. Tällaisessa autoimmuunimallissa autoreaktiiviset ja adaptiiviset immuunisolut tunkeutuvat keskushermostoon ja voimistavat keskushermoston aksonivaurioita [12].

CD4+ -T-lymfosyyttejä pidetään laajalti tärkeimpinä toimijoina MS-taudin patogeneesissä [7]. Funktionaalisesti muuttuneiden T-auttajasolujen (alatyypit Th1 ja Th17) ja Treg-solujen sekä muiden leukosyyttipopulaatioiden, kuten luonnollisten tappajasolujen (NK) löydökset MS-tautia sairastavien selkäydinnesteestä (CSF) on hyvin dokumentoitu [13].

Näiden lymfosyyttien toiminnassa havaitaan toiminnallisia vikoja T- ja B-säätelyalaryhmissä sekä tulehdusta edistävää (proinflammatorista) profiilia [14]. Autoreaktiiviset Th17-solut voivat läpäistä veri-aivoesteen (BBB) solujen tiukkoja liitosproteiineja ja endoteelisoluja heikentävien IL-17- ja IL-22-sytokiinien avustamana. Tämä johtaa neutrofiilien aktivaatioon ja hermosolujen vaurioihin [15].

Patogeenisillä Th17-soluilla on heikko FasL-ilmentyminen, joten ne voivat välttää ohjelmoidun solukuoleman (apoptoosin) ja säilyä tulehtuneissa kohdissa [16]. On arveltu, että virusinfektion yhteydessä tapahtuva immuunisolujen aktivaatio voi tuottaa sellaisia autoreaktiivisia ja mahdollisesti enkefalitogeenisiä* T-auttaja (Th) -1/17 -soluja, joita kehittyy selkäydinnesteeeseen (CSF) MS-pahenemisvaiheen jälkeen [14].

*Enkefalitogeenisellä tarkoitetaan myeliiniin aktivoituvaa.

Näiden tunnistettujen vaikuttajien lisäksi on löydetty uusia immuunisoluja, kuten Interleukiini (IL) -9:n tuottamat CD4
+ T-auttajasolut ’Th9’ [17] ja T-auttaja 22 ’Th22’ -solut [18], jotka helpottavat taudin aktivoitumista ja etenemistä. Hiljattain havaittiin myös, että MS-vaurioissa CD8+ T-solut näyttelevät suurempaa roolia kuin CD4+ T-solut. Immuunisolujen klooneja havaittiin sairastuneiden veressä ja selkäydinnesteessä vielä useiden vuosien jälkeen [7].

B-solupopulaatioiden tutkimus MS-plakkeissa paljasti kloonisesti laajentuneiden B-lymfosyyttien kertymisen, mikä osoittaa B-solujen, vasta-aineiden ja sen komplementin keskeisen roolin demyelinaatioprosessissa [19].

Lisäksi dendriittisolut, jotka toimivat antigeeniä esittelevinä soluina (APC) sen lisäksi, että ne ovat efektorisoluja neuro-tulehduksessa, pahentavat MS-patologiaa, mutta APC:n rooli  MS-taudin patogeneesissä tunnetaan epätäydellisesti [7].

Näiden havaintojen perusteella ympäristötekijöiden vaikutus geneettisen alttiuden omaaviin ihmisiin on tärkeää, koska ympäristötekijät voivat laukaista MS-tautiin johtavan vahingollisen kaskadin (reaktioketjun).

Vaikka MS ei ole perinnöllinen sairaus, MS-taudin perhetapausten ryhmittyminen on yleistä sellaisten ensimmäisen asteen sukulaisten keskuudessa, joilla on yhtäläisyyksiä tärkeimmässä histokompatibiilikompleksissaan (MHC), kuten HLA DR15 / DQ6-alleeli, interleukiini-2-reseptori-alfa-geenin alleelit ’IL2RA’ ja interleukiini-7-reseptorialfa-geeni ’IL7Ra’ [20]. Lisäksi jotkut MS-potilaat osoittivat spesifisiä yhden nukleotidin polymorfismeja tällaisissa geeneissä [21].

On havaittu, että nämä geneettiset polymorfismit liittyvät immuunijärjestelmään ja voivat siten lisätä autoimmuunisairauksien alttiutta. Geneettinen taipumus selittää kuitenkin vain murto-osan taudin riskeistä [22]. Vaikka tällä hetkellä yli sadan geenin tiedetään lisäävän MS:n riskiä, ne vaikuttavat vain marginaalisesti [23]. Siksi MS-taudin kehittymiselle on oltava kattavampi selitys.

Alkuperäisvaikutus (eli alleelin fenotyyppinen vaikutus riippuu siitä, onko se peritty yksilön äidiltä vai isältä). MS-taudin korkeampi esiintyvyys naisilla liittyy epigeneettiseen X-kromosomien inaktivaatioon [21], mikä osoittaa epigeneettisten muutosten tutkimisen tärkeyden tällaisilla potilailla. MS-taudissa epigeneettisten mekanismien on osoitettu vaikuttavan T-solutoimintoihin, joissa histoniasetyloinnin raportoitiin esiintyvän keskushermoston valkeassa aineessa, hypermetylaation oligodendrosyyttien eloonjäämisgeeneissä ja hypo-metylaation proteolyyttisissä prosessointigeeneissä [24].

Lisäksi epidemiologiset tutkimukset ovat osoittaneet geneettisen alttiuden ja ympäristön välisen vuorovaikutuksen moduloivan immuunijärjestelmän epigenomia [21]. Tällaiset epigeneettiset mekanismit reagoivat helposti ympäristötekijöihin [25,26]. Vaikka geneettiset tai epigeneettiset tekijät voivat johtaa autoimmuniteettiin, mekanismi tunnetaan vielä heikosti.

Yleinen oletus on, että ihmisellä on muuttumaton genomi ja useita muuttuvia epigenomeja. Yhteenveto sellaisista taudin laukaisijoista, joilla voi olla hyödyllisiä ja heikentäviä vaikutuksia multippeliskleroosin puhkeamiseen ja etenemiseen, on lueteltu taulukossa 1 ja kuvattu kuvassa 1.

Kuva 1. Ympäristö- ja mikrobitoksiinien, lääkkeiden, orgaanisten liuottimien ja raskasmetallien hyödylliset ja heikentävät vaikutukset multippeliskleroosin puhkeamiseen ja etenemiseen.

Taulukko 1. Ympäristö- ja mikrobitoksiinien, lääkkeiden, orgaanisten liuottimien ja raskasmetallien hyödylliset ja heikentävät vaikutukset multippeliskleroosin puhkeamiseen ja etenemiseen.

3. Ympäristön ja maantieteellisten tekijöiden vaikutukset

Ympäristövaikutukset muuttavat taudin riskiä ja etenemistä mahdollisesti epigeneettisten vaikutusten välityksellä säätelemällä immuunivastetta ylös- tai alaspäin ja vaikuttamalla hermoston kehitykseen [23, 27].

Altistuminen orgaanisille liuottimille ja alkoholille, runsas kahvin kulutus [22,28 ], infektiot, auringonvalo / D-vitamiini ja tupakointi vaikuttavat MS-tautiin ja sen etenemiseen [29], mutta näiden syy-yhteyden osoittamiseksi ei ole vielä riittävästi tutkimuksia [30].

MS on jakautunut epätasaisesti. Esiintyvyys kasvaa asteittain maantieteellisen leveyspiirin mukaan [31]. Monet ovat epäilleet, että ympäristön saasteiden ja MS-taudin esiintyvyyden välillä olisi positiivinen yhteys. Ympäristöelementtien roolia taudin kehittymisessä on tutkittu laajasti, mutta minkäälaiseen loppupäätelmään ympäristötoksiinien roolista ei olla päästy [32].

MS-taudin maantieteellisestö epätasaisesta jakautumisesta osoittaa mm. se, että Key Westissä Floridassa on epätavallisen suuri multippeliskleroosin esiintyvyys [33]. MS on myös selvästi yleisempää Ison-Britannian ja Pohjois-Irlannin pohjoisosissa ja Skotlannin saaristossa kuin Englannissa ja Walesissa [34]. Tämä viittaa vahvaan yhteyteen maantieteen ja multippeliskleroosin esiintyvyyden välillä [35]. Yhteyttä tukee edelleen Kanadassa tehty tutkimus, jossa osavaltioiden MS-esiintyvyys vaihtelee alueittain, mikä viittaa siihen, että erot taudin esiintyvyydessä voivat johtua paikallisista ympäristötekijöistä [36].

Toisaalta tutkimukset ovat osoittaneet, että MS:n esiintyvyyden pohjoinen / etelä-vaihtelu voi johtua muutoksesta populaatioiden geneettisessä alttiudessa MS-tautiin [37]. Monien ympäristötekijöiden joukossa auringonvalo D-vitamiinin lähteenä näyttelee keskeistä roolia MS-taudin patogeneesissä.

Epidemiologisissa väestötutkimuksissa on johdonmukaisesti osoitettu, että MS-taudin riski on suurempi alueilla, joilla auringonvalo on vähäistä. Ascherio et al. ovat osoittaneet, että odottavan äidin ja sikiön matalat D-vitamiinitasot kasvattavat syntyvän lapsen riskiä sairastua myöhemmin MS-tautiin [38,39]. Johdonmukaiset ja yhdenmukaiset havainnot viittaavat siihen, että D-vitamiinin puutos on MS-taudin riskitekijä [40 ]. Tämä tukee ajatusta D-vitamiinin saannin suojaavista vaikutuksista MS-taudin riskiä laskevana tekijänä [41].

Etelä-Amerikassa autoimmuunitauteja hoidetaan Coimbra-protokollalla, joka perustuu hyvin korkeisiin D-vitamiinin annostuksiin. Sovelsin itseeni Coimbra-protokollaa noin vuoden ajan, mutta en osaa sanoa oliko siitä mitään hyötyä tai haittaa, koska mitään vertailukohtaa ei ole. Viimeisten 5-7 vuoden aikana oma PPMS-tautini on kuitenkin edennyt hyvin hitaasti.

Tutkimusten mukaan D3-vitamiinihoito parantaa kliinisiä oireita kokeellisessa autoimmuunisen enkefalomyeliitin “EAE” -hiirimallissa [42]. On osoitettu, että vastasyntyneen D-vitamiinin matalat pitoisuudet liittyvät lisääntyneeseen MS-riskiin [43]. Esimerkiksi marraskuussa syntyneillä MS-taudin esiintyvyys on vähentynyt merkittävästi, mikä liittyy vastasyntyneiden korkeaan D-vitamiinialtistukseen raskauden kolmannen kolmanneksen aikana suojaavana tekijänä multippeliskleroosia vastaan [44]. D-vitamiinireseptorin (VDR) ilmentyminen on lisäksi estetty MS-taudissa. Ympäristön, genetiikan ja epigeneettisten tekijöiden tiedetään vaikuttavan D-vitamiinin aineenvaihduntaan [45].

D-vitamiinia sitovan proteiinin lisääntyminen MS-potilaiden seerumissa pahentaa taudin patofysiologiaa [46]. On havaittu, että ultraviolettisäteily voi heikentää Th1-välitteisiä immuunivasteita [31] tai vähentää immunostimulatorisen neurohormoni melatoniinin eritystä käpylisäkkeestä [47].

Vuorokausirytmin häiriöt ja vähäinen uni voivat häiritä melatoniinin eritystä ja siten lisätä tulehdusta edistäviä reaktioita. Tämä saattaa antaa selityksen tutkimuksille, jotka yhdistävät MS-taudin, iän ja vuorokausirytmin [48,49]. Tutkimukset osoittavat tilastollisesti merkitsevän yhteyden nuorena tehdyn vuorotyön ja MS-riskin välillä [50,51]. Elämäntapa- ja ympäristötekijät ovat keskeisiä MS-taudin riskiin vaikuttavia tekijöitä [22].

Tästä syystä lisätutkimuksissa olisi keskityttävä MS-taudin mahdollisten juurien selvittämiseen tutkimalla potilaiden elämäntavat (ruokavalio, liikunta jne.) ja niiden vaikutus patogeenisiin tapahtumiin [29].

4. Elintapatottumusten vaikutukset

Tupakointi ja tupakansavu on merkittävä MS-taudin riskiä lisäävä tekijä [52]. Havaintojen mukaan tupakointi nopeuttaa MS-taudin etenemistä ja invalidisoitumista [53]. Tupakoinnin uskotaan kiihdyttävän RRMS-tautimuodon etenemistä toissijaisesti progressiiviseksi MS-taudiksi (SPMS) [54].

Tupakointiin assosioituva riski lisääntyy edelleen HLA-DRB1 * 15-geenimuunnoksen omaavilla tupakoitsijoilla johtuen spesifisestä T-soluvasteesta savulle, joka voi pahentaa geneettisesti säänneltyä makrofagivastetta [55]. Tupakointi ja tupakan savulle altistuminen on osoitettu MS-taudin riskitekijäksi [56].

Jos MS-tautia esiintyy suvussa, tupakointi lisää selvästi sairastumisen riskiä. Sukulaisen sairastuminen MS-tautiin on varoitusmerkki, jonka jälkeen tupakoinnin mielekkyyttä on syytä arvioida uudelleen [57]. Toisaalta on olemassa vahvaa näyttöä puberteetti-ikäisten lihavuuden roolista riskitekijänä, joka lisää MS-tautiin sairastumisen riskiä [22,56].

Edelliset havainnot selittävät omaa sairastumistani. Olin murrosiässä ylipainoinen, aloitin tupakoinnin varhain ja suvussa esiintyy MS-tautia.

MS-taudin esiintyvyyden. vakavuuden ja rasvahappojen saannin välillä on myös dokumentoituja yhteyksiä [58]. Monityydyttymättömät rasvahapot (PUFA) vähensivät relapsien esiintyvyyttä kahden vuoden seurannan aikana [59].

Lisäksi ketogeenisellä ruokavaliolla voi olla suojaavia vaikutuksia, mikä todennäköisesti johtuu solutason vaikutuksista immuunivasteeseen ja oksidatiivista stressiä hillitsevästä vaikutuksesta [60]. Ketogeenisen ruokavalion positiivisista vaikutuksista MS-taudin terapiana olen käsitellyt näissä tutkimuskatsauksissa:

Pilottitutkimus: Ketogeeninen ruokavalio ja RRMS
Ketogeeninen ruokavalio ja PPMS

5. Ravintoaineiden ja suoliston mikrobiomin vaikutukset

MS-tutkimuksen eläinmalleissa havaittiin, että runsas kahvin kulutus saattaa vähentää MS-taudin riskiä tukahduttamalla tulehdusta edistävien sytokiinien tuotantoa [61] ja kofeiinin neuroprotektiivisten ominaisuuksien vuoksi [62]. Kahvi on myös monien suomalaisten tärkein polyfenoleiden lähde. Kahvin on havaittu tehostavan kognitiivisia kykyjä ja suojaavan maksaa.

Alkoholi ja kala liittyvät invalidisoitumisen etenemiseen relapsoivassa remittoivassa MS-taudissa [63]. Myös suuri natriumin saanti voi pahentaa sairauden aktiivisuutta sekä kliinisiä ja radiologisesti havaittavia oireita [64].

Kalan negatiivinen vaikutus MS-taudin oireisiin on herättänyt keskustelua, koska kala mielletään terveelliseksi. Tutustumatta viitattuun tutkimukseen uskon kalan korkeiden raskasmetalli- yms. toksiinipitoisuuksien voivan selittää proinflammatorisia vaikutuksia, jotka pahentavat MS-taudin oireita. Kalan omega-3-rasvahapoilla on tiettävästi neutraali tai oireita hillitsevä vaikutus.

D3-vitamiinin puutteellinen saanti on MS-taudin riskitekijä. Muiden vitamiinien tai mineraalien vaikutuksista MS-taudin puhkeamiseen ei ole riittävää näyttöä [65]. Ruokavalio, D3-vitamiinin puutos, tupakointi ja alkoholin runsas käyttö vaikuttavat suoliston mikrobiomin koostumukseen [66]. Suolen mikrobiomi määritellään kaikeksi mikrobipitoisuudeksi, mukaan lukien geenit, proteiinit ja aineenvaihduntatuotteet suolistossa tiettynä ajankohtana [67]. Mahdolliset häiriöt suolen mikrobiomissa tai ns. ”dysbioosi” assosioituvat moniin sairauksiin [68].

MS-potilailla on havaittu vaurioita suoliston mikrobiomin koostumuksessa. Suoliston mikrobiomin terveys ja lajikirjo voivat näytellä merkittävää roolia MS-taudin patogeneesissä [69]. Lisäksi suoliston dysbioosin on havaittu lisäävän suoliston ja veri-aivoesteen läpäisevyyttä mikrobiomi-suolisto-aivo-akselin välityksellä. Siihen voidaan vaikuttaa probioottien saannilla [70]. Tässä suhteessa parantunut hygienia vaikuttaa autoimmuunisairauksiin, mikä korostaa suolistoflooran roolia ja vaikutusta EAE:n kehittymiseen MS-taudin hiirimallissa [71].

6. Mikrobien vaikutukset

Veden vaurioittamissa ympäristöissä elää homesieniä sekä gram-negatiivisia ja gram-positiivisia bakteereja [72]. Tällainen ympäristö sisältää monia biotoksiineja, jotka voivat johtaa MS-tyyppisten sairauksien klusteriin [73]. Myös monilla tartunta-aineilla on merkitys MS-taudin puhkeamisessa [74], koska erilaiset virukset voivat laukaista MS-taudin ja sitä muistuttavia tulehduksellisia demyelinoivia sairauksia [75].

Esimerkiksi primaarinen Epstein Barr-infektio voi laukaista MS-taudin kehittymisen geneettisen alttiuden omaavilla nuorilla aikuisilla [76]. Bakteeritoksiinit, stafylokokki-bakteerit, nenänielun normaalin mikrobiston häiriöt ja monet muut tekijät voivat vaurioittaa immuniteettia ja aiheuttaa vaurioita hermostossa.

Stafylokokkitoksiinit stimuloivat ihmisen T-lymfosyyttejä, mikä johtaa myeliinin autoantigeenien, myeliinin emäksisen proteiinin ja proteolipidipeptidin aktivoitumiseen. Tämä aktivoi reaktiivisia T-lymfosyyttejä, jotka myötävaikuttavat demyelinoivaan prosessiin [77]. Tämä on mahdollista, koska selkäydinneste (CSF) ja solunulkoinen nestekierto ovat yhteydessä kaksisuuntaisesen reitin kautta. Nenänielun infektiotuotteet voivat valua keskushermostoon ja vaikuttaa aivokalvojen immuunisoluihin, mikä puolestaan voi johtaa keskushermostoon syntyviin vaurioihin [78].

Toinen MS-tautiin mahdollisesti vaikuttava bakteeritoksiini on Clostridium perfringens epsilon-toksiini, eli ”e-toksiini”. E-toksiini sitoutuu valkean aineen myeliiniin, jolloin myeliini turpoaa ja vaurioituu. Blanch M et al. tunnisti myeliini- ja lymfosyyttiproteiinin (MAL) avainproteiiniksi, joka välittää e-toksiinin sytotoksisen vaikutuksen tulehduksellisissa autoimmuunisairauksissa, kuten MS [79]. Lisäksi e-toksiini voi läpäistä veri-aivoesteen ja sitoutua myeliiniin [80,81]. Tämä johtaa oligodendrosyyttien ja/tai myeliinin vaurioitumiseen [82].

Wagley et al. osoitti Clostridium perfringens ε-toksiinin korreloivan multippeliskleroosin sairastamisen kanssa Yhdysvaltain populaatiossa [83]. Pertussis-toksiini (PTX) ja botuliinitoksiinit ovat bakteerimyrkkyjä, joilla voi olla suuri vaikutus MS-taudin patogeneesiin.

PTX:llä voi olla erilaisia suojaavia vaikutuksia. EAE-hiirimallissa PTX vähensi demyelinaatiota jopa 75%. PTX vähentää myös lymfosyyttien tunkeutumista keskushermostoon, deaktivoi mikroglia-aktivaation ja muuttaa T-soluprofiilia lisäämällä T-auttajatyyppejä 1 ja 2 sekä T-säätelysoluja [84].

PTX-hoito saattaa suojata keskushermostoa autoimmuunisairaudelta säätelysytoksiinien säätelyn ja CD4 + CD25+ FoxP3+ Treg -solujen kautta. Bakteereista peräisin olevan toksiinin, hinkuyskätoksiinin, tiedetään alentavan herkkyyttä EAE:lle huolimatta siitä, että sen injektiota tarvitaan sairauden indusoimiseksi joissakin hiirikannoissa [85,86].

Botuliinitoksiini lamauttaa lihakset ja sitä käytetään perinteisenä spastisuuden hoitona [87]. On raportoitu, että tämä neurotoksiini saattaa parantaa monien MS-potilaiden elämänlaatua [88,89].

Tietyt patogeeniset sienet, jotka on erotettu ei-hermosolujen kudoksista, vapauttavat toksiineja, jotka kohdistuvat astrosyytteihin ja oligodendrosyytteihin aiheuttaen myeliinin hajoamista ja voivat laukaista MS-taudin [90]. Lisäksi erilaisten nekrotisoivien tekijöiden eritys aivojen aspergilloosissa voi aiheuttaa aivovaurioita ja vahingoittaa elintärkeitä soluja [91].

Ruokaan liittyvä mykotoksiini-okratoksiini A vaikuttaa haitallisesti lukuisiin solutyyppeihin, kuten astrosyytteihin [92]. Candida-infektioon havaittiin liittyvän lisääntynyt MS-kerroin [93]. Useat raportit osoittivat, että MS-potilailla voi olla vasta-aineita eri Candida-lajeja vastaan [94], mikä viittaa siihen, että tämä sieni-infektio voi olla MS-taudin riskitekijä [95]. Lisäksi C. Albicans -infektio ennen EAE-induktiota hiirillä pahentaa tautia. Samanlainen vaikutus on havaittu MS-potilailla [96].

Tarkastelemalla sienisoluseinän rakennetta, päällystävä liukenematon N-asetyyliglukosamiinipolymeeri hydrolysoidaan yleensä kitotriosidaasilla ’Chit’, joka on rakenteellisesti homologinen kitinaasien kanssa [97].

Aktivoidut makrofagit syntetisoivat ja erittävät kitinaaseja, jotka ovat kitiiniä hajottavia entsyymejä [98]. Sotgiu S et al. havaitsi, että mikrogliasta johdettu Chit-aktiivisuus MS-taudissa voi suojata aivoja kitiinimäisen aineen kerrostumiselta ja sen aiheuttamalta neurodegeneraatiolta [97]. Lisääntynyttä Chit-aktiivisuutta on havaittu erilaisia neurologisia häiriöitä sariastavavien potilaiden keskushermostossa [98] sekä MS-potilaiden plasmassa [99].

Tutkimuksissa on havaittu, että kitinaasien määrä on lisääntynyt neuromyeliittiä sairastavien potilaiden keskushermostossa vasteena IL-13:lle, mikä johtaa keskushermostotulehdukseen immuunisolujen lisääntyneiden kulkeutumisen veri-aivoesteen läpi [100] välityksellä.

Maantieteellisesti torajyväsienten esiintyminen osoitti merkittävää vastaavuutta MS-taudin maantieteellisen jakauman kanssa [101]. Sieni-infektio voi laukaista multippeliskleroosin tai se voi johtua MS-tautiin liittyvästä immuunijärjestelmän toimintahäiriöistä [102].

7. Kemikaalien, orgaanisten liuottimien ja raskasmetallien vaikutus

Monissa tutkimuksissa altistumista kemikaaleille, raskasmetalleille ja orgaanisille liuottimille pidetään potentiaalisina etiologisina tekijöinä, jotka myötävaikuttavat MS: n puhkeamiseen [103].

Esimerkiksi tinaa, hiilioksidia ja elohopeaa, mutta ei sinkkiä tai mangaania, pidetään MS-taudin riskiä lisäävinä ympäristötekijöinä [104]. Alueilla, joilla käytetään paljon kemikaaleja, kuten torjunta-aineita, MS-taudin esiintyvyysaste on ollut korkeampi [105,106,107,108]. Lisäksi torjunta-aineille altistuneilla maataloudessa työskentelevillä työntekijöillä oli suurempi riski sairastua MS-tautiin [109]. Tämä pätee erityisesti naisiin [110].

Ympäristön toksiinit voivat altistaa erityisesti odottavia naisia, mikä vaikuttaa sikiön kehitykseen ja syntyvän lapsen alttiuteen sairastua myöhemmin [111]. Kemikaaleille altistuneilla henkilöillä, kuten kenkä-, nahka- ja koneteollisuuden työntekijöillä, oli suurempi riski MS-taudin kehittymiseen [109, 112].

MS-taudin korkeampi esiintyvyys assosioituu alueisiin, jotka ovat erittäin saastuneita raskasmetalleista [113], kuten Isfahan, Iranin kolmanneksi suurin kaupunki [114] ja Lounais-Sardinia [115]. Raskasmetallien saannin ja neurodegeneratiivisten patologioiden välillä on myös dokumentoitu korrelaatio [116, 117].

Elohopean (Hg) on raportoitu liittyvän autoimmuniteettiin [118], koska se voi aiheuttaa oksidatiivista stressiä sekä vahingoittaa DNA:ta, mitokondrioita ja lipidikalvoja [119]. Lisäksi toistuva altistuminen elohopealle eläinkokeissa nopeutti taudin etenemistä mitokondrioiden aiheuttamien vaurioiden kautta [120].

Elohopea vaikuttaa astrosyytteihin, aivokuoren oligodendrosyytteihin, kortikomotoneuroneihin ja locus coeruleus -neuroneihin. Tämä saattaa selittää elohopean assosiaation MS-tautiin ja muihin keskushermoston degeneratiivisiin sairauksiin [119].

Useat raportit ovat osoittaneet, että seerumin hermospesifinen enolaasi (NSE-biomarkkeri elohopean neurotoksisille vaikutuksille) liittyy multippeliskleroosin etenemiseen [121]. Elohopeaa sisältävät hampaiden amalgaamitäytteet lisäsivät MS-taudin riskiä [122, 123]. Havainnoista huolimatta neurodegeneratiivisia sairauksia sairastavilta potilailta saatu tutkimusnäyttö osoitti vain epävarman yhteyden elohopean mahdollisesta osallisuudesta MS-taudin patogeneesiin [124]. Amalgaamipaikkoja ei juurikaan enää käytetä, joten amalgaami ei yksin selitä MS-tautiin sairastumista nykyään, vaikka se on saattanut olla yksi osatekijät niillä, joilla amalgaamipaikkoja on. Sen sijaan se saattaa pahentaa neurologisia oireita.

Toinen maaperässä esiintyvä myrkyllinen raskasmetalli on lyijy, joka näyttää lisäävän MS-taudin riskiä erityisesti miehillä [125]. Korkea lyijytoksisuus ja sen kyky säilyä ihmiskehossa pitkän aikaa tekevät siitä epäilyn riskitekijän monien selittämättömien sairauksien patogeneesissä [126].

MS-taudin riskin havaittiin kasvaneen 1,17 kertaa veren lyijypitoisuuden yhden ug / l lisäystä kohti [126]. Eräässä toisessa tutkimuksessa osoitettiin kuitenkin, että MS-tapaukset eivät näyttäneet keskittyvän lyijysulattojen ympärille [32].

Arseenia on myös maaperässä, ja altistuminen arseenille näyttää assosioituvan erityisesti naisten MS-tautiin sairastuvuuteen [125]. Arseeni voi aiheuttaa MS-taudin indusoimalla hermosolujen tulehdusreaktioita, rappeutumista ja apoptoosia, mukaan lukien hyperfosforylaatio ja tau-proteiinien aggregaatio, mikä johtaa tau-toiminnan deregulaatioon [127].

Sen sijaan kuparia käytetään myeliinin synteesissä, joten sen puute saattaa aiheuttaa myelopatiaa [128]. Muiden metallien vaikutuksista on kiistanalaista kirjallisuutta. MS-potilailla on todettu sinkin alhaisempia seerumitasoja [129], kun taas toinen tutkimus osoitti, että sinkkipitoisuudet lisääntyvät MS-potilailla. Nämä tulokset viittaavat siihen, että sinkin pitoisuuksien muutokset voivat olla osallisina MS:n patogeneesissä [130].

8. Lääkkeiden kehityksestä

Eräitä luonnollisia toksiineja on kaavailtu MS-taudin terapiavaihtoehdoiksi. Uusia yhdisteitä on eristetty niveljalkaisista ja muista myrkyllisistä eläimistä neurodegeneratiivisten sairauksien, kuten MS, hoitamiseksi [131].

Näihin kuuluvat ShK, merivuokon toksiini (Stichodactyla helianthus) ja skorpionimyrkkykomponentit, jotka ovat selektiivisiä kaliumkanavien salpaajia, joita tarvitaan aktivoituneiden T-lymfosyyttien toimintaan. Mehiläismyrkkyn (Apis mellifera) havaittiin myös parantavan taudin oireita, parantavan motorista toimintaa ja vähentävän tulehdusmerkkejä. Jopa käärmemyrkkyillä havaittiin olevan vaikutus MS-terapiassa, koska se estää autoimmuunisen enkefalomyeliitin ja lymfosyyttien aivojen tunkeutumisen kliinisiä oireita [132,133].

Uudet molekyylit, jotka on johdettu Thalassophryne nattereri Brasilian kalan myrkystä, ns. TnP-perhe, tuottavat systeemisiä ja keskushermostospesifisiä vaikutuksia, jotka estävät tulehduksellisten leukosyyttien migraation keskushermostoon ja demyelinaation ja voivat siten olla terapeuttinen vaihtoehto MS-taudin hoidossa [134].

Useat lääkkeet, kuten glatirameeriasetaatti, fingolimodi (FTY720), mitoksantroni, IFN-β, fumaarihappoesterit ja kortikosteroidit [2 135 136] voivat vähentää MS-taudin oireita.

Eräät lääkkeet vähentävät MS-riskiä, kuten tetanustoksoidirokotus, antibiootit, antihistamiinit ja sienilääkkeet. Niiden erityinen rooli on kuitenkin vielä puutteellisesti dokumentoitu [31]. Tetanustoksoidirokotusten raportoitiin vähentävän MS: n riskiä kolmanneksella rokotetuissa henkilöissä verrattuna rokottamatta jättämiseen [137]. Antibioottien suhteen kuvattiin korrelaatio penisilliinin käytön ja pienemmän multippeliskleroosiriskin välillä [138]. Muilla lääkkeillä, kuten antihistamiineilla, voi olla mahdollinen hyödyllinen vaikutus, jos niitä otetaan käyttöön MS-taudin puhkeamisen aikana [139], kun taas kolesterolia alentavien statiinien havaittiin vaikuttavan estävästi krooniseen ja uusiutuvaan EAE-malliin [140].

Kohtauksenvastainen valproiinihappo (VPA) suorittaa toimintansa lisäämällä asetyloituja histonitasoja, mikä johtaa lisääntyneeseen apoptoosiin neokorteksissa ja vähentyneeseen solujen lisääntymiseen ganglionisen eminenanssin yhteydessä [141]. Lisäksi VPA auttaa MS:n vaurioiden remyelinoinnissa lisäämällä endogeenisia esiasteita [142] ja voi vähentää selkäytimen tulehdusta aktivoituneissa T-soluissa tapahtuvan apoptoosin kautta [143]. Lisäksi VPA säätelee Th1- ja Th17-soluja alaspäin ja vähentää siten tulehduksellisia sytokiinitasoja [144].

Tulehduskipulääkkeiden havaittiin vaikuttavan immuunijärjestelmään, joten niillä voi olla terapeuttinen arvo MS-taudissa. P-amyriini, kannabinoidireseptorin agonisti, vähentää tulehdusta mikrogliaalisoluissa ja sitä voidaan käyttää potentiaalisena tulehdusta estävänä aineena keskushermostossa erityisesti neurodegeneratiivisissa sairauksissa. Tämä lääke vaikuttaa tulehdusvälittäjäprofiiliin vähentämällä TNF-alfaa, IL-1β: tä, IL-6: ta, PGE-2: ta, COX-2: ta sekä makrofagien M1 / M2-tasapainon säätelyä ja mikroglia-erilaistumista [145].

Toinen uusi aine on WWL70, anti-inflammatorinen terapeuttinen lääke, joka vaikuttaa mikrogliaan EAE-hiiren aivoissa vähentämällä COX-2:n ja mikrosomaalisen PGE2:n ilmentymistä [146]. Uusi yhdiste JC-171 (hydroksyylisulfonamidianalogi) toimii selektiivisenä NLRP3-tulehduksen estäjänä.
EAE-hiirimallissa JC-171: n raportoitiin estävän taudin etenemistä ja vakavuutta sekä ennalta ehkäisevissä että terapeuttisissa kokeellisissa järjestelyissä, mikä kannusti sen käyttöä MS-taudin terapiana [147]. Lisäksi securiniinilla, Securinega suffruticosa -kasvin juuresta peräisin olevalla tärkeimmällä luonnollisella alkaloidituotteella, on raportoitu olevan voimakas biologinen aktiivisuus estämällä merkittävästi NO-tuotantoa astrosyytteissä ja mikrogliassa sekä estämällä tulehduksellinen välittäjä NF-κB ja mitogeeni -aktivoidut proteiinikinaasit (MAPK). Siksi sitä voitaisiin käyttää potentiaalisena terapeuttisena kandidaattina neuroinflammaatioon liittyville sairauksille [148].

Fumaarihappoestereitä, kuten monometyylifumaraatti (MMF) ja dimetyylifumaraatti (DMF), on tutkittu intensiivisesti viime vuosina. DMF on hyväksytty erilaisten tulehdusvälitteisten sairauksien, mukaan lukien MS, hoitoon [149 150 151]. DMF vaikuttaa immuunijärjestelmän säätelyyn siirtymällä kohti Th2-sytokiiniprofiilia ja vähentämällä Th1- ja Th17-solujen vaikutusta. Vielä merkittävämmin DMF:llä ja sen metaboliitilla MMF:llä on antioksidanttinen ominaisuus aktivoimalla tumatekijä (erytroidista johdettu 2) kaltainen2 (NRF2), stimuloiden siten gliasolujen, oligodendrosyyttien ja neuronien sytosuojausta [152,153].

DMF:n on raportoitu vaikuttavan myeloidisoluihin sekä lymfosyytteihin, mukaan lukien B-solut ja luonnolliset tappajapopulaatiot (154, 155). Ryhmämme tutki DMF:n ja MMF:n vaikutusta NK-soluihin, missä havaitsimme, että ne lisäävät NK-kemotoksista ja sytolyyttistä toimintaa in vitro [155,156,157].

MMF parantaa EAE:n hiirillä aktivoimalla NK-soluja [42]. Fingolimodin (Gilenya), joka tunnetaan myös nimellä FTY720, synteettisen yhdisteen, joka jäljittelee sienen sekundääristä metaboliittia myriosiinia (ISP-I), ilmoitettiin olevan voimakas immunosuppressantti, jonka Yhdysvaltain FDA hyväksyi MS:n terapeuttisena aineena [158]. On arveltu, että FTY720 vaikuttaa immuunisolujen, kuten NK-solujen, aktiivisuuteen säätelemällä niiden aktivoimat reseptorit uudelleen ja tehostamalla niiden lyyttistä aktiivisuutta dendriittisoluja vastaan [159].

9. Päätelmä

Tässä katsauksessa avattiin alustavasti MS-tautiin vaikuttavien geneettisten ja epigeneettisten kemikaalien, toksiinien ja fysikaalisten tekijöiden monimuotoisuutta. Nämä tekijät voivat moduloida immuunijärjestelmän toimintaa epäsuorasti muuttamalla kehon autoantigeenejä, joita voidaan jakaa keskushermoston antigeenien kanssa, tai vapauttamalla immuunijärjestelmä reagoimatta estosignaaleihin. Epidemiologisten, kokeellisten tai kliinisten löydösten epäjohdonmukaisuus voi johtua paikallisista ja alueellisista vaihteluista sekä ympäristössä että väestögenetiikassa.

Lopuksi: Korrelaatio erilaisten toksiinien ja MS-taudin välillä on vahva. Sen sijaan kausaation osoittaminen on osoittautunut vaikeammaksi. Rokotteiden ja amalgaamipaikkojen raskasmetallit eivät selitä MS-tautiin sairastumista niillä, jotka eivät ole saaneet rokotusta tai joilla ei ole amalgaamipaikkoja. Luulen, että epigeneettisiä ympäristötekijöitä, jotka altistavat MS-taudille heikentämällä immuunijärjestelmää ja vaikuttamalla DNA:han on varmasti kymmenittäin.

Rokotteiden tai raskasmetallien vaikutusta MS-taudin laukaisijana ei voida täysin poissulkea, mutta riittävää näyttöä siitä, että ne aiheuttaisivat MS-taudin, ei kuitenkaan ole. Koronarokotteen suhteen olen luottavainen. Rokotteen aiheuttamat vakavat sivuoireet Yhdysvalloissa ja Britanniassa ovat olleet hyvin harvinaisia. Sen sijaan koronainfektio on aiheuttanut suurelle osalle sairastuneista pysyviä tai pitkäkestoisia oireita. Koska koronainfektion jälkitauteja ei tunneta, uskon, että rokottamisen riskit ovat merkittävästi pienemmät kuin taudin sairastamisen riskit. Pahoittelen, jos tekstiin jäi kirjoitus- ja käännösvirheitä.

References

  1. Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef]
  2. De Souza, J.M.; Goncalves, B.D.C.; Gomez, M.V.; Vieira, L.B.; Ribeiro, F.M. Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front. Pharmacol. 2018, 9, 145. [Google Scholar] [CrossRef] [PubMed]
  3. Zeller, D.; Classen, J. Plasticity of the motor system in multiple sclerosis. Neuroscience 2014, 283, 222–230. [Google Scholar] [CrossRef] [PubMed]
  4. Browne, P.; Chandraratna, D.; Angood, C.; Tremlett, H.; Baker, C.; Taylor, B.V.; Thompson, A.J. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology 2014, 83, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
  5. Dilokthornsakul, P.; Valuck, R.J.; Nair, K.V.; Corboy, J.R.; Allen, R.R.; Campbell, J.D. Multiple sclerosis prevalence in the united states commercially insured population. Neurology 2016, 86, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
  6. Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545. [Google Scholar] [CrossRef] [PubMed]
  7. Adamczyk, B.; Adamczyk-Sowa, M. New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid. Med. Cell Longev. 2016, 2016, 18. [Google Scholar] [CrossRef] [PubMed]
  8. Lassmann, H.; Bradl, M. Multiple sclerosis: Experimental models and reality. Acta Neuropathol. 2017, 133, 223–244. [Google Scholar] [CrossRef] [PubMed]
  9. Comi, G.; Radaelli, M.; Soelberg Sørensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet 2017, 389, 1347–1356. [Google Scholar] [CrossRef]
  10. Murray, T.J. The history of multiple sclerosis: The changing frame of the disease over the centuries. J. Neurol. Sci. 2009, 277, S3–S8. [Google Scholar] [CrossRef]
  11. Gu, C. Kir4.1: K(+) channel illusion or reality in the autoimmune pathogenesis of multiple sclerosis. Front. Mol. Neurosci. 2016, 9, 90. [Google Scholar] [CrossRef] [PubMed]
  12. Høglund, R.A.; Maghazachi, A.A. Multiple sclerosis and the role of immune cells. World J. Exp. Med. 2014, 4, 27–37. [Google Scholar] [CrossRef] [PubMed]
  13. Maghazachi, A.A. On the role of natural killer cells in neurodegenerative diseases. Toxins (Basel) 2013, 5, 363–375. [Google Scholar] [CrossRef] [PubMed]
  14. Jones, A.P.; Kermode, A.G.; Lucas, R.M.; Carroll, W.M.; Nolan, D.; Hart, P.H. Circulating immune cells in multiple sclerosis. Clin. Exp. Immunol. 2016, 187, 193–203. [Google Scholar] [CrossRef] [PubMed]
  15. Jadidi-Niaragh, F.; Mirshafiey, A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand. J. Immunol. 2011, 74, 1–13. [Google Scholar] [CrossRef] [PubMed]
  16. Volpe, E.; Sambucci, M.; Battistini, L.; Borsellino, G. Fas–fas ligand: Checkpoint of t cell functions in multiple sclerosis. Front. Immunol. 2016, 7, 382. [Google Scholar] [CrossRef] [PubMed]
  17. Elyaman, W.; Khoury, S.J. Th9 cells in the pathogenesis of eae and multiple sclerosis. Semin. Immunopathol. 2017, 39, 79–87. [Google Scholar] [CrossRef] [PubMed]
  18. Fard, N.A.; Azizi, G.; Mirshafiey, A. The potential role of t helper cell 22 and il-22 in immunopathogenesis of multiple sclerosis. Innov. Clin. Neurosci. 2016, 13, 30–36. [Google Scholar] [PubMed]
  19. Hestvik, A.L.K. The double-edged sword of autoimmunity: Lessons from multiple sclerosis. Toxins (Basel) 2010, 2, 856–877. [Google Scholar] [CrossRef] [PubMed]
  20. Garg, N.; Smith, T.W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015, 5, e00362. [Google Scholar] [CrossRef] [PubMed]
  21. Huynh, J.L.; Casaccia, P. Epigenetic mechanisms in multiple sclerosis: Implications for pathogenesis and treatment. Lancet Neurol. 2013, 12, 195–206. [Google Scholar] [CrossRef]
  22. Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2016, 13, 25. [Google Scholar] [CrossRef] [PubMed]
  23. Riemann-Lorenz, K.; Eilers, M.; von Geldern, G.; Schulz, K.-H.; Köpke, S.; Heesen, C. Dietary interventions in multiple sclerosis: Development and pilot-testing of an evidence based patient education program. PLoS ONE 2016, 11, e0165246. [Google Scholar] [CrossRef] [PubMed]
  24. Peedicayil, J. Epigenetic drugs for multiple sclerosis. Curr. Neuropharmacol. 2016, 14, 3–9. [Google Scholar] [CrossRef] [PubMed]
  25. Babenko, O.; Kovalchuk, I.; Metz, G.A. Epigenetic programming of neurodegenerative diseases by an adverse environment. Brain Res. 2012, 1444, 96–111. [Google Scholar] [CrossRef] [PubMed]
  26. Koch, M.W.; Metz, L.M.; Kovalchuk, O. Epigenetic changes in patients with multiple sclerosis. Nat. Rev. Neurol. 2012, 9, 35. [Google Scholar] [CrossRef] [PubMed]
  27. Miller, F.W.; Alfredsson, L.; Costenbader, K.H.; Kamen, D.L.; Nelson, L.M.; Norris, J.M.; De Roos, A.J. Epidemiology of environmental exposures and human autoimmune diseases: Findings from a national institute of environmental health sciences expert panel workshop. J. Autoimmun. 2012, 39, 259–271. [Google Scholar] [CrossRef] [PubMed]
  28. Hedström, A.K.; Alfredsson, L.; Olsson, T. Environmental factors and their interactions with risk genotypes in ms susceptibility. Curr. Opin. Neurol. 2016, 29, 293–298. [Google Scholar] [CrossRef] [PubMed]
  29. Kakalacheva, K.; Lünemann, J.D. Environmental triggers of multiple sclerosis. FEBS Lett. 2011, 585, 3724–3729. [Google Scholar] [CrossRef] [PubMed][Green Version]
  30. Loken-Amsrud, K.I.; Lossius, A.; Torkildsen, O.; Holmoy, T. Impact of the environment on multiple sclerosis. Tidsskr. Nor. Laegeforen. 2015, 135, 856–860. [Google Scholar] [PubMed]
  31. Milo, R.; Kahana, E. Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmun. Rev. 2010, 9, A387–A394. [Google Scholar] [CrossRef] [PubMed]
  32. Turabelidze, G.; Schootman, M.; Zhu, B.P.; Malone, J.L.; Horowitz, S.; Weidinger, J.; Williamson, D.; Simoes, E. Multiple sclerosis prevalence and possible lead exposure. J. Neurol. Sci. 2008, 269, 158–162. [Google Scholar] [CrossRef] [PubMed]
  33. Helmick, C.G.; Wrigley, J.M.; Zack, M.M.; Bigler, W.J.; Lehman, J.L.; Janssen, R.S.; Hartwig, E.C.; Witte, J.J. Multiple sclerosis in key west, florida. Am. J. Epidemiol. 1989, 130, 935–949. [Google Scholar] [CrossRef] [PubMed]
  34. Forbes, R.B.; Wilson, S.V.; Swingler, R.J. The prevalence of multiple sclerosis in tayside, scotland: Do latitudinal gradients really exist? J. Neurol. 1999, 246, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
  35. Gray, O.M.; McDonnell, G.V.; Hawkins, S.A. Factors in the rising prevalence of multiple sclerosis in the north-east of ireland. Mult. Scler. 2008, 14, 880–886. [Google Scholar] [CrossRef] [PubMed]
  36. Beck, C.A.; Metz, L.M.; Svenson, L.W.; Patten, S.B. Regional variation of multiple sclerosis prevalence in canada. Mult. Scler. 2005, 11, 516–519. [Google Scholar] [CrossRef] [PubMed]
  37. McGuigan, C.; McCarthy, A.; Quigley, C.; Bannan, L.; Hawkins, S.; Hutchinson, M. Latitudinal variation in the prevalence of multiple sclerosis in ireland, an effect of genetic diversity. J. Neurol. Neurosurg. Psychiatry 2004, 75, 572–576. [Google Scholar] [CrossRef] [PubMed]
  38. Lucas, R.M.; Byrne, S.N.; Correale, J.; Ilschner, S.; Hart, P.H. Ultraviolet radiation, vitamin d and multiple sclerosis. Neurodegener. Dis. Manag. 2015, 5, 413–424. [Google Scholar] [CrossRef] [PubMed]
  39. Alharbi, F.M. Update in vitamin d and multiple sclerosis. Neurosciences (Riyadh) 2015, 20, 329–335. [Google Scholar] [CrossRef] [PubMed]
  40. Niino, M.; Sato, S.; Fukazawa, T.; Masaki, K.; Miyazaki, Y.; Matsuse, D.; Yamasaki, R.; Takahashi, E.; Kikuchi, S.; Kira, J. Decreased serum vitamin d levels in japanese patients with multiple sclerosis. J. Neuroimmunol. 2015, 279, 40–45. [Google Scholar] [CrossRef] [PubMed]
  41. Munger, K.L.; Zhang, S.M.; O’Reilly, E.; Hernan, M.A.; Olek, M.J.; Willett, W.C.; Ascherio, A. Vitamin d intake and incidence of multiple sclerosis. Neurology 2004, 62, 60–65. [Google Scholar] [CrossRef] [PubMed]
  42. Al-Jaderi, Z.; Maghazachi, A.A. Vitamin d3 and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis. Toxins (Basel) 2015, 7, 4730–4744. [Google Scholar] [CrossRef] [PubMed]
  43. Nielsen, N.M.; Munger, K.L.; Koch-Henriksen, N.; Hougaard, D.M.; Magyari, M.; Jorgensen, K.T.; Lundqvist, M.; Simonsen, J.; Jess, T.; Cohen, A.; et al. Neonatal vitamin d status and risk of multiple sclerosis: A population-based case-control study. Neurology 2017, 88, 44–51. [Google Scholar] [CrossRef] [PubMed]
  44. Fernandes de Abreu, D.A.; Babron, M.C.; Rebeix, I.; Fontenille, C.; Yaouanq, J.; Brassat, D.; Fontaine, B.; Clerget-Darpoux, F.; Jehan, F.; Feron, F. Season of birth and not vitamin d receptor promoter polymorphisms is a risk factor for multiple sclerosis. Mult. Scler. 2009, 15, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
  45. Saccone, D.; Asani, F.; Bornman, L. Regulation of the vitamin d receptor gene by environment, genetics and epigenetics. Gene 2015, 561, 171–180. [Google Scholar] [CrossRef] [PubMed]
  46. Rinaldi, A.O.; Sanseverino, I.; Purificato, C.; Cortese, A.; Mechelli, R.; Francisci, S.; Salvetti, M.; Millefiorini, E.; Gessani, S.; Gauzzi, M.C. Increased circulating levels of vitamin d binding protein in ms patients. Toxins (Basel) 2015, 7, 129–137. [Google Scholar] [CrossRef] [PubMed]
  47. Hutter, C.D.; Laing, P. Multiple sclerosis: Sunlight, diet, immunology and aetiology. Med. Hypotheses 1996, 46, 67–74. [Google Scholar] [PubMed]
  48. Hedstrom, A.K.; Akerstedt, T.; Hillert, J.; Olsson, T.; Alfredsson, L. Shift work at young age is associated with increased risk for multiple sclerosis. Ann. Neurol. 2011, 70, 733–741. [Google Scholar] [CrossRef] [PubMed]
  49. Ponsonby, A.-L.; Lucas, R.M. Shift work and multiple sclerosis. Ann. Neurol. 2011, 70, 680–683. [Google Scholar] [CrossRef] [PubMed]
  50. Gustavsen, S.; Sondergaard, H.B.; Oturai, D.B.; Laursen, B.; Laursen, J.H.; Magyari, M.; Ullum, H.; Larsen, M.H.; Sellebjerg, F.; Oturai, A.B. Shift work at young age is associated with increased risk of multiple sclerosis in a danish population. Mult. Scler. Relat. Disord. 2016, 9, 104–109. [Google Scholar] [CrossRef] [PubMed]
  51. Hedstrom, A.K.; Akerstedt, T.; Olsson, T.; Alfredsson, L. Shift work influences multiple sclerosis risk. Mult. Scler. 2015, 21, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
  52. Zhang, P.; Wang, R.; Li, Z.; Wang, Y.; Gao, C.; Lv, X.; Song, Y.; Li, B. The risk of smoking on multiple sclerosis: A meta-analysis based on 20,626 cases from case-control and cohort studies. PeerJ 2016, 4, e1797. [Google Scholar] [CrossRef] [PubMed]
  53. Turner, A.P.; Hartoonian, N.; Maynard, C.; Leipertz, S.L.; Haselkorn, J.K. Smoking and physical activity: Examining health behaviors and 15-year mortality among individuals with multiple sclerosis. Arch. Phys. Med. Rehabil. 2015, 96, 402–409. [Google Scholar] [CrossRef] [PubMed]
  54. Ramanujam, R.; Hedström, A.; Manouchehrinia, A.; Alfredsson, L.; Olsson, T.; Bottai, M.; Hillert, J. Effect of smoking cessation on multiple sclerosis prognosis. JAMA Neurol. 2015, 72, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
  55. Öckinger, J.; Hagemann-Jensen, M.; Kullberg, S.; Engvall, B.; Eklund, A.; Grunewald, J.; Piehl, F.; Olsson, T.; Wahlström, J. T-cell activation and hla-regulated response to smoking in the deep airways of patients with multiple sclerosis. Clin. Immunol. 2016, 169, 114–120. [Google Scholar] [CrossRef] [PubMed]
  56. Ascherio, A.; Munger, K.L. Environmental risk factors for multiple sclerosis. Part ii: Noninfectious factors. Ann. Neurol. 2007, 61, 504–513. [Google Scholar] [CrossRef] [PubMed]
  57. Hedström, A.K.; Bomfim, I.L.; Barcellos, L.F.; Briggs, F.; Schaefer, C.; Kockum, I.; Olsson, T.; Alfredsson, L. Interaction between passive smoking and two hla genes with regard to multiple sclerosis risk. Int. J. Epidemiol. 2014, 43, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
  58. Timmermans, S.; Bogie, J.F.J.; Vanmierlo, T.; Lütjohann, D.; Stinissen, P.; Hellings, N.; Hendriks, J.J.A. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the renin angiotensin system. J. Neuroimmune Pharmacol. 2014, 9, 209–217. [Google Scholar] [CrossRef] [PubMed]
  59. Farinotti, M.; Vacchi, L.; Simi, S.; Di Pietrantonj, C.; Brait, L.; Filippini, G. Dietary interventions for multiple sclerosis. Cochrane Database Syst. Rev. 2012, 12, CD004192. [Google Scholar] [CrossRef] [PubMed]
  60. Kim, D.Y.; Hao, J.; Liu, R.; Turner, G.; Shi, F.-D.; Rho, J.M. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS ONE 2012, 7, e35476. [Google Scholar] [CrossRef] [PubMed]
  61. Hedström, A.K.; Mowry, E.M.; Gianfrancesco, M.A.; Shao, X.; Schaefer, C.A.; Shen, L.; Olsson, T.; Barcellos, L.F.; Alfredsson, L. High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 454–460. [Google Scholar] [CrossRef] [PubMed][Green Version]
  62. Mowry, E.; Hedstrom, A.; Gianfrancesco, M.; Shao, X.; Schaefer, C.; Barcellos, L.; Olsson, T.; Alfredsson, L. Greater consumption of coffee is associated with reduced odds of multiple sclerosis (s45.004). Neurology 2015, 84, S45.004. [Google Scholar]
  63. D’hooghe, M.B.; Haentjens, P.; Nagels, G.; De Keyser, J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur. J. Neurol. 2011, 19, 616–624. [Google Scholar] [CrossRef] [PubMed]
  64. Farez, M.F.; Fiol, M.P.; Gaitán, M.I.; Quintana, F.J.; Correale, J. Sodium intake is associated with increased disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 26. [Google Scholar] [CrossRef] [PubMed]
  65. Riccio, P.; Rossano, R. Nutrition facts in multiple sclerosis. ASN Neuro 2015, 7. [Google Scholar] [CrossRef] [PubMed]
  66. Mielcarz, D.W.; Kasper, L.H. The gut microbiome in multiple sclerosis. Curr. Treat. Opt. Neurol. 2015, 17, 18. [Google Scholar] [CrossRef] [PubMed]
  67. Kirby, T.O.; Ochoa-Repáraz, J. The gut microbiome in multiple sclerosis: A potential therapeutic avenue. Med. Sci. (Basel, Switzerland) 2018, 6, 69. [Google Scholar] [CrossRef] [PubMed]
  68. Chu, F.; Shi, M.; Lang, Y.; Shen, D.; Jin, T.; Zhu, J.; Cui, L. Gut microbiota in multiple sclerosis and experimental autoimmune encephalomyelitis: Current applications and future perspectives. Med. Inflamm. 2018, 2018, 8168717. [Google Scholar] [CrossRef] [PubMed]
  69. Jangi, S.; Gandhi, R.; Cox, L.M.; Li, N.; von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M.A.; Liu, S.; Glanz, B.L.; et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016, 7, 12015. [Google Scholar] [CrossRef] [PubMed][Green Version]
  70. Roy Sarkar, S.; Banerjee, S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 2019, 328, 98–104. [Google Scholar] [CrossRef] [PubMed]
  71. Yokote, H.; Miyake, S.; Croxford, J.L.; Oki, S.; Mizusawa, H.; Yamamura, T. Nkt cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am. J. Pathol. 2008, 173, 1714–1723. [Google Scholar] [CrossRef] [PubMed]
  72. Brewer, J.H.; Thrasher, J.D.; Straus, D.C.; Madison, R.A.; Hooper, D. Detection of mycotoxins in patients with chronic fatigue syndrome. Toxins (Basel) 2013, 5, 605–617. [Google Scholar] [CrossRef] [PubMed]
  73. Ordog, G. 476 multiple sclerosis cluster: Mycotoxic leukoencephalopathy. J. Investig. Med. 2005, 53, S161. [Google Scholar] [CrossRef]
  74. Venkatesan, A. Multiple sclerosis and infections. Neurodegener. Dis. Manag. 2015, 5, 11–14. [Google Scholar] [CrossRef] [PubMed]
  75. Oleszak, E.L.; Chang, J.R.; Friedman, H.; Katsetos, C.D.; Platsoucas, C.D. Theiler’s virus infection: A model for multiple sclerosis. Clin. Microbiol. Rev. 2004, 17, 174–207. [Google Scholar] [CrossRef] [PubMed]
  76. Fong, I.W. The Role of Microbes in Common Non-Infectious Diseases; Springer: New York, NY, USA, 2014. [Google Scholar]
  77. Burns, J.; Littlefield, K.; Gill, J.; Trotter, J.L. Bacterial toxin superantigens activate human t lymphocytes reactive with myelin autoantigens. Ann. Neurol. 1992, 32, 352–357. [Google Scholar] [CrossRef] [PubMed]
  78. Gay, F. Bacterial toxins and multiple sclerosis. J. Neurol. Sci. 2007, 262, 105–112. [Google Scholar] [CrossRef] [PubMed]
  79. Blanch, M.; Dorca-Arévalo, J.; Not, A.; Cases, M.; Gómez de Aranda, I.; Martínez-Yélamos, A.; Martínez-Yélamos, S.; Solsona, C.; Blasi, J. The cytotoxicity of epsilon toxin from clostridium perfringens on lymphocytes is mediated by mal protein expression. Mol. Cell. Biol. 2018, 38, e00086-18. [Google Scholar] [CrossRef] [PubMed]
  80. Cases, M.; Llobet, A.; Terni, B.; Gómez de Aranda, I.; Blanch, M.; Doohan, B.; Revill, A.; Brown, A.M.; Blasi, J.; Solsona, C. Acute effect of pore-forming clostridium perfringens ε-toxin on compound action potentials of optic nerve of mouse. eNeuro 2017, 4. [Google Scholar] [CrossRef] [PubMed]
  81. Uzal, F.A.; Navarro, M.A.; Li, J.; Freedman, J.C.; Shrestha, A.; McClane, B.A. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe 2018, 53, 11–20. [Google Scholar] [CrossRef] [PubMed]
  82. Linden, J.R.; Ma, Y.; Zhao, B.; Harris, J.M.; Rumah, K.R.; Schaeren-Wiemers, N.; Vartanian, T. Clostridium perfringens epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination. mBio 2015, 6, e02513–e02514. [Google Scholar] [CrossRef] [PubMed]
  83. Wagley, S.; Bokori-Brown, M.; Morcrette, H.; Malaspina, A.; D’Arcy, C.; Gnanapavan, S.; Lewis, N.; Popoff, M.R.; Raciborska, D.; Nicholas, R.; et al. Evidence of clostridium perfringens epsilon toxin associated with multiple sclerosis. Mult. Scler. J. 2018, 1352458518767327. [Google Scholar] [CrossRef] [PubMed]
  84. Yin, J.-X.; Tang, Z.; Gan, Y.; Li, L.; Shi, F.; Coons, S.; Shi, J. Pertussis toxin modulates microglia and t cell profile to protect experimental autoimmune encephalomyelitis. Neuropharmacology 2014, 81, 1–5. [Google Scholar] [CrossRef] [PubMed]
  85. Weber, M.S.; Benkhoucha, M.; Lehmann-Horn, K.; Hertzenberg, D.; Sellner, J.; Santiago-Raber, M.-L.; Chofflon, M.; Hemmer, B.; Zamvil, S.S.; Lalive, P.H. Repetitive pertussis toxin promotes development of regulatory t cells and prevents central nervous system autoimmune disease. PLoS ONE 2011, 5, e16009. [Google Scholar] [CrossRef] [PubMed]
  86. Steelman, A.J. Infection as an environmental trigger of multiple sclerosis disease exacerbation. Front. Immunol. 2015, 6, 520. [Google Scholar] [CrossRef] [PubMed]
  87. Dressler, D.; Bhidayasiri, R.; Bohlega, S.; Chahidi, A.; Chung, T.M.; Ebke, M.; Jacinto, L.J.; Kaji, R.; Koçer, S.; Kanovsky, P.; et al. Botulinum toxin therapy for treatment of spasticity in multiple sclerosis: Review and recommendations of the iab-interdisciplinary working group for movement disorders task force. J. Neurol. 2017, 264, 112–120. [Google Scholar] [CrossRef] [PubMed]
  88. Cameron, M.H.; Bethoux, F.; Davis, N.; Frederick, M. Botulinum toxin for symptomatic therapy in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2014, 14, 463. [Google Scholar] [CrossRef] [PubMed]
  89. Latino, P.; Castelli, L.; Prosperini, L.; Marchetti, M.R.; Pozzilli, C.; Giovannelli, M. Determinants of botulinum toxin discontinuation in multiple sclerosis: A retrospective study. Neurol. Sci. 2017, 38, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
  90. Purzycki, C.B.; Shain, D.H. Fungal toxins and multiple sclerosis: A compelling connection. Brain Res. Bull. 2010, 82, 4–6. [Google Scholar] [CrossRef] [PubMed]
  91. Speth, C.; Rambach, G.; Lass-Flörl, C.; Würzner, R.; Gasque, P.; Mohsenipour, I.; Dierich, M.P. Culture supernatants of patient-derived aspergillus isolates have toxic and lytic activity towards neurons and glial cells. FEMS Immunol. Med. Microbiol. 2006, 29, 303–313. [Google Scholar] [CrossRef] [PubMed]
  92. Razafimanjato, H.; Garmy, N.; Guo, X.-J.; Varini, K.; Di Scala, C.; Di Pasquale, E.; Taïeb, N.; Maresca, M. The food-associated fungal neurotoxin ochratoxin a inhibits the absorption of glutamate by astrocytes through a decrease in cell surface expression of the excitatory amino-acid transporters glast and glt-1. Neurotoxicology 2010, 31, 475–484. [Google Scholar] [CrossRef] [PubMed]
  93. Benito-León, J.; Pisa, D.; Alonso, R.; Calleja, P.; Díaz-Sánchez, M.; Carrasco, L. Association between multiple sclerosis and candida species: Evidence from a case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
  94. Pisa, D.; Alonso, R.; Carrasco, L. Fungal infection in a patient with multiple sclerosis. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
  95. Pisa, D.; Alonso, R.; Jiménez-Jiménez, F.J.; Carrasco, L. Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 795–801. [Google Scholar] [CrossRef] [PubMed]
  96. Fraga-Silva, T.F.C.; Mimura, L.A.N.; Marchetti, C.M.; Chiuso-Minicucci, F.; França, T.G.D.; Zorzella-Pezavento, S.F.G.; Venturini, J.; Arruda, M.S.P.; et al. Experimental autoimmune encephalomyelitis development is aggravated by candida albicans infection. J. Immunol. Res. 2015, 2015, 11. [Google Scholar] [CrossRef] [PubMed]
  97. Sotgiu, S.; Musumeci, S.; Marconi, S.; Gini, B.; Bonetti, B. Different content of chitin-like polysaccharides in multiple sclerosis and alzheimer’s disease brains. J. Neuroimmunol. 2008, 197, 70–73. [Google Scholar] [CrossRef] [PubMed]
  98. Barone, R.; Sotgiu, S.; Musumeci, S. Plasma chitotriosidase in health and pathology. Clin. Lab. 2007, 53, 321–333. [Google Scholar] [PubMed]
  99. Comabella, M.; Domínguez, C.; Rio, J.; Martín-Gallán, P.; Vilches, A.; Vilarrasa, N.; Espejo, C.; Montalban, X. Plasma chitotriosidase activity in multiple sclerosis. Clin. Immunol. 2009, 131, 216–222. [Google Scholar] [CrossRef] [PubMed]
  100. Correale, J.; Fiol, M. Chitinase effects on immune cell response in neuromyelitis optica and multiple sclerosis. Mult. Scler. J. 2010, 17, 521–531. [Google Scholar] [CrossRef] [PubMed]
  101. Lindstedt, M. Multiple sclerosis—Is research on the wrong track? Med. Hypotheses 1991, 34, 69–72. [Google Scholar] [CrossRef]
  102. Ramos, M.; Pisa, D.; Molina, S.; Rábano, A.; Juarranz, A.; Carrasco, L. Fungal infection in patients with multiple sclerosis. Open Mycol. J. 2008, 2, 22–28. [Google Scholar] [CrossRef]
  103. Napier, M.D.; Poole, C.; Satten, G.A.; Ashley-Koch, A.; Marrie, R.A.; Williamson, D.M. Heavy metals, organic solvents and multiple sclerosis: An exploratory look at gene-environment interactions. Arch. Environ. Occup. Health 2016, 71, 26–34. [Google Scholar] [CrossRef] [PubMed]
  104. Compston, A.; Lassmann, H.; McDonald, I.; Miller, D.; Noseworthy, J.; Smith, K.; Wekerle, H.; Confavreux, C. The story of multiple sclerosis. In Mcalpine’s Multiple Sclerosis, 4th ed.; Churchill Livingstone: London, UK, 2005. [Google Scholar]
  105. Parron, T.; Requena, M.; Hernandez, A.F.; Alarcon, R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. Pharmacol. 2011, 256, 379–385. [Google Scholar] [CrossRef] [PubMed]
  106. Savage, E.P.; Keefe, T.J.; Mounce, L.M.; Heaton, R.K.; Lewis, J.A.; Burcar, P.J. Chronic neurological sequelae of acute organophosphate pesticide poisoning. Arch. Environ. Health 1988, 43, 38–45. [Google Scholar] [CrossRef] [PubMed]
  107. Bove, J.; Prou, D.; Perier, C.; Przedborski, S. Toxin-induced models of parkinson’s disease. NeuroRx 2005, 2, 484–494. [Google Scholar] [CrossRef] [PubMed]
  108. Dubey, D.; Sharma, V.; Stuve, O. Multiple mothballs or multiple sclerosis: A diagnostic dilemma (p5.192). Neurology 2014, 82, 192. [Google Scholar]
  109. Oddone, E.; Crosignani, P.; Scaburri, A.; Bai, E.; Modonesi, C.; Imbriani, M.; Bergamaschi, R. Occupation and multiple sclerosis: An italian case-control study. Occup. Environ. Med. 2013, 70, A91. [Google Scholar] [CrossRef]
  110. Magyari, M.; Koch-Henriksen, N.; Pfleger, C.C.; Sorensen, P.S. Physical and social environment and the risk of multiple sclerosis. Mult. Scler. Relat. Disord. 2014, 3, 600–606. [Google Scholar] [CrossRef] [PubMed]
  111. Graves, J.; Chitnis, T.; Weinstock-Guttman, B.; Rubin, J.; Zelikovitch, A.; Nourbakhsh, B.; Simmons, T.; Casper, C.; Waubant, E. Maternal illness in pregnancy and perinatal exposure to pesticides are associated with risk for pediatric onset ms (s29.005). Neurology 2016, 86, S29.005. [Google Scholar]
  112. Landtblom, A.-M.; Flodin, U.; Söderfeldt, B.; Wolfson, C.; Axelson, O. Organic solvents and multiple sclerosis: A synthesis of the current evidence. Epidemiology 1996, 7, 429–433. [Google Scholar] [CrossRef] [PubMed]
  113. Iranmanesh, F.; Ebrahimi, H.a.; Iranmanesh, M.; Sedighi, B.; Gadari, F. Multiple sclerosis and mines: An epidemiologic study from kerman province, Iran. Int. Clin. Neurosci. J. 2015, 2, 133–136. [Google Scholar]
  114. Razavi, Z.; Jokar, M.; Allafchian, A.; Hossinpour, Z.; Berenjani, L.; Shayegan Nejad, V. The relationship between blood lead levels and clinical features among multiple sclerosis patients in Isfahan, Iran. Iran. J. Health, Saf. Environ. 2016, 3, 412–420. [Google Scholar]
  115. Monti, M.C.; Guido, D.; Montomoli, C.; Sardu, C.; Sanna, A.; Pretti, S.; Lorefice, L.; Marrosu, M.G.; Valera, P.; Cocco, E. Is geo-environmental exposure a risk factor for multiple sclerosis? A population-based cross-sectional study in south-western sardinia. PLoS ONE 2016, 11, e0163313. [Google Scholar] [CrossRef] [PubMed]
  116. Giacoppo, S.; Galuppo, M.; Calabro, R.S.; D’Aleo, G.; Marra, A.; Sessa, E.; Bua, D.G.; Potorti, A.G.; Dugo, G.; Bramanti, P.; et al. Heavy metals and neurodegenerative diseases: An observational study. Biol. Trace Elem. Res. 2014, 161, 151–160. [Google Scholar] [CrossRef] [PubMed]
  117. Fulgenzi, A.; Zanella, S.G.; Mariani, M.M.; Vietti, D.; Ferrero, M.E. A case of multiple sclerosis improvement following removal of heavy metal intoxication: Lessons learnt from matteo’s case. Biometals 2012, 25, 569–576. [Google Scholar] [CrossRef] [PubMed]
  118. Crowe, W.; Allsopp, P.J.; Watson, G.E.; Magee, P.J.; Strain, J.J.; Armstrong, D.J.; Ball, E.; McSorley, E.M. Mercury as an environmental stimulus in the development of autoimmunity—A systematic review. Autoimmun. Rev. 2017, 16, 72–80. [Google Scholar] [CrossRef] [PubMed]
  119. Pamphlett, R.; Kum Jew, S. Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: Implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals 2018, 31, 807–819. [Google Scholar] [CrossRef] [PubMed]
  120. Pourahmad, J.; Kahrizi, F.; Naderi, N.; Salimi, A.; Noorbakhsh, F.; Faizi, M.; Naserzadeh, P. Repeated administration of mercury accelerates progression of multiple sclerosis through mitochondrial dysfunction. Iran. J. Pharm. Res. 2016, 15, 834–841. [Google Scholar]
  121. Guzzi, G.; Costa, A.; Pigatto, P. Serum nse and multiple sclerosis. J. Neurol. Sci. 2015, 358, 463. [Google Scholar] [CrossRef] [PubMed]
  122. Soni, R.; Bhatnagar, A.; Vivek, R.; Chaturvedi, T.; Singh, A. A systematic review on mercury toxicity from dental amalgam fillings and its management strategies. J. Sci. Res. 2012, 56, 81–92. [Google Scholar]
  123. Bjørklund, G.; Hilt, B.; Dadar, M.; Lindh, U.; Aaseth, J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin. Pharmacol. Toxicol. 2018. [Google Scholar] [CrossRef] [PubMed]
  124. Cariccio, V.L.; Samà, A.; Bramanti, P.; Mazzon, E. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol. Trace Elem. Res. 2019, 187, 341–356. [Google Scholar] [CrossRef] [PubMed]
  125. Tsai, C.-P.; Lee, C.T.-C. Multiple sclerosis incidence associated with the soil lead and arsenic concentrations in taiwan. PLoS ONE 2013, 8, e65911. [Google Scholar] [CrossRef] [PubMed]
  126. Dehghanifiroozabadi, M.; Noferesti, P.; Amirabadizadeh, A.; Nakhaee, S.; Aaseth, J.; Noorbakhsh, F.; Mehrpour, O. Blood lead levels and multiple sclerosis: A case-control study. Mult. Scler. Relat. Disord. 2019, 27, 151–155. [Google Scholar] [CrossRef] [PubMed]
  127. Alizadeh-Ghodsi, M.; Zavvari, A.; Ebrahimi-Kalan, A.; Shiri-Shahsavar, M.R.; Yousefi, B. The hypothetical roles of arsenic in multiple sclerosis by induction of inflammation and aggregation of tau protein: A commentary. Nutr. Neurosci. 2018, 21, 92–96. [Google Scholar] [CrossRef] [PubMed]
  128. Jaiser, S.R.; Winston, G.P. Copper deficiency myelopathy. J. Neurol. 2010, 257, 869–881. [Google Scholar] [CrossRef] [PubMed][Green Version]
  129. Palm, R.; Hallmans, G. Zinc and copper in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1982, 45, 691–698. [Google Scholar] [CrossRef] [PubMed]
  130. Bredholt, M.; Frederiksen, J.L. Zinc in multiple sclerosis: A systematic review and meta-analysis. ASN Neuro 2016, 8. [Google Scholar] [CrossRef] [PubMed]
  131. Zahid Rasul, N.; Naqab, K.; Samiullah, K.; Mehboob, A.; Mohammad Amjad, K. Potential application of venom proteins in designing of medicines for treating human neurodegenerative disorders. Protein Pept. Lett. 2018, 25, 633–642. [Google Scholar]
  132. Iwai, S.; Okazaki, M.; Kiuchi, Y.; Oguchi, K. Changes in mrna levels of fibrinogen subunit polypeptides in rats defibrinogenated with batroxobin. Thromb. Res. 1999, 96, 421–426. [Google Scholar] [CrossRef]
  133. Hinman, C.L.; Stevens-Truss, R.; Schwarz, C.; Hudson, R.A. Sequence determinants of modified cobra venom neurotoxin which induce immune resistance to experimental allergic encephalomyelitis: Molecular mechans for immunologic action. Immunopharmacol. Immunotoxicol. 1999, 21, 483–506. [Google Scholar] [CrossRef] [PubMed]
  134. Komegae, E.N.; Souza, T.A.M.; Grund, L.Z.; Lima, C.; Lopes-Ferreira, M. Multiple functional therapeutic effects of tnp: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE 2017, 12, e0171796. [Google Scholar] [CrossRef] [PubMed]
  135. Ontaneda, D.; Hyland, M.; Cohen, J.A. Multiple sclerosis: New insights in pathogenesis and novel therapeutics. Annu. Rev. Med. 2012, 63, 389–404. [Google Scholar] [CrossRef] [PubMed]
  136. Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple sclerosis: Current knowledge and future outlook. Eur. Neurol. 2014, 72, 132–141. [Google Scholar] [CrossRef] [PubMed]
  137. Hernan, M.A.; Alonso, A.; Hernandez-Diaz, S. Tetanus vaccination and risk of multiple sclerosis: A systematic review. Neurology 2006, 67, 212–215. [Google Scholar] [CrossRef] [PubMed]
  138. Alonso, A.; Jick, S.S.; Jick, H.; Hernan, M.A. Antibiotic use and risk of multiple sclerosis. Am. J. Epidemiol. 2006, 163, 997–1002. [Google Scholar] [CrossRef] [PubMed]
  139. Alonso, A.; Jick, S.S.; Hernan, M.A. Allergy, histamine 1 receptor blockers, and the risk of multiple sclerosis. Neurology 2006, 66, 572–575. [Google Scholar] [CrossRef] [PubMed]
  140. Ifergan, I.; Wosik, K.; Cayrol, R.; Kébir, H.; Auger, C.; Bernard, M.; Bouthillier, A.; Moumdjian, R.; Duquette, P.; Prat, A. Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: Relevance to multiple sclerosis. Ann. Neurol. 2006, 60, 45–55. [Google Scholar] [CrossRef] [PubMed]
  141. Mabunga, D.F.N.; Gonzales, E.L.T.; Kim, J.-w.; Kim, K.C.; Shin, C.Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol. 2015, 24, 285–300. [Google Scholar] [CrossRef] [PubMed]
  142. Pazhoohan, S.; Satarian, L.; Asghari, A.A.; Salimi, M.; Kiani, S.; Mani, A.R.; Javan, M. Valproic acid attenuates disease symptoms and increases endogenous myelin repair by recruiting neural stem cells and oligodendrocyte progenitors in experimental autoimmune encephalomyelitis. Neurodegener. Dis. 2014, 13, 45–52. [Google Scholar] [CrossRef] [PubMed]
  143. Lv, J.; Du, C.; Wei, W.; Wu, Z.; Zhao, G.; Li, Z.; Xie, X. The antiepileptic drug valproic acid restores t cell homeostasis and ameliorates pathogenesis of experimental autoimmune encephalomyelitis. J. Biol. Chem. 2012, 287, 28656–28665. [Google Scholar] [CrossRef] [PubMed]
  144. Long, J.; Chang, L.; Shen, Y.; Gao, W.H.; Wu, Y.N.; Dou, H.B.; Huang, M.M.; Wang, Y.; Fang, W.Y.; Shan, J.H.; et al. Valproic acid ameliorates graft-versus-host disease by downregulating th1 and th17 cells. J. Immunol. 2015, 195, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
  145. Askari, V.R.; Fereydouni, N.; Baradaran Rahimi, V.; Askari, N.; Sahebkar, A.H.; Rahmanian-Devin, P.; Samzadeh-Kermani, A. B-amyrin, the cannabinoid receptors agonist, abrogates mice brain microglial cells inflammation induced by lipopolysaccharide/interferon-γ and regulates mφ1/mφ2 balances. Biomed. Pharmacother. 2018, 101, 438–446. [Google Scholar] [CrossRef] [PubMed]
  146. Tanaka, M.; Moran, S.; Wen, J.; Affram, K.; Chen, T.; Symes, A.J.; Zhang, Y. Wwl70 attenuates pge(2) production derived from 2-arachidonoylglycerol in microglia by abhd6-independent mechanism. J. Neuroinflamm. 2017, 14, 7. [Google Scholar] [CrossRef] [PubMed]
  147. Guo, C.; Fulp, J.W.; Jiang, Y.; Li, X.; Chojnacki, J.E.; Wu, J.; Wang, X.-Y.; Zhang, S. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-n-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel nlrp3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci. 2017, 8, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
  148. Leonoudakis, D.; Rane, A.; Angeli, S.; Lithgow, G.J.; Andersen, J.K.; Chinta, S.J. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells: Implications for parkinson’s disease. Med. Inflamm. 2017, 2017, 8302636. [Google Scholar] [CrossRef] [PubMed]
  149. Kappos, L.; Gold, R.; Miller, D.H.; MacManus, D.G.; Havrdova, E.; Limmroth, V.; Polman, C.H.; Schmierer, K.; Yousry, T.A.; Yang, M.; et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: A multicentre, randomised, double-blind, placebo-controlled phase iib study. Lancet 2008, 372, 1463–1472. [Google Scholar] [CrossRef]
  150. Stangel, M.; Linker, R.A. Dimethyl fumarate (bg-12) for the treatment of multiple sclerosis. Expert Rev. Clin. Pharmacol. 2013, 6, 355–362. [Google Scholar] [CrossRef] [PubMed]
  151. Linker, R.A.; Gold, R. Dimethyl fumarate for treatment of multiple sclerosis: Mechanism of action, effectiveness, and side effects. Curr. Neurol. Neurosci. Rep. 2013, 13, 394. [Google Scholar] [CrossRef] [PubMed]
  152. Bomprezzi, R. Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: An overview. Ther. Adv. Neurol. Disord. 2015, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
  153. Gopal, S.; Mikulskis, A.; Gold, R.; Fox, R.J.; Dawson, K.T.; Amaravadi, L. Evidence of activation of the nrf2 pathway in multiple sclerosis patients treated with delayed-release dimethyl fumarate in the phase 3 define and confirm studies. Mult. Scler. 2017, 23, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
  154. Mills, E.A.; Ogrodnik, M.A.; Plave, A.; Mao-Draayer, Y. Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front. Neurol. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
  155. Vego, H.; Sand, K.L.; Høglund, R.A.; Fallang, L.-E.; Gundersen, G.; Holmøy, T.; Maghazachi, A.A. Monomethyl fumarate augments nk cell lysis of tumor cells through degranulation and the upregulation of nkp46 and cd107a. Cell Mol. Immunol. 2014, 13, 57. [Google Scholar] [CrossRef] [PubMed]
  156. Maghazachi, A.A.; Sand, K.L.; Al-Jaderi, Z. Glatiramer acetate, dimethyl fumarate, and monomethyl fumarate upregulate the expression of ccr10 on the surface of natural killer cells and enhance their chemotaxis and cytotoxicity. Front. Immunol. 2016, 7, 437. [Google Scholar] [CrossRef] [PubMed]
  157. Al-Jaderi, Z.; Maghazachi, A.A. Utilization of dimethyl fumarate and related molecules for treatment of multiple sclerosis, cancer, and other diseases. Front. Immunol. 2016, 7, 278. [Google Scholar] [CrossRef] [PubMed]
  158. Strader, C.R.; Pearce, C.J.; Oberlies, N.H. Fingolimod (fty720): A recently approved multiple sclerosis drug based on a fungal secondary metabolite. J. Nat. Prod. 2011, 74, 900–907. [Google Scholar] [CrossRef] [PubMed]
  159. Al-Jaderi, Z.; Maghazachi, A.A. Effects of vitamin d3, calcipotriol and fty720 on the expression of surface molecules and cytolytic activities of human natural killer cells and dendritic cells. Toxins (Basel) 2013, 5, 1932–1947. [Google Scholar] [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.mdpi.com/2072-6651/11/3/147/htm?fbclid=IwAR3V9yBGOEVOUneyh_hiXF3T5r4m6yvLm4FmcGIWQr3w4UL83MH8ooiXPRU#B63-toxins-11-00147




Ruokavalio ja vanheneminen: molekyylibiologinen näkökulma

Samo Ribarič1

1Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia

Tiivistelmä

Ravitsemuksella on merkittäviä ja pitkäaikaisia terveysvaikutuksia, jotka eivät rajoitu vain yksilöön, vaan voivat siirtyä yksilöltä seuraavalle sukupolvelle. Se voi myötävaikuttaa kroonisten sairauksien kehittymiseen ja etenemiseen, mikä edelleen vaikuttaa odotettavissa olevaan elinikään.

Ruokavaliolla voi pidentää odotettavissa olevaa elinikää ja parantaa yleistä terveyttä. Tässä artikkelissa selitetään biokemialliset mekanismit, joihin tällainen rohkea väite perustuu. Artikkeli on hyvin haastava. Yleissääntönä on, että ravinnosta saadun energian rajoittaminen, paasto, pätkäpaasto ja paastoa aineenvaihdunnan tasolla imitoiva ketogeeninen ruokavalio aktivoivat kehossa solutason mekanismeja, jotka ylläpitävät solujen hyvinvointia ja pitkäikäisyyttä.

Kalorirajoitus (CR) voi pidentää keskimääräistä elinikää ja viivästyttää ikään liittyvien muutosten alkamista monissa organismeissa. Energian rajoittaminen saa aikaan koordinoituja adaptiivisia stressivasteita solujen ja koko organismin tasolla moduloimalla epigeneettisiä mekanismeja (esim. DNA:n metylaatio, transtrationaaliset histonimodifikaatiot), signaalireittejä, jotka säätelevät solujen kasvua ja ikääntymistä (esim. TOR, AMPK, p53 ja FOXO) ja solusta soluun signalointimolekyylejä (esim. adiponektiini).

Näiden mukautuvien stressivasteiden kokonaisvaikutuksena on lisääntynyt vastustuskyky stressille, mikä viivästyttää ikään liittyviä fysiologisia muutoksia ja edistää pitkäikäisyyttä. Kalorirajoitus voi hillitä monia ikääntymiseen liittyviä sairauksia, kuten syöpiä, diabetesta, ateroskleroosia, sydän- ja verisuonitauteja sekä hermostoa rappeuttavia sairauksia.

Vaihtoehtona kaloreiden rajoittamiselle on tutkittu useita kaloreita rajoittavia ruokavalioita eläimillä ja ihmisillä. Tällä hetkellä lupaavimmat vaihtoehdot kalorirajoituksen käytölle ihmisillä näyttävät olevan liikunnan lisääminen yksin tai yhdessä vähentyneen kalorien saannin kanssa.

Samo Ribarič’in laaja artikkeli tarkastelee ruokavalion merkitystä vanhenemiseen aineenvaihdunnan ja biokemian perspektiivistä. Monet tässä esiin nostetut asiat hyödyttävät kaikkia.

Tämä ei ole aivan helppolukuinen artikkeli.  Liitän tekstiin aihetta käsitteleviä videoita, jotka helpottavat erilaisten aineenvaihduntapolkujen, ylävirran tapahtumien ja alasreguloivien modulaattorien maailman kartoittamista.

Samo Ribaričin artikkeli julkaistiin 2012. Sen jälkeen tieto ketogeenisen ruokavalion, paaston ja pätkäpaaston hyödyistä on lisääntynyt. Vaikka artikkeli vain sivuaa ohimennen niitä, se sisältää erinomaisia selityksiä vanhenemiseen ja terveyteen vaikuttavista molekyylibiologian mekanismeista, jotka nykytietämyksen mukaan toteutuvat myös KD-ruokavaliossa, pätkäpaastossa ja paastossa.

1. Johdanto

Ravitsemuksella on merkittäviä pitkäaikaisia vaikutuksia terveyteen. Se on sellainen elämäntapaan liittyvä tekijä, joka voi edistää tai vähentää kroonisten sairauksien, kuten sydän- ja verisuonitautien, diabeteksen ja syövän riskiä [1].

Kroonisten sairauksien ehkäisyn ja hallinnan pitäisi olla globaali prioriteetti, koska krooniset sairaudet aiheuttavat yli puolet kaikista kuolemantapauksista [2]. Sairastuminen on potilaille ja potilaiden omaisille henkisesti raskas taakka. Kroonisten sairauksien hoitokulut rasittavat yhteiskunnan kantokykyä. Kuolemaa ei kukaan voi välttää, mutta terveisiin elinvuosiin jokainen voi vaikuttaa omilla elämäntapavalinnoillaan.

Ravitsemuksen vaikutukset terveyteen eivät rajoitu yksilöön, vaan ne voivat siirtyä yksilöltä seuraavalle sukupolvelle. Tämä havainto on vahvistettu epidemiologisilla tutkimuksilla ja eläinkokeilla.

Pienenä syntyvän vauvan riski sairastua myöhemmin sepelvaltimotautiin, tyypin 2 diabetekseen ja lihavuuteen on normaalipainoisina syntyviä lapsia selvästi korkeampi [3–7]. Eläinmallissa synnytystä edeltävä aliravitsemus laski jälkeläisten elinikää [8] tai johti nefronien puutteelliseen kehitykseen, mikä lisäsi kroonisen munuaissairauden riskiä myöhemmässä elämässä [9]. (Nefroni on munuaisen toiminnallinen yksikkö, joka suodattaa virtsaa verestä ja säätelee virtsan määrää sekä koostumusta.)

2. Ruokavaliotekijöiden epigeneettiset muutokset

Ravitsemuksen vaikutukset kehoon välittyvät epigeneettisillä mekanismeilla [1]. McKay’n ja Mathersin mukaaan kolme tunnettua läheisesti vuorovaikutuksessa olevaa mekanismia ovat DNA:n metylaatio, histonimodifikaatio ja koodaamattomat mikroRNA:t (miRNA:t) [1].

Artikkelin toinen luku sisältää melkoisesti molekyylibiologian jargonia. Hyppää kolmanteen lukuun suoraan, jos tämä vaikuttaa tylsältä.

Ravintotekijät voivat indusoida epigeneettisiä muutoksia kolmen reitin kautta: (a) suora vaikutus geenien ilmentymiseen, (b) tumareseptorien aktivaatio ligandien avulla ja (c) membraanireseptorien (solukalvoreseptorien) signalointikaskadien muokkaus [10].

Epigeneettiset mekanismit tarjoavat organismeille tehokkaan aikaan reagoivan järjestelmän geeniekspression mukauttamiseksi:

(a) kudostyyppispesifisesti

(b) organismin kehitystilaan sopivasti

(c) kehon ulkoisen ja sisäisen ympäristön signaalit huomioiden [1].

2.1. DNA-metylaatio ruokavaliolla

Folaatti ja B12-vitamiini edistävät laajaa DNA-metylaatiota, kun taas seleeni, vihreän teen polyfenolit ja bioflavonoidit vähentävät yleistä DNA-metylaatiota, Davis et al. [17].

DNA-metylaatio on kudosspesifinen ja sitä säätelee DNA-metyylitransferaasi (DNMT) -entsyymi, joka modifioi sytosiiniemäksen CpG-dinukleotiditähteessä metyyliryhmän kanssa muodostaen 5-metyylisytosiinin [11].

Esimerkkejä DNA-metyloinnilla kontrolloiduista prosesseista ovat X-kromosomien inaktivaatio, iturataspesifisten geenien leimaaminen ja hiljentäminen, karsinogeneesi ja pitkäaikaisen muistin muodostuminen [12].

Perinteisesti DNA-metylaatio on liitetty geeniekspression tukahduttamiseen. Siten DNA-metylaatio joko fyysisesti estää transkriptioproteiinien sitoutumista geeniin, tai metyloitu DNA sitoutuu proteiineihin, jotka tunnetaan metyyli-CpG:tä sitovina domeeniproteiineina. Ne rekrytoivat ylimääräisiä proteiineja lokukseen – kuten histonideasetylaasit – jotka muuttavat histoneja kompaktiksi inaktiiviseksi kromatiiniksi, kuten on osoitettu [13, 14].

Joillakin syöpäpotilailla esiintyy sekä laajaa DNA-hypometylaatiota että paikallista DNA-hypermetylaatiota [15, 16]. Ruokavalion ainesosia, joiden tiedetään moduloivan DNA-metylaatiota, ovat esimerkiksi folaatti, B12vitamiini, seleeni, vihreän teen polyfenolit (esim. epigallokatekiini-3-gallaatti (EGCG), epikatekiini, ganisteiini) ja bioflavonoidit (kvertsetiini, fisetiini ja myrisetiini).

Folaatti ja B12-vitamiini edistävät laajaa DNA-metylaatiota, kun taas seleeni, vihreän teen polyfenolit ja bioflavonoidit vähentävät yleistä DNA-metylaatiota, Davis et al. [17]. Näiden aineosien paikallinen vaikutus DNA-metylaatioon voi kuitenkin poiketa niiden laajasta vaikutuksesta. Esimerkiksi seleenin pitkäaikainen kulutus lisää p53-geenin eksonispesifistä DNA-metylaatiota rotan maksassa ja paksusuolen limakalvossa [18].

2.2. Histonien modifiointi ruokavaliolla

Aitotumallisten eukaryoottien solujen tumat sisältävät tiiviisti pakattuna emäksisiä proteiineja (johtuen positiivisesti varautuneesta N-päästä, jossa on monia lysiini- ja arginiinitähteitä), joita kutsutaan histoneiksi.

Histonit pakkaavat ja järjestävät DNA:n rakenneyksiköiksi, eli nukleosomeiksi.

Kromatiinin perusyksikön, nukleosomin ytimen muodostavat 2 kpl kutakin histonia H2A, H2B, H3 ja H4 eli yht. 8 molekyyliä (ns. oktameerirakenne). Histonimolekyylit muodostavat litteän kiekon tai kelan, jossa DNA muodostaa 2 kierrosta histonien ympäri ja näin täydentää tuman rakenteen.

Histonit toimivat keloina, joiden ympärillä DNA pyörii ja joilla on rooli geenien säätelyssä. Aktiiviset geenit ovat vähemmän sitoutuneita histoneihin; inaktiiviset geenit liittyvät voimakkaasti histoneihin [19].

Histonien N-terminaali (histonihäntä) tai sivuketjut pallomaisessa histonisydämessä ovat epigeneettisten modifikaatioiden kohdat [20]. Histonien translaation jälkeinen modifikaatio on merkittävästi monimuotoisempi kuin DNA:n metylaatio. Jotkut parhaiten ymmärretyistä histonimodifikaatioista ovat metylointi, asetylointi, fosforylaatio, ribosylointi, ubikitinointi, sumoylaatio tai biotinylointi [20].

Esimerkkejä histonien translaation jälkeiseen modifikaatioon osallistuvista entsyymeistä ovat histoniasetyylitransferaasit (HAT), metyylitransferaasit (HMT), deasetylaasit (HDAC) ja demetylaasit (HDM).

Ruokavalion vaikutuksia histonin translaation jälkeiseen modifikaatioon tarkastelivat hiljattain mm. Link et al. [21]. Esimerkiksi valkosipulin ja kanelin polyfenolit estävät HDAC:ia; vihreän teen polyfenolit ja kupari estävät HAT:ia; EGCG estää HMT:ia.

Histonin metylaatio voi moduloida DNA:n metylaatiokuvioita, ja DNA:n metylaatio voi toimia mallina joillekin histonimuutoksille DNA:n replikaation jälkeen [20, 22]. On arveltu, että nämä vuorovaikutukset voitaisiin toteuttaa suorilla vuorovaikutuksilla histonin ja DNA-metyylitransferaasien välillä [20, 22]. Tällaiset DNA-histoni-vuorovaikutukset voidaan moduloida myös ruokavalion avulla.

2.3. miRNA-modulointi ruokavaliolla

Kaikilla elävillä soluilla on kyky vastaanottaa ja käsitellä solukalvojen ulkopuolelta tulevia signaaleja.

Eukaryoottien eli aitotumallisten miRNA (mikro-RNA) on lyhyt, parin kymmenen nukleotidin pituinen, yksijuosteinen RNA-molekyyli, joka estää tietyn lähetti-RNA:n toiminnan kiinnittymällä siihen eli se hiljentää geenin. Monet mikro-RNA:ista ovat proteiinia koodaamattomilta DNA-alueilta.

MikroRNA (miRNA) on ei-koodaava RNA-molekyyli (joka sisältää 22 nukleotidia). miRNA toimii RNA:n hiljentämisessä ja geeniekspression jälkitranskriptiossa. Niitä löytyy kasveista, eläimistä ja joistakin viruksista.

miRNA:t toimivat emäspariliitoksen kautta mRNA-molekyylien komplementaaristen sekvenssien kanssa. Tämän seurauksena nämä mRNA-molekyylit hiljennetään yhdellä tai useammalla seuraavista menetelmistä: (1) mRNA-juosteen pilkkominen kahteen osaan, (2) mRNA:n destabilisointi lyhentämällä sen poly (A) häntää ja ( 3) Vähemmän tehokas mRNA:n translaatio proteiineiksi ribosomien avulla.

miRNA:t ovat transkriptionaalisia säätelijöitä ja sitoutuvat komplementaarisiin sekvensseihin kohde-lähetti-RNA-transkripteissa (mRNA:t), mikä johtaa transkriptionaalisten geenien hiljentymiseen mRNA-translaation repressoinnin tai lisääntyneen RNA-hajoamisen vuoksi.

miRNA:t voivat kuitenkin myös aiheuttaa histonimodifikaatiota ja promoottorikohtien DNA-metylaatiota, mikä säätelee kohdegeenien ilmentymistä vaihtoehtoisella reitillä. [23, 24]. Ihmisen genomi koodaa yli 1000 miRNA-nukleotidia, joiden kohteena on 50% nisäkäsgeeneistä monissa ihmisen solutyypeissä [25–30].

Siten miRNA:t vaikuttavat monien transkriptiotekijöiden, reseptorien ja kuljettajien ilmentymiseen [31]. Viimeaikaiset havainnot ihmis- ja eläinmalleissa tehdyistä kokeista viittaavat siihen, että ravitsemus (esim. rasvan, proteiinin, alkoholin tai E-vitamiinin kulutus) vaikuttaa monien miRNA-nukleotidien [32] ilmentymiseen.

miRNA:t muistuttavat RNA-interferenssi (RNAi) -reitin pieniä häiritseviä RNA:ita (siRNA:t), paitsi että miRNA:t ovat peräisin RNA-transkriptioiden alueista, kun taas siRNA:t ovat peräisin pitkistä kaksijuosteisen RNA:n alueista. Ihmisen genomi voi koodata yli 1900 miRNA:a, vaikka uudempi analyysi osoittaa, että luku on lähempänä 600: ta. Kiertävät miRNA:t vapautuvat kehon nesteisiin; vereen ja aivo-selkäydinnesteeseen. Ne toimivat biomarkkereina monissa sairauksissa.

Monet miRNA:t ovat evoluutiokonservoituneita, mikä tarkoittaa, että niillä on tärkeät biologiset toiminnot, joilla ei ole suuria lajienvälisiä eroja. Esimerkiksi 90 miRNA-perhettä on säilynyt ainakin nisäkkäiden ja kalojen yhteisestä esi-isästä lähtien, ja suurimmalla osalla näistä konservoiduista miRNA:ista on tärkeitä tehtäviä.

Polyfenolit (esim. antosyaniini, kurkumiini ja kvertsetiini) moduloivat maksan miRNA:n ilmentymistä in vivo hiirimalleissa [33]. miRNA:n ilmentymisen modulointi ruokavaliolla voi selittää genisteiinin, kurkumiinin, retinoiinihapon ja kalaöljyn syövältä suojaavia vaikutuksia.

Genisteiini (isoflavoni) estää uveaalisen melanoomasolun kasvua estämällä miRNA-27a:n ilmentymistä [34]. Kurkumiinihoito säätelee miRNA-22:n ja alasreguloidun miRNA-199a:n ilmentymistä haimasyöpäsolulinjassa [35] ja säätelee myös miRNA-15a:n ja miRNA-16:n ilmentymistä rintasyöpäsoluissa [36].

Akuuttia promyelosyyttistä leukemiaa sairastavilla potilailla, joita hoidettiin menestyksekkäästi kemoterapialla ja all-trans-retinoiinihapolla, miRNA-181b:n säätely alasreguloitui (downregulate), mutta monien muiden miRNA:iden säätely ylösreguloitiin (upregulate) [37]*.

Retinoiinihappohoidon indusoima miRNA-10a-säätely esti haimasyövän etäpesäkkeitä ksenotransplantaatiokokeissa seeprakalan alkioissa [38]. Kalaöljy vähensi erilaisten ekspressoitujen miRNA:iden määrää koe-eläimissä ja voi olla hyödyllistä paksusuolikarsinooman estämisessä [39]. Indol-3-karbinoli sääteli useiden miRNA:iden (ts. miRNA:iden -21, -31, -130a, -146b ja -377) ilmentymistä hiirissä, joille oli indusoitu hiiren keuhkokasvaimia [40].

Ravintoaineiden puutos voi myös moduloida miRNA:n ilmentymistä. Esimerkiksi folaatin puute liittyi miRNA-222:n merkittävään yli-ilmentymiseen [41]. Myös rotilla, joilla oli folaatti-metioniini-koliini-puutteellinen ruokavalio, kehittyi maksasolujen karsinooma, johon liittyi samanaikaisesti miRNA:iden yli-ilmentymistä -17 – -92, -21, -23, -130 ja -190 [42].

*Ylös- ja alasregulaatio

Alasregulaatio tarkoittaa prosessia, jossa jokin solun ulkoinen ärsyke vähentää RNA:n tai proteiinin määrää, kun taas ylösregulaatio tai sääntelyn lisääminen lisää näitä komponentteja solussa.

Esimerkki alasregulaatiosta on solun tietyn reseptorin ilmentymisen väheneminen vasteena molekyylin, kuten hormonin tai hermovälittäjäaineen aktivoitumiselle, mikä vähentää solun herkkyyttä ko. molekyylille. Tämä on esimerkki paikallisesti toimivasta ( negatiivisen palautteen) mekanismista.

Esimerkki ylisääntelystä: sellaisille ksenobiottisille molekyyleille kuin dioksiinille altistettujen maksasolujen vasteena solut lisäävät sytokromi P450 -entsyymien tuotantoa , mikä puolestaan lisää näiden molekyylien hajoamista.

Kaikilla elävillä soluilla on kyky vastaanottaa ja käsitellä solukalvojen ulkopuolelta tulevia signaaleja. Tämän he tekevät reseptoreiksi kutsuttujen proteiinien avulla. Reseptorit sijaitsevat solun pinnalla plasmamembraaniin upotettuna. Kun solunulkoiset signaalit ovat vuorovaikutuksessa reseptorin kanssa, ne ohjaavat solun tekemään jotain, kuten jakautumaan, kuolemaan, tuottamaan proteiineja tai pääsemään energiaravinteita soluun jne. Esimerkiksi insuliinimolekyylin kiinnittyminen insuliinireseptoriin päästää glukoosimolekyylin soluun.

Solun kyky reagoida kemialliseen viestiin riippuu kyseiselle viestille viritettyjen reseptorien läsnäolosta. Mitä enemmän reseptoreita solulla on viritetty ko. signaaliin, sitä vahvemmin solu reagoi siihen. Esimerkiksi insuliiniresistenssissä insuliinireseptorit eivät ole virittyneet, joten solu reagoi heikosti insuliiniin, mikä puolestaan vaikuttaa solun glukoosinottoon ja energian saantiin.

Reseptorit luodaan tai ekspressoidaan solun DNA:n ohjeista, ja niitä voidaan lisätä tai säätää ylöspäin (ylösreguloida), kun signaali on heikko, tai alasreguloida, jos signaali on voimakas.

Niiden tasoa voidaan säätää myös ylös tai alas moduloimalla järjestelmiä, jotka hajottavat reseptoreita, kun solu ei enää tarvitse niitä. Reseptoreiden alasregulointia voi tapahtua myös silloin, kun reseptorit on altistettu kroonisesti liialliselle määrälle ligandia joko endogeenisistä välittäjistä tai eksogeenisista lääkkeistä. Tämä johtaa ligandin aiheuttamaan herkistymiseen tai kyseisen reseptorin sisäistymiseen. Tämä näkyy tyypillisesti eläinhormonireseptoreissa. Reseptorien säätely toisaalta voi johtaa superherkistettyihin soluihin, varsinkin kun toistuva altistuminen antagonistiselle lääkkeelle tai pitkäaikainen ligandin puuttuminen.

2.4. TOR-signaalireitti ja ravitsemus

Elinten ja koko kehon tasolla TORC1 / S6 K1 -signaalireitti säätelee glukoosin homeostaasia, insuliiniherkkyyttä, rasvasolujen aineenvaihduntaa, kehon massa- ja energiatasapainoa, kudosten ja elinten kokoa, oppimista, muistinmuodostusta ja ikääntymistä [57].

TOR (
rapamysiinin* kohde) on proteiinikinaasi, joka toimii solujen kasvun ja ikääntymisen keskusohjaimena [43, 44]. TOR-signalointireitin inaktivointi edistää autofagiaa ja pidentää elinikää [45].

*Elimistön vanhenemista on koe-eläimillä pystytty hidastamaan rapamysiinilla. Rapamysiini vähentää elimistön solujen energiankulutusta. Tämä vaikuttaa samalla tavalla kuin ravinnon energiamäärän rajoittaminen. Jos energiaa on puutteellisesti tarjolla, elimistön solujen aineenvaihdunta hidastuu ja samalla niiden elinikä pitenee. Toisaalta rapamysiini heikentää immuunivastetta ja altistaa infektioille.

TOR havaittiin ensin hiivassa, mutta se tunnistettiin myös muissa eukaryooteissa, kuten nisäkkäillä ( TOR tai mTOR). In vivo mTOR esiintyy kahdessa multiproteiinikompleksissa, mTORC1 ja mTORC2.

mTORC1 toimii ravinteiden energia-redoksianturina* ja moduloi proteiinisynteesiä. Siksi alkupään tekijät, jotka stimuloivat tämän kompleksin aktiivisuutta, ovat insuliini ja muut kasvutekijät, aminohapot (esim. leusiini) ja stressi (lämpötilan muutos, kofeiini, oksidatiivinen stressi).

* redox; reduction-oxidation, redoksi; hapetus-pelkistys-reaktio

Kofeiini, hypoksia (happivaje) ja DNA-vauriot estävät mTORC1-aktiivisuutta. TORC1-aktiivisuuden ylävirran säätimet ovat AGC-kinaasiperhe (esim. PKA; PKG ja PKC), jotka aktivoituvat fosforylaatiolla [46]. Nisäkkäillä mTORC1-kohteet ovat S6 K1 ja eukaryoottinen aloituskerroin (4E-BP1) [47–52].

S6 K1:n mTORC1-välitteinen fosforylaatio edistää proteiinisynteesiä ja 4E-BP1-fosforylaatio edistää ribosomien lokalisoitumista mRNA:iden korkkirakenteeseen. MTORC1: n fosforyloivaa aktiivisuutta säätelee sen liittyminen RAPTOR-proteiiniin (mTOR:n säätelyyn liittyvä proteiini) [53, 54].

Korkeat energia- tai ATP-tasot aktivoivat mTORC1:n fosforyloimalla ja siten estäen TSC1-TSC2-kompleksin, kuten Loewith ja Hall ovat osoittaneet [43]. Tämä kompleksi on GTPaasia aktivoiva proteiini, joka modifioi toisen GTPaasi RHEB: n GTP:hen sitoutuneeksi tilaksi. RHEB sitoutuu ja aktivoi GTP:hen sitoutuneen tilan suoraan mTORC1: n ja antaa mTORC1: n fosforyloitua alavirran kohteisiin [55].

Alhainen soluenergia (korkeat AMP-tasot) tai alhaiset ravinnetasot aktivoivat yhdessä tuumorisuppressorikinaasin LBK1 kanssa AMPK:n. Aktivoitu AMPK fosforyloi sekä TSC2:n että RAPTORin ja estää siten mTORC1-aktiivisuuden kahdella reitillä [56].

Hiivassa TORC1 edistää proteiinisynteesiä, ribosomien biogeneesiä, säätelee solusyklin ja solukoon välistä suhdetta, edistää solukasvua estämällä stressivasteita, stimuloi autofagiaa ja säätelee mitokondrioiden toimintahäiriön signaalia ytimeen RTG1-riippuvan negatiivisen säätimen kautta [43, 44].

Elinten ja koko kehon tasolla TORC1 / S6 K1 -signaalireitti säätelee glukoosin homeostaasia, insuliiniherkkyyttä, rasvasolujen aineenvaihduntaa, kehon massa- ja energiatasapainoa, kudosten ja elinten kokoa, oppimista, muistinmuodostusta ja ikääntymistä [57].

Esimerkiksi S6 K1 moduloi mesenkymaalisten kantasolujen erilaistumista adiposyyteiksi. mTORC1 / S6 K1-signalointireitin liiallinen stimulointi liian suurilla määrillä leusiinia äidinmaidonkorvikkeissa voi olla syynä lisääntyneeseen adipogeneesiin ja varhaislapsuuden liikalihavuuteen [58].

mTORC2:n parhaiten ymmärretyt toiminnot ovat aktiinin solurangan solusyklistä riippuvan polarisaation hallinta, endosytoosi ja sfingolipidibiosynteesi [43, 59, 60]. mTORC2: n ylävirran säätimet ovat insuliini ja IGF1 [44, 61].

Ribosomin kypsytystekijä Nip7 vaaditaan mTORC2-kinaasiaktiivisuuteen hiiva- ja nisäkässoluissa [44, 61] ja mTORC2: n substraatit ovat AGC-kinaasiperhe mukaan lukien AKT, SGK1 ja PKC [44, 62]. Esimerkiksi mTORC2 edistää solujen eloonjäämistä AKT:n kautta [63, 64] ja säätelee myös maksan glukoosi- ja lipidimetaboliaa insuliinin indusoiman AKT-signaloinnin kautta [62]. Vaikka TORC1:n ja TORC2:n signalointireitit ovat jossain määrin erillisiä, niillä on yhteistyöfunktio koordinoida kasvua, mitoosia ja solukoon hallintaa.

Esimerkiksi TORC2 aktivoi TORC1:n AKT-signalointireitin kautta. TORC1-aktivaatio stimuloi anabolisia solureittejä ja TORC1-esto stimuloi katabolisia solupolkuja [65]. TORC1- ja TORC2-signalointireittien herkkyys voi yleensä olla paitsi solukudosspesifinen myös TORC-isoformista riippuvainen. Esimerkiksi mTORC2: n aktiivisuus riippuu nisäkkään stressiaktivoituneen proteiinikinaasia vuorovaikutuksessa olevan proteiinin (mSin1) isoformista, joka muodostaa tämän multiproteiinikompleksin [66].

3. Ravinto ja vanheneminen

Oletus, että nisäkkäiden elinikää voitaisiin pidentää merkittävästi ruokavalion muutoksilla, vahvistettiin jyrsijätutkimuksessa, jonka toteuttivat McCay ym. vuonna 1935 [67].

Rotat kasvavat koko ikänsä. Yksi tämän tutkimuksen tavoitteista oli määrittää kasvun hidastumisen vaikutus molempia sukupuolia olevien rottien eliniän pituuteen. Kasvu hidastui rajoittamalla ravinnosta saatavan energian määrää tasolle, joka on tarpeen rottien pitämiseksi vakailla ruumiinpainotasoilla vieroituksen aikana tai 2 viikkoa vieroituksen jälkeen.

Kokeessa huolehdittiin kaikkien muiden ruokavalion ainesosien riittävästä saannista. Ruokavalion energiamäärän rajoittaminen pidensi rottien elinikää. Ruokavalion rajoittamisen vaikutus elinaikaan oli kuitenkin selvempi uros. kuin naarasrotilla [67].

Yhteenvetona voidaan todeta, että tämä peruskokeilu viittaa siihen, että elinikää voidaan pidentää ruokavalion sisältämän energiamäärän rajoittamisella ilman aliravitsemusta. Aliravitsemuksella voi olla päinvastainen vaikutus [1].

Suositeltava ravintoprotokolla on energiansaannin rajoittaminen siten, että kalorirajoitus ei aiheuta välttämättömien ravintoaineiden puutostiloja tai aliravitsemusta. CR tarkoittaa kalorien saannin rajoittamista 10–30% verrattuna energian normaaliin saantiin. Energiansaannin hallitun rajoittamisen on osoitettu parantavan kaiken ikäisten terveyttä ja hidastavan myös ikääntymistä monilla tutkituilla eukaryooteilla [68].

Energian rajoittamisen elinikää pidentävien vaikutusten merkitystä kädellisille on tutkittu mm. reesusapinoilla. Eläinten lähtötason kaloreiden saantia laskettiin asteittain 10% kuukaudessa lopulliseen 30% energian rajoitukseen, joka säilyi kokeen ajan. CR:n vaikutus verrokkeihin arvioitiin vertaamalla kuolleisuuden viivästymistä ja joidenkin ihmisillä yleisimmin esiintyvien ikään liittyvien sairauksien (esim. diabetes, syöpä, sydän- ja verisuonitaudit ja aivojen atrofia) puhkeamista.

Tutkimuksen johtopäätökset olivat, että kaloreiden rajoittaminen alensi ikääntymiseen liittyvien kuolemien esiintyvyyttä (50% kontrolliruokituilla eläimillä verrattuna 20% CR-ruokituilla eläimillä) ja alensi myös diabeteksen, syövän, sydän- ja verisuonitautien sekä aivojen atrofian ilmaantuvuutta [68 ].

Tältä pohjalta voidaan kysyä: liittyykö okinawalaisten pitkäikäisyys niukkaan energiansaantiin?

4. Kaloreiden rajoittamisen vaikutukset ihmisillä

Perusoletus, jonka mukaan kalorirajoitus voi pidentää keskimääräistä ja enimmäisikää ja viivästyttää ikään liittyvien muutosten alkamista, on osoitettu monissa organismeissa hiivasta, matoihin ja kärpäsistä nisäkkäisiin [69–71].

Kehittyneemmillä nisäkkäillä kalorirajoitus viivästyttää monia ikääntymiseen liittyviä sairauksia, kuten syöpää, diabetesta, ateroskleroosia, sydän- ja verisuonitauteja sekä neurodegeneratiivisia sairauksia [68, 72–74]. Näiden sairauksien ilmaantuvuus kasvaa iän myötä ja ne vaikuttavat merkittävästi kuolleisuuteen. Energiansaannin rajoittaminen voi pidentää elinikää lisäämällä kehon yleistä terveydentilaa ja tarjoamalla epäspesifistä vastustuskykyä kroonisille sairauksille ja aineenvaihdunnan häiriöille [68, 72–74].

Lopullista kysymystä, miten kaloreiden rajoittaminen vaikuttaa ihmiskehoon, tutkittiin kuitenkin rajoitetulla määrällä kokeita [73–93]. Tutkimuksella CR-vaikutuksista ihmisen pitkäikäisyyteen liittyy eettisiä ja logistisia haasteita, koska kehittyneiden maiden väestön keskimääräinen elinikä on lähes 80 vuotta. Siksi ihmisen tutkimuksissa keskitytään mittaamaan kaloreiden rajoittamiseen liittyviä muutoksia, jotka voivat hidastaa ikääntymistä ja kroonisten sairauksien etenemistä, mikä pidentää elinikää.

Vakuuttavin näyttö siitä, että CR:llä voi olla positiivinen vaikutus ihmisiin, saatiin Fontanan ym. kokeilla ja kattavalla arvioinnilla kalorien saannin rajoittamisen pitkäaikaisista vaikutuksista (CALERIE Phase 1, josta puhutaa ensimmäisellä videoluennolla) ja saaduista tiedoista. Caloric Restriction Society (kuten jäljempänä keskustellaan). Fontana ym. arvioivat 6 vuoden pituisen CR-ruokavalion vaikutusta ateroskleroosin riskitekijöihin mies- ja naispuolisilla aikuisilla (ikä 35–82-vuotiaat) ja heitä verrattiin iältään vastaaviin terveisiin tyypillistä amerikkalaista ruokavaliota noudattaviin ihmisiin (kontrolliryhmä).

Seerumin kokonaiskolesterolitaso ja LDL-kolesterolitasot, kokonaiskolesterolin suhde suurtiheyksiseen lipoproteiinikolesteroliin (HDL), triglyseridit, paastoglukoosi, paastoinsuliini, C-reaktiivinen proteiini (CRP), verihiutaleista johdettu kasvutekijä AB sekä systolinen ja diastolinen verenpaine olivat kaikki selvästi pienempiä kaloreita rajoittavassa ryhmässä kuin kontrolliryhmässä.

HDL-kolesteroli oli korkeampi kaloreiden rajoittamisen jälkeen. CR-ryhmän henkilöiden lääketieteelliset tiedot osoittivat, että ennen kaloreiden rajoittamisen aloittamista heillä oli seerumin lipidi-lipoproteiini- ja verenpainetasot samalla tasolla kontrolliryhmän tyypillistä amerikkalaista ruokavaliota noudattavien henkilöiden kanssa ja samanlainen kuin vertailuryhmässä. Tutkimuksen johtopäätös oli, että pitkäaikainen kaloreiden rajoittaminen voi vähentää ateroskleroosin riskitekijöitä [74].

(a) Pitkäaikaisen 20%:n kalorirajoituksenn ja (b) 20%:n lisääntyneen energiankulutuksen (IEE) aiheuttaman rasvanpudotuksen vaikutusta sepelvaltimotaudin (CHD) riskitekijöihin arvioitiin yhden vuoden satunnaistetussa kontrolloidussa tutkimuksessa 48 ei-lihavalla mies- ja naishenkilöllä.

Kaloreiden rajoittamisen (a) ja liikunnan (b) vaikutus rasvakudoksen vähentymiseen olivat määrällisesti vastaavia. Kaloreiden rajoittaminen ja liikunta vaikuttivat yhtäläisesti myös CHD-riskitekijöiden, kuten plasman LDL-kolesterolin, kokonaiskolesteroli / HDL-suhteen ja CRP-pitoisuuden laskuun.

Tutkimuksen tekijät päättelivät, että saman suuruusluokan pitkäaikainen kaloreiden rajoitus tai liikunnan avulla saavutettava lisääntynyt energiankulutus (IEE) johtavat merkittävään ja yhtäläiseen sydänterveyden riskitekijöidenterveysmarkkereiden kohenemiseen normaalipainoisilla ja ylipainoisilla keski-ikäisillä aikuisilla [83].

Vuoden mittainen 20% kaloreita rajoittavan ruokavalion ja 20% liikunnan avulla energiankulutusta lisäävän IEE:n vaikutukset arvioitiin DNA:n ja RNA:n oksidatiivisten vaurioiden osalta valkosolu- ja virtsa-analyyseillä normaali- ja ylipainoisilla aikuisilla. Molemmat interventiot vähensivät merkittävästi sekä DNA:n että RNA:n oksidatiivisia vaurioita valkosoluissa verrattuna lähtötasoon.

Virtsasta tutkittujen DNA:n ja RNA:n oksidatiiviset vauriot eivät kuitenkaan eronneet lähtötasosta kummankaan interventio-ohjelman jälkeen. Tutkimuksen johtopäätös oli, että sekä kaloreiden rajoittaminen että IEE vähentävät systeemistä oksidatiivista stressiä, mikä heijastuu vähentyneinä DNA:n ja RNA:n hapettumisvaurioina [85].

CALERIE on kansallisen ikääntymislaitoksen käynnistämä tutkimusohjelma, johon osallistuu kolme tutkimuskeskusta. CALERIE-vaiheeseen sisältyi kolme pilottitutkimusta sen selvittämiseksi, voidaanko pitkäaikaisen (6–12 kuukautta) 20–25%:n kaloreiden rajoittamisen vaikutuksia tutkia normaalisti elävien ei-lihavien aikuisten osalta ja arvioida kaloreiden rajoittamisen adaptiivisia vasteita.

Tämän satunnaistetun kontrolloidun kliinisen tutkimuksen johtopäätökset olivat, että kaloreita rajoittavilla koehenkilöillä oli alempi ruumiinpaino, vähentynyt kehon ja sisäelinten rasvapitoisuus, pienempi aktiivisuusenergiankulutus, parantuneet paastoinsuliinipitoisuudet, parantuneet sydän- ja verisuonitautien riskiä ennustavat markkerit (LDL, HDL-suhde ja CRP), eikä muutoksia luun tiheydessä verrokkeihin verrattuna [76, 77, 83, 86, 92].

Käynnissä olevan CALERIE-tutkimuksen toisen vaiheen tavoitteena on testata, johtaako 2 vuoden vapaa 25% kaloreiden rajoittaminen samanlaisiin suotuisiin vaikutuksiin, kuin eläinkokeissa havaitut vaikutukset [91].

Caloric Restriction Societyn (CRS) jäsenet rajoittavat energian saantia olettaen, että tämä viivästyttää sekundaarisestä ikääntymisestä johtuvia sairausprosesseja ja hidastaa primaarista ikääntymistä.

Verrattuna saman ikäisiin tyypillistä amerikkalaista ruokavaliota noudattaviin amerikkalaisiin, CRS-jäsenillä (keski-ikä 50 ± 10 vuotta) oli alhaisempi painoindeksi, pienempi kehon rasvaprosentti, merkittävästi alemmat arvot seerumin kokonaiskolesterolille, LDL-kolesterolille, kokonaiskolesterolille / LDL:lle ja korkeampi HDL-kolesteroli. Myös plasman paastoinsuliinin ja glukoosin pitoisuudet olivat merkittävästi alhaisemmat kuin ikäryhmän verrokkiryhmässä.

Vasemman kammion diastolinen toiminta CRS-jäsenillä oli samanlainen kuin noin 16 vuotta nuoremmilla henkilöillä. Kaloreita rajoittava ruokavalio hiljensi kroonista tulehdusta ja tämä ilmeni plasman CRP:n ja tuumorinekroositekijän-alfan (TNFα) merkittävästi alhaisemmissa tasoissa [74, 78, 84].

Ikääntyminen liittyy sykevälivaihtelun (HRV) asteittaiseen heikkenemiseen. Tämä osoittaa sydämen autonomisen toiminnan heikkenemistä ja yleisesti heikentynyttä terveyttä.

Energian saannin rajoittaminen 30 %:lla vaikuttaa myönteisesti sydämen autonomiseen toimintaan. Kaloreita rajoittavassa ryhmässä oli alempi syke ja huomattavasti korkeammat HRV-arvot. Tutkijat arvelevat, että kaloreiden rajoittaminen palauttaa tasapainon sydämen taajuuden sympaattisen / parasympaattisen moduloinnin välillä parasympaattisen ajon eduksi, mikä lisää sykkeen vuorokausivaihtelua [93].

5. Kaloreiden rajoittamisen vaikutukset solutasolla

Suurin osa ikään liittyvistä muutoksista geeniekspressiossa on melko vähäisiä ja kudosspesifisiä [94]. Silti kudosspesifisistä eroista iän vaikutuksessa geenitranskriptioon ikääntymisnopeus kudoksissa vaikuttaa olevan koordinoitua, mikä viittaa systeemisten tekijöiden merkitykseen ikääntymisprosessin koordinoinnissa koko kehon tasolla [95].

Yleisimpiä ikään liittyviä muutoksia ovat lisääntynyt tulehdukseen ja immuunivasteisiin liittyvien geenien ilmentyminen ja mitokondrioiden (MTH) energia-aineenvaihdunnan heikkeneminen. Kaloreiden rajoittamiseen liittyvien geenien vähentynyt ilmentyminen estää suurimman osan näistä ikään liittyvistä muutoksista geeniekspressiossa [96, 97 ]. Kaloreiden rajoittamisen arvellaan vastaavan ikään liittyviä muutoksia moduloimalla mTOR-signalointireitti, IGF1 / insuliinisignalointi, adiponektiiniekspressio, DNA-metylaatio ja histoniasetylointi ja deasetylointi.

5.1. Kalorirajoituksen vaikutus adiponektiinien eritykseen

Johdonmukainen muutos energiaa rajoittavan ruokavalion aikana on kehon rasvan väheneminen (ts. valkoisen rasvakudoksen väheneminen). Valkoinen rasvakudos ei ole vain lipidien varastointipaikka, vaan sillä on tärkeä rooli verensokerin homeostaasissa, immuuni- ja tulehdusreaktioissa, jotka välittyvät adiposyytteistä peräisin olevista solusta soluun signaloivista molekyyleistä, adipokiineista (esim. adiponektiini) [98 , 99].

Siksi rasvakudos voi olla tärkeä tekijä ikääntymiseen ja kaloreiden rajoittamiseen (CR) liittyvissä aineenvaihdunnan muutoksissa. Adiponektiinin eritystä lisää vähentynyt kalorien saanti.

Adiponektiini vähentää sekä insuliinia että IGF1:tä, jotka vastaavasti vähentävät adiponektiinin synteesiä. Poikkileikkaustutkimukset osoittavat tasaisen käänteisen korrelaation plasman insuliini- ja adiponektiinipitoisuuksien välillä. Adiposyyttien (rasvasolujen) koon kasvu vähentää myös adiponektiinin eritystä [100]. Adiponektiini edistää rasvahappojen hapettumista rasvakudoksessa ja vähentää lipidien kertymistä muihin ääreiskudoksiin [101]. Kaloreiden rajoittaminen lisää veren adiponektiinipitoisuutta [102].

Ihmisillä tämä hormoni tukahduttaa aineenvaihdunnan häiriöt, jotka voivat johtaa tyypin 2 diabetekseen, lihavuuteen, ateroskleroosiin tai metaboliseen oireyhtymään [103–105]. Adiponektiini säätelee mitokondrioiden energiantuotantoa AMPK:n kautta.

AMPK:lla on monia toimintoja. Se säätelee ylöspäin (ylösreguloi) glukoosin imeytymistä soluun, rasvahappojen β-oksidaatiota, glukoosin kuljettaja 4:n (GLUT4) ilmentymistä ja mitokondrioiden energiantuotantoa.

AMPK-entsyymillä on ”energiaa tunnistava kyky”. Se se reagoi solunsisäisen AMP / ATP-suhteen vaihteluihin. Esimerkiksi ihmisen ”myo-putkien”* (myotube, en löytänyt suomennosta tälle sanalle) adiponektiinihoito johtaa AMPK:sta riippuvaan MTH-biogeneesin lisääntymiseen ja vähentää reaktiivisten happilajien (ROS) tuotantoa [106].

”Myotubes have rows of centrally located nuclei and peripheral masses of forming contractile myofilaments that soon become oriented into sarcomeres and myofibrils with restoration of cross-striations in the immature myofibers.”

AMPK säätelee MTH-energiantuotantoa aktivoimalla peroksisomiproliferaattorilla aktivoidun reseptori-gamma-koaktivaattori 1-alfan (PGC1-α) suoraan tai endoteelin typpioksidisyntaasin (eNOS) ja NAD-riippuvaisen deasetylaasi-sirtuiini1:n (eli SIRT1:n) kautta säännön 2 homologi 1) signalointireitillä.

AMPK: n lisääntyneellä aktiivisuudella kaloreita rajoittavan ruokavalion aikana on myös sydäntä suojaava kardioprotektiivinen vaikutus [102]. Lisääntynyt AMPK-aktiivisuus stimuloi myös eNOS-aktiivisuutta ja vähentää siten aivojen iskeemisen vaurion todennäköisyyttä [107]. Muita kardioprotektiivisia vaikutuksia, joita välittää lisääntynyt adiponektiinin eritys kaloreita rajoittavan ruokavalion aikana, ovat (a) TNF-α:n erittymisen estäminen ja (b) adheesiomolekyylien synteesin esto endoteelisoluissa. Jälkimmäinen estää monosyyttien kiinnittymisen endoteelisoluihin ja viivästyttää ateroskleroosin etenemistä.

Adiponektiinimoduloidut tulehdusvasteet johtuvat TNF-α :n (tuumorinekroositekijä-alfa on systokiini, joka liittyy systeemiseen tulehdukseen) erityksen estämisestä monosyytistä / makrofagista ja vaahtosolusta [108–110]; tämä voi selittää tulehdusproteiinin CRP:n pienentyneen plasmakonsentraation ihmisillä, jotka noudattavat niukasti energiaa sisältävää ruokavaliota.

5.2. Energian rajoittamisen vaikutus insuliini/IGF1-signalointiin

Insuliiniresistenssi on tunnettu ikään liittyvä aineenvaihdunnan häiriö, jonka niukkaenerginen ravinto, pätkäpaasto, paasto ja ketogeeninen ruokavalio voivat estää ja parantaa [94].

Kalorirajoituksen on raportoitu vähentävän IGF1:n pitoisuutta hiirillä, mutta ei ihmisillä [111, 112]. Insuliini ja IGF1 estävät FOXO-proteiineja* signalointireitillä, joka sisältää insuliinireseptorisubstraattiproteiineja (IRS), 3-fosfoinositidista riippuvaa proteiinikinaasia-1 (PDPK1) ja fosfatidyylinositoli-3-kinaasia ( PTDINS-3 K), siirtäen siten FOXO:t tumasta.

*FOX (forkhead box) -proteiinit ovat perhe transkriptiotekijöitä, joilla on tärkeä rooli solujen kasvuun, lisääntymiseen, erilaistumiseen ja pitkäikäisyyteen liittyvien geenien ilmentymisen säätelyssä. Monet FOX-proteiinit ovat tärkeitä alkion kehitykselle. FOX-proteiineilla on myös merkittävä transkriptiovaikutus, koska ne kykenevät sitomaan kondensoitunutta kromatiinia solujen erilaistumisprosessien aikana.

FOXO-transkriptiotekijät vaikuttavat ikääntymiseen vasteena ravinnolle ja sen energiapitoisuudelle. Tämän aineenvaihduntareitin puuttuminen nisäkkäillä liittyy lihavuuteen ja insuliiniresistenssiin [113].

Solutyyppispesifisellä tavalla nisäkkään FOXO-tekijät kontrolloivat erilaisia solutoimintoja, mukaan lukien apoptoosi (ohjattu solukuolema), solusykli, erilaistuminen ja DNA-korjaukseen ja oksidatiiviseen stressiresistenssiin liityvien geenien ilmentyminen.

Näiden toimintojen oletetaan olevan perusta FOXO-tekijöiden kyvylle hallita elinkaarta [114]. Mustan teen polyfenolit jäljittelevät insuliinin / IGF1-signalointireitin vaikutuksia FOXO1a-transkriptiotekijään [113] ja FOXO3a-geenin polymorfismit liittyivät ihmisten pitkäikäisyyteen [115].

Kaloreiden rajoittaminen stimuloi FOXO3a:n SIRT1-välitteistä deasetylaatiota, estäen tuman FOXO3a-aktiivisuuden ja estämällä Rho-assosioituneen proteiinikinaasi-1:n ilmentymisen aktivoimalla APP:n ei-amyloidogeenisen α-sekretaasin prosessoinnin ja alentamalla Aβ:n muodostumista. Tämä vähentynyt Aβ-sukupolvi liittyy Alzheimerin taudityyppisen amyloidineuropatologian ja spatiaalisen muistin heikkenemisen estämiseen hiirimallissa [114].
Niukan energiansaasnnin positiivinen vaikutus insuliini / IGF1-signalointireittiin liittyi myös ROS-tuotannon vähenemiseen MTH: ssa [116].

5.3. Energian rajoittamisen vaikutus mTOR-signalointiin

Elinkaaren säätelyä mTOR-signalointireitillä ei täysin ymmärretä. Viimeaikainen kokeellinen työ viittaa kuitenkin siihen, että sillä on keskeinen rooli solun ikääntymisprosessissa [44]. MTOR-signalointireitin estäminen rapamysiinillä pidentää maksimaalista ja mediaaniaikaa hiirillä. Tämä vaikutus havaittiin silloinkin, kun hoito aloitettiin myöhässä, mikä vastaa suunnilleen 60 vuoden ikää ihmisillä [44, 117]. Edellä mainittu, rapamysiinivälitteinen elinajan pidentyminen ei liittynyt muutoksiin sairausmalleissa tai kuolinsyissä, mikä viittaa siihen, että rapamysiini pidentää elinikää hidastamalla ikään liittyvää kudosten ja elinten rappeutumista [44, 117].

mTORC1-esto voi estää kudosten rappeutumisen ja pidentää elinikää parantamalla kantasolujen toimintaa. Esimerkiksi mTORC1-signaloinnin vähentäminen rapamysiinillä palauttaa hematopoieettisten kantasolujen itsensä uudistumisen ja hematopoieettisen toiminnan, parantaa immuniteettia ja pidentää hiirien elinikää [118].

S6 K1 ja 4E-BP1 arvellaan ikääntymisprosessia säätelevän mTORC1-signalointireitin efektoreiksi. Kuten Kapahi et al. on osoittanut, pienentynyt S6 K1 -aktiivisuus pidentää elinikää eri lajeilla, myös hiirillä [119], ja 4E-BP1:n yli-ilmentyminen pidentää elinikää rikkaissa ravinto-olosuhteissa parantamalla mitokondrioiden aktiivisuutta kärpäsillä [120].

mTORC1 voi myös vaikuttaa elinikään sellaisten mekanismien kautta, jotka eivät liity proteiinisynteesin modulointiin; esimerkiksi autofagian stimulaatio mTORC1-eston seurauksena voi edistää pitkäikäisyyttä stimuloimalla soluihin keräätyvien poikkeavien proteiinien ja vaurioituneiden organellien hajottamista ja kierrättämistä. Soluihin kerääntyy ajan myötä erilaisia solun toimintaa heikentäviä kuona-aineita [44].

Esimerkki siitä, kuinka mTORC1-aktiivisuuden säätely vaikuttaa elinikään, nähdään vanhojen hiirten maksan heikentyneenä paaston aiheuttama ketogeneesinä ja lisääntynyneenä mTORC1-aktiivisuutena [121]. Tämä heikentynyt ketogeneesi rajoittaa käytettävissä olevien energiasubstraattien määrää ääreiskudoksiin vähentäen siten organismin mahdollisuuksia selvitä ravinnon puutteen aikana. Kaloreiden rajoittaminen vähentä ikään liittyvää MTH-toiminnan heikkenemistä [69].

Kaloreiden rajoittamisen vaikutukset MTH:een voidaan välittää myös mTOR-signalointireitillä, koska mTOR on välttämätön mitokondrioiden oksidatiivisen toiminnan ylläpitämiselle [122]. Kahta S6 K1- ja 4E-BP1-riippumatonta mTOR / MTH-signalointireittiä on ehdotettu: TORC1-YY1-PGC-1α-kompleksia, [122] joka on osoitettu hiirimallissa ja TORC1-säännelty BCL-XL:n ja VDAC1:n kompleksi, joka sijaitsee mitokondrioiden ulkokalvolla [123].

5.4. DNA-metylaatio kaloreita rajoittavalla ruokavaliolla

Ikääntymisprosessiin liittyy vähitellen heikkenevä solujen homeostaasi ja geeniekspressioon muutokset [124]. Vanheneminen aiheuttaa merkittävän muutoksen 5-metyylisytosiinin (DNA-metylaation tuote) jakautumisessa genomiin ja yleisemmin vähenevä genomin DNA-metylaati [124–130].

Joidenkin spesifisten geenien promoottorialueilla on taipumus siirtyä metyloitumattomasta metyloituneeseen tilaan, mikä johtaa geenien hiljentämiseen (esim. tuumoripromoottorit tai ikääntymiseen liittyvät geenit, kuten RUNX3 ja TIG1 [129, 131]). Yhteenvetona voidaan todeta, että ikääntymisprosessi liittyy yleisesti vähentyneeseen, mutta paikallisesti lisääntyneeseen DNA-metylaatioon [132].

Kaloreiden rajoittamisen oletetaan viivästyttävän ikääntymisprosessia kääntämällä ikääntymiseen liittyvät DNA:n metylaatiomuutokset lisäämällä siten genomista vakautta [133, 134]. Kaloreiden rajoittaminen esimerkiksi nosti proto-onkogeenin RAS:n metylaatiotasoa rotamallissa verrattuna ad libitum -syötettyihin eläimiin [135].

Hypermetyloidun geenipromoottorin tunnistaa usein transkriptionaalisista repressorikomplekseista, mikä johtaa näiden onkogeenien ilmentymisen vaimentamiseen ja mikä edelleen osaltaan selittää kalorirajoituksen syöpiä ehkäisevää vaikutusta [132].

Niukkaenergisen ravinnon in vitro -solumallissa geenin promoottorissa (tuumorisuppressori ja ikääntymiseen liittyvä geeni) E2F-1:n sitoutumiskohta hypermetyloitiin. Tämä DNA:n hypermetylaatio esti E2F-1:n (aktiivisen transkriptiotekijän) pääsyn promoottoriin, mikä johti alasregulaatioon ja mikä osaltaan myötävaikuttaa kalorirajoituksen indusoimaan elinkaaren pidentymiseen [136].

Lihavuus on yleinen metabolinen häiriö. Se liittyy läheisesti kiihtyneen ikääntymisen ja lisää kuolleisuutta diabetekseen, hypertensioon, syöpiin ja sydän – ja verisuonitauteihin [137]. Siksi kaloreiden rajoittamisen ikääntymistä hidastavilla anti-aging vaikutuksilla on vaikutusta lihavuuden etenemiseen. Energiansaannin rajoittamista käytetään kliinisissä painonhallintatoimissa [138].

Lihavien ihmisten noudattaman kaloreiden rajoittamisen tutkimus osoitti, että vähäkaloriset ruokavaliot aiheuttavat DNA-metylaation muutoksia spesifisissä lokuksissa ATP10A, WT1 ja TNF-α, Näitä muutoksia voidaan käyttää kaloreiden rajoittamisen vasteen varhaisina indikaattoreina [139–141]. Lisätutkimukset ihmisillä ovat välttämättömiä niiden DNA-metylaatio-ohjattujen ehdokasgeenien joukon luonnehtimiseksi, jotka voivat olla läheisessä korrelaatiossa metabolisten reittien kanssa [132].

5.5. Histonien translaation jälkeinen muuntaminen kaloreita rajoittavalla dieetillä

5.5.1. Histoniasetylointi / deasetylointi

Histonimodifikaatiot liittyvät geeniaktivaatioon tai geenirepressioon. Histonipään sisällä olevien modifikaatioiden yhdistelmä muuttaa nukleosomien konfiguraatiota vaihtamalla kromatiinin joko tiivistetyksi (tiiviisti kiinni) tai rennoksi kokoonpanoksi (löysästi auki) [142].

Siksi histonimodifikaatiot määrittävät kromatiinin (tiukasti kiinni: löysästi auki) -suhteen ja siten geeniaktiivisuuden asteen tietyllä DNA-alueella. Esimerkiksi deasetyloidulla histonilysiinitähteellä on positiivinen varaus, joka houkuttelee negatiivisesti varautuneita DNA-säikeitä ja tuottaa kompaktin kromatiinitilan, joka liittyy transkriptiorepressioon. Vaihtoehtoisesti histoniasetylaatio poistaa positiivisen varauksen ja johtaa avoimeen kromatiinirakenteeseen, joka edistää geenitranskriptiota [132].

HDAC-aktiivisuus lisääntyy niukkaenergisen ruokavalion aikana, joten elimistön yleinen deasetylaatio voi olla sellainen suojamekanismi ravitsemusstressiä vastaan, joka voi vaikuttaa ikääntymisprosesseihin [136].

Kaloreita rajoittamalla esimerkiksi HDAC1:n lisääntynyt aktiivisuus ihmisen telomeraasikäänteiskopioijaentsyymin (hTERT) geenien promoottorialueilla, joista ensimmäinen on tuumorisuppressori monissa syövissä ja jälkimmäinen keskeinen ikääntymiseen vaikuttava telomeraasiaktiivisuuden säätelijä, johtaa näiden kahden geenin ilmentymiseen ja hyödyllisiin muutoksiin, jotka myötävaikuttavat pitkäikäisyyteen [136, 143, 144].

Useita HDAC-perheitä on tunnistettu. Näihin kuuluu mm. luokan III NAD+ -riippuvat HDAC:t, kuten Sirtuin1. Sirtuin1 (SIRT1 nisäkkäillä) ja sen ortologit muilla lajeilla (esim. Sirtuin2 hiivassa) ovat tärkeitä ikääntymisen säätelijöitä niukkaan energiansaantiin liittyvän eliniän pidentämisessä [145–149].

SIRT1:n entsymaattinen aktiivisuus riippuu NAD+ / NADH -suhteesta, joka on keskeinen indikaattori hapenkulutukselle. Tämä viittaa siten siihen, että tämä proteiini reagoi solujen metaboliseen tilaan. SIRT1:n roolia kaloreiden rajoittamisen ja eliniän pidentämisen yhtenä säätelijänä ja selittäjänä tukevat useat eläinmallit, ihmiskohteet ja in vitro solujärjestelmät [136, 145, 146, 148–154].

Kaloreiden rajoittaminen indusoi SIRT1-ekspression useissa hiirien tai rottien kudoksissa [146]. SIRT1:n oletetaan välittävän niukan energiansaannin aiheuttamia aineenvaihdunnan muutoksia ja ikääntymisen hidastumiseen liittyviä prosesseja:

(a) lisäämällä stressiresistenssiä p53:n ja FOXO:n negatiivisella säätelyllä [155–159]
(b) aloittamalla sarjan endokriinisiä vasteita, kuten adipogeneesin* vähentämisen ja insuliinin erityksen estämisen haiman β-soluista säätelemällä tärkeitä aineenvaihduntaan liittyviä geenejä, kuten peroksisomiproliferaattorilla aktivoituja G-reseptorin koaktivaattoria lα (PGC-1α) [160, 161].
* Adipogeneesi valmistaa adiposyyttejä (rasvasoluja) kantasoluista.

Vaikka SIRT1 on luokiteltu HDAC:ksi, se deasetyloi myös nonhistonisubstraatit [146, 152], kuten keskeiset transkriptiotekijät (esim. FOXO), säätelyproteiinit (esim. P53,) ja DNA:n korjausproteiinit (esim. Ku70), jotka vaikuttavat ikääntymisen hidastumiseen niukasti energiaa sisältävällä ruokavaliolla.

Esimerkiksi p53:n vähentäminen SIRT1-deasetylaatiolla voi vaikuttaa elinikään estämällä solujen apoptoosia (ohjattua kuolemaa) ja replikatiivisia vanhenemisprosesseja [155–157, 162–164]. FOXO-proteiini voidaan deasetyloida suoraan SIRT1:llä lysiinitähteissä ja sen ilmentyminen vähenee, mikä tukahduttaa FOXO-välitteisen apoptoosin [158,159].

DNA:n korjausproteiini, Ku70*, voi deasetyloida SIRT1:n, antaen sen inaktivoida proapoptoottinen tekijä BAX ja estäen siten apoptoosia [165, 166].

* Ku on dimeerinen proteiinikompleksi, joka sitoutuu DNA:n kaksoisjuosteiden päihin ja jota tarvitaan DNA:n ei-homologisen päätyliittymisreitin (NHEJ) korjaamisen. Ku on evolutiivisesti säilynyt bakteereista ihmisiin. Eukaryoottinen Ku on kahden polypeptidin, Ku70 (XRCC6) ja Ku80 (XRCC5), heterodimeeri. Kaksi Ku-alayksikköä muodostavat korin muotoisen rakenteen, joka kietoutuu DNA-kaksoisjuosteen-päähän. Monimutkaisemmissa eukaryooteissa Ku muodostaa kompleksin DNA-riippuvaisen proteiinikinaasikatalyyttisen alayksikön (DNA-PKcs) kanssa muodostaen täydellisen DNA-riippuvaisen proteiinikinaasin, DNA-PK: n. Ku:n uskotaan toimivan molekyylitelineenä, johon muut NHEJ:ssä mukana olevat proteiinit voivat sitoutua. Ku70- ja Ku80-proteiinit koostuvat kolmesta rakenteellisesta domeenista. N-terminaalinen domeeni on alfa / beeta-domeeni. Ku70:n ja Ku80:n keskeinen domeeni on DNA:ta sitova beeta-tynnyrialue.

Ku70 on sykliiniriippuvainen kinaasin estäjä, tärkeä kasvainsuppressoijaproteiini ja potentiaalisesti ikääntymisen biomarkkeri, koska sitä kertyy merkittävästi ikääntymisprosessien aikana [167–171]. Kalorirajoituksen aktivoima SIRT1 voi sitoutua suoraan promoottoriin ja vähentää sen ilmentymistä deasetylaatioefektin kautta, mikä osaltaan viivästyttää ikääntymisprosessia ja pidentää elinikää ihmissoluissa in vitro [153].

Kuten aiemmin todettiin, SIRT1 säätelee myös metaboliareiteissä mukana olevien geenien ilmentymistä. PGC-1α on keskeinen glukoneogeneesin ja rasvahappojen hapettumisen säätelijä [160, 161], ja sitä säätelevät niukan energiansaannin aikana SIRT1-välitteinen deasetylaatio, mikä lisää sen kykyä koaktivoida HNF4a:ta (transkriptiotekijä, joka edistää glukoneogeenisten geenien ilmentymistä ja tukahduttaa geenit mukana glykolyysissä) [147, 152]. Yhteenvetona voidaan todeta, että SIRT1:llä on keskeinen rooli epigeneettisten ja geneettisten reittien keskinäisessä viestinnässä [132].

5.5.2. Histonien metylaatio

Toisin kuin histoniasetylaatio, joka liittyy avoimeen kromatiinitilaan ja sen jälkeiseen geeniaktivaatioon, eri tavoin metyloiduilla histonimuodoilla on spesifit assosiaatiomallit spesifisten proteiinien kanssa. Ne tunnistavat nämä markkerit ja johtavat siten geenien hiljentämiseen tai aktivaatioon [132].

Histonilysiinitähteet voivat olla mono-, di- tai tri-metyloituja, mikä johtaa joko geenin aktivaatioon tai repressioon riippuen modifioidusta lysiinitähteestä [172, 173].

Niukka energiansaanti indusoi histonimetylaatiomodifikaatiot, kuten di- tai tri-metyloitu histoni H3 lysiinitähteissä 3 ja 4, säädellen keskeisten ikääntymiseen liittyvien geenien ja hTERT:n ilmentymistä ja myötävaikuttivat siten kalorirajoituksen aiheuttamaan ihmissolujen elinikän pidentymiseen [136, 153].

5.6. Kaloreiden rajoittamisen vaikutus miRNA-ekspressioon

miRNA-ilmentymismallit muuttuvat iän myötä. Jotkut miRNA:t ovat alasreguloituja ja toiset ylössäänteltyjä. Ihmisen veren perifeeristen mononukleaaristen solujen 800 miRNA:n ilmentymisprofiilianalyysi osoitti, että suurin osa miRNA:ista väheni määrällisesti, mukaan lukien syövän kehitykseen osallistuvat miRNA:t [174].

Koska ihmisen kasvaimiin liittyy usein miRNA:iden yleinen alasregulointi, raportoitu ikään liittyvä yleinen miRNA:n väheneminen voi lisätä solumuunnoksen ja kasvaimen syntymisen riskiä ja siten vähentää elinikää. Näiden jälkimmäisten miRNA:iden väheneminen iäkkäillä liittyi myös kohdeproteiinien fosfatidyylinositoli-3-kinaasin, kantasolutekijäreseptorin (c-KIT) ja histoni H2A:n lisääntyneeseen ilmentymiseen [174].

Eläintutkimukset tukevat myös miRNA:iden roolia ikääntymisessä. Esimerkiksi kontrolleihin verrattuna C. elegans -mutaatioissa, joissa on poistettu miRNA-239, elinkaari on huomattavasti pidentynyt, kun taas C. elegans -mutaatioissa, joissa on poistettu miRNA-71, miRNA-238 ja miRNA-246, tutkittavalla eläimellä havaitaan merkittävästi lyhyempi elinikä [ 175].

Ames-kääpiöhiiren pitkäikäisyys – johtuen lisääntyneestä insuliiniherkkyydestä, lisääntyneestä stressiresistenssistä ja vähentyneestä kasvaintiheydestä IGF-1-aktiivisuuden vähenemisen seurauksena – liittyi maksan miRNA-27a-suppression säätelyproteiineihin, ornitiinidekarboksylaasiin ja spermidiinisyntaasiin [176] .

Energiansaannin rajoittaminen muuttaa miRNA-ilmentymisprofiilia. Hiirillä, jotka saivat 70% normaalista energiasta 6 kuukauden ajan, kaloreiden rajoittaminen lisäsi miR-203:n ilmentymistä. Muutos kohdistuu kaveolin-1:n ja p63:n määriin, jotka vaikuttavat syöpäsolujen kasvuun ja invasiiviseen potentiaaliin [177]. Tutkijat päättelivät tästä, että kaloreiden rajoittaminen voi vähentää rintasyövän ilmaantuvuutta, etenemistä ja etäpesäkkeiden kehittymistä, mikä lisää odotettavissa olevia elinvuosia.

Kalorirajoitettujen hiirten aivot osoittivat miRNA-181a:n, miRNA-30e:n ja miRNA-34a:n vähentymistä, kun kaloreiden rajoittaminen oli jatkunut 8 kuukautta energiansaannin ollessa 60 % normaalista. Samalla BCL2-ilmentymisen havaittiin lisääntyvän ja BAX-ilmentymisen vähenevän, mikä vaikutti pienempiin kaspaasien 9 ja -3 aktiivisuuksiin. Kaspaasien 9 ja 3 aktiivisuuden heikkeneminen liittyy alentuneeseen apoptoosinopeuteen [178]. BAX- ja kaspaasi-3 -aktiivisuus lisääntyvät myös Alzheimerin ja Parkinsonin taudeissa [179-183].

6. Kalorirajoitusta jäljittelevät ruokavaliot

Koska pitkäaikainen kaloreiden saannin rajoittaminen on tarpeen koeolosuhteissa havaittujen myönteisten terveys- ja pitkäikäisyysvaikutusten aikaansaamiseksi, on etsitty vaihtoehtoja, jotka voisivat tuottaa kaloreiden rajoittamisen positiivisia vaikutuksia ilman ravinnon saantiin liittyviä rajoituksia.

Ihanteellisen ruokavalion tulisi:

(a) saada aikaan samanlaisia aineenvaihduta-, hormonaalisia ja fysiologisia vaikutuksia kuin kaloreiden rajoittaminen

(b) sen ei tulisi edellyttää merkittävää vähennystä pitkäaikaisessa ruoan saannissa

(c) sen pitäisi aktivoida energiansaannin rajoittamisen n kaltaiset stressivastereitit

(d) pidentää elinikää sekä vähentää tai viivästyttää ikään liittyvien sairauksien puhkeamista [184].

Tällaisen ruokavalion löytämiseksi kansallinen ikääntymisinstituutti perusti interventioiden testausohjelman testatakseen aineita, joiden ennustetaan pidentävän elinikää ja viivästyttävän sairauksia ja toimintahäiriöitä [185–189].

6.1. Kaloreiden rajoittaminen ja liikunta

Urosrottia suositaan eläinkokeissa joissa tutkitaan voiko liikunta yhdessä kaloreita rajoittavan ruokavalion kanssa toisintaa pelkästään kaloreita rajoittavan ruokavalion tuottamat edut. Kysymys on sikäli aiheellinen, etä tutkittavien rottien energiansaantia ei lisätä kompensoimaan lisääntyneen kulutuksen luomaa energiavajetta[ 180].

Eräissä tutkimuksissa on havaittu, että liikunnan ja kaloreiden rajoittamisen yhdistämisellä ei ole terveyttä edistäviä etuja, jotka ylittävät pelkällä kaloreiden rajoittamisella saavutetut edut [111, 190–192]. Näiden tutkimusten mukaan liikunta ei tuo lisäarvoa kaloreiden rajoittamista koituville fysiologisille hyödyille. Oksidatiivisen stressin tasoissa tai tulehdusta edistävien proteiinien pitoisuuksissa ei tapahtunut merkittävää muutosta liikkumaan päässeissä eläimissä, joiden energiansaantia oli laskettu 80% normaalista [191, 192]. Liikunnalla ei myöskään ollut vaikutusta eläimen maksimaaliseen elinaikaan [190].

Toisaalta, liikunnan ja vähäkalorisen ravinnon yhdistelmä pienensi hiljaista tulehdusta ilmentäviä CRP-tasoja enemmän kuin pelkkä kaloreiden rajoittaminen [193] ja pienensi sydänlihaksen nekroosin että sydänlihaksen iskemian kehittymisen riskiä [194, 195].

Useissa kaloreita rajoittavien ja liikuntaa lisäävien CE-tutkimusten ihmismalleissa on selvitetty 25 % kokonaiskaloripitoisuuden vähentämisen vaikutuksia terveyteen, kun 12,5% kaloreiden vähennyksestä tuli liikunnan lisäämästä energian kulutuksesta ja toinen 12,5% ravinnon pienemmästä energiapitoisuudesta.

Useimmissa tutkimuksissa paastoinsuliinin tasoissa, DNA-vaurioissa, lihasten mitokondrioiden geeniekspressioissa, triglyseriditasoissa ja maksan lipidipitoisuudessa ei havaittu merkittäviä eroja pelkän energian rajoittamisen ja energian rajoittamisen ja liikunnan yhdistämisen välillä [76, 196–198]. Poikkeuksena olivat kaksi tutkimusta, joissa raportoitiin sekä diastolisen verenpaineen että LDL-kolesterolin laskua edelleen, kun kaloreiden rajoittamisen yhdistämistä liikuntaan verrattiin pelkkään kaloreiden rajoittamiseen [198, 199].

Kaloreiden rajoittamisen ja liikunnan yhdistämisen on osoitettu lisäävän luun mineraalitiheyttä reisiluun kaulassa ja vähentävän tulehduksellista biomarkkeri sTNFR1:tä ylipainoisilla postmenopausaalisilla naisilla [200].

Suurin etu kaloreiden rajoittamisen yhdistämisestä liikuntaan verrattuna pelkästään kaloreiden rajoittamiseen on se, että ihmisen voi olla helpompaa noudattaa hoito-ohjelmaa, jossa kokonaisenergian lasku (ts. kalorien vähennys) jaetaan liikunnan lisäämän energian kulutuksen ja kalorien rajoitusten välillä [201].

6.2. Ruokavalion makroravinteiden rajoittaminen (DR)

Ruokavalion rajoittaminen (DR) viittaa proteiinin, rasvan ja hiilihydraattien välisten saantisuhteiden muuttamiseen joko vähentämällä tai vähentämättä kokonaiskalorien saantia. Hiilihydraattien ja rasvojen rajoituksista on saatu hyvin erilaisia tutkimustuloksia hyvin erilaisilla saantimäärillä. Tämän mukaan rasvan tai hiilihydraattien rajoittaminen ei vähennä reaktiivisten happilajien tuotantoa tai oksidaatioon perustuvia DNA-vaurioita [202–208].

Eläinmallissa proteiinin rajoittaminen näyttää olevan vaihtoehto kaloreiden rajoittamiselle. Proteiinin rajoittamisen raportoitiin lisäävän jyrsijöiden maksimaalista elinikää 20% [206]. DR-proteiinin elinikää pidentävät edut johtuivat metioniinirajoituksesta ruokavaliossa [209–215]. Esimerkiksi 40-prosenttisen metioniinirajoituksen on raportoitu vähentävän sekä mitokondrioiden reaktiivisten happilajien muodostumista että oksidatiivisia vaurioita mitokondrioiden DNA:ssa [216, 217].

Todisteet, jotka tukevat metioniinirajoituksen ja pidemmän eliniän välistä yhteyttä, sisältävät:

(a) käänteisen suhteen metioniinipitoisuuden ja nisäkkäiden maksimaalisen eliniän välillä [218]

(b) metioniini lisää LDL-kolesterolin hapettumista [219]

(c) lisääntynyt metioniinin saanti lisää plasman homokysteiinipitoisuuksia ja siten sydän- ja verisuonitautien ja kuolleisuuden riskiä [219].

On myös osoitettu, että kaikkien ravinnon aminohappojen rajoittaminen 40% metioniinia lukuun ottamatta ei vähennä reaktiivisten happilajien muodostumista tai oksidatiivisia vaurioita mitokondrioiden DNA:ssa [220]. Eräs ongelma voi siis olla liian runsas metioniinin saanti.

Yhteenvetona eläinkokeet viittaavat siihen, että noin puolet kaloreiden rajoittamisen eliniän pidentämisvaikutuksesta voidaan katsoa johtuvan metioniinirajoituksesta [206]. Siksi tutkimusten jatkaminen ihmisillä on perusteltua, koska metioniinin rajoittaminen on toteutettavissa ja hyvin siedetty [221].

6.3. Pätkäpaasto

Pätkäpaasto (ADF) vuorottelee 24 tunnin ad libitum -saannin jaksoja kalorien saannin osittaisella tai täydellisellä rajoittamisella. ADF ei välttämättä vähennä energian kokonaissaantia tai painoa, koska henkilöt voivat kompensoida alentuneen energiansaannin syömällä enemmän paasto-aikojen ulkopuolella [222, 223].

ADF pidensi koe-eläinten elinikää eläinkokeissa [223–225]. Jotkut tutkijat pitivät ADF:n vaikutusta elinajan pidentymiseen seurauksena aivoperäisen neurotrofisen tekijän samanaikaisen lisääntymisen kanssa [215].

ADF myös hillitsi tai esti ikään liittyvien sairausprosessien, kuten sydän- ja verisuonitautien, munuaissairauksien, syöpien ja diabeteksen kehittymistä [222, 223, 225–230].

Ihmiskokeissa on osoitettu, että pätkäpaasto on toteutettavissa, turvallinen ja hyvin siedetty ruokavalio myös ihmisillä [231]. ADF-ihmiskokeiden alustavia tuloksia [231–233] ei kuitenkaan voida verrata kaloreita rajoittaviin ihmiskokeisiin, koska ADF-kokeiden jaksot ovat olleet suhteellisen lyhyitä (muutamasta päivästä 20 viikkoon) verrattuna kalorirajoitus-kokeisiin (6 kuukaudesta 6 vuoteen) [74, 83, 85].

Kestoltaan jopa hyvin lyhyissä paastotutkimuksissa havaittiin joitain potentiaalisesti hyödyllisiä vaikutuksia, kuten: paastoinsuliinin lasku ilman eroja paastoglukoosissa [231] ja parantunut keuhkoputkien vaste lääkkeille [233].

On raportoitu, että normaalipainoisilla keski-ikäisillä koehenkilöillä, 2 kuukauden pituisen pätkäpaaston vaikutuksesta perifeerisen veren mononukleaariset solut tuottivat vähemmän tulehduksellisia sytokiineja [234].

Tämän katsauksen kirjoittamisen aikaan pätkäpaaston vaikutuksista veren lipideihin ja oksidatiiviselle stressille ominaisten biomarkkereiden tasoihin ei vielä ollut kovinkaan paljon tietoa.

6.4. Resveratroli

Resveratroli (RSV) on kasviperäinen mm. mustikoiden, karpaloiden, viinimarjojen ja punaviinin sisältämä polyfenoli, joka on eniten tutkittu kalorirajoitusta jäljittelevä aine.

Resveratrolin on osoitettu aktivoivan Sir2:n (SIRT1-homologi) [235] ja jäljittelemällä siten kaloreiden rajoittamisen etuja rajoittamatta kalorien saantia. Resveratroli on lisännyt hiivan, matojen, kärpästen ja kalojen elinikää [235–238].

Oletus, että Sir2:n aktivaatio suoralla sitoutumisella RSV:n kanssa vaikuttaisi elinajan pidentymiseen, on kuitenkin kyseenalaistettu useillaa organismeillaa tehdyissä kokeissa [239–248].

Resveratrolin tiedetään vaikuttavan laajasti nisäkässoluissa, kuten AMP-aktivoidun proteiinikinaasin (AMPK) aktivaatiossa. AMPK on mukana samoissa aineenvaihduntareiteissä kuin SIRT1, joka fosforyloi suoraan PGC-1α:n. [249, 250].

SIRT1 voi aktivoida kinaasin ylävirtaan AMPK:sta, mutta tämä reitti ei näytä olevan tarpeen resveratrolin AMPK-stimulaatiossa [251]. Äskettäin raportoitiin, että SIRT1 on välttämätön kohtuullisille resveratroliannoksille AMPK:n stimuloimiseksi ja mitokondrioiden toiminnan parantamiseksi in vitro ja in vivo [252]. Vaikka resveratroli-välitteisten kalorirajoituksen kaltaisten vaikutusten mekanismia ei täysin ymmärretä, näyttää siltä, että resveratroli tuottaa samanlaisen transkriptiovasteen kuin kaloreiden rajoittaminen [253]. Resveratrolia sisältävä ruunsaasti rasvaa sisältävän ruokavalio on tuottanut terveys- että pitkäikäisyyshyötyjä hiirikokeissa [249].

Resveratrolin käytön myönteiset vaikutukset lihavilla hiirillä olivat lisääntynyt insuliiniherkkyys, parantunut motorinen koordinaatio ja harmaakaihin esiintyvyyden väheneminen [253, 254]. Aikuisten hiirten elinajanodote ei noussut merkittävästi, kun resveratrolia lisättiin normaaliin ruokavalioon [254, 255]. Tämä havainto tarkoittaa, että resveratroli ei yksin tuota samoja hyötyjä kuin kaloreiden rajoittaminen [256]. Vuoden resveratroli-hoito lisäsi lepoaineenvaihdunnan nopeutta ja päivittäistä kokonaisenergiankulutusta. Resveratrolin pitkäaikainen käyttö on tehokasta ja turvallista [257, 258]. Kaloreiden rajoittaminen samassa eläinmallissa ja koeprotokollassa, vähensi päivittäistä kokonaisenergiankulutusta, mutta ei muuttanut lepoaineenvaihdunnan nopeutta [258].

Resveratrolin vaikutuksista ihmisiin on tehty vain muutama tutkimus, mutta tulokset ovat rohkaisevia. 0,1 mmol/l resveratrolin käyttö ihmisen mesenkymaalisten kantasolujen viljelmissä edistää solujen uudistumista estämällä solujen vanhenemista; suuremmilla pitoisuuksilla (5 mmol/l tai enemmän) resveratroli estää solujen uudistumista lisäämällä ikääntymisnopeutta, solujen kaksinkertaistumisaikaa ja S-vaiheen solusyklin pysäyttämistä [259].

Ihmisen peritoneaalisissa mesoteliaalisoluissa resveratroli viivästyttää replikatiivista vanhenemista mobilisoimalla antioksidatiivisia ja DNA-korjausmekanismeja solun tuma-antigeenin ilmentymisen lisääntymisellä, solujen lisääntyneellä fraktiolla solusyklin S-vaiheessa, lisääntyneellä solunjakautumisten määrällä, ikääntymiseen liittyvän β-galaktosidaasin vähentyneellä ilmentymisellä ja aktiivisuudella, mitokondrioiden säädellyn biogeneesin, superoksididismutaasin lisääntyneen aktiivisuuden ja vähentyneiden DNA-vaurioiden perusteella [260].

Resveratroli ja sen metaboliitit kertyvät ihmissoluihin in vivo kudosspesifisellä ja annosriippuvalla tavalla [261]. Kuuden viikon täydennysohjelma resveratrolilla tukahdutti tumatekijä kappa B:n (NF-kB) sitoutumisen, vähensi vapaiden happiradikaalien (ROS) muodostumista ja laski TNFα :n ja interleukiini-6:n (IL-6) tasoja yksitumaisissa soluissa. TNFα :n ja CRP: n pitoisuudet plasmassa laskivat myös merkittävästi. Resveratroli ei kuitenkaan vaikuttanut merkittävästi paasto-kolesterolin (kokonais-, LDL- ja HDL-pitoisuuksien), triglyseridien tai leptiinin pitoisuuksiin verrattuna terveiden plaseboa saaneiden henkilöiden kontrolliryhmään [262].

Runsasrasvainen ja hiilihydraattipitoinen ruokavalio aiheuttavat ja ylläpitävät tulehdusta ja oksidatiivista stressiä [263]. Terveillä ihmisillä, joiden ravinto sisältää runsaasti rasvaa ja hiilihydraatteja, resveratrolia ja muita rypäleiden sisältämien polyfenoleja sisältävä lisäaine lisäsi merkittävästi mRNA:n ilmentymistä NAD (P) H-dehydrogenaasi [kinoni] 1:n ja glutationin S-transferaasi-p1-geeneissä – mikä viittaa vahvaan antioksidanttivaikutukseen. Resveratroli lisäravinteena hillitsi aterian jälkeistä plasman endotoksiinia ja lipoproteiinia sitovan proteiinin pitoisuuden kasvua ja heikensi TLR-4:n, CD14:n, SOCS-3:n, IL-1β:n ja KEAP-1:n ilmentymistä [264].

Tutkimusten perusteella resveratroli vähentää runsaasti rasvaa ja runsaasti hiilihydraatteja sisältävän ravinnon aiheuttamia oksidatiivisia ja tulehduksellisia reaktioita, ja se voi vähentää ateroskleroosin ja diabeteksen riskiä [261].

Alustavien tulosten mukaan resveratroli parantaa myös glukoositoleranssia ja insuliiniherkkyyttä [265]. Parantunut insuliiniherkkyys johtui vähentyneestä oksidatiivisesta stressistä [265]. Syy-yhteys punaviinin ja rypälemehun kulutuksen ja sydän- ja verisuonitautien riskitekijöiden (verenkierron heikkeneminen, lisääntynyt oksidatiivinen stressi ja tulehdus) välillä on hyvin tunnettu [266–269].

Resveratroli säätelee eNOS:ta, mikä edistää typpioksidivälitteistä vasodilataatiota ja lisääntynyttä verenkiertoa [270–272]. Tämä vaikuttaa esimerkiksi erektioon. Resveratroli vaimentaa ihmisen verihiutaleiden hemostaasiin liittyvää aktivaatiota [273]. Lisääntynyt valtimoverenkierto mitattiin yhden resveratroli-boluksen jälkeen aivoissa ja käsivarressa [274, 275].

Lisääntynyt aivoverenkierto resveratroli-hoidon jälkeen ei kuitenkaan liittynyt lisääntyneeseen kognitiiviseen toimintaan [274]. Parantunut insuliiniresistenssi, valtimoverenkierto ja vähentynyt oksidatiivinen stressi ja tulehdus liittyvät resveratrolin lyhytaikaiseen käyttöön, mutta pitkäin aikavälin vaikutuksista ihmisiin ei ole tietoja [261]. Yhteenvetona voidaan todeta, että lisätutkimuksia tarvitaan resvetroli-välitteisten vaikutusten biokemiallisten reittien selventämiseksi ja sen pitkäaikaisten vaikutusten selvittämiseksi ihmisillä [276].

6.5. Rapamysiini

Rapamysiini (RAP) on antibiootti ja TOR:n (rapamysiinikohde) signaloinnin estäjä soluissa, joilla on tunnettuja immunosuppressiivisia ja antiproliferatiivisia vaikutuksia [277].

TOR on solujen ravinteiden signaloinnin välittäjä, ja sen uskotaan vaikuttavan ikääntymiseen ja kalorirajoitus-vasteeseen (ks. Kohta 6.3). Kun rapamysiiniä annettiin hiirille noin 20 kuukauden iässä, uros- ja naaraspuolisten hiirten keskimääräinen elinaika lisääntyi merkittävästi, noin 10%.

Rapamysiinin vaikutuksen voidaa ainakin osittain välittää kalorirajoitus-vasteesta riippumattomilla biokemiallisilla reiteillä [117]. Useiden rapamysiini-aktivoitujen ikääntymistä hidastavien biokemiallisten reittien olemassaolo on havaittu myös kärpäsissä.

Mekanismi tälle rapamysiinien elinaikaa lisäävien vaikutusten taustalla johtuu TOR-reitin TORC1-haarasta, autofagian ja translaation muutoksilla. Rapamysiini voi kuitenkin vaikuttaa suotuisasti elinaikaan kaloreiden rajoittamisesta riippumatta, mikä viittaa lisämekanismeihin eliniän pidentämiseksi [278].

Rapamysiini esti eläintutkimuksissa ikään liittyvää painonnousua, laski ikääntymisnopeutta, pidensi elinikää ja viivästytti spontaania syöpää [279]. Rapamysiinillä hoidetut aikuiset hiiret suoriutuivat huomattavasti paremmin spatiaalista oppimista ja muistia mittaavista tehtävistä, kuin saman ikäiset verrokit. Rapamysiini ei kuitenkaan parantanut kognitiota aikuisilla hiirillä, joilla oli ennestään, iästä riippuva oppimis. ja muistivaje. Rapamysiinivälitteinen oppimisen ja muistin paraneminen liittyi IL-1β-tasojen laskuun ja NMDA-signaloinnin lisääntymiseen. [280]. Koska rapamysiiniä käytetään immunosuppressiivisena aineena, sen merkitystä ihmisten pitkäikäisyydelle ei ole vielä vahvistettu [117].

7. Ruokavalio ja ikääntyvä väestö

Tärkeä väestörakenteen kehityssuuntaus kehittyneissä maissa on yli 65-vuotiaiden väestön prosentuaalisen osuuden asteittainen kasvu ja työikäisen väestön samanaikainen väheneminen.

Tämän demografisen suuntauksen terveysvaikutukset ovat siirtyminen akuuteista kroonisiin ja ikään liittyviin sairauksiin (esim. Alzheimerin tauti, osteoporoosi, sydän- ja verisuonitaudit ja syöpä), lisääntyvät terveyskustannukset ja kasvava taloudellinen taakka yhteiskunnalle ja yksilölle [281– 283].

Siksi kaikilla toimenpiteillä, jotka voivat viivästyttää kroonisten ja ikään liittyvien sairauksien etenemistä, voi olla merkittävä vaikutus paitsi yksilön elämänlaatuun myös yhteiskunnan kykyyn selviytyä ikääntymisen terveydellisistä ja taloudellisista seurauksista.

On olemassa jatkuvasti lisääntyvää tutkimusnäyttöä, jonka mukaan ravinnon energiapitoisuuden vähentäminen, pätkäpaasto ja ketogeeninen ruokavalio parantavat useimpia terveysmarkkereita verenpaineesta tulehdustekijöihin ja verensokerista insuliinipitoisuuteen ja lipiditasoihin.

Tutkimukset viittaavat siihen, että kaloreiden rajoittaminen voi vähentää merkittävästi ikään liittyvien muutosten määrää ihmisillä [73–93]. Poikkeuksellisen pitkäikäisillä ihmisillä tehdyt tutkimukset viittaavat siihen, että pitkäikäisyys ja ikään liittyvien sairauksien vähäinen esiintyvyys suvussa mahdollistavat huomattavasti pidemmän eliniän jopa silloin, kun tutkittavat olivat lihavia, tupakoivia tai eivät harrasta säännöllistä liikuntaa. Ihmisten poikkeuksellinen pitkäikäisyys voi olla enemmän riippuvainen genetiikasta kuin elämäntavasta [284–286].

8. Päätelmä

Kalorirajoitus tai kalorirajoitusta jäljittelevät ruokailutottumukset aiheuttavat koordinoituja adaptiivisia stressivasteita solujen ja koko organismin tasolla moduloimalla adiponektiinin, insuliini / IGF1, AMPK, mTOR, FOXO, p53 ja sirtuiinien signalointireittejä [287].

Sirtuiineilla voi olla tärkeä rooli epigeneettisten ja geneettisten reittien välisessä vuorovaikutuksessa [132]. Näiden adaptiivisten stressivasteiden aktivaatio voi estää apoptoosin alkamisen sisäisellä reitillä [288]. Lisäksi se voi stimuloida autofagiaa tarjoamaan substraatteja energiantuotannolle ja anabolisille prosesseille, jotka liittyvät solujen uudistumiseen ja antioksidanttien ja lämpöshokkiproteiinien synteesiin [287].

Suuri joukko kokeellisia todisteita osoittaa, että näiden mukautuvien stressivasteiden kokonaisvaikutuksena on lisääntynyt vastustuskyky stressille, mikä viivästyttää ikään liittyviä muutoksia ja edistää pitkäikäisyyttä.

Tämä on pitkä artikkeli. Pyydän anteeksi kirjoitus- ja käännösvirheitä. Artikkeli on vertaisarvioitu ja tieteellisessä julkaisussa julkaistu, joten molekyylibiologiset mekanismit ovat uskoakseni käännösvirheitä paitsi oikein. Ruokavalioiden suhteen juttu ei ole täysin ajan tasalla. Tieto ketogeenisen ruokavalion, paaston ja pätkäpaaston vastaavista molekyylibiologisista hyödyistä on lisääntynyt kuluneiden 10 vuoden aikana.

Lyhenteet

4E-BP1: Eukaryotic translation initiation factor 4E binding protein 1
ADF: Alternate day fasting
AGC: Acronym of the protein kinase A, G, and C families
AKT: Serine-threonine-specific proteinkinase also known as protein kinase B (PKB)
AMP: Adenosine monophosphate
AMPK: 5′ adenosine monophosphate-activated protein kinase
ATP: Adenosine-5′-triphosphate
ATP10A: Probable phospholipid-transporting ATPase VA also known as ATPase class V type 10A or aminophospholipid translocase VA gene
Aβ: Amyloid beta
B12 vitamin: Cobalamin
BAX: Bcl-2 associated X protein
BCL-XL: B-cell lymphoma-extra large, a transmembrane mitochondrial protein
CALERIE: Comprehensive Assessment of Long-Term Effects of Reducing Calorie Intake
CD14: Cluster of differentiation 14 protein also known as CD14 protein
CE: Exercise in combination with CR
CHD: Coronary heart disease
CpG dinucleotide: Cytosine-phosphate-guanine dinucleotide
CR: Caloric restriction or calorie restriction diet
CRM: Calorie restriction mimetic
CRP: C-reactive protein
CRS: Caloric Restriction Society
DNA: Deoxyribonucleic acid
DNMT: DNA methyltransferase
DR: Dietary restriction
E2F-1: Transcription factor E2F1 protein
EGCG: Epigallocatechin-3-gallate
eNOS: Endothelial nitric oxide synthase
FOXO: O subclass of the forkhead family of transcription factors; known FOXO family members are FOXO1, FOXO3, FOXO4 and FOXO6
GLUT4: Glucose transporter 4
GTP: Guanosine-5′-triphosphate
GTPase: Enzyme that hydrolyses GTP
HAT(s): Histone acetlytransferase(s)
HDAC(s): Histone deacetylase(s)
HDAC(s)s: Histone deacetylase(s)
HDL: High-density lipoprotein
HDM(s): Histone demethylase(s)
hmdC: 5-hyd0072oxymethyl-2′-deoxycytidine
HNF4α: Hepatocyte nuclear factor 4 α also known as nuclear receptor subfamily 2, group A, member 1
HMT(s): Histone methyltransferase(s)
HNF4α: Hepatocyte nuclear factor 4α
HRV: Heart-rate-variability
: Gene encoding human telomerase reverse transcriptase a catalytic subunit of the enzymetelomerase
IEE: Increased energy expenditure
IGF1: Insulin-like growth factor 1 also known as somatomedin C
IL-1β: Human interleukin 1β
c-KIT: Proto-oncogene c-Kit also known as mast/stem cell growth factor receptor, also known as tyrosine-protein kinase Kit or CD117
IRS: Insulin receptor substrate
KEAP-1: Kelch-like ECH-associated protein 1
Ku70: Protein encoded in humans by the gene
LBK1: Tumor suppressor kinase enzyme that activates AMPK
LDL: Low-density lipoprotein
miRNA(s): microRNA(s)
mRNA: Messenger RNA
mSin1: Mammalian stress-activated protein kinase-interacting protein
MTH: Mitochondrion, mitochondrial
mTOR: Mammalian target of rapamycin
mTORC1: Mammalian target of rapamycin complex 1
mTORC2: Mammalian target of rapamycin complex 2
Nicotinamide adenine dinucleotide
NADH: NADH dehydrogenase
NF-
B: nuclear factor kappa B
NIP7: 60S ribosome subunit biogenesis protein NIP7 homolog
NMDA: N-Methyl-D-aspartic acid or N-Methyl-D-aspartate
: Gene encoding the tumor suppressor protein cyclin-dependent kinase inhibitor 2A or CDKN2A or multiple tumor suppressor 1 (MTS-1)
PDPK1: 3-phosphoinositide-dependent protein kinase-1
PGC1-α: Peroxisome proliferator-activated receptor G co-activator 1α
p53: Tumor suppressor protein p53 also known as tumor protein 53
p47phox: Subunit of NADPH oxidase, that has to be phosphorilated for the activation of NADPH oxidase
PKA: Protein kinase A
PKC: Protein kinase C
PKG: Protein kinase G, or cGMP-dependent protein kinase
PtdIns-3K: Phosphatidylinositol 3-kinase
RAP: Rapamycin
RAPTOR: Regulatory-associated protein of mTOR
RHEB: RAS homolog enriched in brain protein, binds GTP
RNA: Ribonucleic acid
ROS: Reactive oxygen species
RSV: Resveratrol
RAS: Protein superfamily of small GTPases
RTG1: Retrograde regulation protein 1
RUNX3: Gene encoding runt-related transcription factor 3
S6 K1: Ribosomal protein S6 kinase
-1
SGK1: Serum-and glucocorticoid-regulated kinase; a serine/threonine protein kinase
SIRT1: NAD-dependent-deacetylase sirtuin1 also known as silent mating type information regulation 2 homolog 1
SOCS-3: Suppressor of cytokine signaling 3
sTNRF1: Soluble tumor necrosis factor receptor 1
TLR-4: Toll-like receptor 4
TNFα: Tumor necrosis factor α
TOR: Target of rapamycin
TSC1: Tuberous sclerosis protein 1 also known as hamartin
TSC2: Tuberous sclerosis protein 2 also known as tuberin
VDAC1: Voltage-dependent anion-selective channel protein 1
TIG1: Tazarotene-induced gene-1
WT1: Gene encoding Wilms tumor protein
YY1: Transcriptional repressor protein YY1.


References

  1. J. A. Mckay and J. C. Mathers, “Diet induced epigenetic changes and their implications for health,” Acta Physiologica, vol. 202, no. 2, pp. 103–118, 2011. View at: Publisher Site | Google Scholar
  2. “Diet, nutrition and the prevention of chronic diseases,” World Health Organization Technical Report Series, vol. 916, no. 1–8, pp. 1–149, 2003. View at: Google Scholar
  3. D. J. P. Barker and C. Osmond, “Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales,” The Lancet, vol. 1, no. 8489, pp. 1077–1081, 1986. View at: Google Scholar
  4. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” The American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at: Google Scholar
  5. C. Osmond, D. J. P. Barker, P. D. Winter, C. H. D. Fall, and S. J. Simmonds, “Early growth and death from cardiovascular disease in women,” British Medical Journal, vol. 307, no. 6918, pp. 1519–1524, 1993. View at: Google Scholar
  6. C. N. Hales and D. J. P. Barker, “Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis,” Diabetologia, vol. 35, no. 7, pp. 595–601, 1992. View at: Publisher Site | Google Scholar
  7. C. Cooper, C. Fall, P. Egger, R. Hobbs, R. Eastell, and D. Barker, “Growth in infancy and bone mass in later life,” Annals of the Rheumatic Diseases, vol. 56, no. 1, pp. 17–21, 1997. View at: Google Scholar
  8. S. E. Ozanne and C. N. Hales, “Lifespan: catch-up growth and obesity in male mice,” Nature, vol. 427, no. 6973, pp. 411–412, 2004. View at: Google Scholar
  9. V. M. Vehaskari, “Prenatal programming of kidney disease,” Current Opinion in Pediatrics, vol. 22, no. 2, pp. 176–182, 2010. View at: Publisher Site | Google Scholar
  10. A. Gabory, L. Attig, and C. Junien, “Sexual dimorphism in environmental epigenetic programming,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 8–18, 2009. View at: Publisher Site | Google Scholar
  11. A. Bird, “DNA methylation patterns and epigenetic memory,” Genes & Development, vol. 16, no. 1, pp. 6–21, 2002. View at: Publisher Site | Google Scholar
  12. H. Wu, J. Tao, and Y. E. Sun, “Regulation and function of mammalian DNA methylation patterns: a genomic perspective,” Briefings in Functional Genomics, vol. 11, no. 3, pp. 240–250, 2012. View at: Google Scholar
  13. X. Zou, W. Ma, I. A. Solov’yov, C. Chipot, and K. Schulten, “Recognition of methylated DNA through methyl-CpG binding domain proteins,” Nucleic Acids Research, vol. 40, no. 6, pp. 2747–2758, 2012. View at: Google Scholar
  14. K. S. Crider, T. P. Yang, R. J. Berry, and L. B. Bailey, “Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role,” Advances in Nutrition, vol. 3, no. 1, pp. 21–38, 2012. View at: Google Scholar
  15. T. A. Rauch, X. Zhong, X. Wu et al., “High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 252–257, 2008. View at: Publisher Site | Google Scholar
  16. M. Ehrlich, “DNA hypomethylation in cancer cells,” Epigenomics, vol. 1, pp. 239–259, 2009. View at: Google Scholar
  17. C. D. Davis, E. O. Uthus, and J. W. Finley, “Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon,” The Journal of Nutrition, vol. 130, no. 12, pp. 2903–2909, 2000. View at: Google Scholar
  18. H. Zeng, L. Yan, W. H. Cheng, and E. O. Uthus, “Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa,” The Journal of Nutrition, vol. 141, no. 8, pp. 1464–1468, 2011. View at: Publisher Site | Google Scholar
  19. E. M. E. Van Straten, V. W. Bloks, N. C. A. Huijkman et al., “The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction,” American Journal of Physiology, vol. 298, no. 2, pp. R275–R282, 2010. View at: Publisher Site | Google Scholar
  20. A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,” Cell Research, vol. 21, no. 3, pp. 381–395, 2011. View at: Publisher Site | Google Scholar
  21. A. Link, F. Balaguer, and A. Goel, “Cancer chemoprevention by dietary polyphenols: promising role for epigenetics,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1771–1792, 2010. View at: Publisher Site | Google Scholar
  22. X. Cheng and R. M. Blumenthal, “Coordinated chromatin control: structural and functional linkage of DNA and histone methylation,” Biochemistry, vol. 49, no. 14, pp. 2999–3008, 2010. View at: Publisher Site | Google Scholar
  23. Y. Tan, B. Zhang, T. Wu et al., “Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells,” BMC Molecular Biology, vol. 10, article 12, 2009. View at: Publisher Site | Google Scholar
  24. P. G. Hawkins and K. V. Morris, “RNA and transcriptional modulation of gene expression,” Cell Cycle, vol. 7, no. 5, pp. 602–607, 2008. View at: Google Scholar
  25. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at: Publisher Site | Google Scholar
  26. B. Kusenda, M. Mraz, J. Mayer, and S. Pospisilova, “MicroRNA biogenesis, functionality and cancer relevance,” Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, vol. 150, no. 2, pp. 205–215, 2006. View at: Google Scholar
  27. I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at: Publisher Site | Google Scholar
  28. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at: Publisher Site | Google Scholar
  29. R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at: Publisher Site | Google Scholar
  30. L. P. Lim, N. C. Lau, E. G. Weinstein et al., “The microRNAs of Caenorhabditis elegans,” Genes & Development, vol. 17, no. 8, pp. 991–1008, 2003. View at: Publisher Site | Google Scholar
  31. A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006. View at: Publisher Site | Google Scholar
  32. J. C. Mathers, G. Strathdee, and C. L. Relton, “Induction of epigenetic alterations by dietary and other environmental factors,” Advances in Genetics, vol. 71, pp. 4–39, 2010. View at: Publisher Site | Google Scholar
  33. D. Milenkovic, C. Deval, E. Gouranton et al., “Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols,” PLoS One, vol. 7, no. 1, Article ID e29837, 2012. View at: Google Scholar
  34. Q. Sun, R. Cong, H. Yan et al., “Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression,” Oncology Reports, vol. 22, no. 3, pp. 563–567, 2009. View at: Publisher Site | Google Scholar
  35. M. Sun, Z. Estrov, Y. Ji, K. R. Coombes, D. H. Harris, and R. Kurzrock, “Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells,” Molecular Cancer Therapeutics, vol. 7, no. 3, pp. 464–473, 2008. View at: Publisher Site | Google Scholar
  36. J. Yang, Y. Cao, J. Sun, and Y. Zhang, “Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells,” Medical Oncology, vol. 27, no. 4, pp. 1114–1118, 2010. View at: Publisher Site | Google Scholar
  37. S. Careccia, S. Mainardi, A. Pelosi et al., “A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes,” Oncogene, vol. 28, no. 45, pp. 4034–4040, 2009. View at: Publisher Site | Google Scholar
  38. F. U. Weiss, I. J. Marques, J. M. Woltering et al., “Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer,” Gastroenterology, vol. 137, no. 6, pp. 2136–2145, 2009. View at: Publisher Site | Google Scholar
  39. L. A. Davidson, N. Wang, M. S. Shah, J. R. Lupton, I. Ivanov, and R. S. Chapkin, “n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon,” Carcinogenesis, vol. 30, no. 12, pp. 2077–2084, 2009. View at: Publisher Site | Google Scholar
  40. T. Melkamu, X. Zhang, J. Tan, Y. Zeng, and F. Kassie, “Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol,” Carcinogenesis, vol. 31, no. 2, Article ID bgp208, pp. 252–258, 2010. View at: Publisher Site | Google Scholar
  41. C. J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843–10848, 2006. View at: Publisher Site | Google Scholar
  42. H. Kutay, S. Bai, J. Datta et al., “Downregulation of miR-122 in the rodent and human hepatocellular carcinomas,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 671–678, 2006. View at: Publisher Site | Google Scholar
  43. R. Loewith and M. N. Hall, “Target of rapamycin (TOR) in nutrient signaling and growth control,” Genetics, vol. 189, no. 4, pp. 1177–1201, 2011. View at: Google Scholar
  44. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at: Google Scholar
  45. W. L. Yen and D. J. Klionsky, “How to live long and prosper: autophagy, mitochondria, and aging,” Physiology, vol. 23, no. 5, pp. 248–262, 2008. View at: Publisher Site | Google Scholar
  46. L. R. Pearce, D. Komander, and D. R. Alessi, “The nuts and bolts of AGC protein kinases,” Nature Reviews, vol. 11, no. 1, pp. 9–22, 2010. View at: Publisher Site | Google Scholar
  47. Y. Sancak, C. C. Thoreen, T. R. Peterson et al., “PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase,” Molecular Cell, vol. 25, no. 6, pp. 903–915, 2007. View at: Publisher Site | Google Scholar
  48. C. A. Easley IV, A. Ben-Yehudah, C. J. Redinger et al., “MTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells,” Cellular Reprogramming, vol. 12, no. 3, pp. 263–273, 2010. View at: Publisher Site | Google Scholar
  49. L. A. Julien, A. Carriere, J. Moreau, and P. P. Roux, “mTORC1-activated S6K1 phosphorylates rictor on threonine 1135 and regulates mTORC2 signaling,” Molecular and Cellular Biology, vol. 30, no. 4, pp. 908–921, 2010. View at: Publisher Site | Google Scholar
  50. A. Y. Choo, S. O. Yoon, S. G. Kim, P. P. Roux, and J. Blenis, “Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 45, pp. 17414–17419, 2008. View at: Publisher Site | Google Scholar
  51. D. Zhang, R. Contu, M. V. G. Latronico et al., “MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice,” The Journal of Clinical Investigation, vol. 120, no. 8, pp. 2805–2816, 2010. View at: Publisher Site | Google Scholar
  52. R. J. O. Dowling, I. Topisirovic, T. Alain et al., “mTORCI-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs,” Science, vol. 328, no. 5982, pp. 1172–1176, 2010. View at: Publisher Site | Google Scholar
  53. K. G. Foster, H. A. Acosta-Jaquez, Y. Romeo et al., “Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation,” The Journal of Biological Chemistry, vol. 285, no. 1, pp. 80–94, 2010. View at: Publisher Site | Google Scholar
  54. D. Kwak, S. Choi, H. Jeong et al., “Osmotic stress regulates mammalian target of rapamycin(mTOR) complex 1 via c-Jun N-terminal Kinase (JNK)-mediated Raptor protein phosphorylation,” The Journal of Biological Chemistry, vol. 287, no. 22, pp. 18398–18407, 2012. View at: Google Scholar
  55. T. Sato, A. Nakashima, L. Guo, and F. Tamanoi, “Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein,” The Journal of Biological Chemistry, vol. 284, no. 19, pp. 12783–12791, 2009. View at: Publisher Site | Google Scholar
  56. D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., “AMPK phosphorylation of raptor mediates a metabolic checkpoint,” Molecular Cell, vol. 30, no. 2, pp. 214–226, 2008. View at: Publisher Site | Google Scholar
  57. B. Magnuson, B. Ekim, and D. C. Fingar, “Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks,” The Biochemical Journal, vol. 441, no. 1, pp. 1–21, 2012. View at: Google Scholar
  58. B. C. Melnik, “Excessive Leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity,” Journal of Obesity, vol. 2012, Article ID 197653, 2012. View at: Google Scholar
  59. A. K. A. DeHart, J. D. Schnell, D. A. Allen, J. Y. Tsai, and L. Hicke, “Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway,” Molecular Biology of the Cell, vol. 14, no. 11, pp. 4676–4684, 2003. View at: Publisher Site | Google Scholar
  60. T. Powers, S. Aronova, and B. Niles, “TORC2 and sphingolipid biosynthesis and signaling. lessons from budding yeast,” The Enzymes, vol. 27, pp. 177–197, 2010. View at: Publisher Site | Google Scholar
  61. V. Zinzalla, D. Stracka, W. Oppliger, and M. N. Hall, “Activation of mTORC2 by association with the ribosome,” Cell, vol. 144, no. 5, pp. 757–768, 2011. View at: Publisher Site | Google Scholar
  62. A. Hagiwara, M. Cornu, N. Cybulski et al., “Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c,” Cell Metabolism, vol. 15, no. 5, pp. 725–738, 2012. View at: Google Scholar
  63. N. Cybulski and M. N. Hall, “TOR complex 2: a signaling pathway of its own,” Trends in Biochemical Sciences, vol. 34, no. 12, pp. 620–627, 2009. View at: Publisher Site | Google Scholar
  64. C. A. Sparks and D. A. Guertin, “Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy,” Oncogene, vol. 29, no. 26, pp. 3733–3744, 2010. View at: Publisher Site | Google Scholar
  65. N. Ikai, N. Nakazawa, T. Hayashi, and M. Yanagida, “The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe,” Open Biology, vol. 1, 2011. View at: Publisher Site | Google Scholar
  66. M. A. Frias, C. C. Thoreen, J. D. Jaffe et al., “mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s,” Current Biology, vol. 16, no. 18, pp. 1865–1870, 2006. View at: Publisher Site | Google Scholar
  67. C. M. McCay, M. F. Crowell, and L. A. Maynard, “The effect of retarded growth upon the Length of life span and upon the ultimate body size,” The Journal of Nutrition, vol. 10, no. 1, pp. 63–79, 1935. View at: Google Scholar
  68. R. J. Colman, R. M. Anderson, S. C. Johnson et al., “Caloric restriction delays disease onset and mortality in rhesus monkeys,” Science, vol. 325, no. 5937, pp. 201–204, 2009. View at: Publisher Site | Google Scholar
  69. R. Anderson and R. Weindruch, “Metabolic reprogramming in dietary restriction,” Interdisciplinary Topics in Gerontology, vol. 35, pp. 18–38, 2007. View at: Publisher Site | Google Scholar
  70. B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, “Ruminations on dietary restriction and aging,” Cellular and Molecular Life Sciences, vol. 64, no. 11, pp. 1323–1328, 2007. View at: Publisher Site | Google Scholar
  71. M. D. W. Piper and A. Bartke, “Diet and aging,” Cell Metabolism, vol. 8, no. 2, pp. 99–104, 2008. View at: Publisher Site | Google Scholar
  72. G. S. Roth, D. K. Ingram, and M. A. Lane, “Caloric restriction in primates and relevance to humans,” Annals of the New York Academy of Sciences, vol. 928, pp. 305–315, 2001. View at: Google Scholar
  73. R. L. Walford, D. Mock, R. Verdery, and T. MacCallum, “Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period,” The Journals of Gerontology A, vol. 57, no. 6, pp. B211–B224, 2002. View at: Google Scholar
  74. L. Fontana, T. E. Meyer, S. Klein, and J. O. Holloszy, “Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6659–6663, 2004. View at: Publisher Site | Google Scholar
  75. V. Tsagareli, M. Noakes, and R. J. Norman, “Effect of a very-low-calorie diet on in vitro fertilization outcomes,” Fertility and Sterility, vol. 86, no. 1, pp. 227–229, 2006. View at: Publisher Site | Google Scholar
  76. L. K. Heilbronn, L. De Jonge, M. I. Frisard et al., “Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1539–1548, 2006. View at: Publisher Site | Google Scholar
  77. S. B. Racette, E. P. Weiss, D. T. Villareal et al., “One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue,” The Journals of Gerontology A, vol. 61, no. 9, pp. 943–950, 2006. View at: Google Scholar
  78. T. E. Meyer, S. J. Kovács, A. A. Ehsani, S. Klein, J. O. Holloszy, and L. Fontana, “Long-term caloric restriction ameliorates the decline in diastolic function in humans,” Journal of the American College of Cardiology, vol. 47, no. 2, pp. 398–402, 2006. View at: Publisher Site | Google Scholar
  79. L. Fontana, S. Klein, J. O. Holloszy, and B. N. Premachandra, “Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 8, pp. 3232–3235, 2006. View at: Publisher Site | Google Scholar
  80. L. Fontana and S. Klein, “Aging, adiposity, and calorie restriction,” Journal of the American Medical Association, vol. 297, no. 9, pp. 986–994, 2007. View at: Publisher Site | Google Scholar
  81. J. O. Holloszy and L. Fontana, “Caloric restriction in humans,” Experimental Gerontology, vol. 42, no. 8, pp. 709–712, 2007. View at: Publisher Site | Google Scholar
  82. B. J. Willcox, D. C. Willcox, H. Todoriki et al., “Caloric restriction, the traditional okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span,” Annals of the New York Academy of Sciences, vol. 1114, pp. 434–455, 2007. View at: Publisher Site | Google Scholar
  83. L. Fontana, D. T. Villareal, E. P. Weiss et al., “Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial,” American Journal of Physiology, vol. 293, no. 1, pp. E197–E202, 2007. View at: Publisher Site | Google Scholar
  84. J. O. Holloszy and L. Fontana, “Caloric restriction in humans,” Experimental Gerontology, vol. 42, no. 8, pp. 709–712, 2007. View at: Publisher Site | Google Scholar
  85. T. Hofer, L. Fontana, S. D. Anton et al., “Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans,” Rejuvenation Research, vol. 11, no. 4, pp. 793–799, 2008. View at: Publisher Site | Google Scholar
  86. L. M. Redman, J. Rood, S. D. Anton, C. Champagne, S. R. Smith, and E. Ravussin, “Calorie restriction and bone health in young, overweight individuals,” Archives of Internal Medicine, vol. 168, no. 17, pp. 1859–1866, 2008. View at: Publisher Site | Google Scholar
  87. C. Cruzen and R. J. Colman, “Effects of caloric restriction on cardiovascular aging in non-human primates and humans,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 733–743, 2009. View at: Publisher Site | Google Scholar
  88. R. Cangemi, A. J. Friedmann, J. O. Holloszy, and L. Fontana, “Long-term effects of calorie restriction on serum sex-hormone concentrations in men,” Aging Cell, vol. 9, no. 2, pp. 236–242, 2010. View at: Publisher Site | Google Scholar
  89. J. F. Trepanowski and R. J. Bloomer, “The impact of religious fasting on human health,” Nutrition Journal, vol. 9, no. 1, article 57, 2010. View at: Publisher Site | Google Scholar
  90. A. Soare, R. Cangemi, D. Omodei, J. O. Holloszy, and L. Fontana, “Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans,” Aging, vol. 3, no. 4, pp. 374–379, 2011. View at: Google Scholar
  91. J. Rochon, C. W. Bales, E. Ravussin et al., “Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy,” The Journals of Gerontology A, vol. 66, no. 1, pp. 97–108, 2011. View at: Publisher Site | Google Scholar
  92. C. K. Martin, S. K. Das, L. Lindblad et al., “Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials,” Journal of Applied Physiology, vol. 110, no. 4, pp. 956–963, 2011. View at: Publisher Site | Google Scholar
  93. K. Stein, A. Soare, T. E. Meyer, R. Cangemi, J. O. Holloszy, and L. Fontana, “Caloric restriction may reverse age-related autonomic decline in humans,” Aging Cell, vol. 11, no. 4, pp. 644–650, 2012. View at: Google Scholar
  94. R. M. Anderson and R. Weindruch, “Metabolic reprogramming, caloric restriction and aging,” Trends in Endocrinology and Metabolism, vol. 21, no. 3, pp. 134–141, 2010. View at: Publisher Site | Google Scholar
  95. J. M. Zahn, S. Poosala, A. B. Owen et al., “AGEMAP: a gene expression database for aging in mice,” PLoS Genetics, vol. 3, no. 11, p. e201, 2007. View at: Publisher Site | Google Scholar
  96. J. P. de Magalhães, J. Curado, and G. M. Church, “Meta-analysis of age-related gene expression profiles identifies common signatures of aging,” Bioinformatics, vol. 25, no. 7, pp. 875–881, 2009. View at: Publisher Site | Google Scholar
  97. S. K. Park and T. A. Prolla, “Lessons learned from gene expression profile studies of aging and caloric restriction,” Ageing Research Reviews, vol. 4, no. 1, pp. 55–65, 2005. View at: Publisher Site | Google Scholar
  98. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at: Publisher Site | Google Scholar
  99. F. Lago, C. Dieguez, J. Gómez-Reino, and O. Gualillo, “The emerging role of adipokines as mediators of inflammation and immune responses,” Cytokine & Growth Factor Reviews, vol. 18, no. 3-4, pp. 313–325, 2007. View at: Publisher Site | Google Scholar
  100. U. Meier and A. M. Gressner, “Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin,” Clinical Chemistry, vol. 50, no. 9, pp. 1511–1525, 2004. View at: Publisher Site | Google Scholar
  101. M. Zhu, G. D. Lee, L. Ding et al., “Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction,” Experimental Gerontology, vol. 42, no. 8, pp. 733–744, 2007. View at: Publisher Site | Google Scholar
  102. K. Shinmura, K. Tamaki, K. Saito, Y. Nakano, T. Tobe, and R. Bolli, “Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase,” Circulation, vol. 116, no. 24, pp. 2809–2817, 2007. View at: Publisher Site | Google Scholar
  103. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at: Publisher Site | Google Scholar
  104. O. Ukkola and M. Santaniemi, “Adiponectin: a link between excess adiposity and associated comorbidities?” Journal of Molecular Medicine, vol. 80, no. 11, pp. 696–702, 2002. View at: Publisher Site | Google Scholar
  105. O. Renaldi, B. Pramono, H. Sinorita, L. B. Purnomo, R. H. Asdie, and A. H. Asdie, “Hypoadiponectinemia: a risk factor for metabolic syndrome,” Acta medica Indonesiana, vol. 41, no. 1, pp. 20–24, 2009. View at: Google Scholar
  106. A. E. Civitarese, B. Ukropcova, S. Carling et al., “Role of adiponectin in human skeletal muscle bioenergetics,” Cell Metabolism, vol. 4, no. 1, pp. 75–87, 2006. View at: Publisher Site | Google Scholar
  107. M. Nishimura, Y. Izumiya, A. Higuchi et al., “Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase-dependent mechanisms,” Circulation, vol. 117, no. 2, pp. 216–223, 2008. View at: Publisher Site | Google Scholar
  108. J. M. Fernández-Real, A. López-Bermejo, R. Casamitjana, and W. Ricart, “Novel interactions of adiponectin with the endocrine system and inflammatory parameters,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 6, pp. 2714–2718, 2003. View at: Google Scholar
  109. W. Aldhahi and O. Hamdy, “Adipokines, inflammation, and the endothelium in diabetes,” Current Diabetes Reports, vol. 3, no. 4, pp. 293–298, 2003. View at: Google Scholar
  110. N. Ouchi, S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh, “Obesity, adiponectin and vascular inflammatory disease,” Current Opinion in Lipidology, vol. 14, no. 6, pp. 561–566, 2003. View at: Publisher Site | Google Scholar
  111. D. M. Huffman, D. R. Moellering, W. E. Grizzle, C. R. Stockard, M. S. Johnson, and T. R. Nagy, “Effect of exercise and calorie restriction on biomarkers of aging in mice,” American Journal of Physiology, vol. 294, no. 5, pp. R1618–R1627, 2008. View at: Publisher Site | Google Scholar
  112. L. Fontana, E. P. Weiss, D. T. Villareal, S. Klein, and J. O. Holloszy, “Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans,” Aging Cell, vol. 7, no. 5, pp. 681–687, 2008. View at: Publisher Site | Google Scholar
  113. A. R. Cameron, S. Anton, L. Melville et al., “Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a,” Aging Cell, vol. 7, no. 1, pp. 69–77, 2008. View at: Publisher Site | Google Scholar
  114. W. Qin, W. Zhao, L. Ho et al., “Regulation of forkhead transcription factor FOXO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 335–347, 2008. View at: Publisher Site | Google Scholar
  115. F. Flachsbart, A. Caliebe, R. Kleindorp et al., “Association of FOX03A variation with human longevity confirmed in German centenarians,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2700–2705, 2009. View at: Publisher Site | Google Scholar
  116. E. J. Anderson, M. E. Lustig, K. E. Boyle et al., “Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 573–581, 2009. View at: Publisher Site | Google Scholar
  117. D. E. Harrison, R. Strong, Z. D. Sharp et al., “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392–395, 2009. View at: Publisher Site | Google Scholar
  118. C. Chen, Y. Liu, Y. Liu, and P. Zheng, “mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells,” Science Signaling, vol. 2, no. 98, p. ra75, 2009. View at: Publisher Site | Google Scholar
  119. P. Kapahi, D. Chen, A. N. Rogers et al., “With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging,” Cell Metabolism, vol. 11, no. 6, pp. 453–465, 2010. View at: Publisher Site | Google Scholar
  120. B. M. Zid, A. N. Rogers, S. D. Katewa et al., “4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila,” Cell, vol. 139, no. 1, pp. 149–160, 2009. View at: Publisher Site | Google Scholar
  121. S. Sengupta, T. R. Peterson, M. Laplante, S. Oh, and D. M. Sabatini, “mTORC1 controls fasting-induced ketogenesis and its modulation by ageing,” Nature, vol. 468, no. 7327, pp. 1100–1106, 2010. View at: Publisher Site | Google Scholar
  122. J. T. Cunningham, J. T. Rodgers, D. H. Arlow, F. Vazquez, V. K. Mootha, and P. Puigserver, “mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex,” Nature, vol. 450, no. 7170, pp. 736–740, 2007. View at: Publisher Site | Google Scholar
  123. A. Ramanathan and S. L. Schreiber, “Direct control of mitochondrial function by mTOR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 52, pp. 22229–22232, 2009. View at: Publisher Site | Google Scholar
  124. J. Knapowski, K. Wieczorowska-Tobis, and J. Witowski, “Pathophysiology of ageing,” Journal of Physiology and Pharmacology, vol. 53, no. 2, pp. 135–146, 2002. View at: Google Scholar
  125. J. P. J. Issa, N. Ahuja, M. Toyota, M. P. Bronner, and T. A. Brentnall, “Accelerated age-related CpG island methylation in ulcerative colitis,” Cancer Research, vol. 61, no. 9, pp. 3573–3577, 2001. View at: Google Scholar
  126. J. P. J. Issa, Y. L. Ottaviano, P. Celano, S. R. Hamilton, N. E. Davidson, and S. B. Baylin, “Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon,” Nature Genetics, vol. 7, no. 4, pp. 536–540, 1994. View at: Publisher Site | Google Scholar
  127. J. P. J. Issa, P. M. Vertino, C. D. Boehm, I. F. Newsham, and S. B. Baylin, “Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11757–11762, 1996. View at: Publisher Site | Google Scholar
  128. R. P. Singhal, L. L. Mays-Hoopes, and G. L. Eichhorn, “DNA methylation in aging of mice,” Mechanisms of Ageing and Development, vol. 41, no. 3, pp. 199–210, 1987. View at: Google Scholar
  129. T. Waki, G. Tamura, M. Sato, and T. Motoyama, “Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples,” Oncogene, vol. 22, no. 26, pp. 4128–4133, 2003. View at: Publisher Site | Google Scholar
  130. V. L. Wilson, R. A. Smith, S. Ma, and R. G. Cutler, “Genomic 5-methyldeoxycytidine decreases with age,” The Journal of Biological Chemistry, vol. 262, no. 21, pp. 9948–9951, 1987. View at: Google Scholar
  131. T. Y. Kim, H. J. Lee, K. S. Hwang et al., “Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma,” Laboratory Investigation, vol. 84, no. 4, pp. 479–484, 2004. View at: Publisher Site | Google Scholar
  132. Y. Li, M. Daniel, and T. O. Tollefsbol, “Epigenetic regulation of caloric restriction in aging,” BMC Medicine, vol. 9, article 98, 2011. View at: Google Scholar
  133. A. Vaquero and D. Reinberg, “Calorie restriction and the exercise of chromatin,” Genes & Development, vol. 23, no. 16, pp. 1849–1869, 2009. View at: Publisher Site | Google Scholar
  134. U. Muñoz-Najar and J. M. Sedivy, “Epigenetic control of aging,” Antioxidants & Redox Signaling, vol. 14, no. 2, pp. 241–259, 2011. View at: Publisher Site | Google Scholar
  135. B. S. Hass, R. W. Hart, M. H. Lu, and B. D. Lyn-Cook, “Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro,” Mutation Research, vol. 295, no. 4–6, pp. 281–289, 1993. View at: Google Scholar
  136. Y. Li, L. Liu, and T. O. Tollefsbol, “Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression,” The FASEB Journal, vol. 24, no. 5, pp. 1442–1453, 2010. View at: Publisher Site | Google Scholar
  137. R. S. Ahima, “Connecting obesity, aging and diabetes,” Nature Medicine, vol. 15, no. 9, pp. 996–997, 2009. View at: Publisher Site | Google Scholar
  138. T. M. Larsen, S. Dalskov, M. Van Baak et al., “The diet, obesity and genes (diogenes) dietary study in eight European countries—a comprehensive design for long-term intervention,” Obesity Reviews, vol. 11, no. 1, pp. 76–91, 2010. View at: Publisher Site | Google Scholar
  139. F. I. Milagro, J. Campión, P. Cordero et al., “A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss,” The FASEB Journal, vol. 25, no. 4, pp. 1378–1389, 2011. View at: Publisher Site | Google Scholar
  140. L. Bouchard, R. Rabasa-Lhoret, M. Faraj et al., “Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction,” The American Journal of Clinical Nutrition, vol. 91, no. 2, pp. 309–320, 2010. View at: Publisher Site | Google Scholar
  141. J. Campión, F. I. Milagro, E. Goyenechea, and J. A. Martínez, “TNF-α promoter methylation as a predictive biomarker for weight-loss response,” Obesity, vol. 17, no. 6, pp. 1293–1297, 2009. View at: Publisher Site | Google Scholar
  142. A. L. Clayton, C. A. Hazzalin, and L. C. Mahadevan, “Enhanced histone acetylation and transcription: a dynamic perspective,” Molecular Cell, vol. 23, no. 3, pp. 289–296, 2006. View at: Publisher Site | Google Scholar
  143. M. Meyerson, C. M. Counter, E. N. Eaton et al., “hEST2, the putative human telomerase catalytic subunit gene, is up- regulated in tumor cells and during immortalization,” Cell, vol. 90, no. 4, pp. 785–795, 1997. View at: Publisher Site | Google Scholar
  144. T. Kanaya, S. Kyo, M. Takakura, H. Ito, M. Namiki, and M. Inoue, “hTERT is a critical determinant of telomerase activity in renal-cell carcinoma,” International Journal of Cancer, vol. 78, no. 5, pp. 539–543, 1998. View at: Google Scholar
  145. S. J. Lin, P. A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae,” Science, vol. 289, no. 5487, pp. 2126–2128, 2000. View at: Publisher Site | Google Scholar
  146. L. Guarente and F. Picard, “Calorie restriction—the SIR2 connection,” Cell, vol. 120, no. 4, pp. 473–482, 2005. View at: Publisher Site | Google Scholar
  147. I. B. Leibiger and P. O. Berggren, “Sirt1: a metabolic master switch that modulates lifespan,” Nature Medicine, vol. 12, no. 1, pp. 34–36, 2006. View at: Publisher Site | Google Scholar
  148. L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007. View at: Publisher Site | Google Scholar
  149. H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004. View at: Publisher Site | Google Scholar
  150. Y. Kanfi, V. Peshti, Y. M. Gozlan, M. Rathaus, R. Gil, and H. Y. Cohen, “Regulation of SIRT1 protein levels by nutrient availability,” FEBS Letters, vol. 582, no. 16, pp. 2417–2423, 2008. View at: Publisher Site | Google Scholar
  151. A. B. Crujeiras, D. Parra, E. Goyenechea, and J. A. Martínez, “Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction,” European Journal of Clinical Investigation, vol. 38, no. 9, pp. 672–678, 2008. View at: Publisher Site | Google Scholar
  152. L. A. Wakeling, L. J. Ions, and D. Ford, “Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?” Age, vol. 31, no. 4, pp. 327–341, 2009. View at: Publisher Site | Google Scholar
  153. Y. Li and T. O. Tollefsbol, “P16INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms,” PLoS ONE, vol. 6, no. 2, Article ID e17421, 2011. View at: Publisher Site | Google Scholar
  154. M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes & Development, vol. 20, no. 21, pp. 2913–2921, 2006. View at: Publisher Site | Google Scholar
  155. J. Luo, A. Y. Nikolaev, S. I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001. View at: Publisher Site | Google Scholar
  156. E. Langley, M. Pearson, M. Faretta et al., “Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence,” The EMBO Journal, vol. 21, no. 10, pp. 2383–2396, 2002. View at: Publisher Site | Google Scholar
  157. H. Vaziri, S. K. Dessain, E. N. Eaton et al., “hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159, 2001. View at: Publisher Site | Google Scholar
  158. A. Brunet, L. B. Sweeney, J. F. Sturgill et al., “Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase,” Science, vol. 303, no. 5666, pp. 2011–2015, 2004. View at: Publisher Site | Google Scholar
  159. M. C. Motta, N. Divecha, M. Lemieux et al., “Mammalian SIRT1 represses forkhead transcription factors,” Cell, vol. 116, no. 4, pp. 551–563, 2004. View at: Publisher Site | Google Scholar
  160. M. M. Schilling, J. K. Oeser, J. N. Boustead, B. P. Flemming, and R. M. O’Brien, “Gluconeogenesis: re-evaluating the FOXO1-PGC-1α connection,” Nature, vol. 443, no. 7111, pp. E10–E11, 2006. View at: Publisher Site | Google Scholar
  161. R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000. View at: Publisher Site | Google Scholar
  162. J. Koubova and L. Guarente, “How does calorie restriction work?” Genes & Development, vol. 17, no. 3, pp. 313–321, 2003. View at: Publisher Site | Google Scholar
  163. R. S. Sohal and R. Weindruch, “Oxidative stress, caloric restriction, and aging,” Science, vol. 273, no. 5271, pp. 59–63, 1996. View at: Google Scholar
  164. B. J. Merry, “Molecular mechanisms linking calorie restriction and longevity,” The International Journal of Biochemistry & Cell Biology, vol. 34, no. 11, pp. 1340–1354, 2002. View at: Publisher Site | Google Scholar
  165. J. Jeong, K. Juhn, H. Lee et al., “SIRT1 promotes DNA repair activity and deacetylation of Ku70,” Experimental & Molecular Medicine, vol. 39, no. 1, pp. 8–13, 2007. View at: Google Scholar
  166. H. Y. Cohen, S. Lavu, K. J. Bitterman et al., “Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis,” Molecular Cell, vol. 13, no. 5, pp. 627–638, 2004. View at: Publisher Site | Google Scholar
  167. H. Wong and K. Riabowol, “Differential CDK-inhibitor gene expression in aging human diploid fibroblasts,” Experimental Gerontology, vol. 31, no. 1-2, pp. 311–325, 1996. View at: Publisher Site | Google Scholar
  168. J. Gil and G. Peters, “Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all,” Nature Reviews, vol. 7, no. 9, pp. 667–677, 2006. View at: Publisher Site | Google Scholar
  169. J. Krishnamurthy, C. Torrice, M. R. Ramsey et al., “Ink4a/Arf expression is a biomarker of aging,” The Journal of Clinical Investigation, vol. 114, no. 9, pp. 1299–1307, 2004. View at: Publisher Site | Google Scholar
  170. D. A. Alcorta, Y. Xiong, D. Phelps, G. Hannon, D. Beach, and J. C. Barrett, “Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13742–13747, 1996. View at: Publisher Site | Google Scholar
  171. A. Melk, B. M. W. Schmidt, O. Takeuchi, B. Sawitzki, D. C. Rayner, and P. F. Halloran, “Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney,” Kidney International, vol. 65, no. 2, pp. 510–520, 2004. View at: Publisher Site | Google Scholar
  172. W. Fischle, Y. Wang, and C. D. Allis, “Histone and chromatin cross-talk,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 172–183, 2003. View at: Publisher Site | Google Scholar
  173. T. Kouzarides, “Histone methylation in transcriptional control,” Current Opinion in Genetics & Development, vol. 12, no. 2, pp. 198–209, 2002. View at: Publisher Site | Google Scholar
  174. N. Noren Hooten, K. Abdelmohsen, M. Gorospe, N. Ejiogu, A. B. Zonderman, and M. K. Evans, “microRNA expression patterns reveal differential expression of target genes with age,” PloS One, vol. 5, no. 5, Article ID e10724, 2010. View at: Publisher Site | Google Scholar
  175. A. De Lencastre, Z. Pincus, K. Zhou, M. Kato, S. S. Lee, and F. J. Slack, “MicroRNAs both promote and antagonize longevity in C. elegans,” Current Biology, vol. 20, no. 24, pp. 2159–2168, 2010. View at: Publisher Site | Google Scholar
  176. D. J. Bates, N. Li, R. Liang et al., “MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging,” Aging Cell, vol. 9, no. 1, pp. 1–18, 2010. View at: Publisher Site | Google Scholar
  177. U. A. Ørom, M. K. Lim, J. E. Savage et al., “MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction,” Cell Cycle, vol. 11, no. 7, pp. 1291–1295, 2012. View at: Google Scholar
  178. A. Khanna, S. Muthusamy, R. Liang, H. Sarojini, and E. Wang, “Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice,” Aging, vol. 3, no. 3, pp. 223–236, 2011. View at: Google Scholar
  179. E. Paradis, H. Douillard, M. Koutroumanis, C. Goodyer, and A. LeBlanc, “Amyloid β peptide of Alzheimer’s disease downregulates bcl-2 and upregulates bax expression in human neurons,” Journal of Neuroscience, vol. 16, no. 23, pp. 7533–7539, 1996. View at: Google Scholar
  180. C. Perier, J. Bové, D. C. Wu et al., “Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8161–8166, 2007. View at: Publisher Site | Google Scholar
  181. N. Louneva, J. W. Cohen, L. Y. Han et al., “Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease,” The American Journal of Pathology, vol. 173, no. 5, pp. 1488–1495, 2008. View at: Publisher Site | Google Scholar
  182. M. Yamada, K. Kida, W. Amutuhaire, F. Ichinose, and M. Kaneki, “Gene disruption of caspase-3 prevents MPTP-induced Parkinson’s disease in mice,” Biochemical and Biophysical Research Communications, vol. 402, no. 2, pp. 312–318, 2010. View at: Publisher Site | Google Scholar
  183. W. Kudo, H. P. Lee, M. A. Smith, X. Zhu, S. Matsuyama, and H. G. Lee, “Inhibition of Bax protects neuronal cells from oligomeric Aβ neurotoxicity,” Cell Death & Disease, vol. 3, Article ID e309, 2012. View at: Publisher Site | Google Scholar
  184. D. K. Ingram, M. Zhu, J. Mamczarz et al., “Calorie restriction mimetics: an emerging research field,” Aging Cell, vol. 5, no. 2, pp. 97–108, 2006. View at: Publisher Site | Google Scholar
  185. H. R. Warner, D. Ingram, R. A. Miller, N. L. Nadon, and A. G. Richardson, “Program for testing biological interventions to promote healthy aging,” Mechanisms of Ageing and Development, vol. 115, no. 3, pp. 199–207, 2000. View at: Publisher Site | Google Scholar
  186. N. L. Nadon, R. Strong, R. A. Miller et al., “Design of aging intervention studies: the NIA interventions testing program,” Age, vol. 30, no. 4, pp. 187–199, 2008. View at: Publisher Site | Google Scholar
  187. R. A. Miller, D. E. Harrison, C. M. Astle et al., “An aging interventions testing program: study design and interim report,” Aging Cell, vol. 6, no. 4, pp. 565–575, 2007. View at: Publisher Site | Google Scholar
  188. R. Strong, R. A. Miller, C. M. Astle et al., “Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice,” Aging Cell, vol. 7, no. 5, pp. 641–650, 2008. View at: Publisher Site | Google Scholar
  189. N. L. Nadon, “Exploiting the rodent model for studies on the pharmacology of lifespan extension,” Aging Cell, vol. 5, no. 1, pp. 9–15, 2006. View at: Publisher Site | Google Scholar
  190. J. O. Holloszy, “Mortality rate and longevity of food-restricted exercising male rats: a reevaluation,” Journal of Applied Physiology, vol. 82, no. 2, pp. 399–403, 1997. View at: Google Scholar
  191. K. C. Deruisseau, A. N. Kavazis, S. Judge et al., “Moderate caloric restriction increases diaphragmatic antioxidant enzyme mRNA, but not when combined with lifelong exercise,” Antioxidants & Redox Signaling, vol. 8, no. 3-4, pp. 539–547, 2006. View at: Publisher Site | Google Scholar
  192. A. Y. Seo, T. Hofer, B. Sung, S. Judge, H. Y. Chung, and C. Leeuwenburgh, “Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise,” Antioxidants & Redox Signaling, vol. 8, no. 3-4, pp. 529–538, 2006. View at: Publisher Site | Google Scholar
  193. R. Kalani, S. Judge, C. Carter, M. Pahor, and C. Leeuwenburgh, “Effects of caloric restriction and exercise on age-related, chronic inflammation assessed by C-reactive protein and interleukin-6,” The Journals of Gerontology A, vol. 61, no. 3, pp. 211–217, 2006. View at: Google Scholar
  194. P. Abete, G. Testa, G. Galizia et al., “Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart,” Experimental Gerontology, vol. 40, no. 1-2, pp. 43–50, 2005. View at: Publisher Site | Google Scholar
  195. D. L. Crandall, R. P. Feirer, D. R. Griffith, and D. C. Beitz, “Relative role of caloric restriction and exercise training upon susceptibility to isoproterenol-induced myocardial infarction in male rats,” The American Journal of Clinical Nutrition, vol. 34, no. 5, pp. 841–847, 1981. View at: Google Scholar
  196. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, no. 3, article e76, 2007. View at: Publisher Site | Google Scholar
  197. D. E. Larson-Meyer, B. R. Newcomer, L. K. Heilbronn et al., “Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function,” Obesity, vol. 16, no. 6, pp. 1355–1362, 2008. View at: Publisher Site | Google Scholar
  198. M. Lefevre, L. M. Redman, L. K. Heilbronn et al., “Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals,” Atherosclerosis, vol. 203, no. 1, pp. 206–213, 2009. View at: Publisher Site | Google Scholar
  199. D. E. Larson-Meyer, L. Redman, L. K. Heilbronn, C. K. Martin, and E. Ravussin, “Caloric restriction with or without exercise: the fitness versus fatness debate,” Medicine and Science in Sports and Exercise, vol. 42, no. 1, pp. 152–159, 2010. View at: Publisher Site | Google Scholar
  200. N. E. Silverman, B. J. Nicklas, and A. S. Ryan, “Addition of aerobic exercise to a weight loss program increases BMD, with an associated reduction in inflammation in overweight postmenopausal women,” Calcified Tissue International, vol. 84, no. 4, pp. 257–265, 2009. View at: Publisher Site | Google Scholar
  201. J. F. Trepanowski, R. E. Canale, K. E. Marshall, M. M. Kabir, and R. J. Bloomer, “Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings,” Nutrition Journal, vol. 10, article 107, 2011. View at: Google Scholar
  202. K. Iwasaki, C. A. Gleiser, E. J. Masoro, C. A. McMahan, E. Seo, and B. P. Yu, “The influence of dietary protein source on longevity and age-related disease processes of Fischer rats,” Journals of Gerontology, vol. 43, no. 1, pp. B5–B12, 1988. View at: Google Scholar
  203. I. Shimokawa, Y. Higami, B. P. Yu, E. J. Masoro, and T. Ikeda, “Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats,” Aging, vol. 8, no. 4, pp. 254–262, 1996. View at: Google Scholar
  204. M. Khorakova, Z. Deil, D. Khausman, and K. Matsek, “Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats,” Fiziologicheskii Zhurnal, vol. 36, no. 5, pp. 16–21, 1990. View at: Google Scholar
  205. C. Kubo, B. C. Johnson, A. Gajjar, and R. A. Good, “Crucial dietary factors in maximizing life span and longevity in autoimmune-prone mice,” The Journal of Nutrition, vol. 117, no. 6, pp. 1129–1135, 1987. View at: Google Scholar
  206. R. Pamplona and G. Barja, “Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 496–508, 2006. View at: Publisher Site | Google Scholar
  207. A. Sanz, P. Caro, J. G. Sanchez, and G. Barja, “Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 200–209, 2006. View at: Publisher Site | Google Scholar
  208. A. Sanz, J. Gómez, P. Caro, and G. Barja, “Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage,” Journal of Bioenergetics and Biomembranes, vol. 38, no. 5-6, pp. 327–333, 2006. View at: Publisher Site | Google Scholar
  209. P. E. Segall and P. S. Timiras, “Pathophysiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging,” Mechanisms of Ageing and Development, vol. 5, no. 2, pp. 109–124, 1976. View at: Google Scholar
  210. H. Ooka, P. E. Segall, and P. S. Timiras, “Histology and survival in age-delayed low-tryptophan-fed rats,” Mechanisms of Ageing and Development, vol. 43, no. 1, pp. 79–98, 1988. View at: Google Scholar
  211. R. A. Miller, G. Buehner, Y. Chang, J. M. Harper, R. Sigler, and M. Smith-Wheelock, “Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance,” Aging Cell, vol. 4, no. 3, pp. 119–125, 2005. View at: Publisher Site | Google Scholar
  212. N. Orentreich, J. R. Matias, A. DeFelice, and J. A. Zimmerman, “Low methionine ingestion by rats extends life span,” The Journal of Nutrition, vol. 123, no. 2, pp. 269–274, 1993. View at: Google Scholar
  213. J. P. Richie Jr., Y. Leutzinger, S. Parthasarathy, V. Malloy, N. Orentreich, and J. A. Zimmerman, “Methionine restriction increases blood glutathione and longevity in F344 rats,” The FASEB Journal, vol. 8, no. 15, pp. 1302–1307, 1994. View at: Google Scholar
  214. J. P. Richie Jr., D. Komninou, Y. Leutzinger et al., “Tissue glutathione and cysteine levels in methionine-restricted rats,” Nutrition, vol. 20, no. 9, pp. 800–805, 2004. View at: Publisher Site | Google Scholar
  215. J. A. Zimmerman, V. Malloy, R. Krajcik, and N. Orentreich, “Nutritional control of aging,” Experimental Gerontology, vol. 38, no. 1-2, pp. 47–52, 2003. View at: Publisher Site | Google Scholar
  216. A. Sanz, P. Caro, V. Ayala, M. Portero-Otin, R. Pamplona, and G. Barja, “Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins,” The FASEB Journal, vol. 20, no. 8, pp. 1064–1073, 2006. View at: Publisher Site | Google Scholar
  217. P. Caro, J. Gómez, M. López-Torres et al., “Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver,” Biogerontology, vol. 9, no. 3, pp. 183–196, 2008. View at: Publisher Site | Google Scholar
  218. M. C. Ruiz, V. Ayala, M. Portero-Otín, J. R. Requena, G. Barja, and R. Pamplona, “Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals,” Mechanisms of Ageing and Development, vol. 126, no. 10, pp. 1106–1114, 2005. View at: Publisher Site | Google Scholar
  219. N. Hidiroglou, G. S. Gilani, L. Long et al., “The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil,” The Journal of Nutritional Biochemistry, vol. 15, no. 12, pp. 730–740, 2004. View at: Publisher Site | Google Scholar
  220. P. Caro, J. Gomez, I. Sanchez et al., “Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver,” Biogerontology, vol. 10, no. 5, pp. 579–592, 2009. View at: Publisher Site | Google Scholar
  221. M. F. McCarty, J. Barroso-Aranda, and F. Contreras, “The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy,” Medical Hypotheses, vol. 72, no. 2, pp. 125–128, 2009. View at: Publisher Site | Google Scholar
  222. K. A. Varady and M. K. Hellerstein, “Alternate-day fasting and chronic disease prevention: a review of human and animal trials,” The American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 7–13, 2007. View at: Google Scholar
  223. R. M. Anson, Z. Guo, R. de Cabo et al., “Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6216–6220, 2003. View at: Publisher Site | Google Scholar
  224. O. Descamps, J. Riondel, V. Ducros, and A. M. Roussel, “Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting,” Mechanisms of Ageing and Development, vol. 126, no. 11, pp. 1185–1191, 2005. View at: Publisher Site | Google Scholar
  225. W. Duan, Z. Guo, H. Jiang, M. Ware, and M. P. Mattson, “Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor,” Endocrinology, vol. 144, no. 6, pp. 2446–2453, 2003. View at: Publisher Site | Google Scholar
  226. I. Ahmet, R. Wan, M. P. Mattson, E. G. Lakatta, and M. Talan, “Cardioprotection by intermittent fasting in rats,” Circulation, vol. 112, no. 20, pp. 3115–3121, 2005. View at: Publisher Site | Google Scholar
  227. D. E. Mager, R. Wan, M. Brown et al., “Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats,” The FASEB Journal, vol. 20, no. 6, pp. 631–637, 2006. View at: Publisher Site | Google Scholar
  228. C. R. Pedersen, I. Hagemann, T. Bock, and K. Buschard, “Intermittent feeding and fasting reduces diabetes incidence in BB rats,” Autoimmunity, vol. 30, no. 4, pp. 243–250, 1999. View at: Google Scholar
  229. K. Tikoo, D. N. Tripathi, D. G. Kabra, V. Sharma, and A. B. Gaikwad, “Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53,” FEBS Letters, vol. 581, no. 5, pp. 1071–1078, 2007. View at: Publisher Site | Google Scholar
  230. R. Wan, S. Camandola, and M. P. Mattson, “Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats,” The FASEB Journal, vol. 17, no. 9, pp. 1133–1134, 2003. View at: Google Scholar
  231. L. K. Heilbronn, S. R. Smith, C. K. Martin, S. D. Anton, and E. Ravussin, “Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism,” The American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 69–73, 2005. View at: Google Scholar
  232. N. Halberg, M. Henriksen, N. Söderhamn et al., “Effect of intermittent fasting and refeeding on insulin action in healthy men,” Journal of Applied Physiology, vol. 99, no. 6, pp. 2128–2136, 2005. View at: Publisher Site | Google Scholar
  233. J. B. Johnson, W. Summer, R. G. Cutler et al., “Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma,” Free Radical Biology and Medicine, vol. 42, no. 5, pp. 665–674, 2007. View at: Publisher Site | Google Scholar
  234. V. D. Dixit, H. Yang, K. S. Sayeed et al., “Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production,” Journal of Inflammation, vol. 8, article 6, 2011. View at: Publisher Site | Google Scholar
  235. K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003. View at: Publisher Site | Google Scholar
  236. J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004. View at: Google Scholar
  237. H. Yang, J. A. Baur, A. Chen, C. Miller, and D. A. Sinclair, “Design and synthesis of compounds that extend yeast replicative lifespan,” Aging Cell, vol. 6, no. 1, pp. 35–43, 2007. View at: Publisher Site | Google Scholar
  238. D. R. Valenzano, E. Terzibasi, T. Genade, A. Cattaneo, L. Domenici, and A. Cellerino, “Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate,” Current Biology, vol. 16, no. 3, pp. 296–300, 2006. View at: Publisher Site | Google Scholar
  239. M. Kaeberlein, T. McDonagh, B. Heltweg et al., “Substrate-specific activation of sirtuins by resveratrol,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 17038–17045, 2005. View at: Publisher Site | Google Scholar
  240. M. Kaeberlein and R. W. Powers III, “Sir2 and calorie restriction in yeast: a skeptical perspective,” Ageing Research Reviews, vol. 6, no. 2, pp. 128–140, 2007. View at: Publisher Site | Google Scholar
  241. M. Kaeberlein and B. K. Kennedy, “Does resveratrol activate yeast Sir2 in vivo?” Aging Cell, vol. 6, no. 4, pp. 415–416, 2007. View at: Publisher Site | Google Scholar
  242. D. L. Smith Jr., C. Li, M. Matecic, N. Maqani, M. Bryk, and J. S. Smith, “Calorie restriction effects on silencing and recombination at the yeast rDNA,” Aging Cell, vol. 8, no. 6, pp. 633–642, 2009. View at: Publisher Site | Google Scholar
  243. T. M. Bass, D. Weinkove, K. Houthoofd, D. Gems, and L. Partridge, “Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 128, no. 10, pp. 546–552, 2007. View at: Publisher Site | Google Scholar
  244. E. L. Greer and A. Brunet, “Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans,” Aging Cell, vol. 8, no. 2, pp. 113–127, 2009. View at: Publisher Site | Google Scholar
  245. T. L. Kaeberlein, E. D. Smith, M. Tsuchiya et al., “Lifespan extension in Caenorhabditis elegans by complete removal of food,” Aging Cell, vol. 5, no. 6, pp. 487–494, 2006. View at: Publisher Site | Google Scholar
  246. S. Zou, J. R. Carey, P. Liedo et al., “The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly,” Experimental Gerontology, vol. 44, no. 6-7, pp. 472–476, 2009. View at: Publisher Site | Google Scholar
  247. M. Riesen and A. Morgan, “Calorie restriction reduces rDNA recombination independently of rDNA silencing,” Aging Cell, vol. 8, no. 6, pp. 624–632, 2009. View at: Publisher Site | Google Scholar
  248. M. Pacholec, J. E. Bleasdale, B. Chrunyk et al., “SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1,” The Journal of Biological Chemistry, vol. 285, no. 11, pp. 8340–8351, 2010. View at: Publisher Site | Google Scholar
  249. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at: Publisher Site | Google Scholar
  250. M. Zang, S. Xu, K. A. Maitland-Toolan et al., “Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice,” Diabetes, vol. 55, no. 8, pp. 2180–2191, 2006. View at: Publisher Site | Google Scholar
  251. B. Dasgupta and J. Milbrandt, “Resveratrol stimulates AMP kinase activity in neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7217–7222, 2007. View at: Publisher Site | Google Scholar
  252. N. L. Price, A. P. Gomes, A. J. Ling et al., “SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function,” Cell Metabolism, vol. 15, no. 5, pp. 675–690, 2012. View at: Google Scholar
  253. J. L. Barger, T. Kayo, J. M. Vann et al., “A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice,” PLoS ONE, vol. 3, no. 6, Article ID e2264, 2008. View at: Publisher Site | Google Scholar
  254. K. J. Pearson, J. A. Baur, K. N. Lewis et al., “Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span,” Cell Metabolism, vol. 8, no. 2, pp. 157–168, 2008. View at: Publisher Site | Google Scholar
  255. R. A. Miller, D. E. Harrison, C. M. Astle et al., “Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice,” The Journals of Gerontology A, vol. 66, no. 2, pp. 191–201, 2011. View at: Publisher Site | Google Scholar
  256. D. L. Smith Jr., T. R. Nagy, and D. B. Allison, “Calorie restriction: what recent results suggest for the future of ageing research,” European Journal of Clinical Investigation, vol. 40, no. 5, pp. 440–450, 2010. View at: Publisher Site | Google Scholar
  257. A. Dal-Pan, S. Blanc, and F. Aujard, “Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity,” BMC Physiology, vol. 10, no. 1, article 11, 2010. View at: Publisher Site | Google Scholar
  258. A. Dal-Pan, J. Terrien, F. Pifferi et al., “Caloric restriction or resveratrol supplementation and ageing in a non-human primate: first-year outcome of the RESTRIKAL study in Microcebus murinus,” Age, vol. 33, no. 1, pp. 15–31, 2011. View at: Publisher Site | Google Scholar
  259. L. Peltz, J. Gomez, M. Marquez et al., “Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development,” PLoS One, vol. 7, no. 5, Article ID e37162, 2012. View at: Google Scholar
  260. J. Mikuła-Pietrasik, A. Kuczmarska, B. Rubiś et al., “Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms,” Free Radical Biology & Medicine, vol. 52, pp. 2234–2245, 2012. View at: Google Scholar
  261. J. M. Smoliga, J. A. Baur, and H. A. Hausenblas, “Resveratrol and health—a comprehensive review of human clinical trials,” Molecular Nutrition & Food Research, vol. 55, no. 8, pp. 1129–1141, 2011. View at: Publisher Site | Google Scholar
  262. H. Ghanim, C. L. Sia, S. Abuaysheh et al., “An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 9, pp. E1–E8, 2010. View at: Publisher Site | Google Scholar
  263. H. Ghanim, S. Abuaysheh, C. L. Sia et al., “Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance,” Diabetes Care, vol. 32, no. 12, pp. 2281–2287, 2009. View at: Publisher Site | Google Scholar
  264. H. Ghanim, C. L. Sia, K. Korzeniewski et al., “A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 5, pp. 1409–1414, 2011. View at: Publisher Site | Google Scholar
  265. P. Brasnyó, G. A. Molnár, M. Mohás et al., “Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients,” The British Journal of Nutrition, vol. 106, no. 3, pp. 383–389, 2011. View at: Google Scholar
  266. L. M. Vislocky and M. L. Fernandez, “Biomedical effects of grape products,” Nutrition Reviews, vol. 68, no. 11, pp. 656–670, 2010. View at: Publisher Site | Google Scholar
  267. A. A. A. Bertelli and D. K. Das, “Grapes, wines, resveratrol, and heart health,” Journal of Cardiovascular Pharmacology, vol. 54, no. 6, pp. 468–476, 2009. View at: Publisher Site | Google Scholar
  268. M. M. Dohadwala and J. A. Vita, “Grapes and cardiovascular disease,” The Journal of Nutrition, vol. 139, no. 9, pp. 17885–17935, 2009. View at: Publisher Site | Google Scholar
  269. W. R. Leifert and M. Y. Abeywardena, “Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity,” Nutrition Research, vol. 28, no. 11, pp. 729–737, 2008. View at: Publisher Site | Google Scholar
  270. T. Wallerath, G. Deckert, T. Ternes et al., “Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase,” Circulation, vol. 106, no. 13, pp. 1652–1658, 2002. View at: Publisher Site | Google Scholar
  271. T. Wallerath, H. Li, U. Gödtel-Ambrust, P. M. Schwarz, and U. Förstermann, “A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase,” Nitric Oxide, vol. 12, no. 2, pp. 97–104, 2005. View at: Publisher Site | Google Scholar
  272. J. F. Leikert, T. R. Räthel, P. Wohlfart, V. Cheynier, A. M. Vollmar, and V. M. Dirsch, “Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells,” Circulation, vol. 106, no. 13, pp. 1614–1617, 2002. View at: Publisher Site | Google Scholar
  273. P. Gresele, P. Pignatelli, G. Guglielmini et al., “Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production,” The Journal of Nutrition, vol. 138, no. 9, pp. 1602–1608, 2008. View at: Google Scholar
  274. D. O. Kennedy, E. L. Wightman, J. L. Reay et al., “Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation,” The American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1590–1597, 2010. View at: Publisher Site | Google Scholar
  275. R. H. X. Wong, P. R. C. Howe, J. D. Buckley, A. M. Coates, I. Kunz, and N. M. Berry, “Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 11, pp. 851–856, 2011. View at: Publisher Site | Google Scholar
  276. B. Agarwal and J. A. Baur, “Resveratrol and life extension,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 138–143, 2011. View at: Publisher Site | Google Scholar
  277. J. L. Crespo and M. N. Hall, “Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 66, no. 4, pp. 579–591, 2002. View at: Publisher Site | Google Scholar
  278. I. Bjedov, J. M. Toivonen, F. Kerr et al., “Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster,” Cell Metabolism, vol. 11, no. 1, pp. 35–46, 2010. View at: Publisher Site | Google Scholar
  279. N. Anisimov, M. A. Zabezhinski, I. G. Popovich et al., “Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice,” Cell Cycle, vol. 10, no. 24, pp. 4230–4236, 2011. View at: Publisher Site | Google Scholar
  280. S. Majumder, A. Caccamo, D. X. Medina et al., “Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling,” Aging Cell, vol. 11, no. 2, pp. 326–335, 2012. View at: Publisher Site | Google Scholar
  281. G. Payne, A. Laporte, R. Deber, and P. C. Coyte, “Counting backward to health care’s future: using time-to-death modeling to identify changes in end-of-life morbidity and the impact of aging on health care expenditures,” The Milbank Quarterly, vol. 85, no. 2, pp. 213–257, 2007. View at: Publisher Site | Google Scholar
  282. A. Yazdanyar and A. B. Newman, “The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 563–577, 2009. View at: Publisher Site | Google Scholar
  283. J. Mesterton, A. Wimo, Å. By, S. Langworth, B. Winblad, and L. Jönsson, “Cross sectional observational study on the societal costs of Alzheimer’s disease,” Current Alzheimer Research, vol. 7, no. 4, pp. 358–367, 2010. View at: Publisher Site | Google Scholar
  284. G. Atzmon, C. Schechter, W. Greiner, D. Davidson, G. Rennert, and N. Barzilai, “Clinical phenotype of families with longevity,” Journal of the American Geriatrics Society, vol. 52, no. 2, pp. 274–277, 2004. View at: Publisher Site | Google Scholar
  285. G. Atzmon, M. Rincon, P. Rabizadeh, and N. Barzilai, “Biological evidence for inheritance of exceptional longevity,” Mechanisms of Ageing and Development, vol. 126, no. 2, pp. 341–345, 2005. View at: Publisher Site | Google Scholar
  286. N. Barzilai and I. Gabriely, “Genetic studies reveal the role of the endocrine and metabolic systems in aging,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 10, pp. 4493–4500, 2010. View at: Publisher Site | Google Scholar
  287. M. C. Haigis and B. A. Yankner, “The aging stress response,” Molecular Cell, vol. 40, no. 2, pp. 333–344, 2010. View at: Publisher Site | Google Scholar
  288. D. Nipič, A. Pirc, B. Banič, D. Šuput, and I. Milisav, “Preapoptotic cell stress response of primary hepatocytes,” Hepatology, vol. 51, no. 6, pp. 2140–2151, 2010. View at: Publisher Site | Google Scholar

Copyright

Copyright © 2012 Samo Ribarič. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.




Kolesterolisodat 1

Vuoratkaa tuiskupipot foliolla

Pinnan alla kuohuu. Yhä useammat lääkärit ja tutkijat kyseenalaistavat opin kolesterolista ja tyydyttyneistä rasvoista sydän- ja verisuonitautien syynä. Lääketieteellinen yhteisö on ajautunut rasva- ja kolesterolisotaan. Taustalla on toisaalta potilaiden terveys ja toisaalla biljoonien dollarien teollisuus.  Tämä kolesterolitarina kertoo toisen totuuden kolesterolista ja statiineista.

Minä aloitin Ruokasodan Yudkinin ja Keysin välisen rasvasodan ihmettelyllä vuosia sitten. Kolesterolisodat jatkavat taistelua paremman terveyden ja lääketieteen avoimuuden puolesta.

Tohtori Maryanne Demasi työskentelee tutkijana riippumattomassa Nordic Cochrane Centre’ssä. Cochrane on monikansallinen tutkijoiden ja asiantuntijoiden ryhmä, joka tuottaa 53 kansainvälisen tutkimusryhmän ja 37 000 tutkijan laatimia objektiivisia taloudellisista kytköksistä riippumattomia tutkimuksia ja tutkimuskatsauksia lääketieteen ja terveyden alalta.

Maryanne Demasi tunnetaan myös tutkivana journalistina. Hän tuotti Australian televisiolle (ABC TV) kaksiosaisen ohjelman, joka kyseenalaisti väitteet tyydyttyneiden rasvojen ja kolesterolin roolista sydän- ja verisuonitautien syynä ja arvosteli statiinilääkityksen mielekkyyttä (Heart of the Matter).

Ohjelmat avasivat kolesteroli- ja statiini-tutkimuksiin liittyvää korruptiota, puutteellisia tutkimusstandardeja ja lääkevalmistajien hämäriä bisneksiä tavalla, joka sai statiiniteollisuuden suuttumaan. Suuret lääkejättiläiset ja Australian sydänliitto kävivät ohjelmien esityksen jälkeen ankaraan vastahyökkäykseen. Seurauksena oli räväkkä mediaspektaakkeli Australiassa. Lopulta ohjelmien aineisto tutkittiin. Ohjelmista ei löydetty asiavirheitä. Tutkimukset ja satojen lääkäreiden haastattelut tukivat ohjelmissa esitettyjä teesejä.

Demasi ei ehkä aloittanut kolesterolisotia, mutta hän huitaisi kipeästi lääkejättiläisten kultamunia munivia hanhia

Tutkivana journalistina Maryanne Demasi selvitti, että Lipitor (statiini) on lääketieteen historian tuottavin lääke, vaikka on vahvoja syitä epäillä sen lääkinnällistä hyötyä. Lipitor on tuottanut noin 140 miljardia dollaria.

Statinisaatio vaikuttaa foliohattujutulta, mutta statiinien ympärillä pyörii biljoonan (tuhannen miljardin) dollarin globaali bisnes. Jos epäilet vilunkipeliä, seuraa rahaa.

Statiinisaatio ei Demasin mukaan ole ainoa nykyiseen lääketieteeseen liittyvä ongelma. Lääketeollisuus käyttää jopa 200 miljardia dollaria huonosti suunniteltuihin ja surkeasti toteutettuihin, tai täysin tarpeettomiin tutkimuksiin, joissa tutkijan, tutkittavan aiheen ja tilatun tutkimuksen välillä on vahvoja taloudellisia sidonnaisuuksia (COI = conflict of interest). Jopa 85-90 % kaikesta lääketieteellisestä tutkimuksesta on tässä merkityksessä epäluotettavaa, asenteellista ja taloudellisten intressien sanelemaa. Se on tutkimukseen verhottua markkinointia.

Luottamus lääketieteeseen on Yhdysvalloissa laskenut viime vuosien aikana 51 prosentista 38 prosenttiin. Syinä luottamuskatoon ovat mm. Yhdysvalloissa kipulääkkeistä alkanut opioidikriisi, lääkkeiden armoton hinnoittelu ja se, että lääkkeiden taloudellinen tuotto menee yhä useammin potilaiden terveyden edelle. Tämä on vaikuttanut esimerkiksi rokotevaistaisuuden yleistymiseen. Sen seurauksena rokotuskampanjalla hävitettyjä tauteja, kuten tuhkarokko, on palannut takaisin suomalaiseenkin tautipooliin.

Miksi lääketeollisuudesta tuli niin ahne ja piittaamaton?

Kehityksen juuret palautuvat Ronald Reaganin presidenttikaudelle. Sääntelyn heikentäminen ja julkisen rahoituksen leikkaaminen vapautti lääketeollisuuden eettisistä ja sosiaalisista kahleista, jolloin lääketeollisuudesta tuli ensisijaisesti liiketoimintaa.

Sijoittajat alkoivat rahoittaa ja toteuttaa lääketutkimuksia. Lääketieteestä tuli lääkkeiden markkinointia. Tästä on valitettavan paljon räikeitä esimerkkejä, joihin palaan tuonnempana.

Tämä on nykytilanne

Globaalisti kymmenet tuhannet lääkärit, ravitsemusasiantuntijat ja ravinnosta kiinnostuneet tavikset ovat aloittaneet kapinan lääketeollisuuden ylläpitämää tarpeetonta medikalisaatiota ja statiinisaatiota vastaan.

Tämän informaatiosodan eturintamassa ovat mm. Uffe Ravnskov, David Diamond, Aseem Malhotra, Dave Feldman, Tim Noakes, Gary Taubes, Maryanne Demasi ja Nadir Ali, jotka luennoivat aktiivisesti asiantuntijoille kolesteroliin ja statiineihin liittyvistä virheellisistä tutkimuksista.

Pelkästään Kanadassa yli 4000 naistentautien lääkäriä ohjeistaa lihavia, metabolista oireyhtymää ja diabetesta sairastavia potilaita ketogeeniseen ruokavalioon, jossa sokerit korvataan tyydyttyneillä rasvoilla, koska LCHF-ruokavaliolla paino laskee tehokkaasti ja sairaudet saadaan korjattua lääkkeettömään remissioon.

Statiinisaation vastustaminen voi kuitenkin maksaa kapinoivalle lääkärille lääkärinoikeudet, uran ja maineen.Tästä on esimerkkejä ympäri maailman. Vastassa on biljoonien dollarien teollisuus, joka puolustaa taloudelisia intressejään raivokkaasti.

Lääketieteen tutkimusetiikka on kirjavaa

Esimerkiksi erääseen statiinitutkimukseen osallistui kymmeniä tuhansia henkilöitä. Kuuden viikon pre-kliinisen jakson aikana 36 % tutkittavista, eli yli 11 000 henkilöä lopetti statiinien syömisen erilaisten sivuoireiden vuoksi.

Tämän pre-kliinisen seurantajakson jälkeen jäljelle jäänyt tutkimuskohortti satunnaistettiin kahteen ryhmään, joista toinen sai statiineja ja toinen lumelääkettä. Varsinainen kliininen satunnaistettu kontrolloitu tutkimus toteutettiin vasta tämän toisen vaiheen jälkeen.

Näin lääkkeen sivuvaikutukset oli poistettu tutkimusyhtälöstä jo ennen tutkimusta. Helvetin nerokasta. Totuus on kuitenkin toinen: statiinit aihauttavat valtavasti sivuoireita aikuistyypin diabeteksestä dementiaan. Osa statiinien sivuoireista on hyvin vakavia.

Statiineja käsittelevien tutkimusten raakadata ei ole julkista tietoa. Tällainen käytäntö ei täytä hyvän tieteellisen tutkimuksen kriteereitä.

Haluan tässä painottaa yleisiä hyvän tieteellisen tiedon kriteereitä, jotka eivät kolesteroli- ja statiinitutkimuksissa toteudu.

Tieteellinen tutkimus voi olla eettisesti hyväksyttävää ja sen tulokset uskottavia vain, jos tutkimus on suoritettu hyvän tieteellisen käytännön edellyttämällä tavalla.

Tutkimusetiikan näkökulmasta hyvän tieteellisen käytännön keskeisiä lähtökohtia ovat mm:

  • Tutkimuksessa noudatetaan rehellisyyttä, yleistä huolellisuutta ja tarkkuutta tutkimustyössä, tulosten tallentamisessa ja esittämisessä sekä tutkimusten ja niiden tulosten arvioinnissa.
  • Tutkimukseen sovelletaan tieteellisen tutkimuksen kriteerien mukaisia ja eettisesti kestäviä tiedonhankinta-, tutkimus- ja arviointimenetelmiä.
  • Tutkimuksessa noudatetaan tieteellisen tiedon luonteeseen kuuluvaa avoimuutta ja vastuullista viestintää tutkimuksen tuloksia julkaistaessa.
  • Rahoituslähteet ja tutkimuksen suorittamisen kannalta merkitykselliset muut sidonnaisuudet ilmoitetaan raportoidaan tutkimuksen tuloksia julkaistaessa.
  • Tutkimuksen havainnoilta edellytetään toistettavuutta.
  • Havaintojen luotettavuudesta on voitava käydä kriittistä keskustelua.
  • Arviointiperusteiden yleispätevyys: väitteen tieteellistä totuusarvoa on punnittava yleispätevin kriteerein, esittäjien henkilökohtaisista ominaisuuksista riippumatta.
  • Tieteellisen tiedon tulee olla tiedeyhteisön omaisuutta, ei yksityisomaisuutta.
  • Puolueettomuus: tutkijoiden ura, asema tai maine ei saa vaikuttaa tiedon pätevyyden arviointiin, vaan tulokset on arvioitava julkisesti em. tekijöistä riippumatta.
  • Järjestelmällinen epäily: tuloksia on arvioitava kriittisesti, julkisesti ja kollektiivisesti.

Tutkimusten luotettavuutta arvioidaan monin tavoin. Lääke- ja ravitsemustieteessä luotettavimmiksi tutkimuksiksi arvioidaan systemaattiset kirjallisuuskatsaukset ja tutkimusten meta-analyysit sekä satunnaistetut kontrolloidut tutkimukset.

Systemaattinen kirjallisuuskatsaus on tutkimusmenetelmä, jossa kootaan oleellisen kirjallisuuden ja tutkimusten otannallinen esittely, joka keskittyy yhteen kysymykseen jolla pyritään tunnistamaan, löytämään, valitsemaan ja syntetisoimaan kaikki kyseenomaiseen kysymykseen liittyvä korkealaatuinen oleellinen todistusaineisto jo aiemmin tuotetusta tiedosta.

Systemaattisen katsauksen yhteydessä voidaan tehdä meta-analyysi. Siinä tilastollisin menetelmin yhdistetään aiempien määrällisten tutkimusten tulokset uudeksi tilastolliseksi tulokseksi, joka näin perustuu yhtä suureen aineistoon kuin aiemmat tutkimukset yhteensä ja on siten luotettavampi.

Laajalti käytettyjä suurten populaatioiden kyselyihin nojaavia epidemiologisia tutkimuksia ei pidetä todistusarvoltaan niin merkittävinä, että niitä tulisi soveltaa yleiseen käytäntöön, mutta valitettavasti näin tapahtuu lääke- ja ravitsemustieteessä koko ajan.

Suurin osa median kohuotsikoista rakennetaan epidemiologisten tutkimusten ja tilastollisen kikkailun varaan. Se on enemmän politiittisesti tai taloudellisesti motivoitunutta propagandaa kuin luotettavaa tiedettä. Epidemiologiset tutkimukset ovat kuitenkin hyödyllisiä mm. hypoteesien laatimisessa ja yleisien tendenssien seuraamisessa.

CTT Colloboration

Professori Rory Collinsin johtama CTT Collaboration valvoo statiinien tutkimuksia ja niihin liittyviä aineistoja valmistajien kanssa solmitulla laillisesti sitovalla sopimuksella, joka estää tutkimusaineiston jakamisen kolmansille osapuolille.

Käytäntö sotii tieteen läpinäkyvyyden ja avoimuuden vaatimuksia vastaan. Myös se, että CTT Colloboration on saanut lääkevalmistajilta ainakin 260 miljoonaa dollaria erilaisia tukia, herättää kysymyksiä järjestön riippumattomuudesta.

CTT Collaboration ei oikeastaan salli kriittistä (tieteellistä) keskustelua statiineista. Se julkaisee säännöllisesti kolesteroliin ja statiineihin liittyviä tutkimuksia, joiden raakadataa se ei anna muiden tutkijoiden arvioitavaksi. Sillä on yksityisoikeudet kolestorolitutkimuksiin ja statiineihin.

Lääkäreiltä ja potilailta edellytetään sokeaa uskoa ja luottamusta, sillä mikään riippumaton taho ei voi arvioida tutkimusten luotettavuutta.

Statiinien määräämisen kriteereitä on laskettu ilman mitään tieteellisesti päteviä perusteita vuosien saatossa. Ensin statiineja määrättiin vain riskiryhmään kuuluville ikäihmisille, sitten niitä haluttiin määrätä kaikille yli 50-vuotiaille kolesterolitasoista riippumatta ja sen jälkeen kaikille, joilla sydäntautilaskurin perusteella on yli 7,5 % riski sairastua sydäntautiin seuraavien kymmenen vuoden aikana. Statiineja on ehdotettu jopa lapsille,..

Kun vuonna 1987 arvioitiin, että 8 % ihmisistä tarvitsee statiineja, vuoden 2016 arvio on, että 61 % populaatiosta tarvitsee statiineja. Kyse ei ole siitä, että ihmiset olisivat sairaampia, vaan siitä, että statiinien määräämisen kynnystä on jatkuvasti madallettu.

Statiineja on vakavasti ehdotettu käytettäväksi vesijohtovedessä USAssa ja jaettavaksi pikaruokaravintoloissa ruoan yhteydessä.

Euroopassa ja Suomessa kolesterolirajoja laskettiin hiljattain, jotta statiineja voidaan määrätä entistä nuoremmille ja entistä terveemmille. Pian jo kolmekymppiset aloittavat päivän rouhimalla dosetillisen erilaisia lääkkeitä. Jopa 85 % statiineja syövistä kuuluu ns. ennaltaehkäisevän lääkityksen piiriin. Koska statiinit eivät tutkimusten mukaan ennaltaehkäise sydän- ja verisuontitauteja terveillä, suurin osa statiineja syövistä syö lääkkeitä aivan turhaan.

Demasi osoitti, kuinka statiinien markkinointi rikkoo eettisen markkinoinnin periaatteita. Statiineja markkinoidaan esimerkiksi väittellä:

Lipitor laskee sydäntautien riskiä 36 %. Pienellä printattuna kuitenkin kerrotaan, että tutkimuksissa statiineja saaneiden riski sairastua oli 2,0 % ja lumelääkettä saaneiden riski 3,1 %. Ero on todellakin 36 %, mutta lumelääkkeitä syöneiden todellinen riski oli vain 1,1 % korkeampi kuin statiineja syöneiden. Tilastollisella kikkailulla luodaan todellisuutta mairittelevampi kuva lääkkeiden tehosta.

Professori Rory Collins on vuodesta 2014 alkaen väittänyt, että potilaat sietävät statiineja todella hyvin. Sivuoireita, kuten lihaskipuja tulee vain noin yhdelle kymmenestä tuhannesta. Riippumattomien tutkimusten mukaan jopa 29 % statiineja syövistä kärsii lihaskivuista ja muista sivuoireista. Se on 2900:10 000 ei 1:10 000

Muutoksen tuulet

Vuoden 2004 jälkeen lääketeollisuuden sääntelyä on tehostettu EU:ssa ja USA:ssa.

Tutkimukset on julkaistava tutkimustietokannoissa, jotta niiden pätevyys voidaan riippumattomasti arvioida. DubRoff-R tarkasti suuren joukon satunnaistettuja kontrolloituja statiinitutkimuksia vuonna 2018. Yksikään tarkastettu satunnaistettu kontrolloitu tutkimus ei osoittanut, että statiinit vähentävät kuolleisuutta.

Nordic Cochrane Cetre’n professori Peter C. Götzsche ja Anders Jörgensen kamppailivat pääsyn Euroopan lääkeviraston (EMA) arkistoihin. EMA päätti laajentaa yleisön oikeuksia tutustua lääketieteellisiin dokumentteihin sekä julkaisemattomiin tutkimuksiin ja tutkimusprotokolliin. Tämä avasi tutkijoille pääsyn tutkimuksiin, joita on sovellettu lääkkeiden hyväksymiseen, mutta ei julkaistu. Näiden tutkimusten avaaminen on antanut lääkkeistä täysin päinvastaisen kuvan, kuin millä niitä on markkinoitu lääkäreille ja potilaille. Tutkimusten avaaminen on osoittanut, että monet lääkkeet eivät ole alkuunkaan niin tehokkaita tai turvallisia kuin oli luvattu.

Kolmas tärkeä lääketieteen avoimuutta ja läpinäkyvyyttä lisäävä muutos käynnistyi 2018, kun kanadalainen tri Peter Doshi halusi tutustua Kanadan terveysviranomaisten (Health Canada= tutkimustietokantaan. Hänelle olisi myönnetty lupa vain, jos hän olisi allekirjoittanut vaitiolosopimuksen, joka estää häntä raportoimasta löydoistään. Sitä hän ei tehnyt. Hän haastoi Health Canadan liittovaltion oikeuteen ja voitti. Tämän ennakkotapauksen uskotaan avaavan lääketieteen tutkimuksia riippumattomien tutkijoiden arvioitaviksi.

Disclaimer: Suuri osa lääkkeistä on hyviä tai tarpeellisia. Useimmat lääkärit ja tutkijat ovat rehellisiä, mutta kaikki eivät ole. Lääketeollisuus on liiketoimintaa, jota ohjaa sijoittajien raha.

Kolesteroliteorian isällä Ancel Keysillä oli kaksi tutkintoa: toinen taloustieteestä ja toinen kalojen fysiologiasta, mutta hänellä ei ollut lääketieteellistä koulutusta. Lääketiede kuitenkin nojaa Ancel Keysin hypoteesiin. Eikö se ole hieman outoa?

Lue lisää kolesterolista: https://ruokasota.fi/2020/12/02/mika-tun-kolesteroli/




Pilottitutkimus: ketogeeninen ruokavalio ja RRMS

J. Nicholas Brenton, Brenda Banwell, A.G. Christina Bergqvist, Diana Lehner-Gulotta, Lauren Gampper, Emily Leytham, Rachael Coleman, Myla D. Goldma, 1204.2019, DOI: https://doi.org/10.1212/NXI.0000000000000565

      1. Hedstrom AK,
      2. Olsson T,
      3. Alfredsson L

High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler 2012;18:1334–1336.

      1. Brenton JN,
      2. Goldman MD

A study of dietary modification: perceptions and attitudes of patients with multiple sclerosis. Mult Scler Relat Disord 2016;8:54–57.

      1. Fitzgerald KC,
      2. Tyry T,
      3. Salter A, et al

Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2018;90:e1–e11.

      1. Milder JB,
      2. Liang LP,
      3. Patel M

Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis 2010;40:238–244.

      1. Sullivan PG,
      2. Rippy NA,
      3. Dorenbos K,
      4. Concepcion RC,
      5. Agarwal AK,
      6. Rho JM

The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 2004;55:576–580.

      1. Bough KJ,
      2. Rho JMAnticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007;48:43–58.
      1. Achanta LB,
      2. Rae CD

Beta-hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem Res 2017;42:35–49.

      1. Ruskin DN,
      2. Kawamura M,
      3. Masino SA

Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS One 2009;4:e8349.

      1. Dupuis N,
      2. Curatolo N,
      3. Benoist JF,
      4. Auvin S

Ketogenic diet exhibits anti-inflammatory properties. Epilepsia 2015;56:e95–e98.

      1. Kim DY,
      2. Hao J,
      3. Liu R,
      4. Turner G,
      5. Shi FD,
      6. Rho JM

Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS One 2012;7:e35476.

      1. Ni FF,
      2. Li CR,
      3. Liao JX, et al

The effects of ketogenic diet on the Th17/Treg cells imbalance in patients with intractable childhood epilepsy. Seizure 2016;38:17–22.

      1. Shen Y,
      2. Kapfhamer D,
      3. Minnella AM, et al

Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun 2017;8:624.

      1. Youm YH,
      2. Nguyen KY,
      3. Grant RW, et al

The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015;21:263–269.

      1. Yang X,
      2. Cheng B

Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J Mol Neurosci 2010;42:145–153.

      1. Goldberg EL,
      2. Asher JL,
      3. Molony RD, et al

Beta-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep 2017;18:2077–2087.

      1. Polman CH,
      2. Reingold SC,
      3. Banwell B, et al

Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302.

Center for Disease Control. Healthy Weight. 2015. Available at: www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html. Accessed May 19, 2016.

      1. Kossoff EH,
      2. McGrogan JR,
      3. Bluml RM,
      4. Pillas DJ,
      5. Rubenstein JE,
      6. Vining EP

A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia 2006;47:421–424.

      1. Cervenka MC,
      2. Henry BJ,
      3. Felton EA,
      4. Patton K,
      5. Kossoff EH

Establishing an adult epilepsy diet center: experience, efficacy and challenges. Epilepsy Behav 2016;58:61–68.

      1. Chen W,
      2. Kossoff EH

Long-term follow-up of children treated with the modified Atkins diet. J Child Neurol 2012;27:754–758.

      1. Gilbert DL,
      2. Pyzik PL,
      3. Freeman JM

The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J Child Neurol 2000;15:787–790.

Neurology: Neuroimmunology & Neuroinflammation
Online ISSN: 2332-7812

© 2020 American Academy of Neurology




Aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden modulointi ketogeenisellä ruokavaliolla

Vähähiilihydraattinen ja runsasrasvainen ketogeeninen ruokavalio (LCHF), on menneiden vuosikymmenten saatossa nostettu tuon tuosta esiin terapeuttisena vaihtoehtona metabolisen oireyhtymän, ylipainon ja lihavuuden sekä eräiden lääkeresistenttien sairauksien, kuten epilepsian, syövän, dementian ja masennuksen hoitona. Oma motiivini selvitellä näitä on se, että ketogeenisen ruokavalion neuroprotektiivinen ja tulehduksia hillitsevä luonne voi hidastaa etenevään MS-tautiin liittyvien keskushermoston vaurioiden kehittymistä.

Ruokavaliota on hyödynnetty lääkehoidon rinnalla tai lääkehoidosta riippumatta vuosisatoja. Esimerkiksi diabeteksen hoitoon suositeltiin vähähiilihydraattista ruokavaliota jo 1700-luvun lopulla.

Tutuin tehokkaan ravintoterapian kohde on keliakia, jota sairastavat voivat elää jokseenkin normaalia elämää välttämällä viljojen sisältämää gluteenia. Lääkeresistenttiin epilepsiaan ei edelleenkään tunneta parempaa hoitoa, kuin ketogeeninen ruokavalio, jota on käytetty erityisesti lasten epileptisten kohtausten hillitsemiseen 1920-luvulta alkaen.

Tämän ruokavalion kiistattomista hyödyistä huolimatta, terveydenhuollon ja ravitsemuksen ammattilaiset kyseenalaistavat yhä ketogeenisen ruokavalion turvallisuuden sen aiheuttamien kohonneiden seerumin ketoaineiden ja ruokavalion rajoitetun ravintokuitujen saannin vuoksi.

Ruokavalion herättämiä epäilyjä lisää edelleen huoli aivojen glukoosinsaannin riittävyydestä sekä tyydyttyneisiin rasvoihin ja kolesteroliin liittyvät irrationaaliset pelot.

Siirtymävaiheessa ketogeeninen ruokavalio voi aiheuttaa energiasubstraatin vaihtumisen ja nestehukan seurauksena ohimenevän ketoflunssan. Se on tavallista, eikä lainkaan vaarallista. Usein se kertoo, että ruokavaliomuutoksen jälkeen vettä pitäisi juoda enemmän, koska sokereiden rajoittaminen poistaa kehosta nesteitä.

Ketogeeninen ruokavalio on turvallinen ja tehokas terapiavaihtoehto moniin aineenvaihduntasairauksiin. Tässä katsauksessa tutustutaan eksogeenisten ketoaineiden ja ketonilähteiden aineenvaihduntahyötyjen tieteellisiin perusteisiin.

Katsauksessa käsitellään myös eksogeenisen β-hydroksibutyraatin (BHB) ja siihen liittyvän lyhytketjuisen rasvahapon, butyraatin (BA), synergiaa (yhteisvaikutusta) solutason aineenvaihduntatapahtumissa.

β-hydroksibutyraatin ja butyraatin hyödyt aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden moduloinnissa

Monet soluistamme voivat käyttää rasvahappoja ATP-tuotannon energiasubstaattina, jos glukoosia ei ole riittävästi saatavilla. Aivot eivät kuitenkaan voi suoraan hapettaa rasvohappoja energiaksi, koska rasvahapot eivät läpäise veri-aivoestettä. Vesiliukoinen pienemmän molekyylipainon omaava ketoaine läpäisee vaivatta veri-aivoesteen ja tarjoaa hermosoluille erittäin tehokkaan energialähteen [1, 2].

Ketoaineet, kuten β-hydroksibutyraatti, ovat neuroneille erinomaisia energiasubstraatteja. Erityisen tärkeitä ketoaineet ovat henkilöille, joiden hermosolujen glukoosimetabolia (solujen glukoosin otto) on heikentynyt geneettisten tai elintapoihin liittyvien syiden vuoksi [3]. Ketoaineet aktivoivat mm. kognitiivisista häiriöistä kärsivien aivosolujen energiantuotantoa [4, 5].

Ruokavalion sisältämällä rasvalla on väitetty olevan ratkaiseva rooli ihmisen aivojen evoluutiossa, koska aivot tarvitsevat runsaasti energiaa sisältävää ravintoa sekä rasvojen sisältämiä rakennuspalikoita [6] ja kolesterolia. Tällaista käsitystä tukee huomio, joka osoittaa, että dokosaheksaeenihapolla (DHA) ja muilla rasvoilla on ratkaiseva rooli hermokudosten kasvussa ja toiminnassa. Rasva-aineenvaihdunnan poikkeavuudet tai ravintorasvojen puutteet voivat häiritä aivojen kehitystä ja toimintaa [7].

Eräät asiantuntijat arvelevat, että siirtyminen runsasrasvaisesta ruokavaliosta vähärasvaiseen ruokavalioon on selittävä syy Pohjois-Amerikan metabolisen oireyhtymän (insuliiniresistenssi, diabetes, verenpaine, dyslipidemia, lihavuus) yleistymisen taustalla. USAn makroravinteiden kulutuksen tilastollinen tarkastelu osoittaa lihavuuden lisääntymisen korreloivan ravinnon rasvan vähentämisen kanssa. Rasvan kulutuksen vähentäminen on puolestaan lisännyt runsaasti hiilihydraatteja (sokereita) sisältävien ruokien kulutusta [8].

Samalla noususuuntaisella tilastokäyrällä ovat vuoden 1980 jälkeen kolminkertaistunut lihavien määrä ja aikuistyypin diabeetikkojen määrän kaksinkertaistuminen samana aikana. Iltapäivälehtien clickbait-jutut ketogeenisellä ruokavaliolla sairastuneista kannattaa jättää omaan arvoonsa. Diabeetikkojen määrä on globaalisti jo lähes puoli miljardia ja lihavia on kolmannes kaikista ihmisistä.

Iltapäivälehtien tulisi kiinnittää huomiota todelliseen ongelmaan: Suomessa on puoli miljoonaa aikuistyypin diabetesta sairastavaa. Näistä tilastollisesti joka toinen tulee kuolemaan sydän- ja verisuonitauteihin.

Kaiken lisäksi diabeteksen hoitokustannukset Suomessa ovat samaa luokkaa tai korkeammat kuin tupakoinnin ja alkoholin aiheuttamien sairauksien hoitokustannukset. Koskettavat mielipiteitä muokkaavat tarinat ketogeenisellä ruokavaliolla elämänsä tuhonneesta Penasta tai Sirkka-Liisasta eivät muuta tosiasioita miksikään: voi ja kolesteroli eivät ole suomalaisten suurin terveysongelma.

Tämän hetken kriittisin terveysongelma on hyperglykemian ja hyperinsulinemian aiheuttama insuliiniresistenssi sekä siihen liittyvät aineevaihduntasairaudet. Niiden hoito ravintoterapialla on helppoa ja halpaa.

Jossain ruokavalioiden ääripäiden välillä voi olla terveyden Shangri-La, jossa jalostettuja hiilihydraatteja (sokereiden lähteitä) rajoitetaan, tyydyttyneitä rasvoja ei pelätä ja tuoreilla (matalan glykeemisen indeksin) vihanneksilla on edelleen tärkeä rooli osana terveellistä ruokavaliota [9]. Tai sitten sellaista ei ole.

Energiansaannin rajoittaminen paastoamalla tai ruokavalion sisältämien hiilihydraatteja rajoittamalla johtaa ketoosiin ja seerumin ketonipitoisuuden nousuun [10].

Ketogeeninen vähähiilihydraattinen, runsasrasvainen ruokavalio (LCHF) on kokenut kuluneiden sadan vuoden aikana monta renesanssia ja romahdusta. Jotkut, jotka eivät tunne historiaa, pitävät ketogeenistä ruokavaliota vain muotioikkuna (fad), mutta hiilihydraattien rajoittamista on harjoitettu terveyden kohentamiseksi jo esikristillisillä ajoilla. Lähes jokaiseen uskontoon sisältyy puhdistava paasto, eikä se ole sattumaa, sillä paastolla on tunnustettuja terveyshyötyjä. Paasto johtaa ketoosiin.

Viime vuosisadalla ketogeenisen ruokavalion positiivisista terveysvaikutuksista raportoitiin laajemmin esimerkiksi 1930- ja 1940-luvuilla, jolloin sitä hyödynnettiin mm. astman hoidossa.

Ketogeenistä ruokavaliota on käytetty tehokkaasti hoitona:

  • metaboliseen oireyhtymään[11]

  • epilepsiaan [12]

  • kognitiivisten ja neurologisten häiriöiden [13], kuten Alzheimerin taudin hoitona, jossa sen on osoitettu vähentävän haitallista amyloidiproteiinia [14]
  • termogeneesin proteiiniaktiivisuuden irrottamisen aktivaattorina [15]

  • laihduttamiseen [16]

Ketogeeninen ruokavalio ei ole uusi ja muodikas ruokavalio-oikku, vaan ruokavalio, johon kehomme on täydellisesti adaptoitunut nisäkkäiden ja hominidien evoluution aikana.

Se, että tämä ruokavalioprotokolla voi tehokkaasti vähentää epileptisten kohtausten esiintymistiheyttä [17] ja auttaa hoitamaan lääkeresistenttiä epilepsiaa [18], vahvistettiin jo 1920-luvulla [19, 20].

Tässä katsauksessa käydään läpi joitain ketogeenisen ruokavalion metabolisten ja terveydellisten hyötyjen todisteita, sekä tarkastellaan ruokavalion turvallisuutta ja tehoa terapiavaihtoehtona lääkkeiden rinnalla ja lääkkeistä riippumatta.

Tieteellinen näyttö esitetään myös eksogeenisten ketoaineiden ja muiden erityyppisten ketonilähteiden antamiselle hiilihydraatteja rajoittavan ruokavalioprotokollan täydennyksenä tai vaihtoehtona ruokavaliolle.

Kirjoittajat suosittelevat erityistä menettelytapaa, johon sisältyy eksogeenisen ketonin, β-hydroksibutyraatin (BHB) antaminen lyhytketjuisen rasvahapon, butyraatin (BA) mukana.

Tässä katsauksessa painotetaan tämän BHB-BA-yhdistelmän synergiaa solusignaloinnin ja elimistön hiljaisen tulehduksen, eli inflammaation hallinnan yhteydessä ja sen käyttöä energiasubstraattina ATP: n muodostamiseen TCA-syklissä (sitruunahappokierrossa).

2. Mitä ketogeenisellä ruokavaliolla tarkoitetaan?

Ketogeenisessä ruokavaliossa ravintoaineiden makroravinnprofiili on tärkeä. Päivittäinen energiansaanti sisältää:

  • 65–70% rasvaa

  • 20% proteiinia

  • 5–10% hiilihydraatteja

Ketogeeninen ruokavalio kääntää perinteisen ravintopyramidin ylösalaisin. Päivittäinen hiilihydraattien saanti, joka ei ylitä 75 grammaa, on vähimmäisedellytys ketoosissa pysymiseen; 50 gramman hiilihydraattien saannin enimmäismäärä on toki ketoosin ylläpitämisen kannalta turvallisempi hiilihydraattien saanti. Ketogeenisen ruokavalion alussa hiilihydraattien saantia voi olla järkevää rajoittaa ~20 grammaan päivässä, ja monet ketoilijat pysyvät ~20 gramman päiväsaannissa ilman mitään ongelmia.

Mitä vähämmän hiilihydraatteja ravinto sisältää, sitä tehokkaammin elimistö purkaa rasvasolujen sisältämiä triglyseridejä verenkiertoon, tuottaa ketoaineita energiasubstraateiksi ja hapettaa vapaita rasvahappoja betaoksidaatiossa.

Ketogenressä 75 grammaa hiilihydraatteja päivässä on jo melkoisen villiä sokerihurjastelua, mutta virallinen linja, josta olen kuullut puhuhttavan, on, että alle 150 grammaa hiilihydraatteja päivässä luokitellaan vähähiilihydraattiseksi ruokavalioksi tai karppaamiseksi. Sellainen on absurdia roskaa.

Minä en laske sen enempää hiilihydraatteja, kuin kaloreita. Syön ravintoa, jossa on hiilihydraatteja vähän (alle 6 g/ 100 grammassa) tai ei ollenkaan. Hiilihydraattien saanti vaihtelee minulla keskimäärin 20 ja 50 gramman välillä päivässä. 50 gramman ylittäminen näkyy painossa, verenpaineessa ja verensokerissa. Se ei sovi minulle. Joillekin 50-100 g hiilihydraatteja päivässä voi sopia.

Annos keitettyä riisiä sisältää ~50 gramman hiilihydraatteja. Suuri omena tai banaani, joissa hiilihydraattien määrä on ~40 grammaa, voivat katkaista ketoosin, etenkin kun päälle lasketaan muut päivittäiset hiilihydraattien lähteet.

Myös ruokavalion sisältämillä proteiineilla on vaikutusta seerumin glukoosipitoisuuteen. Esimerkiksi leusiinilla jota saadaan yleensä riittävästi arkiruoasta (eläinperäisestä ravinnosta sekä palkokasveista, siemenistä ja hiivasta), voi olla merkittävä vaikutus ketogeneesin aktivointiin, insuliiniherkkyyteen ja veren puhdistamiseen glukoosista [21].

Sen sijaan eräät mut aminohapot, kuten alaniini, kysteiini ja glysiini, ovat erittäin glukoneogeenisiä (ts. glukoneogeneesiä indusoivia). Matalan energiansaannin aikana keho voi helposti syntetisoida glukoneogeenisiä aminohappoja glukoosiksi [22]. Glukoneogeenisiin / glukogeenisiin aminohappoihin kuuluvat myös arginiini, seriini ja proliini.

Jos ravinto sisältää runsasti glukoneogeenisiä aminohappoja, niistä tuotetaan glukoneogeneesissä glukoosia, mikä kohottaa verensokeria ja insuliinipitoisuutta ehkäisten ketogeneesin käynnistymistä.

Vaikka kohtalaiseen hyperketonemiaan liittyy merkittäviä terveysvaikutuksia riippumatta siitä, käytetäänkö sitä ravintoterapiana tai yksinkertaisesti elämänlaadun parantamiseen, tätä tilaa ei ole helppo saavuttaa ja ylläpitää ilman suunnittelua ja ruokavaliossa tehtäviä uhrauksia [23, 24]. Itse asiassa ketogeenistä elämäntapaa on nykyään jo hieman hankala ylläpitää, kun otetaan huomioon hiilihydraatti- ja sokerikeskeinen kulttuurimme. Hiilihydraattien lähteet ovat hyvin piilossa monissa arkisissa ja jalostetuissa elintarvikkeissa. Moni ei esimerkiksi tule ajatelleeksi, että maito sisältää sokeria (maitosokeria, eli laktoosia).

Yhtäältä lääketieteellisen yhteisön ketogeeniseen ruokavalioon ja varsinkin ketoasidoosiin liittyvä virheellinen viestintä ohjaa väestön kulutustottumuksia kohti hiihihydraattien runsasta saantia.

Ketoasidoosi ja ketoosi sotketaan iloisesti keskenään. Ravintoketoosi on kuitenkin hyvin erilainen fysiologinen tila kuin ketoasidoosi.

Hiilihydraattien rajoittamiseen tai paastoon perustuvista ruokavalion muutoksista johtuva ketoosi ei tarkoita samaa kuin tyypin 1 diabetekseen ja siihen liittyviin diabeettisiin tiloihin liittyvä patologinen ketoasidoosi [25, 26]. Turvallinen hyperketonemia voi saavuttaa jopa 10 mmol/l ketoaine-pitoisuuden paastoamalla tai ketogeenisella ruokavaliolla [27, 28]. Keho  säätelee ketoosia autonomisilla palautemekanismeilla [29]. Ketoasidoosille on ominaista seerumin ketonitasot, jotka ylittävät 18 mmol/l [30].

Ketoasidoosi on fysiologinen tila, jossa jotkin solujen ulkoiset nesteet happamoituvat kun niihin kertyy liikaa happamia ketoaineita. Ihmisillä ketoasidoosit jaetaan aiheuttajien mukaan muun muassa diabeettiseen ketoasidoosiin (DKA) ja alkoholiketoasidoosiin (AKA). Yleisempi diabeettinen ketoasidoosi voi johtaa hoitamattomana kuolemaan. Happomyrkytys on hengenvaarallinen tila, mutta aivan eri eri asia kuin terveen ihmisen paastotessa muodostuvat ketoaineet eli nälkähapot(diabetes.fi). Diabeetikon uhkaavasta happomyrkytyksestä kertoo se, kun verensokeri on koholla ja samaan aikaan verestä löytyy ketoaineita. DKA:n ja AKA:n yhteisiä oireita ovat muun muassa hyperventilaatio, oksentelu, mahakipu, sydämen tiheälyöntisyys ja matala verenpaine. Usein DKA:ssa ilmenee korkea verensokeri, potilas on sekava ja hengitys haisee asetonilta (hedelmäiseltä). Verensokeritaso on AKA:ssa usein normaali tai matala, potilas on lähes tajuissaan ja hengitys ei juurikaan haise asetonilta. – Wikipedia & Diabetes.fi

Koska ketogeeninen ruokavalio muuttaa kehon energia-aineenvaihduntaa glukoosipolttoisesta rasvapolttoiseksi, se imitoi paastoa. Ketogeenisen ruokavalion vaikutukset aineenvaihdunnan modulointiin ovat samanlaisia kuin paaston vaikutukset. Solujen energiasubstraatti vaihtuu glukoosista ketoaineiksi ja vapaiksi rasvahapoiksi, joista hapetetaan asetyylikoentsyymi-A:ta sitruunahappokiertoon.

Energiasubstraatin muutos käynnistää solujen puhdistusjärjestelmän, eli autofagian, joka siivoaa soluja kuona-aineista ja tuottaa niistä energiaa.

Miksi ketogeeninen elämäntapa?

Nykyisillä elintavoilla monet syövät huomamattaan aivan liian hiilihydraattipainotteisesti. Hiilihydraatit muodostuvat sokereista ja kohottavat seerumin glukoosi- ja insuliinipitoisuuksia.

Glukoosi ja sen pitoisuuden kasvun lisäämä seerumin insuliini vaurioittavat esidiabeettisella ja diabeettisella tasolla etenkin kehon pieniä verisuonia. Diabeteksen kehittymisen voi välttää tarkkailemalla sokereiden saantia.

Maksassa ylimääräinen glukoosi (ja fruktoosi) muutetaan lipogeneesissä triglyserideiksi (vrt. alkoholista riippumaton rasvamaksa). Verenkiertoon maksasta erittynyt ylimääräinen glukoosi varastoidaan ylimääräisen rasvan tapaan rasvasoluihin, jossa se muutetaan de novo lipogeneesissä triglyserideiksi.

Ylimääräinen glukoosi on siivottava verenkierrosta, koska glukoosi glykatoituu veressä olevien muiden molekyylien kanssa. Glykaation lopputuotteet (AGE) altistavat monille sairauksille. Tämä on myös se syy, miksi diabetes lisää virtsaamistarvetta: keho yrittää pissaamalla päästä eroon ylimääräisistä sokereista.

Ketogeeninen ruokavalio ei aiheuta ketoasidoosia terveillä. Jatkuvasti kohollaan oleva verensokeri ja korkea insuliini kasvattavat metabolisen oireyhtymän ja insuliiniresistenssin (ne ovat itse asiassa sama asia) ja diabeteksen riskiä. Tyypin 2 diabetes aiheuttaa lihavuutta, alkoholista riippumatonta rasvamaksaa sekä sydän- ja verisuonitauteja monien muiden aineenvaihduntaan kytkeytyvien sairauksien lisäksi.

Tyypin 2 diabetes on ongelma ja ketogeeninen ruokavalio ongelman ratkaisu.

Kun seerumin glukoosia hoidetaan väärin, seurauksena olevat edistyneet glykaation lopputuotteet (AGE) [31, 32] sekä inflammaatio [33, 34] aiheuttavat merkittävää veren toksisuutta [35] ja lisäävät sairastumisriskiä [36].

Glykaation kehittyneille lopputuotteille (AGE) altistunut LDL (matalatiheyksinen lipoproteiini) on ateroskleroosin ja muiden sydän- ja verisuonitautien riskitekijä ja aiheuttaja [37].

LDL itsessään ei ole sydän- ja verisuonitautien riskitekijä, vaan elimistön luonnollinen triglyseridejä, kolesterolia ja rasvaliukoisia vitamiineja kuljettava kuljetusmolekyyli (lipoproteiini), mutta korkean verensokerin aiheuttaman glykaation ja vapaiden happiradikaalien hapettamasta LDL-partikkelista tulee sydäntautien riski.

Elimistön reaktio (hyperglykemia, hyperinsulinemia, glykaatio ja insuliiniresistenssi) seerumin korkeaan glukoosiin, jonka aiheuttaa korkean glykeemisen kuorman ravinto, ei ole terveyttä ja kehon hyvinvointia edistävä. Monet meistä myrkyttävät itseään sokereilla.

Endokriinisen fysiologian peruskäsitys kertoo meille, että joka kerta kun insuliinia erittyy haimasta korkean glykeemisen kuorman ruokien saannin vuoksi tai sitä piikitetään haiman vaurioituneen insuliinintuotannon vuoksi kohonneen glukoosin laskemiseksi, lipolyysi estyy ja energiasubstraatit, glukoosi ja rasvahapot varastoidaan [38]. Tämä toiminta lisää rasvan kertymistä erityisesti sisäelinrasvana ja viskeraalisena keskivartalolihavuutena, mikä vähentää rasvahappojen syntetisoimista ketoaineiksi tai hapettumista betaoksidaatiossa.

Seerumin ketoaineiden saanti soluissa tapahtuu insuliinista riippumattomien metabolisten reittien kautta [39]. Siksi, vaikka insuliiniresistenssi heikentää glukoosin ottoa insuliinista riippuvaisissa soluissa, ketoaineita voidaan hyödyntää energiasubstraatteina insuliinin aineenvaihduntahäiriöistä huolimatta.

Tämä on valtava kehitysaskel neurodegeneratiivisten sairauksien, kuten Parkinsonin ja Alzheimerin taudin tulevia terapiavaihtoehtoja suunniteltaessa. Glukoosin heikentynyt energiametabolia aivoissa on yksi, ei toki ainoa, tekijä monitekijäisissä neurodegeneratiivisissa sairauksissa.

Lisäksi todisteet osoittavat, että kohonneet seerumin ketoainepitoisuudet vähentävät maksan glukoosintuotantoa ja auttavat tällä mekanismilla myös lieventämään kohonneita seerumin glukoosipitoisuuksia [40].

Ketogeeninen ruokavalio on tehokkain lääkkeetön hoito tyypin 2 diabetekseen, metaboliseen oireyhtymään ja alkoholista riippumattomaan rasvamaksaan. LCHF voi kääntää alkavan diabeteksen suunnan [41] ja johtaa aikuistyypin diabeteksen lääkkeettömään remissioon. Hiilihydraattirajoitus vaikuttaa tehokkaasti painonhallintaan [42, 43], laskee seerumin glukoosia eli verensokeria prediabeettisilla sekä diabetesta sairastavilla potilailla [44]. Ketogeeninen ruokavalio laskee myös insuliinin tarvetta insuliiniriippuvaisissa aikuistyypin diabeettisissa oireissa [45, 46].

Hiilihydraattirajoitus ei ole ainoa ruokavaliostrategia, joka torjuu elämäntapaan liittyviä sairauksia. On monta tapaa syödä oikein ja vähintään yhtä monta tapaa syödä väärin.

Ketogeeninen ruokavalio on kuitenkin yksi tehokkaimmista solujen ja elimistön hyvinvointia ylläpitävistä ruokavalioista. Niin hyödyllinen kuin se onkin painonhallinnassa ja metabolisen oireyhtymän terapiana, ketogeenisellä ruokavaliolla tapahtuva kalorirajoitus on tunnetusti huonosti siedetty, ellei sitä kompensoida korkeammalla rasvasta saadulla energialla [47]. Riittävästi rasvaa sisältävä ruoka pitää nälän tehokkaasti loitolla ja ravinnon energiapitoisuus laskee kaloreita miettimättä.

LCHF-ruokavalio myötävaikuttaa seerumin glukoosin ja paastoseerumin glukoosin laskuun sekä parantaa glukoositoleranssia [48]. Jos hiilihydraattien saanti on riittävän matala, seerumin ketonitasot voivat kasvaa riittävästi täyttämään elimistön energiantarvetta ja tukemaan terveyttä useilla tavoilla [49, 50].

Silti vähähiilihydraattisen ruokavalion edellyttämien uhrauksien, kuten leivästä, perunasta, pizzasta, hampurilaisista, bissestä ja sokeriherkuista luopumisen vaikeus on ketoilijoille haaste, joka johtaa herkästi ketogeenisestä ruokavaliosta luopumiseen.

Tämä on hyvin tavallista ruokavalion alkuvaiheessa, mutta vähitellen kaikki sokeriin liittyvät mielihalut vain katoavat. Rasva pitää nälän erinomaisesti loitolla ja energiatasot pysyvät vahvoina koko päivän 1-3 aterialla ilman parin tunnin välein mussutettavia välipaloja.

Monille meistä lääkärin määräämä pilleri tai dosetillinen päivän käynnistäviä lääkkeitä voi olla kuitenkin helpompi ratkaisu, kuin hieman selkärankaa ja sokereista luopumista edellyttävä ketogeeninen ruokavalio.

3. Endogeenisten ketoaineiden muodostuminen

Lihomisen ja laihtumisen metabolinen perusta

Lipolyysi purkaa rasvasoluihin varastoituja triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon lipolyyttisten hormonien (glukagoni, kortikotropiini, adrenaliini ja noradrenaliini) vaikutuksesta.

Veren insuliinipitoisuus säätelee lipolyyttisten hormonien erittymistä. Insuliini on myös lipolyysin tarvitsemien entsyymien estäjä, joten, kun veren insuliinipitoisuus on korkea, lipolyysi ei voi käynnistyä.

Käytännössä: Kaloreita rajoittavalla dieetillä, jossa suuri osa päivittäisestä energiasta otetaan hiilihydraateista, rasvasolujen polttaminen energiaksi estyy veren jatkuvasti korkean insuliinipitoisuuden vuoksi. Tämä tarkoittaa sitä, että painon laskua tapahtuu lähinnä rasvattoman massan (lihasten) vähenemisen kautta. Niukkakalorisella hiilihydraattipitoisella dieetillä rasvaa poltetaan yöaikaan, sillä insuliinipitoisuus laskee riittävästi ~8 tuntia syömisen jälkeen, ja vasta silloin lipolyysi voi käynnistyä. Tällöin laihtumisen aikaikkuna jää kuitenkin verrattain lyhyeksi.

Lipolyysin vastareaktio on lipogeneesi, joka edistää insuliinin vaikutuksesta rasvan ja sokereiden varastoimista rasvasoluihin triglyserideinä. Evoluution ja aineenvaihdunnan kannalta lihominen on perusteltua vain, jos rasvasoluihin tallennettu energia voidaan hyödyntää energiaksi silloin, kun ravinnosta saadaan puutteellisesti energiaa. Tämä on lihomisen ja laihtumisen metabolinen perusta.

Maksa on rasvasoluista vapautuneiden rasvahappojen ja glyserolin ensisijainen kohde. Ketoaineita tuotetaan vapaista rasvahapoista maksassa tapahtuvassa ketogeneesissä. Ketoaineet voivat myöhemmin toimia aivojen energiasubstraateina [51–53].

Triglyseridien glyseroliosaa käytetään glukoosia syntetisoivassa glukoneogeneesissä. Keho pystyy helposti syntetisoimaan kaiken tarvitsemansa glukoosin. Sanonpahan vain, koska kymmenen vuotta sitten aiheesta väiteltiin ankarasti.

Terveellä ihmisellä, jolla haiman β-solut toimivat normaalisti, seerumin ketonitasoja hallitaan autonomisesti [54]. Seerumin ketonit, asetoasetaatti ja asetoni, samoin kuin β-hydroksibutyraatti, toimivat signaaliligandeina, jotka säätelevät maksan β-oksidaatiota [55] seerumin ketoaineiden kuormituksen säätelemiseksi.

Vuosikymmenien aikana on kerääntynyt kiistattomia todisteita, jotka tukevat tämän palautejärjestelmän olemassaoloa ja tehokkuutta sekä ketonisynteesin huolellista säätelyä transkriptiotasolla [27].

Kuinka seerumin ketonikertomus liittyy seerumin glukoosimalliin?

Tarina on rinnasteinen. Molemmissa malleissa huonosti säännellyt energiasubstraatin tasot voivat johtaa toksiseen tasoon, mutta tasot, joita terve fysiologia hallitsee autonomisesti, tukevat terveellistä aineenvaihduntaa.

Itse asiassa terve seerumin glukoosipitoisuus (~5,0 mmol/l) ei ole sen ihmeellisempi kuin seerumin ketonien terveellinen taso. Seerumin ketonien terveeksi tasoksi hyperketonemian yhteydessä on dokumentoitu 2,0 mmol/l – 8,0 mmol/l [56].

Tätä ketoositasoa pidetään lievänä tai kohtalaisena hyperketonemiana, jonka keho tuottaa selviytymismekanismina pitkittyneisiin paastojaksoihin [25, 53].

Ketoaineiden perustaso terveillä henkilöillä vaihtelee 0,1 – 0,2 mmol/l pitoisuutena [57]. Seerumin ketoneja käytetään useimmissa kudoksissa tehokkaasti energiasubstraateina silloin kun glukoosia on niukasti saatavilla [58]. Ketoaineita käyttävät mm.sydän [59] ja aivot. Sydän on hyvin joustava energiasubstraattien suhteen, mutta sydämen energiansaannin kannalta tehokkain energiasubstraatti on rasva, joka hapettuu β -oksidaatiossa. Sydänlihaksen soluihin varastoituu herkästi lipotoksiineja, jos veren glukoosi- ja rasvapitoisuus on jatkuvasti liian korkea ja sydänlihakselle syötetään liikaa erilaisia energiasubstraatteja. Sydänkin rasvoittuu.

Tästä rajoittavasta ruokavaliosta voidaan tehdä siedettävämpi antamalla eksogeenistä ketonilisää (lisäravinteena) etenkin, jos halutaan kiihdyttää ketoosin positiivisia metabolisia vaikutuksia elimistössä. Endogeenisen (elimistön tuottaman) ketoosin käynnistymisen aikaikkuna ~20 g päivittäisillä hiilihydraateilla on 2-3 vuorokautta [60, 61].

Eksogeenisten ketoneiden ja erityisesti β-hydroksibutyraatin tutkimus lääkinnällisenä ja elimistön toimintaa tehostavana metabolisena substraattina on hyvin aktiivista. β-hydroksibutyraatin vaikutuksia tutkitaan aiemmin mainittujen neurodegeneratiivisten sairauksien terapian lisäksi NASAn rahoittamana astronauttien kognitiivisten kykyjen parantamiseksi äärioloissa ja USAn puolustusministeriön rahoittamana taistelusukeltajien toimintakyvyn tehostamiseksi ja sukellusaikojen pidentämiseksi.

Ketogeenisen ruokavalion aloittamisen jälkeen seerumin ATP-tuotannon kannalta riittävän ketonitason saavuttaminen, voi kestää hiilihydraattien saannista riippuen jopa viisi päivää (yleensä 2-3 päivää). Nämä siirtymäpäivät voivat osoittautua vaikeiksi ja johtaa huijauspäiviin. Seerumin toiminnallisten ketonitasojen ylläpito edellyttää ruokavalion noudattamisesta [62, 63]. Tässä eksogeeninen ketonilisäaine voi helpottaa ketogeeniselle ruokavaliolle siirtymistä.

Huijaaminen ketogeenisen ruokavalion aikana hidastaa aineenvaihdunnan siirtymistä glukoosimetaboliasta rasvametaboliaan, ketogeneesiin ja β-oksidaatioon, joka itse asiassa on ketogeenisen ruokavalion pidemmän aikavälin tavoite. Solut oppivat käyttämään vapaita rasvahappoja energiasubstraatteina β-oksidaatiossa joitain viikkoja ketoosin alkamisen jälkeen. Aikaikkuna on varsin lavea, koska toisilla primaaristi β-oksidaatioon perustuva energia-aineenvaihdunta käynnistyy nopeammin kuin toisilla.

Tunnusomaista β-oksidaatioon siirtyneessä metaboliassa on ketoaineiden tuotannon väheneminen. Ruokailujen välillä rasvahappoja vapautuu tasaisena virtana rasvasoluista verenkiertoon, jossa ne kulkeutuvat soluihin ja hapettuvat β-oksidaatiossa energiaksi, mikä ylläpitää energistä, aktiivista, hieman euforista ja kylläistä oloa. Sama tapahtuu paastotessa.

Ketogeenisessä ruokavaliossa voi ja saa tehdä syrjähyppyjä. Jos mielesi tekee juoda lava bisseä, syödä perhepizza tai suklaalevy, anna palaa! Syrjähyppy ei ole maailmanloppu. Ketogeenisen ruokavalion tarkoituksena ei suinkaan ole kurjistaa elämää, vaan parantaa terveyttä ja elämänlaatua. Syrjähyppy on toki horjahdus ja askel taaksepäin, mutta se korjaantuu, kun ketogeenistä ruokavaliota jatkaa. Alussa syrjähyppyjen teko on helppoa ja houkuttelevaa, mutta pidempään ketoillessa syrjähypyn jälkeen on aivan yhtä helppoa ja luontevaa palata hiilihydraatteja rajoittavaan ruokavalioon. Ilmiö rinnastuu mielestäni alkoholin käyttöön: ihminen voi ja saa juoda toisinaan, mutta dokaamisesta ei pitäisi tehdä elämäntapaa. Ketogeeninen ruokavalio on elämäntapa, ei laihdutusruokavalio ja siksi minäkin vältän dieetistä puhumista. sanana dieetti rinnastuu vahvasti laihduttamiseen.

Yleensä kahden-kolmen päivän ketoilun jälkeen hiilihydraattien rajoittaminen johtaa siihen, että aivot alkavat käyttää solujen energiasubstraatteina enimmäkseen ketoaineita. Tämä aikaikkuna johtuu siitä, että maksan sokerivarastoissa, eli glykogeeneissä on glukoosia ihmisestä riippuen 1-3 päiväksi (~250 g) ja ketogeneesi käynnistyy glukoosivarastojen tyhjennyttyä.

96 tunnin kuluessa hiilihydraattien rajoittamisesta keskushermoston solut tyydyttävät suurimman osan ATP-tarpeestaan ketoaineilla [64]. Itse asiassa ketonit voivat toimia ATP-substraatteina ja tuottaa jopa 70% aivojen energiasta energiakysynnän tyydyttämiseksi [65, 66].

Alzheimerin taudin, dementian ja Parkinsonin taudin hoidossa kohonnut seerumin ketonipitoisuus (ketoosi) on lupaava terapiavaihtoehto [67–69]. Magneettikuvissa ketoosin on huomattu aktivoivan taudin passivoimia aivoalueita Alzheimerin tautia sairastavilla. Hyviä tuloksia on saatu myös dementiaa sairastavien potilaiden kognitiivisissa testeissä, joiden tulokset ovat glukoosin vähentymisen ja ketoaineiden lisääntyneen pitoisuuden seurauksena selvästi parantuneet.

Tähän on looginen selitys: hermosolujen glukoosinoton heikentyminen on yksi monista neurodegeneratiivisten tautien solutason vaurioitumisen syistä. Glukoosimetabolian heikentyesssä solut surkastuvat ja kuolevat energianpuutteeseen, mikä lisää aivojen atrofiaa ja ko. tautien oireita. Nämä solut kuitenkin saavat energiaa β-hydroksibutyraatista. Tämä ehkäisee solujen surkastumista ja dementian oireiden pahenemista. Taustalla oleva mekanismi on kiehtova.

4. Eksogeenisten ketonien käyttö

Endogeenisten ketonien muodostuminen on kehon normaali ja terveellinen selviytymismekanismi, jonka ansiosta ihminen selviää pitkään ilman ravintoa [58]. Tämä on ollut erityisen tärkeää esihistoriallisille esivanhemmillemme, joille ravinnon saanti päivittäin tai edes joka viikko ei ollut mikään itsestäänselvyys. Suuri muutos ravinnonsaannissa tapahtui oikestaan vasta maanviljelyn kehityttyä noin 10 000 vuotta sitten, jolloin ravintoa tuotettiin ja varastoitiin yli välittömän kulutuksen.

Metsästäjä-keräilijät elivät sillä, mitä löysivät tai saivat saaliiksi. Ruokaa syötiin silloin kun sitä oli. Ravinnosta saatu ylimääräinen energia varastoitiin rasvakudokseen. Aikoina, jolloin ravinnosta oli pulaa, solut tuottivat energiaa varastorasvasta. Ketogeneesi, glukoneogeneesi, rasvan β-oksidaatio ja perusaineenvaihdunnan hidastuminen pitävät ihmiset hengissä tarvittaessa useita viikkoja ilman ravintoa. Lihomisella on tärkeä fysiologinen tehtävä ihmisen selviytymisessä.

Solusignalointi

ATP-substraattina toimimisen lisäksi ketonit toimivat myös ligandeina, jotka säätelevät solujen signalointia ja käyttäytymistä [27]. Nämä edut toteutuvat vain, jos henkilö noudattaa ketogeenistä ruokavaliota. Ketogeenisen ruokavalion täydentäminen eksogeenisilla ketoaineilla voi ylläpitää ketoosiin perustuvaa aineenvaihduntaa pienistä syrjähypyistä huolimatta. Samanaikaisesti eksogeeniset ketonit edistävät suotuisaa farmakologiaa.

Ketonien tai proketonien (BHB) eksogeeninen käyttö lisäravinteena on ollut käytössä vuodesta 1975 alkaen. BHB (β-hydroksibutyraatti) muuttuu tarpeen mukaan muiksi ketoaineiksi, kuten asetoasetaatiksi tai alavirtaan asetoniksi. Asetoni ja asetoasetaatti ovat biologisia ketoneja, joista seerumin ketonipitoisuus suurimmaksi osaksi muodostuu [70].

Ketogeeninen ruokavalio ruokavalioterapiana aiheuttaa haasteita, koska se vaatii ylimääräistä omistautumista ja rruokavaliorajoituksia. LCHF voi johtaa siirtymäaikana huonovointisuutta aiheuttavaan ketoflunssaan. Joillekin ketoosin saavuttaminen on vaikeampaa kuin toisille metabolisten, geneettisten, ympäristön, sosiaalisten, kulttuuristen ja elämäntapoihin liittyvien tekijöiden vuoksi.

Eksogeeninen ketonilähde voi toimia siltana, joka kompensoi metaboliseen siirtymään liittyvää energiapuutetta, samalla kun se tarjoaa ketonilähteen, joka toimii solujen signalointiligandina. Sillä voi kuitenkin olla myös ruokavaliosta riippumaton rooli solunsisäisten signalointiominaisuuksiensa vuoksi.

Nykyisissä kaupallisissa ketoaineissa käytettyä suurta annostusta voidaan pitää tarpeettomana. Kuluttajille tarjotaan jopa 10 gramman BHB:tä yhdessä keskipitkäketjuisten triglyseridien (MCT) kanssa.

MCT toimii substraatina β-hapetukselle ja BHB:n muodostumiselle. Suun kautta otettava MCT liittyy monilla käyttäjillä ruoansulatuskanavan häiriöihin, kuten ripuliin [71–75]. Lisäksi nämä BHB-lisäravinteet sisältävät natriumia, jota voi olla 1300 mg annosta kohti. Terveydenhuollon ammattilaisen tulisi valvoa tällaisten erittäin suurten terapeuttisten annosten annostelua potilaille. Lisäravinteisiin liittyy aina yliannostuksen riski.

5. Eksogeenisten ketoaineiden hyödyt

Eksogeenisillä ketoaineilla, kuten BHB:llä (β-hydroksibutyraatilla) on on terapeuttista arvoa useiden sairauksien hoidossa. β-hydroksibutyraattilisän (BHB) in vivo -tutkimus vähensi syöpäkasvaimen kasvua ja pidensi tutkittavan kohteen eloonjäämistä muista ruokavalion tekijöistä, kuten seerumin glukoosipitoisuudesta riippumatta [76].

BHB:llä on havaittu tulehdusta hillitsevä vaikutus NLRP3-tulehduksen aiheuttaman IL-1β:n ja IL-18:n välittämisessä ihmisen monosyyteissä [77]. Tällä voi olla merkitystä autoinflammatoristen sairauksien hoidossa. Eksogeenisen ketonin tukema terapeuttinen ketoosi hillitsee epileptisten kohtausten alkamista [78].

β-hydroksibutyraatti (BHB) auttaa myös parantamaan sydämen terveyttä vähentämällä sydänlihaksen glukoosinottoa ja lisäämällä verenkiertoa [79]. Aivojen hypometabolisten sairauksien, kuten Alzheimerin taudin (AD), hoidossa käytetään menestyksekkäästi 10–20 grammaa eksogeenistä ketonilisää annoksiin jaettuna [80].

Alzheimerin tauti liittyy keskushermoston neuronien heikentyneeseen glukoosimetaboliaan, joka korreloi kognitiivisten kykyjen heikentymisen kanssa [81–84]. Ketoni ei ole riippuvainen insuliinista ja sitä voidaan käyttää hermosolujen mitokondrioissa tehokkaasti. β-hydroksibutyraatin saatavuus ehkäisee neurodegeneratiivisten tautien aivosolujen energiavajeen aiheuttamia solutuhoja [85].

Seerumitasojen ei tarvitse nousta merkittävästi, jotta aivojen energiansaantia voidaan tehostaa vaihtoehtoisella energiasubstraatilla. Tämä vähentää sivuoireiden riskiä ja minimoi hoidossa tarvittavan eksogeenisen ketoniannoksen.

Hyperketonemian, jossa systeemiset plasman ketonit nousevat vain tavallisten (0,2 mmol/l) perustasojen yli, on osoitettu parantavan aivojen ketonipitoisuutta ja tarjoavan neuroneille vaihtoehtoisen ja tehokkaan energiasubstraatin [80].

β-hydroksibutyraatti tukee mitokondrioiden energiantuotannon aktiivisuutta ja estää apoptoottisten (solukuolemaan indusoivien) proteiinien kumuloitumista neuroneihin [65]. Myrkytystilasta, vammoista tai iskemiasta johtuva neurodegeneraatio johtaa oksidatiiviseen stressiin. Eksogeenisten ketonien antaminen hiirimalleissa estää turvallisesti reaktiivisten happiradikaalien (ROS) muodostumista [86].

Ketogeenisen ruokavalion on dokumentoitu olevan tehokas hoito epilepsian ja lääkeresistentin epilepsian hoidossa [87, 88]. Eksogeenisten ketonien antamista on vuosikymmenien ajan käytetty hyvällä menestyksellä epilepsian hoitoon [78, 89].

Kokeellisessa rottamallissa eksogeenisten ketonien on havaittu lisäävän sekä rotan fyysistä aktiivisuutta että kognitiivista suorituskykyä [90]. Siitä, missä määrin eksogeeniset ketonit voivat säätää tai parantaa pitkittynyttä suorituskykyä ihmisillä, ei ole vielä tutkittua tietoa [91], mutta professori Tim Noakesin juoksemat ultramaratoonit ja triathlonisti Sami Inkisen käsittämättömät suoritukset ketogeenisellä ruokavaliolla viittaavat siihen, että ketogeeninen ruokavalio parantaa myös ihmisten henkistä ja fyysistä suorituskykyä.

Viime kädessä ketogeenisen ruokavalion vaikutuksia motivaatioon ja jaksamiseen tukee myös se, että minä multippelisklerootikkona käänsin, editoin ja uudelleenkirjoitin marraskuussa kahdeksan 10-25 A4-sivun mittaista tutkimuskatsausta Ruokasotaan. Kyllä sekin jotain kertoo ketogeenisestä ruokavaliosta ja sen vaikutuksista jaksamiseen.

Eksogeeniset ketonit voivat toimia terveyttä edistävinä aineina, mutta kuten myöhemmin osoitetaan, BHB:n ja sen molekyylisesti analogisen lyhytketjuisen rasvahapon, voihapon (BA) yhdistelmä voi olla tehokkaampi ja sopivampi terapiavaihtoehto mm. näiden yhteiskäytön tuoman synergiahyödyn vuoksi.

6. Eksogeenisten ketonien turvallisuus elintarvikkeissa ja hoidoissa

Ruoka sisältää useita luonnollisia ketonilähteitä. Maitotuotteet ja erityisesti täysmaito ovat luonnollisen β-hydroksibutyraatin lähteitä [92, 93]. Yhdysvaltain FDA luokittelee β-hydroksibutyraatin eri muodot yleisesti turvallisiksi (GRAS).

Eksogeeniset ketonit (tai ketoaineet) ovat turvallisia, mutta kuinka paljon on liikaa?

Koehenkilöt testasivat eksogeenisen ketonimäärän 395 mg / kg ketoniesterinä saantia aterian yhteydessä tai ilman. Seerumin BHB-tasot mitattiin tunnin kuluttua lisäravinteen antamisesta. Seerumin BHB oli alhaisempi BHB:n aterian rinnnalla saaneilla koehenkilöillä verrattuna niihin, jotka saivat BHB:n ilman ruokaa (2,1 mM ± 0,2 mM vs. 3,1 mM ± 0,1 Mm). Nämä äärimmäiset BHB-annokset muuttuivat 31,6 grammaksi ketoniestereitä 80 kg painavalla henkilöllä. Annos siedettiin hyvin [94].

Toisessa ihmiskokeessa käytettiin suun kautta annettua annosta (R) -3-hydroksibutyyli (R) -3-hydroksibutyraattia, joka on BHB-molekyylin monoesteri, kvantifioituna 714 mg / kg. Nämä annokset muuttuivat 57,1 grammaksi ketoniestereitä 80 kg painavalla koehenkilöllä. Maksimiplasman ketonit saavutettiin 2 tunnissa (3,30 mmol/l BHB ja 1,19 mmol/l asetoasetaatti). Tätä suurta annosta annettiin viiden päivän ajan kolme kertaa päivässä, ja myös se siedettiin hyvin [95] ilman sivuvaikutuksia.

Tyypillinen 8 tunnin paasto tuottaa 0,5 mmol/l seerumin ketonipitoisuuden [95]. Seitsemän paastopäivän aikana veren kokonaisketonitasot voivat nousta 5–7 mmol/l tasolle [25, 95].

Toksisuustutkimus rotilla, jotka saivat ketoaineita 12 ja 15 g / kg, tukee myös β-hydroksibutyraatin annostelun turvallisuutta [96].

Suun kautta annettu natrium D, L-β-hydroksibutyraatti (1000 mg / kg päivässä) on annettu alle 2-vuotiaille lapsille, joilla on kardiomyopatia ja leukodystrofia asyyli-CoA-dehydrogenaasipuutoksesta. Viikon kuluessa hoidon aloittamisesta havaittiin lasten toipumista täydellisestä halvauksesta. Kahden vuoden jälkeen todettiin neurologisen toiminnan huomattavaa parantumista. Lapset kävelivät ja aivojen MRI-kuvat osoitti selkeää toipumista.

Kaksi muuta samaa tilaa sairastavaa lasta, jotka eivät reagoineet tyypilliseen hoitoon, paranivat progressiivisesti edellä kuvatulla hoidolla [97]. Pikkulasten hyperinsulinemisessa hypoglykemiassa kahta kuuden kuukauden ikäistä lasta hoidettiin ja seurattiin viiden ja seitsemän kuukauden ajan. Lapsille annettiin neljän ja kahdeksan gramman ketoniannoksia, ja ne siedettiin hyvin [60].

On kuitenkin huomattava, että tällainen äärimmäinen terapeuttinen annostelu vaatii lääketieteellistä seurantaa.

7. Butyraatin terveyshyödyt

Lyhytketjuiset rasvahapot, joita kutsutaan myös haihtuviksi (volatile) rasvahapoiksi, ovat tyypillisesti suolen mikrobiomin tuottamia. Näitä rasvahappoja ovat butyraatti, propionaatti ja asetaatti, jotka syntyvät suolen symbioottisten mikrobien ravintokuidun käymisen sivutuotteina [98].

Suolistomikrobien tiedetään edistävän terveyttä ja hyvinvointia, vaikka ne vaikuttavat tavoilla, jotka ylittävät monimutkaisuudessaan immuunijärjestelmän toiminnan.

Nykyään tiedetään, että kommensaalibakteerit (normaalimikrobiston mikrobit, josta ei koidu isännälle hyötyä eikä haittaa) osallistuvat vitamiinien [99] synteesiin, ja tuottavat tärkeän energialähteen lyhytketjuisten rasvahappojen muodossa [100].

Lyhytketjuiset rasvahapot kiertävät takaisin säätääkseen ja ylläpitääkseen terveellistä suolistomikrobipopulaatiota siivoamalla luminaalisen (onteloon liittyvän) ympäristön patogeeneistä tyhjäksi [101, 102].

Luminaalibutyraatti lisää suoliston mikrobiomin hyvinvointia. Patogeenisiin bakteereihin, kuten koli-bakteereihin (Escherichia coli), salmonellaan (Salmonella spp.) ja kampylobakteereihin (Campylobacter spp.) luminaalibutyraatilla on negatiivinen vaikutus [103].

Butyraatin vaikutus ulottuu kuitenkin paksusuolen ulkopuolelle, jossa sitä syntyy. Butyraatti parantaa insuliiniherkkyyttä systeemisesti [102].

Suun kautta nautitun butyraatin on osoitettu indusoivan GLP-1:n eritystä [104]. Tämän hormonin tiedetään tukevan glukoositoleranssin ja ruokahalun hallintaa. Aivoissa GLP-1 tuottaa syvällisiä vaikutuksia, joiden mekanismit eivät ole aina selkeitä. Sen on osoitettu stimuloivan iskeemisten, eli paikalliseen verenpuutteeseen liittyvien vaurioiden neurogeneesiä aivopohjaisen neurotrofisen tekijän (BDNF) ylisääntelyn kautta [105]. Sillä on masennuslääkkeiden kaltaisia vaikutuksia [106].

Tutkimukset osoittavat, että butyraattia saaneet hiiret pysyvät hoikkina (ruokavalion kalorimäärästä huolimatta) [107]. Butyraatti on lisännyt hiirten energiankulutusta kehon lämmöntuotannon muodossa ja tehnyt hiiristä yleensä fyysisesti aktiivisempia [108, 109].

Butyraatilla on osoitettu olevan merkittävä sydän- ja verisuonitauteja ennaltaehkäisevä vaikutus [110, 111]. Tutkimuksissa butyraatti vähensi seerumin triglyseridejä peräti 50% verrokkeihin nähden [112]. Se myös vähentää endogeenisen kolesterolin tuotantoa [112].

Butyraatin ja asetaatin on todettu suojaavan ruokavalion aiheuttamalta lihavuudelta [107, 113]. Butyraatin antamisen on havaittu parantavan ruokahalua ja ravinteiden aineenvaihduntaa [114]. Butyraatti on avainpolttoaine suoliston epiteelisoluille ja se parantaa suolinukan eheyttä [115].

Aivan kuten BHB, butyraatti on histonideasetylaasien (HDAC) estäjä (inhibiittori), joka säätelee oksidatiivisen stressin vastustuskykyä koodaavien geenien transkriptiota [116].

HDAC-modulointi liittyy myös pitkäkestoiseen muistiin, oppimiseen ja neuronien välisten synaptisten yhteyksien plastisuuteen (neuroplastisuuteen) [117]. Aihe, johon täytyy pikimmiten tutustua!

Geenitranskription säätely johtaa myös parempaan suojaan vapailta happiradikaaleilta ja oksidatiivisen stressin aiheuttamilta kudosvaurioilta, joita voivat aiheuttaa äärimmäinen metabolinen stressi ja ympäristömyrkyt.


Butyraatin geenisäätely vaikuttaa neuroprotektiivisesti (aivosoluja suojaten) ja parantaen siten muistia esimerkiksi dementiassa [118]. Butyraatti estää NF-kB:tä ja lisääntyneitä I-kB-tasoja ja parantaa pitkäaikaista tulehduksen hallintaa [119].

Oraalisesti annettu natriumbutyraatti heikentää kokeellisesti indusoitua koliittia [120]. Suun kautta annetulla butyraatilla on myös tulehduksia estävä anti-inflammatorinen vaikutus. Se voi johtaa Crohnin taudin remissioon vähentämällä NF-kB: n ja IL-1β: n tasoa [121].

Suonensisäisesti annetun butyraatin on osoitettu tukevan suoraan ruoansulatuskanavan vuorauksen ja suolinukan terveyttä [103]. Sillä on vaikutuksia suoliston solujen lisääntymiseen ja solujen troofiseen ravinnonottoon 122].

Butyraatti on voimakas suoliston immuunipuolustusta säätelevien T-solujen promoottori [123]. Se luo immuunijärjestelmää säätelevän mekanismin, joka edistää parempaa tulehduksen hallintaa limakalvon vuorauksessa ja suolinukassa, sekä mekanismin suolistosyövän estämiseksi [124].

Butyraatti vähentää tai estää mikrobiomipopulaatiota, joka tuottaa propionihappoa [125]. Propionihappo on osallisena autismikirjon häiriöissä (ASD) [126]. On spekuloitu, että voihapon propionihappoa tuottavien suolistobakteerien säätelyvaikutus on mekanismi kognitiivisen tilan parantamiseksi [127].

70% lapsista, joilla on autismi tai ASD, on ruoansulatuskanavan häiriöitä ja muuttunut geenien ilmentyminen aivoissa. Sen on arveltu johtuvan lyhytketjuisten rasvahappojen epätasapainosta [128]. Butyraatin ja muiden lyhytketjuisten rasvahappojen oraalisten antoon liittyvien terveysetujen luettelo on pitkä (taulukko 1). β-hydroksibutyraatin antamisen yhteydessä butyraatti-lisä on suositeltava näiden yhteisvaikutusten vuoksi.

Taulukko1

Veden passiivinen imeytyminen paksusuolessa riippuu lyhytketjuisten rasvahappojen saatavuudesta [129–131]. Butyraatilla on rooli terveessä peristaltiikassa, joka auttaa normalisoimaan suolessa liikkuvan massan liikettä ummetuksessa tai ripulissa [132, 133]. Butyraatti tukee optimaalista nesteytystä ja optimaalista suolen eliminointitoimintoa [134].

Tämä farmakologinen vaikutus auttaa torjumaan BHB-lisäravinteisiin liittyviä mahdollisia haittatapahtumia.

Yhteenveto butyraatin terveydellisistä hyödyistä, joita on raportoitu in vitro– ja in vivo -malleilla sekä ihmiskokeilla tehdyissä tutkimuksissa

Butyraattia saa runsaasti meijerituotteista. Voi, joka sisältää luonnostaan 3-4 % voihappoa, on itse asiassa yksi parhaimmista voihapon lähteistä. Yksi ruokalusikallinen voita (~14 g) sisältää ~560 mg voihappoa. Butyraatit ovat voihapon suoloja ja estereitä. Suolistossa esiintyvä voihappo näyttää hillitsevän tulehdusta ja syöpäsolujen kasvua sekä vähentävän happiradikaalien syntyä. Ihminen kuluttaa päivässä yli 1000 mg butyraattia ulkoisista lähteistä. Tämä saadaan ruokavalion rasvoista.

Ihmisillä, jotka noudattavat ketogeenistä ja / tai kaloreita rajoittavaa ruokavaliota, mutta eivät syö meijerituotteita (voita, kermaa ja juustoja), ja joiden kuitujen saanti ravinnosta on vähäistä, voihapon saanti ja synteesi suolistossa on kehon tarpeisiin nähden liian vähäistä. Butyraatin ottaminen lisäravinteena on perusteltua myös, koska se yhdistää ketogeenisen ruokavalion ja butyraattilisän edut synergisesti.

Butyraatti lisää FGF21:n pitoisuutta seerumissa, maksassa ja rasvasoluissa, mikä puolestaan stimuloi rasvahappojen β-hapettumista ja maksan ketonituotantoa [135, 136]. Tämä on butyraattifarmakologian keskeinen piirre, joka synergisoi suoraan sen aktiivisuuden ketogeeniseen aineenvaihduntaan ja tukee sen terveydellisiä vaikutuksia. Butyraatti itsessään voi myös toimia substraattina β-hapettumiselle [137].

8. Butyraatin (lyhytketjuisen rasvahapon) ja BHB: n yhdistämisen edut

Butyraatti toimii merkittävänä ketoosin induktiota kiihdyttävänä synergistisenä tekijänä, joka parantaa:

  • BHB-ligandivuorovaikutuksia ja farmakologiaa

  • yleistä terveydentilaa

  • kuntoa ja suorituskykyä

Ketonien, kuten BHB-suolan eksogeeninen saanti lisäravinteena tarjoaa aivosolujen ATP-tuotannolle välittömän vaihtoehtoisen energiasubstraatin kalori- tai hiilihydraattirajoituksen aikana.

Samanaikainen butyraattilisäys natriumin, kalsiumin tai kaliumbutyraatin (tai sen estereiden) muodossa:

  • indusoi elimistön endogeeniseen ketonisynteesin

  • toimii ligandina stimuloimalla reseptoreita, joihin ketonit vaikuttavat

  • myötävaikuttaa insuliinin ja aineenvaihdunnan yleisen terveyden parantamiseen

  • tukee tulehduksellista ja yleistä immuunijärjestelmän terveyttä

  • tukee neurologista terveyttä

  • tukee ruoansulatuskanavan terveyttä ja eheyttä

  • toimii suoraan ATP:n muodostamisen energiasubstraattina

Kaikki nämä toteutuvat rinnakkain niiden etujen kanssa, joita sisarketoaineen (BHB) samanaikainen lisäys tuottaa. Tämän synergistisen järjestelmän arvo ketogeenisen ruokavalion yhteydessä on hyvin perusteltu ja järkevä.

On kuitenkin muistettava, että ketogeeniselle elämäntavalle on ominaista vähäinen hiilihydraattien saanti, mikä johtaa heikentyneeseen sulamattoman kuidun ja resistentin tärkkelyksen saantiin. Sillä on negatiivinen vaikutus suoliston mikrobiomiin ja sen kykyyn tuottaa lyhytketjuisia rasvahappoja, kuten voihappoa.

Suoliston mikrobiomi on säännöllisesti kovan paineen alla ympäristötekijöiden, kuten ruokavalion ja lääkkeiden (esim. antibioottien) vaikutuksesta [138, 139]. Butyraatin ottaminen lisäravinteena suojaa  suoliston mikrobiomia, etenkin jos sulamattomien kuitujen ja resistentin tärkkelyksen saanti on vähäistä.

9. Voihappo ja ketogeeninen painonpudotusstrategiaa

Lisäravinteena otetun BHB:n vaikutusta painonpudotuksessa on tutkittu hyvin paljon. Erityisen paljon huomiota on kiinnitetty lisäravinteisiin, jotka sisältävät BHB:n lisäksi keskipitkäketjuisia triglyseridejä (MCT). Ketoaineet ja MCT sisältävät energiaa ja lisäävät siten päivittäistä energiansaantia.

Tutkimuksissa on havaittu, että seerumin ketonipitoisuuden kasvu ei lisää, vaan estää lipolyysiä. Siltä kannalta lisäravinteena otetut ketoaineet ja MCT itse asiassa estävät rasvasolujen purkamista vapaiksi rasvahapoiksi, ketonien synteesiä ja laihtumista [53, 140]. Toisaalta butyraatti tukee ruokahalun hallintaa ja parantaa kehon rasva-lihas-koostumusta [107, 112–114].

On olemassa näyttöä, jonka mukaan butyraatti vaikuttaa suotuisasti sydän- ja verisuoniterveyteen ja ehkäisee sydän- ja verisuonitauteja [112]. Tasapaino eksogeenisten ja endogeenisten ketoaineiden välillä on oleellista aivojen ja kognitiivisen terveyden silloitustekijänä ja neuroniin liittyvien signaaliligandien riittävän saannin kannalta. Aktivointisignaali, kuten voihaposta peräisin oleva signaali rasvahappojen β-oksidaation käynnistämiseksi aivosoluissa, on neuronien toiminnan kannalta tärkeää.

Lisäravinteena otetutun butyraatin ja beta-hydroksibutyraatin käyttö on perusteltua ruokavalion siirtymäajalla sekä solujen energia-aineenvaihdunnan tehostajana monissa metabolisissa ja neurodegeneratiivisissa sairauksissa, mutta laihtumisen suhteen tällaisesta lisäravinnecocktailista ei ole hyötyä. Sen sijaan lisäaineina syiötävien butyraatin ja beta-hydroksibutyraatin hyödyntäminen paastolla tapahtuvan liikunnan energiabuusterina ja rasvahappojen hapettumisen tehostajana on perusteltua.

Ruokavalion tuottama ketoosi vähentää laktaatin tuotantoa ja parantaa suorituskykyä erityisesti kestävyyttä vaativissa lajeissa, kuten pyöräilyssä [141]. Sen on osoitettu estävän lihaskatoa (kataboliaa) ja suojaavan aivoja ja muita kudoksia hapettumiselta [142].

10. Kurkistus ketoaineiden solunsisäiseen farmakologiaan

BHB-BA-kompleksin farmakologiasta vastaavien mekanismien kartoittamiseksi ravintolisien yhteydessä on tehty useita tutkimuksia. Tutkimukset osoittavat, että erilaiset G-proteiiniin kytketyt HCA-reseptorit toimivat kohteina endogeenisille ketonille ja ketoaineiden ligandeille [143].

Tämä reseptoriperhe luokitellaan useisiin alatyyppeihin, joilla on erillisiä piirteitä, kuten ligandispesifisyys. Vaikka BHB toimii tehokkaana agonistina esimerkiksi HCA2-reseptoreille, se ei kykene toimimaan agonistina muille HCA-reseptoreille. Sekä BA että BHB ovat signalointiligandeja erilaisille reseptoreille, jotka osallistuvat neuroinflammatoriseen säätelyyn, mukaan lukien HCA2-reseptori [144].

Muut ligandit, kuten muut ketonit, voivat toimia agonisteina vaihtamalla HCA-reseptoreita, mutta ne eivät välttämättä pysty käynnistämään HCA2 reseptorista transduktiokaskadia. HCA-reseptoreita voi esiintyä erilaisissa kudos- ja solutyypeissä, kuten rasvasoluissa ja makrofageissa [143].

Näiden reseptorien ilmentyminen voidaan myös indusoida immuunisoluissa, kuten makrofageissa, erilaisilla sytokiineilla ligandiensa solunsisäisen vaikutuksen säätelemiseksi. Vapaat rasvahappo- (FFAR) ja HCA-reseptorit voivat hyvinkin olla keskeisiä kohteita tyypin 2 diabeteksen, lihavuuden ja inflammaation ehkäisyssä ja hoidossa [145].

Ravinnetasapainoa ylläpitävät rasvahapporeseptorit, jotka säätelevät kolekystokiniiniä, peptidiä YY ja leptiiniä ovat kasvavan kiinnostuksen kohteena diabeteksen hoidossa.

Luonnossa esiintyvät ligandit, BHB ja BA moduloivat jo tehokkaasti näitä terapeuttisia kohteita. Kaikki kolme HCA-reseptoria ekspressoidaan rasvasoluissa. HCA1-reseptori aktivoidaan esimerkiksi hydroksipropaanihapolla (laktaatilla), kun taas HCA2:n agonisti on β-hydroksibutyraatti (BHB), ja HCA3 aktivoidaan toisella β-hapetusvälituotteella [146].

Näiden kahden luonnollisen butyraatin säätelyvaikutukset tulehduksellista kaskadia ja immuunijärjestelmän aktiivisuutta säätelevien sytokiinien transkriptiotekijöihin liittyvät läheisesti NF-kB-modulointiin.

Tumatekijä erytroidiin 2 liittyvä tekijä 2 (Nrf2) on ensisijainen transkriptiotekijä, joka käynnistää vasteen oksidatiiviseen stressiin. Ketogeeninen ruokavalio indusoi systemaattisesti Nrf2:ta lievän oksidatiivisen ja elektrofiilisen stressin kautta [147, 148].

Nrf2:n transkriptio avaa sarjan endogeenisiä antioksidanttisia puolustusjärjestelmiä. Transkriptiotekijä siirtyy tumaan ja sitoo antioksidanttivaste-elementin (ARE) transkriptoimaan solua suojaavat sytoprotektiiviset geenit [149].

Nrf2 transkriptoi endogeeniset antioksidanttipeptidit: hemeoksigenaasi-1, katalaasi (CAT), superoksididismutaasi (SOD) ja glutationiperoksidaasi (GSH / GPx) [150-152] oksidatiivisen stressin suojamekanismina. Viime aikoina tätä mekanismia on kohdennettu kemopreventiivisesti, millä on haluttu stimuloida endogeenista antioksidanttisaturaatiota, joka estää syöpä- ja kemoterapialääkkeiden aiheuttamat vahingot isäntäsolun terveessä DNA:ssa [153, 154].

Nrf2 lisää solujen puolustusmekanismeja. Se välittää mitokondrioille hermosuojauksen toksiinin aiheuttaman stressin aikana ja ehkäisee vaurioiden (leesioiden) muodostumista [155, 156].

Tätä solusuojausta nähdään myös kemoterapian yhteydessä, jossa Nrf2-induktio suojaa terveitä soluja [157]. Nrf2-induktio suojaa soluja LPS:n aiheuttamalta tulehdukselliselta aktiivisuudelta ja kuolleisuudelta [158].

Nrf2-signalointireitit ovat lupaavia Parkinsonin taudin mitokondrioiden toimintahäiriöiden vastatoimena [159]. Nrf2-induktion välittää myös puolustuksen sydänlihassolujen kohonneesta seerumin-glukoosin aiheuttamasta oksidatiivisesta vahingosta [160].

Diabeettinen tila liittyy Nrf2-aktiivisuuden alasregulaatioon ERK:n kautta. Tämän uskotaan vaikuttavan stressin aiheuttamaan insuliiniresistenssiin sydämen soluissa [161]. Tutkimukset osoittavat, että Nrf2-aktivaatiota voidaan käyttää terapeuttisena sovelluksena diabeteksen ”metabolisen häiriön parantamiseen ja munuaisvaurioiden lievittämiseen” [162].

Nrf2:n rooli solujen suojauksessa antioksidanttisen puolustuksen pääregulaattorina tekevät siitä kiinnostavan kohteen kudosten ja solujen suojaamisessa hapettavilta ja toksisilta tekijöiltä [163, 164]. Nrf2:lla on huomattava merkitys antioksidanttipuolustusmekanismissa muiden yleisten endogeenisten antioksidanttien rinnalla. Se tukee myös vammoista, toksisuudesta ja hypoksiasta palautumista [165, 166].

Iskemia (paikallinen hapenpuute) on yleinen solun toimintahäiriön ja solukuoleman syy. Iskemia johtuuu verenkierron keskeytymisestä tai hapen saatavuuden heikkenemisestä kudoksissa, mikä johtaa soluvaurioihin. Sen tiedetään olevan keskeinen tekijä aivohalvauksen patologiassa ja yksi yleisimmistä pysyvien solu- ja kudosvaurioiden aiheuttajista sydänsairauksissa [167].

Hemeoksigenaasi-1-induktio suojaa neuroneja [168] ja sydänkudosta [169] iskemialta ja sen aiheuttamilta vaurioilta. Myös glutationiperoksidaasin yliekspressio suojaa sydänlihasta iskeemisiltä reperfuusiovaurioilta [170, 171].

Butyraatti aktivoi Nrf2:ta [172, 173]. Tutkimuskirjallisuudessa on viitteitä siitä, että käsittely butyraatilla tai sen suoloilla (natriumbutyraatilla) lievittää oksidatiivista stressiä [174] ja parantaa katalaasiaktiivisuutta [175]. Esikäsittely BA-annoksella suojaa iskemiaan liittyviä sydänlihaksen vaurioita estämällä tulehduksellisten sytokiinien ilmentymistä [174].

Se myös suojaa keuhkovaltimon sileän lihaksen soluja hyperoksiaan liittyvältä hapettumiselta [175] ja parantaa ikääntymiseen liittyvää aineenvaihduntaa ja lihasten surkastumista [176].

11. Opittavaa on paljon

Monet voivat hyötyä ketogeenisestä ruokavaliosta tai suun kautta otettavista ketoaineista ja niiden tuottamasta ketoositilasta.

Ketoosi ylläpitää parempaa ruokahalun hallintaa, fyysistä kuntoa, aivojen tehostunutta energiansaantia, neuroplastisuutta, neurogeneesiä, oppimiskykyä ja parempaa muistia. Ketoosin aiheuttama beta-oksidaatio ylläpitää tasaista eenergiavirtaa, joka lisää kestävyyttä ja polttaa tehokkaasti rasvaa.

Solutasolla ketonit vaikuttavat neuro- ja sytoprotektiivisesti suojaten soluja ja hillitsevät vapaiden happiradikaalien ja oksidatiivisen stressin aiheuttamia solu- ja kudosvaurioita. Tutkimuskirjallisuuden meta-analyysin perusteella ketoosin hyötyjä ovat:

  • tulehduksen (inflammaation) lievittäminen

  • neurologiseen sairauteen liittyvä kognitiivisen heikentymisen korjaantuminen

  • parantunut ruoansulatuskanavan terveys

  • nopeampi palautuminen liikunnan tai intensiivisen harjoituksen lihasrasituksesta

Lisää työtä ja kliinisiä tutkimuksia tarvitaan, jotta tiedämme tarkemmin, miten näitä strategioita voidaan käyttää potilaiden terapiana.

12. Keskustelua

Tutkimuskirjallisuuden tämänhetkisen näytön perusteella lisäravinteena otetun eksogeenisen ketonin käyttö näyttää olevan toteuttamiskelpoinen strategia, joka tukee ketogeenisen ruokavalion siirtymävaihetta, jossa keho totutetaan glukoosin sijaan uuteen energiasubstraattiin. Butyraatinn on raportoitu antavan positiivisia tuloksia kunto-, painonhallinta-, kognitio- ja suorituskyvyn parantamisen tueksi joko ruokavalion rajoituksilla tai ilman.

Laboratoriomme nykyinen tutkimushanke on suunniteltu tutkimaan edelleen BHB:n ja BHB-BA:n solunsisäisiä vaikutuksia immuunijärjestelmän tärkeimpiin soluihin seerumipitoisuuksilla, jotka voimme saavuttaa suositellulla vähimmäisannoksella.

Eksogeeninen BHB-BA-ravintolisä voi olla toiminnallinen strategia, joka indusoi β-hapettumista ja auttaa nostamaan seerumin ketonitasoja, jotka tuottavat ketoosin (> 0,2 mmol) metaboliset hyödyt ilman makroravinteiden ankaraa säätelyä. BHB:n samanaikainen antaminen siihen liittyvän BA-molekyylin kanssa näyttää olevan tehokas tapa saavuttaa tämä tavoite käyttämällä erittäin pieniä ja turvallisia oraalisia annoksia. Vaikka ketoosin metabolisia hyötyjä saatetaan saavuttaa lisäravinteilla, on todennäköistä, että ketogeeninen ruokavalio yhdessä lisäravinteina otettavien butyraatin ja beta-hydroksibutyraatin kanssa toimii terapiana etenkin kognitiivisten häiriöiden ja painonhallinnan yhteydessä paremmin kuin lisäravinteet yksin.

Ruokavalion täydentäminen BHB-BA-lisäravinteella tukee ketoosissa pysymistä pienistä ruokavaliolipsahduksista huolimatta.

Huomio: Ota yhteys lääkäriin ennenBHB-BA-lisäravinteiden käyttöä. Älä käytä, jos olet raskaana tai imetät. Ei suositella tyypin I diabeetikoille.

Ps. Pahoittelut kirjoitus- ja/tai asiavirheistä. Nppäilyvirheille tulee jotenkin sokeaksi.

Conflicts of Interest

Franco Cavaleri is the owner of a biomedical research group, Biologic Nutrigenomics Health Research Corp., and Biologic Pharmamedical Research that funds and executes research on the pharmacology of nutritional, nutraceutical, and pharmaceutical agents that are studied in the context of disease pathology including characteristics that have been associated with inflammation and dementias. Franco Cavaleri is also the owner of ketone-based and other related intellectual properties. Emran Bashar is an employee of the Biologic Pharmamedical Research.Authors’ ContributionsFranco Cavaleri was responsible for background research and preparation and editing of the manuscript. Emran Bashar was responsible for conducting research and preparation and editing of the manuscript. Franco Cavaleri and Emran Bashar generated research plans.


References

  1. A. Gjedde and C. Crone, “Induction processes in blood-brain transfer of ketone bodies during starvation,” American Journal of Physiology–Legacy Content, vol. 229, no. 5, pp. 1165–1169, 1975. View at: Publisher Site | Google Scholar
  2. M. Pollay and F. Alan Stevens, “Starvation-induced changes in transport of ketone bodies across the blood-brain barrier,” Journal of Neuroscience Research, vol. 5, no. 2, pp. 163–172, 1980. View at: Publisher Site | Google Scholar
  3. S. Cunnane, S. Nugent, M. Roy et al., “Brain fuel metabolism, aging, and Alzheimer’s disease,” Nutrition, vol. 27, no. 1, pp. 3–20, 2011. View at: Publisher Site | Google Scholar
  4. M. A. Reger, S. T. Henderson, C. Hale et al., “Effects of β-hydroxybutyrate on cognition in memory-impaired adults,” Neurobiology of Aging, vol. 25, no. 3, pp. 311–314, 2004. View at: Publisher Site | Google Scholar
  5. L. C. Costantini, L. J. Barr, J. L. Vogel, and S. T. Henderson, “Hypometabolism as a therapeutic target in Alzheimer’s disease,” BMC Neuroscience, vol. 9, no. 2, p. S16, 2008. View at: Publisher Site | Google Scholar
  6. W. R. Leonard, “Dietary change was a driving force in human evolution,” Scientific American, vol. 287, no. 6, pp. 106–116, 2002. View at: Publisher Site | Google Scholar
  7. S. M. Innis, “Dietary (n−3) fatty acids and brain development,” Journal of Nutrition, vol. 137, no. 4, pp. 855–859, 2007. View at: Publisher Site | Google Scholar
  8. E. Cohen, M. Cragg, A. Hite, M. Rosenberg, and B. Zhou, “Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity,” Nutrition, vol. 31, no. 5, pp. 727–732, 2015. View at: Publisher Site | Google Scholar
  9. J. Scholl, “Traditional dietary recommendations for the prevention of cardiovascular disease: do they meet the needs of our patients?” Cholesterol, vol. 2012, pp. 1–9, 2012. View at: Publisher Site | Google Scholar
  10. G. Mullins, C. Hallam, and I. Broom, “Ketosis, ketoacidosis and very-low-calorie diets: putting the record straight,” Nutrition Bulletin, vol. 36, no. 3, pp. 397–402, 2011. View at: Publisher Site | Google Scholar
  11. D. K. Layman and D. A. Walker, “Potential importance of leucine in treatment of obesity and the metabolic syndrome,” Journal of Nutrition, vol. 136, no. 1, pp. 319S–323S, 2006. View at: Publisher Site | Google Scholar
  12. M. Lawson and V. Shaw, “Ketogenic diet for epilepsy,” in Clinical Paediatric Dietetics, pp. 222–232, Blackwell Science Ltd., Oxford, UK, 2nd edition, 2001. View at: Google Scholar
  13. R. Krikorian, M. D. Shidler, K. Dangelo, S. C. Couch, S. C. Benoit, and D. J. Clegg, “Dietary ketosis enhances memory in mild cognitive impairment,” Neurobiology of Aging, vol. 33, no. 2, pp. 425. e19–425. e27, 2012. View at: Publisher Site | Google Scholar
  14. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  15. P. G. Sullivan, N. A. Rippy, K. Dorenbos, R. C. Concepcion, A. K. Agarwal, and J. M. Rho, “The ketogenic diet increases mitochondrial uncoupling protein levels and activity,” Annals of Neurology, vol. 55, no. 4, pp. 576–580, 2004. View at: Publisher Site | Google Scholar
  16. E. C. Westman, J. Mavropoulos, W. S. Yancy Jr., and J. S. Volek, “A review of low-carbohydrate ketogenic diets,” Current Atherosclerosis Reports, vol. 5, no. 6, pp. 476–483, 2003. View at: Publisher Site | Google Scholar
  17. K. M. Maruschak, Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Anthropometrics, Biochemical Values, and Gastrointestinal Symptoms in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  18. S. R. Send, The Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Seizure Severity, Seizure Frequency, and Quality of Life in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  19. C. Dudick, “Carb”(not “Keto”) is a Four Letter Word, 2016.
  20. M. Schmidt, N. Pfetzer, M. Schwab, I. Strauss, and U. Kämmerer, “Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial,” Nutrition and Metabolism, vol. 8, no. 1, p. 54, 2011. View at: Publisher Site | Google Scholar
  21. D. K. Layman and J. I. Baum, “Dietary protein impact on glycemic control during weight loss,” Journal of Nutrition, vol. 134, no. 4, pp. 968S–973S, 2004. View at: Publisher Site | Google Scholar
  22. C. Remesy, P. Fafournoux, and C. Demigne, “Control of hepatic utilization of serine, glycine and threonine in fed and starved rats,” Journal of Nutrition, vol. 113, no. 1, pp. 28–39, 1983. View at: Publisher Site | Google Scholar
  23. N. J. Krilanovich, “Benefits of ketogenic diets,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 238-239, 2007. View at: Publisher Site | Google Scholar
  24. D. W. Kim, H. C. Kang, J. C. Park, and H. D. Kim, “Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet,” Pediatrics, vol. 114, no. 6, pp. 1627–1630, 2004. View at: Publisher Site | Google Scholar
  25. R. L. Veech, “The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 309–319, 2004. View at: Publisher Site | Google Scholar
  26. J. D. McGarry, “Disordered metabolism in diabetes: have we underemphasized the fat component?” Journal of Cellular Biochemistry, vol. 55, no. S1994A, pp. 29–38, 1994. View at: Publisher Site | Google Scholar
  27. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends in Endocrinology and Metabolism, vol. 25, no. 1, pp. 42–52, 2014. View at: Publisher Site | Google Scholar
  28. O. Owen, G. Reichard Jr., H. Markus, G. Boden, M. Mozzoli, and C. Shuman, “Rapid intravenous sodium acetoacetate infusion in man metabolic and kinetic responses,” Journal of Clinical Investigation, vol. 52, no. 10, pp. 2606–2616, 1973. View at: Publisher Site | Google Scholar
  29. E. O. Balasse and F. Féry, “Ketone body production and disposal: effects of fasting, diabetes, and exercise,” Diabetes/Metabolism Reviews, vol. 5, no. 3, pp. 247–270, 1989. View at: Publisher Site | Google Scholar
  30. R. Wilson and W. Reeves, “Neutrophil phagocytosis and killing in insulin-dependent diabetes,” Clinical and Experimental Immunology, vol. 63, no. 2, p. 478, 1986. View at: Google Scholar
  31. M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, and A. Cerami, “Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking,” Science, vol. 232, no. 4758, pp. 1629–1632, 1986. View at: Publisher Site | Google Scholar
  32. N. Ahmed, “Advanced glycation endproducts—role in pathology of diabetic complications,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 3–21, 2005. View at: Publisher Site | Google Scholar
  33. P. Marceau, S. Biron, F. S. Hould et al., “Liver pathology and the metabolic syndrome X in severe obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 5, pp. 1513–1517, 1999. View at: Publisher Site | Google Scholar
  34. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at: Publisher Site | Google Scholar
  35. K. Moley, M. Y. Chi, C. Knudson, S. Korsmeyer, and M. Mueckler, “Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways,” Nature Medicine, vol. 4, no. 12, pp. 1421–1424, 1998. View at: Publisher Site | Google Scholar
  36. S. P. Hays, E. B. Smith, and A. L. Sunehag, “Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants,” Pediatrics, vol. 118, no. 5, pp. 1811–1818, 2006. View at: Publisher Site | Google Scholar
  37. H. Vlassara, “Advanced glycation end-products and atherosclerosis,” Annals of Medicine, vol. 28, no. 5, pp. 419–426, 1996. View at: Publisher Site | Google Scholar
  38. H. Yki-Jarvinen, “Glucose Toxicity,” Endocrine Reviews, vol. 13, no. 3, pp. 415–431, 1992. View at: Publisher Site | Google Scholar
  39. L. L. Madison, D. Mebane, R. H. Unger, and A. Lochner, “The hypoglycemic action of ketones. II. Evidence for a stimulatory feedback of ketones on the pancreatic beta cells,” Journal of Clinical Investigation, vol. 43, no. 3, pp. 408–415, 1964. View at: Publisher Site | Google Scholar
  40. A. Baron, G. Brechtel, and S. Edelman, “Effects of free fatty acids and ketone bodies on in vivo non-insulin-mediated glucose utilization and production in humans,” Metabolism, vol. 38, no. 11, pp. 1056–1061, 1989. View at: Publisher Site | Google Scholar
  41. T. A. Hussain, T. C. Mathew, A. A. Dashti, S. Asfar, N. Al-Zaid, and H. M. Dashti, “Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes,” Nutrition, vol. 28, no. 10, pp. 1016–1021, 2012. View at: Publisher Site | Google Scholar
  42. T. D. Noakes, “Low-carbohydrate and high-fat intake can manage obesity and associated conditions: occasional survey,” South African Medical Journal, vol. 103, no. 11, pp. 826–830, 2013. View at: Publisher Site | Google Scholar
  43. J. Ratliff, G. Mutungi, M. J. Puglisi, J. S. Volek, and M. L. Fernandez, “Carbohydrate restriction (with or without additional dietary cholesterol provided by eggs) reduces insulin resistance and plasma leptin without modifying appetite hormones in adult men,” Nutrition Research, vol. 29, no. 4, pp. 262–268, 2009. View at: Publisher Site | Google Scholar
  44. J. S. Volek, M. J. Sharman, D. M. Love, N. G. Avery, T. P. Scheett, and W. J. Kraemer, “Body composition and hormonal responses to a carbohydrate-restricted diet,” Metabolism, vol. 51, no. 7, pp. 864–870, 2002. View at: Publisher Site | Google Scholar
  45. C. A. Major, M. J. Henry, M. de Veciana, and M. A. Morgan, “The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes,” Obstetrics and Gynecology, vol. 91, no. 4, pp. 600–604, 1998. View at: Publisher Site | Google Scholar
  46. A. Accurso, R. K. Bernstein, A. Dahlqvist et al., “Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal,” Nutrition and Metabolism, vol. 5, no. 1, p. 9, 2008. View at: Publisher Site | Google Scholar
  47. R. D. Feinman, W. K. Pogozelski, A. Astrup et al., “Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base,” Nutrition, vol. 31, no. 1, pp. 1–13, 2015. View at: Publisher Site | Google Scholar
  48. M. K. Badman, A. R. Kennedy, A. C. Adams, P. Pissios, and E. Maratos-Flier, “A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss,” American Journal of Physiology-Endocrinology and Metabolism, vol. 297, no. 5, pp. E1197–E1204, 2009. View at: Publisher Site | Google Scholar
  49. K. Xu, X. Sun, B. O. Eroku, C. P. Tsipis, M. A. Puchowicz, and J. C. LaManna, “Diet-induced ketosis improves cognitive performance in aged rats,” in Advances in Experimental Medicine and Biology, pp. 71–75, Springer, Berlin, Germany, 2010. View at: Google Scholar
  50. K. D. Ballard, E. E. Quann, B. R. Kupchak et al., “Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins,” Nutrition Research, vol. 33, no. 11, pp. 905–912, 2013. View at: Publisher Site | Google Scholar
  51. R. A. Hawkins, A. M. Mans, and D. W. Davis, “Regional ketone body utilization by rat brain in starvation and diabetes,” American Journal of Physiology-Endocrinology and Metabolism, vol. 250, no. 2, pp. E169–E178, 1986. View at: Publisher Site | Google Scholar
  52. T. N. Seyfried and P. Mukherjee, “Targeting energy metabolism in brain cancer: review and hypothesis,” Nutrition and Metabolism, vol. 2, no. 1, p. 30, 2005. View at: Publisher Site | Google Scholar
  53. L. Laffel, “Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes,” Diabetes/Metabolism Research and Reviews, vol. 15, no. 6, pp. 412–426, 1999. View at: Publisher Site | Google Scholar
  54. H. Krebs, “The regulation of the release of ketone bodies by the liver,” Advances in Enzyme Regulation, vol. 4, pp. 339–353, 1966. View at: Publisher Site | Google Scholar
  55. J. McGarry and D. Foster, “Regulation of hepatic fatty acid oxidation and ketone body production,” Annual Review of Biochemistry, vol. 49, no. 1, pp. 395–420, 1980. View at: Publisher Site | Google Scholar
  56. M. T. Newport, T. B. VanItallie, Y. Kashiwaya, M. T. King, and R. L. Veech, “A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease,” Alzheimer’s and Dementia, vol. 11, no. 1, pp. 99–103, 2015. View at: Publisher Site | Google Scholar
  57. E. C. Westman, R. D. Feinman, J. C. Mavropoulos et al., “Low-carbohydrate nutrition and metabolism,” American Journal of Clinical Nutrition, vol. 86, no. 2, pp. 276–284, 2007. View at: Publisher Site | Google Scholar
  58. C. Harvey, What is Nutritional Ketosis? 2015.
  59. I. F. Kodde, J. van der Stok, R. T. Smolenski, and J. W. de Jong, “Metabolic and genetic regulation of cardiac energy substrate preference,” Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 146, no. 1, pp. 26–39, 2007. View at: Publisher Site | Google Scholar
  60. B. Plecko, S. Stoeckler-Ipsiroglu, E. Schober et al., “Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy,” Pediatric Research, vol. 52, no. 2, pp. 301–306, 2002. View at: Publisher Site | Google Scholar
  61. H. White and B. Venkatesh, “Clinical review: ketones and brain injury,” Critical Care, vol. 15, no. 2, p. 219, 2011. View at: Publisher Site | Google Scholar
  62. E. P. Vining, “Clinical efficacy of the ketogenic diet,” Epilepsy Research, vol. 37, no. 3, pp. 181–190, 1999. View at: Publisher Site | Google Scholar
  63. E. H. Kossoff, B. A. Zupec-Kania, and J. M. Rho, “Ketogenic diets: an update for child neurologists,” Journal of Child Neurology, vol. 24, no. 8, pp. 979–988, 2009. View at: Publisher Site | Google Scholar
  64. G. F. Cahill Jr., “Fuel metabolism in starvation,” Annual Review of Nutrition, vol. 26, no. 1, pp. 1–22, 2006. View at: Publisher Site | Google Scholar
  65. M. Gasior, M. A. Rogawski, and A. L. Hartman, “Neuroprotective and disease-modifying effects of the ketogenic diet,” Behavioural Pharmacology, vol. 17, no. 5-6, pp. 431–439, 2006. View at: Publisher Site | Google Scholar
  66. R. de Oliveira Caminhotto and F. B. Lima, “Low carbohydrate high fat diets: when models do not match reality,” Archives of Endocrinology and Metabolism, vol. 60, no. 4, pp. 405-406, 2016. View at: Publisher Site | Google Scholar
  67. M. G. Abdelwahab, S. H. Lee, D. O’Neill et al., “Ketones prevent oxidative impairment of hippocampal synaptic integrity through K ATP channels,” PLoS One, vol. 10, no. 4, Article ID e0119316, 2015. View at: Publisher Site | Google Scholar
  68. J. X. Yin, M. Maalouf, P. Han et al., “Ketones block amyloid entry and improve cognition in an Alzheimer’s model,” Neurobiology of Aging, vol. 39, pp. 25–37, 2016. View at: Publisher Site | Google Scholar
  69. J. Zhang, Q. Cao, S. Li et al., “3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism,” Biomaterials, vol. 34, no. 30, pp. 7552–7562, 2013. View at: Publisher Site | Google Scholar
  70. L. Siegel, N. I. Robin, and L. J. McDonald, “New approach to determination of total ketone bodies in serum,” Clinical Chemistry, vol. 23, no. 1, pp. 46–49, 1977. View at: Google Scholar
  71. D. J. Angus, M. Hargreaves, J. Dancey, and M. A. Febbraio, “Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance,” Journal of Applied Physiology, vol. 88, no. 1, pp. 113–119, 2000. View at: Publisher Site | Google Scholar
  72. L. Misell, N. Lagomarcino, V. Schuster, and M. Kern, “Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners,” Journal of Sports Medicine and Physical Fitness, vol. 41, no. 2, p. 210, 2001. View at: Google Scholar
  73. V. Ööpik, S. Timpmann, L. Medijainen, and H. Lemberg, “Effects of daily medium-chain triglyceride ingestion on energy metabolism and endurance performance capacity in well-trained runners,” Nutrition Research, vol. 21, no. 8, pp. 1125–1135, 2001. View at: Publisher Site |