Kirjallisuuskatsaus: ketogeenisen ruokavalion terveysvaikutukset: osa 2 – epigenom

Kathryn Dowis, Simran Banga
Editor: Marcellino Monda;
Käännös ja editointi: Sami Raja-Hallihttps://pmc.ncbi.nlm.nih.gov/articles/PMC8153354/ 

Johdanto

Ketogeenisen ruokavalion (KD) vaikutuksista terveyteen ei ole tehty kattavaa tutkimuskatsausta. Yleinen käsitys on, että ketogeeninen ruokavalio on sydän- ja verisuoniterveydelle haitallinen. Onko näin?

Tämä kirjallisuuskatsaus kokoaa yhteen tutkimuksia ketogeenisen ruokavalion vaikutuksista epigenomiin. jatkuvasti lisääntyvän tutkimusnäytön perusteella ketogeeninen ruokavalio (KD) on oikein noudatettuna mainettaan parempi ja jopa terveyttä edistävä ruokavalio.

3. Ketogeenisen ruokavalion vaikutus epigenomiin

Epigenomi sisältää geneettisen koodin kirjanmerkit. Sananmukaisesti epigeneettinen tarkoittaa geenin päällä olevaa. Nämä geenien päällä olevat markkerit kertovat soluille, mitä geenejä DNA:n translaatiossa luetaan.

Epigenomin kemialliset markkerit vaikuttavat siihen, mitkä geenit aktivoidaan ja mitkä geenit vaimennetaan. Elämäntavat voivat aktivoida tai vaimentaa geenejä. Epigenetiikka tutkii näitä geenien ilmentymistä sääteleviä mekanismeja.

Epigenomi toimii erilaisten kemiallisten markkereiden avulla. Ne kiinnittyvät DNA:han tai sen proteiinirakenteisiin. Epigeneettiset markkerit voivat:

  • Metyloida DNA:ta:Tämä tarkoittaa, että tiettyihin kohtiin DNA:ta lisätään metyyliryhmiä, mikä yleensä vaimentaa geenin toimintaa.
  • Muuttaa histoniproteiineja:Histonit ovat proteiineja, joiden ympärille DNA kietoutuu. Muutokset voivat vaikuttavat siihen, kuinka tiukasti DNA on kietoutunut histoneihin. Tiukasti kietoutunut DNA on vähemmän saatavilla geenien ilmentymismekanismeille.
  • Vaikuttaa ei-koodaaviin RNA-molekyyleihin:Nämä molekyylit säätelevät geenien toimintaa monin tavoin.

Epigenomi on tärkeä, koska se:

  • Vaikuttaa terveyteemme:Epigeneettiset muutokset voivat liittyä moniin sairauksiin, kuten syöpään, sydän- ja verisuonitauteihin, sekä neurodegeneratiivisiin sairauksiin.
  • Voi periytyä:Vaikka epigenomi ei muuta itse DNA-sekvenssiä, jotkin epigeneettiset muutokset voivat periytyä jälkipolville.
  • Reagoi ympäristöön:Epigenomi on dynaaminen ja voi muuttua ympäristötekijöiden, kuten ruokavalion, liikunnan ja stressin vaikutuksesta.

Epigeneettinen periytyminen

Epigenomi voi periytyä (epigeneettinen periytyminen). Tutkimukset viittaavat siihen, että epigeneettisiä muutoksia voidaan korjata elämäntapoja, kuten ruokavaliota muuttamalla ja liikuntaa lisäämällä. [20]

Epigeneettinen periytyminen tarkoittaa perinnöllisen tiedon siirtoa solun tai eliön jälkeläiselle ilman, että perinnöllinen tieto on koodattuna DNA:n tai RNA:n sekvenssiin. Epigeneettisen periytymisen vuoksi saman geneettisen informaation sisältävät solut voivat jakautumisten myötä erilaistua ja toimia eri tavoin.

Geenien löytymisen jälkeen hankittujen ominaisuuksien periytymiseen ei uskottu. Epigeneettinen tutkimus muutti tätä käsitystä. Epigeneettinen periytyminen ei kuitenkaan tarkoita minkä tahansa hankittujen ominaisuuksien periytymistä. Kyse ei oikeastaan ole hankittujen ominaisuuksien, vaan pikemminkin geenien hankittujen toimintatilojen periytymisestä.

Ympäristön aiheuttamat muutokset geenien toiminnassa voivat periytyä sukupolvelta toiselle sukusolujen välityksellä ja vaikuttaa näin jälkikasvun fenotyyppiin, ilman että DNA:n emäsjärjestyksessä tapahtuu muutoksia. Tällaisten havaintojen myötä evoluution ja geneettisen periytymisen mekanismeja on jouduttu tarkastelemaan uudelleen, sillä aikaisemmin on ajateltu, etteivät hankitut geenien toiminnalliset tilat periydy vaan että periytyvien fenotyyppien taustalla ovat joko mutaatioista johtuvat genomin rakenteelliset muutokset tai perinnöllisen materiaalin uudelleen järjestäytyminen. Tapahtumasarjaa, jossa tieto hankituista ominaisuuksista siirtyy yksilösukupolvelta toiselle sukusolulinjan epigeneettisten muutosten välityksellä kutsutaan epigeneettiseksi periytymiseksi. Kokeelliset tutkimukset ovat todistaneet ilmiön eläimillä. Ihmisillä sitä ei ole vielä vahvistettu, mutta ylisukupolvisissa väestötutkimuksissa on nähty yhteyksiä, jotka voisivat selittyä epigeneettisen periytymisen kautta. Duodecim

Genomin muutoksiin kuuluu DNA-metylaatiota, kromatiinin rakenteen muutoksia, histonimuunnoksia ja ei-koodaavia RNA-molekyylejä. Kiinnostavimpia ovat histonimuutokset. Esimerkiksi histonihäntöjen N-terminaali voidaan asetyloida, metyloida, fosforyloida ja ubikinoida.

Histonimuutokset

Geenitutkimus on totunnaisesti keskittynyt DNA:han. Kuitenkin perimän perusyksikkö kromosomi koostuu DNA:n lisäksi histoneista ja muista proteiineista, jotka muodostavat kromosomien tukirangan. Tukiranka ei ole kuitenkaan passiivinen rakenne, vaan se vaikuttaa jatkuvasti DNA:n pakkautumiseen ja geenien toimintaan epigeneettisesti eli DNA:n emäsjärjestyksestä riippumatta. – Duodecim

Histonien asetylaatio liittyy tavallisesti geenien aktivoimiseen. Histonideasetylaasit (HDAC), ovat puolestaan entsyymejä, jotka voivat poistaa asetayyliryhmiä ja tiivistää kromatiinia.

Deasetylaasit poistavat asetyyliryhmiä, vähentävät geenien ilmentymistä ja ovat vuorovaikutuksessa sekvenssispesifisten repressorien, DNA-metyylitransferaasien ja metyyli-DNA:ta sitovien proteiinien kanssa. Sirtuiinit (SITR, kuten sirtuiini 1) kykenevät deasetyloimaan histonit.

Sirtuiini 1 (SIRT1)-entsyymi kuuluu histonideasetylaasi-entsyymien (HDAC) ryhmään, jotka toimivat asetyyliryhmän poistajina. Ihmisen histonideasetylaaseja kutsutaan myös sirtuiineiksi. Sirtuiiineja tunnetaan seitsemän alatyyppiä. Sirtuiini 2 (Sirt2) vaikuttaa mm. solun jakautumisen säätelyyn. SIRT1 (Silent Information Regulator 1) säätelee useita keskeisiä metabolisia prosesseja ja sillä on suuri merkitys ihmisten energia-aineenvaihdunnan säätelyssä. SIRT1 säätelee muun muassa mitokondrioiden biogeneesiä ja energiametaboliaa ja vaikuttaa sitäkautta mm. diabetekseen ja liikalihavuuteen. SIRT1 säätelee myös rasvametaboliaa ja oksidatiivisen stressin vaikutuksia. Sitoutumalla NF-κB:en se ilmeisesti säätelee tulehdusvasteita ja kudosten atrofioitumista. – Wikipedia

Ns. histonikoodihypoteesin mukaan histonimodifikaatioiden yhdistelmät määräävät kromatiinin rakenteen ja toiminnallisen tilan (Jenuwein ja Allis 2001).

Ruokavalio ja epigeneettiset muutokset

Histoni-lysiini-metylaatio voi joko aktivoida tai vaimentaa geenin toiminnan. Toiminta perustuu histonihännän metyyliryhien eksaktiin sijaintiin ja määrään. Tutkimukset ovat havainneet, että suurin osa epigeneettisistä muutoksista tapahtuu alkionkehityksen varhaisvaiheessa, mutta genomi voi saada muutoksia myöhemmin elämässä. Eräät epigeneettisistä muutoksista johtuvat ruokavaliosta. [32]

Ketogeeniset ruoat, jotka säätelevät positiivisesti epigeneettistä aktiivisuutta, ovat ristikukkaisia vihanneksia (mm. kaalit, rypsi, nauris, lanttu ja retiisi), ravintokuituja, pitkäketjuisia rasvahappoja ja marjoja, kuten vadelmat [20].

Osalla mainituista ravinnonlähteistä on useita myönteisiä vaikutuksia: mm. mustavadelmat vaikuttavat positiivisesti metylaatiomalleihin WNT-signalointireitillä. Ne parantavat myös mikrobiomin koostumusta (lisäten Laktobacilluksen, Basteroidaceaen ja anti-inflammatoristen bakteerilajien osuutta mikrobiomissa). Mustavadelmat lisäävät myös fermentaation kautta syntyvää butyraattia suolistossa. Tiettyjä ravintoelementtejä sisältävät ruokavaliot muuttavat suotuisasti geenien ilmentymistä ja parantavat soluterveyttä [20].

Ketogeenisen ruokavalion epigeneettiset vaikutukset voivat auttaa ehkäisemään kroonisten ja degeneratiivisten sairauksien puhkeamista.

Miller et al. hvaitsi kirjallisuuskatsauksessaan, että ketoosi vaikuttaa positiivisesti mitokondrioiden toimintaan ja vähentää oksidatiivisen stressiä. Ketoaineet ylös-säätelevät (up regulate) energiaproteiineja, jotka vaikuttavat antioksidanttien määrään [23].

Boisonin mukaan ketoaineet, kuten β-hydroksibutyraatti (BHB) sekä ketoaineiden johdannaiset ovat saaneet eniten huomiota ketogeenisen ruokavalion kohtauksia ehkäisevien (anti-seizure), neuroprotektiivisisten ja anti-inflammatoristen vaikutusten välittäjina [34,35,3636].

Ketogeenisen ruokavalion vaikutusmekanismi voi johtua lisääntyneestä adenosiinitasoista, joka estää DNA-metylaation ja siten aiheuttaa epigeneettisen muutoksen. KD-terapian kohteena olevilla epileptisillä rotilla tehdyssä tutkimuksessa havaittiin, että amelioroitu DNA-metyylinvälitys muuttui geenien ilmentyessä lisäämällä adenosiinia, joka estää DNA-metylaation.

Mekanismia tutkitaan myös sen roolista ikääntymisprosessissa, koska se liittyy epigeneettisten muutoksiin, kuten tuman arkkitehtuurin, telomeerin lyhentymiseen, DNA-metylaatioon ja kromatiinin rakenteeseen. [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

Betahydroksibutyraatti ja aivojen terveys

Ketogeenisen ruokavalion vaikutus aivojen terveyteen on vahvasti osoitettu. Se johtuu erityisesti BHB:n, eli betahydroksibutyraatin tuotannosta [23].

Beetahydroksibutyraatti (BHB) on elimistön tuottama ketoniyhdiste, jolla on useita potentiaalisia hyötyjä aivojen terveydelle. BHB:tä muodostuu erityisesti paaston, vähähiilihydraattisen ruokavalion (kuten ketogeenisen ruokavalion) tai intensiivisen liikunnan aikana, kun elimistö siirtyy käyttämään rasvoja glukoosin sijasta energianlähteenä.

BHB:n mahdolliset hyödyt aivoille:

  • Energianlähde:BHB voi toimia vaihtoehtoisena energianlähteenä aivoille, erityisesti silloin kun glukoosin saatavuus on rajoitettua, tai jos solujen kyky hyödyntää glukoosia on rajoittunut. Tämä voi olla hyödyllistä esimerkiksi aivovammojen tai neurodegeneratiivisten sairauksien yhteydessä, joissa aivojen glukoosin käyttö voi olla heikentynyt.
  • Neuroprotektiiviset vaikutukset:BHB:llä on havaittu olevan antioksidanttisia ja anti-inflammatorisia ominaisuuksia, jotka voivat suojata aivosoluja vaurioilta. Tutkimukset viittaavat siihen, että BHB voi edistää hermosolujen selviytymistä ja vähentää oksidatiivista stressiä.
  • Kognitiivisten toimintojen parantaminen:Jotkut tutkimukset ovat osoittaneet, että BHB voi parantaa kognitiivisia toimintoja, kuten muistia ja oppimista. Tämä voi olla erityisen hyödyllistä ikääntyville henkilöille tai henkilöille, joilla on kognitiivisia häiriöitä.
  • Epilepsian hoito:Ketogeenistä ruokavaliota, joka nostaa BHB-tasoja, on käytetty menestyksekkäästi epilepsian hoidossa, erityisesti lapsilla, joilla on lääkeresistentti epilepsia. BHB:n katsotaan olevan yksi ketogeenisen ruokavalion terapeuttisista komponenteista.
  • Aivovammojen ja neurodegeneratiivisten sairauksien tuki:Alustavat tutkimukset viittaavat siihen, että BHB voi olla hyödyllinen aivovammojen, Alzheimerin taudin, Parkinsonin taudin ja muiden neurodegeneratiivisten sairauksien hoidossa. Lisää tutkimusta tarvitaan kuitenkin näiden vaikutusten vahvistamiseksi.

Miten lisätä BHB-tasoja:

  • Ketogeeninen ruokavalio: Vähähiilihydraattinen ja runsasrasvainen ruokavalio voi merkittävästi nostaa BHB-tasoja.
  • Paasto: Jaksoittainen paasto tai pitkäaikainen paasto voi myös johtaa BHB:n tuotannon lisääntymiseen.
  • Liikunta: Erityisesti pitkäkestoinen ja intensiivinen liikunta voi nostaa BHB-tasoja.
  • BHB-lisäravinteet: Ulkoisia BHB-suoloja tai estereitä on saatavilla lisäravinteina, jotka voivat nostaa BHB-tasoja nopeasti.

Tutkijat ovat havainneet, että BHB on enemmän kuin pelkkä energiaravinne. Sillä on tärkeä rooli solusignalointissa. BHB:n signalointitoiminnot yhdistävät ympäristötekijöiden vaikutukset epigeneettisiin säätely- ja soluprosesseihin, koska se on endogeeninen luokan 1 HDAC-estäjä [45].

Ketogeeninen ruokavalio lisää histoni-asetylaatiota, ja aivan erityisesti suojaavien geenien, kuten Foxo3a ilmentymistä. [46]

Havainnot viittaavat siihen, että BHB:llä voi olla suora epigeneettinen vaikutus uuden H3K9-histonimuunnoksen β-hydroksibutyrlaatioon, mikä johtaa parantuneeseen geenisäätelyyn hypotalamuksessa ja yleiseen ikääntymiseen. [47]

Energian kantajamolekyyli, nikotiiniamidiadeniinidinukleotidi (NAD) on tärkeää oksidatiivissa hengityksessä. Oksidatiivitilassaan (NAD+) NAD toimii myös sirtuiinientsyymien ja poly-ADP-riboosin polymeraasin (PARP) kofaktorina. Sirtuinilla ja PARPilla on roolit geenien ilmentymisessä, DNA-vaurioiden korjaamisessa ja rasvahappojen aineenvaihdunnassa. [46]

Solun käytettävissä olevaa energiatasoa mitataan NAD+/NADH-suhteella. Suhdetta modifioidaan käyttämällä energianlähteenä glukoosia verrattuna BHB:hen. Ketoosin aikana solujen NAD ilmenee useammin oksidoituneessa NAD+ tilassa, minkä ansiosta sirtuiinit ja PARP ovat aktiivisempia. [48]

Asetyylikoentsyymi-A

BHB:n hajoaminen asetyyli-CoA:ksi nostaa asetyyli-CoA-tasoja. Asetyylikoentsyymi-A on kaikkien energiaravinteiden yhteinen välimuoto

Asetyylikoentsyymi A (asetyyli-CoA) on tärkeä yhdiste metaboliassa. Se toimii eräänlaisena ”liikenneympyränä”, johon eri aineenvaihduntareittien tuotteet saapuvat ja josta ne ohjataan eteenpäin.

  • Sitruunahappokierto (Krebsin sykli):
    • Asetyyli-CoA on sitruunahappokierron lähtöaine. Kierto on keskeinen osa soluhengitystä, jossa glukoosi, rasvahapot ja aminohapot hajotetaan hiilidioksidiksi ja energiaksi (ATP).
    • Sitruunahappokierrossa asetyyli-CoA:n asetyyliryhmä hapetetaan, ja vapautuva energia varastoidaan ATP-molekyyleihin.
  • Rasvahapposynteesi:
    • Asetyyli-CoA toimii rasvahappojen rakennusaineena. Kun elimistössä on liikaa energiaa, asetyyli-CoA:ta käytetään rasvahappojen valmistamiseen, jotka varastoidaan triglyserideinä rasvakudokseen.
  • Ketoninmuodostus (ketogeneesi):
    • Maksassa asetyyli-CoA:ta voidaan käyttää ketoaineiden, kuten beetahydroksibutyraatin (BHB), asetoasetaatin ja asetonin, valmistamiseen. Tämä tapahtuu erityisesti paaston, vähähiilihydraattisen ruokavalion (ketogeeninen ruokavalio) tai pitkäkestoisen liikunnan aikana, kun glukoosin saatavuus on rajoitettua.
  • Kolesterolisynteesi:
    • Asetyyli-CoA on myös kolesterolin, tärkeän solukalvojen ja steroidihormonien rakennusaineen, esiaste.
  • Asetylaatio:
    • Asetyyli-CoA osallistuu asetylointireaktioihin, joissa asetyyliryhmä siirretään toisiin molekyyleihin, kuten proteiineihin. Tämä voi vaikuttaa proteiinien toimintaan ja geenien ilmentymiseen.

Asetyyli-CoA:n muodostuminen:

Asetyyli-CoA:ta muodostuu useista eri aineenvaihduntareiteistä:

  • Glukoosin hajotus (glykolyysi):
    • Glukoosin hajotuksessa syntyvä pyruvaatti muunnetaan asetyyli-CoA:ksi mitokondriossa.
  • Rasvahappojen hajotus (beetaoksidaatio):
    • Rasvahapot hajotetaan asetyyli-CoA:ksi mitokondriossa.
  • Aminohappojen hajotus:
    • Tietyt aminohapot voidaan hajottaa asetyyli-CoA:ksi.

Asetyyli-CoA:n rooli on elintärkeä solujen toiminnalle. Se yhdistää eri aineenvaihduntareittejä ja mahdollistaa energian tuotannon ja varastoinnin sekä tärkeiden biomolekyylien synteesin.
Kahden asetyyli-CoA:n moolin tuottaminen käyttämällä BHB:tä prekursorina pelkistää vain yhden moolin NAD+:a NADH:ksi. Glukoosiaineenvaihdunnassa tuotetaa neljä moolia NAD+:a. Siten ketogeeninen ruokavalio luo ylimääräisen NAD+:n solulle ja vaikuttaa positiivisesti solun redox-tilaan. Tällä voi olla positiivisia vaikutuksia NAD+-riippuvaisten entsyymien, kuten sirtuiinien, aktiivisuuteen. Newman et al. havaitsivat, että lisääntynyt asetyyli-CoA suosii sekä entsymaattista että ei-entsymaattista proteiiniasetylaatiota, erityisesti mitokondrioissa, mikä tehostaa mitokondrioiden yleistä toimintaa.
[48, 49]

Ketogeenisen ruokavalion tuottama BHB voi myös lisätä ATP-tuotannon tehokkuutta mitokondriossa ja vähentää vapaiden radikaalien määrää.

BHB:n positiivisten vaikutusten seurauksena havaittiin, että BHB:n esiastemolekyylit paransivat hiiren kognitiota Alzheimerin taudin hiirimallissa. Alzheimeria sairastavan potilaan tapaustutkimuksessa BHB kohensi potilaan kognitiota [50, 51].

D-β-hydroksibutyraatti suojaa hermosoluja oksidatiivisilta vaurioilta vähentämällä sytosolista NAD+/NADPH-suhdetta, mikä johtaa pelkistyneenä glutationina tunnetun antioksidanttiaineen lisääntymiseen. BHB estää NF-kB:n ilmentymistä. Sen tiedetään säätelevän tulehduksia edistäviä geenejä. Tämä johtaa vähentyneeseen proinflammatoriseen vasteeseen[52].

BHB-prekursori, 1,3-butaanidioli, moduloi tulehduksen ilmentymistä histonin β-hydroksibutyrlaation kautta. Siten se vähentää kaspaasi-1:n, IL-1B:n ja IL-18:n ilmentymistä, jotka ovat tulehdusmarkkereita.
C. Elegansin tutkimuksessa havaittiin, että BHB voi pidentää niiden elinikää. Siten ketogeenisen ruokavalion tuottaman BHB:n endogeeniset vaikutukset voivat parantaa terveyttä ja jopa lisätä elinaikaa. [3, 53]

Viitteet

20.Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170359. doi: 10.1098/rstb.2017.0359. [DOI] [PMC free article] [PubMed] [Google Scholar]

21.Gong L., Cao W., Chi H., Wang J., Zhang H., Liu J., Sun B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res. Int. 2018;103:84–102. doi: 10.1016/j.foodres.2017.10.025. [DOI] [PubMed] [Google Scholar]

22.Kennedy E.T., A Bowman S., Spence J.T., Freedman M., King J. Popular Diets. J. Am. Diet. Assoc. 2001;101:411–420. doi: 10.1016/S0002-8223(01)00108-0. [DOI] [PubMed] [Google Scholar]

23.Miller V.J., Villamena F.A., Volek J.S. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J. Nutr. Metab. 2018;2018:5157645. doi: 10.1155/2018/5157645. [DOI] [PMC free article] [PubMed] [Google Scholar]

24.Xie G., Zhou Q., Qiu C.-Z., Dai W.-K., Wang H.-P., Li Y.-H., Liao J.-X., Lu X.-G., Lin S.-F., Ye J.-H., et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017;23:6164–6171. doi: 10.3748/wjg.v23.i33.6164. [DOI] [PMC free article] [PubMed] [Google Scholar]

25.Zhang Y., Zhou S., Zhou Y., Yu L., Zhang L., Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–168. doi: 10.1016/j.eplepsyres.2018.06.015. [DOI] [PubMed] [Google Scholar]

26.Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a. [DOI] [PubMed] [Google Scholar]

27.Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Cell Biol. 2006;444:1027–1031. doi: 10.1038/nature05414. [DOI] [PubMed] [Google Scholar]

28.Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102. [DOI] [PMC free article] [PubMed] [Google Scholar]

29.Schwiertz A., Taras D., Schaefer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167. [DOI] [PubMed] [Google Scholar]

30.Basciani S., Camajani E., Contini S., Persichetti A., Risi R., Bertoldi L., Strigari L., Prossomariti G., Watanabe M., Mariani S., et al. Very-Low-Calorie Ketogenic Diets with Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020;105:2939–2949. doi: 10.1210/clinem/dgaa336. [DOI] [PubMed] [Google Scholar]

31.Nagpal R., Neth B.J., Wang S., Craft S., Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529–542. doi: 10.1016/j.ebiom.2019.08.032. [DOI] [PMC free article] [PubMed] [Google Scholar]

32.Bishop K.S., Ferguson L.R. The Interaction between Epigenetics, Nutrition and the Development of Cancer. Nutrients. 2015;7:922–947. doi: 10.3390/nu7020922. [DOI] [PMC free article] [PubMed] [Google Scholar]

33.Boison D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017;30:187–192. doi: 10.1097/WCO.0000000000000432. [DOI] [PMC free article] [PubMed] [Google Scholar]

34.Freeman J.M., Kossoff E.H. Ketosis and the Ketogenic Diet, 2010: Advances in Treating Epilepsy and Other Disorders. Adv. Pediatr. 2010;57:315–329. doi: 10.1016/j.yapd.2010.08.003. [DOI] [PubMed] [Google Scholar]

35.Youm Y.-H., Nguyen K.Y., Grant R.W., Goldberg E.L., Bodogai M., Kim D., D’Agostino D., Planavsky N.J., Lupfer C., Kanneganti T.D., et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med. 2015;21:263–269. doi: 10.1038/nm.3804. [DOI] [PMC free article] [PubMed] [Google Scholar]

36.Rahman M., Muhammad S., Khan M.A., Chen H., Ridder D.A., Müller-Fielitz H., Pokorná B., Vollbrandt T., Stölting I., Nadrowitz R., et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 2014;5:3944. doi: 10.1038/ncomms4944. [DOI] [PubMed] [Google Scholar]

37.Lusardi T.A., Akula K.K., Coffman S.Q., Ruskin D.N., Masino S.A., Boison D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology. 2015;99:500–509. doi: 10.1016/j.neuropharm.2015.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]

38.Masino S.A., Li T., Theofilas P., Sandau U.S., Ruskin D.N., Fredholm B.B., Geiger J.D., Aronica E., Boison D. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J. Clin. Investig. 2011;121:2679–2683. doi: 10.1172/JCI57813. [DOI] [PMC free article] [PubMed] [Google Scholar]

39.Kobow K., Kaspi A., Harikrishnan K.N., Kiese K., Ziemann M., Khurana I., Fritzsche I., Hauke J., Hahnen E., Coras R., et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol. 2013;126:741–756. doi: 10.1007/s00401-013-1168-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

40.Williams-Karnesky R.L., Sandau U.S., Lusardi T.A., Lytle N.K., Farrell J.M., Pritchard E.M., Kaplan D.L., Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013;123:3552–3563. doi: 10.1172/JCI65636. [DOI] [PMC free article] [PubMed] [Google Scholar]

41.Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D.K., Solimando L., Goldman R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22:832–853. doi: 10.1101/gad.1652708. [DOI] [PMC free article] [PubMed] [Google Scholar]

42.Armanios M., Alder J.K., Parry E.M., Karim B., Strong M.A., Greider C.W. Short Telomeres are Sufficient to Cause the Degenerative Defects Associated with Aging. Am. J. Hum. Genet. 2009;85:823–832. doi: 10.1016/j.ajhg.2009.10.028. [DOI] [PMC free article] [PubMed] [Google Scholar]

43.Hewitt G.M., Jurk D., Marques F.D., Correia-Melo C., Hardy T.L.D., Gackowska A., Anderson R., Taschuk M.T., Mann J., Passos J.F. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 2012;3:708. doi: 10.1038/ncomms1708. [DOI] [PMC free article] [PubMed] [Google Scholar]

44.Sun D., Yi S.V. Impacts of Chromatin States and Long-Range Genomic Segments on Aging and DNA Methylation. PLoS ONE. 2015;10:e0128517. doi: 10.1371/journal.pone.0128517. [DOI] [PMC free article] [PubMed] [Google Scholar]

45.Shimazu T., Hirschey M.D., Newman J., He W., Shirakawa K., Le Moan N., Grueter C.A., Lim H., Saunders L.R., Stevens R.D., et al. Suppression of Oxidative Stress by -Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science. 2013;339:211–214. doi: 10.1126/science.1227166. [DOI] [PMC free article] [PubMed] [Google Scholar]

46.Moreno C.L., Mobbs C.V. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol. Cell. Endocrinol. 2017;455:33–40. doi: 10.1016/j.mce.2016.11.013. [DOI] [PubMed] [Google Scholar]

47.Xie Z., Zhang D., Chung D., Tang Z., Huang H., Dai L., Qi S., Li J., Colak G., Chen Y., et al. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Mol. Cell. 2016;62:194–206. doi: 10.1016/j.molcel.2016.03.036. [DOI] [PMC free article] [PubMed] [Google Scholar]

48.Dąbek A., Wojtala M., Pirola L., Balcerczyk A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. 2020;12:788. doi: 10.3390/nu12030788. [DOI] [PMC free article] [PubMed] [Google Scholar]

49.Newman J.C., Verdin E. β-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017;37:51–76. doi: 10.1146/annurev-nutr-071816-064916. [DOI] [PMC free article] [PubMed] [Google Scholar]

50.Kashiwaya Y., Bergman C., Lee J.-H., Wan R., King M.T., Mughal M.R., Okun E., Clarke K., Mattson M.P., Veech R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2013;34:1530–1539. doi: 10.1016/j.neurobiolaging.2012.11.023. [DOI] [PMC free article] [PubMed] [Google Scholar]

51.Newport M.T., VanItallie T.B., Kashiwaya Y., King M.T., Veech R.L. A new way to produce hyperketonemia: Use of ketone ester in a case of Alzheimer’s disease. Alzheimer Dement. 2015;11:99–103. doi: 10.1016/j.jalz.2014.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]

52.Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K., Veech R.L. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2000;97:5440–5444. doi: 10.1073/pnas.97.10.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]

53.Chakraborty S., Galla S., Cheng X., Yeo J.-Y., Mell B., Singh V., Yeoh B., Saha P., Mathew A.V., Vijay-Kumar M., et al. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep. 2018;25:677–689. doi: 10.1016/j.celrep.2018.09.058.




Kirjallisuuskatsaus: ketogeenisen ruokavalion terveysvaikutukset osa 1 mikrobiomi

Kathryn Dowis, Simran Banga
Editor: Marcellino Monda;
Käännös ja editointi: Sami Raja-Halli
https://pmc.ncbi.nlm.nih.gov/articles/PMC8153354/

Tiivistelmä

Suosiotaan kasvattavan ketogeenisen ruokavalion (KD) vaikutuksista terveyteen ei ole tehty kattavaa tutkimuskatsausta. Tämä kirjallisuuskatsaus kokoaa yhteen tutkimuksia ketogeenisen ruokavalion vaikutuksista mikrobiomiin, epigenomiin, diabeteksen hoitoon, laihtumiseen, sydän- ja verisuoniterveyteen sekä alttiuteen sairastua syöpään. Tämä ensimmäinen osa käsittelee mikrobiomia.

KD voi lisätä mikrobiomin geneettistä monimuotoisuutta ja bakteroidien määrää suhteessa firmikuutteihn. Firmikuutit on bakteerien pääjakso, johon kuuluu kolme luokkaa ( bacillus, listeria ja staphylococcus) ja yli 250 bakteerisukua.

KD vaikuttaa suotuisasti epigenomiin, koska se luo signaloivan molekyylin, joka tunnetaan nimellä β-hydroksibutyraatti (BHB).

KD on auttanut diabetesta sairastavia potilaita laskemaan HbA1c:tä ja vähentämään insuliinin tarvetta. On myös näyttöä siitä, että KD on erinomainen ruokavalio painonhallinnassa. Tutkimusten mukaan KD vähentää sisäelinten rasvoittumista/ viskeraalista rasvaa ja auttaa ruokahalun hallinnassa.

Tutkimukset viittaavat siihen, että runsasrasvainen ruokavalio parantaa lipidiprofiileja laskemalla LDL-kolesterolia, lisäämällä HDL-kolesterolia ja vähentämällä triglyseridejä (TG).

Warburg-vaikutteen* avulla KD:tä käytetään adjuvanttihoitona syöpäsolujen nälkiinnyttämiseen, mikä tekee syöpäsoluista alttiimpia kemoterapialle ja säteilyhoidolle. KD:n mahdolliset positiiviset vaikutukset kullakin näistä alueista edellyttävät lisäanalyysejä, parempia tutkimuksia ja hyvin suunniteltuja satunnaistettuja kontrolloituja tutkimuksia, joilla voidaan edelleen valaa tämän ruokavalion tarjoamia terapeuttisia mahdollisuuksia.

*Warburg-ilmiö lyhyesti

Otto Warburg havaitsi 1920-luvulla, että syöpäsolut tuottavat energiaa eri tavalla kuin terveet solut. Terveet solut käyttävät ensisijaisesti happea energian tuottamiseen, kun taas syöpäsolut suosivat anaerobista glykolyysiä eli sokerin hajottamista ilman happea. Tämä ilmiö on nimetty hänen mukaansa Warburg-ilmiöksi.

Ketogeenisen ruokavalion vaikutus syöpäsoluihin:

  • Energian puute: Koska syöpäsolut ovat sopeutuneet käyttämään glukoosia energianlähteenä, ketogeeninen ruokavalio voi heikentää niiden kasvua rajoittamalla glukoosia saatavuutta.
  • Hapettuminen: Jotkin tutkimukset viittaavat siihen, että ketogeeninen ruokavalio voi lisätä syöpäsolujen herkkyyttä tiettyihin syöpälääkkeisiin ja sädehoitoon.
  • Solukuolema: Ketogeeninen ruokavalio voi indusoida syöpäsolujen kuolemaa.

1. Johdanto

Ketoosi saavutetaan rajoittamalla hiilihydraattien saantia, kohtuullistamalla proteiinin kulutusta ja lisäämällä rasvasta saatujen kalorien määrää [1].

Hiilihydraattien rajoittaminen ohjaa elimistön glukoosiaineenvaihduntasta rasva-aineenvaihduntaan. Rasva ja ketoaineet korvaavat hiilihydraateista saatavan glukoosin ensisijaisena energianlähteenä. Sokereiden rajoittaminen vie aineenvaihdunnan tilaan, jossa keho käyttää rasvaa ensisijaisena polttoaineena. Ketogeenisellä ruokavaliolla aineenvaihdunta ohjataan polttamaan rasvasoluihin varastoitua rasvaa energiaksi.

Viimeisimmät ketogeenistä ruokavaliota seuraavat ravitsemustutkimukset ovat antaneet lupaavia tuloksia:

  • laihduttamisessa ja painonhallinnassa,
  • metabolisen oireyhtymän ja aikuistyypin diabeteksen oireita korjaavana ravintoterapiana,
  • tulehdustekijöiden ja kehon hiljaisen tulehduksen vähentämisessä,
  • epigeneettisten profiilien vahventamisessa,
  • mikrobiomin hyvinvoinnille ja
  • lipidiprofiilien suhteen.

Havaintojen mukaa ketogeeninen ruokavalio tehostaa eräitä syöpähoitoja ja parantaa syövän ennustetta. Lue ketogeenisestä ruokavaliosta syövän terapiana.

KD parantaa solujen terveyttä autofagiana tunnetun soluja puhdistavan ja uusivan mekanismin seurauksena. Betahydroksibutyraatin roolia aivosolujen toiminnan tehostajana tutkitaan mm. Yhdysvaltojen puolustusministeriössä ja NASA:ssa. [2, 3]

Lihavuudesta, aikuistyypin diabeteksesta ja metabolisesta oireyhtymästä kärsivien ihmisten määrä on globaalisti kasvussa. Metabolisen oireyhtymän yleisiä merkkejä ovat keskivartalolihavuus, insuliiniresistenssi, korkea verenpaine, kohonneet triglyseriditasot ja verenpainetauti. [4,5]

Edellä listatut kardiometaboliset oireet lisäävät sydän- ja verisuonitautien, diabeteksen, aivohalvauksen ja Alzheimerin taudin riskiä. WebMD:n mukaan USA:ssa on tällä hetkellä 27 miljoonaa tyypin 2 diabetesta sairastavaa. 86 miljoonaalla amerikkalaisella on esidiabetes. CDC arvioi, että lähes 40 prosenttia amerikkalaisista aikuisista ja noin 20 prosenttia lapsista on lihavia. [6,7].

Eräät tutkijat ovat argumentoineet, että nämä sairaudet ovat seurausta hiilihydraatti-intoleranssista ja insuliiniresistenssistä. Ruokavalio, joka vähentää altistusta hiilihydraateille (mukaan lukien täysjyväviljat), voi olla painonhallinnan ja terveyden kannalta suotuisa. [8]

Terveysvaikutusten osalta tutkimusraportissa seurataan kahta ruokavaliota: tavallista ketogeenistä ruokavaliota ja terapeuttista ketogeenistä ruokavaliota (kuva 1). Molemmat ruokavaliot rajoittavat hiilihydraattien saantia vaihtelevassa määrin. Terapeuttista ketogeenistä ruokavaliota, joka rajoittaa merkittävästi sekä hiilihydraatteja että proteiinia, käytetään myö epilepsian ja eräiden syöpien hoidossa.

Amerikkalaisten ravitsemusohjeiden mukaan 45-65 % päivittäisestä energiasta pitäisi saada hiilihydraateista, eli sokereista (kuva1). Henkilöllä, joka kuluttaa 2000 kilokaloria päivässä, määrä vastaa 225-325 g hiilihydraatteja. [9].

Kuva 1

Kuvateksti: Vertailu tavallisen amerikkalaisen ruokavalion, terapeuttisen KD:n ja perinteisen ketogeenisen ruokavalion makroravinteiden suhteellisista osuuksista. Terapeuttista ketogeenistä ruokavaliota käytetään joskus epilepsia- ja syöpähoitojen osana.

Vähähiilihydraattinen/runsasrasvainen ruokavalio on valtavirtaistumassa. Karppaamisen, eli LCHF-ruokavalion ja vähähiilihydraattisen ketogeenisen ruokavalion (LCKD) välillä on eroja.

Ketoosi saavutetaan yleensä joko paastoamisella tai hiilihydraattien huomattavalla rajoittamisella. Vähähiilihydraattinen ruokavalio viittaa tyypillisesti ruokavalioon, jossa hiilihydraattien saanti on 50-150 g päivässä. Vaikka LCHF sisältää vähemmän hiilihydraatteja kuin ravintosuositukset, se ei laske hiilihydraattien saantia tarpeeksi aineenvaihdunnan ohjaamiseksi ketoosiin.

Hiilihydraattien päivittäisen saannin rajoittaminen 20-50 grammaan johtaa siihen, että solut eivät saa riittävästi energiaa glukoosista, jolloin aineenvaihdunnan on pakko siirtyä varajärjestelmään – eli polttamaan energiaksi kehon varastoimaa läskiä. [10].

Ketogeeninen ruokavalio kääntää tutun ruokapyramidin ylösalaisin. Runsaasti hiilihydraatteja sisältävän ruokavalion sijaan KD sisältää runsaasti rasvaa (Kuva2). Hiilihydraattirajoitus alentaa veren glukoosipitoisuutta. Myöhemmät insuliinipitoisuuden muutokset ohjaavat kehoa siirtymään rasvan säilyttämisen ja varastoimisen tilasta rasvan polttamiseen. Rasvassa on 2,5 x enemmän energiaa kuin hiilihydraateissa, joten runsaasti rasvaa sisältävä ruokavalio pitää hyvin nälän kurissa ehkäisten rajuja verensokeri- ja insuliinipiikkejä. [10].

Kun hiilihydraatit (sokerit) korvataan rasvalla, ketoaineiden tuotanto (ketogeneesi) käynnistyy. Ketogeneesi muodostaa maksassa eräistä aminohapoista ja sitruunahappokierron lopputuotteista asetonia, asetoasetaataattia ja β-hydroksibutyraattia, joita lähes kaikki elimistön solut pystyvät käyttämään energianlähteinä. Poikkeuksena on veren punasolut ja eräät hermosolut, joilta puuttuu mitokondriot; ne tarvitsevat välttämättä ravinnokseen glukoosia. Aineenvaihdunta osaa kuitenkin syntetisoida kaiken tarvitsemansa glukoosin glukoneogeneesissä. [11]

Tutkimukset viittaavat siihen, että β-hydroksibutyraatti toimii signaalimolekyylinä jolla voi olla rooli ruokahalun tukahduttamisessa. [12]

Kuva2

Kuvateksti: Vertailu ravintosuositusten ruokapyramidista, ml. tärkeimmät makroravinteet (hiilihydraatit, proteiinit, rasvat), ketogeenisen ruokavalion ruokapyramidiin.

Käytettävissä olevissa tiedoissa on jonkin verran epäyhtenäisyyttä. Tämän tarkastelun tavoitteena on korostaa ketogeenisen ruokavalion roolia mikrobiomin, epigeneettisten tekijöiden, laihtumisen, diabeteksen, sydän- ja verisuonitautien sekä syövän suhteen. (Kuva 3).

Kuva3.

Ketogeenisen ruokavalion mahdolliset terapeuttiset vaikutukset mikrobiomiin, epigenomiin, diabeteksen lääkkeettömään hoitoon, laihduttamiseen ja sydän- ja verisuonitauteihin.

2. Ketogeenisen ruokavalion vaikutus mikrobiomiin

Mikrobiomin biljoonat mikroskooppiset organismit kolonisoivat ruoansulatuskanavan ja suoliston. Mikrobiomi koostuu yli 8000 erityyppisestä bakteerista, arkista, viruslajista ja sienestä, jotka elävät monimutkaisessa ekosysteemissä. Ihmisen ja mikrobiomin suhde on mutualistinen – molempia hyödyttävä. [13]

Ihminen muodostaa normaalimikrobistonsa kanssa superorganismin, jossa ihmissoluja on vain 10 %. Iholla ja limakalvoilla elää 1014 mikrobi-lajia, valtaosa ruoansulatuskanavan loppupäässä, jossa ne aineenvaihdunnallisesti aktiivisena, lähinnä bakteereista koostuvana noin 1,5 kilon painoisena solumassana muodostavat monimuotoisen dynaamisen ekosysteemin. Suolistomikrobiston koostumusta on tutkittu toistaiseksi laajimmin nukleiinihappopohjaisilla menetelmillä, ja lajitason monimuotoisuudeksi on arvioitu 1 200- 16 000 bakteerifylotyyppiä. Suolistomikrobien tiedetään vaikuttavan ihmisen fysiologiaan, immuunipuolustuksen kehittymiseen, kolonisaatioresistenssiin ja ravitsemukseen. Uudet tutkimusmenetelmät ja globaali tutkimuskenttä ovat kuitenkin paljastamassa suolistomikrobien laajempaa merkitystä terveydelle esimerkiksi mikrobiston muutosten liittymistä tulehduksellisiin suolistosairauksiin, ärtyvän paksusuolen oireyhtymään, paksusuolisyöpään, lihavuuteen ja tyypin 2 diabetekseen. Duodecim

Miksi mikrobiomi on niin tärkeä?

  • Ruoansulatus:Suolistossa elävä mikrobisto auttaa meitä hajottamaan ruokaa ja imemään ravinteita. Se tuottaa myös vitamiineja ja muita ravintoaineita, joita elimistömme tarvitsee.
  • Immuunijärjestelmä:Mikrobiomi kouluttaa immuunijärjestelmämme erottamaan haitalliset bakteerit hyödyllisistä. Se auttaa myös suojaamaan meitä infektioilta.
  • Aineenvaihdunta:Mikrobit vaikuttavat aineenvaihduntamme monin tavoin. Ne voivat esimerkiksi vaikuttaa painoon, verensokerin säätelyyn ja jopa mielialaan.
  • Hermosto:Suolisto-aivo-akselin kautta mikrobit vaikuttavat aivojen toimintaan. On havaittu yhteyksiä suolistomikrobiston ja esimerkiksi ahdistuksen, masennuksen sekä neurodegeneratiivisten sairauksien välillä.

Viimeaikaiset tutkimukset viittaavat siihen, että elintavat, kuten riittävä uni, liikunta, ruokavalio ja antibiootit vaikuttavat mikrobiomin geneettiseen koostumukseen. Mikrobiomi osallistuu ravinnon hyödyntämiseen tuottaen aineenvaihduntatuotteina mm. hyödyllisiä lyhytketjuisia rasvahappoja, eräitä vitamiineja ja serotoniinia*.

*Miten suolisto tuottaa serotoniinia?

  • Suolistobakteerit: Suoliston mikrobisto, eli bakteerikanta, on keskeisessä roolissa serotoniinin tuotannossa. Tiettyjen bakteerien on havaittu lisäävän serotoniinin tuotantoa.
  • Tryptofaani: Ruokavaliosta saatava aminohappo tryptofaani on rakennusaine serotoniinille. Suolisto pystyy muuntamaan tryptofaania serotoniiniksi.
  • Enterokromaffiinisolut: Nämä suoliston solut tuottavat serotoniinia ja vapauttavat sitä suolistossa.

Miksi suoliston serotoniini on tärkeä?

  • Suoliston toiminta: Serotoniini säätelee suoliston liikkeitä ja auttaa ruoansulatuksessa.
  • Mieleen vaikutus: Vaikka suurin osa suolistossa tuotetusta serotoniinista ei pääse aivoihin, se vaikuttaa mielialaan ja tunne-elämään suolisto-aivo-akselin kautta.
  • Muut vaikutukset: Serotoniinilla on rooli myös muun muassa unen säätelyssä, ruokahalun hallinnassa, kipuherkkyydessä ja seksuaalitoiminnassa.

Ruoansulatuskanavan ja suoliston bakteerit, arkit ja sienet vaikuttavat ravintolähteiden aineenvaihduntaan. Erilaisilla bakteereilla on erilaisia kykyjä hyödyntää ravintoa. Vaikutus havaitaan esimerkiksi postprandiaalisessa (aterianjälkeisessä) glukoosivasteessa (PPGR). [13]

Verensokerin homeostaasista huolehtiminen vähentää monien aineenvaihduntasairauksien, kuten diabeteksen ja lihavuuden riskiä. Weizmann-instituutissa tehty tutkimus osoitti, että matemaattista algoritmia voidaan soveltaa yksilön mikrobiomiprofiilin määrittämisessä ja tämän glykeemisen vasteensa ennustamiseen. Yksilön glykeemistä vastetta erilaisiin elintarvikkeisiin voidaan hyödyntää yksilöllisen ruokavalion suunnittelussa. Tulokset vahvistettiin Mayo-klinikalla. [13, 14].

Mikrobiomilla on merkittävä rooli ihmisten terveydelle. Se rakentuu erityisesti ympäristötekijöiden vaikutuksesta. Rothschild et al. tekemän tutkimuksen mukaan., suoliston mikrobiomin periytyvyys on vain 1,9%, kun taas yli 20 prosenttia vaihtelevuudesta liittyi ruokavalioon ja elämäntapaan. [15]

Tutkimus, jossa tutkittiin prebioottisten elintarvikkeiden, kuten inuliinin ja oligosakkaridien etuja, havaittiin, että bifidobakteerien määrä lisääntyminen paksusuolessa kasvatti muiden butyraattia tuottavien bakteerien osuutta mikrobiomissa. [16]

Toisessa tutkimuksessa havaittiin, että suoliston mikrobiomin monimuotoisuuteen vaikutti enemmän länsimainen ruokavalio kuin koehenkilöiden painoindeksi. Länsimaisia ruokavalioita noudattaneiden henkilöiden suolistossa huonot mikrobit (firmikuutit) lisääntyivät ja vastaavasti hyödyllisten bakteroidien kannat pienenivät. [17]

Tutkimuskatsauksessa raportoitiin positiivisia muutoksia suoliston mikrobiomissa ja yleisessä terveydessä henkilöillä, jotka noudattivat energiaa rajoittavaa ruokavaliota sekä ruokavalioissa, jotka sisälsivät runsaasti kuitua ja kasviksia. [18]

Runsaasti prosessoitua ruokaa syömällä ihmiset vähentävät mikrobiomin monimuotoisuutta, kun taas runsaasti hedelmiä ja vihanneksia sisältävä ruokavalio lisää monimuotoisuutta suoliston mikrobiomissa [19].

Suoliston mikrobiomit, joista puuttui geneettinen monimuotoisuus, liittyivät lihavuuteen, insuliiniresistenssiin, dyslipidemiaan ja tulehdukselliseen fenotyyppiin. [20]

Vaikuttaako ketogeeninen ruokavalio positiivisesti tai negatiivisesti mikrobiomin lajiston monimuotoisuuteen?

Jotkut tutkimukset ovat osoittaneet, että täysjyväviljalla on keskeinen rooli terveen mikrobiomin kehittämisessä ja ne ovat välttämättömiä hyvän terveyden kannalta. Saako ketogeenistä ruokavaliota noudattava henkilö tarpeeksi täysjyvätuotteita terveellisen mikrobiomin ylläpitämiseksi? [12, 21]

Adam-Perrot et al. mukaan vähähiilihydraattisilla ruokavalioilla on riski olla ravitsemuksellisesti riittämättömiä kuidun, välttämättömien vitamiinien, kivennäisaineiden ja raudan saannin osalta. Tämä tulkinta perustuu yleisesti suositeltujen ruokavalioiden analyysiin ja tutkimuksiin, jotka on tehty välttämättömien ravintoaineiden saannin määrittämiseksi samalla kun kulutetaan vaihtelevia määriä hiilihydraatteja [12, 22].

Suolistomikrobiomin terveyden kannalta on tärkeää, että ketogeenistä ruokavaliota noudattavat ihmiset suosivat sellaisia vähähiilihydraattisia ravintoaineita, jotka sisältävät kuitua. Lisäksi ketogeenisessa ruokavalion tulee sisältää kohtuullisesti proteiineja (n. 1,5g/painokilo/päivä). [23]

Jos ketogeeniseen ruokavalioon sisältyy punaista lihaa ja sisäelimiä kuten maksaa, ruokavalio turvaa riittävä raudan saannin. Vihreiden kasvisten, kuten pinaatin ja parsakaalin, pähkinöiden, marjojen ja resistenttiä tärkkelystä* sisältävien kasvisten saanti ylläpitää terveellistä suoliston mikrobiomia. [23]

Resistentti tärkkelys: Ravintokuitu, joka ruokkii hyviä bakteereja

Resistentti tärkkelys on siinä mielessä erikoislaatuinen hiilihydraatti, että se ei imeydy ohutsuolessa samalla tavalla kuin tavallinen tärkkelys. Sen sijaan se kulkeutuu paksusuoleen, jossa se toimii ravintona suoliston hyödyllisille bakteereille. Tämä tekee siitä erittäin arvokkaan ravintokuidun.

*Miten resistentti tärkkelys vaikuttaa mikrobiomiin?

  • Ravinto hyville bakteereille:Resistentti tärkkelys toimii prebioottina, eli ravintoaineena, joka edistää suoliston hyödyllisten bakteerien kasvua.
  • Suoliston monimuotoisuus:Kun hyvät bakteerit saavat ravintoa, niiden määrä lisääntyy ja suoliston mikrobisto monipuolistuu. Tämä on tärkeää, sillä monipuolinen mikrobisto tukee parempaa terveyttä.
  • Lyhytketjuiset rasvahapot:

    Bakteerien fermentoituessa resistentti tärkkelys tuottaa lyhytketjuisia rasvahappoja (SCFA), jotka ovat tärkeitä suoliston terveydelle. SCFA:t toimivat muun muassa energialähteenä suoliston soluille, parantavat suoliston tiiviyttä ja voivat vaikuttaa positiivisesti myös aineenvaihduntaan ja immuunijärjestelmään.

Resistentin tärkkelyksen lähteet

Resistenttiä tärkkelystä löytyy monista luonnollisista elintarvikkeista. Sen määrä voi vaihdella ruoan valmistustavasta ja kypsyysasteesta riippuen. Hyviä lähteitä ovat muun muassa:

  • Kylmä peruna: Kun peruna keitetään ja jätetään jäähtymään, osa tärkkelyksestä muuttuu resistentiksi.
  • Vihreät banaanit: Mitä vihreämpi banaani, sitä enemmän sitä sisältää resistenttiä tärkkelystä.
  • Kokojyväviljat: Esimerkiksi kaura, ohra, riisi ja täysjyväleipä.
  • Palkokasvit: Linssit, pavut, herneet.
  • Siemenet ja pähkinät: Chia-siemenet, kurpitsansiemenet, mantelit.

Resistentin tärkkelyksen hyödyt terveydelle

  • Parempi ruoansulatus: Resistentti tärkkelys voi auttaa vähentämään ummetusta ja edistää säännöllistä suolen toimintaa.
  • Painonhallinta: Se voi auttaa kylläisyyden tunteen säilyttämisessä ja vähentää makeanhimoa.
  • Verensokerin säätely: Resistentti tärkkelys voi hidastaa hiilihydraattien imeytymistä ja tasapainottaa verensokeria.
  • Sydänterveys: Se voi alentaa veren kolesterolia ja vähentää tulehdusta, mikä on hyödyllistä sydänterveydelle.
  • Suoliston terveys: Kuten edellä mainittiin, resistentti tärkkelys edistää suoliston terveyttä ja voi vähentää riskiä sairastua suolistosairauksiin.

Resistentti tärkkelys on tärkeä osa terveellistä ruokavaliota. Se on luonnollinen tapa ruokkia suoliston hyviä bakteereja ja edistää näin yleistä terveyttä. Lisäämällä resistentin tärkkelyksen saantia ruokavaliossa voit tukea suoliston hyvinvointia ja vähentää riskiä moniin sairauksiin.

Ketogeenisen ruokavalion pitkäaikaiset vaikutukset mikrobiomiin

Tällä hetkellä tutkijoilla ei ole tietoa ketogeenisen ruokavalion pitkäaikaisista vaikutuksista suoliston mikrobiomiin.

Eri tutkimuksiin perustuen tutkijat uskovat, että KD vaikuttaa positiivisesti mikrobiomiin lisäämällä batteriets- ja bifidobakteerilajeja, jotka yhdistetään parempaan terveyteen ja sellaisten mikrobilajien vähenemiseen, joiden tiedetään lisäävän terveysriskejä.

Epileptiaa sairastavien imeväisten heikentynyt mikrobiomi parani viikon ketogeenisellä ruokavaliolla. Ketogeeninen ruokavalio kasvatti mikrobiomin bakteerimäärää ~24%. Eräässä 6 kuukauden tutkimuksessa havaittiin, että kohenkilöiden refraktoristen epilepsialääkkeiden tarve väheni merkittävästi; mikrobiomin bakteerit lisääntyivät, mutta sen monimuotoisuus väheni. [24, 25]

Joidenkin tutkimusten mukaan firmikuuttien vähäinen määrä suhteessa bakteroideihin indikoi tervettä suolistomikrobiomia. Näistä tutkimuksista kerättyjen havaintojen perusteella lihavilla on todennäköisesti enemmän firmikuutteja suhteessa hyödyllisten bakteroidien määrään kuin hoikilla. Lihavien ulosteesta mitattiin myös hoikkien näytteitä korkeampia lyhytketjuisten rasvahappojen (SCFA) pitoisuuksia. Lihavilla todettiin bakteroidien lisääntymistä firmikuuttitasojen pysyessä ennallaan. Tutkimukset viittaavat siihen, että llaihtuminen ketogeenisellä ruokavaliolla johtaa positiivisiin muutoksiin mikrobiomissa. [5, 26, 27, 28]

Basciani et al. analysoi suoliston mikrobiomin muutoksia lihavilla insuliiniresistentillä potilailla, jotka noudattivat ketogeenisiä ruokavalioita vaihtelevilla energiamäärillä ja proteiinilähteillä. Vähäenergiset ketogeeniset ruokavaliot (VLCKD) sisälsivät vehnä-, kasvi- tai eläinproteiineja. Kaikissa seurantaryhmissä havaittiin 45 päivän jälkeen hyödyllisiä muutoksia, joissa firmikuuttien suhteellinen osuus mikrobiomissa oli vähentynyt ja hyvien bakteerikantojen osuus lisääntynyt. Muutos ei kuitenkaan ollut yhtä selvä eläinproteiineja saaneessa seurantaryhmässä. [29, 30]

Muutamassa lyhytaikaisessa tutkimuksessa verrattiin KD:n vaikutuksia tutkittavien mikrobiomiin. Nagpal et al. analysoi modifioidun välimeren ketogenisen ruokavalion (MMKD) ja American Heart Association Diet (AHAD) -ruokavalion vaikutuksia normaalin kognition ja lievän kognitiivisen häiriön potilailla. Modifioitu välimeren ketogeeninen ruokavalio ei tuottanut merkittäviä muutoksia Firmicutes- tai Bacteroides-kannoissa 6 viikon seurantajaksolla. Bifidobacteriaceae-perheen mikrobit sen sijaan vähenivät ja Verrucomicrobiaceae-perheen mikrobit lisääntyivät. Tätä pidettiin positiivisena muutoksena. Lisäksi hyödyllinen SCFA – butyraatti lisääntyi MMKD:ssä. Butyraatin tiedetään indikoivan suoliston terveyttä. [31].

Summa summarum: Miten mikrobiomi voi vaikuttaa terveyteen?

Mikrobiomin epätasapaino, eli dysbioosi, voi aiheuttaa/pahentaa erilaisia terveysongelmia. Esimerkiksi:

  • Suolistosairaudet: Crohnin tauti, ärtyvän suolen oireyhtymä
  • Aineenvaihduntasairaudet: Lihavuus, diabetes
  • Ihosairaudet: Atooppinen ihottuma, psoriaasi
  • Mielenterveyshäiriöt: Ahdistus, masennus, autismi
  • Autoimmuunisairaudet: Reuma, MS-tauti

Miten voimme huolehtia mikrobiomistamme?

  • Monipuolinen ruokavalio: Syö runsaasti kuituja sisältäviä kasviksia, hedelmiä ja täysjyvätuotteita. Probiootit, kuten jogurtti ja kefiiri, voivat myös olla hyödyllisiä.
  • Riittävä uni: Uni on tärkeä palautumisen kannalta, ja se vaikuttaa myös suolistomikrobiston toimintaan.
  • Liikunta: Liikunta edistää suoliston toimintaa ja voi parantaa mikrobiston monimuotoisuutta.
  • Stressinhallinta: Stressi voi häiritä suolistomikrobiston toimintaa. Rentoutumiskeinot, kuten meditaatio ja jooga, voivat auttaa.
  • Antibioottien harkittu käyttö: Antibiootit voivat tuhota mikrobiomia, joten niitä tulee käyttää vain tarpeen mukaan.

Lähteet

  1. 1.Moore J., Westman E.C. Keto Clarity: Your Definitive Guide to the Benefits of a Low-Carb, High-Fat Diet. Victory Belt Publishing Inc.; Las Vegas, NV, USA: 2020. [Google Scholar]
  2. 2.Hallberg S.J., McKenzie A.L., Williams P.T., Bhanpuri N.H., Peters A.L., Campbell W.W., Hazbun T.L., Volk B.M., McCarter J.P., Phinney S.D., et al. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther. 2018;9:583–612. doi: 10.1007/s13300-018-0373-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. 3.Edwards C., Canfield J., Copes N., Rehan M., Lipps D., Bradshaw P.C. D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging. 2014;6:621–644. doi: 10.18632/aging.100683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. 4.Longo V.D., Mattson M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014;19:181–192. doi: 10.1016/j.cmet.2013.12.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. 5.Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. 6.Fryar C.D., Carroll M.D., Afful J. Prevalence of Overweight, Obesity, and Severe Obesity among Adults Aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health; Hyattsville, MD, USA: 2020. [(accessed on 12 May 2021)]. E-Stats. Available online: https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/obesity-adult.htm. [Google Scholar]
  7. 7.Fryar C.D., Carroll M.D., Afful J. Prevalence of Overweight, Obesity, and Severe Obesity among Children and Adolescents Aged 2–19 Years: United States, 1963–1965 through 2015–2016. NCHS Health; Hyattsville, MD, USA: 2020. [(accessed on 12 May 2021)]. E-Stats. Available online: https://www.cdc.gov/nchs/data/hestat/obesity_child_15_16/obesity_child_15_16.htm. [Google Scholar]
  8. 8.Westman E.C., Yancy W.S., Mavropoulos J.C., Marquart M., McDuffie J.R. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab. 2008;5:36. doi: 10.1186/1743-7075-5-36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. 9.Abbasi J. Interest in the Ketogenic Diet Grows for Weight Loss and Type 2 Diabetes. JAMA. 2018;319:215–217. doi: 10.1001/jama.2017.20639. [DOI] [PubMed] [Google Scholar]
  10. 10.Westman E.C., Feinman R.D., Mavropoulos J.C., Vernon M.C., Volek J.S., Wortman J.A., Yancy W.S., Phinney S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007;86:276–284. doi: 10.1093/ajcn/86.2.276. [DOI] [PubMed] [Google Scholar]
  11. 11.Paoli A. Ketogenic Diet for Obesity: Friend or Foe? Int. J. Environ. Res. Public Health. 2014;11:2092–2107. doi: 10.3390/ijerph110202092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. 12.Adam-Perrot A., Clifton P., Brouns F. Low-carbohydrate diets: Nutritional and physiological aspects. Obes. Rev. 2006;7:49–58. doi: 10.1111/j.1467-789X.2006.00222.x. [DOI] [PubMed] [Google Scholar]
  13. 13.Wallace C. Dietary advice based on the bacteria in your gut. 2018 February 25. Wall Street Journal. [(accessed on 12 May 2021)]; Available online: https://www.wsj.com/articles/dietary-advice-based-on-the-bacteria-in-your-gut-1519614301.
  14. 14.Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M., et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163:1079–1094. doi: 10.1016/j.cell.2015.11.001. [DOI] [PubMed] [Google Scholar]
  15. 15.Rothschild D., Weissbrod O., Barkan E., Kurilshikov A., Korem T., Zeevi D., Costea P.I., Godneva A., Kalka I.N., Bar N., et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–215. doi: 10.1038/nature25973. [DOI] [PubMed] [Google Scholar]
  16. 16.Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016;7:979. doi: 10.3389/fmicb.2016.00979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. 17.Davis S.C., Yadav J.S., Barrow S.D., Robertson B.K. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. Microbiologyopen. 2017;6:e00476. doi: 10.1002/mbo3.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. 18.Lynch S.V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016;375:2369–2379. doi: 10.1056/NEJMra1600266. [DOI] [PubMed] [Google Scholar]
  19. 19.Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319. [DOI] [PubMed] [Google Scholar]
  20. 20.Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170359. doi: 10.1098/rstb.2017.0359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. 21.Gong L., Cao W., Chi H., Wang J., Zhang H., Liu J., Sun B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res. Int. 2018;103:84–102. doi: 10.1016/j.foodres.2017.10.025. [DOI] [PubMed] [Google Scholar]
  22. 22.Kennedy E.T., A Bowman S., Spence J.T., Freedman M., King J. Popular Diets. J. Am. Diet. Assoc. 2001;101:411–420. doi: 10.1016/S0002-8223(01)00108-0. [DOI] [PubMed] [Google Scholar]
  23. 23.Miller V.J., Villamena F.A., Volek J.S. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J. Nutr. Metab. 2018;2018:5157645. doi: 10.1155/2018/5157645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. 24.Xie G., Zhou Q., Qiu C.-Z., Dai W.-K., Wang H.-P., Li Y.-H., Liao J.-X., Lu X.-G., Lin S.-F., Ye J.-H., et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017;23:6164–6171. doi: 10.3748/wjg.v23.i33.6164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. 25.Zhang Y., Zhou S., Zhou Y., Yu L., Zhang L., Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–168. doi: 10.1016/j.eplepsyres.2018.06.015. [DOI] [PubMed] [Google Scholar]
  26. 26.Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a. [DOI] [PubMed] [Google Scholar]
  27. 27.Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Cell Biol. 2006;444:1027–1031. doi: 10.1038/nature05414. [DOI] [PubMed] [Google Scholar]
  28. 28.Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. 29.Schwiertz A., Taras D., Schaefer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167. [DOI] [PubMed] [Google Scholar]
  30. 30.Basciani S., Camajani E., Contini S., Persichetti A., Risi R., Bertoldi L., Strigari L., Prossomariti G., Watanabe M., Mariani S., et al. Very-Low-Calorie Ketogenic Diets with Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020;105:2939–2949. doi: 10.1210/clinem/dgaa336. [DOI] [PubMed] [Google Scholar]
  31. 31.Nagpal R., Neth B.J., Wang S., Craft S., Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529–542. doi: 10.1016/j.ebiom.2019.08.032. [DOI] [PMC free article] [PubMed] [Google Scholar]



Ravinto ja evoluutio: Lucy & fat of the land

Miten meistä tuli ihmisiä ja mikä erottaa ihmiset muista luontokappaleista? Entä mitä ensimmäiset esi-ihmiset ja ihmiset söivät? Näihin kysymyksiin on esitetty monia kiinnostavia vastauksia. Yritän rekonstruoida esihistorian ja Homojen historian kompaktiin ja helposti pureskeltavaan pikaruokapamflettiin.

Viimeisen vuosisadan aikana syömämme ravinto on muuttunut valtavasti, mutta geenien ja aineenvaihdunnan toiminnan osalta emme ole muuttuneet juuri lainkaan kymmeniin tuhansiin vuosiin.

Yritän hahmotella johdonmukaisen selvityksen esihistoriallisten ihmisten ruokavaliota avaavien luentojen pohjalta. Neil Armstrongin sanoja mukaillen: arvoitukset herättävät ihmetystä ja ihmetys johtaa haluun ymmärtää.

Planeetta Helvetti

Alussa oli Helvetti. Satoja miljoonia vuosia myrskyävä kahden miljardin kuutiokilometrin hornankattila ja vulkaanisesti aktiivinen kiehuva planeetta. Neljä miljardia vuotta sitten nuori maailmamme muistutti enemmän helvettiä kuin paratiisia. Nuori maa oli painajaismainen, kaoottinen ja villi kurimus, jonka kaasukehän toiseksi yleisin aine oli hiilidioksidi.

Ensimmäinen solu kehittyi tässä noidankattilassa noin 3,5 miljardia vuotta sitten. Se oli ehkä kemoheterotrofi, joka hyödynsi elinympäristönsä orgaanisia yhdisteitä. Alkusoluille muodostui kyky valmistaa orgaanisia yhdisteitä hiilidioksidista muuttamalla valoenergiaa kemialliseen muotoon. Soluista tuli fotosynteettisiä.

Miljoonia vuosia, muutamaa hetkeä ja yhtä epookkia myöhemmin soluille kehittyi kyky käyttää vettä fotosynteettisenä elektronilähteenä. Näin muodostui kehittyneemmän elämän kannalta kriittinen happea tuottava fotosynteesi. Happea kertyi nuoren planeetan kaasukehään. Jotkin organismit sopeutuivat happeen ja alkoivat käyttää sitä energianlähteenä.

Prokaryootit, eli esitumalliset tumattomat yksisoluiset eliöt eriytyivät jo varhain bakteereihin ja arkeoneihin.

LUCA

Viimeinen tunnettu yhteinen esivanhempamme LUCA (Last Universal Common Ancestor) ei ollut ensimmäinen eliö, mutta se oli viimeisin yhteinen alkusolu, josta kaikki maapallolla nykyisin elävät eliöt ovat polveutuneet. LUCA kehittyi noin 3,5–3,8 miljardia vuotta sitten (paleoarkeeisen maailmankauden aikana).

Aitotumaisia eukaryootteja kehittyi alkuemereen 1,5–2 miljardia vuotta sitten. Niiden syntytapaa ei tunneta. Monisoluiset eliöt kehittyivät vasta 600-800 miljoonaa vuotta sitten. Soluille energiaa tuottava mitokondrio oli varhaisen esieukaryoottisolun kanssa endosymbioosissa elänyt aerobinen bakteeri.

Solu on elämän perusyksikkö

Elämä tarkoittaa yksinkertaisimmillaan soujen aineenvaihduntaa. Solu on kaikkien elävien organismien sähköisesti varautunut perusyksikkö.

Ihmisillä ja muilla suvullisesti lisääntyvillä eläimillä solut voidaan jakaa somaattisiin soluihin ja ituradan sukusoluihin eli gameetteihin. Somaattiset solut syntyvät mitoosissa ja sukusolut meioosissa. Olen käsitellyt syntymän ihmettä tarkemmin täällä.

Ihmisen kudoksesta yli 96 % muodostuu neljästä alkuaineesta. Vedyn, hiilen, typen ja hapen lisäksi kudoksissa on pieniä pitoisuuksia natriumia, magnesiumia, fosforia, rikkiä, klooria, kaliumia ja kalsiumia. Solut ovat 60–90 prosenttisesti vettä. Solujen tärkeimpiä orgaanisia yhdisteitä ovat lipidit, hiilihydraatit, proteiinit sekä nukleiinihapot (DNA ja RNA).

Paratiisin puutarhassa elämä on paikka, jossa elektroni lepää

Kaikki elämä edellyttää ravintoa. Ravintoon ja sitä hyödyntävään lajistoon vaikuttaa ilmasto, joka vaihtelee eri paikoissa. Ilmastolliset tekijät, kuten lämpötila ja sademäärä, aiheuttavat eroja eri alueiden kasvillisuudessa, mikä perusteella maapallo jaetaan ilmasto- ja kasvillisuusvyöhykkeisiin.

Tuulet tuovat kosteutta maalle. Pasaatituulet kohtaavat tropiikissa ja aiheuttavat ukkosilmoja, kosteutta ja monsuuneja. Pasaatituulten pohjois- ja eteläpuolella noin 30. leveysasteen kohdalla on vain vähän tuulia, minkä johdosta valtameriltä ei tule mantereille paljon kosteutta. Paratiisin puutarhan suuret aavikkoalueet sijaitsevat näillä leveysasteilla.

Valtameret tuovat kosteutta, joka synnyttää sademyrskyjä ja tasaa rannikkoseutujen lämpötiloja. Elämää esiintyyy lähes kaikkialla ilmakehästä aina viiden kilometrin syvyyteen asti. Tiedetään, että elämä ja ihmiset ovat sopeutunut hyvin erilaisiin olosuhteisiin, mutta mitä se elämä on?

Erwin Schrödinger määritteli 1940-luvulla elämän negatiiviseksi entropiaksi. Albert Szent-Györgyi kuvasi elämän paikaksi, jossa elektroni voi levätä. Biologiassa elämän ominaisuudeksi mainitaan yleensä kyky tuottaa uusia kopioita itsestään. Astrobiologi André Brackin mukaan elämä on “vesiliukoinen kemiallinen systeemi, joka siirtää molekyylirakenteisiin sisältyvän informaation ja kehittyy”. Addy Pross ja Robert Pascal toteavat, että elämä on toiminnallisuuteen perustuva stabiili tila, joka toimii ulkopuolelta tulevan energian varassa.

Elämä, mitä ikinä sillä tarkoitetaankaan, syntyi noin 3,5-4,0 miljardia vuotta sitten. Alkellista elämää oli aluksi vain merissä. 800 miljoonaa vuotta sitten kehittyivät ensimmäiset alkueläimet, jotka käyttivät ravintonaan muita eliöitä. Toisten eliöiden käyttäminen ravintona on yksi elämän kiertokulkua ylläpitävistä luonnon perusmekanismeista.

Alkueläimet kehittyivät 120 miljoonan vuoden kuluessa monimutkaisiksi ja monisoluisiksi eläimiksi. Selkärangattomien eläinten perusryhmät ilmestyivät proterotsooisen kauden lopulla ja paleotsooisen kauden alussa noin 540 miljoonaa vuotta sitten.

Ensimmäiset maakasvit kehittyivät noin 450 miljoonaa vuotta sitten. Sammakkoeläimiä alkoi nousta maalle devonikaudella. Triaskaudella 245–200 miljoonaa vuotta sitten ilmestyivät nisäkkäät, sisiliskot, dinosaurukset, kilpikonnat ja krokotiilit. Dinosaurusten valtakausi kesti 160 miljoonaa vuotta. Ensimmäiset ädelliset kehittyivät dinosaurusten joukkosukupuuton jälkeen 65 miljoonaa vuotta sitten.

Miten solut saavat energiaa?

Solujen rakenne ja aineenvaihdunta ovat käytännössä hyvin samanlaisia nyt kuin alkumeren ensimmäisillä soluilla:

  • vettä 50–90 prosenttia
  • hiili, vety, typpi ja happi
  • samoja sokereita, aminohappoja, nukleotideja, rasvahappoja, fosfolipidejä, vitamiineja ja entsyymejä
  • tärkeimpinä makromolekyyleinä proteiinit, lipidit, hiilihydraatit ja nukleiinihapot
  • samanlainen solujen kaksinkertainen solukalvo
  • entsyymien välityksellä tapahtuvat solujen reaktiot
  • samanlainen prosessi energian tuottamiseksi ja saamiseksi
  • välireaktioista koostuvat aineenvaihdunnan reaktiot
  • DNA:sta koostuva solujen perimä
  • kaikissa soluissa olevat ribosomit, joissa proteiinisynteesi tapahtuu
  • perimässä tapahtuvat mutaatiot, jotka voivat muuttaa kaiken elollisen ilmiasua.

Solujen energialähteinä toimivat hiilihydraatit ja rasvahapot. Myös proteiineja voidaan käyttää energianlähteinä, mutta silloin aminohapoista on syntetisoitava glukoosia glukoneogeneesissä.

Aitotumallisissa soluissa rasvahapot hapetetaan mitokondrioissa β-oksidaatiossa, jolloin syntyy pelkistyneitä elektroninsiirtäjäkoentsyymejä NADH:ta ja FADH2:ta. Hiilihydraatit pilkotaan ja muokataan ensin glukoosiksi tai sen johdannaisiksi. Solulimassa tapahtuvassa glykolyysissä glukoosimolekyylit hajotetaan pyruvaatiksi, mikä tuottaa NADH:ta ja ATP:tä.

Sekä pyruvaateista että rasvahappojen hapetustuotteista muodostetaan asetyylikoentsyymi-A:ta, joka on kaikkien energiaravinteidren yhteinen välimuoto mitokondrioiden sitruunahappokierrossa. Asetyylikoentsyymi-A pilkotaan hapettamalla sitruunahappokierrossa, mikä tuottaa NADH:ta ja FADH2:ta.

Sitruunahappokierron jäännöstuotteina ovat vesi ja hiilidioksidi. Kun läski palaa, suurin osa osa haihtuu ulos hengitetyn hiilidioksidin ja ihon hikoilun välityksellä.

Aerobisten eli happea käyttävien solujen mitokondrion elektroninsiirtoketjussa aiemmissa reaktioissa tuotetut NADH ja FADH2 luovuttavat elektroninsa eli hapettuvat NAD+:ksi ja FAD:ksi pelkistäen hapen vedeksi ketjureaktion jälkeen.

Seurauksena mitokondrion sisemmän kalvon eri puolille syntyy protonikonsentraatiogradientti, jossa matriisi on emäksisempi kuin solulima. Proteiinikanavat eli ATP-syntaasit antavat protonikonsentraation tasoittua tekemällä samalla protonivirrasta saatavalla energialla ADP:sta ja fosfaatista ATP:ta oksidatiivisessa fosforylaatiossa.

ATP on solun perusenergiamolekyyli, jota entsyymit käyttävät reaktioihinsa.

Solu ottaa aineita ympäristöstään endosytoosilla, joka voidaan jakaa kahteen mekanismiin: fagosytoosiin (”solusyönti”) ja pinosytoosiin (”solun juominen”). Molemmissa tapahtumissa solun ulkopuolella olevat molekyylit kiinnittyvät solukalvon reseptoreihin ja saavat aikaan solukalvon vetäytymisen kuopalle. Kuoppa syvenee, ja lopulta kuoppa irtoaa solun sisälle endosomina ja solukalvo umpeutuu kiinnittymällä vastakkaiseen reunaan. Endosomi yhdistyy solussa lysosomin kanssa.

Lysosomi sisältää entsyymejä, jotka hajottavat endosomin sisällön solun käyttöön. Esimerkkinä fagosytoosista on, kun fagosytoivat solut (makrofagit, neutrofiilit) syövät bakteereja ja tappavat ne sisällään. Fagosytoosin jälkeen ns. myöhäinen endosomi liitetään yleensä uudestaan kalvolle eksosytoosilla, jolloin sen sisältämät kuona-aineet vapautuvat soluvälitilaan. Eksosytoosi on käänteinen endosytoosille. Wikipedia

Solujen syntymä

Solut syntyvät soluista jakautumalla joko mitoottisesti tai meioottisesti. Mitoosissa solu jakautuu kahdeksi identtiseksi kopioksi. Solunjakautuminen kestää noin tunnin, ja sitä seuraa välivaihe, joka on mitoosia paljon pitempi.

Meioosia esiintyy ainoastaan sukusolujen eli munasolujen ja siittiöiden muodostuessa. Meioosissa on kaksi peräkkäistä solunjakautumista, joista syntyy neljä haploidista sukusolua.

Verisolut, monet epiteelisolut ja siittiöt jakautuvat hyvin nopeasti. Suolen epiteelisolut uusiutuvat noin kerran viidessä vuorokaudessa. Maksan solut uusiutuvat keskimäärin kerran kuukaudessa. Hermosolujen kyky jakautua päättyy yleensä hermosolun erikoistumiseen. Suurin osa hermosoluista syntyy jo sikiövaiheessa. Uusia hermosoluja syntyy jonkin verran hippokampuksessa. Jos hermosolujen regeneraatiota tapahtuu, se on ilmeisen hidasta.

Ihmisen elämä on lyhyt kuin päivänkorennon lento

Evoluution ajallista perspektiiviä on vaikea hahmottaa. Elinaikamme on lyhyt kuin päivänkorennon lento. Näemme tuokion maailmasta. Henkilökohtainen elämämme on tuskin muuta kuin silmänräpäys ihmisen kehityshistoriaan.

Evoluutiossa havaittaviin muutoksiin ja lajiutumiseen vierähtää tuhansia sukupolvia. Ympäristössä ja ravinnossa tapahtuneet muutokset voivat vaikuttaa epigeneettisesti lajien sopeutumiseen ja kehitykseen hyvin lyhyessä ajassa.

Lajina päivänkorennot ovat meitä ihmisiä vanhempia. Vanhimmat päivänkorentojen fossiilit on ajoitettu permikauteen kahden- tai kolmensadan miljoonan vuoden päähän menneisyyteen. Permikausi oli matelijoiden, kuten synapsidien, pelykosaurien ja nisäkkäitä muistuttavien terapsidien aikaa. Päivänkorennot olivat olemassa ennen dinosauruksia ja ovat olemassa luultavasti kauan sen jälkeen, kun nykyihmisen jättämät jäljet ovat peittyneet ajan tomuun.

Varhaisia terapsoideja kutsuttiin nisäkäsmäisiksi matelijoiksi. Terapsidit korvasivat muut synapsidit permikauden aikana noin 269 miljoonaa vuotta sitten. Terapsidien valtakausi kesti keskiselle triaskaudelle asti. Sen jälkeen (noin 245–216 milj. v. sitten) alkoi Archosauromorpha-matelijoiden kuten krokotiilien varhaisten sukulaisten ja dinosaurusten vuoro hallita maailmaa suurimpina maaeläiminä. Terapsidit nousivat nisäkkäinä uudelleen hallitsevaan asemaan kenotsooisella maailmankaudella noin 65 milj. v. sitten.

Elämän uusi aika, eli kenotsooinen maailmankausi

Ihmisten kantamuodot alkoivat kehittyä noin 65 miljoonaa vuotta sitten mesotsooisen maailmankauden lopulla kissaa pienemmistä pitkäkuonoisista kädellisistä.

Kenotsooisen kauden kahdeksan epookkia on nimetty eläimistön monimuotoisuuden mukaan kreikaksi. Ihmisen kehittymiseen johtanut ajanjakso alkoi hieman ennen pleistoseenikauden alkua.

  • Paleoseeni paleos, muinainen (66-56 miljoonaa vuotta sittten)
  • Eoseeni eos, sarastus (56-33,9 miljoonaa vuotta sitten)
  • Oligoseeni oligos, muutama (33,8-23,8 miljoonaa vuotta sitten)
  • Mioseeni meion, vähemmän (23-5,33 miljoonaa vuotta sitten)
  • Plioseeni pleion, enemmän (5,3-2,6 miljoonaa vuotta sitten)
  • Pleistoseeni pleistos, eniten (2,588 miljoonaa -11 560 vuotta sitten)
  • Holoseeni, holos, kokonaan, kaikki (alkoi 11 560 vuotta sitten, eli 9600 eaa.)


Kenotsooinen maailmankausi on geologinen ajanjakso, joka alkoi liitukauden lopun joukkosukupuutosta noin 65 miljoonaa vuotta sitten ja jatkuu edelleen.

Kauden alussa ilmasto oli hyvin lämmin ja kostea, mutta alkoi kauden edetessä viiletä ja kuivua. Metsää kuivemmat ruohoa kasvaneet savannit ja arot valtasivat maa-alaa. Tämä mahdollisti monien suurten maanisäkkäiden, kuten hevosten ja norsueläinten kehityksen. Kauden aikana kädelliset kehittyivät ihmisapinoiksi ja edelleen ihmisiksi.

Paleoseenikauden alkukädelliset olivat kissaa pienempiä ja pitkäkuonoisia. Eoseenikauden nykyisiä makeja ja kummituseläimiä muistuttavien kädellisten etuna oli ruumiinpainoon nähden suuret aivot ja kyky hyödyntää monipuolisesti erilaisia ravinnonlähteitä.

DNA-mallien perusteella itä- ja länsiapinat erkanivat varhain eoseenikauden lopulla. Häntä- ja ihmisapinat erkanivat oligoseenikauden lopulla. Ihmiset ja ihmisapinat, kuten simpanssi, erkanivat omiksi kehityslinjoikseen noin seitsemän miljoonaa vuotta sitten.

Suuri joukkosukupuutto pyyhki Maata eoseeni-kauden lopulla. Samoihin aikoihin tapahtui myös merivirtojen muutoksia. Ilmasto viileni ja heinäkasvit yleistyivät. Valtavat ruohotasangot levittäytyivät Maan pinnalle.

Oligoseenikaudella ruohoaroille ilmestyi erilaisia laiduntajia sekä niitä saalistavia kissa- ja koiraeläimiä. Sapelihampaat kehittyivät moneen kertaan eri eläinlajeille. Norsueläimistä kasvoi hyvin suuria.

Kauden lopulla kädellisten kehitys johti ihmisapinoiden, apinaihmisten ja ihmisen syntyyn. Plioseenilla Afrikassa eli eteläapinoita, joista kehittyi jo ennen pleistoseenia nykyihmisen edeltäjiä.

Kasviravintoa syövä Ramapithecus oli enemmän apina kuin apinaihminen. Hieman myöhemmin (2-3 miljoonaa vuotta sitten) elänyt Australopithecus africanus oli ruumiinrakenteensa ja hampaidensa perusteella sekasyöjä.

Eräs mielenkiintoinen huomio on se, että eräillä villikoirilla esiintyvät laakamadot yleistyivät näihin aikoihin ihmisapinoilla.

Ilmasto muuttuu ja muutos vaikuttaa lajien migraatioon ja kehitykseen

Ilmaston muuttuminen on ohjannut kaikkien lajien sopeutumista ja kehittymistä. Kenotsooisella kaudella Afrikan ja Euroopan välissä kulki lämmin merivirta. Meri oli selvästi korkeammalla ja peitti suuremman osan maapallosta.

Esimerkiksi Saharassa ilmaston vaihtelu kosteasta kuivaan on ollut syklistä miljoonien vuosien ajan. Viimeisimmän jääkauden jälkeen Saharan alue oli vehreää savannia, jossa asui kirjava eläinkanta ja ihmisyhteiskuntia. Ihmisten pääasiallinen elinkeino alueella oli maanviljely ja metsästäminen. Monsuunisateet olivat alueella yleisiä, mutta ne alkoivat vähentyä noin 8000 vuotta sitten. Saharan alueen ilmastonmuutos johtui muutoksista maapallon kiertoradassa ja kallistuskulmassa. Vielä 10 000 vuotta sitten Saharan alue oli täynnä jokia ja järviä.

Paleoseenikauden lopussa kenotsooisen kauden ilmasto lämpeni yhä. Noin 55,5 miljoonaa vuotta sitten lämpötila nousi ~10 000 vuoden aikana keskileveyksillä 4–8 °C. Tämän lämpöhuipun (PETM) aiheutti todennäköisesti tulivuorenpurkausten ja syvänmeren metaanikatraattimineraaleihin sitoutuneen metaanin vapautumisen aiheuttama kasvihuoneilmiö. Kuuman lämpöhuipun jälkeen maailma koki vielä pitkän ja lämpimän eoseenin lämpöoptimin, minkä jälkeen maapallo alkoi jäähtyä.

Mioseeni oli Euroopassa lämmin ja kostea, mutta trooppiset lajit alkoivat kauden edetessä kadota. Palmut hävisivät Alppien pohjoispuolisesta Euroopasta. 7–5 miljoonaa vuotta sitten Afrikka viileni ja aavikoitui.

Maapallon lämpötila romahti ~2,74 miljoonaa vuotta sitten kylmään jääkausitilaan, jossa jääkauden ja lämpökaudet vuorottelivat. Pleistoseenikaudella oli arviolta 26 jäätiköitymistä, joista kymmenen olivat suuria. Pitkät jääkaudet alkoivat viimeistään 0,9 miljoonaa vuotta sitten.

Sään armoilla

Ihmisten kehityslinjan eritymiseen vaikutti miljoonien vuosien aikana muuttunut ilmasto ja ympäristö. Selviytyminen edellytti sopeutumista ja sopeutuminen johti kehitysaskeliin, kuten kahdella jalalla liikkumiseen, aivojen kasvuun, tulen keksimiseen ja kieleen perustuvaan kommunikaatioon.

Ensimmäinen merkittävä kehitysaskel tapahtui 7–8 miljoonaa vuotta sitten, kun ilmasto muuttui kuivemmaksi ja viileämmäksi. Metsät vähenivät ja savannit laajenivat. Muutoksen seurauksena ihmisen kantamuodon oli laskeuduttava puista ja sopeuduttava elämään savanneilla. Näihin aikoihin ihmisen kantamuodot erkanivat ihmisapinoiden kantamuodoista.

Jotkut apinalajit sopeutuivat elämään savanneilla nousemalla kahdelle jalalle. Tällaisesta oli selviä etuja. Pystyasennossa liikkuminen vapautti kädet, pitkät etäisyydet taittuivat tehokkaammin kahdella jalalla ja pystyasento paransi lämmönsäätelyä kuumilla ja kuivilla ruohotasangoilla. Kahdelle jalalle nousemisen uskotaan johtaneen työkalujen tehokkaampaan käyttöön.

Savannilla kahdella jalalla kulkevat apinat näkivät kauemmaksi. Seksuaalista valintaa ei myöskään voi sivuuttaa. Naaraat suosivat kookkaita ja vahvoja uroksia kaikissa apina- ja ihmispopulaatioissa.

Seuraava merkittävä kehitysaskel oli työkalujen käyttö. Savanneilla elävät ihmisapinat oppivat hajottamaan luita hakkaamalla niitä kivillä.

Tämä vaihe ihmisen evoluutiossa sivuutetaan usein hyppäämällä puista suoraan työkaluja taidokkaasti hyödyntäviin metsästäjäkeräilijöihin. Apinaihmiset eivät aloittaneet suurriistan metsästämistä heti savanneille sopeuduttuaan, vaikka saattoivat pyydystää ravinnoksi pienriistaa samaan tapaan kuin simpanssit.

Toban vaikutus?

73 800 votta sitten Sumatralla purkautui jättitulivuori Toba. Yhdellä kertaa taivaalle räjähti 8000 kuutiokilometriä vulkaanista tuhkaa ja kiveä. Toban kraateri on 100 km pitkä ja 35 km leveä.

Rikkikaasut levisivät ilmakehään ja heijastivat suuren osan auringon lämpösäteilystä avaruuteen 5-6 vuoden ajan. Lähes valkoinen tuhka levisi ainakin 21 miljoonan neliökilometrin alalle, mutta todennäköisesti ohut tuhkakerros levisi paljon laajemmalle. Vaaleaa tuhkaa on löydetty 10 cm tasainen kerros esimerkiksi yli 400 neliökilometrin alueella tehdyissä kaivauksissa Intiassa. Vaalean tuhkan albedovaikutus heijasti lämpösäteilyä maan pinnalta samaan tapaan kuin jäätiköt.

Hiili-isotooppianalyysin perusteella tuhkakerroksen alapuolinen maa-aines on peräisin metsistä (C3), kun tuhkan päällä oleva maakerros on peräisin ruohokasveista (C4). Tämä tiedetään, koska maatuneiden metsien hiili-isotoopit eroavat maatuneiden ruohokasvien hiili-isotoopeista.

Alueilla, johon Toban purkaus vaikutti oli aiemmin metsiä ja purkauksen jälkeen ruohoa kasvavia aroja. Toba aiheutti vuosia kestäneen ydintalven.

Apinoiden, apinaihmisten ja ensimmäisten ihmisten kehitystä on tarkasteltava muuttuvan ilmaston, ympäristön ja lajiston viitekehyksessä. Lämpötilan muutokset ja Toban kaltaiset luonnonmullistukset vaikuttivat ravinnon laatuun, saatavuuteen ja migraatioon.

Muutokset pakottavat lajit sopeutumaan uudenlaiseen ilmastoon ja uusiin ravinnonlähteisiin. Evoluutiolla on monia mekanismeja, mutta muuttuva ilmasto johtaa adaptaatioihin ja luonnonvalintaan, joka karsii heikommin ympäristöön sopeutuvat geenit geenipoolista.

Ihmisen evoluutio

Perinteinen evoluutiopuu on geneettisen tiedon lisäännyttyä muuttunut sotkuisemmaksi. Adam Rutherford kuvaa nykyihmisen kehitykseen johtavaa puolen miljoonan vuoden epookkia termillä ”clusterfuck”.

Käytännössä hän tarkoittaa, että pitkään vallalla ollut kuva ihmisen kehityshistoriasta erilaisten kehitysharppausten kautta etelänapinoista valkoiseksi mieheksi kuvaa huonosti todellisuutta. Geneettisen datan perusteella ajallisesti päällekkäin lomittuvia ihmislajeja oli ainakin kahdeksan ja ne sekoittuivat keskenään useita kertoja eri aikoina (clusterfuck).

Rutherfordin mukaan massiiviset muuttoliikkeet Afrikasta Aasiaan ja Eurooppaan tapahtuivat hyvin hitaasti kymmenien tuhansien vuosien aikana. Pienet populaatiot vaelsivat luultavasti ravinnon perässä ja lisääntyivät kohtaamiensa muiden ihmispopulaatioiden kanssa.

Länsi- ja itä-Neandertalin ihmisten geenit sekoittuivat Homo sapiensin geeneihin useita kertoja Euroopassa ja Euraasiassa. Aasiassa Denisovan ihmisten geenejä sekoittui Aasiaan vaeltaneisiin populaatioihin. Ja toisiin ihmislajeihin sekoittuneet lajit sekoittuivat myös keskenään. Se oli kaikin tavoin hyvin sekavaa.

Ihmisapinasta apinan tavoin käyttäytyvään ihmiseen

Sahelinapinaihminen eli Tšadissa 6-8 miljoonaa vuotta sitten. Sen kallo muistutti joiltain osin simpanssia ja joiltain osin ihmistä. Sahelinapinaihminen eli aikana, jolloin ihmisen ja simpanssin kehityslinjat alkoivat erkaantua. Se saattoi olla molempien kantamuoto tai kuulua jompaankumpaan kehityslinjaan. Luultavasti Sahelinapinaihminen käytti samanlaista ravintoa kuin ihmisapinat.

Tugeeniapinaihminen eli mioseenikaudella 5,7-6,2 miljoonaa vuotta sitten. Tugeeniapinaihminen voi olla ihmisen suora edeltäjä, mutta voi olla olemattakin. Todennäköisesti samaan aikaan eli muitakin apinaihmislajeja, jotka saattoivat olla rinnakkaisia kehityslinjoja tai ihmisen suoria esivanhempia.

Australopithecus

Varhaisin tunnettu etelänapina (Australopithecus) eli 4,1-5,1 miljoonaa vuotta sitten. Sukuun kuului 5-6 lajia. Tunnetuin Australopithecus-fossiili on Beatlesin ”Lucy in the sky with diamonds” -kappaleen mukaan Lucyksi nimetty 3,2 miljoonaa vuotta sitten elänyt Australopithecus afarensis.

Tutkijat päättelivät Lucyn luista, että se oli kuollut putoamalla puusta noin 12 metrin korkeudesta. Se ei ollut yhtä taitava kiipeilijä kuin apinat. Lucyn aivojen tilavuus oli noin kolmanneksen nykyihmisen aivojen tilavuudesta.

Dart ja tappaja-apinat

Raymond Dartin 1924 löytämä Australopithecus africanus oli lihansyöjä, mikä johti tappaja-apina hypoteesiin. Ihmisen luontainen väkivaltaisuus sai Raymond Dartin vakuuttumaan siitä, että ihmisellä oli saalistamiseen pystyvät esivanhemmat.

Robert Ardrey kirjoitti: ”Not in innocence and not in Asia was mankind born”. Stanley Kubrick kuljetti ihmisen evoluution tappaja-apinasta avaruuteen muutamalla vaikuttavalla kuvalla elokuvassa 2001 Avaruusseikkailu.

Varhaisilla savanneilla oli suurten saaliseläinten osin syötyjä raatoja. Ne tarjosivat etelänapinoille luiden sisältämää herkkua. On perusteltua olettaa, että Australopithecus käytti kiviä löytämiensä luiden hajottamiseen. Luissa on runsaasti energiaa sisältävää luuydintä, joka säilyy luissa pilaantumatta hyvin pitkään.

Kenyanthropys platyops

Joidenkin tutkijoiden mukaan Australopithecukset ovat ihmisen esivanhempia, mutta ne saattoivat myös olla rinnakkaismuoto varhaisten ihmisten edeltäjälle Kenyantropukselle.

Australopithecus oli selvästi ihmisen ja apinan välimuoto. Australopithecukset kävelivät pystyssä ihmismäisillä jaloillaan, mutta sillä oli apinan käsivarret ja suuret apinamaiset poskihampaat.

Kenianesi-ihminen (Kenyanthropus platyops, eli litteänaamainen kenianihminen) eli ~3,5 miljoonaa vuotta sitten. Kenianesilla oli ihmismäisiä piirteitä, kuten litteät kasvot. Joidenkin tutkijoiden mukan Kenianesi on ihmisen edeltäjä, mutta jos näin on, Australopithecuksen täytyy olla rinnakkainen kehityslinja. Kenianihmistä seurasi Turkananihminen (Homo rudolfensis) 1,9 miljoonaa vuotta sitten.

Ihmisten suvun (Homo) eriytyminen apinaihmisten ja ihmisten yhteisestä kantamuodosta ajoitetaan tavallisesti 2,0-2,5 miljoonan vuoden taakse. Ensimmäisenä varsinaisena Homo-suvun edustajana pidetään yleensä yksinkertaisia kivityökaluja käyttänyttä Homo habilista, eli käteväihmistä, jonka aivojen tilavuus oli noin puolet nykyihmisen aivojen tilavuudesta.

Homo habilis

1,9-1,5 miljoonaa vuotta sitten elänyt Homo habilis ei ehkä ollut mikään ruudinkeksijä, mutta ei enää ihan täysi apinakaan.

Australopithecusten, Homo habiliksen ja Homo erectuksen kallon lihaksia ja hampaita vertailemalla havaitaan, että samaan aikaan eli kasviravintoa ja sekaravintoa syöviä Australopithecuksia. Kasviravintoa syövillä ihmisapinoilla on selvästi isommat juurien ja puunverrsojen jauhamiseen soveltuvat poskihampaat.

Hampaat jauhavat, aivot ajattelevat

Elektronimikroskoopeilla voidaan kuvata tarkasti fossiilien hampaiden pintoja, joihin eri ravintoaineet jättävät erilaisia mikroskooppisen pieniä jälkiä. Löydettyjen kallojen mekaniikkaa voidaan mallintaa tietokoneilla, jolloin saadaan tietoa mm. purentalihaksista. Näiden avulla tieto apinaihmisten ja varhaisten ihmisten syömästä ravinnosta on jatkuvasti tarkentunut.

Itä-Afrikasta löytyneiden kallojen (hampaiden ja kallonlihasten) perusteella Australopithecus boisei (Zinjanthropus boisei tai Paranthropus boisei) söi ensisijassa kasviravintoa. Mary Leakeyn 1959 Tansaniasta löytämä vankka-apinaihminen tunnetaan nimellä ”Nutcracker Man” vahvojen leukojen ja poskihampaiden vuoksi. 2,6-1,2 miljoonaa vuotta sitten eläneen lajin arvellaan olevan ensimmäinen kivityökaluja käyttänyt apinaihminen. Vankka-apinaihmisen kallon tilavuus oli 500-550 kuutiosenttimetriä, mikä on isompi kuin simpansseilla, Australopithecus afarensiksella ja Australopithecus africanusilla. Kallossa on yhtäläisyyksiä gorillan kalloon ja se on selvästi kehittynyt tehokkaaseen pureskeluun. Lajin takahampaat ovat noin neljä kertaa nykyihmisen hampaita kookkaammat ja ne sopivat hyvin juurien, pähkinöiden, lehtien ja erilaisten kasvinversojen jauhamiseen.

Selvästi isompikalloisten Homo habiliksen ja Homo erectuksen hampaat ja kallojen lihakset eivät sen sijaan sovellu samanlaisen kasviravinnon syömiseen. Homo habilis ja Homo erectus puolestaan erottuvat kallojen koon, pienempien hampaiden ja – kallon lihasten puolesta työkaluja valmistavina ja ajattelevina sekasyöjinä.

Alkeellisten apinaihmisten ja ihmisten ruokavalio

Savanneilla oli alkuihmisille jotain hyvin arvokasta ja helposti saatavaa: suurten eläinten raatoja, joiden luista varhaiset apinaihmiset saivat rasvaista, ravitsevaa ja herkullista luuydintä. Luuydin sisältää noin kaksi kertaa enemmän energiaa kuin liha tai hedelmät. Se myös säilyy luissa pilaantumatta pitkiä aikoja. Varhaiset apinaihmiset käyttivät ravinnoksi luuydintä rikkomalla luita kivillä.

Apinaihmisten ruumiinrakenne kehittyi yhä ihmismäisemmäksi.Afrikan pystyihminen (Homo ergaster / Homo erectus) levittäytyi Afrikasta Aasiaan ja Eurooppaan.

Tulen ja parempien kivityökalujen käyttöönotto tapahtui 1,5-1,8 miljoonaa vuotta sitten. Homo erectus käytti tulta jo ~1,5 miljoonaa vuotta sitten itä-Afrikassa. Tulenkäyttö oli yleistä kaikilla ihmispopulaatioilla viimeistään 125 000 vuotta sitten. Tulen käyttö yleistyi eri aikoina eri puolilla maailmaa.

Ihmisapinat ja ihmiset ovat aina syöneet raakaravintoa, mutta uskomus raakaravinnon merkityksestä varhaisten ihmisten pääasiallisena ravinnonlähteenä ei perustu arkeologiseen näyttöön tai ihmisen metabolian ja ruoansulatuselimistön toimintaan.

Ihmiset eivät ole koskaan olleet raaka-ravinnolla eläviä fruitaristeja yhtään sen enempää kuin manteleita, banaaneja, kahvia, suklaata, tonnikalaa ja sisäfilettä sisältävällä paleoruokavaliolla. Ravinteiden osalta molemmat ovat hyviä ruokavalioita, mutta hyvin kaukana siitä, mitä ihmisen esivanhemmat söivät.

Ravinnon kypsentäminen tulella alkoi yli miljoona vuotta ennen nykyihmisten kehittymistä. Ruoan kypsentäminen vaikutti ihmisen ruoansulatuskanavan rakenteeseen.

Ihmisen ruoansulatuskanava, maha ja suolisto eroavat hedelmiä ja kasviksia syövien sukulaistemme simpanssien, orankien ja gorillojen ruoansulatuselimistöstä. Ruoansulatuselimistömme ei myöskään muistuta lihansyöjien ruoansulatuselimistöä. Useimmat kasvissyöjät käyttävät suuren osan hereilläoloajasta syömiseen. Ihmisen aineenvaihdunta on kehittynyt niin, että ihminen selviää ilman ravintoa viikkoja. Pätkäpaasto ja ketogeeninen ruokavalio muistuttavat hieman alkuihmisten tapaa syödä, mutta jalostettujen ruokien maailmassa todellisen paleoruokavalion noudattaminen on mahdotonta.

Ihminen ei pysty hyödyntämään ruohoa ravintona niin kuin laiduntavat eläimet. Jos ihmisen ravinto ei sisällä muuta kuin vähärasvaista lihaa, ihminen kuolee nälkään. Ihminen pystyy syömään ruohonsyöjiä ja muita eläimiä sekä monipuolisesti erilaisia kasveja.

Tulen keksimisen seurauksena varhaiset esivanhempamme oppivat kypsentämään juuria ja muita vaikeasti sulavia kasveja. Näin ravinto esikäsiteltiin ruoansulatuselimistöä varten. Kypsytetystä ravinnosta elimistö sai irti enemmän energiaa ja ravinteita.

Neljäs ja ehkä tärkein kehitysaskel oli aivojen kasvu. Aivojen paino on vain muutaman prosentin kehon painosta, mutta aivot käyttävät viidenneksen elimistön tarvitsemasta energiasta. Aivojen kehitys ei olisi ollut mahdollista ilman runsasenergistä ravintoa. Tämän perusteella rasvainen liha ja kypsytetyt tärkkelystä sisältävät mukulajuuret ja muut hiilihydraattien lähteet näyttelivät tärkeää roolia ihmisen kehityksessä.


Aivot tarvitsevat paljon energiaa. Simpanssin aivojen tilavuus on 350-400 kuutiosenttimetriä. Simpanssin aivojen lepokulutus on 10 % energian kokonaiskulutuksesta. Ihmisen aivojen koko on 1350-1400 kuutiosenttimetriä. Ihmisen aivot kuluttavat levossa 20 % ihmisen päivittäisestä energiasta. Se on paljon kun aivojen paino suhteutetaan kokonaispainoon. Aivojen osuus ihmisen painosta on vain pari prosenttia.

Lihansyönti ei yksin selitä aivojen kasvua. Entä hiilihydraatit ja rasvat? Hyviä hiilihydraattien lähteitä, kuten hedelmiä, marjoja, siemeniä ja pähkinöitä on saatavilla vain osan vuotta. Hedelmät ovat varmasti olleet osa ihmisen ravintoa koko evoluutiohistorian. Rasvaa saatiin luuytimistä, pähkinöistä ja rasvaisesta lihasta.

Australopithecusten poskihampaat soveltuivat juurten, kovien siementen ja pähkinöiden syömiseen. Mukulajuuret sisältävät hiilihydraattien lisäksi runsaasti imeytymättömiä kuituja.

Mukulajuurten hyödyntäminen ravintona on yleistä, mutta raakojen mukulajuurien käyttö energianlähteenä on lähes yhtä tehotonta kuin elimistön ruokkiminen männyn juuria jauhamalla.

Nyt siis puhutaan sellaisista juurista, joita apinaihmiset ja varhaiset metsästäjä-keräilijät söivät. Jalostetut runsaasti tärkkelystä sisältävät perunat ja mehevät porkkanat muistuttavat hyvin vähän luonnollisia juurikasveja.

Paleoideologian kompastuskivi on se, että kaikki kasvikset, joita me nykyään syömme, on pitkälle jalostettuja. Paleoruokavalion uskottavuutta lisäisi, jos siinä suosittaisiin vain paikallisia luonnosta kerättyjä marjoja, juuria, lehtikasveja, sieniä jne. runsaasti jalostettujen vihannesten ja hedelmien sijaan. Kivikautiset ihmiset söivät eläimistä kaiken (silmät, aivot, posket, kielen, sisäelimet, rasvan ja luuytimen jne.) eivät vain rasvattomia sisäfilepihvejä.

Varhaisten metsästäjä-keräilijöiden ravinto oli vahvasti sidottu vuodenkiertoon. Talvisin riista saattoi olla ainoa ravinnonlähde, mutta kesäisin syötiin hyvin monipuolisesti erilaisia kasveja. Metsästäjä-keräilijät söivät myös hunajaa.

Mukulajuuria syötiin varmasti ainakin nopeasti kypsennettyinä tai kypsentämättä, kuten hadzat vieläkin tekevät. Nopeakin kypsentäminen lisää mukulajuurten maukkatta. Pidempi kypsennys tekee juuriin sidotun tärkkelyksen paremmin imeytyväksi.

Varhaiset esivanhempamme saivat aivojen kasvun edellyttämän energian kypsennetyistä juurista (ja kausittaisista hiilihydraateista, kuten hedelmistä), hunajasta, lihasta, sisäelimistä ja eläinrasvasta. On hyvin luultavaa, että eläinperäiset rasvat olivat aivojen kehitykselle kriittisen tärkeitä, kuten Jessica Thompson kertoo. Samaan päätelmään päätyy rintamaidon koostumuksen perusteella.

Rintamaito on kasvavan ihmisen parasta ravintoa. Maidossa on noin 7,3 prosenttia laktoosia, 3,4 % rasvaa ja prosentin verran proteiinia. Äidinmaidon rasvahappokoostumus vaihtelee yksilöllisesti, mutta näillä eroilla ei ole havaittu olevan vaikutusta lapsen kasvuun.

Suurin osa rintamaidon rasvoista on tyydyttyneitä, mutta siinä on myös monityydyttämättömiä ja kertatyydyttämättömiä rasvoja, omega-3 ja omega-6-rasvoja, DHA:ta ja EPAa sekä ~10-14 mg kolesterolia / 100 g. Yli puolet rintamaidon energiasisällöstä tulee maidon sisältämistä rasvoista. Rintamaidon proteiineista noin 36 % on kaseiineja, toiset 36 % alfa-laktalbumiinia, noin 9 % immunoglobuliineja ja noin 18 % laktoferriiniä. Äidinmaito sisältää lisäksi entsyymejä, hormoneja ja kasvutekijöitä.

Hadzat

Hadzat ovat nykyihmisen synnyinseuduilla Tansaniassa elävä pieni alkuperäiskansa, joka saa ravintonsa metsästyksestä ja keräilystä, kuten varhaiset esivanhempamme ennen maanviljelyn kehittymistä. Hadzat eivät juurikaan varastoi ruokaa.

Miehet heräävät aamuisin ja lähtevät metsästämään. Naiset keräävät juuria, hedelmiä ja marjoja. Joskus ruokaa löydetään enemmän ja joskus vähemmän. Keskimäärin hadza-naiset keräävät enemmän ravintoa pöytään kuin miehet saavat pyydettyä. Ihmisen aineenvaihdunta on hyvin sopeutunut siihen, että elimistö ei saa jatkuvasti ravintoa. Se on oikeastaan pätkäpaastoilun perusta.

Jos miehet onnistuvat pyytämään suuren riistaeläimen kuten seepran, hadzat syövät usein koko eläimen kerralla. He voivat syödä lihaa ja eläinrasvaa jopa 15 000 kilokaloria päivässä silloin kun sellaisia on saatavilla. Aina niitä ei ole saatavilla. Vuodenajat vaikuttavat luonnon antimiin ja hadzojen syömään ravintoon. Tällä on vaikutuksia mikrobiomiin.

Hadzat eivät syö juuri mitään viljeltyä tai kasvatettua. He eivät kasvata eläimiä ravinnoksi. Käytännössä lähes kaikki hadzojen syömä ravinto löytyy luonnosta.

Hadzojen ruoka on tyyppiesimerkki oikeasta paleoruokavaliosta, tai siitä, mitä paleoideologiassa tavoitellaan. Se ei sisällä prosessoituja hiilihydraatteja, vliljoja. runsaasti tärkkelystä sisältäviä tai teollisesti valmistettuja ruokia.

Teollistuneessa maailmassa paleo-, keto- ja pätkäpaasto-dieetit muistuttavat hieman hadzojen ruokavaliota. Hadzojen elintapoja ei tietenkään voi toisintaa teollistuneissa maissa, mutta ravinto, joka sisältää runsaasti kasviksia, tyydyttyneitä eläinrasvoja ja maltillisesti eläinproteiineja toimii aineenvaihdunnan ja mikrobiomin kannalta paremmin kuin runsaasti tärkkelystä, viljoja ja teollisia rasvoja sisältävä arkiruokavalio.

Hadzat ovat mielenkiintoinen kansa, sillä heillä ei tiettävästi esiinny aineenvaihduntaan liittyviä sairauksia, autoimmuunitauteja tai sydäntauteja, eli sairauksia, jotka liittyvät vahvasti länsimaiseen elämäntapaan.

Ulostenäytteiden perusteella hadzojen mikrobiomi on lajikirjoltaan runsaampi ja elinvoimaisempi kuin meillä, jotka saamme ravintomme tehoviljelystä, teollisista lihavalmisteista ja tehtaissa valmistetuista rasvoista.

Hadzojen mikrobiomi muistuttaa muiden alkuperäiskansojen mikrobiomia, vaikka kansojen viimeinen yhteinen esi-isä on saattanut elää kymmeniä tuhansia uosia sitten. Jos hadzojen mikrobiomi rinnastetaan meidän mikrobiomiimme, se muistuttaa elämää sykkivää viidakkoa, kun meidän mikrobiomimme muistuttaa avohakkuiden raiskaamaa metsää. Ruokavalioltaan ja mikrobiomiltaan hadzat muistuttavat Stanfordin tutkijoiden mukaan maanviljelyn kehittymistä ennen eläneitä metsästäjäkeräilijöitä. He ovat ikkuna siihen, kuinka varhaiset esivanhempamme elivät.

Hadzojen runsaasti kuituja (100-150 g / vrk) sisältävä ruokavalio ravitsee suoliston satoja mikrobilajeja ja biljoonia mikrobeja, joiden aineenvaihdunta tuottaa suolistosta verenkiertoon imeytyviä kemikaaleja, kuten lyhytketjuisia rasvahappoja, joiden tiedetään vaikuttavan kaikkeen immuunijärjestelmän toiminnasta mielialaan. Itse asiassa 97 % ihmisen mukanaan kantamasta geneettisestä materiaalista ei ole omaamme. Elämme täysin mutualistisessa suhteessa suoliston mikrobipopulaation kanssa. Kun ihmisen genomissa on parikymmentä kuitujen aineevaihduntaan vaikuttavaa geeniä, mikrobiomissa on satoja kuitujen pilkkomista ohjaavia geenejä.

https://www.youtube.com/watch?v=tcBtNbFFjMA

https://www.youtube.com/watch?v=miEngVBrrIc

https://www.youtube.com/watch?v=iSCV_XFcVPU

https://www.youtube.com/watch?v=Cuyp1bvuaxA

https://www.youtube.com/watch?v=41IfdwLqtkA

https://www.youtube.com/watch?v=FNIoKmMq6cs

https://www.youtube.com/watch?v=SsSHzTsG4wY

https://www.youtube.com/watch?v=Me5LFbPrEe0

https://www.youtube.com/watch?v=r7rKKFOui8w

https://www.youtube.com/watch?v=Lt3cY9i7kgQ

https://www.youtube.com/watch?v=LScfRoudcC4

https://www.youtube.com/watch?v=koTIBNRqMIA

https://www.youtube.com/watch?v=ZrJb7R1u5Iw




Mikä on paras ruokavalio sydänterveydelle?

Silvia Migliaccio, Caterina Brasacchio, Francesca Pivari, Ciro Salzano, Luigi Barrea, Giovanna Muscogiuri, Silvia Savastano, Annamaria Colao
Kääntänyt, editoinut ja kriittisesti kommentoinut: Sami Raja-Halli

Tiivistelmä

Sydän- ja verisuonitaudit (CVD) ovat yleisin kuolinsyy kehittyneissä maissa. Tutkimuksissa sydän- ja verisuonitaudit assosioituvat usein ravitsemustottumuksiin ja elintapoihin, kuten runsaaseen alkoholinkäyttöön, stressiin ja tupakointiin sekä liian vähäiseen liikuntaan.

Liikunta- ja ruokailutottumuksia korjaamalla sydän- ja verisuonitautien riskiä voi laskea. Ravinto vaikuttaa sydän- ja verisuonitautien riskitekijöihin, kuten veren rasva- ja sokeriprofiileihin, verenpaineeseen ja lihavuuteen. Terveyden optimoimiseksi on kehitelty erilaisia ruokavalioita.

Miten DASH, kasvisruokavalio, ketogeeninen ruokavalio ja japanilainen ruokavalio vaikuttavat sydän- ja verisuonitautien riskiin? Entä millaisia vaikutuksia eri ravintoaineilla on  sydämen terveyteen?

Useimmat terveelliset ruokavaliot korostavat samojen ravintoaineiden hyötyjä. Elimistö tarvitsee runsaasti hedelmiä ja vihanneksia, täysjyväviljoja, hyviä rasvoja ja palkokasveja. Tämä on usein kuultu mantra; lisättyä sokeria, punaista ja prosessoitua lihaa sekä runsaasti kovaa rasvaa ja sokereita sisältäviä prosessoituja valmisruokia tulisi välttää.

Yksittäisten ravintoaineiden vaikutukset terveydelle eivät ole yksiselitteisiä. Sen lisäksi, että ravintoaineet vaikuttavat yhdessä ja toisiinsa, ne vaikuttavat hormonitoiminnan välityksellä aineenvaihduntaan, solujen signalointiin, geeniekspressioon, hormonien yms. tuotantoon, elimistön uusiutumiseen ja suolistomikrobiomin välityksellä immuunijärjestelmän toimintaan. Ihminen tarvitsee välttämättä esimerkiksi steroidihormoneja, joiden esiaste on kolesteroli.

Tasapainoisella välttämättömät ravintoaineet sisältävällä ruokavaliolla on kokonaisvaltaisempia ja terveellisempiä vaikutuksia kuin yksittäisillä superfoodeilla. Elimistö on tarkka laadusta, mutta laatua ei määrittele ruoan hinta, vaan elimistön tarvitsemien ravinteiden laatu.

Monien ravintoaineiden yksipuolinen ja liiallinen saanti altistavat aineenvaihdunnan häiriöille. Minkälaisia ravitsemusprotokollia hyödyntäen lihomista, matala-asteista tulehdusta, diabetesta ja sydän- ja verisuonitauteja voidaan ehkäistä?

Tutkimusstrategia

Löysin kiinnostavan ja pätevältä vaikuttavan tutkimuskatsauksen erilaisten ruokavalioiden yhteydestä sydän- ja verisuonitauteihin. Kiinnitin pian huomiota katsauksessa käytettyjen lähteiden heikkoon laatuun. Tiesin, että on olemassa tieteellisesti laadukkaampia, tuoreempia ja arvostetumpia tutkimuksia kuin tässä katsauksessa lähteinä toimivat vanhat ja konservatiiviset tutkimukset.

Päädyin laajentamaan tätä katsausta täsmennyksillä, kriittisillä huomioilla ja viittauksilla tuoreempiin tutkimuksiin. Tämä teki artikkelista hyvin pitkän, mutta myös kattavan.

Kukin tämän tutkimuskatsauksen kirjoittajista haki PubMedistä (MEDLINE)tutkimusraportteja elokuuhun 2019 asti käyttäen erikseen seuraavia hakutermejä: sydän- ja verisuonitaudit, lihavuus, ruokavalio, ravitsemus, glukoosimetabolia, välimeren ruokavalio ( MeDi), ketogeeninen ruokavalio (KD), japanilainen ruokavalio, kasvisruokavalio (VegDiet) ja verenpainetautia ehkäisevä ruokavalio (DASH).

Asiaan liittyvien artikkeleiden ja arvostelujen viiteluetteloita haettiin myös manuaalisesti. Yhteensä haulla tunnistettiin kahdeksansataa tutkimuspaperia, joista 136 valittiin ja sisällytettiin tähän tutkimuskatsaukseen. Minuun määrä teki vaikutuksen.

Johdanto

Sydän- ja verisuonitaudit ovat monitekijäisiä sairauksia, jotka aiheutuvat useista päällekäisistä häiriöistä, kuten liiallisesta viskeraalisesta rasvasta (keskivartalolihavuudesta), kohonneesta verenpaineesta, dyslipidemiasta ja glukoosi-intoleranssista [1]. Nämä lisäävät sydän- ja verisuonitapahtumien, kuten aivohalvauksen ja sydänkohtausten riskiä.

Insuliiniresistenssi ja diabetes luokitellaan itsenäisiksi sydän- ja verisuonitautien riskitekijöiksi. Alkavat sydän- ja verisuonitaudit voivat piileskellä ja kehittyä rauhassa harmittomilta tuntuvien aineenvaihdunnan häiriöiden taustalla. Korkea verensokeri- ja insuliinipitoisuus (hyperinsulinemia) vahingoittavat verisuonia.

Sokerin aiheuttamat verisuonivauriot alkavat pienistä verisuonista, mutta kehon jatkuva tulehdustila ja verisuonivauriot lisäävät kolesterolin ateroskleroottista kumuloitumista myös valtioiden seinämiin. Erityisen haitallista sydän- ja verisuoniterveydelle ovat jatkuva inflammaatio ja glykaation kehittyneet lopputuotteet (AGE:t).

Elintärkeä LDL-kolesteroli muuttuu vahingolliseksi, kun se hapettuu. Oksidoituneet LDL-partikkelit ovat ateroskleroottisia. Sydän- ja verisuonitaudit seuraavat matala-asteista tulehdusta, hyperglykemiaa, dyslipidemiaa ja glykaatiota [2].

Jatkuvasti korkean glykaatiota ja verisuonivaurioita aiheuttavan verensokerin laskemiseksi on yksi ylivoimainen keino: ravinnon sisältämien sokereiden rajoittaminen. Sillä on monia terveydellisiä vaikutuksia matala-asteisen tulehdustilan hillitsemisestä laihtumiseen ja energiametabolian korjaantumiseen.

Glykaation kehittyneet lopputuotteet: glykotoksiinit

Korkean verensokerin aiheuttamista terveysriskeistä glykaatio tunnetaan valitettavan huonosti. Glykaatiota aiheuttaa jatkuvasti korkea verensokeri, joka reagoi muun muassa vapaisiin aminohappoihin, proteiineihin ja rasvahappoihin. Tutuin esimerkki glykaagiosta on aikuistyypin diabetes ja siihen liittyvä pitkäsokerin mittaus, jossa mitataan hemoglobiinin glykaatiota (hemoglobiini (HbA1C).

Glykaatiossa punasolujen hemoglobiinimolekyyleihin kiinnittyy (glykatoituu) glukoosia. Glukoosin kiinnittymisvauhti riippuu veren glukoosin määrästä. Mitä enemmän veressä on sokeria, sitä enemmän sitä tarttuu happea kuljettavien punasolujen hemoglobiiniin. Veren punasolujen glykatoituminen tekee verestä kuvaannollisesti siirappimaista.

Kehittynyt glykaation lopputuote (eng. advanced glycation end-product, AGE) on yleisnimitys suurelle joukolle erilaisia proteiineja tai rasvoja, jotka jotka ovat glykatoituneet ei-entsymaattisesti altistuttuaan joillekin sokereille.

Glykotoksiinit osallistuvat moniin soluja rappeuttaviin sairauksiin, kuten Alzheimerin ja Parkinsonin tauteihin. Niiden tiedetään lisäävän diabeteksen, ateroskleroosin, kroonisen munuaisten vajaatoiminnan, harmaakaihin, lihasheikkouden ja eräiden syöpien riskiä.

Glykotoksiinit vaikuttavat useinpiin kehon solutyypppeihin ja molekyyleihin. Haitallisia AGE:ista tekee niiden kyky reagoida verkkoutumisreaktioiden kautta muun muassa kehon rakenneproteiinien kuten kollageenin ja elastiinin kanssa. Näin glykaation lopputuotteet polymerisoivat proteiineja yhteen suuriksi ryppäiksi estäen niiden normaalia toimintaa. Glykotoksiinit altistavat valtimonkovettumataudille, koska ne ryppäyttävät verisuonten pintojen kollageeniä, minkä seurauksena suonet kovettuvat.

Verisuonien kovettuminen lisää kolesterolin kertymistä suonten sisäpintaan. Glykotoksiinit edistävät LDL:n hapettumista. Hapettunut LDL-kolesteroli on eräs valtimokovettumataudin tärkeimmistä riskitekijöistä.

Glykaation synnyttämät glykotoksiinit lisäävät kehon matala-asteista tulehdusta aktivoimalla syöjäsoluja (makrofageja) RAGE/NF-κB-signalointireitin kautta. AGE:t voivat sitoutua monista soluista löytyviin AGE-reseptoreihin (RAGE), joiden välityksellä ne lisäävät oksidatiivista stressiä ja aiheuttavat makrofagivälitteisiä tulehdusreaktioita. Tämä johtaa tuman transkriptiotekijä kappa B:n (NFκB) aktivoitumiseen, joka puolestaan ohjaa monia tulehdusreaktioihin liittyviä geenejä.

Tulehdusreaktiot liittyvät moniin elämäntapasairauksiin. Esimerkiksi valtimonkovettumatauti alkaa makrofageja houkuttevilla tulehdusreaktioilla. Osa makrofageista muuntuu tulehduskohtaan jääviksi vaahtosoluiksi syödessään hapettunutta LDL-kolesterolia. Nämä toimivat alustana suonen pintaan kerääntyvälle plakille. Plakin kasvaessa verisuoneen voi lopulta muodostua veritulppa.

Korkean verensokerin tuottamat glykotoksiinit vaikuttavat ihon vanhenemiseen kollageenin ja elastiinin välityksellä, mikä lisää ryppyjä ja heikentää ihon joustavuutta. Ihon nuorekkuuden säilyttämiseksi on halpa menetelmä, joka ei edellytä hintavia ihonhoitotuotteita: rajoita sokereita!

Glykotoksiinien ihoa vanhentavat ja rappeuttavat vaikutukset heikentävät haavojen parantumista ja ihon kykyä syntetisoida D-vitamiinia. Nämä ilmiöt liittyvät todennäköisesti useiden soluja rappeuttavien vaikutusten yhteisvaikutukseen, jossa glykaation kehittyneet lopputuotteet osaltaan heikentävät muun muassa solujen DNA:n korjausprosesseja ja DNA-synteesiä, mitokondrioiden energiametaboliaa, solukalvojen lipidien biosynteesiä, hormonien tuotantoa jne.

Sydän- ja verisuonitaudit ovat yleisin kuolinsyy erityisesti teollistuneissa länsimaissa [3]. Suomessa ja Ruotsissa on kuitenkin havaittu, että jatkuvasti lisääntyvä statiinien käyttö sydäntautien ehkäisemiseksi ei ole tilastollisesti laskenut sydänkuolleisuutta. Onko sota kolesterolia vastaan jo hävitty, vai onko vuosikymmeniä haukuttu väärää puuta?

Sydän- ja verisuonitautien ongelma on mutkikkaampi kuin yleisesti tunnustetaan. Sydän- ja verisuonitaudit eivät johdu tyydyttyneistä rasvoista ja kolesterolista. Eivät ainakaan yksin niistä. Jatkuvasti korkea verensokeri ja veren kohonneet triglyseridipitoisuudet altistavat varmasti sydän- ja verisuonitaudeille. Kuitenkin vain tyydyttynyt rasva on nostettu tikunnokkaan. Miksi?

Se on harmillista, koska runsaasti hiilihydraatteja sisältävä ravinto ylläpitää veren korkeita triglyseriditasoja lisäämällä maksan de novo lipogeneesiä. Runsaasti rasvaa sisältävä ruokavalio itse asiassa laskee veren triglyseridejä, nostaa HDL-kolesterolia, mutta ei juuri vaikuta LDL-kolesterolin pitoisuuteen. Hiilihydraattien rajoittaminen korjaa verensokeria, verenpainetta, veren lipidiprofiileja ja solujen energiametaboliaa.

Vaikka musta puhutaan valkoiseksi, aineenvaihdunnan tasolla on aivan samantekevää onko sokeri peräisin perunasta, täysjyväleivästä vai pullasta. ruoansulatuskanava hajottaa hiilihydraatittien sisältämän tärkkelyksen yksittäisiksi sokerimolekyyleiksi, jotka imeytyvät elimistöön. Verenkierrossa leivästä, pullasta, perunasta, marmeladista ja suklaasta peräisin olevat sokerimolekyylit vaikuttavat aineenvaihduntaan samalla tavoin. Toki täysjyväleivässä on enemmän ravinteita kuin pullassa ja sen sisältämät kuidut hidastavat sokereiden imeytymistä, mutta täysjyväleivässäkin on melkoisesti sokeria.

Jatkuvasti korkea verensokeri, insuliiniresistenssi, runsas eläinproteiinien ja eläinrasvojen saanti kasvattavat sydäntautien riskiä. Sairaudet ovat monitekijäisiä.

Glykaation vaikutuksista sydän- ja verisuonitauteihin ollaan korvia huumaavan hiljaa, vaikka puoli miljoonaa suomalaista sairastaa diabetesta ja diabeetikkojen sydäntautikuoleman riski ei-diabeetikkoihin verrattuna on tilastollisesti 2-4 kertaa korkeampi.

Kolesteroli on elimistön välttämättä tarvitsema biologinen komponentti. Lähes kaikki solut voivat valmistaa kolesterolia monimutkaisessa 37-osaisessa reaktioketjussa. Eniten kolesterolia valmistaa maksa. Kolesterolia on kaikkien kehon solujen solukalvoissa. Se osallistuu solujen signalointiin ja sitä tarvitaan aivojen viejähaarakkeita suojaaviin myeliinikalvoihin. Kolesteroli on myös steroidihormonien, kuten testosteronin ja estrogeenin, sekä immuunijärjestelmää ja kalsiumin homeostaasia säätävän D-vitamiinin esiaste.

Kuolleisuus lisääntyy laakean U-käyrän mukaisesti matalilla ja hyvin korkeilla kolesterolitasoilla. Matalien kolesterolitasojen riskeistä ei useinkaan puhuta, vaikka dementia ja kuolleisuus lisääntyvät asteittain, mitä matalammille kolesterolitasoille mennään.

Hapettunut LDL-kolesteroli on tunnettu ateroskleroosin riskitekijä. Sydänterveyden kannalta suurin ongelma ei ole kolesteroli itsessään, vaan korkean verensokerin aiheuttama oksidatiivinen stressi, glykaation kehittyneet lopputuotteet ja LDL-kolesterolin oksidaatio. LDL-kolesterolin hapettumista ja oksidatiivista stressiä voi hillitä verensokeria laskemalla.

Kuluneiden kolmen vuosikymmenen aikana lisääntyneestä sydän- ja verisuonitautien ilmaantuvuudesta on tullut polttava sosioekonominen prioriteetti. Tarve ehkäistä sydän- ja verisuonitauteja elämäntapamuutoksilla on tänään yhtä ajankohtainen kuin vuonna 1977, jolloin USDA määritteli tyydyttyneet rasvat ja kolesterolin kansakunnan vihollisiksi no:1 [4].

Sydän- ja verisuonitautien kehitys assosioituu epäterveellisiin elämäntapoihin [5, 6]:

  • ravinto sisältää liikaa natriumia (suolaa)
  • syödään liikaa prosessoituja elintarvikkeita
  • syödään liikaa/lisättyä sokeria
  • ravinto sisältää epäterveellisiä rasvoja ja erityisesti teollisia transrasvoja
  • ravinnon vähäinen hedelmien ja vihannesten osuus
  • vähäinen täysjyvätuotteiden ja kuidun osuus
  • vähäinen palkokasvien osuus
  • vähäinen kalan osuus
  • vähäinen pähkinöiden ja siementen osuus
  • runsas alkoholin käyttö
  • stressi
  • tupakointi
  • vähäinen liikunta

Useimmat ravitsemustutkimukset tukevat edellisiä havaintoja. Rasvojen ja esimerkiksi punaisen lihan terveysvaikutuksista on kuitenkin olemassa ristiriitaista näyttöä. Viimeisimmät meta-analyysit ovat joiltain osin puhdistaneet tyydyttyneiden rasvojen mainetta. Todennäköisesti tyydyttyneet rasvat eivät yksin kasvata sydän- ja verisuonitautien riskiä.

Hiljattain runsaasti mediahuomiota saanut punaisen lihan ja paksusuolensyövän yhteyttä korostava tutkimus oli uutisankka; tai tarkemmin se oli tilastollinen silmänkääntötemppu, jossa sovellettiin taikasanoja suhteellisen riskin alenema. Tosiasiassa punainen liha lisäsi suolistosyövän riskiä 0,63 % ja ei-lihaa sisältävä ruokavalio 0,40 %. Todellinen riski jäi alle prosenttiin ja tutkimuksen virhemarginaaliin.

Terveysvaikutuksiltaan tyydyttyneet (kovat) rasvat ovat monien tutkimusten mukaan neutraaleja. Tämä on naturalistinen lähestymistapa: kädellisten evoluutio on jatkunut miljoonia vuosia. Nykyihmisten ravintoon on kuulunut tyydyttyneitä rasvoja 200 000 vuoden kehityshistorian ajan. Monityydyttymättömät teolliset siemenöljyt keksittiin hieman yli sata vuotta sitten. Tekeekö tehdas parempaa ravintoa kuin äiti? En tarkoita Saarioisten äitejä, vaan rintamaitoa, joka sisältää runsaasti kolesterolia ja tyydyttyneitä rasvoja. Naturalistina minä luotan luonnollisiin rasvoihin ja äidin maitoon enemmän kuin teollisiin rasvoihin.

Tutkimusnäyttö tukee hypoteesia, jonka mukaan elämäntapamuutokset, kuten liikunnan lisääminen ja ruokavalion muuttaminen voivat ehkäistä sydän- ja verisuonitauteja. Se, mitä tämä käytännössä tarkoittaa on monen tekijän summa. Ravinnon terveysvaikutuksista kinastellaan ja siitä Ruokasodassa on kyse.

Iäkkäiden ihmisten määrä kasvaa teollistuneissa maissa nopeasti. Trendi lisää terveydenhoitoon kohdistuvia taloudellisia ja sosiaalisia paineita. Tämän vuoksi on perusteltua selvittää aineenvaihdunnan patofysiologiset mekanismit sellaisten toimenpiteiden kehittämiseksi, jotka vähentävät elintapoihin liittyvien kardiometabolisten tautien sairastumisalttiutta, ja jotka voidaan helposti toteuttaa väestötason suosituksilla.

Yhteiskunnallisena prioriteettina tulee olla ikääntyvien ihmisten terveiden elinvuosien lisääminen ja sydäntauteihin liittyvien sosioekonomisten kustannusten vähentäminen. Tämä tavoite keventää yhteiskunnalle sydäntaudeista koituvaa sosioekonomistista painolastia ja lisää ikääntyvien ihmisten elämänlaatua. Samalla meidän on taisteltava diabetes- ja lihavuusepidemioita vastaan. Diabetes ei ole ikääntymiseen, vaan elintapoihin liittyvä sairaus.

Energian ylimäärä

On tunnettua, että lihottavat ruokavaliot lisäävät sydän- ja verisuonitautien riskiä. Energiansaannin vähentäminen 20–50%:lla hillitsee tutkimusten mukaan sairastuvuutta aineenvaihduntasairauksiin, kuten lihavuuteen ja tyypin 2 diabetekseen. Tämä pätee ainakin kokeellisissa eläinmalleissa [7].

Julkaistut kliiniset tutkimukset vahvistavat, että energiansaannin rajoittaminen laskee sydän- ja verisuonitautien riskiä. Kiinnostavaa on, että pieni koetutkimus, johon osallistui 24 koehenkilöä, osoitti, että vain 10 viikon energianrajoitus (80% normaalista energiansaannista) laski merkittävästi sekä systolista että diastolista verenpainetta [8].Korkean verenpaineen tiedetään altistavan sydän- ja verisuontitaudeille.

Lisäksi havaittiin merkittävä verensokerin lasku vastaavan 10 viikon energianrajoitusta koskevan ruokavaliointervention jälkeen [9]. Verensokerin lasku tarkoittaa sokerimetabolian parantumista. Korkea verensokeri on eräs tunnettu kardiometabolisten häiriöiden riskitekijä.

Useat tutkimukset osoittavat, että pidempiaikainen energiaa rajoittava ravintomalli laskee sydän- ja verisuonitautien riskiä parantamalla seerumin lipidiprofiilia, paasto-glykemiaa ja verenpainetasoja [10–12]. Ravinnon sisältämän energian rajoittamisen hyödyistä voit lukea täältä.

Hiljattain Comprehensive Assessment of the Long-term Effect of Reducing Intake of Energy -tutkimusohjelmassa arvioitiin pitkäkestoisen energianrajoituksen vaikutusta sydän- ja verisuoniterveyteen. Tähän satunnaistettuun tutkimukseen osallistui 218 koehenkilöä. Koehenkilöt jaettiin kahteen ryhmään, joista toinen noudatti rajoitetun energiansaannin ruokavaliota -25 % energiansaannilla 2 vuoden ajan ja toinen ryhmä noudatti tavanomaista ruokavaliota ilman energiarajoituksia 2 vuoden ajan.

Havainnot osoittivat, että jo kuuden kuukauden vähäenergisen ruokavalion aikana paino laski merkittävästi ja lipidiprofiilit sekä verenpainetasot paranivat [13]. Molemmat tekijät liittyvät kasvaneeseen kardiovaskulaariseen riskiin.

Tyydyttyneet rasvat (SFA) ja sydäntaudit

Runsas tyydyttyneen rasvan saanti yhdistetään usein kasvaneeseen sydän ja verisuonitautien riskiin erityisesti siksi, että se lisää matalatiheyksisen kolesterolin (LDL) pitoisuutta seerumissa. Tyydyttyneitä rasvoja sisältävät ravinto kasvattaa ateroskleroosin riskiä [14] ja insuliiniresistenssiä lisäämällä aterogeenisten lipoproteiinien LDL ja erittäin matalatiheyksisten lipoproteiinien ( VLDL) määrää ja vähentämällä suurtiheyksisten lipoproteiineja (HDL) [15].

Ancel Keysin seitsemän maan tutkimus oli yksi ensimmäisistä tutkimuksista, joissa arvioitiin tyydyttyneiden rasvojen saantiin liittyvää CVD-riskiä. Tutkimuksessa arvioitiin sydän- ja verisuonikuolleisuutta 11 579 miehellä, joita seurattiin 15 vuoden ajan. Tulokset osoittivat positiivisen korrelaation sydän- ja verisuonikuolemien ja tyydyttyneiden rasvojen saannin välillä [21].

Näin tapahtui kuitenkin vain, koska Ancel Keys hylkäsi 22 maan tutkimusaineistosta 15 maata, joissa positiivinen korrelaatio tyydyttyneiden rasvojen ja sydänkuolleisuuden välillä ei toteutunut. Seitsemän maan tutkimus on eräs räikeimmistä esimerkeistä tieteellisestä kirsikanpoiminnasta. Valitettavasti se on ravitsemussuositusten kiveen hakattu paradigma. Ranskalainen paradoksi näkyy selvästi Ancel Keysin alkuperäisessä datassa.

Kovat rasvat vs. pehmeät rasvat Euroopassa

Seuraavina vuosina tutkittiin Japanissa ja länsimaissa asuvia japanilaisia miehiä. Tutkimuksissa havaittiin japanilaismiesten sydän- ja verisuonikuolleisuuden lisääntyneen länsimaissa, minkä arveltiin johtuvan runsaasti tyydyttynyttä rasvaa sisältävän ruokavaliosta. Korrelaatio on olemassa, mutta kausaalisuuden osoittamisesta ei ole jälkeäkään. [14, 22].

Muistutan, että Mainen osavaltiossa margariinin kulutus liittyy avioerojen lisääntymiseen. Se on fakta, mutta ei siltä pohjalta voi voita suositella avioerojen ehkäisemiseen. Vai voiko?

Tyydyttyneiden rasvojen ja sydäntautien välisestä syy-yhteydestä ei vallitse tieteellistä yksimielisyyttä. Totesin jo tekstin alussa, että yksittäisten ravintoaineiden terveysvaikutusten osoittaminen ei ole aivan yksiselitteistä.

Tyydyttyneiden rasvojen vaaroja tukeva L. Robertsonin ja kumppaneiden tutkimus, johon tässä tutkimuskatsauksessa viitataan (14), on vuodelta 1977. Se on epidemiologinen väestötutkimus japanilaisten miesten sydänkuolleisuudesta Japanissa, Hawajilla ja Kaliforniassa.

Tutkimus osoitti, että Kaliforniassa ja Hawajilla elävät japanilaismiehet kuolivat useammin sydäntauteihin kuin samanikäiset Japanissa elävät miehet. Tämän uskottiin johtuvan runsaammasta tyydyttyneiden rasvojen saannista. Kriittisesti arvioiden: japanilaiset söivät ja syövät yhä edelleen terveellisemmin ja liikkuvat enemmän kuin amerikkalaiset. Määrällisesti amerikkalaiset kuluttavat keskimäärin lähes 1000 kilokaloria enemmän energiaa päivässä kuin japanilaiset. Yhdysvalloissa elävien japanilaismiesten elämäntapojen amerikkalaistuminen lisäsi siis tyydyttyneiden rasvojen lisäksi raffinoitujen sokereiden ja transrasvojen saantia sekä kokonaisenergian määrää, mutta vähensi kasvisten saantia ja arkiliikuntaa. Viitattu tutkimus ei todista, että Yhydsvaltoihin muuttaneet japanilaismiehet kuolivat sydäntauteihin tyydyttyneiden rasvojen vuoksi – se vain väittää niin.

Epidemiologisten tutkimusten todistusarvo on parhaimmillankin ”suuntaa antava”. Tiedetään, että vuonna 1977 USDA julkaisi tyydyttyneiden rasvojen ja kolesterolin rajoittamiseen tähtäävät ravintosuositukset, jotka perustuivat Ancel Keysin 7 maan tutkimukseen. Tässä tieteellisessä ilmapiirissä julkaistut epidemiologiset tutkimukset noudattivat tuloksiltaan yleisesti hyväksyttyä linjaa ja kallistuivat varmasti muista muuttujista riippumatta yleisesti hyväksytyn linjan kannalle. Korrelaatio on helppo osoittaa, mutta se ei osoita syy-yhteyttä.

Euroopassa eniten tyydyttyneitä rasvoja kuluttavien ranskalaisten ja sveitsiläisten sydänkuolleisuus on Euroopan alhaisinta. Vastaavasti eniten monityydyttämättömiä rasvoja syövien itäeurooppalaisten sydänkuolleisuus on Euroopan korkeinta. Tämä ilmiö tunnetaan ranskalaisena paradoksina. Se ei sovi vallitseviin ravitsemusoppeihin tyydyttyneiden rasvojen ja kolesterolin sydäntauteja lisäävästä vaikutuksesta. Tällaisista ekologisista faktoista ei kuitenkaan voi ja pitäisi vetää kovin pitkälle meneviä johtopäätöksiä, koska muuttujia on niin paljon.

P. M. Cliftonin systemaattinen kirjallisuuskatsaus (2017) kallistuu tyydyttyneiden rasvojen haittojen puolelle


P. M. Cliftonin systemaattinen kirjallisuuskatsaus analysoi tärkeimmät sydäntautien ja rasvojen suhdetta selvittävät tutkimukset. Katsaus on niin pitkä, että sivuan sitä vain lyhyesti. Se antaa hyvän kuvan siitä, kuinka vaikea yksittäisen ravintoaineen terveysvaikutuksia on selvittää.

Siri-Tarino et al. 2010

toteutti meta-analyysin tyydyttyneiden rasvojen saannin assosiaatiosta sydäntauteihin ja sydäntautikuolleisuuteen 16 kohorttitutkimuksesta. Viimeisin näistä oli vuodelta 2007. Dataa päivitettiin kuudesta kohortista.

Siri-Tarinon meta-analyysissä käytettiin mukautettua mallia, joka sisälsi kuuden kohortin mukauttamisen muihin rasvoihin ja rasvojen korvaamisen hiilihydraatteilla. Kuusi Siri-Tarinon analysoimaa kohorttitutkimusta osoitti tyydyttyneiden rasvojen ja sydäntautien välillä positiivisen yhteyden. Kymmenen analysoitua tutkimusta ei löytänyt yhteyttä sydäntautien ja tyydyttyneiden rasvojen väliltä. Siri-Tarinon johtopäätös oli, että tutkimukset antavat ristiriitaisia tuloksia, jotka eivät osoita selvää yhteyttä tyydyttyneiden rasvojen ja sydäntautien välillä ja siten tue yleistä näkemystä tyydyttyneiden rasvojen haitallisuudesta.

R. Chowdhuryn

20 tutkimuksen (283 963 henkilön) meta-analyysi vuodelta 2014 ei löytänyt näyttöä tyydyttyneiden rasvojen yhteydestä sydäntauteihin. Chowdury et al. havaitsi, että tyydyttyneet rasvahapot eivät liity CHD-tapahtumiin ja kuolemiin verrattuna hiilihydraatteihin. Sen sijaan transrasvahappojen saanti lisäsi sydäntauteja. Monityydyttymättömien rasvojen saanti ei myöskään laskenut sydäntautien ja -kuolleisuuden riskiä tilastollisesti merkittävästi.

”The evidence did not clearly support cardiovascular guidelines that encouraged high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.” – Chowdhury

De Souza et al. (2015)

analysoi tyydyttyneiden rasvojen ja transrasvojen saannin vaikutuksia kardiovaskulaarisiin tapahtumiin ja sydänkuolleisuuteen 41 erillisen tutkimuksen meta-analyysissä. Yksitoista analysoitua kohorttia osoitti tyydyttyneen rasvan ja sydäntautikuolleisuuden välille yhteyden.

Johtopäätös: runsas tyydyttyneiden rasvojen saanti ei lisää sydänkuolleisuutta verrattuna hiilihydraatteihin. Runsas tyydyttyneiden rasvojen saanti hiilihydraatteihin verrattuna ei myöskään näytä lisäävän muita sydäntautitapahtumia. Transrasvojen kokonaissaanti liittyi kuitenkin kaikkien syiden kuolleisuuteen.

Zong et al. (2016)

tutki yksittäisten rasvahappojen saannin vaikutuksia sairaanhoitajien terveystutkimuksen (Nurses Health Study) ja terveydenhuollon ammattilaisten seurantatutkimuksen (Health Professionals Follow Up Study) aineiston pohjalta. Verrattaessa tyydyttyneiden rasvojen saannin korkeinta ja matalinta kvintiiliä, sepevaltimotaudin riskisuhde tyydyttyneillä rasvoilla oli korkeampi kuin monityydyttymättömillä rasvoilla tai täysjyvähiilihydraateilla. Monityydyttämättömät rasvat ja täysjyvähiilihydraatit laskivat sepelvaltimotaudin riskiä.

Sekä maitotuotteista että teollisista lähteistä peräisin olevat transrasvat nostavat selvästi LDL-kolesterolia ja alentavat HDL-kolesterolia, mutta niiden vaikutukset sydän- ja verisuonitauteihin ovat kiistanalaisia.

Bendsen et al. 2011

analysoi kuusi julkaistua ja kaksi julkaisematonta prospektiivista kohorttitutkimusta transrasvojen (TFA) kokonaissaannin ja sydäntautiriskien yhteydestä vertaamalla ääri-kvintiilejä.

Eläinperäinen transrasvojen saanti ei kasvattanut merkittävästi sydänsairauksien riskiä. Teollisten transrasvojen saanti viittasi positiiviseen yhteyteen sydäntautien ja teollisten transrasvojen välillä.

Kirjoittajat päättelivät, että teollinen TFA voi olla positiivisesti yhteydessä sydänsairauksiin, kun taas luonnollinen eläinperäinen TFA ei ole. Käytettävissä olevien tutkimusten rajallisen määrän vuoksi ei kuitenkaan voida olla varmoja, onka transrasvojen lähteellä merkitystä.

Praagman et al. 2016

analysoi EPIC-Alankomaat-kohorttia (1807 IHD*-tapahtumaa) ja havaitsi, että tyydyttyneiden rasvojen saanti liittyi pienempään sydän- ja verisuonitautien riskiin. SFA:n (tyydyttyneiden rasvojen) korvaaminen eläinproteiinilla, cis-MUFA:lla (kertatyydyttymättömällä rasvalla), PUFA:lla (monityydyttämättömällä rasvalla) tai CHO:lla (hiilihydraateilla) liittyi tutkimuksessa korkeampaan iskeemisen sydäntaudin riskiin.

Matalammat sydäntautien (IHD) riskit havaittiin maitotuotteista, kuten voista, juustosta, maidosta ja muista meijerituotteista peräisin olevien SFA-yhdisteiden suuremmilla saannoilla.

Rotterdamin tutkimuksessa Praagman et al. 2016 ei löytänyt yhteyttä tyydyttyneiden rasvojen ja sydäntautien välillä. He havaitsivat kuitenkin korkeamman sydäntautiriskin palmitiinihapon saannilla, mutta eivät tyydyttyneiden rasvojen muilla rasvahappoketjujen pituuksilla.

* IHD= Ischemic Heart Disease

EPIC-Alankomaat-tutkimuksessa tyydyttyneiden rasvojen korvaaminen eläinproteiinilla liittyi korkeampaan sydän- ja verisuonitautien riskiin. Rotterdamin tutkimuksessa tyydyttyneiden rasvojen korvaaminen eläinproteiineilla lisäsi sydäntautien riskiä, mutta muiden makroravinteiden suhteen yhteyttä ei havaittu.

Blekkenhorts et al. 2015

Australialaisessa tutkimuksessa, jossa seurattiin 1469 ikääntynyttä naista, tyydyttyneiden rasvojen saannin korkeimmalla kvartiililla kumulatiivinen ateroskleroottinen verisuonikuolleisuusriski verrattuna alimpaan kvartiilin oli noin 16 % korkeampi.

Guasch-Ferre et al. 2015

Predimed-havainnointiraportissa tyydyttyneiden rasvahappojen ja transrasvojen saannin äärimmäisten kvintiilien vertailussa eniten tyydyttyneitä rasvoja saaneilla havaittiin 81% suurempi kardiovaskulaaristen sairauksien riski (336 tapahtumaa).

Farvid et al. 2014

analysoi linolihapon (omega-6) ja sepelvaltimotautien välistä yhteyttä (kaikki sepelvaltimotaudin lopputulokset: sydäninfarkti, iskeeminen sydänsairaus, sepelvaltimon ohitusleikkaus, äkillinen sydämenpysähdys, akuutti sepelvaltimo-oireyhtymä ja sydän- ja verisuonitauteihin liittyvät kuolemat).

Tutkijat sisällyttivät meta-analyysiin 6 kohorttia dieetin ja sepelvaltimotaudin kohorttitutkimusten Pooling-projektista: ateroskleroosiriski yhteisöissä -tutkimus (ARIC), Suomen liikkuvan klinikan terveystutkimus (FMC); Israelin iskeemisen sydänsairauden tutkimus (IIHD); Iowan naisten terveystutkimus (IWHS); Västerbottenin interventio-ohjelma (VIP) ja naisten terveystutkimus (WHS). Malmön ruokavalion ja syöpäkohortin (Malmö Diet and Cancer Cohort) tutkijat toimittivat tutkimukselle dataa. NHS (Nurses Health Study) ja HPFS (Health Professionals Follow Up Study) päivitettiin: NHS:ssä 20 vuodesta 30 vuoteen ja HPFS:ssä 6 vuodesta 24 vuoteen. ATBC-tutkimuksen tiedot analysoitiin uudelleen sekoittavien muuttujien mukauttamiseksi samalla tavalla kuin muut tähän meta-analyysiin sisältyvät kohorttitutkimukset. Muita tutkimuksia olivat Monica-tutkimus Tanskassa ja Morgen-tutkimus Alankomaissa sekä MRFIT-tutkimus.

Tutkimuksen tarkoituksena oli arvioida omega-6-linolihapon (LA) yhteyttä sydän- ja verisuonitauteihin ja näiden aiheuttamiin kuolemantapauksiin.

Meta-analyysi ei sisältänyt Kuopion tai Glostrupin tietoja, jotka ovat molemmat pieniä. 13 kohorttitutkimuksessa oli yhteensä 310 602 henkilön terveystiedot ja 12 479 CHD-tapahtumaa, mukaan lukien 5882 CHD-kuolemaa.

Kymmenessä kohortissa raportoitiin kardiovaskulaaristen tapahtumien tulokset. Kahdessa tutkimuksessa ei raportoitu kardiovaskulaarikuolemia. Verrattuna korkeimpaan alimpaan luokkaan, ruokavalion linolihappo (omega-6) liittyi 15% pienempään kardiovaskulaaristen tapahtumien riskiin ja 21% pienempään sydänsairauskuolemien riskiin.

Korvaamalla 5%:n tyydyttyneiden rasvojen energiansaannista omega-6-rasvoilla laski 9% CHD-tapahtumien riskiä ja 13% pienempään CHD-kuolleisuuden riskiin. Verrannollisia arvioita saatiin, kun linolihappovan korvaavasi hiilihydraateista saatavaa energiaa.

Vastakkaisia tuloksia saatiin Chowduryn meta-analyysistä, jossa ruokavalion omega-6-rasvat eivät laskeneet sydäntautiriskiä kahdeksassa kohorttitutkimuksessa, jotka sisälsivät 206 376 henkilön terveystietoja. Kohortit olivat Morgen, MRFIT, Glostrup, Kuopio, Malmo, ATBC, NHS ja HPFS. Farvidin meta-analyysi sisälsi kuusi kohorttitutkimusta enemmän kuin Chowdhuryn meta-analyysi. Nämä 6 kohorttia olivat Pooling-projektista plus Tanskan Monica. Chowdury et al. ei tutkinut erikseen Willett-ryhmän suorittamaa makroravinteiden korvaamista ja tutki vain tyydyttyneiden ja tyydyttymättömien rasvojen saannin tertiilejä suhteessa sydämen päätepisteisiin.

Wang et al. 2016

raportoi yhdistettyjen sairaanhoitajien ja terveydenhuollon ammattilaisten seurantatutkimuksesta. Tutkimus keskittyi kokonaiskuolleisuuteen (3 439 954 henkilöä ja 33 304 kuolemaa). Runsas rasvan saanti ja pienempi hiilihydraattien saanti assosioitui 16%:n pienempään kuolleisuuteen.

Li et ai., 2015

tarkasteli samoja kahta kohorttia päivitetyssä analyysissä (84 628 naista (sairaanhoitajien terveystutkimus, 1980-2010) ja 42 908 miestä (terveydenhuollon ammattilaisten seurantatutkimus, 1986-2010) ruokavalion rasvaa suhteessa CHD-riskiin. 24–30 seurantavuoden aikana esiintyi 7667 CHD-tapausta. Suuremmat monityydyttymättömien rasvahappojen saannit liittyivät merkittävästi pienempään sydäntauti-riskiin.

Hiilihydraatit (puhdas tärkkelys / lisätty sokeri) liittyivät positiivisesti lisääntyneeseen sydänsairauden riskiin. Valkoisten viljojen ja lisätyn sokerin korvaaminen täysjyväviljoilla assosioitui pienempään sydäntautiriskiin. PUFA ei eronnut merkittävästi MUFA:sta, mutta se poikkesi täysjyvästä.

Mozaffarianin meta-analyysi, 2010

Usein viitattu Mozaffarianin meta-analyysi päätyi tulokseen, että pitkällä aikavälillä tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla parantaa sydänterveyttä, mutta tyydyttyneiden rasvojen korvaaminen hiilihydraateilla ei Mozaffarianin meta-analyysin mukaan paranna sydänterveyttä.

Mozaffarianin tutkimuksessa on mukana kaksi tutkimusta (suomalaiset mielisairaalatutkimukset), jotka eivät täytä Mozaffarianin tutkimukselleen asettamia kriteereitä. Kun ne poistetaan, myös hatara yhteys sydäntautien ja tyydyttyneiden rasvojen välillä katoaa.

Ramsdenin löytämät unohdetut tutkimukset

Sydneyn ruokavalio-sydäntutkimus (Sydney Diet Heart Study)

Sydneyn ruokavalio-sydäntutkimus oli kontrolloitu satunnaistettu tutkimus, johon osallistui 458 miestä vuosina 1966–1973. Tutkimuksen tavoitteena oli selvittää kuinka tyydyttyneen rasvan korvaaminen safloriöljystä (ja margariinista) saatavilla monityydyttämättömillä rasvahappoilla (PUFA) vaikuttaa terveyteen. Safloriöljy sisältää vain linolihappoa (omega-6).

Interventiotutkimus jatkui 2-7 vuotta, mediaanin ollessa hieman yli 3 vuotta.Tutkimuksesta julkaistiin yksi raportti vuonna 1978, jonka jälkeen Sydney Diet Heart Study unohdettiin vuosikymmeniksi. Julkaistussa raportissa todettiin, että vaikka omega-6-rasvaa saaneen ryhmän seerumin kokonaiskolesteroli laski hieman verrattuna kontrolliryhmään, interventioryhmässä kuolleisuus kaikkiin syihin lisääntyi.

Interventioryhmän 221 miehestä 37 kuoli. Kontrolliryhmän 237 miehestä 28 kuoli. Tutkijat totesivat, että omega-6-PUFAa saavassa interventioryhän miehillä oli 70-74 % korkeampi sydän- ja verisuonitautikuolleisuuden riski.

Sydney Diet Heart Studyn päivitetty analyysi, jossa yhdistettiin kolme vastaavaa tutkimusta, vahvisti, että tyydyttyneiden rasvojen korvaaminen vain omega-6 PUFA:lla liittyi 33% suurempaan sydän- ja verisuonitautikuolleisuuden riskiin.

Sydneyn tutkimusta on kritisoitu siitä, että safloriöljyä sisältävä margariini sisälsi runsaasti haitallisia transrasvoja. Se voi selittää omega-6 rasvojen kuolleisuutta lisäävän vaikutuksen. Transrasvat kuitenkin lisäävät yleensä kolesterolia, mutta interventioryhmässä kolesteroli sen sijaan laski. Se herättää kysymyksiä.

Minnesotan sepelvaltimotutkimus (Minnesota Coronary Study)

Minnesotan sepelvaltimotutkimus on suurin tutkimus, jossa on tutkittu millaisia vaikutuksia tyydyttyneen rasvan korvaaminen n-6 PUFA:lla aiheuttaa. Se oli kaksoissokkoutettu kontrolloitu satunnaistettu tutkimus, joka toteutettiin vuosina 1968–1973. Siihen osallistui 4393 miestä ja 4664 20–97-vuotiasta naista kuudesta mielisairaalasta ja yhdestä hoitokodista. Kyse oli ensisijaisesti ennaltaehkäisevästä tutkimuksesta, koska vain 392:lla oli elektrokardiografisia todisteita aikaisemmasta sydäninfarktista.

Interventioryhmän jäsenet noudattivat ruokavaliota, jossa tyypilliset rasvalähteet (voi ja muut eläinperäiset tyydyttyneet rasvat) korvattiin maissiöljyllä ja maissiöljypohjaisella margariinilla. Koska laitosten ruokaa tarjoillaan kahvila-tyyliin, tutkijat pystyivät tekemään kaksoissokkoutetun tutkimuksen.

Vain noin neljännes koehenkilöistä oli kokeessa vähintään vuoden. Mielenkiintoinen tosiasia tässä tutkimuksessa on, että vaikka se päättyi vuonna 1973, tulokset julkaistiin akateemisessa lehdessä vasta vuonna 1989. Tuossa julkaisussa kirjoittajat eivät ilmoittaneet eroja sydän- ja verisuonitapahtumissa tai kuolleisuudessa koko tutkimuspopulaatiossa huolimatta seerumin kokonaiskolesterolitason merkittävästä 15 prosentin laskusta interventioryhmässä.

Yksityiskohtaisempi analyysi tutkimusaineistosta ja monet alaryhmätulokset, jotka eivät sisältyneet vuoden 1989 julkaisuun, sisältyivät vuonna 1981 julkaistuun diplomityöhön. Työssä esitetyt taulukkoanalyysit viittasivat lisääntyneeseen kuolleisuusriskiin ≥ 65-vuotiaiden keskuudessa interventioryhmässä. Tuloksia ei kuitenkaan koskaan julkaistu akateemisessa lehdessä.

Ramsden et al. palautti osan alkuperäisistä tiedoista, jotka oli tallennettu magneettinauhoille ja paperiasiakirjoihin, ja julkaisi vuonna 2016 kumulatiivisen kuolleisuuden taulukot koko tutkimuspopulaatiosta ja ennalta määritellyistä alaryhmistä, jotka oli julkaistu alun perin vasta opinnäytetyössä vuonna 1981.

Palautetut tiedot eivät osoittaneet tilastollisesti merkitseviä eroja interventio- ja vertailuryhmien välillä aortan ja sepelvaltimoiden ateroskleroosissa 298 päivän mediaaniseurannan jälkeen, mutta sen sijaan havaittiin, että sydäninfarktin esiintyvyys oli interventioryhmän ruumiinavausdatan perusteella 90 % korkeampi.

Näiden tulosten lisäksi kirjoittajat tekivät myös meta-analyysin, jossa he yhdistivät Minnesotan sepelvaltimotutkimuksen tulokset neljään vastaavaan, mutta huomattavasti pienempään tutkimukseen, joissa tyydyttynyt rasva oli korvattu omega-6 (PUFA)-rikkailla kasviöljyillä.

Yhdistetyt tulokset eivät osoittaneet vaikutusta sydän- ja verisuonitauteihin tai kaikkien syiden kuolleisuuteen huolimatta seerumin kokonaiskolesterolipitoisuuksien keskimääräisestä 8-14% laskusta interventioryhmissä verrattuna kontrolliryhmiin.

Tutkimuksen merkittävä rajoitus, kuten myös Ramsden on todennut, on, että vain pieni osa rekrytoiduista henkilöistä pysyi tutkimuksessa vähintään vuoden. Esimerkiksi uusin Cochrane-katsaus ei sisältänyt Minnesotan sepelvaltimotutkimusta tästä syystä. Kuten myös kirjoittajat huomauttivat, näiden analyysien tuloksia tulisi tulkita varovaisesti, koska palautettujen tietojen kohteiden lukumäärä on pieni. Kevyesti hydratun maissiöljymargariinin, tärkeimmän transrasvojen lähteen käyttö interventioryhmässä on saattanut vaikuttaa tuloksiin.

Rasvasota näyttää jatkuvan: Tyydyttyneet rasvahapot (SFA) eivät lisää sydän- ja verisuonitautien (CVD) riskiä osoitti kaksi äskettäin julkaistua satunnaistettujen kontrolloitujen tutkimusten (RCT) analyysiä. SFA:n korvaaminen linolihapolla lisäsi CVD-riskiä yhdessä tutkimuksessa. Lisäksi äskettäin tehdyssä suuressa prospektiivisessa kohorttitutkimuksessa raportoitiin pienemmästä sydän- ja verisuonitautiriskistä lisääntyneellä SFA-energian saannilla, ja kohorttitutkimusten viimeaikaisissa meta-analyyseissä todettiin, että SFA ei lisännyt sydän- ja verisuonitautien riskiä.

Tyydyttyneiden ja trans-rasvahappojen pelkistämisestä johtuviin terveyshyötyihin viittaavia vastalauseita on kuitenkin lukuisia, mukaan lukien äskettäin julkaistut RCT:t, prospektiiviset kohorttitutkimukset ja ekologiset tutkimukset. Vaikuttaakin siltä, että tieteellä ei ole selkeää vastausta tyydyttyneiden rasvojen terveysvaikutuksista huolimatta valtavasta työstä. Jos joku väittää, että on kiistattomia todisteita siitä, että tyydyttyneet rasvat lisäävät sydäntautien riskiä, hän ei tiedä mistä puhuu tai valehtelee. Tiedot ovat hajanaisia ja ristiriitaisia.

Tutkimukset eivät ole samanarvoisia. Luotettavimpia tutkimuksia ovat systemaattiset kirjallisuuskatsaukset, meta-analyysit ja satunnaistetut kontrolloidut tutkimukset (erityisesti sokkoutetut satunnaistetut kontrolloidut tutkimukset).

Epidemiologiset seurantatutkimukset antavat epäluotettavia tietoja, koska ravitsemusta käsittelevissä seuranta- ja kyselytutkimuksissa ihmiset unohtavat ja valehtelevat tietoisesti tai tietämättään.

Mihin jäinkään?

Ai niin! Tämän tutkimuskatsauksen mukaan tyydyttyneitä rasvoja sisältävät ruokavaliot johtavat matala- asteiseen tulehdustilaan (inflammaatio) ja insuliiniresistenssiin. Tästä, kuten rasvojen vaikutuksista terveyteen on myös päinvastaisia tutkimustuloksia. Avataan tätä hieman.

Insuliiniresistenssin havainnut Joseph Kraft uskoi, että lähes kaikki sydän- ja verisuonitaudit johtuvat diagnosoidusta tai diagnosoimattomasta diabeteksesta.

Insuliiniresistenssi vaikuttaa tyypin 2 diabeteksen sekä sydän- ja verenkiertoelimistön sairauksien kehittymiseen.

Insuliiniresistenssi on monien elämäntapasairauksien taustalla vaikuttava juurisyy. Lihas-, rasva- ja maksasolujen heikentynyt kyky ottaa vastaan glukoosia ylläpitää veren korkeaa glukoosipitoisuutta. Samalla puutteellisesti energiaa saavat solut surkastuvat, sairastuvat ja kuolevat.

Jatkuvasti korkea verensokeri edistää sokereiden glykatoitumista rasvojen ja proteiinien kanssa. Glykotoksiinit aiheuttavat oksidatiivista stressiä, joka puolestaan kasvattaa sydän- ja verenkiertoelimistön sairauksien riskiä. Elimistö yrittää päästä eroon ylimääräisistä sokereista lisäämällä virtsan eritystä. Diabetes, eli sokeritauti tunnettiin tämän vuoksi aiemmin makeavirtsaisuutena.

Insuliiniresistenssin riskitekijöitä on useita, kuten ylipaino, lihavuus, verenpaine, vaihteleva vuorokausirytmi, D-vitamiinin puute ja vähän liikuntaa sisältävä elämäntapa. Erilaiset geneettiset ja epigeneettiset tekijät voivat laukaista insuliiniresistenssiin johtavan aineenvaihduntahäiriön.

Ruokavaliotekijät vaikuttavat insuliiniresistenssiin, mutta kausaatiota eri ravintoaineille on vaikea määrittää ravintotutkimuksen rajoitusten vuoksi. Ruokiin, jotka liittyvät insuliiniresistenssiin, lukeutuvat runsaasti sokeria sisältävät korkean glykeemisen indeksin ruoat, runsaasti rasvaa ja fruktoosia sisältävät ruoat sekä vähän omega-3-rasvoja ja kuitua sisältävät ruoat.

Yksinkertaistaen: insuliiniresistenssiä lisäävät erityisesti herkut, kuten pikaruoat, makeiset, keksit jne. jotka sisältävät runsaasti sokereita ja huonoja rasvoja. Runsaasti rasvaa ja sokeria sisältäviä ruokia sekä sokeroituja juomia pidetään perustekijöinä metabolisen oireyhtymän taustalla.

Ruokavalio voi myös muuttaa monityydyttymättömien ja tyydyttyneiden fosfolipidien suhdetta solukalvoissa. Monityydyttymättömien rasvahappojen (PUFA) prosenttiosuus korreloi käänteisesti insuliiniresistenssin kanssa. Oletetaan, että solukalvon juoksevuuden lisääminen lisäämällä PUFA-pitoisuutta saattaa johtaa lisääntyneeseen insuliinireseptorien määrään, insuliinin lisääntyneeseen affiniteettiin sen reseptoreihin ja parempaan insuliinisensitiivisyyteen. Solukalvojen rakenteelliset muutokset voivat toisaalta altistaa inflaamaatiolle ja heikentää immuunijärjestelmän toimintaa.

D-vitamiinin puute ja monet hormonit, kuten kortisoli ja kasvuhormoni vaikuttavat insuliiniresistenssiin, Kortisoli vastustaa insuliinia. Stressihormonina tunnetun kortisolin eritys vähenee ketogeenisellä ruokavaliolla. Sokereiden rajoittamisen seurauksena autonomista hermostoa kiihdyttävästä glutamaatista syntetisoidaan hermostoa rauhoittavaa GABAa. Tällä on suotuisia terveysvaikutuksia. Edelleen tämä johtaa lisääntyneeseen maksan glukoneogeneesiin, vähentää glukoosin perifeeristä hyödyntämistä ja lisää insuliiniresistenssiä. Kortisoli tekee tämän vähentämällä glukoosikuljettajien (erityisesti GLUT4) siirtymistä solukalvoon.

Myös leptiinin aineenvaihdunnan häiriöt liittyvät insuliiniresistenssiin. Leptiini on rasvakudoksen erittämä hormoni, jonka fysiologisena tehtävänä on säädellä kylläisyyden tunnetta. Tutkimukset osoittavat, että leptiinin puute ja leptiiniresistenssi lisäävät sairaalloista lihavuutta ja liittyvät vahvasti insuliiniresistenssiin, metaboliseen oireyhtymään ja diabetekseen.

Akuutti ja krooninen tulehdus voivat aiheuttaa insuliiniresistenssia. Esimerkiksi tulehdukseen liittyvä TNF-a voi edistää insuliiniresistenssiä edistämällä lipolyysiä, häiritsemällä insuliinin signalointia ja vähentämällä GLUT4:n ilmentymistä.

Monen geneettisen lokuksen on todettu liittyvän insuliiniherkkyyteen. Tähän sisältyy vaihtelu paikoissa lähellä NAT2-, GCKR- ja IGFI-geenejä, jotka liittyvät insuliiniresistenssiin. Tutkimukset ovat vahvistaneet, että näiden geenien lähellä olevat lokit ovat yhteydessä insuliiniresistenssiin. Näiden lokusten arvioidaan kuitenkin muodostavan vain 25–44% insuliiniresistenssin geneettisestä vaikutuksesta.

Insuliiniresistenssi ylläpitää lipogeneesiä, jossa insuliini laskee veren korkeaa sokeripitoisuutta varastoimalla glukoosia rasvasoluihin. Glukoosi muutetaan rasvasoluissa triglyserideiksi. Tämä kasvattaa rasvakudosta ja heikentää rasvakudoksen leptiinisignalointia. Lihassolujen puutteellinen energiansaanti kasvavan rasvakudoksen heikentämän leptiinisignaloinnin kanssa vaikuttaa lisäksi nälkähormoni greliinin eritykseen.

Greliini informoi aivoja ravinnon tarpeesta. Häiriintyneen greliinisignaloinnin seurauksena ihmisellä voi olla jatkuva nälkä, vaikka veressä olisi riittävästi energiaa koko päiväksi ja rasvakudokseen varastoitu energia kattaisi viikkojen energiantarpeen.

Energian tallentaminen rasvakudokseen on luonnollista.Varhaisilla ihmisillä ravinnon saanti ei ollut samalla tavoin turvattua kuin nykyihmisillä. Metsästäjä-keräilijät sattoivat elää hyvin niukalla tai olemattomalla ravinnolla päivistä viikkoihin, mutta kun ravintoa oli tarjolla, sitä tankattiin myös huonompien aikojen varalle.

Energian varastoimisessa insuliinilla on keskeinen rooli. Laihduttaessa insuliinin rooli on rasvan polttamista estävä, koska se ylläpitää lipogeneesiä ja estää lipolyysin käynnistymistä. Jatkuvasti korkea insuliinipitoisuus estää rasvsasoluihin varastoidun energian purkamisen vapaiksi rasvahapoiksi, joita solut voisivat käyttää energianlähteenä. Veren insuliinipitoisuus laskee lipolyysin käynnistymisen kannalta riittävästi keskimäärin 8 tuntia syömisen jälkeen. Se tarkoittaa, että keho voi hyödyntää rasvasolujen energiaa vain yöaikaan. Tehokkaan rasvanpolton aikaikkuna jää silloin melko lyhyeksi.

Insuliiniresistenssi lihottaa koska insuliini on anabolinen hormoni, joka säätelee energiaravinteiden käyttöä ja varastoimista. Jatkuvasti korkea veren insuliinipitoisuus ja solujen heikentynyt insuliinisensitiivisyys ohjaavat ylimääräistä verensokeria rasvasoluihin. Samalla korkea insuliinipitoisuus ja solujen heikentynyt energiansaanti lisäävät nälästä kertovan greliinin eritystä ja laskevat kylläisyydestä kertovan leptiinin eritystä.

Matala-asteinen tulehdus

Tämän tutkimuskatsauksen mukaan tyydyttyneiden rasvojen saanti edistää lipopolysakkaridien imeytymistä suolistossa, mikä voi aiheuttaa tulehdusta [16, 17] sitoutumalla TLR-4:een, mikä liittyy korkeampaan CVD-riskiin. Lipopolysakkaridi on rasvahapon ja suurimolekyylisen hiilihydraatin muodostama molekyyli. Lipopolysakkaridit voivat aktivoida immuunijärjestelmän, sillä niitä on esimerkiksi monien gramnegatiivisten bakteerien ulkokalvossa. TLR-2:n aktivaatio, keramidituotanto ja lipidilauttojen muodostuminen näyttävät liittyvän myös tulehdusprosessiin tyydyttyneen rasvan vuoksi [18–20].

Matala-asteinen tulehdus on sydän- ja verisuonitautien riskitekijä. Ateroskleroosiin liittyy jatkuva tulehdusvaste. Viimeaikaiset perustutkimuksen havainnot ovat vahvistaneet matala-asteisen tulehduksen perustavan roolin ateroskleroosin kehittymisessä. Inflammaatio välittää kaikkia ateroskleroosin vaiheita taudin alusta aina tromboottisiin komplikaatioihin asti.

Tutkimuksissa on havaittu selkeitä yhteyksiä riskitekijöiden ja aterogeneesimekanismien välillä. Kliiniset tutkimukset osoittavat, että ateroskleroosiin liittyvät tulehdusmekanismit toteutuvat myös ihmisillä. Tulehduksesta kertovien markkereiden lisääntyminen kertoo kasvaneesta sydän- ja verisuonitautien riskistä. Krooninen matala-asteinen tulehdus (kohonnut C-reaktiivisen proteiinin CRP-taso) määrittelee prospektiivisesti ateroskleroottisten komplikaatioiden riskiä. Yhdessä muiden tunnettujen riskitekijöiden kanssa tulehdusmarkkerit voivat auttaa tunnistamaan korkeamman riskin henkilöitä entistä aiemmin.

Eräät sepelvaltimotaudin hoidot hillitsevät myös kroonista matala-asteista tulehdusta. Statiineihin liittyvän lipiditason alenemisen tulehdusta estävä vaikutus ei korreloi pienitiheyksisten lipoproteiinitasojen laskun kanssa. Uudet havainnot ateroskleroosiin liittyvistä tulehdustekijöistä lisäävät ymmärrystämme ateroskleroosin mekanismeista ja tarjoavat kliinisiä sovelluksia riskien kartoittamiseen ja hoitojen kohdistamiseen.

Krooninen inflammaatio on keskeinen tekijä sydän- ja verisuonitautien patogeneesissä, mutta se assosioituu vahvasti myös diabeteksen, dementian ja masennuksen kasvaneeseen alttiuteen. Matala-asteinen tulehdus lisää riskiä kuolla mihin tahansa syyhyn. Sellaisten riskitekijöiden tunnistaminen, jotka voisivat tehokkaasti vähentää kroonista tulehdusta, edistäisi tehokkaasti kroonisten sairauksien ehkäisyä.

Sokeri

Runsaasti sokeria sisältävä ruokavalio (erityisesti sokerilla makeutetut juomat voivat olla yksi subkliinisen C-reaktiivisella proteiinilla (CRP) mitattavan matala-asteisen tulehduksen aiheuttajista. Sokeria kulutetaan runsaasti länsimaisissa ruokavalioissa. 18 kehittyneen maan lisätyn sokerin kulutusta verrattaessa havaittiin, että lisätyn sokerin kokonaissaanti prosentteina energiasta vaihteli aikuisilla 13,5–24,6 % välillä.

Yhdysvalloissa valtakunnalliset elintarvikkeiden kulutuskyselyt (NHANES) ovat arvioineet, että fruktoosimaissisiirapin (HFCS) prosenttiosuus makeutusaineena kasvoi16 prosentista (1978) 42 prosenttiin (1998) ja vakiintui sille tasolle. Samanlainen suuntaus havaittiin myös fruktoosin kokonaiskulutuksessa.

Tuoreimmat tiedot osoittavat, että yleisen tietoisuuden lisääntyessä lisätyn sokerin kulutus Yhdysvalloissa on laskenut vuosina 1999–2008 keskimäärin 18,1 prosentista 14,6 prosenttiin. Sokerista saatavan energian kokonaissaanti on kuitenkin edelleen paljon suurempi kuin Yhdistyneen kuningaskunnan ravitsemuksellisen neuvoa-antavan komitean (SACN) ohjeet, joissa suositellaan, että listättyjen sokereiden enimmäismäärä on 5% päivittäisestä energiansaannista. Myös Maailman terveysjärjestön (WHO) suositus lisätylle sokerille on 5 % päivittäisestä energiasta.

Runsas sokeri edistää maksassa olevien vapaiden rasvahappojen (FFA) de novo -synteesiä, mikä lipotoksisuusteorian mukaan tuottaa FFA-metaboliitteja, jotka voivat laukaista tulehdusprosesseja. ja reaktiivisten happilajien (ROS) muodostumista.

Elimistön kaikki solut osaavat hyödyntää glukoosia. Fruktoosin aineenvaihdunta, eli fruktolyysi tapahtuu maksassa. Koska ei ole olemassa negatiivisia takaisinkytkentämekanismeja, jotka kontrolloivat ja estävät fruktoosin ylimääräisen saannin maksan mitokondrioissa, fruktoosi muuttuu itsenäisesti osittain asetyyli-CoA: ksi, joka on rakennusosa rasvahapposynteesille.

Fruktoosin metabolinen reitti tukee lipotoksisuuden teoriaa, mutta vielä ei tiedetä onko sakkaroosin sisältämä fruktoosi merkittävämpi inflammaation aiheuttaja kuin glukoosi.

Interventiotutkimuksista saatu näyttö todistaa, että fruktoosiannokset, jotka tuottavat ylimääräistä energiaa (+ 21–35% ) nostavat maksarasvoja. Tätä vaikutusta näyttää kuitenkin sekoittavan liiallinen energian saanti.

Ruokavalion fruktoosimetabolian on vahvistettu edistävän vapaiden rasvahappojen de novo -synteesiä maksassa, kun fruktoosin saanti on runsasta. Vaikka triglyseridien lisääntyminen maksassa näyttää olevan hyvänlaatuisen steatoosin oire, on alustavaa näyttöä siitä, että vapaiden rasvahappojen (FFA) metaboliitit voivat edistää alkoholista riippumattoman rasva-maksasairauden (NAFLD) etenemistä alkoholista riippumattomaksi steatohepatiitiksi (NASH) lisäämällä vapaiden happiradikaalien (ROS) määrää ja käynnistämällä tulehdusprosesseja, jotka johtavat maksasolujen apoptoosiin ja maksan arpeutumiseen eli kirroosiin.

Kudosbiopsioiden tutkimukset vahvistavat tulehduksellisten biomarkkereiden, kuten CRP, IL-6 ja IL-1RA systeemisten tasojen asteittaisen kasvun terveestä rasvakudoksesta runsaasti immuunisoluja sisältävään rasvakudokseen ja terveestä maksasta alkoholista riippumattomaan steatohepatiittiin (NASH).

On perusteltua olettaa, että erityisesti runsas fruktoosin saanti rasittaa ja vaurioittaa maksaa. Laajassa systemaattisessa kirjallisuuskatsauksessa (lue tästä) ei havaittu merkittävää eroa sillä, onko maksan metaboloima fruktoosi peräisin sakkaroosista (pöytäsokeri), fruktoosista vai fruktoosisiirapista (HFCS). Tämä vahvistaa sen, että ylimääräinen sokeri lähteestä riippumatta vaurioittaa maksaa.

Tulevissa tutkimuksissa maksan rasvoittumista ja de novo lipogeneesia pitäisi tarkastella NAFLD:n mrkkerina, samalla kun mitataan sellaisia spesifisempiä tulehdusmarkkereita, jotka ovat yhteydessä maksarasvaan, esim. fetuiini A. Se viittaa fruktoosinkulutuksen ja lisääntyneen viskeraalisen rasvakudoksen väliseen yhteyteen.

Viskeraalinen rasvakudos tuottaa tulehduksellisia sytokiineja, kuten TNF-a ja IL-6, jotka puolestaan voivat lisätä C-reaktiivisen proteiinin vapautumista maksassa. Runsas sokerin saanti lisää erityisesti viskeraalista rasvaa, joka ylläpitää matala-asteista tulehdusta erittämällä tulehdussytokiinejä.

Eläintutkimuksissa fruktoosi on aiheuttanut suoliston eräiden mikrobipopulaatioiden ylikasvua ja lisääntynyttä suoliston läpäisevyyttä. Tämän seurauksena lipopolysakkaridien endotoksiinitasot siirtyvät ja aktivoivat Tollin kaltaisen reseptorin 4 maksan Kupffer-soluissa. Aktivaatio johtaa useiden sytokiinien, kuten TNF-a:n eritykseen.

Gersch et al. raportoi, että runsaasti fruktoosia sisältävä ruokavalio lisää merkittävästi munuaisten MCP-1-ekspressiota rotilla. In vitro -tutkimus ihmisen epiteelin tubulaarisoluilla viittasi fruktoosin, mutta ei glukoosin, indusoimaan MCP-1-tuotannon aktivaatioon.

Glukoosin erityisestä roolista oksidatiivisissa tapahtumissa on todisteita

Korkean glykeemisen indeksin ravinto liittyy nopeasti syömisen jälkeen (postbrandiaalisesti) ilmeneviin lisääntyneisiin tulehdusvasteisiin vasteena hyperglykemialle. Myöhemmässä postbrandiaalisessa vaiheessa vapaiden rasvahappojen määrä lisääntyy. Molemmat tekijät lisäävät vapaiden radikaalien tuotantoa ja proinflammatoristen sytokiinien vapautumista, mikä aiheuttaa inflammaatiota ja vaihingoittaa verisuonia.

Fruktoosilla on alhainen glykeeminen indeksi (GI). Matalan glykeemisen indeksin ravinnon tiedetään hillitsevän inflammaatiota. Voi siis olla, että fruktoosi osittain hillitsee runsaasti sokeria sisältävän ravinnon aiheuttamaa tulehdusreaktiota. Näin voi tapahtua tietyillä metaboliareiteillä vasteena muihin ravinteisiin.

Koska lihominen ja runsas sokerin saanti liittyvät toisiinsa ja toisaalta lihavuus ja matala-asteinen tulehdus liittyvät toisiinsa, on mahdollista, että painonnousu on välittäjä sokerin ja matala-asteisen tulehduksen välillä.

Vertaamalla sokereiden eukalorisia ja hyperkalorisia vaikutuksia tulehdusmarkkereihin saadaan merkityksellistä tietoa sokerin matala-asteiseen tulehdukseen yhdistävistä metabolisista reiteistä. Havaintoja voidaan hyödyntää kansanterveyden parantamisessa. Vielä ei ole varmuutta johtaako liika energian saanti (rasvasta tai proteiineista) samanlaisiin negatiivisiin terveyshaittoihin kuin liika sokereista saatu energia?

Sievenpiper et al. havaitsi, että fruktoosi vaikutti painonnousuun vain hyperkalorisissa ja isokalorisissa kokeissa. Eli lihottava vaikutus ei johtunut yksin fruktoosista, vaan ylimääräisestä energiasta.

Kun huomioidaan lihavuuden ja matala-asteisen tulehduksen välinen suhde, keskustelu painon muutoksesta mukana olevissa kokeissa olisi tarkoituksenmukaista. Energiarajoitetuista ruokavalioista johtuva painonpudotus liittyi tulehdusmarkkereiden parempaan parantumiseen (fruktoosin saannin määristä riippumatta) kahdessa tutkimuksessa.

Lisätyt sokerit ja puhdistetut tärkkelykset

Joidenkin tutkimusten mukaan ylipainoiset ja lihavat ihmiset syövät normaalipainoisia enemmän sokeria ja puhdasta tärkkelystä sisältäviä elintarvikkeita.

Ylipainon ja lihavuuden riski kasvaa ~14 % jos päivittäistä sokerin saantia lisätään vain viidellä grammalla [23 ]. Ruokavaliot, joissa on paljon lisättyjä sokereita ja puhdistettua tärkkelystä liittyvät korkeampaan veren paasto-triglyseridien pitoisuuteen. Triglyseridit assosioituvat vahvasti sydäntautien riskiin. Sen sijaan tiedot tärkkelyksen ja sokerin vaikutuksista LDL-kolesteroliin ovat ristiriitaisia.

American Heart Associationin (AHA) lausunnossa suositeltiin vähentämään lisättyjen sokereiden määrää ja välttämään fruktoosilla makeutettuja elintarvikkeita. Fruktoosin tiedetään lisäävän alkoholista riippumattoman rasvamaksan riskiä [24– 27].

Ruokavaliot, joissa on paljon tärkkelystä ja lisättyjä sokereita lisäävät glukoosin de novo lipogeneesiä ja maksan rasvoittumista. Insuliiniresistenteillä ihmisillä solujen insuliiniherkkyys on heikentynyt. Solujen heikentynyt kyky ottaa glukoosia vastaan ylläpitää korkeaa verensokeria. Ylimääräinen sokeri varastoidaan ensisijaisesti maksan ja lihasten glykogeeneihin, mutta koska glykogeeneihin mahtuu vain ~250 g glukoosia, ne täyttyvät sokeripitoisella ruokavaliolla hyvin nopeasti. Jos veren korkeaa sokeripitoisuutta ei voida käyttää energiaksi tai varastoida glykogeeneihin, se varastoidaan rasvasoluihin.

Lisättyjen sokereiden ja puhdistetun tärkkelyksen muuttuminen rasvaksi tuottaa triglyseridejä, jotka liittyvät kohonneeseen CVD-riskiin. Fruktoosi on tärkein sokeri, joka liittyy de novo lipogeneesiin sen maksassa tapahtuvan aineenvaihdunnan vuoksi. Glukoosi metaboloituu pääasiassa maksan ulkopuolisissa kudoksissa, kuten lihaskudoksessa [28]. Fruktoosi liitty insuliiniresistenssiin [29].

Kirjallisuudessa on ristiriitaisia tietoja lisättyjen sokereiden vaikutuksesta verenpaineeseen, mutta viime aikoina on saatu vahvaa näyttöä siitä, että sokereita rajoittava ketogeeninen ruokavalio laskee verenpainetta ja verensokeria. Hiljatain julkaistu meta-analyysi osoitti, että lisättyjen sokereiden käytöllä isoenergeettisessä ruokavaliossa ei ole kielteisiä vaikutuksia verenpaineeseen [30]. Eli tästäkään ei vallitse selvää yksimielisyyttä. Luultavasti selitystä voidaan etsiä ruokavaliosta kokonaisuutena, eikä vain yhdestä ravintoaineesta.

Ravintokuidut

Ravinnon sisältämien kuitujen vähäinen saanti liittyy kohonneeseen sydän- ja verisuonitautien riskiin. Hedelmiä, vihanneksia ja täysjyviä sisältävissä ruokavalioissa on runsaasti kuituja. [31].

Kuitujen myönteiset vaikutukset sydän- ja verisuoniterveyteen johtuvat useista tekijöistä, kuten:

  • sappihappojen erittymisen lisääntymisestä
  • kolesterolitasojen alentamisesta [32]
  • rasvahapposynteesin vähenemisestä maksassa fermentaation tuloksena syntyvien lyhytketjuisten rasvahappojen tuotannolla [33]
  • insuliiniherkkyyden lisääntymisestä [34]
  • kylläisyyden tunteen lisääntymisestä, mikä johtuu siitä, että kuitu lisää ruokamassaa, mikä johtaa ruoan saannin vähenemiseen ja edelleen pienempään energiansaantiin [35].


Kirjallisuuskatsaustiedot osoittavat ravintokuitujen saannin, CVD:n ja kokonaiskuolleisuuden välisen korrelaation. Hiljattain tehty tutkimus vahvisti, että vähän kuituja sisältävää ruokavaliota (~ 15,0 g / vrk) noudattavien ihmisten kokonaiskuolleisuus oli 23% suurempi kuin ihmisillä, jotka söivät runsaasti kuituja (∼26,9 g / vrk). Sukupuoli tai etninen tausta eivät vaikuttaneet tähän korrelaatioon [36].

Tuoreessa meta-analyysissä analysoitiin 15 kohorttitutkimusta, joissa oli 1 409 014 potilaan tiedot. Tämä tuki käsitystä ravintokuitujen ja CVD-kuolleisuuden käänteisestä korrelaatiosta [37].

Kuten aiemmin osoitettiin, kuitujen saanti ~ 29,6 g / vrk, joka on lähellä suositeltua 30 g / vrk -tasoa, liittyi CV-kuolleisuuden 23%: n laskuun verrattuna kuitujen vähäiseen saantiin ~ 14,0 g / vrk.

Hedelmät ja vihannekset

Vähäistä hedelmien ja vihannesten saantia pidetään yhtenä ennenaikaisen kuoleman tärkeimmistä syistä maailmanlaajuisesti. Liian vähäisen hedelmien ja vihannesten saannin arvioidaan johtaneen 25,5 miljoonaan ennenaikaiseen kuolemaan vuonna 2013 [38].

Hedelmien ja vihannesten hyödylliset vaikutukset johtuvat ravintokuiduista, vitamiineista, kivennäisaineista, polyfenoleista ja antioksidanteista, jotka hillitsevät matala-asteista tulehdusta ja vähentävät kroonisia sairauksia, kokonaiskuolleisuutta, sekä vaikuttavat suotuisasti suoliston mikrobiomiin [39, 40].

Lisäksi julkaistut tutkimusraportit antavat todisteita ravintokuitujen, hedelmien ja vihannesten saannin positiivisesta vaikutuksesta seerumin kolesterolitasoon, verenpainetasoon, tulehdukseen ja verihiutaleiden aggregaatioon [41].

Verrattain uusi meta-analyysi, jossa arvioitiin 95 ainutlaatuista kohorttitutkimusta, osoitti, että:

  • sepelvaltimotaudin suhteellinen riski laskee 8–16% jokaisesta päivittäisestä 200 g:n hedelmien tai vihannesten sekä hedelmien ja vihannesten yhteissaantia kohden (suhteellisen riskin alenema? Se ei tarkoita mitään)
  • Aivohalvauksen suhteellisen riski laski 13–18%
  • CVD:n suhteellinen riski laski 8–13% [42]
  • Ihmisillä, joiden ruokavalio sisältää runsaasti hedelmiä ja vihanneksia (∼500 g / päivä), sydän- ja verisuonitautien riski laskee 22% verrattuna ihmisiin, joiden saanti on vähäistä (0–40 g / päivä).

Suhteellisen riskin alenema on tilastollinen silmänkääntötemppu, jolla musta saadaan valkoiseksi ja valkoinen mustaksi. Sitä käytetään erityisesti lääkkeiden markkinoinnin välineenä. Esimerkiksi: Lipitor (statiini) laskee sydänkuolleisuutta 36 %. Huimaa, eikö totta?

Absoluuttisen riskin alenema on jotain ihan muuta. Lipitorian saaneessa ryhmässä sydänkuolleisuus oli 2 %, kun kontrolliryhmässä kuolleisuus oli 3,1 %. Absoluuttinen ero kuolleisuudessa oli 1,1 %, mikä mahtuu kaiken lisäksi virhemarginaaliin. Menisikö lääke kaupaksi väitteellä: laskee sydänkuolleisuutta ehkä 1,1 % ja voi aiheuttaa joukon vakavia sivuoireita? Kehotan suhtautumaan varauksella väitteisiin, joissa puhutaan suhteellisesta riskistä.

Keskustelua ravintokuiduista

Useat tutkimukset ovat korostaneet ravintokuidun etuja sydän- ja verisuoniterveydelle, koska kuidut parantavat lipidiprofiilia ja laskemavat verenpainetta. Ravintokuitujen vähäinen saanti liittyy suurempaan CVD-riskiin [43].

Ravintokuitujen runsas saanti liittyy pienempään kuolleisuuteen kaikista syistä [44]. Vaikka erityisiä toimintoja ja toimintamekanismeja ei ole täysin ymmärretty, ehdotetut mekanismit ovat, että ravintokuitu laskee kolesterolia, glukoosin imeytymistä ja vähentää oksidatiiviseen stressiin liittyvien sytokiinien tai suoliston mikrobiomin välittämää tulehdusreaktiota [45, 46].

Ravintokuidun suojaavaan rooliin näyttää vaikuttavan paitsi kuidun määrä myös kuidun tyyppi ja lähde [47]. Itse asiassa erityyppiset ravintokuidut tai -lähteet voivat olla vastuussa erilaisista fysiologisista vaikutuksista: liukoiset kuidut ovat vastuussa kolesterolia alentavasta vaikutuksesta, kun taas liukenemattomat kuidut vaikuttavat ruoan imeytymiseen suolistossa ja glykeemiseen vasteeseen [33, 48].

Äskettäin tehty tutkimus hypertensiivisten (hypertensio – verenpainetauti) hiirien kokeellisessa eläinmallissa osoitti, että kuidut ja asetaatti johtivat monien järjestelmien homeostaasia säätelevän transkriptiotekijän Egr1:n alasregulointiin. Egr1 moduloi useiden geenien ilmentymistä ja CVD-prosesseihin liittyviä signaalireittejä. Egr1 liittyy sydämen hypertrofiaan, munuaisfibroosiin ja inflammaatioon [49].

Lipidejä alentavan vaikutuksen osalta täysjyvät, siemenet ja pähkinät ovat sisältämänsä liukoisen kuidun vuoksi tärkeitä [50]. Monet tutkimukset ovat nostaneet esiin beeta-glukaanin (liukoinen kuitu) potentiaaliset terveyshyödyt. Beeta-glukaania saa enimmäkseen kaurasta ja ohrasta. Beeta-glukaanin kulutukseen on liittynyt ~5–10% alhaisempia triglyseridi- ja LDL-kolesterolitasoja [51–53].

Whitehead et al. korosti, että ruokavalio, joka sisälsi ~ 3 g kauran beeta-glukaania/ vrk, laski triglyseridien ja LDL-kolesterolin tasoja, mutta ilman merkittävää vaikutusta HDL-kolesteroliin. HDL ei laskenut, vaikka beeta-glukaanin saanti oli hyvin korkea (jopa 12,4 g / vrk).

Korkeampi LDL-kolesterolia alentava vaikutus havaittiin tyypin 2 diabetesta sairastavilla ja sellaisilla potilailla, joilla oli korkeampi lähtötason LDL-kolesteroli [54], mikä viittaa parempaan tehoon niillä, joiden metabolinen profiili on huonompi.

Mirman et al. teki prospektiivisen kohorttitutkimuksen 2295 terveellä koehenkilöllä, joita tutkimus seurasi 4,7 vuoden ajan. Tutkimuksen mukaan ravintokuitujen saannilla erityisesti palkokasveista, hedelmistä, vihanneksista ja pähkinöistä oli sydän- ja verisuonitaudeilta suojaava vaikutus.

Kasvikuitujen myönteiset vaikutukset CVD-riskin vähentämisessä näyttivät liittyvän triglyseridien vähenemiseen ja parantuneeseen triglyseridi-HDL-suhteeseen [55].

Toinen äskettäin tehty tutkimus korosti ravintokuitujen, suolen mikrobiomin ja sydän- ja verisuonitautien riskin pienentämisen välistä yhteyttä, mikä viittaa mikrobiomin mahdolliseen rooliin CVD-riskin moduloinnissa [56].

Monityydyttämättömät rasvahapot (PUFA): omega-3

Jatkuvasti lisääntyvä tutkimusnäyttö osoittaa, että omega-3-PUFA:lla on erilaisia kardioprotektiivisia ominaisuuksia, kuten plasman triglyseridien laskeminen, verenpaineen säätely, rytmihäiriöiden ja tulehdusten hillitseminen sekä endoteelin toimintahäiriöiden parantaminen [57].

Omega-3, erityisesti eikosapentaeenihappo (EPA) ja dokosaheksaeenihappo (DHA), ovat olleet pitkään tutkijoiden mikroskoopin alla. Havainnot ovat osoittaneet useita erilaisia mekanismeja, joilla kiertävät ja yhdistetyt omega-3-PUFA:t voivat toimia solu- ja molekyylitasoilla, mukaan lukien geneettiset ja epigeneettiset modulaatiot [58].

Esteröimättömät omega-3-rasvahapott tai niiden asyyli-CoA-tioesterit voivat sitoa ja moduloida suoraan tumareseptorien toimintaa ja transkriptiotekijöitä, jotka säätelevät geeniekspressiota useissa kudoksissa [59]. Nämä reseptorit ovat keskeisiä säätelijöitä monille CVD:hen liittyville solutoiminnoille, mukaan lukien lipidimetabolia, glukoosi-insuliinihomeostaasi ja inflammaatio [60].

On mielenkiintoista, että omega-3-PUFA:n vaikutukset näihin signalointireitteihin vaikuttavat todennäköisesti triglyseridien alenemiseen [61] ja lisääntyneeseen ”hyödyllisten adipokiinien, batokiinien” tuotantoon. Niiden tiedetään parantavan metabolista homeostaasia [62]. Lisäksi omega-3 PUFA voi vähentää tumatekijä-kappa B:n (NF-κB) translokaatiota tumaan, mikä vähentää tulehduksellisten sytokiinien tuotantoa [63].

Omega-3 PUFA:n rytmihäiriöitä hillitsevät vaikutukset näyttävät välittyvän sellaisten mekanismien kautta, joihin sisältyy ionikanavan suora ja epäsuora modulointi, solukalvon koostumus ja juoksevuus sekä tulehdusta ja fibroosia estävät vaikutukset [64].

Pitkäaikainen omega-3-PUFA-lisäravinteen saanti aiheuttaa pitkittynyttä eteisrefraktiivisuutta ja vähentää haavoittuvuutta indusoitavalle eteisvärinälle [65]. PUFA:n kulutus voi myös vaikuttaa leposykkeeseen ja sekä systoliseen että diastoliseen verenpaineeseen [66]. Lyhytaikaisissa kokeissa omega-3-PUFA:n saanti lisäsi typpioksidituotantoa, lievitti vasokonstriktiivisia reaktioita noradrenaliinille ja angiotensiini II:lle, tehosti vasodilatoivaa vastetta ja paransi valtimoiden yhteensopivuutta [67–70]. Tällaiset vaikutukset voivat vähentää systeemistä verisuoniresistenssiä ja verenpainetta.

Kertatyydyttämättömät rasvat (MUFA)

Kiistanalaisempia ovat käytettävissä olevat tiedot kertatyydyttämättömien rasvojen sydän- ja verisuonitaudeilta suojaavasta vaikutuksesta, koska julkaistujen tutkimusten määrä on pieni.

Elintarvikkeissa yleisimpiä MUFA-rasvoja ovat oleiinihappo, palmitoleiinihappo ja vakseenihappo. Esimerkiksi oliiviöljyssä on noin 70 prosenttia kertatyydyttymättömiä, 14 prosenttia monityydyttymättömiä ja 11 prosenttia tyydyttyneitä rasvahappoja. Runsas monityydyttymättömien rasvahappojen määrä pitää oliiviöljyn nestemäisenä. Oliiviöljyn tyypillinen rasvahappokoostumus:

  • omega 9 -oleiinihappoa 63–83%
  • palmitiinihappoa 7–17%
  • palmitoleiinihappoa 0,3–3%
  • omega 6 -linolihappoa 3,5–14%
  • steariinihappoa 0,5–5%
  • omega 3 -linoliinihappoa 0,01–1,5%
  • myristiinihappoa 0–0,1%
  • arakidihappoa 0–0,8%

Tokoferoleja oliiviöljyn painosta on 15–17 prosenttia. Oliiviöljyssä on runsaasti E-vitamiinia sekä esimerkiksi fenoleja, polyfenoleja, fenolihappoa, steroleja, kuten Beeta-sitosteroleja, skvaleenia, beetakaroteenia, terpeenejä, a-klorofylliä ja beetaklorofylliä.

Tuoreen meta-analyysin tulosten perusteella [71] oliiviöljyyn näyttää liittyvän pienempi CVD-riski. Itse asiassa useat muut tutkimukset osoittavat, että ekstra-neitsytoliiviöljy (EVOO) näyttää olevan merkityksellinen tekijä sydän- ja verisuonitapahtumien, kuten sydäninfarktin ja aivohalvauksen, esiintyvyyden vähentämisessä [72, 73].

Vaikka EVOO:n käyttämiä molekyylimekanismeja ei olekaan täysin ymmärretty, EVOO:n terveellistä roolia voidaan viitata sen korkeaan MUFA-tasoon ja useisiin biologisesti aktiivisiin fenoliyhdisteisiin, joilla tiedetään olevan tärkä kardioprotektiivinen rooli [74].

Antosyaanit

Antosyaanit ovat vesiliukoisia flavonoideja ja monia niistä pidetään terveyttä edistävinä. Esimerkiksi mustikassa on paljon antosyaaneja, joista monet ovat antioksidantteja. Antosyaaneita käytetään myös elintarvikkeiden väriaineina, jolloin niiden E-koodi on E 163.

  • Syanidiini E-koodi E 163a, oranssinpunainen
  • Delfinidiini E-koodi E 163b, violetti tai sininen
  • Malvidiini E-koodi E 163c, violetti
  • Pelargonidiini E-koodi E 163d, harmaansininen tai sinipunainen
  • Peonidiini E-koodi E 163e, harmaansininen/sinipunainen
  • Petunidiini E-koodi E 163f, tummanpunainen tai violetti

Antosyaanin varsinaista flavonoidiosaa kutsutaan antosyanidiiniksi. Antosyaani tarkoittaa tarkasti ottaen antosyanidiinin ja sokerin yhdistettä.

Antosyaanit ovat polyfenoliyhdisteitä, jotka ovat vaikuttavat kukkien, marjojen, hedelmien ja vihannesten punaiseen, violettiin ja siniseseen väriin ja joita esiintyy myös punaviinissä. Useat epidemiologiset tutkimukset tukevat sekä antosyaanien että polyfenolien sydäntaudeilta ennaltaehkäisevää vaikutusta [75, 76]. Sydäntaudeilta suojaava vaikutus johtuu antosyaanien sisältämistä fenoleista, polyfenoleista ja antioksidanttiominaisuuksista [77, 78].

Prekliinisiset tutkimukset, kokeellisiset eläinmallit ja in vitro -näyttö, tukevat antosyaanien roolia vaikutusta lipidiprofiiliin, joka on yleisesti käytetty CVD-riskin biomarkkeri. Antosyaanit voivat hidastaa tai estää lipidien ja glukoosin imeytymistä suolistossa ja estää kolesterolisynteesiä, mikä johtaa seerumin triglyseridien, kokonaiskolesterolin ja muun kuin HDL-kolesterolin laskuun ja seerumin HDL-pitoisuuden nousuun [78, 79].

Fenoliyhdisteiden biologinen hyödyntäminen on erittäin heikkoa: vain 10% imeytyy ohutsuolessa, kun taas noin 90% poistuu ulosteen mukana tai metaboloituu suoliston mikrobin kautta [80].

Antosyaanien suojaava vaikutus ei voi johtua ensisijaisesti antioksidanttiominaisuuksista, jotka ovat aktiivisia vain suoliston tasolla (missä fenoliyhdisteiden pitoisuus on korkea), mutta niiden sydäntaudeilta suojaava vaikutus voi selittyä sillä, että antosyaanit vaikuttavat sekundaarisesti solunsisäisinä välittäjinä eri signalointireiteillä.

Muut tutkimukset korostivat antosyaanien kardioprotektiivista ja anti-inflammatorista vaikutusta. Antosyaanien saanti edistää erityisesti typpioksidituotantoa, joka parantaa verenkiertoa ja toisaalta voi estää NF-kB-transkriptiota, mikä vähentää tulehdusta edistävien molekyylien tuotantoa [81].

Zhu et al. korosti antosyaanien anti-inflammatorista vaikutusta satunnaistetussa kontrolloidussa kliinisessä tutkimuksessa (RCT) [82]. Tässä tutkimuksessa yhteensä 150 hyperkolesterolemiaa sairastavaa potilasta sai puhdistettua antosyaaniseosta (320 mg / vrk) tai lumelääkettä kahdesti päivässä 24 viikon ajan.

Antosyaanien kulutus vähensi merkittävästi seerumin C-reaktiivisen proteiinin (−21,6% vs. −2,5%), liukoisen verisuonisolun adheesiomolekyylin 1 (−12,3% vs. 0,4%) ja plasman IL-1β: n (−12,8% vs. −1,3%) verrattuna lumelääkkeeseen. Tutkijat havaitsivat myös merkittävän eron LDL-kolesterolin (−10,4% vs. 0,3%) ja HDL-kolesterolin tason muutoksissa (14,0% vs. −0,9%) kahden ryhmän välillä.

Jos hivenravinteilla on tärkeä rooli CVD-riskin moduloinnissa , on myös hyvin tunnettua, että normaalipainon ylläpitäminen on sydän- ja verisuonitaudeilta suojaava tekijä. Bertoia et al. teki kolme prospektiivista kohorttitutkimusta 124 086 miehellä ja naisella arvioidakseen, liittyikö eräiden flavonoidien alaluokkien saanti painon muutoksiin ajan myötä. Useimpien flavonoidien alaluokkien, mukaan lukien antosyaanit, lisääntynyt kulutus liittyi käänteisesti painon muutokseen 4 vuoden ajanjaksolla. Suurin korrelaatio havaittiin antosyaanien, flavonoidipolymeerien ja flavonolien kohdalla [83]. Siten tässä yhteydessä korkean flavonoidin hedelmien ja vihannesten, kuten omenoiden, päärynöiden, marjojen ja paprikoiden syöminen voi auttaa painonhallinnassa ja CVD: n ehkäisyssä.

Vitamiinit

Useat tutkimukset osoittavat, että E-, C-vitamiinit ja muut antioksidantit voivat vähentää sydän- ja verisuonitautialttiutta neutraloimalla orgaanisia vapaita radikaaleja ja deaktivoimalla virittyneitä happimolekyylejä kudosvaurioiden estämiseksi [84].

Antioksidanteilla voi olla kyky hidastaa tai estää ateroskleroottisten plakkien muodostumista todennäköisesti estämällä LDL-kolesterolin hapettumista [85]. Tiedot C-vitamiinin ja E-vitamiinin roolista sydän- ja verisuonitautien ehkäisyssä ihmisillä tehdyissä tutkimuksissa ovat kuitenkin edelleen kiistanalaisia.

Yhdeksän kohortin koontitutkimuksessa yli 700 mg / vrk C-vitamiinilisän käyttö liittyi vahvasti sepelvaltimotautiriskin 25 prosentin laskuun [86]. Sesso et al. teki kontrolloidun satunnaistetun tutkimuksen 4641 yhdysvaltalaiselle keski-ikäiselle miehelle arvioidakseen, vähentääkö pitkäaikainen (8vuoden seuranta) E-vitamiinin tai C-vitamiinin käyttö merkittävien sydän- ja verisuonitapahtumin riskiä. E- tai C-vitamiinilisät eivät vähentäneet suurten kardiovaskulaaristen tapahtumien riskiä [87].

Ellulu et al. toteutti satunnaistetun kontrolloidun tutkimuksen 64 lihavalla, verenpainetautia ja / tai diabetesta sairastavalla. Tutkimus osoitti, että kahdesti päivässä otettu 500 mg C-vitamiinilisä voi hillitä matala-asteista tulehdusta. C-vitamiini vaikutti terveyteen indusoimalla CRP:n, IL-6: n ja paasto-verensokerin laskua 8 viikon hoidon jälkeen [88].

Tähän mennessä on tehty vain vähän tutkimuksia ruokavalion sisältämien vitamiinien (ei lisäravinteiden) vaikutuksista terveyteen. Suuri kiinalaistutkimus (Zhao et al.) selvitti ruokavalion karoteenin, C-vitamiinin ja E-vitamiinin yhdistelmän vaikutusta kaikista syistä johtuvan kuolleisuuden sekä syöpä- ja CVD- kuolleisuuden riskiin yli 130 000 kiinalaisella aikuisella [89]. Tulokset osoittivat karoteenin ja C-vitamiinin käänteisen yhteyden miesten kuolleisuuteen. Alimpiin kvintiileihin verrattuna vastaava riskin pieneneminen korkeimmassa kvintiilissä oli 17% sekä karoteenilla että C-vitamiinilla.

Vaikka nämä assosiaatiot olivat naisilla heikompia kuin miehillä, tulokset olivat mielenkiintoisia ja tilastollisesti merkittäviä. Toisessa tutkimuksessa arvioitiin 7 vuoden ajan antioksidanttien saantia (E-, C- ja A-vitamiinit) ravinnosta ja lisäravinteista yli 3000 postmenopausaalisella naisella, joilla ei ole sydän- ja verisuonitautia. Tutkimuksen havainnot osoittivat, että E-vitamiinin saanti ravinnosta liittyi käänteisesti kuolemaan johtavan sepelvaltimotaudin riskiin. Sen sijaan A- ja C-vitamiinien saanti ei tutkimuksessa liittynyt pienempiä sydän- ja verisuonitautikuoleman riskiin [90].

Ikä aiheuttaa muutoksia kehon koostumuksessa, aineenvaihduntatekijöissä ja hormonaalisissa tasoissa. Muutokset liittyvät erityisesti fyysisen aktiivisuuden vähenemiseen, mikä lisää kehon rasvamassaa ja vähentää lihasmassaa. Tämä vaikuttaa subkliiniseen tulehdustilaan, jota pidetään yhtenä ateroskleroosin ja CVD:n mekanismeista [1, 2]. Pitkään jatkuva epätasapaino energian saannin ja kulutuksen välillä sekä siihen liittyvä lihavuus on tunnustettu aineenvaihduntasairauksien ja sydän- ja verisuonitautien riskitekijä [91, 92]. Tämä on perinteinen muna vai kana -ongelma. On näyttöä, että ruokavalion ja suoliston mikrobiomin indusoimat hormonaaliset ja metaboliset muutokset altistavat lihomiselle. Lihavuus voi olla oire aineenvaihdunnan ja hormonitasojen häiriintymisestä, eikä niiden syy.

Vähäinen liikunta

Elämäntapa vaikuttaa kroonisten sairauksien kehittymiseen [93, 94]. Liikunta ja fyysinen aktiivisuus voivat parantaa terveyttä ja vähentää sydän- ja verisuonitautien riskiä [95].

Joissain tutkimuksissa on arvioitu päivittäisen istumiseen käytetyn ajan yhteyttä sydän- ja verisuonitautien riskiin. Tiedot perustuvat lähinnä itsearviointiin. Hiljattain julkaistu tutkimus seurasi yli 5000 iäkkään henkilön elintapoja ja osoitti, että istumiseen käytetty aika korreloi positiivisesti lisääntyneen sydän- ja verisuonitautien riskin kanssa [96].

Suuressa tutkimuksessa verrattiin149 077 henkilön fyysistä aktiivisuutta, istumiseen käytettyä aikaa ja sydäntautikuolleisuutta ~9 vvuoden seurannassa. Seurantaan osallistuneista 8689 kuoli seurannan aikana. Näistä 1644 johtui sydän- ja verisuonitaudeista. Tutkimus vahvisti tilastollisesti merkittävän yhteyden vähän liikuntaa sisältävän elämäntavan ja korkeamman sydänkuolleisuusriskin välillä [97 ].

Erilaiset ruokavaliot

Sydän- ja verisuonitautien riskitekijöiden ehkäisemiseksi ja vähentämiseksi on ehdotettu useita ruokavaliotyyppejä vähärasvaisesta ruokavaliosta runsasrasvaiseen ruokavalioon ja kaikkea siltä väliltä.

Kreikkalaisessa lääketieteessä sana dieetti tarkoitti alunperin joukkoa ohjeita, joilla ylläpidetään terveyttä ja hyvinvointia. Näihin ohjeisiin lukeutuivat ohjeet syömisestä ja liikunnasta.

MeDi (välimeren ruokavalio), DASH, vegetaristinen / vegaaninen ruokavalio, ketogeeninen ruokavalio ja japanilainen ruokavalio kuuluvat terapeuttisiin ruokavalioihin, joiden tavoitteena on terveyden ylläpitäminen ja kroonisten aineenvaihduntasairauksien ja niihin liittyvien oireiden ehkäisy [98, 99]. Ruokavaliot painottavat eri ravintoaineiden merkitystä, mutta tavoite on sama: terveys ja painonhallinta. On monta tapaa syödä oikein ja onta tapaa syödä väärin.

Välimeren ruokavalio (MeDi)

Välimeren ruokavalio on useissa vertailuissa arvioitu terveellisimmäksi ruokavalioksi. Tätä on yritetty hyödyntää Itämeren ruokavalion markkinoimisessa ihmisille. Koko idea haisee hapansilakalta.

Välimeren ruokavalion yksi keskeinen terveyttä edistävä tekijä on runsas oliiviöljyn käyttö. Oliiviöljy on luonnollinen, runsaasti hyviä ravinteita sisältävä suurimmaksi osaksi kertatyydyttämättömiä rasvoja sisältävä öljy, joka rinnalla prosessoitu rypsiöljy on traktori-öljyä. Monityydyttämättömät rasvat ovat molekyylirakenteeltaan hyvin epävakaita, minkä vuoksi ne hajoavat kuumennettaessa erilaisiksi aldehydeiksi ja polymerisoituvat herkästi. Itämeren ruokavaliossa voi on hyviäkin ideoita, mutta teollisten koneöljyjen myyminen ihmisille on maatalous- ei terveyspolitiikkaa.

MeDi-ruokavaliolle on ominaista runsas hedelmien, pähkinöiden, vihannesten, täysjyvätuotteiden, oliiviöljyn, kalan ja äyriäisten syöminen. Ravintokuitujen sisältävien täysjyvätuotteiden sekä hedelmien ja vihannesten kulutuksen on raportoitu vähentävän liikalihavuuden, tyypin 2 diabeteksen ja CVD: n riskiä.

Välimeren ruokavalioon sisältyy maltillisesti punaista lihaa ja puhdistettuja sokereita [100]. MeDi laskee sydän- ja verisuonitautialttiutta ja siihen liittyvää kuolleisuutta [101, 102]. Välimeren maissa suosittu ruokavalio on todistetusti hyödyllinen sekä sydän- ja verisuonitautien ensisijaisessa että toissijaisessa ehkäisyssä.

Yksi MeDi:n tärkeimmistä näkökohdista on ruokavalion sisältämien tyydyttymättömien rasvojen korkea pitoisuus, hyvät kuidun ja proteiinin lähteet sekä vähäinen tyydyttyneiden rasvojen saanti. Italialaiset saavat karkeasti puolet päivittäisestä energiasta hiilihydraateista, kolmanneksen kertatyydyttämättömistä rasvoista (oliiviöljy) ja 20 % proteiineista. Ranskalaiset ja sveitsiläiset puolestaan saavat lähes 15 % päivittäisestä energiasta tyydyttyneistä rasvoista (voi, kerma jne.). Koska ranskalaisten ja sveitsiläisten sydänkuolleisuus on pienintä Euroopassa tyydyttyneiden rasvojen saanti ei yksin selitä sydän- ja verisuonitautikuolleisuutta. Välimeren ruokavalioon sisältyy luonnollisia rasvoja ja puhtaita raaka-aineita, mutta ei teollisia koneöljyjä ja paljon raffinoituja elintarvikkeita. Myös Ranskassa suositaan puhtaita raaka-aineita. Se on keskeinen ero. Suomalaisten sydänongelmien taustalla ei ole tyydyttyneet rasvat, vaan teolliset siemenöljyt, jotka eivät kuulu ihmisen ruokavalioon. Ne ovat traktoreiden ravintoa.

Sekä American Heart Association / American College of Cardiology (AHA / ACC) että Euroopan kardiologisen seuran suuntaviivat tukevat voimakkaasti tyydyttyneiden rasvojen korvaamista kerta- ja monityydyttymättömillä rasvoilla [103]. AHA ja ACC ovat kuitenkin yksityisiä yhdistyksiä, jotka rahoittavat toimintansa taloudellisilla lahjoituksilla. Esimerkiksi sokeri- ja maissiteollisuus rahoittavat AHAa. Euroopan kardiologisen seuran rahoittajista en tiedä, mutta vanha viisaus kannattaa muistaa: Kenen leipää syöt, sen lauluja laulat!

MeDi:n positiivisista vaikutuksista osoittavat tiedot on johdettu RCT Lyonin sydäntutkimuksessa, joka osoitti, että CVD-tapahtumat ja kuolemaan johtavat päätetapahtumat vähenivät jopa 4 vuoden ajan niillä koehenkilöillä, jotka satunnaistettiin MeDi-ryhmään [104, 105].

Äskettäin PREvenciòn con Dieta MEDiterànnea -tutkijat osoittivat, että Välimeren ruokavaliota noudattavilla koehenkilöillä oli vähemmän monosyyttejä, tulehdusmarkkereita ja LDL-kolesterolin hapettumiseen liittyvää geeniekspressiota [106].

Oliiviöljyn, kalaöljyn ja pähkinöiden tyydyttymättömien rasvapitoisuuksien sydän- ja verisuonitauteihin liittyvien myönteisten vaikutusten taustalla oleviin mekanismeihin kuuluvat parantuneet lipidiprofiilit, vähentynyt matala-asteinen tulehdus ja alentunut verenpaine [107].

Välimeren ruokavaliolla lisääntynyt hedelmien ja vihannesten saanti on yhdistetty alempaan painoindeksiin ja reaktiivisten happilajien (ROS) tasoon. Niinpä Unesco on tunnustanut MeDin ”ihmiskunnan aineettomaksi kulttuuriperinnöksi” hyvin osoitettujen terveysvaikutusten vuoksi.

Dietary Approaches to Stop Hypertension (DASH) diet

DASH-ruokavalio kehitettiin USA:ssa verenpaineen alentamiseksi ja sydän- ja verisuonitautien ennaltaehkäisemiseksi [103]. DASH suosittelee verenpainetta kohottavan suolan vähentämistä. Ruokavaliossa korostetaan hedelmien, vihannesten, kasviproteiinien, täysjyvätuotteiden, vähärasvaisten maitotuotteiden saantia ja kehotetaan vähentämään tyydyttyneiden rasvojen ja rasvoista saatavan kokonaisenergian määrää.

DASH-ruokavalion edut on tunnustettu yhdysvaltalaisen National Heart, Lung and Blood Institute (NHLBI):n ja Yhdysvaltain maatalousministeriön (USDA) yleisissä ruokavalio-ohjeissa.

Kansainväliset diabeteksen ja kardiovaskulaaristen kliinisten käytäntöjen suuntaviivat ovat myös suosittaneet DASH-ruokavaliota kardiovaskulaaristen riskien vähentämiseksi [108]. Itse asiassa DASH-ruokavalion kontrolloidut satunnaistetut tutkimukset osoittivat LDL-kolesterolin laskevan muiden kardiometabolisten riskitekijöiden ohella. Prospektiiviset kohorttitutkimukset osoittavat, että DASH-ruokavalio laskee diabetekseen ja kardiovaskulaarisiin syihin liittyvää kuolleisuutta [109].

Kasvisruokavalio (Veg Diet)

Kasvisruokavalioille on ominaista eläinperäisen ravinnon kulutuksen minimoiminen tai eläinravinnosta luopuminen. Erilaisia vegetaristisia ruokavalioita on useita, enkä lähde niitä tässä tarkemmin yksilöimään. Osa kasvisruokavalioista sallii kananmunien ja kalan syömisen. Vegaaneja paitsi useimmat vegetaristit sallivat meijerituotteiden syömisen. Mustana hevosena voidaan mainita joustava fleksasaminen (fleksetaarinen ruokavalio), jossa osa ruokavalion lihasta korvataan kasvisvaihtoehdoilla. Se, missä arkisen sekaruokavalion ja fleksaamisen raja kulkee, taitaa olla semantinen ongelma.

Kasvisruokavalio korostaa vihannesten, hedelmien, jyvien, palkokasvien, siementen ja pähkinöiden saantia. Vaikka vegetarismi voidaan määritellä monin tavoin, kasvisruokavalio tarkoittaa yleensä lakto-ovo-kasvisruokavaliota, joka ei sisällä lihaa, siipikarjaa ja kalaa.

Kasvissyönti voi tarkoittaa selvästi rajoittavampaa tai spesifimpiä ruokavaliota, kuten vegaani-ruokavaliota, johon ei kuulu mikään eläinperäinen ravinto, puolikasvissyöjiä (vaihteleva määritelmä) ja kala-kasvissyöjiä (voi syödä kalaa, mutta ei lihaa).

Lihan kulutuksen rajoittamisen oletetaan yleensä laskevan sydän- ja verisuonitautien riskiä [110]. AHA / ACC antoi ravitsemussuosituksia, jotka korostavat runsaasti hedelmiä ja vihanneksia sisältäviä ruokavalioita, ja kehottavat välttämään punaista lihaa ja tyydyttynyttä rasvaa.

Perinteisiä kasvipohjaisia ruokavaliota noudattavilla populaatioilla (Afrikan maaseudulla ja Aasiassa) sydän- ja verisuonitautien riski on vähäinen. Myös perinteistä liha-rasva-maito-sisäelin-ruokavaliota noudattavien Masai-sotureiden sydäntautien riski on käytännössä olematon. Näitä yhdistää puhtaat, luonnolliset ja hyvin vähän jalostetut ravintoaineet, liikkuva elämäntapa ja syöminen silloin kun on nälkä. Itse asiassa eroja länsimaiseen elämäntapaan on niin paljon, että ei niitä ole mielekästä verrata toisiinsa. Esimerkiksi eräät Amazonin alkuperäiskansat eivät syö edes päivittäin, kun meitä länkkäreitä kehotetaan syömään muutaman tunnin välein runsaasti prosessoituja ja helvetisti sokeria sisältäviä ruokia.

Yhdysvalloissa ensimmäinen suuri tutkimus kasvisruokavalion noudattamisesta, tehtiin seitsemännen päivän adventistien keskuudessa, Tutkimus vahvisti annos-vastesuhteen lihan kulutuksen ja sydän- ja verisuonitautien riskin välillä [111].

EPIC-Oxfordin tutkimus osoitti, että kasvissyöjien sydän- ja verisuonitautien riski on 32% pienempi kuin ei-kasvissyöjien riski. Veg-ruokavaliossa on runsaasti fytoravinteita, kuten karotenoideja, lykopeeneja, flavonoideja, antosyaaneja jne., jotka toimivat synergistisesti ja kardioprotektiivisesti matala-asteisen tulehduksen ja oksidatiivisen stressin hillitsemisessä [112].

Veg-ruokavaliolle on tavallista kasviproteiinien sekä raudan, sinkin, jodin, D-vitamiinin ja kalsiumin alhaisempi hyötyosuus ja imeytyminen. Vegaanien kohdalla B12-vitamiinin ainoa lähde on lisäravinnepurkki.

Nämä ovat terveyden ja hyvinvoinnin ylläpitämisen kannalta tärkeitä elinmineraaleja ja vitamiineja. Kasvisruoat sisältävät runsaasti antinutritionaalisia tekijöitä, joita voi esiintyä luonnossa (esim. ruoansulatusentsyymin estäjät, tanniinit, fytaatti, glukosinolaatit ja isotiosyanaatit), jotka muodostuvat prosessoinnin aikana (esim. d-aminohapot, lysinoalaniini) tai johtuen geneettisestä muunnoksesta (esim. lektiinit).

Palkokasvit, viljat, perunat ja tomaatit sisältävät ruoansulatuskanavan proteolyyttisten entsyymien estäjiä. Soijapavut ovat keskittynein trypsiinin estäjien lähde, kun taas herneet ja jalostetut soijapaputuotteet sisältävät trypsiinin estäjiä huomattavasti alhaisempia määriä [113–115].

Ketogeeninen ruokavalio (KD)

Ketogeeninen ruokavalio kehitettiin 1920-luvulla epilepsian kohtausten hallitsemiseksi. Se sisältää runsaasti rasvaa (60–80%) ja proteiinia (10–20%) ja vain hyvin vähän hiilihydraatteja (5–10%). S

Ketogeeninen ruokavalio imitoi aineenvaihdunnan tasolla paastoa. Myönteiset vaikutukset johtuivat enimmäkseen ketonien, kuten β-hydroksibutyraatin, asetoasetaatin ja asetonin tuotannosta maksassa [116].

Ketogeenisen ruokavalion kliiniseen terapiakäyttöön kiinnitettiin enemmän huomiota 1990-luvulla. Nykyään KD on vakiintunut ei-farmakologinen hoito vaikeasti hoidettaville epilepsioille. Tämän lisäksi ketogeenistä ruokavaliota käytetään laajemmin erilaisissa neurologisissa häiriöissä, kuten Alzheimerin ja Parkinsonin tautien terapiana, sekä aineenvaihduntasairauksien, kuten metabolisen oireyhtymän ja diabeteksen hoitona.

Viime aikoina KD:tä on käytetty myös lihavuuden hoitona ja sydän- ja verisuonitautien ehkäisyyn [117]. Ketogeenisen ruokavalion ja sydän- ja verisuonitautien riskitekijöiden ehkäisyä koskevat tutkimukset ovat edelleen kiistanalaisia [118]. Sharman et al. tutkimus osoitti, että aikuisten miesten sopeutuminen tähän ruokavalioon johti merkittävään plasman paasto-triasyyliglyserolien (TAG) vähenemiseen (−33%), aterianjälkeiseen hyperlipidemian laskuun rasvapitoisen aterian jälkeen (−29%) ja paasto-insuliinipitoisuuksien vähenemiseen (−34%).

Ketogeenisellä ruokavaliolla LDL-partikkelikoko kasvoi merkittävästi ilman muutoksia oksidatiivisissa LDL-konsentraatioissa. Kiinnostavaa kyllä, kirjoittajat kuvasivat HDL-kolesterolin merkittävän nousun 3 viikon ketogeenisen ruokavalion jälkeen. Seerumin lipidien, insuliinin ja lipidien alaluokkien vasteet ketogeeniseen ruokavalioon olivat suotuisat yleisen CVD-riskiprofiilin kannalta.

Lisäksi ketogeeninen ruokavalio auttaa painon hallinnassa ja laihduttamisessa erityisesti. Eläinkokeissa on havaittu, että KD lisää eläinten energian kulutusta. Ihmiskokeissa on havaittu, että KD vähentää nälkää ja siten myös energiansaantia.

Painonpudotus johtuu todennäköisesti suuremmasta energiavajeesta, mutta ketoosin metabolisia mekanismeja ei vielä täysin tunneta. Pitkäaikaisia tutkimuksia tarvitaan painonpudotuksen selvittämiseksi ja siihen liittyvien aineenvaihduntamekanismien ymmärtämiseksi.

Maksan rasvapitoisuuden osoitettiin lisääntyneen isoenergeettisen rasvaisen vähähiilihydraattisen ruokavalion aikana. Tämä tapahtuma viittaa siihen, että runsasrasvainen ravinto voi lisätä alkoholittoman rasvamaksa (NAFLD) riskiä, vaikka muut tutkimukset, joissa käytettiin runsaasti hiilihydraatteja sisältävää (”tavanomaista”) hypoenergeettistä ruokavaliota ja hypoenergeettista vähähiilihydraattista ruokavaliota (KD), osoittivat, että maksan rasvapitoisuus väheni merkittävästi ketogeenisen ruokavalion aikana [119–121].

KD:hen liittyy maksan koon ja massan pieneneminen verrattuna tavalliseen hypokaloriseen ruokavalioon. Tämä johtuu todennäköisesti maksan glykogeenien, eli sokerivarastojen tyhjenemisestä.

Rasvamaksan kehittymiseen ketogeenisellä ruokavaliolla vaikuttaa geneettinen alttius henkilöillä, joilla on PNPLA3-geeni [122].

Alkoholiin liittymätön rasvamaksatauti (NAFLD) lisää maksa- ja sydäntautikuolleisuutta ja on tärkein nopeasti yleistyvän maksasolusyövän syy. NAFLD on yhtä yleinen kuin metabolinen oireyhtymä, ja sitä sairastavien potilaiden joukosta tulisikin löytää ne, joiden fibroosiriski on lisääntynyt ja joilla on kirroosi tai maksasolusyöpä. Noin 40 %:lla suomalaisista on PNPLA3-geenin I148M-variantti ja 15 %:lla TM6SF2-geenin E167K-variantti. Molemmat lisäävät NASH:n ja maksasolusyövän riskiä.” – Duodecim

Tutkittavilla, joilla oli PNPLA3-muunnelmia, maksan rasvapitoisuus oli matalampi kuin verrokkeilla, kun he noudattivat ketogeenistä ruokavaliota [123]. KD:n ongelmana pidetään usein kuitujen saannin vähäisyyttä. Joskus, mutta nykyisin varsin harvoin, esiin nostetaan tyydyttyneiden rasvojen potentiaaliset riskit. Se puolestaan on taistelu tuulimyllyjä vastaan; ketogeenistä ruokavaliota noudattavien lipidiprofiilit, verenpaine, verensokeri ja sydänterveys näyttävät olevan paremmalla tasolla kuin monilla vähemmän rasvaa syövillä. Kuitujen vähäisen saannin vaikutuksista ei ole saatavilla tietoja, joten tarvitaan muita pitkittäistutkimuksia, jotta kaikki tämäntyyppiseen ravitsemustapaan liittyvät kysymykset voidaan luonnehtia pitkällä aikavälillä.

Japanilainen ruokavalio

Japanilainen ruokavalio sisältää laajan valikoiman puhtaista ja tuoreista raaka-aineista valmistettuja ruokia, kuten papuja, tofua, tuoretta kalaa, vihanneksia, japanilaisia suolakurkkua, sieniä, merilevää ja hedelmiä [124]. Vaikka ruokavalio eroaa länsimaisista ruokavalioista, japanilaisella ruokavaliolla on samanlaisia ominaisuuksia kuin Välimeren ruokavaliolla.

Aikaisemmin julkaistut tutkimukset osoittivat, että yksittäisten ruokaryhmien, kuten hedelmien, vihannesten, papujen ja kalojen, saanti liittyi käänteisesti sydän- ja verisuonitautikuolleisuuteen ja kuolleisuuteen kaikkiin syihin Japanissa [125, 126].

Japanilaiselle ruokavaliolle on ominaista runsas natriumin saanti ja matala kaliumin saanti, mikä osaltaan lisää korkeaa natrium / kalium (Na – K) -suhdetta, mikä voi olla vahva indikaattori sydän- ja verisuonitautien kuolleisuuden riskille [127].

Tutkimukset osoittavat, että Na – K-suhde assosioituu positiivisesti aivoverenvuotoon liittyvään aivohalvaukseen, mutta ei tilastollisesti merkittävästi iskeemisen aivohalvauksen riskiin.

Japanilainen ruokavalio sisältää runsaasti happamoitettuja (fermentoituja) ruokia, kuten kalaa ja juustoa, mutta vähän emäksisiä elintarvikkeita, kuten hedelmiä ja vihanneksia, jotka voivat johtaa endogeenisen hapon tuotantoon [128].

Ruokavalion korkea happokuormitus on yhdistetty kardiometabolisten riskitekijöiden, kuten insuliiniresistenssin [129], korkean verenpaineen tai verenpainetaudin [130, 131], suuren vyötärön ympärysmitan, korkeiden triglyseridien ja LDL-kolesterolin sekä tyypin 2 diabeteksen [132] riskeihin133].

Mutta vastoin odotuksia viimeaikaiset tutkimukset ovat osoittaneet, että japanilainen ruokavalio voi vähentää kuolleisuutta sekä syöpään että sydän- ja verisuonitauteihin [134, 135], mikä viittaa potentiaaliseen vaihtoehtoiseen kardiometaboliset riskit arvioivaan ravitsemukselliseen malliin.

Lopuksi

Sydän- ja verisuonitaudit ovat monitekijäisiä, epäterveellisiin elintapoihin ja huonoihin ravitsemustottumuksiin liittyvä sairaus. Monet tutkimukset viittaavat siihen, että liiallinen natriumin ja prosessoitujen elintarvikkeiden saanti, lisätyt sokerit, epäterveelliset rasvat, vähäinen hedelmien ja vihannesten, täysjyvätuotteiden, kuidun, palkokasvien, kalan ja pähkinöiden saanti, alkoholin runsas kulutus, stressi, tupakointi ja liikunnan puute lisäävät sydän- ja verisuonitautien riskiä.

Tässä katsauksessa analysoitavien erityyppisten ruokavalioiden joukossa MeDi näyttää olevan paras ravitsemuksellinen malli, koska se sisältää täysjyvätuotteita, palkokasveja, kuituja, kerta- ja monityydyttämättömiä rasvoja sulkematta kokonaan pois eläinperäisiä elintarvikkeita, kuten lihaa, kalaa, maitotuotteita, munia, ja rajoittamatta alkoholinkulutusta.

Lisäksi MeDi-elämäntavassa otetaan huomioon paitsi elintarvikkeet, myös mielialat ja fyysinen aktiivisuus, mikä tarkoittaa tiettyä elämäntapaa, joka ei rajoitu ruokaan. Useat tutkimukset osoittavat, että MeDiä noudattavilla koehenkilöillä on pienempi lihavuuden ja tyypin 2 diabeteksen riski, sekä LDL-kolesterolin hapettumiseen liittyvän geeniekspression hyödyllinen modulointi [106].

Kiinnostavista keskusteluista ja pienistä tutkimuksista huolimatta muista analysoiduista ruokavalioista ei vielä ole riittävästi tutkimustietoja ja näyttö, jotta niitä voitaisiin pitää parempina ruokavalioina kuin MeDi sydän- ja verisuonitautien ehkäisyssä.

Pahoittelen, jos tekstiin jäi kirjoitus- tai käännösvirheitä. Korjaan niitä hiljalleen. Artikkelin tavoite ei ole pahoittaa kenenkään mieltä. Toin esiin tutkimusten tukemia näkökulmia ja omia näkökulmia.

Lähteet

1. Garcia-Arellano A, Martínez-González MA, Ramallal R, Salas-Salvadó J, Hébert JR, Corella D, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr. 2019;38:1221–31. [PubMed] [Google Scholar]

2. LaCroix AZ, Bellettiere J, Rillamas-Sun E, Di C, Evenson KR, Lewis CE, et al. Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2:e190419. [PMC free article] [PubMed] [Google Scholar]

3. Vincent L, Leedy D, Masri SC, Cheng RK. Cardiovascular disease and cancer: is there increasing overlap? Curr Oncol Rep. 2019;21:47. [PubMed] [Google Scholar]

4. Doughty KN, Del Pilar NX, Audette A, Katz DL. Lifestyle medicine and the management of cardiovascular disease. Curr Cardiol Rep. 2017;19:116. [PubMed] [Google Scholar]

5. Konstantinidou V, Daimiel L, Ordovás JM. Personalized nutrition and cardiovascular disease prevention: from Framingham to PREDIMED. Adv Nutr. 2014;5:368S–71S. [PMC free article] [PubMed] [Google Scholar]

6. Lanier JB, Bury DC, Richardson SW. Diet and physical activity for cardiovascular disease prevention. Am Fam Physician. 2016;93:919–24. [PubMed] [Google Scholar]

7. Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003;78:361–9. [PubMed] [Google Scholar]

8. Velthuis-te Wierik EJ, van den Berg H, Schaafsma G, Hendriks HF, Brouwer A. Energy restriction, a useful intervention to retard human ageing? Results of a feasibility study. Eur J Clin Nutr. 1994;48:138–48. [PubMed] [Google Scholar]

9. Loft S, Velthuis-te Wierik EJ, van den Berg H, Poulsen HE. Energy restriction and oxidative DNA damage in humans. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 1995;4:515–9. [PubMed] [Google Scholar]

10. Verdery RB, Walford RL. Changes in plasma lipids and lipoproteins in humans during a 2-year period of dietary restriction in Biosphere 2. Arch Intern Med. 1998;158:900–6. [PubMed] [Google Scholar]

11. Walford RL, Harris SB, Gunion MW. The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci USA. 1992;89:11533–7. [PMC free article] [PubMed] [Google Scholar]

12. Walford RL, Mock D, Verdery R, MacCallum T. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol Ser A Biol Sci Med Sci. 2002;57:B211–224. [PubMed] [Google Scholar]

13. Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009;203:206–13. [PMC free article] [PubMed] [Google Scholar]

14. Robertson TL, Kato H, Rhoads GG, Kagan A, Marmot M, Syme SL, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. Am J Cardiol. 1977;39:239–43. [PubMed] [Google Scholar]

15. Nuno DM, Lamping KG. Dietary fatty acid saturation modulates sphingosine-1-phosphate-mediated vascular function. J Diabetes Res. 2019;2019:1–11. [PMC free article] [PubMed] [Google Scholar]

16. Moreira APB, Texeira TFS, Ferreira A. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108:801–9. [PubMed] [Google Scholar]

17. Clifton PM, Keogh JB. A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutr Metab Cardiovasc Dis. 2017;27:1060–80. [PubMed] [Google Scholar]

18. Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. J Biol Chem. 2004;279:16971–9. [PubMed] [Google Scholar]

19. Wong SW, Kwon M, Choi AMK, Kim H, Nakahira K, Hwang DH. Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284:27384–92. [PMC free article] [PubMed] [Google Scholar]

20. Gault C, Obeid L, Hannun Y. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1–23. [PMC free article] [PubMed] [Google Scholar]

21. Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124:903–15. [PubMed] [Google Scholar]

22. Julibert A, Bibiloni MDM, Tur JA. Dietary fat intake and metabolic syndrome in adults: a systematic review. Nutr Metab Cardiovasc Dis. 2019;29:887–905. [PubMed] [Google Scholar]

23. Skop-Lewandowska A, Zając J, Kolarzyk E. Overweight and obesity vs. simple carbohydrates consumption by elderly people suffering from diseases of the cardiovascular system. Ann Agric Environ Med. 2017;24:575–80. [PubMed] [Google Scholar]

24. Miller M, Stone N, Ballantyne C, Bittner V, Criqui M, Ginsberg H, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333. [PubMed] [Google Scholar]

25. Rippe JM, Angelopoulos TJ. Added sugars and risk factors for obesity, diabetes and heart disease. Int J Obesity. 2016;40:S22–7. [PubMed] [Google Scholar]

26. Obarzanek E, Sacks F, Vollmer W, Bray G, Miller E, III, Lin P, et al. DASH Research Group. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr. 2001;74:80–9. [PubMed] [Google Scholar]

27. Howard B, Van Horn L, Hsia J, Manson J, Stefanick M, Wassertheil-Smoller S, et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295:655–66. [PubMed] [Google Scholar]

28. Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Ann Rev Nutr. 1996;16:523–57. [PubMed] [Google Scholar]

29. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Investig. 2009;119:1322–34. [PMC free article] [PubMed] [Google Scholar]

30. Ha V, Sievenpiper J, de Souza R, Chiavaroli L, Wang D, Cozma A, et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension. 2012;59:787–95. [PubMed] [Google Scholar]

31. Jones JR, Lineback DM, Levine MJ. Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America Fiber Workshop, June 1–2, 2004, Washington, DC. Nutr Rev. 2006;64:31–8. [PubMed] [Google Scholar]

32. Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Andersson H. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–51. [PubMed] [Google Scholar]

33. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69:30–42. [PubMed] [Google Scholar]

34. Chen JP, Chen GC, Wang XP, Qin L, Bai Y. Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. Nutrients. 2018;10:24. [PMC free article] [PubMed] [Google Scholar]

35. Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients. 2019;11:1155. [PMC free article] [PubMed] [Google Scholar]

36. Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180:565–73. [PubMed] [Google Scholar]

37. Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016;109:39–54. [PubMed] [Google Scholar]

38. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71. [PMC free article] [PubMed] [Google Scholar]

39. Bohn SK, Myhrstad MC, Thoresen M, Holden M, Karlsen A, Tunheim SH, et al. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Med. 2010;8:54. [PMC free article] [PubMed] [Google Scholar]

40. Anderson JW, Baird P, Davis RH, Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fibre. Nutr Rev. 2009;67:188–205. [PubMed] [Google Scholar]

41. Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr. 2017;57:1950–62. [PubMed] [Google Scholar]

42. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46:1029–56. [PMC free article] [PubMed] [Google Scholar]

43. Sánchez-Muniz FJ. Dietary fibre and cardiovascular health. Nutr Hosp. 2012;27:31–45. [PubMed] [Google Scholar]

44. Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015;13:59. [PMC free article] [PubMed] [Google Scholar]

45. Casas R, Castro-Barquero S, Estruch R, Sacanella E. Nutrition and Cardiovascular Health. Int J Mol Sci. 2018;19:3988. [Google Scholar]

46. Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9:3057–68. [PubMed] [Google Scholar]

47. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004;27:538–46. [PubMed] [Google Scholar]

48. Liu S, Buring JE, Sesso HD, Rimm EB, Willett WC, Manson JE. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J Am Coll Cardiol. 2002;39:49–56. [PubMed] [Google Scholar]

49. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964–77. [PubMed] [Google Scholar]

50. Surampudi P, Enkhmaa B, Anuurad E, Berglund L. Lipid lowering with soluble dietary fiber. Curr Atheroscler Rep. 2016;18:75. [PubMed] [Google Scholar]

51. Ripsin CM, Keenan JM, Jacobs DR, Jr, Elmer PJ, Welch RR, Van Horn L, et al. Oat products and lipid lowering. A meta-analysis. JAMA. 1992;267:3317–25. [PubMed] [Google Scholar]

52. Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr. 2016;116:1369–82. [PubMed] [Google Scholar]

53. Othman RA, Moghadasian MH, Jones PJ. Cholesterol-lowering effects of oat beta-glucan. Nutr Rev. 2011;69:299–309. [PubMed] [Google Scholar]

54. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol lowering effects of oat beta-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100:1413–21. [PMC free article] [PubMed] [Google Scholar]

55. Mirmiran P, Bahadoran Z, Khalili Moghadam S, Zadeh Vakili A, Azizi F. A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran Lipid and Glucose Study. Nutrients. 2016;8:686. [PMC free article] [PubMed] [Google Scholar]

56. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40. [PMC free article] [PubMed] [Google Scholar]

57. Mizia-Stec K, Haberka M, Mizia M, Chmiel A, Gieszczyk K, Lasota B, et al. N-3 Polyunsaturated fatty acid therapy improves endothelial function and affects adiponectin and resistin balance in the first month after myocardial infarction. Arch Med Sci. 2011;7:788–95. [PMC free article] [PubMed] [Google Scholar]

58. Tribulova N, Szeiffova Bacova B, Egan Benova T, Knezl V, Barancik M, Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. [Google Scholar]

59. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–92. [PubMed] [Google Scholar]

60. Schroeder F, Petrescu AD, Huang H. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids. 2008;43:1–17. [PubMed] [Google Scholar]

61. Sheena V, Hertz R, Nousbeck J, Berman I, Magenheim J, Bar-Tana J. Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4alpha. J Lipid Res. 2005;46:328–41. [PubMed] [Google Scholar]

62. Lee MW, Lee M, Oh KJ. Adipose tissue-derived signatures for obesity and type 2 diabetes: adipokines, batokines and microRNAs. J Clin Med. 2019;8:854. [PMC free article] [PubMed] [Google Scholar]

63. Li H, Ruan XZ, Powis SH. EPA and DHA reduce LPSinduced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005;67:867–74. [PubMed] [Google Scholar]

64. Nodari S, Triggiani M, Campia U, Dei Cas L. Omega-3 polyunsaturated fatty acid supplementation: mechanism and current evidence in atrial fibrillation. J. Atr. Fibrillation. 2012;5:718. [PMC free article] [PubMed] [Google Scholar]

65. Den Ruijter HM, Verkerk AO, Coronel R. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids. Front. Physiol. 2010;1:1–5. [PMC free article] [PubMed] [Google Scholar]

66. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67. [PubMed] [Google Scholar]

67. Dangardt F, Osika W, Chen Y. Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents. Atherosclerosis. 2010;212:580–5. [PubMed] [Google Scholar]

68. Rizza S, Tesauro M, Cardillo C. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206:569–74. [PMC free article] [PubMed] [Google Scholar]

69. Goodfellow J, Bellamy MF, Ramsey MW, Jones CJ, Lewis MJ. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol. 2000;35:265–70. [PubMed] [Google Scholar]

70. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102:1264–9. [PubMed] [Google Scholar]

71. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154. [PMC free article] [PubMed] [Google Scholar]

72. Guasch-Ferré M, Hu FB, Martínez-González MA, Fitó M, Bulló M, Estruch R. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med. 2014;12:78. [PMC free article] [PubMed] [Google Scholar]

73. Violi F, Loffredo L, Pignatelli P, Angelico F, Bartimoccia S, Nocella C, et al. Extra virgin olive oil use is associated with improved post-prandial blood glucose and LDL cholesterol in healthy subjects. Nutr Diabetes. 2015;5:e172. [PMC free article] [PubMed] [Google Scholar]

74. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, Laguardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18:98–112. [PubMed] [Google Scholar]

75. Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane A-M. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96:781–8. [PubMed] [Google Scholar]

76. Du G, Sun L, Zhao R, Du L, Song J, He G, et al. Polyphenols: potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther. 2016;162:23–34. [PubMed] [Google Scholar]

77. Qin Y, Xia M, Ma J, Hao Y, Liu J. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90:485–92. [PubMed] [Google Scholar]

78. Wallace T, Slavin M, Frankenfeld C. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients. 2016;8:32. [PMC free article] [PubMed] [Google Scholar]

79. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J Transl Med. 2016;14:186. [PMC free article] [PubMed] [Google Scholar]

80. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24:370. [PMC free article] [PubMed] [Google Scholar]

81. Kruger M, Davies N, Myburgh K, Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int. 2014;59:42–52. [Google Scholar]

82. Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23:843–9. [PubMed] [Google Scholar]

83. Bertoia ML, Rimm EB, Mukamal KJ, Hu FB, Willett WC, Cassidy A. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124086 US men and women followed for up to 24 years. BMJ. 2016;352:i17. [PMC free article] [PubMed] [Google Scholar]

84. Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr. 1991;53(4 Suppl):1050S–1055S. [PubMed] [Google Scholar]

85. Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation. 1997;95:1062–71. [PubMed] [Google Scholar]

86. Knekt P, Ritz J, Pereira MA, O’Reilly EJ, Augustsson K, Fraser GE, et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr. 2004;80:1508–20. [PubMed] [Google Scholar]

87. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33. [PMC free article] [PubMed] [Google Scholar]

88. Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Dev Ther. 2015;9:3405–12. [PMC free article] [PubMed] [Google Scholar]

89. Long-Gang Zhao, Xiao-Ou Shu, Hong-Lan Li, Wei Zhang, Jing Gao, Sun JW, et al. Dietary antioxidant vitamins intake and mortality: a report from two cohort studies of Chinese adults in Shanghai. J Epidemiol. 2017;27:89–97. [PMC free article] [PubMed] [Google Scholar]

90. Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med. 1996;334:1156–62. [PubMed] [Google Scholar]

91. Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an Endocrine Society Scientific Statement. Endocr Rev. 2018;39:79–132. [PMC free article] [PubMed] [Google Scholar]

92. KK Ryan, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15:137–49. [PMC free article] [PubMed] [Google Scholar]

93. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135. [PMC free article] [PubMed] [Google Scholar]

94. Schmitt A, Maurus I, Rossner MJ, Röh A, Lembeck M, von Wilmsdorff M, et al. Effects of aerobic exercise on metabolic syndrome, cardiorespiratory fitness, and symptoms in schizophrenia include decreased mortality. Front Psychiatry. 2018;9:690. [PMC free article] [PubMed] [Google Scholar]

95. Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis. 2019;1865:728–34. [PubMed] [Google Scholar]

96. Bellettiere J, LaMonte MJ, Evenson KR, Rillamas-Sun E, Kerr J, Lee IM, et al. Sedentary behavior and cardiovascular disease in older women: the Objective Physical Activity and Cardiovascular Health (OPACH) Study. Circulation. 2019;139:1036–46. [PMC free article] [PubMed] [Google Scholar]

97. Stamatakis E, Gale J, Bauman A, Ekelund U, Hamer M, Ding D. Sitting time, physical activity, and risk of mortality in adults. J Am Coll Cardiol. 2019;73:2062–72. [PubMed] [Google Scholar]

98. US department of Health and Human services. Dietary Guidliness for Americans, Washington, DC; US Government Printing Office; 2005.

99. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a mediterranean diet and survival in a Greek Population. N Eng J Med. 2003;348:2599–608. [PubMed] [Google Scholar]

100. Åkesson A. Go nuts and go extra virgin olive oil! Mediterranean diets reduce blood pressure. Hypertension. 2014;64:26–7. [PubMed] [Google Scholar]

101. Mozaffarian D, Appel LJ, Van Horn L. Components of a cardioprotective diet: New insights. Circulation. 2011;123:2870–91. [PMC free article] [PubMed] [Google Scholar]

102. Sacks FM, Campos H. Dietary therapy in hypertension. N Engl J Med. 2010;362:2102–12. [PubMed] [Google Scholar]

103. Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, et al. American Heart Association Nutrition Committee. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96. [PubMed] [Google Scholar]

104. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, et al. European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG). European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts) Eur Heart J. 2007;28:2375–414. [PubMed] [Google Scholar]

105. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90. [PubMed] [Google Scholar]

106. Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9. [PMC free article] [PubMed] [Google Scholar]

107. Razquin C, Martinez-Gonzalez MA. A traditional mediterranean diet effectively reduces inflammation and improves cardiovascular health. Nutrients. 2019;11:1842. [PMC free article] [PubMed] [Google Scholar]

108. Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113:1–15. [PubMed] [Google Scholar]

109. Schwingshackl L, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2015;115:780–800. [PubMed] [Google Scholar]

110. Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82. [PubMed] [Google Scholar]

111. Larsson SC, Orsini N. Red meat and processed meat consumption and all-cause mortality: a meta-analysis. Am J Epidemiol. 2014;179:282–9. [PubMed] [Google Scholar]

112. Kwok CS, Umar S, Myint PK, Mamas MA, Loke YK. Vegetarian diet, seventh day Adventists and risk of cardiovascular mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;176:680–6. [PubMed] [Google Scholar]

113. Crowe FL, Appleby PN, Travis RC, Key TJ. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr. 2013;97:597–603. [PubMed] [Google Scholar]

114. Liu RH. Dietary bioactive compounds and their health implications. J Food Sci. 2013;78:A18–A25. [PubMed] [Google Scholar]

115. Gilani GS, Wu XC, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. 2012;108:S315e32. [PubMed] [Google Scholar]

116. Friedman M, Brandon DL. Nutritional and health benefits of soy proteins. J Agric Food Chem. 2001;49:1069e86. [PubMed] [Google Scholar]

117. Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57:315–29. [PubMed] [Google Scholar]

118. Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, et al. On behalf of the Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Investig. 2019. 10.1007/s40618-019-01061-2. [PubMed]

119. Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012;3:59. [PMC free article] [PubMed] [Google Scholar]

120. Matthew JS, William JK, Dawn ML, Neva GA, Ana LG, Timothy PS, Jeff SV. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002;132:1879–85. [PubMed] [Google Scholar]

121. Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Mayurranjan MS, Patterson BW, et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136:1552–60. [PMC free article] [PubMed] [Google Scholar]

122. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011;93:1048–52. [PMC free article] [PubMed] [Google Scholar]

123. Sevastianova K, Kotronen A, Gastaldelli A, Perttilä J, Hakkarainen A, Lundbom J, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr. 2011;94:104–11. [PubMed] [Google Scholar]

124. Shen J, Wong GL-H, Chan HL-Y, Chan RS-M, Chan H-Y, Chu WC-W, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46. [PubMed] [Google Scholar]

125. Katanoda K, Kim HS, Matsumura Y. New Quantitative Index for Dietary Diversity (QUANTIDD) and its annual changes in the Japanese. Nutrition. 2006;22:283–7. [PubMed] [Google Scholar]

126. Iso H, Kobayashi M, Ishihara J. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113:195–202. [PubMed] [Google Scholar]

127. Takachi R, Inoue M, Ishihara J. Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. Am J Epidemiol. 2006;167:59–70. [PubMed] [Google Scholar]

128. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30:416–21. [PubMed] [Google Scholar]

129. Akter S, Eguchi M, Kuwahara K, Kochi T, Ito R, Kurotani K, et al. High dietary acid load is associated with insulin resistance: the Furukawa Nutrition and Health Study. Clin Nutr. 2016;35:453–9. [PubMed] [Google Scholar]

130. Moghadam SK, Bahadoran Z, Mirmiran P, Tohidi M, Azizi F. Association between dietary acid load and insulin resistance: Tehran Lipid and Glucose Study. Prev Nutr Food Sci. 2016;21:104–9. [PMC free article] [PubMed] [Google Scholar]

131. Haghighatdoost F, Najafabadi MM, Bellissimo N, Azadbakht L. Association of dietary acid load with cardiovascular disease risk factors in patients with diabetic nephropathy. Nutrition. 2015;31:697–702. [PubMed] [Google Scholar]

132. Zhang L, Curhan GC, Forman JP. Diet-dependent net acid load and risk of incident hypertension in United States women. Hypertension. 2009;54:751–5. [PMC free article] [PubMed] [Google Scholar]

133. Kiefte-de Jong JC, Li Y, Chen M, Curhan GC, Mattei J, Malik VS, et al. Diet-dependent acid load and type 2 diabetes: pooled results from three prospective cohort studies. Diabetologia. 2017;60:270–9. [PMC free article] [PubMed] [Google Scholar]

134. Tada N, Maruyama C, Koba S, Tanaka H, Birou S, Teramoto T, Sasaki J. Japanese dietary lifestyle and cardiovascular disease. J Atheroscler Thromb. 2011;18:723–34. [PubMed] [Google Scholar]

135. Okada E, Nakamura K, Ukawa S, Wakai K, Date C, Iso H, Tamakoshi A. The Japanese food score and risk of all-cause, CVD and cancer mortality: the Japan Collaborative Cohort Study. Br J Nutr. 2018;120:464–71. [PubMed] [Google Scholar]


Articles from International Journal of Obesity Supplements are provided here courtesy of Nature Publishing Group





Ruokavalio ja vanheneminen: molekyylibiologinen näkökulma

Samo Ribarič1

1Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia

Tiivistelmä

Ravitsemuksella on merkittäviä ja pitkäaikaisia terveysvaikutuksia, jotka eivät rajoitu vain yksilöön, vaan voivat siirtyä yksilöltä seuraavalle sukupolvelle. Se voi myötävaikuttaa kroonisten sairauksien kehittymiseen ja etenemiseen, mikä edelleen vaikuttaa odotettavissa olevaan elinikään.

Ruokavaliolla voi pidentää odotettavissa olevaa elinikää ja parantaa yleistä terveyttä. Tässä artikkelissa selitetään biokemialliset mekanismit, joihin tällainen rohkea väite perustuu. Artikkeli on hyvin haastava. Yleissääntönä on, että ravinnosta saadun energian rajoittaminen, paasto, pätkäpaasto ja paastoa aineenvaihdunnan tasolla imitoiva ketogeeninen ruokavalio aktivoivat kehossa solutason mekanismeja, jotka ylläpitävät solujen hyvinvointia ja pitkäikäisyyttä.

Kalorirajoitus (CR) voi pidentää keskimääräistä elinikää ja viivästyttää ikään liittyvien muutosten alkamista monissa organismeissa. Energian rajoittaminen saa aikaan koordinoituja adaptiivisia stressivasteita solujen ja koko organismin tasolla moduloimalla epigeneettisiä mekanismeja (esim. DNA:n metylaatio, transtrationaaliset histonimodifikaatiot), signaalireittejä, jotka säätelevät solujen kasvua ja ikääntymistä (esim. TOR, AMPK, p53 ja FOXO) ja solusta soluun signalointimolekyylejä (esim. adiponektiini).

Näiden mukautuvien stressivasteiden kokonaisvaikutuksena on lisääntynyt vastustuskyky stressille, mikä viivästyttää ikään liittyviä fysiologisia muutoksia ja edistää pitkäikäisyyttä. Kalorirajoitus voi hillitä monia ikääntymiseen liittyviä sairauksia, kuten syöpiä, diabetesta, ateroskleroosia, sydän- ja verisuonitauteja sekä hermostoa rappeuttavia sairauksia.

Vaihtoehtona kaloreiden rajoittamiselle on tutkittu useita kaloreita rajoittavia ruokavalioita eläimillä ja ihmisillä. Tällä hetkellä lupaavimmat vaihtoehdot kalorirajoituksen käytölle ihmisillä näyttävät olevan liikunnan lisääminen yksin tai yhdessä vähentyneen kalorien saannin kanssa.

Samo Ribarič’in laaja artikkeli tarkastelee ruokavalion merkitystä vanhenemiseen aineenvaihdunnan ja biokemian perspektiivistä. Monet tässä esiin nostetut asiat hyödyttävät kaikkia.

Tämä ei ole aivan helppolukuinen artikkeli.  Liitän tekstiin aihetta käsitteleviä videoita, jotka helpottavat erilaisten aineenvaihduntapolkujen, ylävirran tapahtumien ja alasreguloivien modulaattorien maailman kartoittamista.

Samo Ribaričin artikkeli julkaistiin 2012. Sen jälkeen tieto ketogeenisen ruokavalion, paaston ja pätkäpaaston hyödyistä on lisääntynyt. Vaikka artikkeli vain sivuaa ohimennen niitä, se sisältää erinomaisia selityksiä vanhenemiseen ja terveyteen vaikuttavista molekyylibiologian mekanismeista, jotka nykytietämyksen mukaan toteutuvat myös KD-ruokavaliossa, pätkäpaastossa ja paastossa.

1. Johdanto

Ravitsemuksella on merkittäviä pitkäaikaisia vaikutuksia terveyteen. Se on sellainen elämäntapaan liittyvä tekijä, joka voi edistää tai vähentää kroonisten sairauksien, kuten sydän- ja verisuonitautien, diabeteksen ja syövän riskiä [1].

Kroonisten sairauksien ehkäisyn ja hallinnan pitäisi olla globaali prioriteetti, koska krooniset sairaudet aiheuttavat yli puolet kaikista kuolemantapauksista [2]. Sairastuminen on potilaille ja potilaiden omaisille henkisesti raskas taakka. Kroonisten sairauksien hoitokulut rasittavat yhteiskunnan kantokykyä. Kuolemaa ei kukaan voi välttää, mutta terveisiin elinvuosiin jokainen voi vaikuttaa omilla elämäntapavalinnoillaan.

Ravitsemuksen vaikutukset terveyteen eivät rajoitu yksilöön, vaan ne voivat siirtyä yksilöltä seuraavalle sukupolvelle. Tämä havainto on vahvistettu epidemiologisilla tutkimuksilla ja eläinkokeilla.

Pienenä syntyvän vauvan riski sairastua myöhemmin sepelvaltimotautiin, tyypin 2 diabetekseen ja lihavuuteen on normaalipainoisina syntyviä lapsia selvästi korkeampi [3–7]. Eläinmallissa synnytystä edeltävä aliravitsemus laski jälkeläisten elinikää [8] tai johti nefronien puutteelliseen kehitykseen, mikä lisäsi kroonisen munuaissairauden riskiä myöhemmässä elämässä [9]. (Nefroni on munuaisen toiminnallinen yksikkö, joka suodattaa virtsaa verestä ja säätelee virtsan määrää sekä koostumusta.)

2. Ruokavaliotekijöiden epigeneettiset muutokset

Ravitsemuksen vaikutukset kehoon välittyvät epigeneettisillä mekanismeilla [1]. McKay’n ja Mathersin mukaaan kolme tunnettua läheisesti vuorovaikutuksessa olevaa mekanismia ovat DNA:n metylaatio, histonimodifikaatio ja koodaamattomat mikroRNA:t (miRNA:t) [1].

Artikkelin toinen luku sisältää melkoisesti molekyylibiologian jargonia. Hyppää kolmanteen lukuun suoraan, jos tämä vaikuttaa tylsältä.

Ravintotekijät voivat indusoida epigeneettisiä muutoksia kolmen reitin kautta: (a) suora vaikutus geenien ilmentymiseen, (b) tumareseptorien aktivaatio ligandien avulla ja (c) membraanireseptorien (solukalvoreseptorien) signalointikaskadien muokkaus [10].

Epigeneettiset mekanismit tarjoavat organismeille tehokkaan aikaan reagoivan järjestelmän geeniekspression mukauttamiseksi:

(a) kudostyyppispesifisesti

(b) organismin kehitystilaan sopivasti

(c) kehon ulkoisen ja sisäisen ympäristön signaalit huomioiden [1].

2.1. DNA-metylaatio ruokavaliolla

Folaatti ja B12-vitamiini edistävät laajaa DNA-metylaatiota, kun taas seleeni, vihreän teen polyfenolit ja bioflavonoidit vähentävät yleistä DNA-metylaatiota, Davis et al. [17].

DNA-metylaatio on kudosspesifinen ja sitä säätelee DNA-metyylitransferaasi (DNMT) -entsyymi, joka modifioi sytosiiniemäksen CpG-dinukleotiditähteessä metyyliryhmän kanssa muodostaen 5-metyylisytosiinin [11].

Esimerkkejä DNA-metyloinnilla kontrolloiduista prosesseista ovat X-kromosomien inaktivaatio, iturataspesifisten geenien leimaaminen ja hiljentäminen, karsinogeneesi ja pitkäaikaisen muistin muodostuminen [12].

Perinteisesti DNA-metylaatio on liitetty geeniekspression tukahduttamiseen. Siten DNA-metylaatio joko fyysisesti estää transkriptioproteiinien sitoutumista geeniin, tai metyloitu DNA sitoutuu proteiineihin, jotka tunnetaan metyyli-CpG:tä sitovina domeeniproteiineina. Ne rekrytoivat ylimääräisiä proteiineja lokukseen – kuten histonideasetylaasit – jotka muuttavat histoneja kompaktiksi inaktiiviseksi kromatiiniksi, kuten on osoitettu [13, 14].

Joillakin syöpäpotilailla esiintyy sekä laajaa DNA-hypometylaatiota että paikallista DNA-hypermetylaatiota [15, 16]. Ruokavalion ainesosia, joiden tiedetään moduloivan DNA-metylaatiota, ovat esimerkiksi folaatti, B12vitamiini, seleeni, vihreän teen polyfenolit (esim. epigallokatekiini-3-gallaatti (EGCG), epikatekiini, ganisteiini) ja bioflavonoidit (kvertsetiini, fisetiini ja myrisetiini).

Folaatti ja B12-vitamiini edistävät laajaa DNA-metylaatiota, kun taas seleeni, vihreän teen polyfenolit ja bioflavonoidit vähentävät yleistä DNA-metylaatiota, Davis et al. [17]. Näiden aineosien paikallinen vaikutus DNA-metylaatioon voi kuitenkin poiketa niiden laajasta vaikutuksesta. Esimerkiksi seleenin pitkäaikainen kulutus lisää p53-geenin eksonispesifistä DNA-metylaatiota rotan maksassa ja paksusuolen limakalvossa [18].

2.2. Histonien modifiointi ruokavaliolla

Aitotumallisten eukaryoottien solujen tumat sisältävät tiiviisti pakattuna emäksisiä proteiineja (johtuen positiivisesti varautuneesta N-päästä, jossa on monia lysiini- ja arginiinitähteitä), joita kutsutaan histoneiksi.

Histonit pakkaavat ja järjestävät DNA:n rakenneyksiköiksi, eli nukleosomeiksi.

Kromatiinin perusyksikön, nukleosomin ytimen muodostavat 2 kpl kutakin histonia H2A, H2B, H3 ja H4 eli yht. 8 molekyyliä (ns. oktameerirakenne). Histonimolekyylit muodostavat litteän kiekon tai kelan, jossa DNA muodostaa 2 kierrosta histonien ympäri ja näin täydentää tuman rakenteen.

Histonit toimivat keloina, joiden ympärillä DNA pyörii ja joilla on rooli geenien säätelyssä. Aktiiviset geenit ovat vähemmän sitoutuneita histoneihin; inaktiiviset geenit liittyvät voimakkaasti histoneihin [19].

Histonien N-terminaali (histonihäntä) tai sivuketjut pallomaisessa histonisydämessä ovat epigeneettisten modifikaatioiden kohdat [20]. Histonien translaation jälkeinen modifikaatio on merkittävästi monimuotoisempi kuin DNA:n metylaatio. Jotkut parhaiten ymmärretyistä histonimodifikaatioista ovat metylointi, asetylointi, fosforylaatio, ribosylointi, ubikitinointi, sumoylaatio tai biotinylointi [20].

Esimerkkejä histonien translaation jälkeiseen modifikaatioon osallistuvista entsyymeistä ovat histoniasetyylitransferaasit (HAT), metyylitransferaasit (HMT), deasetylaasit (HDAC) ja demetylaasit (HDM).

Ruokavalion vaikutuksia histonin translaation jälkeiseen modifikaatioon tarkastelivat hiljattain mm. Link et al. [21]. Esimerkiksi valkosipulin ja kanelin polyfenolit estävät HDAC:ia; vihreän teen polyfenolit ja kupari estävät HAT:ia; EGCG estää HMT:ia.

Histonin metylaatio voi moduloida DNA:n metylaatiokuvioita, ja DNA:n metylaatio voi toimia mallina joillekin histonimuutoksille DNA:n replikaation jälkeen [20, 22]. On arveltu, että nämä vuorovaikutukset voitaisiin toteuttaa suorilla vuorovaikutuksilla histonin ja DNA-metyylitransferaasien välillä [20, 22]. Tällaiset DNA-histoni-vuorovaikutukset voidaan moduloida myös ruokavalion avulla.

2.3. miRNA-modulointi ruokavaliolla

Kaikilla elävillä soluilla on kyky vastaanottaa ja käsitellä solukalvojen ulkopuolelta tulevia signaaleja.

Eukaryoottien eli aitotumallisten miRNA (mikro-RNA) on lyhyt, parin kymmenen nukleotidin pituinen, yksijuosteinen RNA-molekyyli, joka estää tietyn lähetti-RNA:n toiminnan kiinnittymällä siihen eli se hiljentää geenin. Monet mikro-RNA:ista ovat proteiinia koodaamattomilta DNA-alueilta.

MikroRNA (miRNA) on ei-koodaava RNA-molekyyli (joka sisältää 22 nukleotidia). miRNA toimii RNA:n hiljentämisessä ja geeniekspression jälkitranskriptiossa. Niitä löytyy kasveista, eläimistä ja joistakin viruksista.

miRNA:t toimivat emäspariliitoksen kautta mRNA-molekyylien komplementaaristen sekvenssien kanssa. Tämän seurauksena nämä mRNA-molekyylit hiljennetään yhdellä tai useammalla seuraavista menetelmistä: (1) mRNA-juosteen pilkkominen kahteen osaan, (2) mRNA:n destabilisointi lyhentämällä sen poly (A) häntää ja ( 3) Vähemmän tehokas mRNA:n translaatio proteiineiksi ribosomien avulla.

miRNA:t ovat transkriptionaalisia säätelijöitä ja sitoutuvat komplementaarisiin sekvensseihin kohde-lähetti-RNA-transkripteissa (mRNA:t), mikä johtaa transkriptionaalisten geenien hiljentymiseen mRNA-translaation repressoinnin tai lisääntyneen RNA-hajoamisen vuoksi.

miRNA:t voivat kuitenkin myös aiheuttaa histonimodifikaatiota ja promoottorikohtien DNA-metylaatiota, mikä säätelee kohdegeenien ilmentymistä vaihtoehtoisella reitillä. [23, 24]. Ihmisen genomi koodaa yli 1000 miRNA-nukleotidia, joiden kohteena on 50% nisäkäsgeeneistä monissa ihmisen solutyypeissä [25–30].

Siten miRNA:t vaikuttavat monien transkriptiotekijöiden, reseptorien ja kuljettajien ilmentymiseen [31]. Viimeaikaiset havainnot ihmis- ja eläinmalleissa tehdyistä kokeista viittaavat siihen, että ravitsemus (esim. rasvan, proteiinin, alkoholin tai E-vitamiinin kulutus) vaikuttaa monien miRNA-nukleotidien [32] ilmentymiseen.

miRNA:t muistuttavat RNA-interferenssi (RNAi) -reitin pieniä häiritseviä RNA:ita (siRNA:t), paitsi että miRNA:t ovat peräisin RNA-transkriptioiden alueista, kun taas siRNA:t ovat peräisin pitkistä kaksijuosteisen RNA:n alueista. Ihmisen genomi voi koodata yli 1900 miRNA:a, vaikka uudempi analyysi osoittaa, että luku on lähempänä 600: ta. Kiertävät miRNA:t vapautuvat kehon nesteisiin; vereen ja aivo-selkäydinnesteeseen. Ne toimivat biomarkkereina monissa sairauksissa.

Monet miRNA:t ovat evoluutiokonservoituneita, mikä tarkoittaa, että niillä on tärkeät biologiset toiminnot, joilla ei ole suuria lajienvälisiä eroja. Esimerkiksi 90 miRNA-perhettä on säilynyt ainakin nisäkkäiden ja kalojen yhteisestä esi-isästä lähtien, ja suurimmalla osalla näistä konservoiduista miRNA:ista on tärkeitä tehtäviä.

Polyfenolit (esim. antosyaniini, kurkumiini ja kvertsetiini) moduloivat maksan miRNA:n ilmentymistä in vivo hiirimalleissa [33]. miRNA:n ilmentymisen modulointi ruokavaliolla voi selittää genisteiinin, kurkumiinin, retinoiinihapon ja kalaöljyn syövältä suojaavia vaikutuksia.

Genisteiini (isoflavoni) estää uveaalisen melanoomasolun kasvua estämällä miRNA-27a:n ilmentymistä [34]. Kurkumiinihoito säätelee miRNA-22:n ja alasreguloidun miRNA-199a:n ilmentymistä haimasyöpäsolulinjassa [35] ja säätelee myös miRNA-15a:n ja miRNA-16:n ilmentymistä rintasyöpäsoluissa [36].

Akuuttia promyelosyyttistä leukemiaa sairastavilla potilailla, joita hoidettiin menestyksekkäästi kemoterapialla ja all-trans-retinoiinihapolla, miRNA-181b:n säätely alasreguloitui (downregulate), mutta monien muiden miRNA:iden säätely ylösreguloitiin (upregulate) [37]*.

Retinoiinihappohoidon indusoima miRNA-10a-säätely esti haimasyövän etäpesäkkeitä ksenotransplantaatiokokeissa seeprakalan alkioissa [38]. Kalaöljy vähensi erilaisten ekspressoitujen miRNA:iden määrää koe-eläimissä ja voi olla hyödyllistä paksusuolikarsinooman estämisessä [39]. Indol-3-karbinoli sääteli useiden miRNA:iden (ts. miRNA:iden -21, -31, -130a, -146b ja -377) ilmentymistä hiirissä, joille oli indusoitu hiiren keuhkokasvaimia [40].

Ravintoaineiden puutos voi myös moduloida miRNA:n ilmentymistä. Esimerkiksi folaatin puute liittyi miRNA-222:n merkittävään yli-ilmentymiseen [41]. Myös rotilla, joilla oli folaatti-metioniini-koliini-puutteellinen ruokavalio, kehittyi maksasolujen karsinooma, johon liittyi samanaikaisesti miRNA:iden yli-ilmentymistä -17 – -92, -21, -23, -130 ja -190 [42].

*Ylös- ja alasregulaatio

Alasregulaatio tarkoittaa prosessia, jossa jokin solun ulkoinen ärsyke vähentää RNA:n tai proteiinin määrää, kun taas ylösregulaatio tai sääntelyn lisääminen lisää näitä komponentteja solussa.

Esimerkki alasregulaatiosta on solun tietyn reseptorin ilmentymisen väheneminen vasteena molekyylin, kuten hormonin tai hermovälittäjäaineen aktivoitumiselle, mikä vähentää solun herkkyyttä ko. molekyylille. Tämä on esimerkki paikallisesti toimivasta ( negatiivisen palautteen) mekanismista.

Esimerkki ylisääntelystä: sellaisille ksenobiottisille molekyyleille kuin dioksiinille altistettujen maksasolujen vasteena solut lisäävät sytokromi P450 -entsyymien tuotantoa , mikä puolestaan lisää näiden molekyylien hajoamista.

Kaikilla elävillä soluilla on kyky vastaanottaa ja käsitellä solukalvojen ulkopuolelta tulevia signaaleja. Tämän he tekevät reseptoreiksi kutsuttujen proteiinien avulla. Reseptorit sijaitsevat solun pinnalla plasmamembraaniin upotettuna. Kun solunulkoiset signaalit ovat vuorovaikutuksessa reseptorin kanssa, ne ohjaavat solun tekemään jotain, kuten jakautumaan, kuolemaan, tuottamaan proteiineja tai pääsemään energiaravinteita soluun jne. Esimerkiksi insuliinimolekyylin kiinnittyminen insuliinireseptoriin päästää glukoosimolekyylin soluun.

Solun kyky reagoida kemialliseen viestiin riippuu kyseiselle viestille viritettyjen reseptorien läsnäolosta. Mitä enemmän reseptoreita solulla on viritetty ko. signaaliin, sitä vahvemmin solu reagoi siihen. Esimerkiksi insuliiniresistenssissä insuliinireseptorit eivät ole virittyneet, joten solu reagoi heikosti insuliiniin, mikä puolestaan vaikuttaa solun glukoosinottoon ja energian saantiin.

Reseptorit luodaan tai ekspressoidaan solun DNA:n ohjeista, ja niitä voidaan lisätä tai säätää ylöspäin (ylösreguloida), kun signaali on heikko, tai alasreguloida, jos signaali on voimakas.

Niiden tasoa voidaan säätää myös ylös tai alas moduloimalla järjestelmiä, jotka hajottavat reseptoreita, kun solu ei enää tarvitse niitä. Reseptoreiden alasregulointia voi tapahtua myös silloin, kun reseptorit on altistettu kroonisesti liialliselle määrälle ligandia joko endogeenisistä välittäjistä tai eksogeenisista lääkkeistä. Tämä johtaa ligandin aiheuttamaan herkistymiseen tai kyseisen reseptorin sisäistymiseen. Tämä näkyy tyypillisesti eläinhormonireseptoreissa. Reseptorien säätely toisaalta voi johtaa superherkistettyihin soluihin, varsinkin kun toistuva altistuminen antagonistiselle lääkkeelle tai pitkäaikainen ligandin puuttuminen.

2.4. TOR-signaalireitti ja ravitsemus

Elinten ja koko kehon tasolla TORC1 / S6 K1 -signaalireitti säätelee glukoosin homeostaasia, insuliiniherkkyyttä, rasvasolujen aineenvaihduntaa, kehon massa- ja energiatasapainoa, kudosten ja elinten kokoa, oppimista, muistinmuodostusta ja ikääntymistä [57].

TOR (
rapamysiinin* kohde) on proteiinikinaasi, joka toimii solujen kasvun ja ikääntymisen keskusohjaimena [43, 44]. TOR-signalointireitin inaktivointi edistää autofagiaa ja pidentää elinikää [45].

*Elimistön vanhenemista on koe-eläimillä pystytty hidastamaan rapamysiinilla. Rapamysiini vähentää elimistön solujen energiankulutusta. Tämä vaikuttaa samalla tavalla kuin ravinnon energiamäärän rajoittaminen. Jos energiaa on puutteellisesti tarjolla, elimistön solujen aineenvaihdunta hidastuu ja samalla niiden elinikä pitenee. Toisaalta rapamysiini heikentää immuunivastetta ja altistaa infektioille.

TOR havaittiin ensin hiivassa, mutta se tunnistettiin myös muissa eukaryooteissa, kuten nisäkkäillä ( TOR tai mTOR). In vivo mTOR esiintyy kahdessa multiproteiinikompleksissa, mTORC1 ja mTORC2.

mTORC1 toimii ravinteiden energia-redoksianturina* ja moduloi proteiinisynteesiä. Siksi alkupään tekijät, jotka stimuloivat tämän kompleksin aktiivisuutta, ovat insuliini ja muut kasvutekijät, aminohapot (esim. leusiini) ja stressi (lämpötilan muutos, kofeiini, oksidatiivinen stressi).

* redox; reduction-oxidation, redoksi; hapetus-pelkistys-reaktio

Kofeiini, hypoksia (happivaje) ja DNA-vauriot estävät mTORC1-aktiivisuutta. TORC1-aktiivisuuden ylävirran säätimet ovat AGC-kinaasiperhe (esim. PKA; PKG ja PKC), jotka aktivoituvat fosforylaatiolla [46]. Nisäkkäillä mTORC1-kohteet ovat S6 K1 ja eukaryoottinen aloituskerroin (4E-BP1) [47–52].

S6 K1:n mTORC1-välitteinen fosforylaatio edistää proteiinisynteesiä ja 4E-BP1-fosforylaatio edistää ribosomien lokalisoitumista mRNA:iden korkkirakenteeseen. MTORC1: n fosforyloivaa aktiivisuutta säätelee sen liittyminen RAPTOR-proteiiniin (mTOR:n säätelyyn liittyvä proteiini) [53, 54].

Korkeat energia- tai ATP-tasot aktivoivat mTORC1:n fosforyloimalla ja siten estäen TSC1-TSC2-kompleksin, kuten Loewith ja Hall ovat osoittaneet [43]. Tämä kompleksi on GTPaasia aktivoiva proteiini, joka modifioi toisen GTPaasi RHEB: n GTP:hen sitoutuneeksi tilaksi. RHEB sitoutuu ja aktivoi GTP:hen sitoutuneen tilan suoraan mTORC1: n ja antaa mTORC1: n fosforyloitua alavirran kohteisiin [55].

Alhainen soluenergia (korkeat AMP-tasot) tai alhaiset ravinnetasot aktivoivat yhdessä tuumorisuppressorikinaasin LBK1 kanssa AMPK:n. Aktivoitu AMPK fosforyloi sekä TSC2:n että RAPTORin ja estää siten mTORC1-aktiivisuuden kahdella reitillä [56].

Hiivassa TORC1 edistää proteiinisynteesiä, ribosomien biogeneesiä, säätelee solusyklin ja solukoon välistä suhdetta, edistää solukasvua estämällä stressivasteita, stimuloi autofagiaa ja säätelee mitokondrioiden toimintahäiriön signaalia ytimeen RTG1-riippuvan negatiivisen säätimen kautta [43, 44].

Elinten ja koko kehon tasolla TORC1 / S6 K1 -signaalireitti säätelee glukoosin homeostaasia, insuliiniherkkyyttä, rasvasolujen aineenvaihduntaa, kehon massa- ja energiatasapainoa, kudosten ja elinten kokoa, oppimista, muistinmuodostusta ja ikääntymistä [57].

Esimerkiksi S6 K1 moduloi mesenkymaalisten kantasolujen erilaistumista adiposyyteiksi. mTORC1 / S6 K1-signalointireitin liiallinen stimulointi liian suurilla määrillä leusiinia äidinmaidonkorvikkeissa voi olla syynä lisääntyneeseen adipogeneesiin ja varhaislapsuuden liikalihavuuteen [58].

mTORC2:n parhaiten ymmärretyt toiminnot ovat aktiinin solurangan solusyklistä riippuvan polarisaation hallinta, endosytoosi ja sfingolipidibiosynteesi [43, 59, 60]. mTORC2: n ylävirran säätimet ovat insuliini ja IGF1 [44, 61].

Ribosomin kypsytystekijä Nip7 vaaditaan mTORC2-kinaasiaktiivisuuteen hiiva- ja nisäkässoluissa [44, 61] ja mTORC2: n substraatit ovat AGC-kinaasiperhe mukaan lukien AKT, SGK1 ja PKC [44, 62]. Esimerkiksi mTORC2 edistää solujen eloonjäämistä AKT:n kautta [63, 64] ja säätelee myös maksan glukoosi- ja lipidimetaboliaa insuliinin indusoiman AKT-signaloinnin kautta [62]. Vaikka TORC1:n ja TORC2:n signalointireitit ovat jossain määrin erillisiä, niillä on yhteistyöfunktio koordinoida kasvua, mitoosia ja solukoon hallintaa.

Esimerkiksi TORC2 aktivoi TORC1:n AKT-signalointireitin kautta. TORC1-aktivaatio stimuloi anabolisia solureittejä ja TORC1-esto stimuloi katabolisia solupolkuja [65]. TORC1- ja TORC2-signalointireittien herkkyys voi yleensä olla paitsi solukudosspesifinen myös TORC-isoformista riippuvainen. Esimerkiksi mTORC2: n aktiivisuus riippuu nisäkkään stressiaktivoituneen proteiinikinaasia vuorovaikutuksessa olevan proteiinin (mSin1) isoformista, joka muodostaa tämän multiproteiinikompleksin [66].

3. Ravinto ja vanheneminen

Oletus, että nisäkkäiden elinikää voitaisiin pidentää merkittävästi ruokavalion muutoksilla, vahvistettiin jyrsijätutkimuksessa, jonka toteuttivat McCay ym. vuonna 1935 [67].

Rotat kasvavat koko ikänsä. Yksi tämän tutkimuksen tavoitteista oli määrittää kasvun hidastumisen vaikutus molempia sukupuolia olevien rottien eliniän pituuteen. Kasvu hidastui rajoittamalla ravinnosta saatavan energian määrää tasolle, joka on tarpeen rottien pitämiseksi vakailla ruumiinpainotasoilla vieroituksen aikana tai 2 viikkoa vieroituksen jälkeen.

Kokeessa huolehdittiin kaikkien muiden ruokavalion ainesosien riittävästä saannista. Ruokavalion energiamäärän rajoittaminen pidensi rottien elinikää. Ruokavalion rajoittamisen vaikutus elinaikaan oli kuitenkin selvempi uros. kuin naarasrotilla [67].

Yhteenvetona voidaan todeta, että tämä peruskokeilu viittaa siihen, että elinikää voidaan pidentää ruokavalion sisältämän energiamäärän rajoittamisella ilman aliravitsemusta. Aliravitsemuksella voi olla päinvastainen vaikutus [1].

Suositeltava ravintoprotokolla on energiansaannin rajoittaminen siten, että kalorirajoitus ei aiheuta välttämättömien ravintoaineiden puutostiloja tai aliravitsemusta. CR tarkoittaa kalorien saannin rajoittamista 10–30% verrattuna energian normaaliin saantiin. Energiansaannin hallitun rajoittamisen on osoitettu parantavan kaiken ikäisten terveyttä ja hidastavan myös ikääntymistä monilla tutkituilla eukaryooteilla [68].

Energian rajoittamisen elinikää pidentävien vaikutusten merkitystä kädellisille on tutkittu mm. reesusapinoilla. Eläinten lähtötason kaloreiden saantia laskettiin asteittain 10% kuukaudessa lopulliseen 30% energian rajoitukseen, joka säilyi kokeen ajan. CR:n vaikutus verrokkeihin arvioitiin vertaamalla kuolleisuuden viivästymistä ja joidenkin ihmisillä yleisimmin esiintyvien ikään liittyvien sairauksien (esim. diabetes, syöpä, sydän- ja verisuonitaudit ja aivojen atrofia) puhkeamista.

Tutkimuksen johtopäätökset olivat, että kaloreiden rajoittaminen alensi ikääntymiseen liittyvien kuolemien esiintyvyyttä (50% kontrolliruokituilla eläimillä verrattuna 20% CR-ruokituilla eläimillä) ja alensi myös diabeteksen, syövän, sydän- ja verisuonitautien sekä aivojen atrofian ilmaantuvuutta [68 ].

Tältä pohjalta voidaan kysyä: liittyykö okinawalaisten pitkäikäisyys niukkaan energiansaantiin?

4. Kaloreiden rajoittamisen vaikutukset ihmisillä

Perusoletus, jonka mukaan kalorirajoitus voi pidentää keskimääräistä ja enimmäisikää ja viivästyttää ikään liittyvien muutosten alkamista, on osoitettu monissa organismeissa hiivasta, matoihin ja kärpäsistä nisäkkäisiin [69–71].

Kehittyneemmillä nisäkkäillä kalorirajoitus viivästyttää monia ikääntymiseen liittyviä sairauksia, kuten syöpää, diabetesta, ateroskleroosia, sydän- ja verisuonitauteja sekä neurodegeneratiivisia sairauksia [68, 72–74]. Näiden sairauksien ilmaantuvuus kasvaa iän myötä ja ne vaikuttavat merkittävästi kuolleisuuteen. Energiansaannin rajoittaminen voi pidentää elinikää lisäämällä kehon yleistä terveydentilaa ja tarjoamalla epäspesifistä vastustuskykyä kroonisille sairauksille ja aineenvaihdunnan häiriöille [68, 72–74].

Lopullista kysymystä, miten kaloreiden rajoittaminen vaikuttaa ihmiskehoon, tutkittiin kuitenkin rajoitetulla määrällä kokeita [73–93]. Tutkimuksella CR-vaikutuksista ihmisen pitkäikäisyyteen liittyy eettisiä ja logistisia haasteita, koska kehittyneiden maiden väestön keskimääräinen elinikä on lähes 80 vuotta. Siksi ihmisen tutkimuksissa keskitytään mittaamaan kaloreiden rajoittamiseen liittyviä muutoksia, jotka voivat hidastaa ikääntymistä ja kroonisten sairauksien etenemistä, mikä pidentää elinikää.

Vakuuttavin näyttö siitä, että CR:llä voi olla positiivinen vaikutus ihmisiin, saatiin Fontanan ym. kokeilla ja kattavalla arvioinnilla kalorien saannin rajoittamisen pitkäaikaisista vaikutuksista (CALERIE Phase 1, josta puhutaa ensimmäisellä videoluennolla) ja saaduista tiedoista. Caloric Restriction Society (kuten jäljempänä keskustellaan). Fontana ym. arvioivat 6 vuoden pituisen CR-ruokavalion vaikutusta ateroskleroosin riskitekijöihin mies- ja naispuolisilla aikuisilla (ikä 35–82-vuotiaat) ja heitä verrattiin iältään vastaaviin terveisiin tyypillistä amerikkalaista ruokavaliota noudattaviin ihmisiin (kontrolliryhmä).

Seerumin kokonaiskolesterolitaso ja LDL-kolesterolitasot, kokonaiskolesterolin suhde suurtiheyksiseen lipoproteiinikolesteroliin (HDL), triglyseridit, paastoglukoosi, paastoinsuliini, C-reaktiivinen proteiini (CRP), verihiutaleista johdettu kasvutekijä AB sekä systolinen ja diastolinen verenpaine olivat kaikki selvästi pienempiä kaloreita rajoittavassa ryhmässä kuin kontrolliryhmässä.

HDL-kolesteroli oli korkeampi kaloreiden rajoittamisen jälkeen. CR-ryhmän henkilöiden lääketieteelliset tiedot osoittivat, että ennen kaloreiden rajoittamisen aloittamista heillä oli seerumin lipidi-lipoproteiini- ja verenpainetasot samalla tasolla kontrolliryhmän tyypillistä amerikkalaista ruokavaliota noudattavien henkilöiden kanssa ja samanlainen kuin vertailuryhmässä. Tutkimuksen johtopäätös oli, että pitkäaikainen kaloreiden rajoittaminen voi vähentää ateroskleroosin riskitekijöitä [74].

(a) Pitkäaikaisen 20%:n kalorirajoituksenn ja (b) 20%:n lisääntyneen energiankulutuksen (IEE) aiheuttaman rasvanpudotuksen vaikutusta sepelvaltimotaudin (CHD) riskitekijöihin arvioitiin yhden vuoden satunnaistetussa kontrolloidussa tutkimuksessa 48 ei-lihavalla mies- ja naishenkilöllä.

Kaloreiden rajoittamisen (a) ja liikunnan (b) vaikutus rasvakudoksen vähentymiseen olivat määrällisesti vastaavia. Kaloreiden rajoittaminen ja liikunta vaikuttivat yhtäläisesti myös CHD-riskitekijöiden, kuten plasman LDL-kolesterolin, kokonaiskolesteroli / HDL-suhteen ja CRP-pitoisuuden laskuun.

Tutkimuksen tekijät päättelivät, että saman suuruusluokan pitkäaikainen kaloreiden rajoitus tai liikunnan avulla saavutettava lisääntynyt energiankulutus (IEE) johtavat merkittävään ja yhtäläiseen sydänterveyden riskitekijöidenterveysmarkkereiden kohenemiseen normaalipainoisilla ja ylipainoisilla keski-ikäisillä aikuisilla [83].

Vuoden mittainen 20% kaloreita rajoittavan ruokavalion ja 20% liikunnan avulla energiankulutusta lisäävän IEE:n vaikutukset arvioitiin DNA:n ja RNA:n oksidatiivisten vaurioiden osalta valkosolu- ja virtsa-analyyseillä normaali- ja ylipainoisilla aikuisilla. Molemmat interventiot vähensivät merkittävästi sekä DNA:n että RNA:n oksidatiivisia vaurioita valkosoluissa verrattuna lähtötasoon.

Virtsasta tutkittujen DNA:n ja RNA:n oksidatiiviset vauriot eivät kuitenkaan eronneet lähtötasosta kummankaan interventio-ohjelman jälkeen. Tutkimuksen johtopäätös oli, että sekä kaloreiden rajoittaminen että IEE vähentävät systeemistä oksidatiivista stressiä, mikä heijastuu vähentyneinä DNA:n ja RNA:n hapettumisvaurioina [85].

CALERIE on kansallisen ikääntymislaitoksen käynnistämä tutkimusohjelma, johon osallistuu kolme tutkimuskeskusta. CALERIE-vaiheeseen sisältyi kolme pilottitutkimusta sen selvittämiseksi, voidaanko pitkäaikaisen (6–12 kuukautta) 20–25%:n kaloreiden rajoittamisen vaikutuksia tutkia normaalisti elävien ei-lihavien aikuisten osalta ja arvioida kaloreiden rajoittamisen adaptiivisia vasteita.

Tämän satunnaistetun kontrolloidun kliinisen tutkimuksen johtopäätökset olivat, että kaloreita rajoittavilla koehenkilöillä oli alempi ruumiinpaino, vähentynyt kehon ja sisäelinten rasvapitoisuus, pienempi aktiivisuusenergiankulutus, parantuneet paastoinsuliinipitoisuudet, parantuneet sydän- ja verisuonitautien riskiä ennustavat markkerit (LDL, HDL-suhde ja CRP), eikä muutoksia luun tiheydessä verrokkeihin verrattuna [76, 77, 83, 86, 92].

Käynnissä olevan CALERIE-tutkimuksen toisen vaiheen tavoitteena on testata, johtaako 2 vuoden vapaa 25% kaloreiden rajoittaminen samanlaisiin suotuisiin vaikutuksiin, kuin eläinkokeissa havaitut vaikutukset [91].

Caloric Restriction Societyn (CRS) jäsenet rajoittavat energian saantia olettaen, että tämä viivästyttää sekundaarisestä ikääntymisestä johtuvia sairausprosesseja ja hidastaa primaarista ikääntymistä.

Verrattuna saman ikäisiin tyypillistä amerikkalaista ruokavaliota noudattaviin amerikkalaisiin, CRS-jäsenillä (keski-ikä 50 ± 10 vuotta) oli alhaisempi painoindeksi, pienempi kehon rasvaprosentti, merkittävästi alemmat arvot seerumin kokonaiskolesterolille, LDL-kolesterolille, kokonaiskolesterolille / LDL:lle ja korkeampi HDL-kolesteroli. Myös plasman paastoinsuliinin ja glukoosin pitoisuudet olivat merkittävästi alhaisemmat kuin ikäryhmän verrokkiryhmässä.

Vasemman kammion diastolinen toiminta CRS-jäsenillä oli samanlainen kuin noin 16 vuotta nuoremmilla henkilöillä. Kaloreita rajoittava ruokavalio hiljensi kroonista tulehdusta ja tämä ilmeni plasman CRP:n ja tuumorinekroositekijän-alfan (TNFα) merkittävästi alhaisemmissa tasoissa [74, 78, 84].

Ikääntyminen liittyy sykevälivaihtelun (HRV) asteittaiseen heikkenemiseen. Tämä osoittaa sydämen autonomisen toiminnan heikkenemistä ja yleisesti heikentynyttä terveyttä.

Energian saannin rajoittaminen 30 %:lla vaikuttaa myönteisesti sydämen autonomiseen toimintaan. Kaloreita rajoittavassa ryhmässä oli alempi syke ja huomattavasti korkeammat HRV-arvot. Tutkijat arvelevat, että kaloreiden rajoittaminen palauttaa tasapainon sydämen taajuuden sympaattisen / parasympaattisen moduloinnin välillä parasympaattisen ajon eduksi, mikä lisää sykkeen vuorokausivaihtelua [93].

5. Kaloreiden rajoittamisen vaikutukset solutasolla

Suurin osa ikään liittyvistä muutoksista geeniekspressiossa on melko vähäisiä ja kudosspesifisiä [94]. Silti kudosspesifisistä eroista iän vaikutuksessa geenitranskriptioon ikääntymisnopeus kudoksissa vaikuttaa olevan koordinoitua, mikä viittaa systeemisten tekijöiden merkitykseen ikääntymisprosessin koordinoinnissa koko kehon tasolla [95].

Yleisimpiä ikään liittyviä muutoksia ovat lisääntynyt tulehdukseen ja immuunivasteisiin liittyvien geenien ilmentyminen ja mitokondrioiden (MTH) energia-aineenvaihdunnan heikkeneminen. Kaloreiden rajoittamiseen liittyvien geenien vähentynyt ilmentyminen estää suurimman osan näistä ikään liittyvistä muutoksista geeniekspressiossa [96, 97 ]. Kaloreiden rajoittamisen arvellaan vastaavan ikään liittyviä muutoksia moduloimalla mTOR-signalointireitti, IGF1 / insuliinisignalointi, adiponektiiniekspressio, DNA-metylaatio ja histoniasetylointi ja deasetylointi.

5.1. Kalorirajoituksen vaikutus adiponektiinien eritykseen

Johdonmukainen muutos energiaa rajoittavan ruokavalion aikana on kehon rasvan väheneminen (ts. valkoisen rasvakudoksen väheneminen). Valkoinen rasvakudos ei ole vain lipidien varastointipaikka, vaan sillä on tärkeä rooli verensokerin homeostaasissa, immuuni- ja tulehdusreaktioissa, jotka välittyvät adiposyytteistä peräisin olevista solusta soluun signaloivista molekyyleistä, adipokiineista (esim. adiponektiini) [98 , 99].

Siksi rasvakudos voi olla tärkeä tekijä ikääntymiseen ja kaloreiden rajoittamiseen (CR) liittyvissä aineenvaihdunnan muutoksissa. Adiponektiinin eritystä lisää vähentynyt kalorien saanti.

Adiponektiini vähentää sekä insuliinia että IGF1:tä, jotka vastaavasti vähentävät adiponektiinin synteesiä. Poikkileikkaustutkimukset osoittavat tasaisen käänteisen korrelaation plasman insuliini- ja adiponektiinipitoisuuksien välillä. Adiposyyttien (rasvasolujen) koon kasvu vähentää myös adiponektiinin eritystä [100]. Adiponektiini edistää rasvahappojen hapettumista rasvakudoksessa ja vähentää lipidien kertymistä muihin ääreiskudoksiin [101]. Kaloreiden rajoittaminen lisää veren adiponektiinipitoisuutta [102].

Ihmisillä tämä hormoni tukahduttaa aineenvaihdunnan häiriöt, jotka voivat johtaa tyypin 2 diabetekseen, lihavuuteen, ateroskleroosiin tai metaboliseen oireyhtymään [103–105]. Adiponektiini säätelee mitokondrioiden energiantuotantoa AMPK:n kautta.

AMPK:lla on monia toimintoja. Se säätelee ylöspäin (ylösreguloi) glukoosin imeytymistä soluun, rasvahappojen β-oksidaatiota, glukoosin kuljettaja 4:n (GLUT4) ilmentymistä ja mitokondrioiden energiantuotantoa.

AMPK-entsyymillä on ”energiaa tunnistava kyky”. Se se reagoi solunsisäisen AMP / ATP-suhteen vaihteluihin. Esimerkiksi ihmisen ”myo-putkien”* (myotube, en löytänyt suomennosta tälle sanalle) adiponektiinihoito johtaa AMPK:sta riippuvaan MTH-biogeneesin lisääntymiseen ja vähentää reaktiivisten happilajien (ROS) tuotantoa [106].

”Myotubes have rows of centrally located nuclei and peripheral masses of forming contractile myofilaments that soon become oriented into sarcomeres and myofibrils with restoration of cross-striations in the immature myofibers.”

AMPK säätelee MTH-energiantuotantoa aktivoimalla peroksisomiproliferaattorilla aktivoidun reseptori-gamma-koaktivaattori 1-alfan (PGC1-α) suoraan tai endoteelin typpioksidisyntaasin (eNOS) ja NAD-riippuvaisen deasetylaasi-sirtuiini1:n (eli SIRT1:n) kautta säännön 2 homologi 1) signalointireitillä.

AMPK: n lisääntyneellä aktiivisuudella kaloreita rajoittavan ruokavalion aikana on myös sydäntä suojaava kardioprotektiivinen vaikutus [102]. Lisääntynyt AMPK-aktiivisuus stimuloi myös eNOS-aktiivisuutta ja vähentää siten aivojen iskeemisen vaurion todennäköisyyttä [107]. Muita kardioprotektiivisia vaikutuksia, joita välittää lisääntynyt adiponektiinin eritys kaloreita rajoittavan ruokavalion aikana, ovat (a) TNF-α:n erittymisen estäminen ja (b) adheesiomolekyylien synteesin esto endoteelisoluissa. Jälkimmäinen estää monosyyttien kiinnittymisen endoteelisoluihin ja viivästyttää ateroskleroosin etenemistä.

Adiponektiinimoduloidut tulehdusvasteet johtuvat TNF-α :n (tuumorinekroositekijä-alfa on systokiini, joka liittyy systeemiseen tulehdukseen) erityksen estämisestä monosyytistä / makrofagista ja vaahtosolusta [108–110]; tämä voi selittää tulehdusproteiinin CRP:n pienentyneen plasmakonsentraation ihmisillä, jotka noudattavat niukasti energiaa sisältävää ruokavaliota.

5.2. Energian rajoittamisen vaikutus insuliini/IGF1-signalointiin

Insuliiniresistenssi on tunnettu ikään liittyvä aineenvaihdunnan häiriö, jonka niukkaenerginen ravinto, pätkäpaasto, paasto ja ketogeeninen ruokavalio voivat estää ja parantaa [94].

Kalorirajoituksen on raportoitu vähentävän IGF1:n pitoisuutta hiirillä, mutta ei ihmisillä [111, 112]. Insuliini ja IGF1 estävät FOXO-proteiineja* signalointireitillä, joka sisältää insuliinireseptorisubstraattiproteiineja (IRS), 3-fosfoinositidista riippuvaa proteiinikinaasia-1 (PDPK1) ja fosfatidyylinositoli-3-kinaasia ( PTDINS-3 K), siirtäen siten FOXO:t tumasta.

*FOX (forkhead box) -proteiinit ovat perhe transkriptiotekijöitä, joilla on tärkeä rooli solujen kasvuun, lisääntymiseen, erilaistumiseen ja pitkäikäisyyteen liittyvien geenien ilmentymisen säätelyssä. Monet FOX-proteiinit ovat tärkeitä alkion kehitykselle. FOX-proteiineilla on myös merkittävä transkriptiovaikutus, koska ne kykenevät sitomaan kondensoitunutta kromatiinia solujen erilaistumisprosessien aikana.

FOXO-transkriptiotekijät vaikuttavat ikääntymiseen vasteena ravinnolle ja sen energiapitoisuudelle. Tämän aineenvaihduntareitin puuttuminen nisäkkäillä liittyy lihavuuteen ja insuliiniresistenssiin [113].

Solutyyppispesifisellä tavalla nisäkkään FOXO-tekijät kontrolloivat erilaisia solutoimintoja, mukaan lukien apoptoosi (ohjattu solukuolema), solusykli, erilaistuminen ja DNA-korjaukseen ja oksidatiiviseen stressiresistenssiin liityvien geenien ilmentyminen.

Näiden toimintojen oletetaan olevan perusta FOXO-tekijöiden kyvylle hallita elinkaarta [114]. Mustan teen polyfenolit jäljittelevät insuliinin / IGF1-signalointireitin vaikutuksia FOXO1a-transkriptiotekijään [113] ja FOXO3a-geenin polymorfismit liittyivät ihmisten pitkäikäisyyteen [115].

Kaloreiden rajoittaminen stimuloi FOXO3a:n SIRT1-välitteistä deasetylaatiota, estäen tuman FOXO3a-aktiivisuuden ja estämällä Rho-assosioituneen proteiinikinaasi-1:n ilmentymisen aktivoimalla APP:n ei-amyloidogeenisen α-sekretaasin prosessoinnin ja alentamalla Aβ:n muodostumista. Tämä vähentynyt Aβ-sukupolvi liittyy Alzheimerin taudityyppisen amyloidineuropatologian ja spatiaalisen muistin heikkenemisen estämiseen hiirimallissa [114].
Niukan energiansaasnnin positiivinen vaikutus insuliini / IGF1-signalointireittiin liittyi myös ROS-tuotannon vähenemiseen MTH: ssa [116].

5.3. Energian rajoittamisen vaikutus mTOR-signalointiin

Elinkaaren säätelyä mTOR-signalointireitillä ei täysin ymmärretä. Viimeaikainen kokeellinen työ viittaa kuitenkin siihen, että sillä on keskeinen rooli solun ikääntymisprosessissa [44]. MTOR-signalointireitin estäminen rapamysiinillä pidentää maksimaalista ja mediaaniaikaa hiirillä. Tämä vaikutus havaittiin silloinkin, kun hoito aloitettiin myöhässä, mikä vastaa suunnilleen 60 vuoden ikää ihmisillä [44, 117]. Edellä mainittu, rapamysiinivälitteinen elinajan pidentyminen ei liittynyt muutoksiin sairausmalleissa tai kuolinsyissä, mikä viittaa siihen, että rapamysiini pidentää elinikää hidastamalla ikään liittyvää kudosten ja elinten rappeutumista [44, 117].

mTORC1-esto voi estää kudosten rappeutumisen ja pidentää elinikää parantamalla kantasolujen toimintaa. Esimerkiksi mTORC1-signaloinnin vähentäminen rapamysiinillä palauttaa hematopoieettisten kantasolujen itsensä uudistumisen ja hematopoieettisen toiminnan, parantaa immuniteettia ja pidentää hiirien elinikää [118].

S6 K1 ja 4E-BP1 arvellaan ikääntymisprosessia säätelevän mTORC1-signalointireitin efektoreiksi. Kuten Kapahi et al. on osoittanut, pienentynyt S6 K1 -aktiivisuus pidentää elinikää eri lajeilla, myös hiirillä [119], ja 4E-BP1:n yli-ilmentyminen pidentää elinikää rikkaissa ravinto-olosuhteissa parantamalla mitokondrioiden aktiivisuutta kärpäsillä [120].

mTORC1 voi myös vaikuttaa elinikään sellaisten mekanismien kautta, jotka eivät liity proteiinisynteesin modulointiin; esimerkiksi autofagian stimulaatio mTORC1-eston seurauksena voi edistää pitkäikäisyyttä stimuloimalla soluihin keräätyvien poikkeavien proteiinien ja vaurioituneiden organellien hajottamista ja kierrättämistä. Soluihin kerääntyy ajan myötä erilaisia solun toimintaa heikentäviä kuona-aineita [44].

Esimerkki siitä, kuinka mTORC1-aktiivisuuden säätely vaikuttaa elinikään, nähdään vanhojen hiirten maksan heikentyneenä paaston aiheuttama ketogeneesinä ja lisääntynyneenä mTORC1-aktiivisuutena [121]. Tämä heikentynyt ketogeneesi rajoittaa käytettävissä olevien energiasubstraattien määrää ääreiskudoksiin vähentäen siten organismin mahdollisuuksia selvitä ravinnon puutteen aikana. Kaloreiden rajoittaminen vähentä ikään liittyvää MTH-toiminnan heikkenemistä [69].

Kaloreiden rajoittamisen vaikutukset MTH:een voidaan välittää myös mTOR-signalointireitillä, koska mTOR on välttämätön mitokondrioiden oksidatiivisen toiminnan ylläpitämiselle [122]. Kahta S6 K1- ja 4E-BP1-riippumatonta mTOR / MTH-signalointireittiä on ehdotettu: TORC1-YY1-PGC-1α-kompleksia, [122] joka on osoitettu hiirimallissa ja TORC1-säännelty BCL-XL:n ja VDAC1:n kompleksi, joka sijaitsee mitokondrioiden ulkokalvolla [123].

5.4. DNA-metylaatio kaloreita rajoittavalla ruokavaliolla

Ikääntymisprosessiin liittyy vähitellen heikkenevä solujen homeostaasi ja geeniekspressioon muutokset [124]. Vanheneminen aiheuttaa merkittävän muutoksen 5-metyylisytosiinin (DNA-metylaation tuote) jakautumisessa genomiin ja yleisemmin vähenevä genomin DNA-metylaati [124–130].

Joidenkin spesifisten geenien promoottorialueilla on taipumus siirtyä metyloitumattomasta metyloituneeseen tilaan, mikä johtaa geenien hiljentämiseen (esim. tuumoripromoottorit tai ikääntymiseen liittyvät geenit, kuten RUNX3 ja TIG1 [129, 131]). Yhteenvetona voidaan todeta, että ikääntymisprosessi liittyy yleisesti vähentyneeseen, mutta paikallisesti lisääntyneeseen DNA-metylaatioon [132].

Kaloreiden rajoittamisen oletetaan viivästyttävän ikääntymisprosessia kääntämällä ikääntymiseen liittyvät DNA:n metylaatiomuutokset lisäämällä siten genomista vakautta [133, 134]. Kaloreiden rajoittaminen esimerkiksi nosti proto-onkogeenin RAS:n metylaatiotasoa rotamallissa verrattuna ad libitum -syötettyihin eläimiin [135].

Hypermetyloidun geenipromoottorin tunnistaa usein transkriptionaalisista repressorikomplekseista, mikä johtaa näiden onkogeenien ilmentymisen vaimentamiseen ja mikä edelleen osaltaan selittää kalorirajoituksen syöpiä ehkäisevää vaikutusta [132].

Niukkaenergisen ravinnon in vitro -solumallissa geenin promoottorissa (tuumorisuppressori ja ikääntymiseen liittyvä geeni) E2F-1:n sitoutumiskohta hypermetyloitiin. Tämä DNA:n hypermetylaatio esti E2F-1:n (aktiivisen transkriptiotekijän) pääsyn promoottoriin, mikä johti alasregulaatioon ja mikä osaltaan myötävaikuttaa kalorirajoituksen indusoimaan elinkaaren pidentymiseen [136].

Lihavuus on yleinen metabolinen häiriö. Se liittyy läheisesti kiihtyneen ikääntymisen ja lisää kuolleisuutta diabetekseen, hypertensioon, syöpiin ja sydän – ja verisuonitauteihin [137]. Siksi kaloreiden rajoittamisen ikääntymistä hidastavilla anti-aging vaikutuksilla on vaikutusta lihavuuden etenemiseen. Energiansaannin rajoittamista käytetään kliinisissä painonhallintatoimissa [138].

Lihavien ihmisten noudattaman kaloreiden rajoittamisen tutkimus osoitti, että vähäkaloriset ruokavaliot aiheuttavat DNA-metylaation muutoksia spesifisissä lokuksissa ATP10A, WT1 ja TNF-α, Näitä muutoksia voidaan käyttää kaloreiden rajoittamisen vasteen varhaisina indikaattoreina [139–141]. Lisätutkimukset ihmisillä ovat välttämättömiä niiden DNA-metylaatio-ohjattujen ehdokasgeenien joukon luonnehtimiseksi, jotka voivat olla läheisessä korrelaatiossa metabolisten reittien kanssa [132].

5.5. Histonien translaation jälkeinen muuntaminen kaloreita rajoittavalla dieetillä

5.5.1. Histoniasetylointi / deasetylointi

Histonimodifikaatiot liittyvät geeniaktivaatioon tai geenirepressioon. Histonipään sisällä olevien modifikaatioiden yhdistelmä muuttaa nukleosomien konfiguraatiota vaihtamalla kromatiinin joko tiivistetyksi (tiiviisti kiinni) tai rennoksi kokoonpanoksi (löysästi auki) [142].

Siksi histonimodifikaatiot määrittävät kromatiinin (tiukasti kiinni: löysästi auki) -suhteen ja siten geeniaktiivisuuden asteen tietyllä DNA-alueella. Esimerkiksi deasetyloidulla histonilysiinitähteellä on positiivinen varaus, joka houkuttelee negatiivisesti varautuneita DNA-säikeitä ja tuottaa kompaktin kromatiinitilan, joka liittyy transkriptiorepressioon. Vaihtoehtoisesti histoniasetylaatio poistaa positiivisen varauksen ja johtaa avoimeen kromatiinirakenteeseen, joka edistää geenitranskriptiota [132].

HDAC-aktiivisuus lisääntyy niukkaenergisen ruokavalion aikana, joten elimistön yleinen deasetylaatio voi olla sellainen suojamekanismi ravitsemusstressiä vastaan, joka voi vaikuttaa ikääntymisprosesseihin [136].

Kaloreita rajoittamalla esimerkiksi HDAC1:n lisääntynyt aktiivisuus ihmisen telomeraasikäänteiskopioijaentsyymin (hTERT) geenien promoottorialueilla, joista ensimmäinen on tuumorisuppressori monissa syövissä ja jälkimmäinen keskeinen ikääntymiseen vaikuttava telomeraasiaktiivisuuden säätelijä, johtaa näiden kahden geenin ilmentymiseen ja hyödyllisiin muutoksiin, jotka myötävaikuttavat pitkäikäisyyteen [136, 143, 144].

Useita HDAC-perheitä on tunnistettu. Näihin kuuluu mm. luokan III NAD+ -riippuvat HDAC:t, kuten Sirtuin1. Sirtuin1 (SIRT1 nisäkkäillä) ja sen ortologit muilla lajeilla (esim. Sirtuin2 hiivassa) ovat tärkeitä ikääntymisen säätelijöitä niukkaan energiansaantiin liittyvän eliniän pidentämisessä [145–149].

SIRT1:n entsymaattinen aktiivisuus riippuu NAD+ / NADH -suhteesta, joka on keskeinen indikaattori hapenkulutukselle. Tämä viittaa siten siihen, että tämä proteiini reagoi solujen metaboliseen tilaan. SIRT1:n roolia kaloreiden rajoittamisen ja eliniän pidentämisen yhtenä säätelijänä ja selittäjänä tukevat useat eläinmallit, ihmiskohteet ja in vitro solujärjestelmät [136, 145, 146, 148–154].

Kaloreiden rajoittaminen indusoi SIRT1-ekspression useissa hiirien tai rottien kudoksissa [146]. SIRT1:n oletetaan välittävän niukan energiansaannin aiheuttamia aineenvaihdunnan muutoksia ja ikääntymisen hidastumiseen liittyviä prosesseja:

(a) lisäämällä stressiresistenssiä p53:n ja FOXO:n negatiivisella säätelyllä [155–159]
(b) aloittamalla sarjan endokriinisiä vasteita, kuten adipogeneesin* vähentämisen ja insuliinin erityksen estämisen haiman β-soluista säätelemällä tärkeitä aineenvaihduntaan liittyviä geenejä, kuten peroksisomiproliferaattorilla aktivoituja G-reseptorin koaktivaattoria lα (PGC-1α) [160, 161].
* Adipogeneesi valmistaa adiposyyttejä (rasvasoluja) kantasoluista.

Vaikka SIRT1 on luokiteltu HDAC:ksi, se deasetyloi myös nonhistonisubstraatit [146, 152], kuten keskeiset transkriptiotekijät (esim. FOXO), säätelyproteiinit (esim. P53,) ja DNA:n korjausproteiinit (esim. Ku70), jotka vaikuttavat ikääntymisen hidastumiseen niukasti energiaa sisältävällä ruokavaliolla.

Esimerkiksi p53:n vähentäminen SIRT1-deasetylaatiolla voi vaikuttaa elinikään estämällä solujen apoptoosia (ohjattua kuolemaa) ja replikatiivisia vanhenemisprosesseja [155–157, 162–164]. FOXO-proteiini voidaan deasetyloida suoraan SIRT1:llä lysiinitähteissä ja sen ilmentyminen vähenee, mikä tukahduttaa FOXO-välitteisen apoptoosin [158,159].

DNA:n korjausproteiini, Ku70*, voi deasetyloida SIRT1:n, antaen sen inaktivoida proapoptoottinen tekijä BAX ja estäen siten apoptoosia [165, 166].

* Ku on dimeerinen proteiinikompleksi, joka sitoutuu DNA:n kaksoisjuosteiden päihin ja jota tarvitaan DNA:n ei-homologisen päätyliittymisreitin (NHEJ) korjaamisen. Ku on evolutiivisesti säilynyt bakteereista ihmisiin. Eukaryoottinen Ku on kahden polypeptidin, Ku70 (XRCC6) ja Ku80 (XRCC5), heterodimeeri. Kaksi Ku-alayksikköä muodostavat korin muotoisen rakenteen, joka kietoutuu DNA-kaksoisjuosteen-päähän. Monimutkaisemmissa eukaryooteissa Ku muodostaa kompleksin DNA-riippuvaisen proteiinikinaasikatalyyttisen alayksikön (DNA-PKcs) kanssa muodostaen täydellisen DNA-riippuvaisen proteiinikinaasin, DNA-PK: n. Ku:n uskotaan toimivan molekyylitelineenä, johon muut NHEJ:ssä mukana olevat proteiinit voivat sitoutua. Ku70- ja Ku80-proteiinit koostuvat kolmesta rakenteellisesta domeenista. N-terminaalinen domeeni on alfa / beeta-domeeni. Ku70:n ja Ku80:n keskeinen domeeni on DNA:ta sitova beeta-tynnyrialue.

Ku70 on sykliiniriippuvainen kinaasin estäjä, tärkeä kasvainsuppressoijaproteiini ja potentiaalisesti ikääntymisen biomarkkeri, koska sitä kertyy merkittävästi ikääntymisprosessien aikana [167–171]. Kalorirajoituksen aktivoima SIRT1 voi sitoutua suoraan promoottoriin ja vähentää sen ilmentymistä deasetylaatioefektin kautta, mikä osaltaan viivästyttää ikääntymisprosessia ja pidentää elinikää ihmissoluissa in vitro [153].

Kuten aiemmin todettiin, SIRT1 säätelee myös metaboliareiteissä mukana olevien geenien ilmentymistä. PGC-1α on keskeinen glukoneogeneesin ja rasvahappojen hapettumisen säätelijä [160, 161], ja sitä säätelevät niukan energiansaannin aikana SIRT1-välitteinen deasetylaatio, mikä lisää sen kykyä koaktivoida HNF4a:ta (transkriptiotekijä, joka edistää glukoneogeenisten geenien ilmentymistä ja tukahduttaa geenit mukana glykolyysissä) [147, 152]. Yhteenvetona voidaan todeta, että SIRT1:llä on keskeinen rooli epigeneettisten ja geneettisten reittien keskinäisessä viestinnässä [132].

5.5.2. Histonien metylaatio

Toisin kuin histoniasetylaatio, joka liittyy avoimeen kromatiinitilaan ja sen jälkeiseen geeniaktivaatioon, eri tavoin metyloiduilla histonimuodoilla on spesifit assosiaatiomallit spesifisten proteiinien kanssa. Ne tunnistavat nämä markkerit ja johtavat siten geenien hiljentämiseen tai aktivaatioon [132].

Histonilysiinitähteet voivat olla mono-, di- tai tri-metyloituja, mikä johtaa joko geenin aktivaatioon tai repressioon riippuen modifioidusta lysiinitähteestä [172, 173].

Niukka energiansaanti indusoi histonimetylaatiomodifikaatiot, kuten di- tai tri-metyloitu histoni H3 lysiinitähteissä 3 ja 4, säädellen keskeisten ikääntymiseen liittyvien geenien ja hTERT:n ilmentymistä ja myötävaikuttivat siten kalorirajoituksen aiheuttamaan ihmissolujen elinikän pidentymiseen [136, 153].

5.6. Kaloreiden rajoittamisen vaikutus miRNA-ekspressioon

miRNA-ilmentymismallit muuttuvat iän myötä. Jotkut miRNA:t ovat alasreguloituja ja toiset ylössäänteltyjä. Ihmisen veren perifeeristen mononukleaaristen solujen 800 miRNA:n ilmentymisprofiilianalyysi osoitti, että suurin osa miRNA:ista väheni määrällisesti, mukaan lukien syövän kehitykseen osallistuvat miRNA:t [174].

Koska ihmisen kasvaimiin liittyy usein miRNA:iden yleinen alasregulointi, raportoitu ikään liittyvä yleinen miRNA:n väheneminen voi lisätä solumuunnoksen ja kasvaimen syntymisen riskiä ja siten vähentää elinikää. Näiden jälkimmäisten miRNA:iden väheneminen iäkkäillä liittyi myös kohdeproteiinien fosfatidyylinositoli-3-kinaasin, kantasolutekijäreseptorin (c-KIT) ja histoni H2A:n lisääntyneeseen ilmentymiseen [174].

Eläintutkimukset tukevat myös miRNA:iden roolia ikääntymisessä. Esimerkiksi kontrolleihin verrattuna C. elegans -mutaatioissa, joissa on poistettu miRNA-239, elinkaari on huomattavasti pidentynyt, kun taas C. elegans -mutaatioissa, joissa on poistettu miRNA-71, miRNA-238 ja miRNA-246, tutkittavalla eläimellä havaitaan merkittävästi lyhyempi elinikä [ 175].

Ames-kääpiöhiiren pitkäikäisyys – johtuen lisääntyneestä insuliiniherkkyydestä, lisääntyneestä stressiresistenssistä ja vähentyneestä kasvaintiheydestä IGF-1-aktiivisuuden vähenemisen seurauksena – liittyi maksan miRNA-27a-suppression säätelyproteiineihin, ornitiinidekarboksylaasiin ja spermidiinisyntaasiin [176] .

Energiansaannin rajoittaminen muuttaa miRNA-ilmentymisprofiilia. Hiirillä, jotka saivat 70% normaalista energiasta 6 kuukauden ajan, kaloreiden rajoittaminen lisäsi miR-203:n ilmentymistä. Muutos kohdistuu kaveolin-1:n ja p63:n määriin, jotka vaikuttavat syöpäsolujen kasvuun ja invasiiviseen potentiaaliin [177]. Tutkijat päättelivät tästä, että kaloreiden rajoittaminen voi vähentää rintasyövän ilmaantuvuutta, etenemistä ja etäpesäkkeiden kehittymistä, mikä lisää odotettavissa olevia elinvuosia.

Kalorirajoitettujen hiirten aivot osoittivat miRNA-181a:n, miRNA-30e:n ja miRNA-34a:n vähentymistä, kun kaloreiden rajoittaminen oli jatkunut 8 kuukautta energiansaannin ollessa 60 % normaalista. Samalla BCL2-ilmentymisen havaittiin lisääntyvän ja BAX-ilmentymisen vähenevän, mikä vaikutti pienempiin kaspaasien 9 ja -3 aktiivisuuksiin. Kaspaasien 9 ja 3 aktiivisuuden heikkeneminen liittyy alentuneeseen apoptoosinopeuteen [178]. BAX- ja kaspaasi-3 -aktiivisuus lisääntyvät myös Alzheimerin ja Parkinsonin taudeissa [179-183].

6. Kalorirajoitusta jäljittelevät ruokavaliot

Koska pitkäaikainen kaloreiden saannin rajoittaminen on tarpeen koeolosuhteissa havaittujen myönteisten terveys- ja pitkäikäisyysvaikutusten aikaansaamiseksi, on etsitty vaihtoehtoja, jotka voisivat tuottaa kaloreiden rajoittamisen positiivisia vaikutuksia ilman ravinnon saantiin liittyviä rajoituksia.

Ihanteellisen ruokavalion tulisi:

(a) saada aikaan samanlaisia aineenvaihduta-, hormonaalisia ja fysiologisia vaikutuksia kuin kaloreiden rajoittaminen

(b) sen ei tulisi edellyttää merkittävää vähennystä pitkäaikaisessa ruoan saannissa

(c) sen pitäisi aktivoida energiansaannin rajoittamisen n kaltaiset stressivastereitit

(d) pidentää elinikää sekä vähentää tai viivästyttää ikään liittyvien sairauksien puhkeamista [184].

Tällaisen ruokavalion löytämiseksi kansallinen ikääntymisinstituutti perusti interventioiden testausohjelman testatakseen aineita, joiden ennustetaan pidentävän elinikää ja viivästyttävän sairauksia ja toimintahäiriöitä [185–189].

6.1. Kaloreiden rajoittaminen ja liikunta

Urosrottia suositaan eläinkokeissa joissa tutkitaan voiko liikunta yhdessä kaloreita rajoittavan ruokavalion kanssa toisintaa pelkästään kaloreita rajoittavan ruokavalion tuottamat edut. Kysymys on sikäli aiheellinen, etä tutkittavien rottien energiansaantia ei lisätä kompensoimaan lisääntyneen kulutuksen luomaa energiavajetta[ 180].

Eräissä tutkimuksissa on havaittu, että liikunnan ja kaloreiden rajoittamisen yhdistämisellä ei ole terveyttä edistäviä etuja, jotka ylittävät pelkällä kaloreiden rajoittamisella saavutetut edut [111, 190–192]. Näiden tutkimusten mukaan liikunta ei tuo lisäarvoa kaloreiden rajoittamista koituville fysiologisille hyödyille. Oksidatiivisen stressin tasoissa tai tulehdusta edistävien proteiinien pitoisuuksissa ei tapahtunut merkittävää muutosta liikkumaan päässeissä eläimissä, joiden energiansaantia oli laskettu 80% normaalista [191, 192]. Liikunnalla ei myöskään ollut vaikutusta eläimen maksimaaliseen elinaikaan [190].

Toisaalta, liikunnan ja vähäkalorisen ravinnon yhdistelmä pienensi hiljaista tulehdusta ilmentäviä CRP-tasoja enemmän kuin pelkkä kaloreiden rajoittaminen [193] ja pienensi sydänlihaksen nekroosin että sydänlihaksen iskemian kehittymisen riskiä [194, 195].

Useissa kaloreita rajoittavien ja liikuntaa lisäävien CE-tutkimusten ihmismalleissa on selvitetty 25 % kokonaiskaloripitoisuuden vähentämisen vaikutuksia terveyteen, kun 12,5% kaloreiden vähennyksestä tuli liikunnan lisäämästä energian kulutuksesta ja toinen 12,5% ravinnon pienemmästä energiapitoisuudesta.

Useimmissa tutkimuksissa paastoinsuliinin tasoissa, DNA-vaurioissa, lihasten mitokondrioiden geeniekspressioissa, triglyseriditasoissa ja maksan lipidipitoisuudessa ei havaittu merkittäviä eroja pelkän energian rajoittamisen ja energian rajoittamisen ja liikunnan yhdistämisen välillä [76, 196–198]. Poikkeuksena olivat kaksi tutkimusta, joissa raportoitiin sekä diastolisen verenpaineen että LDL-kolesterolin laskua edelleen, kun kaloreiden rajoittamisen yhdistämistä liikuntaan verrattiin pelkkään kaloreiden rajoittamiseen [198, 199].

Kaloreiden rajoittamisen ja liikunnan yhdistämisen on osoitettu lisäävän luun mineraalitiheyttä reisiluun kaulassa ja vähentävän tulehduksellista biomarkkeri sTNFR1:tä ylipainoisilla postmenopausaalisilla naisilla [200].

Suurin etu kaloreiden rajoittamisen yhdistämisestä liikuntaan verrattuna pelkästään kaloreiden rajoittamiseen on se, että ihmisen voi olla helpompaa noudattaa hoito-ohjelmaa, jossa kokonaisenergian lasku (ts. kalorien vähennys) jaetaan liikunnan lisäämän energian kulutuksen ja kalorien rajoitusten välillä [201].

6.2. Ruokavalion makroravinteiden rajoittaminen (DR)

Ruokavalion rajoittaminen (DR) viittaa proteiinin, rasvan ja hiilihydraattien välisten saantisuhteiden muuttamiseen joko vähentämällä tai vähentämättä kokonaiskalorien saantia. Hiilihydraattien ja rasvojen rajoituksista on saatu hyvin erilaisia tutkimustuloksia hyvin erilaisilla saantimäärillä. Tämän mukaan rasvan tai hiilihydraattien rajoittaminen ei vähennä reaktiivisten happilajien tuotantoa tai oksidaatioon perustuvia DNA-vaurioita [202–208].

Eläinmallissa proteiinin rajoittaminen näyttää olevan vaihtoehto kaloreiden rajoittamiselle. Proteiinin rajoittamisen raportoitiin lisäävän jyrsijöiden maksimaalista elinikää 20% [206]. DR-proteiinin elinikää pidentävät edut johtuivat metioniinirajoituksesta ruokavaliossa [209–215]. Esimerkiksi 40-prosenttisen metioniinirajoituksen on raportoitu vähentävän sekä mitokondrioiden reaktiivisten happilajien muodostumista että oksidatiivisia vaurioita mitokondrioiden DNA:ssa [216, 217].

Todisteet, jotka tukevat metioniinirajoituksen ja pidemmän eliniän välistä yhteyttä, sisältävät:

(a) käänteisen suhteen metioniinipitoisuuden ja nisäkkäiden maksimaalisen eliniän välillä [218]

(b) metioniini lisää LDL-kolesterolin hapettumista [219]

(c) lisääntynyt metioniinin saanti lisää plasman homokysteiinipitoisuuksia ja siten sydän- ja verisuonitautien ja kuolleisuuden riskiä [219].

On myös osoitettu, että kaikkien ravinnon aminohappojen rajoittaminen 40% metioniinia lukuun ottamatta ei vähennä reaktiivisten happilajien muodostumista tai oksidatiivisia vaurioita mitokondrioiden DNA:ssa [220]. Eräs ongelma voi siis olla liian runsas metioniinin saanti.

Yhteenvetona eläinkokeet viittaavat siihen, että noin puolet kaloreiden rajoittamisen eliniän pidentämisvaikutuksesta voidaan katsoa johtuvan metioniinirajoituksesta [206]. Siksi tutkimusten jatkaminen ihmisillä on perusteltua, koska metioniinin rajoittaminen on toteutettavissa ja hyvin siedetty [221].

6.3. Pätkäpaasto

Pätkäpaasto (ADF) vuorottelee 24 tunnin ad libitum -saannin jaksoja kalorien saannin osittaisella tai täydellisellä rajoittamisella. ADF ei välttämättä vähennä energian kokonaissaantia tai painoa, koska henkilöt voivat kompensoida alentuneen energiansaannin syömällä enemmän paasto-aikojen ulkopuolella [222, 223].

ADF pidensi koe-eläinten elinikää eläinkokeissa [223–225]. Jotkut tutkijat pitivät ADF:n vaikutusta elinajan pidentymiseen seurauksena aivoperäisen neurotrofisen tekijän samanaikaisen lisääntymisen kanssa [215].

ADF myös hillitsi tai esti ikään liittyvien sairausprosessien, kuten sydän- ja verisuonitautien, munuaissairauksien, syöpien ja diabeteksen kehittymistä [222, 223, 225–230].

Ihmiskokeissa on osoitettu, että pätkäpaasto on toteutettavissa, turvallinen ja hyvin siedetty ruokavalio myös ihmisillä [231]. ADF-ihmiskokeiden alustavia tuloksia [231–233] ei kuitenkaan voida verrata kaloreita rajoittaviin ihmiskokeisiin, koska ADF-kokeiden jaksot ovat olleet suhteellisen lyhyitä (muutamasta päivästä 20 viikkoon) verrattuna kalorirajoitus-kokeisiin (6 kuukaudesta 6 vuoteen) [74, 83, 85].

Kestoltaan jopa hyvin lyhyissä paastotutkimuksissa havaittiin joitain potentiaalisesti hyödyllisiä vaikutuksia, kuten: paastoinsuliinin lasku ilman eroja paastoglukoosissa [231] ja parantunut keuhkoputkien vaste lääkkeille [233].

On raportoitu, että normaalipainoisilla keski-ikäisillä koehenkilöillä, 2 kuukauden pituisen pätkäpaaston vaikutuksesta perifeerisen veren mononukleaariset solut tuottivat vähemmän tulehduksellisia sytokiineja [234].

Tämän katsauksen kirjoittamisen aikaan pätkäpaaston vaikutuksista veren lipideihin ja oksidatiiviselle stressille ominaisten biomarkkereiden tasoihin ei vielä ollut kovinkaan paljon tietoa.

6.4. Resveratroli

Resveratroli (RSV) on kasviperäinen mm. mustikoiden, karpaloiden, viinimarjojen ja punaviinin sisältämä polyfenoli, joka on eniten tutkittu kalorirajoitusta jäljittelevä aine.

Resveratrolin on osoitettu aktivoivan Sir2:n (SIRT1-homologi) [235] ja jäljittelemällä siten kaloreiden rajoittamisen etuja rajoittamatta kalorien saantia. Resveratroli on lisännyt hiivan, matojen, kärpästen ja kalojen elinikää [235–238].

Oletus, että Sir2:n aktivaatio suoralla sitoutumisella RSV:n kanssa vaikuttaisi elinajan pidentymiseen, on kuitenkin kyseenalaistettu useillaa organismeillaa tehdyissä kokeissa [239–248].

Resveratrolin tiedetään vaikuttavan laajasti nisäkässoluissa, kuten AMP-aktivoidun proteiinikinaasin (AMPK) aktivaatiossa. AMPK on mukana samoissa aineenvaihduntareiteissä kuin SIRT1, joka fosforyloi suoraan PGC-1α:n. [249, 250].

SIRT1 voi aktivoida kinaasin ylävirtaan AMPK:sta, mutta tämä reitti ei näytä olevan tarpeen resveratrolin AMPK-stimulaatiossa [251]. Äskettäin raportoitiin, että SIRT1 on välttämätön kohtuullisille resveratroliannoksille AMPK:n stimuloimiseksi ja mitokondrioiden toiminnan parantamiseksi in vitro ja in vivo [252]. Vaikka resveratroli-välitteisten kalorirajoituksen kaltaisten vaikutusten mekanismia ei täysin ymmärretä, näyttää siltä, että resveratroli tuottaa samanlaisen transkriptiovasteen kuin kaloreiden rajoittaminen [253]. Resveratrolia sisältävä ruunsaasti rasvaa sisältävän ruokavalio on tuottanut terveys- että pitkäikäisyyshyötyjä hiirikokeissa [249].

Resveratrolin käytön myönteiset vaikutukset lihavilla hiirillä olivat lisääntynyt insuliiniherkkyys, parantunut motorinen koordinaatio ja harmaakaihin esiintyvyyden väheneminen [253, 254]. Aikuisten hiirten elinajanodote ei noussut merkittävästi, kun resveratrolia lisättiin normaaliin ruokavalioon [254, 255]. Tämä havainto tarkoittaa, että resveratroli ei yksin tuota samoja hyötyjä kuin kaloreiden rajoittaminen [256]. Vuoden resveratroli-hoito lisäsi lepoaineenvaihdunnan nopeutta ja päivittäistä kokonaisenergiankulutusta. Resveratrolin pitkäaikainen käyttö on tehokasta ja turvallista [257, 258]. Kaloreiden rajoittaminen samassa eläinmallissa ja koeprotokollassa, vähensi päivittäistä kokonaisenergiankulutusta, mutta ei muuttanut lepoaineenvaihdunnan nopeutta [258].

Resveratrolin vaikutuksista ihmisiin on tehty vain muutama tutkimus, mutta tulokset ovat rohkaisevia. 0,1 mmol/l resveratrolin käyttö ihmisen mesenkymaalisten kantasolujen viljelmissä edistää solujen uudistumista estämällä solujen vanhenemista; suuremmilla pitoisuuksilla (5 mmol/l tai enemmän) resveratroli estää solujen uudistumista lisäämällä ikääntymisnopeutta, solujen kaksinkertaistumisaikaa ja S-vaiheen solusyklin pysäyttämistä [259].

Ihmisen peritoneaalisissa mesoteliaalisoluissa resveratroli viivästyttää replikatiivista vanhenemista mobilisoimalla antioksidatiivisia ja DNA-korjausmekanismeja solun tuma-antigeenin ilmentymisen lisääntymisellä, solujen lisääntyneellä fraktiolla solusyklin S-vaiheessa, lisääntyneellä solunjakautumisten määrällä, ikääntymiseen liittyvän β-galaktosidaasin vähentyneellä ilmentymisellä ja aktiivisuudella, mitokondrioiden säädellyn biogeneesin, superoksididismutaasin lisääntyneen aktiivisuuden ja vähentyneiden DNA-vaurioiden perusteella [260].

Resveratroli ja sen metaboliitit kertyvät ihmissoluihin in vivo kudosspesifisellä ja annosriippuvalla tavalla [261]. Kuuden viikon täydennysohjelma resveratrolilla tukahdutti tumatekijä kappa B:n (NF-kB) sitoutumisen, vähensi vapaiden happiradikaalien (ROS) muodostumista ja laski TNFα :n ja interleukiini-6:n (IL-6) tasoja yksitumaisissa soluissa. TNFα :n ja CRP: n pitoisuudet plasmassa laskivat myös merkittävästi. Resveratroli ei kuitenkaan vaikuttanut merkittävästi paasto-kolesterolin (kokonais-, LDL- ja HDL-pitoisuuksien), triglyseridien tai leptiinin pitoisuuksiin verrattuna terveiden plaseboa saaneiden henkilöiden kontrolliryhmään [262].

Runsasrasvainen ja hiilihydraattipitoinen ruokavalio aiheuttavat ja ylläpitävät tulehdusta ja oksidatiivista stressiä [263]. Terveillä ihmisillä, joiden ravinto sisältää runsaasti rasvaa ja hiilihydraatteja, resveratrolia ja muita rypäleiden sisältämien polyfenoleja sisältävä lisäaine lisäsi merkittävästi mRNA:n ilmentymistä NAD (P) H-dehydrogenaasi [kinoni] 1:n ja glutationin S-transferaasi-p1-geeneissä – mikä viittaa vahvaan antioksidanttivaikutukseen. Resveratroli lisäravinteena hillitsi aterian jälkeistä plasman endotoksiinia ja lipoproteiinia sitovan proteiinin pitoisuuden kasvua ja heikensi TLR-4:n, CD14:n, SOCS-3:n, IL-1β:n ja KEAP-1:n ilmentymistä [264].

Tutkimusten perusteella resveratroli vähentää runsaasti rasvaa ja runsaasti hiilihydraatteja sisältävän ravinnon aiheuttamia oksidatiivisia ja tulehduksellisia reaktioita, ja se voi vähentää ateroskleroosin ja diabeteksen riskiä [261].

Alustavien tulosten mukaan resveratroli parantaa myös glukoositoleranssia ja insuliiniherkkyyttä [265]. Parantunut insuliiniherkkyys johtui vähentyneestä oksidatiivisesta stressistä [265]. Syy-yhteys punaviinin ja rypälemehun kulutuksen ja sydän- ja verisuonitautien riskitekijöiden (verenkierron heikkeneminen, lisääntynyt oksidatiivinen stressi ja tulehdus) välillä on hyvin tunnettu [266–269].

Resveratroli säätelee eNOS:ta, mikä edistää typpioksidivälitteistä vasodilataatiota ja lisääntynyttä verenkiertoa [270–272]. Tämä vaikuttaa esimerkiksi erektioon. Resveratroli vaimentaa ihmisen verihiutaleiden hemostaasiin liittyvää aktivaatiota [273]. Lisääntynyt valtimoverenkierto mitattiin yhden resveratroli-boluksen jälkeen aivoissa ja käsivarressa [274, 275].

Lisääntynyt aivoverenkierto resveratroli-hoidon jälkeen ei kuitenkaan liittynyt lisääntyneeseen kognitiiviseen toimintaan [274]. Parantunut insuliiniresistenssi, valtimoverenkierto ja vähentynyt oksidatiivinen stressi ja tulehdus liittyvät resveratrolin lyhytaikaiseen käyttöön, mutta pitkäin aikavälin vaikutuksista ihmisiin ei ole tietoja [261]. Yhteenvetona voidaan todeta, että lisätutkimuksia tarvitaan resvetroli-välitteisten vaikutusten biokemiallisten reittien selventämiseksi ja sen pitkäaikaisten vaikutusten selvittämiseksi ihmisillä [276].

6.5. Rapamysiini

Rapamysiini (RAP) on antibiootti ja TOR:n (rapamysiinikohde) signaloinnin estäjä soluissa, joilla on tunnettuja immunosuppressiivisia ja antiproliferatiivisia vaikutuksia [277].

TOR on solujen ravinteiden signaloinnin välittäjä, ja sen uskotaan vaikuttavan ikääntymiseen ja kalorirajoitus-vasteeseen (ks. Kohta 6.3). Kun rapamysiiniä annettiin hiirille noin 20 kuukauden iässä, uros- ja naaraspuolisten hiirten keskimääräinen elinaika lisääntyi merkittävästi, noin 10%.

Rapamysiinin vaikutuksen voidaa ainakin osittain välittää kalorirajoitus-vasteesta riippumattomilla biokemiallisilla reiteillä [117]. Useiden rapamysiini-aktivoitujen ikääntymistä hidastavien biokemiallisten reittien olemassaolo on havaittu myös kärpäsissä.

Mekanismi tälle rapamysiinien elinaikaa lisäävien vaikutusten taustalla johtuu TOR-reitin TORC1-haarasta, autofagian ja translaation muutoksilla. Rapamysiini voi kuitenkin vaikuttaa suotuisasti elinaikaan kaloreiden rajoittamisesta riippumatta, mikä viittaa lisämekanismeihin eliniän pidentämiseksi [278].

Rapamysiini esti eläintutkimuksissa ikään liittyvää painonnousua, laski ikääntymisnopeutta, pidensi elinikää ja viivästytti spontaania syöpää [279]. Rapamysiinillä hoidetut aikuiset hiiret suoriutuivat huomattavasti paremmin spatiaalista oppimista ja muistia mittaavista tehtävistä, kuin saman ikäiset verrokit. Rapamysiini ei kuitenkaan parantanut kognitiota aikuisilla hiirillä, joilla oli ennestään, iästä riippuva oppimis. ja muistivaje. Rapamysiinivälitteinen oppimisen ja muistin paraneminen liittyi IL-1β-tasojen laskuun ja NMDA-signaloinnin lisääntymiseen. [280]. Koska rapamysiiniä käytetään immunosuppressiivisena aineena, sen merkitystä ihmisten pitkäikäisyydelle ei ole vielä vahvistettu [117].

7. Ruokavalio ja ikääntyvä väestö

Tärkeä väestörakenteen kehityssuuntaus kehittyneissä maissa on yli 65-vuotiaiden väestön prosentuaalisen osuuden asteittainen kasvu ja työikäisen väestön samanaikainen väheneminen.

Tämän demografisen suuntauksen terveysvaikutukset ovat siirtyminen akuuteista kroonisiin ja ikään liittyviin sairauksiin (esim. Alzheimerin tauti, osteoporoosi, sydän- ja verisuonitaudit ja syöpä), lisääntyvät terveyskustannukset ja kasvava taloudellinen taakka yhteiskunnalle ja yksilölle [281– 283].

Siksi kaikilla toimenpiteillä, jotka voivat viivästyttää kroonisten ja ikään liittyvien sairauksien etenemistä, voi olla merkittävä vaikutus paitsi yksilön elämänlaatuun myös yhteiskunnan kykyyn selviytyä ikääntymisen terveydellisistä ja taloudellisista seurauksista.

On olemassa jatkuvasti lisääntyvää tutkimusnäyttöä, jonka mukaan ravinnon energiapitoisuuden vähentäminen, pätkäpaasto ja ketogeeninen ruokavalio parantavat useimpia terveysmarkkereita verenpaineesta tulehdustekijöihin ja verensokerista insuliinipitoisuuteen ja lipiditasoihin.

Tutkimukset viittaavat siihen, että kaloreiden rajoittaminen voi vähentää merkittävästi ikään liittyvien muutosten määrää ihmisillä [73–93]. Poikkeuksellisen pitkäikäisillä ihmisillä tehdyt tutkimukset viittaavat siihen, että pitkäikäisyys ja ikään liittyvien sairauksien vähäinen esiintyvyys suvussa mahdollistavat huomattavasti pidemmän eliniän jopa silloin, kun tutkittavat olivat lihavia, tupakoivia tai eivät harrasta säännöllistä liikuntaa. Ihmisten poikkeuksellinen pitkäikäisyys voi olla enemmän riippuvainen genetiikasta kuin elämäntavasta [284–286].

8. Päätelmä

Kalorirajoitus tai kalorirajoitusta jäljittelevät ruokailutottumukset aiheuttavat koordinoituja adaptiivisia stressivasteita solujen ja koko organismin tasolla moduloimalla adiponektiinin, insuliini / IGF1, AMPK, mTOR, FOXO, p53 ja sirtuiinien signalointireittejä [287].

Sirtuiineilla voi olla tärkeä rooli epigeneettisten ja geneettisten reittien välisessä vuorovaikutuksessa [132]. Näiden adaptiivisten stressivasteiden aktivaatio voi estää apoptoosin alkamisen sisäisellä reitillä [288]. Lisäksi se voi stimuloida autofagiaa tarjoamaan substraatteja energiantuotannolle ja anabolisille prosesseille, jotka liittyvät solujen uudistumiseen ja antioksidanttien ja lämpöshokkiproteiinien synteesiin [287].

Suuri joukko kokeellisia todisteita osoittaa, että näiden mukautuvien stressivasteiden kokonaisvaikutuksena on lisääntynyt vastustuskyky stressille, mikä viivästyttää ikään liittyviä muutoksia ja edistää pitkäikäisyyttä.

Tämä on pitkä artikkeli. Pyydän anteeksi kirjoitus- ja käännösvirheitä. Artikkeli on vertaisarvioitu ja tieteellisessä julkaisussa julkaistu, joten molekyylibiologiset mekanismit ovat uskoakseni käännösvirheitä paitsi oikein. Ruokavalioiden suhteen juttu ei ole täysin ajan tasalla. Tieto ketogeenisen ruokavalion, paaston ja pätkäpaaston vastaavista molekyylibiologisista hyödyistä on lisääntynyt kuluneiden 10 vuoden aikana.

Lyhenteet

4E-BP1: Eukaryotic translation initiation factor 4E binding protein 1
ADF: Alternate day fasting
AGC: Acronym of the protein kinase A, G, and C families
AKT: Serine-threonine-specific proteinkinase also known as protein kinase B (PKB)
AMP: Adenosine monophosphate
AMPK: 5′ adenosine monophosphate-activated protein kinase
ATP: Adenosine-5′-triphosphate
ATP10A: Probable phospholipid-transporting ATPase VA also known as ATPase class V type 10A or aminophospholipid translocase VA gene
Aβ: Amyloid beta
B12 vitamin: Cobalamin
BAX: Bcl-2 associated X protein
BCL-XL: B-cell lymphoma-extra large, a transmembrane mitochondrial protein
CALERIE: Comprehensive Assessment of Long-Term Effects of Reducing Calorie Intake
CD14: Cluster of differentiation 14 protein also known as CD14 protein
CE: Exercise in combination with CR
CHD: Coronary heart disease
CpG dinucleotide: Cytosine-phosphate-guanine dinucleotide
CR: Caloric restriction or calorie restriction diet
CRM: Calorie restriction mimetic
CRP: C-reactive protein
CRS: Caloric Restriction Society
DNA: Deoxyribonucleic acid
DNMT: DNA methyltransferase
DR: Dietary restriction
E2F-1: Transcription factor E2F1 protein
EGCG: Epigallocatechin-3-gallate
eNOS: Endothelial nitric oxide synthase
FOXO: O subclass of the forkhead family of transcription factors; known FOXO family members are FOXO1, FOXO3, FOXO4 and FOXO6
GLUT4: Glucose transporter 4
GTP: Guanosine-5′-triphosphate
GTPase: Enzyme that hydrolyses GTP
HAT(s): Histone acetlytransferase(s)
HDAC(s): Histone deacetylase(s)
HDAC(s)s: Histone deacetylase(s)
HDL: High-density lipoprotein
HDM(s): Histone demethylase(s)
hmdC: 5-hyd0072oxymethyl-2′-deoxycytidine
HNF4α: Hepatocyte nuclear factor 4 α also known as nuclear receptor subfamily 2, group A, member 1
HMT(s): Histone methyltransferase(s)
HNF4α: Hepatocyte nuclear factor 4α
HRV: Heart-rate-variability
: Gene encoding human telomerase reverse transcriptase a catalytic subunit of the enzymetelomerase
IEE: Increased energy expenditure
IGF1: Insulin-like growth factor 1 also known as somatomedin C
IL-1β: Human interleukin 1β
c-KIT: Proto-oncogene c-Kit also known as mast/stem cell growth factor receptor, also known as tyrosine-protein kinase Kit or CD117
IRS: Insulin receptor substrate
KEAP-1: Kelch-like ECH-associated protein 1
Ku70: Protein encoded in humans by the gene
LBK1: Tumor suppressor kinase enzyme that activates AMPK
LDL: Low-density lipoprotein
miRNA(s): microRNA(s)
mRNA: Messenger RNA
mSin1: Mammalian stress-activated protein kinase-interacting protein
MTH: Mitochondrion, mitochondrial
mTOR: Mammalian target of rapamycin
mTORC1: Mammalian target of rapamycin complex 1
mTORC2: Mammalian target of rapamycin complex 2
Nicotinamide adenine dinucleotide
NADH: NADH dehydrogenase
NF-
B: nuclear factor kappa B
NIP7: 60S ribosome subunit biogenesis protein NIP7 homolog
NMDA: N-Methyl-D-aspartic acid or N-Methyl-D-aspartate
: Gene encoding the tumor suppressor protein cyclin-dependent kinase inhibitor 2A or CDKN2A or multiple tumor suppressor 1 (MTS-1)
PDPK1: 3-phosphoinositide-dependent protein kinase-1
PGC1-α: Peroxisome proliferator-activated receptor G co-activator 1α
p53: Tumor suppressor protein p53 also known as tumor protein 53
p47phox: Subunit of NADPH oxidase, that has to be phosphorilated for the activation of NADPH oxidase
PKA: Protein kinase A
PKC: Protein kinase C
PKG: Protein kinase G, or cGMP-dependent protein kinase
PtdIns-3K: Phosphatidylinositol 3-kinase
RAP: Rapamycin
RAPTOR: Regulatory-associated protein of mTOR
RHEB: RAS homolog enriched in brain protein, binds GTP
RNA: Ribonucleic acid
ROS: Reactive oxygen species
RSV: Resveratrol
RAS: Protein superfamily of small GTPases
RTG1: Retrograde regulation protein 1
RUNX3: Gene encoding runt-related transcription factor 3
S6 K1: Ribosomal protein S6 kinase
-1
SGK1: Serum-and glucocorticoid-regulated kinase; a serine/threonine protein kinase
SIRT1: NAD-dependent-deacetylase sirtuin1 also known as silent mating type information regulation 2 homolog 1
SOCS-3: Suppressor of cytokine signaling 3
sTNRF1: Soluble tumor necrosis factor receptor 1
TLR-4: Toll-like receptor 4
TNFα: Tumor necrosis factor α
TOR: Target of rapamycin
TSC1: Tuberous sclerosis protein 1 also known as hamartin
TSC2: Tuberous sclerosis protein 2 also known as tuberin
VDAC1: Voltage-dependent anion-selective channel protein 1
TIG1: Tazarotene-induced gene-1
WT1: Gene encoding Wilms tumor protein
YY1: Transcriptional repressor protein YY1.


References

  1. J. A. Mckay and J. C. Mathers, “Diet induced epigenetic changes and their implications for health,” Acta Physiologica, vol. 202, no. 2, pp. 103–118, 2011. View at: Publisher Site | Google Scholar
  2. “Diet, nutrition and the prevention of chronic diseases,” World Health Organization Technical Report Series, vol. 916, no. 1–8, pp. 1–149, 2003. View at: Google Scholar
  3. D. J. P. Barker and C. Osmond, “Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales,” The Lancet, vol. 1, no. 8489, pp. 1077–1081, 1986. View at: Google Scholar
  4. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” The American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at: Google Scholar
  5. C. Osmond, D. J. P. Barker, P. D. Winter, C. H. D. Fall, and S. J. Simmonds, “Early growth and death from cardiovascular disease in women,” British Medical Journal, vol. 307, no. 6918, pp. 1519–1524, 1993. View at: Google Scholar
  6. C. N. Hales and D. J. P. Barker, “Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis,” Diabetologia, vol. 35, no. 7, pp. 595–601, 1992. View at: Publisher Site | Google Scholar
  7. C. Cooper, C. Fall, P. Egger, R. Hobbs, R. Eastell, and D. Barker, “Growth in infancy and bone mass in later life,” Annals of the Rheumatic Diseases, vol. 56, no. 1, pp. 17–21, 1997. View at: Google Scholar
  8. S. E. Ozanne and C. N. Hales, “Lifespan: catch-up growth and obesity in male mice,” Nature, vol. 427, no. 6973, pp. 411–412, 2004. View at: Google Scholar
  9. V. M. Vehaskari, “Prenatal programming of kidney disease,” Current Opinion in Pediatrics, vol. 22, no. 2, pp. 176–182, 2010. View at: Publisher Site | Google Scholar
  10. A. Gabory, L. Attig, and C. Junien, “Sexual dimorphism in environmental epigenetic programming,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 8–18, 2009. View at: Publisher Site | Google Scholar
  11. A. Bird, “DNA methylation patterns and epigenetic memory,” Genes & Development, vol. 16, no. 1, pp. 6–21, 2002. View at: Publisher Site | Google Scholar
  12. H. Wu, J. Tao, and Y. E. Sun, “Regulation and function of mammalian DNA methylation patterns: a genomic perspective,” Briefings in Functional Genomics, vol. 11, no. 3, pp. 240–250, 2012. View at: Google Scholar
  13. X. Zou, W. Ma, I. A. Solov’yov, C. Chipot, and K. Schulten, “Recognition of methylated DNA through methyl-CpG binding domain proteins,” Nucleic Acids Research, vol. 40, no. 6, pp. 2747–2758, 2012. View at: Google Scholar
  14. K. S. Crider, T. P. Yang, R. J. Berry, and L. B. Bailey, “Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role,” Advances in Nutrition, vol. 3, no. 1, pp. 21–38, 2012. View at: Google Scholar
  15. T. A. Rauch, X. Zhong, X. Wu et al., “High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 252–257, 2008. View at: Publisher Site | Google Scholar
  16. M. Ehrlich, “DNA hypomethylation in cancer cells,” Epigenomics, vol. 1, pp. 239–259, 2009. View at: Google Scholar
  17. C. D. Davis, E. O. Uthus, and J. W. Finley, “Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon,” The Journal of Nutrition, vol. 130, no. 12, pp. 2903–2909, 2000. View at: Google Scholar
  18. H. Zeng, L. Yan, W. H. Cheng, and E. O. Uthus, “Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa,” The Journal of Nutrition, vol. 141, no. 8, pp. 1464–1468, 2011. View at: Publisher Site | Google Scholar
  19. E. M. E. Van Straten, V. W. Bloks, N. C. A. Huijkman et al., “The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction,” American Journal of Physiology, vol. 298, no. 2, pp. R275–R282, 2010. View at: Publisher Site | Google Scholar
  20. A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,” Cell Research, vol. 21, no. 3, pp. 381–395, 2011. View at: Publisher Site | Google Scholar
  21. A. Link, F. Balaguer, and A. Goel, “Cancer chemoprevention by dietary polyphenols: promising role for epigenetics,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1771–1792, 2010. View at: Publisher Site | Google Scholar
  22. X. Cheng and R. M. Blumenthal, “Coordinated chromatin control: structural and functional linkage of DNA and histone methylation,” Biochemistry, vol. 49, no. 14, pp. 2999–3008, 2010. View at: Publisher Site | Google Scholar
  23. Y. Tan, B. Zhang, T. Wu et al., “Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells,” BMC Molecular Biology, vol. 10, article 12, 2009. View at: Publisher Site | Google Scholar
  24. P. G. Hawkins and K. V. Morris, “RNA and transcriptional modulation of gene expression,” Cell Cycle, vol. 7, no. 5, pp. 602–607, 2008. View at: Google Scholar
  25. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at: Publisher Site | Google Scholar
  26. B. Kusenda, M. Mraz, J. Mayer, and S. Pospisilova, “MicroRNA biogenesis, functionality and cancer relevance,” Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, vol. 150, no. 2, pp. 205–215, 2006. View at: Google Scholar
  27. I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at: Publisher Site | Google Scholar
  28. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at: Publisher Site | Google Scholar
  29. R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at: Publisher Site | Google Scholar
  30. L. P. Lim, N. C. Lau, E. G. Weinstein et al., “The microRNAs of Caenorhabditis elegans,” Genes & Development, vol. 17, no. 8, pp. 991–1008, 2003. View at: Publisher Site | Google Scholar
  31. A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006. View at: Publisher Site | Google Scholar
  32. J. C. Mathers, G. Strathdee, and C. L. Relton, “Induction of epigenetic alterations by dietary and other environmental factors,” Advances in Genetics, vol. 71, pp. 4–39, 2010. View at: Publisher Site | Google Scholar
  33. D. Milenkovic, C. Deval, E. Gouranton et al., “Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols,” PLoS One, vol. 7, no. 1, Article ID e29837, 2012. View at: Google Scholar
  34. Q. Sun, R. Cong, H. Yan et al., “Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression,” Oncology Reports, vol. 22, no. 3, pp. 563–567, 2009. View at: Publisher Site | Google Scholar
  35. M. Sun, Z. Estrov, Y. Ji, K. R. Coombes, D. H. Harris, and R. Kurzrock, “Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells,” Molecular Cancer Therapeutics, vol. 7, no. 3, pp. 464–473, 2008. View at: Publisher Site | Google Scholar
  36. J. Yang, Y. Cao, J. Sun, and Y. Zhang, “Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells,” Medical Oncology, vol. 27, no. 4, pp. 1114–1118, 2010. View at: Publisher Site | Google Scholar
  37. S. Careccia, S. Mainardi, A. Pelosi et al., “A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes,” Oncogene, vol. 28, no. 45, pp. 4034–4040, 2009. View at: Publisher Site | Google Scholar
  38. F. U. Weiss, I. J. Marques, J. M. Woltering et al., “Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer,” Gastroenterology, vol. 137, no. 6, pp. 2136–2145, 2009. View at: Publisher Site | Google Scholar
  39. L. A. Davidson, N. Wang, M. S. Shah, J. R. Lupton, I. Ivanov, and R. S. Chapkin, “n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon,” Carcinogenesis, vol. 30, no. 12, pp. 2077–2084, 2009. View at: Publisher Site | Google Scholar
  40. T. Melkamu, X. Zhang, J. Tan, Y. Zeng, and F. Kassie, “Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol,” Carcinogenesis, vol. 31, no. 2, Article ID bgp208, pp. 252–258, 2010. View at: Publisher Site | Google Scholar
  41. C. J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843–10848, 2006. View at: Publisher Site | Google Scholar
  42. H. Kutay, S. Bai, J. Datta et al., “Downregulation of miR-122 in the rodent and human hepatocellular carcinomas,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 671–678, 2006. View at: Publisher Site | Google Scholar
  43. R. Loewith and M. N. Hall, “Target of rapamycin (TOR) in nutrient signaling and growth control,” Genetics, vol. 189, no. 4, pp. 1177–1201, 2011. View at: Google Scholar
  44. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at: Google Scholar
  45. W. L. Yen and D. J. Klionsky, “How to live long and prosper: autophagy, mitochondria, and aging,” Physiology, vol. 23, no. 5, pp. 248–262, 2008. View at: Publisher Site | Google Scholar
  46. L. R. Pearce, D. Komander, and D. R. Alessi, “The nuts and bolts of AGC protein kinases,” Nature Reviews, vol. 11, no. 1, pp. 9–22, 2010. View at: Publisher Site | Google Scholar
  47. Y. Sancak, C. C. Thoreen, T. R. Peterson et al., “PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase,” Molecular Cell, vol. 25, no. 6, pp. 903–915, 2007. View at: Publisher Site | Google Scholar
  48. C. A. Easley IV, A. Ben-Yehudah, C. J. Redinger et al., “MTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells,” Cellular Reprogramming, vol. 12, no. 3, pp. 263–273, 2010. View at: Publisher Site | Google Scholar
  49. L. A. Julien, A. Carriere, J. Moreau, and P. P. Roux, “mTORC1-activated S6K1 phosphorylates rictor on threonine 1135 and regulates mTORC2 signaling,” Molecular and Cellular Biology, vol. 30, no. 4, pp. 908–921, 2010. View at: Publisher Site | Google Scholar
  50. A. Y. Choo, S. O. Yoon, S. G. Kim, P. P. Roux, and J. Blenis, “Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 45, pp. 17414–17419, 2008. View at: Publisher Site | Google Scholar
  51. D. Zhang, R. Contu, M. V. G. Latronico et al., “MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice,” The Journal of Clinical Investigation, vol. 120, no. 8, pp. 2805–2816, 2010. View at: Publisher Site | Google Scholar
  52. R. J. O. Dowling, I. Topisirovic, T. Alain et al., “mTORCI-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs,” Science, vol. 328, no. 5982, pp. 1172–1176, 2010. View at: Publisher Site | Google Scholar
  53. K. G. Foster, H. A. Acosta-Jaquez, Y. Romeo et al., “Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation,” The Journal of Biological Chemistry, vol. 285, no. 1, pp. 80–94, 2010. View at: Publisher Site | Google Scholar
  54. D. Kwak, S. Choi, H. Jeong et al., “Osmotic stress regulates mammalian target of rapamycin(mTOR) complex 1 via c-Jun N-terminal Kinase (JNK)-mediated Raptor protein phosphorylation,” The Journal of Biological Chemistry, vol. 287, no. 22, pp. 18398–18407, 2012. View at: Google Scholar
  55. T. Sato, A. Nakashima, L. Guo, and F. Tamanoi, “Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein,” The Journal of Biological Chemistry, vol. 284, no. 19, pp. 12783–12791, 2009. View at: Publisher Site | Google Scholar
  56. D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., “AMPK phosphorylation of raptor mediates a metabolic checkpoint,” Molecular Cell, vol. 30, no. 2, pp. 214–226, 2008. View at: Publisher Site | Google Scholar
  57. B. Magnuson, B. Ekim, and D. C. Fingar, “Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks,” The Biochemical Journal, vol. 441, no. 1, pp. 1–21, 2012. View at: Google Scholar
  58. B. C. Melnik, “Excessive Leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity,” Journal of Obesity, vol. 2012, Article ID 197653, 2012. View at: Google Scholar
  59. A. K. A. DeHart, J. D. Schnell, D. A. Allen, J. Y. Tsai, and L. Hicke, “Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway,” Molecular Biology of the Cell, vol. 14, no. 11, pp. 4676–4684, 2003. View at: Publisher Site | Google Scholar
  60. T. Powers, S. Aronova, and B. Niles, “TORC2 and sphingolipid biosynthesis and signaling. lessons from budding yeast,” The Enzymes, vol. 27, pp. 177–197, 2010. View at: Publisher Site | Google Scholar
  61. V. Zinzalla, D. Stracka, W. Oppliger, and M. N. Hall, “Activation of mTORC2 by association with the ribosome,” Cell, vol. 144, no. 5, pp. 757–768, 2011. View at: Publisher Site | Google Scholar
  62. A. Hagiwara, M. Cornu, N. Cybulski et al., “Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c,” Cell Metabolism, vol. 15, no. 5, pp. 725–738, 2012. View at: Google Scholar
  63. N. Cybulski and M. N. Hall, “TOR complex 2: a signaling pathway of its own,” Trends in Biochemical Sciences, vol. 34, no. 12, pp. 620–627, 2009. View at: Publisher Site | Google Scholar
  64. C. A. Sparks and D. A. Guertin, “Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy,” Oncogene, vol. 29, no. 26, pp. 3733–3744, 2010. View at: Publisher Site | Google Scholar
  65. N. Ikai, N. Nakazawa, T. Hayashi, and M. Yanagida, “The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe,” Open Biology, vol. 1, 2011. View at: Publisher Site | Google Scholar
  66. M. A. Frias, C. C. Thoreen, J. D. Jaffe et al., “mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s,” Current Biology, vol. 16, no. 18, pp. 1865–1870, 2006. View at: Publisher Site | Google Scholar
  67. C. M. McCay, M. F. Crowell, and L. A. Maynard, “The effect of retarded growth upon the Length of life span and upon the ultimate body size,” The Journal of Nutrition, vol. 10, no. 1, pp. 63–79, 1935. View at: Google Scholar
  68. R. J. Colman, R. M. Anderson, S. C. Johnson et al., “Caloric restriction delays disease onset and mortality in rhesus monkeys,” Science, vol. 325, no. 5937, pp. 201–204, 2009. View at: Publisher Site | Google Scholar
  69. R. Anderson and R. Weindruch, “Metabolic reprogramming in dietary restriction,” Interdisciplinary Topics in Gerontology, vol. 35, pp. 18–38, 2007. View at: Publisher Site | Google Scholar
  70. B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, “Ruminations on dietary restriction and aging,” Cellular and Molecular Life Sciences, vol. 64, no. 11, pp. 1323–1328, 2007. View at: Publisher Site | Google Scholar
  71. M. D. W. Piper and A. Bartke, “Diet and aging,” Cell Metabolism, vol. 8, no. 2, pp. 99–104, 2008. View at: Publisher Site | Google Scholar
  72. G. S. Roth, D. K. Ingram, and M. A. Lane, “Caloric restriction in primates and relevance to humans,” Annals of the New York Academy of Sciences, vol. 928, pp. 305–315, 2001. View at: Google Scholar
  73. R. L. Walford, D. Mock, R. Verdery, and T. MacCallum, “Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period,” The Journals of Gerontology A, vol. 57, no. 6, pp. B211–B224, 2002. View at: Google Scholar
  74. L. Fontana, T. E. Meyer, S. Klein, and J. O. Holloszy, “Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6659–6663, 2004. View at: Publisher Site | Google Scholar
  75. V. Tsagareli, M. Noakes, and R. J. Norman, “Effect of a very-low-calorie diet on in vitro fertilization outcomes,” Fertility and Sterility, vol. 86, no. 1, pp. 227–229, 2006. View at: Publisher Site | Google Scholar
  76. L. K. Heilbronn, L. De Jonge, M. I. Frisard et al., “Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1539–1548, 2006. View at: Publisher Site | Google Scholar
  77. S. B. Racette, E. P. Weiss, D. T. Villareal et al., “One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue,” The Journals of Gerontology A, vol. 61, no. 9, pp. 943–950, 2006. View at: Google Scholar
  78. T. E. Meyer, S. J. Kovács, A. A. Ehsani, S. Klein, J. O. Holloszy, and L. Fontana, “Long-term caloric restriction ameliorates the decline in diastolic function in humans,” Journal of the American College of Cardiology, vol. 47, no. 2, pp. 398–402, 2006. View at: Publisher Site | Google Scholar
  79. L. Fontana, S. Klein, J. O. Holloszy, and B. N. Premachandra, “Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 8, pp. 3232–3235, 2006. View at: Publisher Site | Google Scholar
  80. L. Fontana and S. Klein, “Aging, adiposity, and calorie restriction,” Journal of the American Medical Association, vol. 297, no. 9, pp. 986–994, 2007. View at: Publisher Site | Google Scholar
  81. J. O. Holloszy and L. Fontana, “Caloric restriction in humans,” Experimental Gerontology, vol. 42, no. 8, pp. 709–712, 2007. View at: Publisher Site | Google Scholar
  82. B. J. Willcox, D. C. Willcox, H. Todoriki et al., “Caloric restriction, the traditional okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span,” Annals of the New York Academy of Sciences, vol. 1114, pp. 434–455, 2007. View at: Publisher Site | Google Scholar
  83. L. Fontana, D. T. Villareal, E. P. Weiss et al., “Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial,” American Journal of Physiology, vol. 293, no. 1, pp. E197–E202, 2007. View at: Publisher Site | Google Scholar
  84. J. O. Holloszy and L. Fontana, “Caloric restriction in humans,” Experimental Gerontology, vol. 42, no. 8, pp. 709–712, 2007. View at: Publisher Site | Google Scholar
  85. T. Hofer, L. Fontana, S. D. Anton et al., “Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans,” Rejuvenation Research, vol. 11, no. 4, pp. 793–799, 2008. View at: Publisher Site | Google Scholar
  86. L. M. Redman, J. Rood, S. D. Anton, C. Champagne, S. R. Smith, and E. Ravussin, “Calorie restriction and bone health in young, overweight individuals,” Archives of Internal Medicine, vol. 168, no. 17, pp. 1859–1866, 2008. View at: Publisher Site | Google Scholar
  87. C. Cruzen and R. J. Colman, “Effects of caloric restriction on cardiovascular aging in non-human primates and humans,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 733–743, 2009. View at: Publisher Site | Google Scholar
  88. R. Cangemi, A. J. Friedmann, J. O. Holloszy, and L. Fontana, “Long-term effects of calorie restriction on serum sex-hormone concentrations in men,” Aging Cell, vol. 9, no. 2, pp. 236–242, 2010. View at: Publisher Site | Google Scholar
  89. J. F. Trepanowski and R. J. Bloomer, “The impact of religious fasting on human health,” Nutrition Journal, vol. 9, no. 1, article 57, 2010. View at: Publisher Site | Google Scholar
  90. A. Soare, R. Cangemi, D. Omodei, J. O. Holloszy, and L. Fontana, “Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans,” Aging, vol. 3, no. 4, pp. 374–379, 2011. View at: Google Scholar
  91. J. Rochon, C. W. Bales, E. Ravussin et al., “Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy,” The Journals of Gerontology A, vol. 66, no. 1, pp. 97–108, 2011. View at: Publisher Site | Google Scholar
  92. C. K. Martin, S. K. Das, L. Lindblad et al., “Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials,” Journal of Applied Physiology, vol. 110, no. 4, pp. 956–963, 2011. View at: Publisher Site | Google Scholar
  93. K. Stein, A. Soare, T. E. Meyer, R. Cangemi, J. O. Holloszy, and L. Fontana, “Caloric restriction may reverse age-related autonomic decline in humans,” Aging Cell, vol. 11, no. 4, pp. 644–650, 2012. View at: Google Scholar
  94. R. M. Anderson and R. Weindruch, “Metabolic reprogramming, caloric restriction and aging,” Trends in Endocrinology and Metabolism, vol. 21, no. 3, pp. 134–141, 2010. View at: Publisher Site | Google Scholar
  95. J. M. Zahn, S. Poosala, A. B. Owen et al., “AGEMAP: a gene expression database for aging in mice,” PLoS Genetics, vol. 3, no. 11, p. e201, 2007. View at: Publisher Site | Google Scholar
  96. J. P. de Magalhães, J. Curado, and G. M. Church, “Meta-analysis of age-related gene expression profiles identifies common signatures of aging,” Bioinformatics, vol. 25, no. 7, pp. 875–881, 2009. View at: Publisher Site | Google Scholar
  97. S. K. Park and T. A. Prolla, “Lessons learned from gene expression profile studies of aging and caloric restriction,” Ageing Research Reviews, vol. 4, no. 1, pp. 55–65, 2005. View at: Publisher Site | Google Scholar
  98. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at: Publisher Site | Google Scholar
  99. F. Lago, C. Dieguez, J. Gómez-Reino, and O. Gualillo, “The emerging role of adipokines as mediators of inflammation and immune responses,” Cytokine & Growth Factor Reviews, vol. 18, no. 3-4, pp. 313–325, 2007. View at: Publisher Site | Google Scholar
  100. U. Meier and A. M. Gressner, “Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin,” Clinical Chemistry, vol. 50, no. 9, pp. 1511–1525, 2004. View at: Publisher Site | Google Scholar
  101. M. Zhu, G. D. Lee, L. Ding et al., “Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction,” Experimental Gerontology, vol. 42, no. 8, pp. 733–744, 2007. View at: Publisher Site | Google Scholar
  102. K. Shinmura, K. Tamaki, K. Saito, Y. Nakano, T. Tobe, and R. Bolli, “Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase,” Circulation, vol. 116, no. 24, pp. 2809–2817, 2007. View at: Publisher Site | Google Scholar
  103. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at: Publisher Site | Google Scholar
  104. O. Ukkola and M. Santaniemi, “Adiponectin: a link between excess adiposity and associated comorbidities?” Journal of Molecular Medicine, vol. 80, no. 11, pp. 696–702, 2002. View at: Publisher Site | Google Scholar
  105. O. Renaldi, B. Pramono, H. Sinorita, L. B. Purnomo, R. H. Asdie, and A. H. Asdie, “Hypoadiponectinemia: a risk factor for metabolic syndrome,” Acta medica Indonesiana, vol. 41, no. 1, pp. 20–24, 2009. View at: Google Scholar
  106. A. E. Civitarese, B. Ukropcova, S. Carling et al., “Role of adiponectin in human skeletal muscle bioenergetics,” Cell Metabolism, vol. 4, no. 1, pp. 75–87, 2006. View at: Publisher Site | Google Scholar
  107. M. Nishimura, Y. Izumiya, A. Higuchi et al., “Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase-dependent mechanisms,” Circulation, vol. 117, no. 2, pp. 216–223, 2008. View at: Publisher Site | Google Scholar
  108. J. M. Fernández-Real, A. López-Bermejo, R. Casamitjana, and W. Ricart, “Novel interactions of adiponectin with the endocrine system and inflammatory parameters,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 6, pp. 2714–2718, 2003. View at: Google Scholar
  109. W. Aldhahi and O. Hamdy, “Adipokines, inflammation, and the endothelium in diabetes,” Current Diabetes Reports, vol. 3, no. 4, pp. 293–298, 2003. View at: Google Scholar
  110. N. Ouchi, S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh, “Obesity, adiponectin and vascular inflammatory disease,” Current Opinion in Lipidology, vol. 14, no. 6, pp. 561–566, 2003. View at: Publisher Site | Google Scholar
  111. D. M. Huffman, D. R. Moellering, W. E. Grizzle, C. R. Stockard, M. S. Johnson, and T. R. Nagy, “Effect of exercise and calorie restriction on biomarkers of aging in mice,” American Journal of Physiology, vol. 294, no. 5, pp. R1618–R1627, 2008. View at: Publisher Site | Google Scholar
  112. L. Fontana, E. P. Weiss, D. T. Villareal, S. Klein, and J. O. Holloszy, “Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans,” Aging Cell, vol. 7, no. 5, pp. 681–687, 2008. View at: Publisher Site | Google Scholar
  113. A. R. Cameron, S. Anton, L. Melville et al., “Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a,” Aging Cell, vol. 7, no. 1, pp. 69–77, 2008. View at: Publisher Site | Google Scholar
  114. W. Qin, W. Zhao, L. Ho et al., “Regulation of forkhead transcription factor FOXO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 335–347, 2008. View at: Publisher Site | Google Scholar
  115. F. Flachsbart, A. Caliebe, R. Kleindorp et al., “Association of FOX03A variation with human longevity confirmed in German centenarians,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2700–2705, 2009. View at: Publisher Site | Google Scholar
  116. E. J. Anderson, M. E. Lustig, K. E. Boyle et al., “Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 573–581, 2009. View at: Publisher Site | Google Scholar
  117. D. E. Harrison, R. Strong, Z. D. Sharp et al., “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392–395, 2009. View at: Publisher Site | Google Scholar
  118. C. Chen, Y. Liu, Y. Liu, and P. Zheng, “mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells,” Science Signaling, vol. 2, no. 98, p. ra75, 2009. View at: Publisher Site | Google Scholar
  119. P. Kapahi, D. Chen, A. N. Rogers et al., “With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging,” Cell Metabolism, vol. 11, no. 6, pp. 453–465, 2010. View at: Publisher Site | Google Scholar
  120. B. M. Zid, A. N. Rogers, S. D. Katewa et al., “4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila,” Cell, vol. 139, no. 1, pp. 149–160, 2009. View at: Publisher Site | Google Scholar
  121. S. Sengupta, T. R. Peterson, M. Laplante, S. Oh, and D. M. Sabatini, “mTORC1 controls fasting-induced ketogenesis and its modulation by ageing,” Nature, vol. 468, no. 7327, pp. 1100–1106, 2010. View at: Publisher Site | Google Scholar
  122. J. T. Cunningham, J. T. Rodgers, D. H. Arlow, F. Vazquez, V. K. Mootha, and P. Puigserver, “mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex,” Nature, vol. 450, no. 7170, pp. 736–740, 2007. View at: Publisher Site | Google Scholar
  123. A. Ramanathan and S. L. Schreiber, “Direct control of mitochondrial function by mTOR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 52, pp. 22229–22232, 2009. View at: Publisher Site | Google Scholar
  124. J. Knapowski, K. Wieczorowska-Tobis, and J. Witowski, “Pathophysiology of ageing,” Journal of Physiology and Pharmacology, vol. 53, no. 2, pp. 135–146, 2002. View at: Google Scholar
  125. J. P. J. Issa, N. Ahuja, M. Toyota, M. P. Bronner, and T. A. Brentnall, “Accelerated age-related CpG island methylation in ulcerative colitis,” Cancer Research, vol. 61, no. 9, pp. 3573–3577, 2001. View at: Google Scholar
  126. J. P. J. Issa, Y. L. Ottaviano, P. Celano, S. R. Hamilton, N. E. Davidson, and S. B. Baylin, “Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon,” Nature Genetics, vol. 7, no. 4, pp. 536–540, 1994. View at: Publisher Site | Google Scholar
  127. J. P. J. Issa, P. M. Vertino, C. D. Boehm, I. F. Newsham, and S. B. Baylin, “Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11757–11762, 1996. View at: Publisher Site | Google Scholar
  128. R. P. Singhal, L. L. Mays-Hoopes, and G. L. Eichhorn, “DNA methylation in aging of mice,” Mechanisms of Ageing and Development, vol. 41, no. 3, pp. 199–210, 1987. View at: Google Scholar
  129. T. Waki, G. Tamura, M. Sato, and T. Motoyama, “Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples,” Oncogene, vol. 22, no. 26, pp. 4128–4133, 2003. View at: Publisher Site | Google Scholar
  130. V. L. Wilson, R. A. Smith, S. Ma, and R. G. Cutler, “Genomic 5-methyldeoxycytidine decreases with age,” The Journal of Biological Chemistry, vol. 262, no. 21, pp. 9948–9951, 1987. View at: Google Scholar
  131. T. Y. Kim, H. J. Lee, K. S. Hwang et al., “Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma,” Laboratory Investigation, vol. 84, no. 4, pp. 479–484, 2004. View at: Publisher Site | Google Scholar
  132. Y. Li, M. Daniel, and T. O. Tollefsbol, “Epigenetic regulation of caloric restriction in aging,” BMC Medicine, vol. 9, article 98, 2011. View at: Google Scholar
  133. A. Vaquero and D. Reinberg, “Calorie restriction and the exercise of chromatin,” Genes & Development, vol. 23, no. 16, pp. 1849–1869, 2009. View at: Publisher Site | Google Scholar
  134. U. Muñoz-Najar and J. M. Sedivy, “Epigenetic control of aging,” Antioxidants & Redox Signaling, vol. 14, no. 2, pp. 241–259, 2011. View at: Publisher Site | Google Scholar
  135. B. S. Hass, R. W. Hart, M. H. Lu, and B. D. Lyn-Cook, “Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro,” Mutation Research, vol. 295, no. 4–6, pp. 281–289, 1993. View at: Google Scholar
  136. Y. Li, L. Liu, and T. O. Tollefsbol, “Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression,” The FASEB Journal, vol. 24, no. 5, pp. 1442–1453, 2010. View at: Publisher Site | Google Scholar
  137. R. S. Ahima, “Connecting obesity, aging and diabetes,” Nature Medicine, vol. 15, no. 9, pp. 996–997, 2009. View at: Publisher Site | Google Scholar
  138. T. M. Larsen, S. Dalskov, M. Van Baak et al., “The diet, obesity and genes (diogenes) dietary study in eight European countries—a comprehensive design for long-term intervention,” Obesity Reviews, vol. 11, no. 1, pp. 76–91, 2010. View at: Publisher Site | Google Scholar
  139. F. I. Milagro, J. Campión, P. Cordero et al., “A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss,” The FASEB Journal, vol. 25, no. 4, pp. 1378–1389, 2011. View at: Publisher Site | Google Scholar
  140. L. Bouchard, R. Rabasa-Lhoret, M. Faraj et al., “Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction,” The American Journal of Clinical Nutrition, vol. 91, no. 2, pp. 309–320, 2010. View at: Publisher Site | Google Scholar
  141. J. Campión, F. I. Milagro, E. Goyenechea, and J. A. Martínez, “TNF-α promoter methylation as a predictive biomarker for weight-loss response,” Obesity, vol. 17, no. 6, pp. 1293–1297, 2009. View at: Publisher Site | Google Scholar
  142. A. L. Clayton, C. A. Hazzalin, and L. C. Mahadevan, “Enhanced histone acetylation and transcription: a dynamic perspective,” Molecular Cell, vol. 23, no. 3, pp. 289–296, 2006. View at: Publisher Site | Google Scholar
  143. M. Meyerson, C. M. Counter, E. N. Eaton et al., “hEST2, the putative human telomerase catalytic subunit gene, is up- regulated in tumor cells and during immortalization,” Cell, vol. 90, no. 4, pp. 785–795, 1997. View at: Publisher Site | Google Scholar
  144. T. Kanaya, S. Kyo, M. Takakura, H. Ito, M. Namiki, and M. Inoue, “hTERT is a critical determinant of telomerase activity in renal-cell carcinoma,” International Journal of Cancer, vol. 78, no. 5, pp. 539–543, 1998. View at: Google Scholar
  145. S. J. Lin, P. A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae,” Science, vol. 289, no. 5487, pp. 2126–2128, 2000. View at: Publisher Site | Google Scholar
  146. L. Guarente and F. Picard, “Calorie restriction—the SIR2 connection,” Cell, vol. 120, no. 4, pp. 473–482, 2005. View at: Publisher Site | Google Scholar
  147. I. B. Leibiger and P. O. Berggren, “Sirt1: a metabolic master switch that modulates lifespan,” Nature Medicine, vol. 12, no. 1, pp. 34–36, 2006. View at: Publisher Site | Google Scholar
  148. L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007. View at: Publisher Site | Google Scholar
  149. H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004. View at: Publisher Site | Google Scholar
  150. Y. Kanfi, V. Peshti, Y. M. Gozlan, M. Rathaus, R. Gil, and H. Y. Cohen, “Regulation of SIRT1 protein levels by nutrient availability,” FEBS Letters, vol. 582, no. 16, pp. 2417–2423, 2008. View at: Publisher Site | Google Scholar
  151. A. B. Crujeiras, D. Parra, E. Goyenechea, and J. A. Martínez, “Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction,” European Journal of Clinical Investigation, vol. 38, no. 9, pp. 672–678, 2008. View at: Publisher Site | Google Scholar
  152. L. A. Wakeling, L. J. Ions, and D. Ford, “Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?” Age, vol. 31, no. 4, pp. 327–341, 2009. View at: Publisher Site | Google Scholar
  153. Y. Li and T. O. Tollefsbol, “P16INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms,” PLoS ONE, vol. 6, no. 2, Article ID e17421, 2011. View at: Publisher Site | Google Scholar
  154. M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes & Development, vol. 20, no. 21, pp. 2913–2921, 2006. View at: Publisher Site | Google Scholar
  155. J. Luo, A. Y. Nikolaev, S. I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001. View at: Publisher Site | Google Scholar
  156. E. Langley, M. Pearson, M. Faretta et al., “Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence,” The EMBO Journal, vol. 21, no. 10, pp. 2383–2396, 2002. View at: Publisher Site | Google Scholar
  157. H. Vaziri, S. K. Dessain, E. N. Eaton et al., “hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159, 2001. View at: Publisher Site | Google Scholar
  158. A. Brunet, L. B. Sweeney, J. F. Sturgill et al., “Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase,” Science, vol. 303, no. 5666, pp. 2011–2015, 2004. View at: Publisher Site | Google Scholar
  159. M. C. Motta, N. Divecha, M. Lemieux et al., “Mammalian SIRT1 represses forkhead transcription factors,” Cell, vol. 116, no. 4, pp. 551–563, 2004. View at: Publisher Site | Google Scholar
  160. M. M. Schilling, J. K. Oeser, J. N. Boustead, B. P. Flemming, and R. M. O’Brien, “Gluconeogenesis: re-evaluating the FOXO1-PGC-1α connection,” Nature, vol. 443, no. 7111, pp. E10–E11, 2006. View at: Publisher Site | Google Scholar
  161. R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000. View at: Publisher Site | Google Scholar
  162. J. Koubova and L. Guarente, “How does calorie restriction work?” Genes & Development, vol. 17, no. 3, pp. 313–321, 2003. View at: Publisher Site | Google Scholar
  163. R. S. Sohal and R. Weindruch, “Oxidative stress, caloric restriction, and aging,” Science, vol. 273, no. 5271, pp. 59–63, 1996. View at: Google Scholar
  164. B. J. Merry, “Molecular mechanisms linking calorie restriction and longevity,” The International Journal of Biochemistry & Cell Biology, vol. 34, no. 11, pp. 1340–1354, 2002. View at: Publisher Site | Google Scholar
  165. J. Jeong, K. Juhn, H. Lee et al., “SIRT1 promotes DNA repair activity and deacetylation of Ku70,” Experimental & Molecular Medicine, vol. 39, no. 1, pp. 8–13, 2007. View at: Google Scholar
  166. H. Y. Cohen, S. Lavu, K. J. Bitterman et al., “Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis,” Molecular Cell, vol. 13, no. 5, pp. 627–638, 2004. View at: Publisher Site | Google Scholar
  167. H. Wong and K. Riabowol, “Differential CDK-inhibitor gene expression in aging human diploid fibroblasts,” Experimental Gerontology, vol. 31, no. 1-2, pp. 311–325, 1996. View at: Publisher Site | Google Scholar
  168. J. Gil and G. Peters, “Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all,” Nature Reviews, vol. 7, no. 9, pp. 667–677, 2006. View at: Publisher Site | Google Scholar
  169. J. Krishnamurthy, C. Torrice, M. R. Ramsey et al., “Ink4a/Arf expression is a biomarker of aging,” The Journal of Clinical Investigation, vol. 114, no. 9, pp. 1299–1307, 2004. View at: Publisher Site | Google Scholar
  170. D. A. Alcorta, Y. Xiong, D. Phelps, G. Hannon, D. Beach, and J. C. Barrett, “Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13742–13747, 1996. View at: Publisher Site | Google Scholar
  171. A. Melk, B. M. W. Schmidt, O. Takeuchi, B. Sawitzki, D. C. Rayner, and P. F. Halloran, “Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney,” Kidney International, vol. 65, no. 2, pp. 510–520, 2004. View at: Publisher Site | Google Scholar
  172. W. Fischle, Y. Wang, and C. D. Allis, “Histone and chromatin cross-talk,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 172–183, 2003. View at: Publisher Site | Google Scholar
  173. T. Kouzarides, “Histone methylation in transcriptional control,” Current Opinion in Genetics & Development, vol. 12, no. 2, pp. 198–209, 2002. View at: Publisher Site | Google Scholar
  174. N. Noren Hooten, K. Abdelmohsen, M. Gorospe, N. Ejiogu, A. B. Zonderman, and M. K. Evans, “microRNA expression patterns reveal differential expression of target genes with age,” PloS One, vol. 5, no. 5, Article ID e10724, 2010. View at: Publisher Site | Google Scholar
  175. A. De Lencastre, Z. Pincus, K. Zhou, M. Kato, S. S. Lee, and F. J. Slack, “MicroRNAs both promote and antagonize longevity in C. elegans,” Current Biology, vol. 20, no. 24, pp. 2159–2168, 2010. View at: Publisher Site | Google Scholar
  176. D. J. Bates, N. Li, R. Liang et al., “MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging,” Aging Cell, vol. 9, no. 1, pp. 1–18, 2010. View at: Publisher Site | Google Scholar
  177. U. A. Ørom, M. K. Lim, J. E. Savage et al., “MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction,” Cell Cycle, vol. 11, no. 7, pp. 1291–1295, 2012. View at: Google Scholar
  178. A. Khanna, S. Muthusamy, R. Liang, H. Sarojini, and E. Wang, “Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice,” Aging, vol. 3, no. 3, pp. 223–236, 2011. View at: Google Scholar
  179. E. Paradis, H. Douillard, M. Koutroumanis, C. Goodyer, and A. LeBlanc, “Amyloid β peptide of Alzheimer’s disease downregulates bcl-2 and upregulates bax expression in human neurons,” Journal of Neuroscience, vol. 16, no. 23, pp. 7533–7539, 1996. View at: Google Scholar
  180. C. Perier, J. Bové, D. C. Wu et al., “Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8161–8166, 2007. View at: Publisher Site | Google Scholar
  181. N. Louneva, J. W. Cohen, L. Y. Han et al., “Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease,” The American Journal of Pathology, vol. 173, no. 5, pp. 1488–1495, 2008. View at: Publisher Site | Google Scholar
  182. M. Yamada, K. Kida, W. Amutuhaire, F. Ichinose, and M. Kaneki, “Gene disruption of caspase-3 prevents MPTP-induced Parkinson’s disease in mice,” Biochemical and Biophysical Research Communications, vol. 402, no. 2, pp. 312–318, 2010. View at: Publisher Site | Google Scholar
  183. W. Kudo, H. P. Lee, M. A. Smith, X. Zhu, S. Matsuyama, and H. G. Lee, “Inhibition of Bax protects neuronal cells from oligomeric Aβ neurotoxicity,” Cell Death & Disease, vol. 3, Article ID e309, 2012. View at: Publisher Site | Google Scholar
  184. D. K. Ingram, M. Zhu, J. Mamczarz et al., “Calorie restriction mimetics: an emerging research field,” Aging Cell, vol. 5, no. 2, pp. 97–108, 2006. View at: Publisher Site | Google Scholar
  185. H. R. Warner, D. Ingram, R. A. Miller, N. L. Nadon, and A. G. Richardson, “Program for testing biological interventions to promote healthy aging,” Mechanisms of Ageing and Development, vol. 115, no. 3, pp. 199–207, 2000. View at: Publisher Site | Google Scholar
  186. N. L. Nadon, R. Strong, R. A. Miller et al., “Design of aging intervention studies: the NIA interventions testing program,” Age, vol. 30, no. 4, pp. 187–199, 2008. View at: Publisher Site | Google Scholar
  187. R. A. Miller, D. E. Harrison, C. M. Astle et al., “An aging interventions testing program: study design and interim report,” Aging Cell, vol. 6, no. 4, pp. 565–575, 2007. View at: Publisher Site | Google Scholar
  188. R. Strong, R. A. Miller, C. M. Astle et al., “Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice,” Aging Cell, vol. 7, no. 5, pp. 641–650, 2008. View at: Publisher Site | Google Scholar
  189. N. L. Nadon, “Exploiting the rodent model for studies on the pharmacology of lifespan extension,” Aging Cell, vol. 5, no. 1, pp. 9–15, 2006. View at: Publisher Site | Google Scholar
  190. J. O. Holloszy, “Mortality rate and longevity of food-restricted exercising male rats: a reevaluation,” Journal of Applied Physiology, vol. 82, no. 2, pp. 399–403, 1997. View at: Google Scholar
  191. K. C. Deruisseau, A. N. Kavazis, S. Judge et al., “Moderate caloric restriction increases diaphragmatic antioxidant enzyme mRNA, but not when combined with lifelong exercise,” Antioxidants & Redox Signaling, vol. 8, no. 3-4, pp. 539–547, 2006. View at: Publisher Site | Google Scholar
  192. A. Y. Seo, T. Hofer, B. Sung, S. Judge, H. Y. Chung, and C. Leeuwenburgh, “Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise,” Antioxidants & Redox Signaling, vol. 8, no. 3-4, pp. 529–538, 2006. View at: Publisher Site | Google Scholar
  193. R. Kalani, S. Judge, C. Carter, M. Pahor, and C. Leeuwenburgh, “Effects of caloric restriction and exercise on age-related, chronic inflammation assessed by C-reactive protein and interleukin-6,” The Journals of Gerontology A, vol. 61, no. 3, pp. 211–217, 2006. View at: Google Scholar
  194. P. Abete, G. Testa, G. Galizia et al., “Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart,” Experimental Gerontology, vol. 40, no. 1-2, pp. 43–50, 2005. View at: Publisher Site | Google Scholar
  195. D. L. Crandall, R. P. Feirer, D. R. Griffith, and D. C. Beitz, “Relative role of caloric restriction and exercise training upon susceptibility to isoproterenol-induced myocardial infarction in male rats,” The American Journal of Clinical Nutrition, vol. 34, no. 5, pp. 841–847, 1981. View at: Google Scholar
  196. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, no. 3, article e76, 2007. View at: Publisher Site | Google Scholar
  197. D. E. Larson-Meyer, B. R. Newcomer, L. K. Heilbronn et al., “Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function,” Obesity, vol. 16, no. 6, pp. 1355–1362, 2008. View at: Publisher Site | Google Scholar
  198. M. Lefevre, L. M. Redman, L. K. Heilbronn et al., “Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals,” Atherosclerosis, vol. 203, no. 1, pp. 206–213, 2009. View at: Publisher Site | Google Scholar
  199. D. E. Larson-Meyer, L. Redman, L. K. Heilbronn, C. K. Martin, and E. Ravussin, “Caloric restriction with or without exercise: the fitness versus fatness debate,” Medicine and Science in Sports and Exercise, vol. 42, no. 1, pp. 152–159, 2010. View at: Publisher Site | Google Scholar
  200. N. E. Silverman, B. J. Nicklas, and A. S. Ryan, “Addition of aerobic exercise to a weight loss program increases BMD, with an associated reduction in inflammation in overweight postmenopausal women,” Calcified Tissue International, vol. 84, no. 4, pp. 257–265, 2009. View at: Publisher Site | Google Scholar
  201. J. F. Trepanowski, R. E. Canale, K. E. Marshall, M. M. Kabir, and R. J. Bloomer, “Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings,” Nutrition Journal, vol. 10, article 107, 2011. View at: Google Scholar
  202. K. Iwasaki, C. A. Gleiser, E. J. Masoro, C. A. McMahan, E. Seo, and B. P. Yu, “The influence of dietary protein source on longevity and age-related disease processes of Fischer rats,” Journals of Gerontology, vol. 43, no. 1, pp. B5–B12, 1988. View at: Google Scholar
  203. I. Shimokawa, Y. Higami, B. P. Yu, E. J. Masoro, and T. Ikeda, “Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats,” Aging, vol. 8, no. 4, pp. 254–262, 1996. View at: Google Scholar
  204. M. Khorakova, Z. Deil, D. Khausman, and K. Matsek, “Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats,” Fiziologicheskii Zhurnal, vol. 36, no. 5, pp. 16–21, 1990. View at: Google Scholar
  205. C. Kubo, B. C. Johnson, A. Gajjar, and R. A. Good, “Crucial dietary factors in maximizing life span and longevity in autoimmune-prone mice,” The Journal of Nutrition, vol. 117, no. 6, pp. 1129–1135, 1987. View at: Google Scholar
  206. R. Pamplona and G. Barja, “Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 496–508, 2006. View at: Publisher Site | Google Scholar
  207. A. Sanz, P. Caro, J. G. Sanchez, and G. Barja, “Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 200–209, 2006. View at: Publisher Site | Google Scholar
  208. A. Sanz, J. Gómez, P. Caro, and G. Barja, “Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage,” Journal of Bioenergetics and Biomembranes, vol. 38, no. 5-6, pp. 327–333, 2006. View at: Publisher Site | Google Scholar
  209. P. E. Segall and P. S. Timiras, “Pathophysiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging,” Mechanisms of Ageing and Development, vol. 5, no. 2, pp. 109–124, 1976. View at: Google Scholar
  210. H. Ooka, P. E. Segall, and P. S. Timiras, “Histology and survival in age-delayed low-tryptophan-fed rats,” Mechanisms of Ageing and Development, vol. 43, no. 1, pp. 79–98, 1988. View at: Google Scholar
  211. R. A. Miller, G. Buehner, Y. Chang, J. M. Harper, R. Sigler, and M. Smith-Wheelock, “Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance,” Aging Cell, vol. 4, no. 3, pp. 119–125, 2005. View at: Publisher Site | Google Scholar
  212. N. Orentreich, J. R. Matias, A. DeFelice, and J. A. Zimmerman, “Low methionine ingestion by rats extends life span,” The Journal of Nutrition, vol. 123, no. 2, pp. 269–274, 1993. View at: Google Scholar
  213. J. P. Richie Jr., Y. Leutzinger, S. Parthasarathy, V. Malloy, N. Orentreich, and J. A. Zimmerman, “Methionine restriction increases blood glutathione and longevity in F344 rats,” The FASEB Journal, vol. 8, no. 15, pp. 1302–1307, 1994. View at: Google Scholar
  214. J. P. Richie Jr., D. Komninou, Y. Leutzinger et al., “Tissue glutathione and cysteine levels in methionine-restricted rats,” Nutrition, vol. 20, no. 9, pp. 800–805, 2004. View at: Publisher Site | Google Scholar
  215. J. A. Zimmerman, V. Malloy, R. Krajcik, and N. Orentreich, “Nutritional control of aging,” Experimental Gerontology, vol. 38, no. 1-2, pp. 47–52, 2003. View at: Publisher Site | Google Scholar
  216. A. Sanz, P. Caro, V. Ayala, M. Portero-Otin, R. Pamplona, and G. Barja, “Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins,” The FASEB Journal, vol. 20, no. 8, pp. 1064–1073, 2006. View at: Publisher Site | Google Scholar
  217. P. Caro, J. Gómez, M. López-Torres et al., “Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver,” Biogerontology, vol. 9, no. 3, pp. 183–196, 2008. View at: Publisher Site | Google Scholar
  218. M. C. Ruiz, V. Ayala, M. Portero-Otín, J. R. Requena, G. Barja, and R. Pamplona, “Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals,” Mechanisms of Ageing and Development, vol. 126, no. 10, pp. 1106–1114, 2005. View at: Publisher Site | Google Scholar
  219. N. Hidiroglou, G. S. Gilani, L. Long et al., “The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil,” The Journal of Nutritional Biochemistry, vol. 15, no. 12, pp. 730–740, 2004. View at: Publisher Site | Google Scholar
  220. P. Caro, J. Gomez, I. Sanchez et al., “Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver,” Biogerontology, vol. 10, no. 5, pp. 579–592, 2009. View at: Publisher Site | Google Scholar
  221. M. F. McCarty, J. Barroso-Aranda, and F. Contreras, “The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy,” Medical Hypotheses, vol. 72, no. 2, pp. 125–128, 2009. View at: Publisher Site | Google Scholar
  222. K. A. Varady and M. K. Hellerstein, “Alternate-day fasting and chronic disease prevention: a review of human and animal trials,” The American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 7–13, 2007. View at: Google Scholar
  223. R. M. Anson, Z. Guo, R. de Cabo et al., “Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6216–6220, 2003. View at: Publisher Site | Google Scholar
  224. O. Descamps, J. Riondel, V. Ducros, and A. M. Roussel, “Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting,” Mechanisms of Ageing and Development, vol. 126, no. 11, pp. 1185–1191, 2005. View at: Publisher Site | Google Scholar
  225. W. Duan, Z. Guo, H. Jiang, M. Ware, and M. P. Mattson, “Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor,” Endocrinology, vol. 144, no. 6, pp. 2446–2453, 2003. View at: Publisher Site | Google Scholar
  226. I. Ahmet, R. Wan, M. P. Mattson, E. G. Lakatta, and M. Talan, “Cardioprotection by intermittent fasting in rats,” Circulation, vol. 112, no. 20, pp. 3115–3121, 2005. View at: Publisher Site | Google Scholar
  227. D. E. Mager, R. Wan, M. Brown et al., “Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats,” The FASEB Journal, vol. 20, no. 6, pp. 631–637, 2006. View at: Publisher Site | Google Scholar
  228. C. R. Pedersen, I. Hagemann, T. Bock, and K. Buschard, “Intermittent feeding and fasting reduces diabetes incidence in BB rats,” Autoimmunity, vol. 30, no. 4, pp. 243–250, 1999. View at: Google Scholar
  229. K. Tikoo, D. N. Tripathi, D. G. Kabra, V. Sharma, and A. B. Gaikwad, “Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53,” FEBS Letters, vol. 581, no. 5, pp. 1071–1078, 2007. View at: Publisher Site | Google Scholar
  230. R. Wan, S. Camandola, and M. P. Mattson, “Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats,” The FASEB Journal, vol. 17, no. 9, pp. 1133–1134, 2003. View at: Google Scholar
  231. L. K. Heilbronn, S. R. Smith, C. K. Martin, S. D. Anton, and E. Ravussin, “Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism,” The American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 69–73, 2005. View at: Google Scholar
  232. N. Halberg, M. Henriksen, N. Söderhamn et al., “Effect of intermittent fasting and refeeding on insulin action in healthy men,” Journal of Applied Physiology, vol. 99, no. 6, pp. 2128–2136, 2005. View at: Publisher Site | Google Scholar
  233. J. B. Johnson, W. Summer, R. G. Cutler et al., “Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma,” Free Radical Biology and Medicine, vol. 42, no. 5, pp. 665–674, 2007. View at: Publisher Site | Google Scholar
  234. V. D. Dixit, H. Yang, K. S. Sayeed et al., “Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production,” Journal of Inflammation, vol. 8, article 6, 2011. View at: Publisher Site | Google Scholar
  235. K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003. View at: Publisher Site | Google Scholar
  236. J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004. View at: Google Scholar
  237. H. Yang, J. A. Baur, A. Chen, C. Miller, and D. A. Sinclair, “Design and synthesis of compounds that extend yeast replicative lifespan,” Aging Cell, vol. 6, no. 1, pp. 35–43, 2007. View at: Publisher Site | Google Scholar
  238. D. R. Valenzano, E. Terzibasi, T. Genade, A. Cattaneo, L. Domenici, and A. Cellerino, “Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate,” Current Biology, vol. 16, no. 3, pp. 296–300, 2006. View at: Publisher Site | Google Scholar
  239. M. Kaeberlein, T. McDonagh, B. Heltweg et al., “Substrate-specific activation of sirtuins by resveratrol,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 17038–17045, 2005. View at: Publisher Site | Google Scholar
  240. M. Kaeberlein and R. W. Powers III, “Sir2 and calorie restriction in yeast: a skeptical perspective,” Ageing Research Reviews, vol. 6, no. 2, pp. 128–140, 2007. View at: Publisher Site | Google Scholar
  241. M. Kaeberlein and B. K. Kennedy, “Does resveratrol activate yeast Sir2 in vivo?” Aging Cell, vol. 6, no. 4, pp. 415–416, 2007. View at: Publisher Site | Google Scholar
  242. D. L. Smith Jr., C. Li, M. Matecic, N. Maqani, M. Bryk, and J. S. Smith, “Calorie restriction effects on silencing and recombination at the yeast rDNA,” Aging Cell, vol. 8, no. 6, pp. 633–642, 2009. View at: Publisher Site | Google Scholar
  243. T. M. Bass, D. Weinkove, K. Houthoofd, D. Gems, and L. Partridge, “Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 128, no. 10, pp. 546–552, 2007. View at: Publisher Site | Google Scholar
  244. E. L. Greer and A. Brunet, “Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans,” Aging Cell, vol. 8, no. 2, pp. 113–127, 2009. View at: Publisher Site | Google Scholar
  245. T. L. Kaeberlein, E. D. Smith, M. Tsuchiya et al., “Lifespan extension in Caenorhabditis elegans by complete removal of food,” Aging Cell, vol. 5, no. 6, pp. 487–494, 2006. View at: Publisher Site | Google Scholar
  246. S. Zou, J. R. Carey, P. Liedo et al., “The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly,” Experimental Gerontology, vol. 44, no. 6-7, pp. 472–476, 2009. View at: Publisher Site | Google Scholar
  247. M. Riesen and A. Morgan, “Calorie restriction reduces rDNA recombination independently of rDNA silencing,” Aging Cell, vol. 8, no. 6, pp. 624–632, 2009. View at: Publisher Site | Google Scholar
  248. M. Pacholec, J. E. Bleasdale, B. Chrunyk et al., “SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1,” The Journal of Biological Chemistry, vol. 285, no. 11, pp. 8340–8351, 2010. View at: Publisher Site | Google Scholar
  249. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at: Publisher Site | Google Scholar
  250. M. Zang, S. Xu, K. A. Maitland-Toolan et al., “Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice,” Diabetes, vol. 55, no. 8, pp. 2180–2191, 2006. View at: Publisher Site | Google Scholar
  251. B. Dasgupta and J. Milbrandt, “Resveratrol stimulates AMP kinase activity in neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7217–7222, 2007. View at: Publisher Site | Google Scholar
  252. N. L. Price, A. P. Gomes, A. J. Ling et al., “SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function,” Cell Metabolism, vol. 15, no. 5, pp. 675–690, 2012. View at: Google Scholar
  253. J. L. Barger, T. Kayo, J. M. Vann et al., “A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice,” PLoS ONE, vol. 3, no. 6, Article ID e2264, 2008. View at: Publisher Site | Google Scholar
  254. K. J. Pearson, J. A. Baur, K. N. Lewis et al., “Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span,” Cell Metabolism, vol. 8, no. 2, pp. 157–168, 2008. View at: Publisher Site | Google Scholar
  255. R. A. Miller, D. E. Harrison, C. M. Astle et al., “Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice,” The Journals of Gerontology A, vol. 66, no. 2, pp. 191–201, 2011. View at: Publisher Site | Google Scholar
  256. D. L. Smith Jr., T. R. Nagy, and D. B. Allison, “Calorie restriction: what recent results suggest for the future of ageing research,” European Journal of Clinical Investigation, vol. 40, no. 5, pp. 440–450, 2010. View at: Publisher Site | Google Scholar
  257. A. Dal-Pan, S. Blanc, and F. Aujard, “Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity,” BMC Physiology, vol. 10, no. 1, article 11, 2010. View at: Publisher Site | Google Scholar
  258. A. Dal-Pan, J. Terrien, F. Pifferi et al., “Caloric restriction or resveratrol supplementation and ageing in a non-human primate: first-year outcome of the RESTRIKAL study in Microcebus murinus,” Age, vol. 33, no. 1, pp. 15–31, 2011. View at: Publisher Site | Google Scholar
  259. L. Peltz, J. Gomez, M. Marquez et al., “Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development,” PLoS One, vol. 7, no. 5, Article ID e37162, 2012. View at: Google Scholar
  260. J. Mikuła-Pietrasik, A. Kuczmarska, B. Rubiś et al., “Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms,” Free Radical Biology & Medicine, vol. 52, pp. 2234–2245, 2012. View at: Google Scholar
  261. J. M. Smoliga, J. A. Baur, and H. A. Hausenblas, “Resveratrol and health—a comprehensive review of human clinical trials,” Molecular Nutrition & Food Research, vol. 55, no. 8, pp. 1129–1141, 2011. View at: Publisher Site | Google Scholar
  262. H. Ghanim, C. L. Sia, S. Abuaysheh et al., “An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 9, pp. E1–E8, 2010. View at: Publisher Site | Google Scholar
  263. H. Ghanim, S. Abuaysheh, C. L. Sia et al., “Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance,” Diabetes Care, vol. 32, no. 12, pp. 2281–2287, 2009. View at: Publisher Site | Google Scholar
  264. H. Ghanim, C. L. Sia, K. Korzeniewski et al., “A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 5, pp. 1409–1414, 2011. View at: Publisher Site | Google Scholar
  265. P. Brasnyó, G. A. Molnár, M. Mohás et al., “Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients,” The British Journal of Nutrition, vol. 106, no. 3, pp. 383–389, 2011. View at: Google Scholar
  266. L. M. Vislocky and M. L. Fernandez, “Biomedical effects of grape products,” Nutrition Reviews, vol. 68, no. 11, pp. 656–670, 2010. View at: Publisher Site | Google Scholar
  267. A. A. A. Bertelli and D. K. Das, “Grapes, wines, resveratrol, and heart health,” Journal of Cardiovascular Pharmacology, vol. 54, no. 6, pp. 468–476, 2009. View at: Publisher Site | Google Scholar
  268. M. M. Dohadwala and J. A. Vita, “Grapes and cardiovascular disease,” The Journal of Nutrition, vol. 139, no. 9, pp. 17885–17935, 2009. View at: Publisher Site | Google Scholar
  269. W. R. Leifert and M. Y. Abeywardena, “Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity,” Nutrition Research, vol. 28, no. 11, pp. 729–737, 2008. View at: Publisher Site | Google Scholar
  270. T. Wallerath, G. Deckert, T. Ternes et al., “Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase,” Circulation, vol. 106, no. 13, pp. 1652–1658, 2002. View at: Publisher Site | Google Scholar
  271. T. Wallerath, H. Li, U. Gödtel-Ambrust, P. M. Schwarz, and U. Förstermann, “A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase,” Nitric Oxide, vol. 12, no. 2, pp. 97–104, 2005. View at: Publisher Site | Google Scholar
  272. J. F. Leikert, T. R. Räthel, P. Wohlfart, V. Cheynier, A. M. Vollmar, and V. M. Dirsch, “Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells,” Circulation, vol. 106, no. 13, pp. 1614–1617, 2002. View at: Publisher Site | Google Scholar
  273. P. Gresele, P. Pignatelli, G. Guglielmini et al., “Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production,” The Journal of Nutrition, vol. 138, no. 9, pp. 1602–1608, 2008. View at: Google Scholar
  274. D. O. Kennedy, E. L. Wightman, J. L. Reay et al., “Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation,” The American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1590–1597, 2010. View at: Publisher Site | Google Scholar
  275. R. H. X. Wong, P. R. C. Howe, J. D. Buckley, A. M. Coates, I. Kunz, and N. M. Berry, “Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 11, pp. 851–856, 2011. View at: Publisher Site | Google Scholar
  276. B. Agarwal and J. A. Baur, “Resveratrol and life extension,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 138–143, 2011. View at: Publisher Site | Google Scholar
  277. J. L. Crespo and M. N. Hall, “Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 66, no. 4, pp. 579–591, 2002. View at: Publisher Site | Google Scholar
  278. I. Bjedov, J. M. Toivonen, F. Kerr et al., “Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster,” Cell Metabolism, vol. 11, no. 1, pp. 35–46, 2010. View at: Publisher Site | Google Scholar
  279. N. Anisimov, M. A. Zabezhinski, I. G. Popovich et al., “Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice,” Cell Cycle, vol. 10, no. 24, pp. 4230–4236, 2011. View at: Publisher Site | Google Scholar
  280. S. Majumder, A. Caccamo, D. X. Medina et al., “Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling,” Aging Cell, vol. 11, no. 2, pp. 326–335, 2012. View at: Publisher Site | Google Scholar
  281. G. Payne, A. Laporte, R. Deber, and P. C. Coyte, “Counting backward to health care’s future: using time-to-death modeling to identify changes in end-of-life morbidity and the impact of aging on health care expenditures,” The Milbank Quarterly, vol. 85, no. 2, pp. 213–257, 2007. View at: Publisher Site | Google Scholar
  282. A. Yazdanyar and A. B. Newman, “The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 563–577, 2009. View at: Publisher Site | Google Scholar
  283. J. Mesterton, A. Wimo, Å. By, S. Langworth, B. Winblad, and L. Jönsson, “Cross sectional observational study on the societal costs of Alzheimer’s disease,” Current Alzheimer Research, vol. 7, no. 4, pp. 358–367, 2010. View at: Publisher Site | Google Scholar
  284. G. Atzmon, C. Schechter, W. Greiner, D. Davidson, G. Rennert, and N. Barzilai, “Clinical phenotype of families with longevity,” Journal of the American Geriatrics Society, vol. 52, no. 2, pp. 274–277, 2004. View at: Publisher Site | Google Scholar
  285. G. Atzmon, M. Rincon, P. Rabizadeh, and N. Barzilai, “Biological evidence for inheritance of exceptional longevity,” Mechanisms of Ageing and Development, vol. 126, no. 2, pp. 341–345, 2005. View at: Publisher Site | Google Scholar
  286. N. Barzilai and I. Gabriely, “Genetic studies reveal the role of the endocrine and metabolic systems in aging,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 10, pp. 4493–4500, 2010. View at: Publisher Site | Google Scholar
  287. M. C. Haigis and B. A. Yankner, “The aging stress response,” Molecular Cell, vol. 40, no. 2, pp. 333–344, 2010. View at: Publisher Site | Google Scholar
  288. D. Nipič, A. Pirc, B. Banič, D. Šuput, and I. Milisav, “Preapoptotic cell stress response of primary hepatocytes,” Hepatology, vol. 51, no. 6, pp. 2140–2151, 2010. View at: Publisher Site | Google Scholar

Copyright

Copyright © 2012 Samo Ribarič. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.




Aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden modulointi ketogeenisellä ruokavaliolla

Vähähiilihydraattinen ja runsasrasvainen ketogeeninen ruokavalio (LCHF), on menneiden vuosikymmenten saatossa nostettu tuon tuosta esiin terapeuttisena vaihtoehtona metabolisen oireyhtymän, ylipainon ja lihavuuden sekä eräiden lääkeresistenttien sairauksien, kuten epilepsian, syövän, dementian ja masennuksen hoitona. Oma motiivini selvitellä näitä on se, että ketogeenisen ruokavalion neuroprotektiivinen ja tulehduksia hillitsevä luonne voi hidastaa etenevään MS-tautiin liittyvien keskushermoston vaurioiden kehittymistä.

Ruokavaliota on hyödynnetty lääkehoidon rinnalla tai lääkehoidosta riippumatta vuosisatoja. Esimerkiksi diabeteksen hoitoon suositeltiin vähähiilihydraattista ruokavaliota jo 1700-luvun lopulla.

Tutuin tehokkaan ravintoterapian kohde on keliakia, jota sairastavat voivat elää jokseenkin normaalia elämää välttämällä viljojen sisältämää gluteenia. Lääkeresistenttiin epilepsiaan ei edelleenkään tunneta parempaa hoitoa, kuin ketogeeninen ruokavalio, jota on käytetty erityisesti lasten epileptisten kohtausten hillitsemiseen 1920-luvulta alkaen.

Tämän ruokavalion kiistattomista hyödyistä huolimatta, terveydenhuollon ja ravitsemuksen ammattilaiset kyseenalaistavat yhä ketogeenisen ruokavalion turvallisuuden sen aiheuttamien kohonneiden seerumin ketoaineiden ja ruokavalion rajoitetun ravintokuitujen saannin vuoksi.

Ruokavalion herättämiä epäilyjä lisää edelleen huoli aivojen glukoosinsaannin riittävyydestä sekä tyydyttyneisiin rasvoihin ja kolesteroliin liittyvät irrationaaliset pelot.

Siirtymävaiheessa ketogeeninen ruokavalio voi aiheuttaa energiasubstraatin vaihtumisen ja nestehukan seurauksena ohimenevän ketoflunssan. Se on tavallista, eikä lainkaan vaarallista. Usein se kertoo, että ruokavaliomuutoksen jälkeen vettä pitäisi juoda enemmän, koska sokereiden rajoittaminen poistaa kehosta nesteitä.

Ketogeeninen ruokavalio on turvallinen ja tehokas terapiavaihtoehto moniin aineenvaihduntasairauksiin. Tässä katsauksessa tutustutaan eksogeenisten ketoaineiden ja ketonilähteiden aineenvaihduntahyötyjen tieteellisiin perusteisiin.

Katsauksessa käsitellään myös eksogeenisen β-hydroksibutyraatin (BHB) ja siihen liittyvän lyhytketjuisen rasvahapon, butyraatin (BA), synergiaa (yhteisvaikutusta) solutason aineenvaihduntatapahtumissa.

β-hydroksibutyraatin ja butyraatin hyödyt aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden moduloinnissa

Monet soluistamme voivat käyttää rasvahappoja ATP-tuotannon energiasubstaattina, jos glukoosia ei ole riittävästi saatavilla. Aivot eivät kuitenkaan voi suoraan hapettaa rasvohappoja energiaksi, koska rasvahapot eivät läpäise veri-aivoestettä. Vesiliukoinen pienemmän molekyylipainon omaava ketoaine läpäisee vaivatta veri-aivoesteen ja tarjoaa hermosoluille erittäin tehokkaan energialähteen [1, 2].

Ketoaineet, kuten β-hydroksibutyraatti, ovat neuroneille erinomaisia energiasubstraatteja. Erityisen tärkeitä ketoaineet ovat henkilöille, joiden hermosolujen glukoosimetabolia (solujen glukoosin otto) on heikentynyt geneettisten tai elintapoihin liittyvien syiden vuoksi [3]. Ketoaineet aktivoivat mm. kognitiivisista häiriöistä kärsivien aivosolujen energiantuotantoa [4, 5].

Ruokavalion sisältämällä rasvalla on väitetty olevan ratkaiseva rooli ihmisen aivojen evoluutiossa, koska aivot tarvitsevat runsaasti energiaa sisältävää ravintoa sekä rasvojen sisältämiä rakennuspalikoita [6] ja kolesterolia. Tällaista käsitystä tukee huomio, joka osoittaa, että dokosaheksaeenihapolla (DHA) ja muilla rasvoilla on ratkaiseva rooli hermokudosten kasvussa ja toiminnassa. Rasva-aineenvaihdunnan poikkeavuudet tai ravintorasvojen puutteet voivat häiritä aivojen kehitystä ja toimintaa [7].

Eräät asiantuntijat arvelevat, että siirtyminen runsasrasvaisesta ruokavaliosta vähärasvaiseen ruokavalioon on selittävä syy Pohjois-Amerikan metabolisen oireyhtymän (insuliiniresistenssi, diabetes, verenpaine, dyslipidemia, lihavuus) yleistymisen taustalla. USAn makroravinteiden kulutuksen tilastollinen tarkastelu osoittaa lihavuuden lisääntymisen korreloivan ravinnon rasvan vähentämisen kanssa. Rasvan kulutuksen vähentäminen on puolestaan lisännyt runsaasti hiilihydraatteja (sokereita) sisältävien ruokien kulutusta [8].

Samalla noususuuntaisella tilastokäyrällä ovat vuoden 1980 jälkeen kolminkertaistunut lihavien määrä ja aikuistyypin diabeetikkojen määrän kaksinkertaistuminen samana aikana. Iltapäivälehtien clickbait-jutut ketogeenisellä ruokavaliolla sairastuneista kannattaa jättää omaan arvoonsa. Diabeetikkojen määrä on globaalisti jo lähes puoli miljardia ja lihavia on kolmannes kaikista ihmisistä.

Iltapäivälehtien tulisi kiinnittää huomiota todelliseen ongelmaan: Suomessa on puoli miljoonaa aikuistyypin diabetesta sairastavaa. Näistä tilastollisesti joka toinen tulee kuolemaan sydän- ja verisuonitauteihin.

Kaiken lisäksi diabeteksen hoitokustannukset Suomessa ovat samaa luokkaa tai korkeammat kuin tupakoinnin ja alkoholin aiheuttamien sairauksien hoitokustannukset. Koskettavat mielipiteitä muokkaavat tarinat ketogeenisellä ruokavaliolla elämänsä tuhonneesta Penasta tai Sirkka-Liisasta eivät muuta tosiasioita miksikään: voi ja kolesteroli eivät ole suomalaisten suurin terveysongelma.

Tämän hetken kriittisin terveysongelma on hyperglykemian ja hyperinsulinemian aiheuttama insuliiniresistenssi sekä siihen liittyvät aineevaihduntasairaudet. Niiden hoito ravintoterapialla on helppoa ja halpaa.

Jossain ruokavalioiden ääripäiden välillä voi olla terveyden Shangri-La, jossa jalostettuja hiilihydraatteja (sokereiden lähteitä) rajoitetaan, tyydyttyneitä rasvoja ei pelätä ja tuoreilla (matalan glykeemisen indeksin) vihanneksilla on edelleen tärkeä rooli osana terveellistä ruokavaliota [9]. Tai sitten sellaista ei ole.

Energiansaannin rajoittaminen paastoamalla tai ruokavalion sisältämien hiilihydraatteja rajoittamalla johtaa ketoosiin ja seerumin ketonipitoisuuden nousuun [10].

Ketogeeninen vähähiilihydraattinen, runsasrasvainen ruokavalio (LCHF) on kokenut kuluneiden sadan vuoden aikana monta renesanssia ja romahdusta. Jotkut, jotka eivät tunne historiaa, pitävät ketogeenistä ruokavaliota vain muotioikkuna (fad), mutta hiilihydraattien rajoittamista on harjoitettu terveyden kohentamiseksi jo esikristillisillä ajoilla. Lähes jokaiseen uskontoon sisältyy puhdistava paasto, eikä se ole sattumaa, sillä paastolla on tunnustettuja terveyshyötyjä. Paasto johtaa ketoosiin.

Viime vuosisadalla ketogeenisen ruokavalion positiivisista terveysvaikutuksista raportoitiin laajemmin esimerkiksi 1930- ja 1940-luvuilla, jolloin sitä hyödynnettiin mm. astman hoidossa.

Ketogeenistä ruokavaliota on käytetty tehokkaasti hoitona:

  • metaboliseen oireyhtymään[11]

  • epilepsiaan [12]

  • kognitiivisten ja neurologisten häiriöiden [13], kuten Alzheimerin taudin hoitona, jossa sen on osoitettu vähentävän haitallista amyloidiproteiinia [14]
  • termogeneesin proteiiniaktiivisuuden irrottamisen aktivaattorina [15]

  • laihduttamiseen [16]

Ketogeeninen ruokavalio ei ole uusi ja muodikas ruokavalio-oikku, vaan ruokavalio, johon kehomme on täydellisesti adaptoitunut nisäkkäiden ja hominidien evoluution aikana.

Se, että tämä ruokavalioprotokolla voi tehokkaasti vähentää epileptisten kohtausten esiintymistiheyttä [17] ja auttaa hoitamaan lääkeresistenttiä epilepsiaa [18], vahvistettiin jo 1920-luvulla [19, 20].

Tässä katsauksessa käydään läpi joitain ketogeenisen ruokavalion metabolisten ja terveydellisten hyötyjen todisteita, sekä tarkastellaan ruokavalion turvallisuutta ja tehoa terapiavaihtoehtona lääkkeiden rinnalla ja lääkkeistä riippumatta.

Tieteellinen näyttö esitetään myös eksogeenisten ketoaineiden ja muiden erityyppisten ketonilähteiden antamiselle hiilihydraatteja rajoittavan ruokavalioprotokollan täydennyksenä tai vaihtoehtona ruokavaliolle.

Kirjoittajat suosittelevat erityistä menettelytapaa, johon sisältyy eksogeenisen ketonin, β-hydroksibutyraatin (BHB) antaminen lyhytketjuisen rasvahapon, butyraatin (BA) mukana.

Tässä katsauksessa painotetaan tämän BHB-BA-yhdistelmän synergiaa solusignaloinnin ja elimistön hiljaisen tulehduksen, eli inflammaation hallinnan yhteydessä ja sen käyttöä energiasubstraattina ATP: n muodostamiseen TCA-syklissä (sitruunahappokierrossa).

2. Mitä ketogeenisellä ruokavaliolla tarkoitetaan?

Ketogeenisessä ruokavaliossa ravintoaineiden makroravinnprofiili on tärkeä. Päivittäinen energiansaanti sisältää:

  • 65–70% rasvaa

  • 20% proteiinia

  • 5–10% hiilihydraatteja

Ketogeeninen ruokavalio kääntää perinteisen ravintopyramidin ylösalaisin. Päivittäinen hiilihydraattien saanti, joka ei ylitä 75 grammaa, on vähimmäisedellytys ketoosissa pysymiseen; 50 gramman hiilihydraattien saannin enimmäismäärä on toki ketoosin ylläpitämisen kannalta turvallisempi hiilihydraattien saanti. Ketogeenisen ruokavalion alussa hiilihydraattien saantia voi olla järkevää rajoittaa ~20 grammaan päivässä, ja monet ketoilijat pysyvät ~20 gramman päiväsaannissa ilman mitään ongelmia.

Mitä vähämmän hiilihydraatteja ravinto sisältää, sitä tehokkaammin elimistö purkaa rasvasolujen sisältämiä triglyseridejä verenkiertoon, tuottaa ketoaineita energiasubstraateiksi ja hapettaa vapaita rasvahappoja betaoksidaatiossa.

Ketogenressä 75 grammaa hiilihydraatteja päivässä on jo melkoisen villiä sokerihurjastelua, mutta virallinen linja, josta olen kuullut puhuhttavan, on, että alle 150 grammaa hiilihydraatteja päivässä luokitellaan vähähiilihydraattiseksi ruokavalioksi tai karppaamiseksi. Sellainen on absurdia roskaa.

Minä en laske sen enempää hiilihydraatteja, kuin kaloreita. Syön ravintoa, jossa on hiilihydraatteja vähän (alle 6 g/ 100 grammassa) tai ei ollenkaan. Hiilihydraattien saanti vaihtelee minulla keskimäärin 20 ja 50 gramman välillä päivässä. 50 gramman ylittäminen näkyy painossa, verenpaineessa ja verensokerissa. Se ei sovi minulle. Joillekin 50-100 g hiilihydraatteja päivässä voi sopia.

Annos keitettyä riisiä sisältää ~50 gramman hiilihydraatteja. Suuri omena tai banaani, joissa hiilihydraattien määrä on ~40 grammaa, voivat katkaista ketoosin, etenkin kun päälle lasketaan muut päivittäiset hiilihydraattien lähteet.

Myös ruokavalion sisältämillä proteiineilla on vaikutusta seerumin glukoosipitoisuuteen. Esimerkiksi leusiinilla jota saadaan yleensä riittävästi arkiruoasta (eläinperäisestä ravinnosta sekä palkokasveista, siemenistä ja hiivasta), voi olla merkittävä vaikutus ketogeneesin aktivointiin, insuliiniherkkyyteen ja veren puhdistamiseen glukoosista [21].

Sen sijaan eräät mut aminohapot, kuten alaniini, kysteiini ja glysiini, ovat erittäin glukoneogeenisiä (ts. glukoneogeneesiä indusoivia). Matalan energiansaannin aikana keho voi helposti syntetisoida glukoneogeenisiä aminohappoja glukoosiksi [22]. Glukoneogeenisiin / glukogeenisiin aminohappoihin kuuluvat myös arginiini, seriini ja proliini.

Jos ravinto sisältää runsasti glukoneogeenisiä aminohappoja, niistä tuotetaan glukoneogeneesissä glukoosia, mikä kohottaa verensokeria ja insuliinipitoisuutta ehkäisten ketogeneesin käynnistymistä.

Vaikka kohtalaiseen hyperketonemiaan liittyy merkittäviä terveysvaikutuksia riippumatta siitä, käytetäänkö sitä ravintoterapiana tai yksinkertaisesti elämänlaadun parantamiseen, tätä tilaa ei ole helppo saavuttaa ja ylläpitää ilman suunnittelua ja ruokavaliossa tehtäviä uhrauksia [23, 24]. Itse asiassa ketogeenistä elämäntapaa on nykyään jo hieman hankala ylläpitää, kun otetaan huomioon hiilihydraatti- ja sokerikeskeinen kulttuurimme. Hiilihydraattien lähteet ovat hyvin piilossa monissa arkisissa ja jalostetuissa elintarvikkeissa. Moni ei esimerkiksi tule ajatelleeksi, että maito sisältää sokeria (maitosokeria, eli laktoosia).

Yhtäältä lääketieteellisen yhteisön ketogeeniseen ruokavalioon ja varsinkin ketoasidoosiin liittyvä virheellinen viestintä ohjaa väestön kulutustottumuksia kohti hiihihydraattien runsasta saantia.

Ketoasidoosi ja ketoosi sotketaan iloisesti keskenään. Ravintoketoosi on kuitenkin hyvin erilainen fysiologinen tila kuin ketoasidoosi.

Hiilihydraattien rajoittamiseen tai paastoon perustuvista ruokavalion muutoksista johtuva ketoosi ei tarkoita samaa kuin tyypin 1 diabetekseen ja siihen liittyviin diabeettisiin tiloihin liittyvä patologinen ketoasidoosi [25, 26]. Turvallinen hyperketonemia voi saavuttaa jopa 10 mmol/l ketoaine-pitoisuuden paastoamalla tai ketogeenisella ruokavaliolla [27, 28]. Keho  säätelee ketoosia autonomisilla palautemekanismeilla [29]. Ketoasidoosille on ominaista seerumin ketonitasot, jotka ylittävät 18 mmol/l [30].

Ketoasidoosi on fysiologinen tila, jossa jotkin solujen ulkoiset nesteet happamoituvat kun niihin kertyy liikaa happamia ketoaineita. Ihmisillä ketoasidoosit jaetaan aiheuttajien mukaan muun muassa diabeettiseen ketoasidoosiin (DKA) ja alkoholiketoasidoosiin (AKA). Yleisempi diabeettinen ketoasidoosi voi johtaa hoitamattomana kuolemaan. Happomyrkytys on hengenvaarallinen tila, mutta aivan eri eri asia kuin terveen ihmisen paastotessa muodostuvat ketoaineet eli nälkähapot(diabetes.fi). Diabeetikon uhkaavasta happomyrkytyksestä kertoo se, kun verensokeri on koholla ja samaan aikaan verestä löytyy ketoaineita. DKA:n ja AKA:n yhteisiä oireita ovat muun muassa hyperventilaatio, oksentelu, mahakipu, sydämen tiheälyöntisyys ja matala verenpaine. Usein DKA:ssa ilmenee korkea verensokeri, potilas on sekava ja hengitys haisee asetonilta (hedelmäiseltä). Verensokeritaso on AKA:ssa usein normaali tai matala, potilas on lähes tajuissaan ja hengitys ei juurikaan haise asetonilta. – Wikipedia & Diabetes.fi

Koska ketogeeninen ruokavalio muuttaa kehon energia-aineenvaihduntaa glukoosipolttoisesta rasvapolttoiseksi, se imitoi paastoa. Ketogeenisen ruokavalion vaikutukset aineenvaihdunnan modulointiin ovat samanlaisia kuin paaston vaikutukset. Solujen energiasubstraatti vaihtuu glukoosista ketoaineiksi ja vapaiksi rasvahapoiksi, joista hapetetaan asetyylikoentsyymi-A:ta sitruunahappokiertoon.

Energiasubstraatin muutos käynnistää solujen puhdistusjärjestelmän, eli autofagian, joka siivoaa soluja kuona-aineista ja tuottaa niistä energiaa.

Miksi ketogeeninen elämäntapa?

Nykyisillä elintavoilla monet syövät huomamattaan aivan liian hiilihydraattipainotteisesti. Hiilihydraatit muodostuvat sokereista ja kohottavat seerumin glukoosi- ja insuliinipitoisuuksia.

Glukoosi ja sen pitoisuuden kasvun lisäämä seerumin insuliini vaurioittavat esidiabeettisella ja diabeettisella tasolla etenkin kehon pieniä verisuonia. Diabeteksen kehittymisen voi välttää tarkkailemalla sokereiden saantia.

Maksassa ylimääräinen glukoosi (ja fruktoosi) muutetaan lipogeneesissä triglyserideiksi (vrt. alkoholista riippumaton rasvamaksa). Verenkiertoon maksasta erittynyt ylimääräinen glukoosi varastoidaan ylimääräisen rasvan tapaan rasvasoluihin, jossa se muutetaan de novo lipogeneesissä triglyserideiksi.

Ylimääräinen glukoosi on siivottava verenkierrosta, koska glukoosi glykatoituu veressä olevien muiden molekyylien kanssa. Glykaation lopputuotteet (AGE) altistavat monille sairauksille. Tämä on myös se syy, miksi diabetes lisää virtsaamistarvetta: keho yrittää pissaamalla päästä eroon ylimääräisistä sokereista.

Ketogeeninen ruokavalio ei aiheuta ketoasidoosia terveillä. Jatkuvasti kohollaan oleva verensokeri ja korkea insuliini kasvattavat metabolisen oireyhtymän ja insuliiniresistenssin (ne ovat itse asiassa sama asia) ja diabeteksen riskiä. Tyypin 2 diabetes aiheuttaa lihavuutta, alkoholista riippumatonta rasvamaksaa sekä sydän- ja verisuonitauteja monien muiden aineenvaihduntaan kytkeytyvien sairauksien lisäksi.

Tyypin 2 diabetes on ongelma ja ketogeeninen ruokavalio ongelman ratkaisu.

Kun seerumin glukoosia hoidetaan väärin, seurauksena olevat edistyneet glykaation lopputuotteet (AGE) [31, 32] sekä inflammaatio [33, 34] aiheuttavat merkittävää veren toksisuutta [35] ja lisäävät sairastumisriskiä [36].

Glykaation kehittyneille lopputuotteille (AGE) altistunut LDL (matalatiheyksinen lipoproteiini) on ateroskleroosin ja muiden sydän- ja verisuonitautien riskitekijä ja aiheuttaja [37].

LDL itsessään ei ole sydän- ja verisuonitautien riskitekijä, vaan elimistön luonnollinen triglyseridejä, kolesterolia ja rasvaliukoisia vitamiineja kuljettava kuljetusmolekyyli (lipoproteiini), mutta korkean verensokerin aiheuttaman glykaation ja vapaiden happiradikaalien hapettamasta LDL-partikkelista tulee sydäntautien riski.

Elimistön reaktio (hyperglykemia, hyperinsulinemia, glykaatio ja insuliiniresistenssi) seerumin korkeaan glukoosiin, jonka aiheuttaa korkean glykeemisen kuorman ravinto, ei ole terveyttä ja kehon hyvinvointia edistävä. Monet meistä myrkyttävät itseään sokereilla.

Endokriinisen fysiologian peruskäsitys kertoo meille, että joka kerta kun insuliinia erittyy haimasta korkean glykeemisen kuorman ruokien saannin vuoksi tai sitä piikitetään haiman vaurioituneen insuliinintuotannon vuoksi kohonneen glukoosin laskemiseksi, lipolyysi estyy ja energiasubstraatit, glukoosi ja rasvahapot varastoidaan [38]. Tämä toiminta lisää rasvan kertymistä erityisesti sisäelinrasvana ja viskeraalisena keskivartalolihavuutena, mikä vähentää rasvahappojen syntetisoimista ketoaineiksi tai hapettumista betaoksidaatiossa.

Seerumin ketoaineiden saanti soluissa tapahtuu insuliinista riippumattomien metabolisten reittien kautta [39]. Siksi, vaikka insuliiniresistenssi heikentää glukoosin ottoa insuliinista riippuvaisissa soluissa, ketoaineita voidaan hyödyntää energiasubstraatteina insuliinin aineenvaihduntahäiriöistä huolimatta.

Tämä on valtava kehitysaskel neurodegeneratiivisten sairauksien, kuten Parkinsonin ja Alzheimerin taudin tulevia terapiavaihtoehtoja suunniteltaessa. Glukoosin heikentynyt energiametabolia aivoissa on yksi, ei toki ainoa, tekijä monitekijäisissä neurodegeneratiivisissa sairauksissa.

Lisäksi todisteet osoittavat, että kohonneet seerumin ketoainepitoisuudet vähentävät maksan glukoosintuotantoa ja auttavat tällä mekanismilla myös lieventämään kohonneita seerumin glukoosipitoisuuksia [40].

Ketogeeninen ruokavalio on tehokkain lääkkeetön hoito tyypin 2 diabetekseen, metaboliseen oireyhtymään ja alkoholista riippumattomaan rasvamaksaan. LCHF voi kääntää alkavan diabeteksen suunnan [41] ja johtaa aikuistyypin diabeteksen lääkkeettömään remissioon. Hiilihydraattirajoitus vaikuttaa tehokkaasti painonhallintaan [42, 43], laskee seerumin glukoosia eli verensokeria prediabeettisilla sekä diabetesta sairastavilla potilailla [44]. Ketogeeninen ruokavalio laskee myös insuliinin tarvetta insuliiniriippuvaisissa aikuistyypin diabeettisissa oireissa [45, 46].

Hiilihydraattirajoitus ei ole ainoa ruokavaliostrategia, joka torjuu elämäntapaan liittyviä sairauksia. On monta tapaa syödä oikein ja vähintään yhtä monta tapaa syödä väärin.

Ketogeeninen ruokavalio on kuitenkin yksi tehokkaimmista solujen ja elimistön hyvinvointia ylläpitävistä ruokavalioista. Niin hyödyllinen kuin se onkin painonhallinnassa ja metabolisen oireyhtymän terapiana, ketogeenisellä ruokavaliolla tapahtuva kalorirajoitus on tunnetusti huonosti siedetty, ellei sitä kompensoida korkeammalla rasvasta saadulla energialla [47]. Riittävästi rasvaa sisältävä ruoka pitää nälän tehokkaasti loitolla ja ravinnon energiapitoisuus laskee kaloreita miettimättä.

LCHF-ruokavalio myötävaikuttaa seerumin glukoosin ja paastoseerumin glukoosin laskuun sekä parantaa glukoositoleranssia [48]. Jos hiilihydraattien saanti on riittävän matala, seerumin ketonitasot voivat kasvaa riittävästi täyttämään elimistön energiantarvetta ja tukemaan terveyttä useilla tavoilla [49, 50].

Silti vähähiilihydraattisen ruokavalion edellyttämien uhrauksien, kuten leivästä, perunasta, pizzasta, hampurilaisista, bissestä ja sokeriherkuista luopumisen vaikeus on ketoilijoille haaste, joka johtaa herkästi ketogeenisestä ruokavaliosta luopumiseen.

Tämä on hyvin tavallista ruokavalion alkuvaiheessa, mutta vähitellen kaikki sokeriin liittyvät mielihalut vain katoavat. Rasva pitää nälän erinomaisesti loitolla ja energiatasot pysyvät vahvoina koko päivän 1-3 aterialla ilman parin tunnin välein mussutettavia välipaloja.

Monille meistä lääkärin määräämä pilleri tai dosetillinen päivän käynnistäviä lääkkeitä voi olla kuitenkin helpompi ratkaisu, kuin hieman selkärankaa ja sokereista luopumista edellyttävä ketogeeninen ruokavalio.

3. Endogeenisten ketoaineiden muodostuminen

Lihomisen ja laihtumisen metabolinen perusta

Lipolyysi purkaa rasvasoluihin varastoituja triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon lipolyyttisten hormonien (glukagoni, kortikotropiini, adrenaliini ja noradrenaliini) vaikutuksesta.

Veren insuliinipitoisuus säätelee lipolyyttisten hormonien erittymistä. Insuliini on myös lipolyysin tarvitsemien entsyymien estäjä, joten, kun veren insuliinipitoisuus on korkea, lipolyysi ei voi käynnistyä.

Käytännössä: Kaloreita rajoittavalla dieetillä, jossa suuri osa päivittäisestä energiasta otetaan hiilihydraateista, rasvasolujen polttaminen energiaksi estyy veren jatkuvasti korkean insuliinipitoisuuden vuoksi. Tämä tarkoittaa sitä, että painon laskua tapahtuu lähinnä rasvattoman massan (lihasten) vähenemisen kautta. Niukkakalorisella hiilihydraattipitoisella dieetillä rasvaa poltetaan yöaikaan, sillä insuliinipitoisuus laskee riittävästi ~8 tuntia syömisen jälkeen, ja vasta silloin lipolyysi voi käynnistyä. Tällöin laihtumisen aikaikkuna jää kuitenkin verrattain lyhyeksi.

Lipolyysin vastareaktio on lipogeneesi, joka edistää insuliinin vaikutuksesta rasvan ja sokereiden varastoimista rasvasoluihin triglyserideinä. Evoluution ja aineenvaihdunnan kannalta lihominen on perusteltua vain, jos rasvasoluihin tallennettu energia voidaan hyödyntää energiaksi silloin, kun ravinnosta saadaan puutteellisesti energiaa. Tämä on lihomisen ja laihtumisen metabolinen perusta.

Maksa on rasvasoluista vapautuneiden rasvahappojen ja glyserolin ensisijainen kohde. Ketoaineita tuotetaan vapaista rasvahapoista maksassa tapahtuvassa ketogeneesissä. Ketoaineet voivat myöhemmin toimia aivojen energiasubstraateina [51–53].

Triglyseridien glyseroliosaa käytetään glukoosia syntetisoivassa glukoneogeneesissä. Keho pystyy helposti syntetisoimaan kaiken tarvitsemansa glukoosin. Sanonpahan vain, koska kymmenen vuotta sitten aiheesta väiteltiin ankarasti.

Terveellä ihmisellä, jolla haiman β-solut toimivat normaalisti, seerumin ketonitasoja hallitaan autonomisesti [54]. Seerumin ketonit, asetoasetaatti ja asetoni, samoin kuin β-hydroksibutyraatti, toimivat signaaliligandeina, jotka säätelevät maksan β-oksidaatiota [55] seerumin ketoaineiden kuormituksen säätelemiseksi.

Vuosikymmenien aikana on kerääntynyt kiistattomia todisteita, jotka tukevat tämän palautejärjestelmän olemassaoloa ja tehokkuutta sekä ketonisynteesin huolellista säätelyä transkriptiotasolla [27].

Kuinka seerumin ketonikertomus liittyy seerumin glukoosimalliin?

Tarina on rinnasteinen. Molemmissa malleissa huonosti säännellyt energiasubstraatin tasot voivat johtaa toksiseen tasoon, mutta tasot, joita terve fysiologia hallitsee autonomisesti, tukevat terveellistä aineenvaihduntaa.

Itse asiassa terve seerumin glukoosipitoisuus (~5,0 mmol/l) ei ole sen ihmeellisempi kuin seerumin ketonien terveellinen taso. Seerumin ketonien terveeksi tasoksi hyperketonemian yhteydessä on dokumentoitu 2,0 mmol/l – 8,0 mmol/l [56].

Tätä ketoositasoa pidetään lievänä tai kohtalaisena hyperketonemiana, jonka keho tuottaa selviytymismekanismina pitkittyneisiin paastojaksoihin [25, 53].

Ketoaineiden perustaso terveillä henkilöillä vaihtelee 0,1 – 0,2 mmol/l pitoisuutena [57]. Seerumin ketoneja käytetään useimmissa kudoksissa tehokkaasti energiasubstraateina silloin kun glukoosia on niukasti saatavilla [58]. Ketoaineita käyttävät mm.sydän [59] ja aivot. Sydän on hyvin joustava energiasubstraattien suhteen, mutta sydämen energiansaannin kannalta tehokkain energiasubstraatti on rasva, joka hapettuu β -oksidaatiossa. Sydänlihaksen soluihin varastoituu herkästi lipotoksiineja, jos veren glukoosi- ja rasvapitoisuus on jatkuvasti liian korkea ja sydänlihakselle syötetään liikaa erilaisia energiasubstraatteja. Sydänkin rasvoittuu.

Tästä rajoittavasta ruokavaliosta voidaan tehdä siedettävämpi antamalla eksogeenistä ketonilisää (lisäravinteena) etenkin, jos halutaan kiihdyttää ketoosin positiivisia metabolisia vaikutuksia elimistössä. Endogeenisen (elimistön tuottaman) ketoosin käynnistymisen aikaikkuna ~20 g päivittäisillä hiilihydraateilla on 2-3 vuorokautta [60, 61].

Eksogeenisten ketoneiden ja erityisesti β-hydroksibutyraatin tutkimus lääkinnällisenä ja elimistön toimintaa tehostavana metabolisena substraattina on hyvin aktiivista. β-hydroksibutyraatin vaikutuksia tutkitaan aiemmin mainittujen neurodegeneratiivisten sairauksien terapian lisäksi NASAn rahoittamana astronauttien kognitiivisten kykyjen parantamiseksi äärioloissa ja USAn puolustusministeriön rahoittamana taistelusukeltajien toimintakyvyn tehostamiseksi ja sukellusaikojen pidentämiseksi.

Ketogeenisen ruokavalion aloittamisen jälkeen seerumin ATP-tuotannon kannalta riittävän ketonitason saavuttaminen, voi kestää hiilihydraattien saannista riippuen jopa viisi päivää (yleensä 2-3 päivää). Nämä siirtymäpäivät voivat osoittautua vaikeiksi ja johtaa huijauspäiviin. Seerumin toiminnallisten ketonitasojen ylläpito edellyttää ruokavalion noudattamisesta [62, 63]. Tässä eksogeeninen ketonilisäaine voi helpottaa ketogeeniselle ruokavaliolle siirtymistä.

Huijaaminen ketogeenisen ruokavalion aikana hidastaa aineenvaihdunnan siirtymistä glukoosimetaboliasta rasvametaboliaan, ketogeneesiin ja β-oksidaatioon, joka itse asiassa on ketogeenisen ruokavalion pidemmän aikavälin tavoite. Solut oppivat käyttämään vapaita rasvahappoja energiasubstraatteina β-oksidaatiossa joitain viikkoja ketoosin alkamisen jälkeen. Aikaikkuna on varsin lavea, koska toisilla primaaristi β-oksidaatioon perustuva energia-aineenvaihdunta käynnistyy nopeammin kuin toisilla.

Tunnusomaista β-oksidaatioon siirtyneessä metaboliassa on ketoaineiden tuotannon väheneminen. Ruokailujen välillä rasvahappoja vapautuu tasaisena virtana rasvasoluista verenkiertoon, jossa ne kulkeutuvat soluihin ja hapettuvat β-oksidaatiossa energiaksi, mikä ylläpitää energistä, aktiivista, hieman euforista ja kylläistä oloa. Sama tapahtuu paastotessa.

Ketogeenisessä ruokavaliossa voi ja saa tehdä syrjähyppyjä. Jos mielesi tekee juoda lava bisseä, syödä perhepizza tai suklaalevy, anna palaa! Syrjähyppy ei ole maailmanloppu. Ketogeenisen ruokavalion tarkoituksena ei suinkaan ole kurjistaa elämää, vaan parantaa terveyttä ja elämänlaatua. Syrjähyppy on toki horjahdus ja askel taaksepäin, mutta se korjaantuu, kun ketogeenistä ruokavaliota jatkaa. Alussa syrjähyppyjen teko on helppoa ja houkuttelevaa, mutta pidempään ketoillessa syrjähypyn jälkeen on aivan yhtä helppoa ja luontevaa palata hiilihydraatteja rajoittavaan ruokavalioon. Ilmiö rinnastuu mielestäni alkoholin käyttöön: ihminen voi ja saa juoda toisinaan, mutta dokaamisesta ei pitäisi tehdä elämäntapaa. Ketogeeninen ruokavalio on elämäntapa, ei laihdutusruokavalio ja siksi minäkin vältän dieetistä puhumista. sanana dieetti rinnastuu vahvasti laihduttamiseen.

Yleensä kahden-kolmen päivän ketoilun jälkeen hiilihydraattien rajoittaminen johtaa siihen, että aivot alkavat käyttää solujen energiasubstraatteina enimmäkseen ketoaineita. Tämä aikaikkuna johtuu siitä, että maksan sokerivarastoissa, eli glykogeeneissä on glukoosia ihmisestä riippuen 1-3 päiväksi (~250 g) ja ketogeneesi käynnistyy glukoosivarastojen tyhjennyttyä.

96 tunnin kuluessa hiilihydraattien rajoittamisesta keskushermoston solut tyydyttävät suurimman osan ATP-tarpeestaan ketoaineilla [64]. Itse asiassa ketonit voivat toimia ATP-substraatteina ja tuottaa jopa 70% aivojen energiasta energiakysynnän tyydyttämiseksi [65, 66].

Alzheimerin taudin, dementian ja Parkinsonin taudin hoidossa kohonnut seerumin ketonipitoisuus (ketoosi) on lupaava terapiavaihtoehto [67–69]. Magneettikuvissa ketoosin on huomattu aktivoivan taudin passivoimia aivoalueita Alzheimerin tautia sairastavilla. Hyviä tuloksia on saatu myös dementiaa sairastavien potilaiden kognitiivisissa testeissä, joiden tulokset ovat glukoosin vähentymisen ja ketoaineiden lisääntyneen pitoisuuden seurauksena selvästi parantuneet.

Tähän on looginen selitys: hermosolujen glukoosinoton heikentyminen on yksi monista neurodegeneratiivisten tautien solutason vaurioitumisen syistä. Glukoosimetabolian heikentyesssä solut surkastuvat ja kuolevat energianpuutteeseen, mikä lisää aivojen atrofiaa ja ko. tautien oireita. Nämä solut kuitenkin saavat energiaa β-hydroksibutyraatista. Tämä ehkäisee solujen surkastumista ja dementian oireiden pahenemista. Taustalla oleva mekanismi on kiehtova.

4. Eksogeenisten ketonien käyttö

Endogeenisten ketonien muodostuminen on kehon normaali ja terveellinen selviytymismekanismi, jonka ansiosta ihminen selviää pitkään ilman ravintoa [58]. Tämä on ollut erityisen tärkeää esihistoriallisille esivanhemmillemme, joille ravinnon saanti päivittäin tai edes joka viikko ei ollut mikään itsestäänselvyys. Suuri muutos ravinnonsaannissa tapahtui oikestaan vasta maanviljelyn kehityttyä noin 10 000 vuotta sitten, jolloin ravintoa tuotettiin ja varastoitiin yli välittömän kulutuksen.

Metsästäjä-keräilijät elivät sillä, mitä löysivät tai saivat saaliiksi. Ruokaa syötiin silloin kun sitä oli. Ravinnosta saatu ylimääräinen energia varastoitiin rasvakudokseen. Aikoina, jolloin ravinnosta oli pulaa, solut tuottivat energiaa varastorasvasta. Ketogeneesi, glukoneogeneesi, rasvan β-oksidaatio ja perusaineenvaihdunnan hidastuminen pitävät ihmiset hengissä tarvittaessa useita viikkoja ilman ravintoa. Lihomisella on tärkeä fysiologinen tehtävä ihmisen selviytymisessä.

Solusignalointi

ATP-substraattina toimimisen lisäksi ketonit toimivat myös ligandeina, jotka säätelevät solujen signalointia ja käyttäytymistä [27]. Nämä edut toteutuvat vain, jos henkilö noudattaa ketogeenistä ruokavaliota. Ketogeenisen ruokavalion täydentäminen eksogeenisilla ketoaineilla voi ylläpitää ketoosiin perustuvaa aineenvaihduntaa pienistä syrjähypyistä huolimatta. Samanaikaisesti eksogeeniset ketonit edistävät suotuisaa farmakologiaa.

Ketonien tai proketonien (BHB) eksogeeninen käyttö lisäravinteena on ollut käytössä vuodesta 1975 alkaen. BHB (β-hydroksibutyraatti) muuttuu tarpeen mukaan muiksi ketoaineiksi, kuten asetoasetaatiksi tai alavirtaan asetoniksi. Asetoni ja asetoasetaatti ovat biologisia ketoneja, joista seerumin ketonipitoisuus suurimmaksi osaksi muodostuu [70].

Ketogeeninen ruokavalio ruokavalioterapiana aiheuttaa haasteita, koska se vaatii ylimääräistä omistautumista ja rruokavaliorajoituksia. LCHF voi johtaa siirtymäaikana huonovointisuutta aiheuttavaan ketoflunssaan. Joillekin ketoosin saavuttaminen on vaikeampaa kuin toisille metabolisten, geneettisten, ympäristön, sosiaalisten, kulttuuristen ja elämäntapoihin liittyvien tekijöiden vuoksi.

Eksogeeninen ketonilähde voi toimia siltana, joka kompensoi metaboliseen siirtymään liittyvää energiapuutetta, samalla kun se tarjoaa ketonilähteen, joka toimii solujen signalointiligandina. Sillä voi kuitenkin olla myös ruokavaliosta riippumaton rooli solunsisäisten signalointiominaisuuksiensa vuoksi.

Nykyisissä kaupallisissa ketoaineissa käytettyä suurta annostusta voidaan pitää tarpeettomana. Kuluttajille tarjotaan jopa 10 gramman BHB:tä yhdessä keskipitkäketjuisten triglyseridien (MCT) kanssa.

MCT toimii substraatina β-hapetukselle ja BHB:n muodostumiselle. Suun kautta otettava MCT liittyy monilla käyttäjillä ruoansulatuskanavan häiriöihin, kuten ripuliin [71–75]. Lisäksi nämä BHB-lisäravinteet sisältävät natriumia, jota voi olla 1300 mg annosta kohti. Terveydenhuollon ammattilaisen tulisi valvoa tällaisten erittäin suurten terapeuttisten annosten annostelua potilaille. Lisäravinteisiin liittyy aina yliannostuksen riski.

5. Eksogeenisten ketoaineiden hyödyt

Eksogeenisillä ketoaineilla, kuten BHB:llä (β-hydroksibutyraatilla) on on terapeuttista arvoa useiden sairauksien hoidossa. β-hydroksibutyraattilisän (BHB) in vivo -tutkimus vähensi syöpäkasvaimen kasvua ja pidensi tutkittavan kohteen eloonjäämistä muista ruokavalion tekijöistä, kuten seerumin glukoosipitoisuudesta riippumatta [76].

BHB:llä on havaittu tulehdusta hillitsevä vaikutus NLRP3-tulehduksen aiheuttaman IL-1β:n ja IL-18:n välittämisessä ihmisen monosyyteissä [77]. Tällä voi olla merkitystä autoinflammatoristen sairauksien hoidossa. Eksogeenisen ketonin tukema terapeuttinen ketoosi hillitsee epileptisten kohtausten alkamista [78].

β-hydroksibutyraatti (BHB) auttaa myös parantamaan sydämen terveyttä vähentämällä sydänlihaksen glukoosinottoa ja lisäämällä verenkiertoa [79]. Aivojen hypometabolisten sairauksien, kuten Alzheimerin taudin (AD), hoidossa käytetään menestyksekkäästi 10–20 grammaa eksogeenistä ketonilisää annoksiin jaettuna [80].

Alzheimerin tauti liittyy keskushermoston neuronien heikentyneeseen glukoosimetaboliaan, joka korreloi kognitiivisten kykyjen heikentymisen kanssa [81–84]. Ketoni ei ole riippuvainen insuliinista ja sitä voidaan käyttää hermosolujen mitokondrioissa tehokkaasti. β-hydroksibutyraatin saatavuus ehkäisee neurodegeneratiivisten tautien aivosolujen energiavajeen aiheuttamia solutuhoja [85].

Seerumitasojen ei tarvitse nousta merkittävästi, jotta aivojen energiansaantia voidaan tehostaa vaihtoehtoisella energiasubstraatilla. Tämä vähentää sivuoireiden riskiä ja minimoi hoidossa tarvittavan eksogeenisen ketoniannoksen.

Hyperketonemian, jossa systeemiset plasman ketonit nousevat vain tavallisten (0,2 mmol/l) perustasojen yli, on osoitettu parantavan aivojen ketonipitoisuutta ja tarjoavan neuroneille vaihtoehtoisen ja tehokkaan energiasubstraatin [80].

β-hydroksibutyraatti tukee mitokondrioiden energiantuotannon aktiivisuutta ja estää apoptoottisten (solukuolemaan indusoivien) proteiinien kumuloitumista neuroneihin [65]. Myrkytystilasta, vammoista tai iskemiasta johtuva neurodegeneraatio johtaa oksidatiiviseen stressiin. Eksogeenisten ketonien antaminen hiirimalleissa estää turvallisesti reaktiivisten happiradikaalien (ROS) muodostumista [86].

Ketogeenisen ruokavalion on dokumentoitu olevan tehokas hoito epilepsian ja lääkeresistentin epilepsian hoidossa [87, 88]. Eksogeenisten ketonien antamista on vuosikymmenien ajan käytetty hyvällä menestyksellä epilepsian hoitoon [78, 89].

Kokeellisessa rottamallissa eksogeenisten ketonien on havaittu lisäävän sekä rotan fyysistä aktiivisuutta että kognitiivista suorituskykyä [90]. Siitä, missä määrin eksogeeniset ketonit voivat säätää tai parantaa pitkittynyttä suorituskykyä ihmisillä, ei ole vielä tutkittua tietoa [91], mutta professori Tim Noakesin juoksemat ultramaratoonit ja triathlonisti Sami Inkisen käsittämättömät suoritukset ketogeenisellä ruokavaliolla viittaavat siihen, että ketogeeninen ruokavalio parantaa myös ihmisten henkistä ja fyysistä suorituskykyä.

Viime kädessä ketogeenisen ruokavalion vaikutuksia motivaatioon ja jaksamiseen tukee myös se, että minä multippelisklerootikkona käänsin, editoin ja uudelleenkirjoitin marraskuussa kahdeksan 10-25 A4-sivun mittaista tutkimuskatsausta Ruokasotaan. Kyllä sekin jotain kertoo ketogeenisestä ruokavaliosta ja sen vaikutuksista jaksamiseen.

Eksogeeniset ketonit voivat toimia terveyttä edistävinä aineina, mutta kuten myöhemmin osoitetaan, BHB:n ja sen molekyylisesti analogisen lyhytketjuisen rasvahapon, voihapon (BA) yhdistelmä voi olla tehokkaampi ja sopivampi terapiavaihtoehto mm. näiden yhteiskäytön tuoman synergiahyödyn vuoksi.

6. Eksogeenisten ketonien turvallisuus elintarvikkeissa ja hoidoissa

Ruoka sisältää useita luonnollisia ketonilähteitä. Maitotuotteet ja erityisesti täysmaito ovat luonnollisen β-hydroksibutyraatin lähteitä [92, 93]. Yhdysvaltain FDA luokittelee β-hydroksibutyraatin eri muodot yleisesti turvallisiksi (GRAS).

Eksogeeniset ketonit (tai ketoaineet) ovat turvallisia, mutta kuinka paljon on liikaa?

Koehenkilöt testasivat eksogeenisen ketonimäärän 395 mg / kg ketoniesterinä saantia aterian yhteydessä tai ilman. Seerumin BHB-tasot mitattiin tunnin kuluttua lisäravinteen antamisesta. Seerumin BHB oli alhaisempi BHB:n aterian rinnnalla saaneilla koehenkilöillä verrattuna niihin, jotka saivat BHB:n ilman ruokaa (2,1 mM ± 0,2 mM vs. 3,1 mM ± 0,1 Mm). Nämä äärimmäiset BHB-annokset muuttuivat 31,6 grammaksi ketoniestereitä 80 kg painavalla henkilöllä. Annos siedettiin hyvin [94].

Toisessa ihmiskokeessa käytettiin suun kautta annettua annosta (R) -3-hydroksibutyyli (R) -3-hydroksibutyraattia, joka on BHB-molekyylin monoesteri, kvantifioituna 714 mg / kg. Nämä annokset muuttuivat 57,1 grammaksi ketoniestereitä 80 kg painavalla koehenkilöllä. Maksimiplasman ketonit saavutettiin 2 tunnissa (3,30 mmol/l BHB ja 1,19 mmol/l asetoasetaatti). Tätä suurta annosta annettiin viiden päivän ajan kolme kertaa päivässä, ja myös se siedettiin hyvin [95] ilman sivuvaikutuksia.

Tyypillinen 8 tunnin paasto tuottaa 0,5 mmol/l seerumin ketonipitoisuuden [95]. Seitsemän paastopäivän aikana veren kokonaisketonitasot voivat nousta 5–7 mmol/l tasolle [25, 95].

Toksisuustutkimus rotilla, jotka saivat ketoaineita 12 ja 15 g / kg, tukee myös β-hydroksibutyraatin annostelun turvallisuutta [96].

Suun kautta annettu natrium D, L-β-hydroksibutyraatti (1000 mg / kg päivässä) on annettu alle 2-vuotiaille lapsille, joilla on kardiomyopatia ja leukodystrofia asyyli-CoA-dehydrogenaasipuutoksesta. Viikon kuluessa hoidon aloittamisesta havaittiin lasten toipumista täydellisestä halvauksesta. Kahden vuoden jälkeen todettiin neurologisen toiminnan huomattavaa parantumista. Lapset kävelivät ja aivojen MRI-kuvat osoitti selkeää toipumista.

Kaksi muuta samaa tilaa sairastavaa lasta, jotka eivät reagoineet tyypilliseen hoitoon, paranivat progressiivisesti edellä kuvatulla hoidolla [97]. Pikkulasten hyperinsulinemisessa hypoglykemiassa kahta kuuden kuukauden ikäistä lasta hoidettiin ja seurattiin viiden ja seitsemän kuukauden ajan. Lapsille annettiin neljän ja kahdeksan gramman ketoniannoksia, ja ne siedettiin hyvin [60].

On kuitenkin huomattava, että tällainen äärimmäinen terapeuttinen annostelu vaatii lääketieteellistä seurantaa.

7. Butyraatin terveyshyödyt

Lyhytketjuiset rasvahapot, joita kutsutaan myös haihtuviksi (volatile) rasvahapoiksi, ovat tyypillisesti suolen mikrobiomin tuottamia. Näitä rasvahappoja ovat butyraatti, propionaatti ja asetaatti, jotka syntyvät suolen symbioottisten mikrobien ravintokuidun käymisen sivutuotteina [98].

Suolistomikrobien tiedetään edistävän terveyttä ja hyvinvointia, vaikka ne vaikuttavat tavoilla, jotka ylittävät monimutkaisuudessaan immuunijärjestelmän toiminnan.

Nykyään tiedetään, että kommensaalibakteerit (normaalimikrobiston mikrobit, josta ei koidu isännälle hyötyä eikä haittaa) osallistuvat vitamiinien [99] synteesiin, ja tuottavat tärkeän energialähteen lyhytketjuisten rasvahappojen muodossa [100].

Lyhytketjuiset rasvahapot kiertävät takaisin säätääkseen ja ylläpitääkseen terveellistä suolistomikrobipopulaatiota siivoamalla luminaalisen (onteloon liittyvän) ympäristön patogeeneistä tyhjäksi [101, 102].

Luminaalibutyraatti lisää suoliston mikrobiomin hyvinvointia. Patogeenisiin bakteereihin, kuten koli-bakteereihin (Escherichia coli), salmonellaan (Salmonella spp.) ja kampylobakteereihin (Campylobacter spp.) luminaalibutyraatilla on negatiivinen vaikutus [103].

Butyraatin vaikutus ulottuu kuitenkin paksusuolen ulkopuolelle, jossa sitä syntyy. Butyraatti parantaa insuliiniherkkyyttä systeemisesti [102].

Suun kautta nautitun butyraatin on osoitettu indusoivan GLP-1:n eritystä [104]. Tämän hormonin tiedetään tukevan glukoositoleranssin ja ruokahalun hallintaa. Aivoissa GLP-1 tuottaa syvällisiä vaikutuksia, joiden mekanismit eivät ole aina selkeitä. Sen on osoitettu stimuloivan iskeemisten, eli paikalliseen verenpuutteeseen liittyvien vaurioiden neurogeneesiä aivopohjaisen neurotrofisen tekijän (BDNF) ylisääntelyn kautta [105]. Sillä on masennuslääkkeiden kaltaisia vaikutuksia [106].

Tutkimukset osoittavat, että butyraattia saaneet hiiret pysyvät hoikkina (ruokavalion kalorimäärästä huolimatta) [107]. Butyraatti on lisännyt hiirten energiankulutusta kehon lämmöntuotannon muodossa ja tehnyt hiiristä yleensä fyysisesti aktiivisempia [108, 109].

Butyraatilla on osoitettu olevan merkittävä sydän- ja verisuonitauteja ennaltaehkäisevä vaikutus [110, 111]. Tutkimuksissa butyraatti vähensi seerumin triglyseridejä peräti 50% verrokkeihin nähden [112]. Se myös vähentää endogeenisen kolesterolin tuotantoa [112].

Butyraatin ja asetaatin on todettu suojaavan ruokavalion aiheuttamalta lihavuudelta [107, 113]. Butyraatin antamisen on havaittu parantavan ruokahalua ja ravinteiden aineenvaihduntaa [114]. Butyraatti on avainpolttoaine suoliston epiteelisoluille ja se parantaa suolinukan eheyttä [115].

Aivan kuten BHB, butyraatti on histonideasetylaasien (HDAC) estäjä (inhibiittori), joka säätelee oksidatiivisen stressin vastustuskykyä koodaavien geenien transkriptiota [116].

HDAC-modulointi liittyy myös pitkäkestoiseen muistiin, oppimiseen ja neuronien välisten synaptisten yhteyksien plastisuuteen (neuroplastisuuteen) [117]. Aihe, johon täytyy pikimmiten tutustua!

Geenitranskription säätely johtaa myös parempaan suojaan vapailta happiradikaaleilta ja oksidatiivisen stressin aiheuttamilta kudosvaurioilta, joita voivat aiheuttaa äärimmäinen metabolinen stressi ja ympäristömyrkyt.


Butyraatin geenisäätely vaikuttaa neuroprotektiivisesti (aivosoluja suojaten) ja parantaen siten muistia esimerkiksi dementiassa [118]. Butyraatti estää NF-kB:tä ja lisääntyneitä I-kB-tasoja ja parantaa pitkäaikaista tulehduksen hallintaa [119].

Oraalisesti annettu natriumbutyraatti heikentää kokeellisesti indusoitua koliittia [120]. Suun kautta annetulla butyraatilla on myös tulehduksia estävä anti-inflammatorinen vaikutus. Se voi johtaa Crohnin taudin remissioon vähentämällä NF-kB: n ja IL-1β: n tasoa [121].

Suonensisäisesti annetun butyraatin on osoitettu tukevan suoraan ruoansulatuskanavan vuorauksen ja suolinukan terveyttä [103]. Sillä on vaikutuksia suoliston solujen lisääntymiseen ja solujen troofiseen ravinnonottoon 122].

Butyraatti on voimakas suoliston immuunipuolustusta säätelevien T-solujen promoottori [123]. Se luo immuunijärjestelmää säätelevän mekanismin, joka edistää parempaa tulehduksen hallintaa limakalvon vuorauksessa ja suolinukassa, sekä mekanismin suolistosyövän estämiseksi [124].

Butyraatti vähentää tai estää mikrobiomipopulaatiota, joka tuottaa propionihappoa [125]. Propionihappo on osallisena autismikirjon häiriöissä (ASD) [126]. On spekuloitu, että voihapon propionihappoa tuottavien suolistobakteerien säätelyvaikutus on mekanismi kognitiivisen tilan parantamiseksi [127].

70% lapsista, joilla on autismi tai ASD, on ruoansulatuskanavan häiriöitä ja muuttunut geenien ilmentyminen aivoissa. Sen on arveltu johtuvan lyhytketjuisten rasvahappojen epätasapainosta [128]. Butyraatin ja muiden lyhytketjuisten rasvahappojen oraalisten antoon liittyvien terveysetujen luettelo on pitkä (taulukko 1). β-hydroksibutyraatin antamisen yhteydessä butyraatti-lisä on suositeltava näiden yhteisvaikutusten vuoksi.

Veden passiivinen imeytyminen paksusuolessa riippuu lyhytketjuisten rasvahappojen saatavuudesta [129–131]. Butyraatilla on rooli terveessä peristaltiikassa, joka auttaa normalisoimaan suolessa liikkuvan massan liikettä ummetuksessa tai ripulissa [132, 133]. Butyraatti tukee optimaalista nesteytystä ja optimaalista suolen eliminointitoimintoa [134].

Tämä farmakologinen vaikutus auttaa torjumaan BHB-lisäravinteisiin liittyviä mahdollisia haittatapahtumia.

Yhteenveto butyraatin terveydellisistä hyödyistä, joita on raportoitu in vitro– ja in vivo -malleilla sekä ihmiskokeilla tehdyissä tutkimuksissa

Butyraattia saa runsaasti meijerituotteista. Voi, joka sisältää luonnostaan 3-4 % voihappoa, on itse asiassa yksi parhaimmista voihapon lähteistä. Yksi ruokalusikallinen voita (~14 g) sisältää ~560 mg voihappoa. Butyraatit ovat voihapon suoloja ja estereitä. Suolistossa esiintyvä voihappo näyttää hillitsevän tulehdusta ja syöpäsolujen kasvua sekä vähentävän happiradikaalien syntyä. Ihminen kuluttaa päivässä yli 1000 mg butyraattia ulkoisista lähteistä. Tämä saadaan ruokavalion rasvoista.

Ihmisillä, jotka noudattavat ketogeenistä ja / tai kaloreita rajoittavaa ruokavaliota, mutta eivät syö meijerituotteita (voita, kermaa ja juustoja), ja joiden kuitujen saanti ravinnosta on vähäistä, voihapon saanti ja synteesi suolistossa on kehon tarpeisiin nähden liian vähäistä. Butyraatin ottaminen lisäravinteena on perusteltua myös, koska se yhdistää ketogeenisen ruokavalion ja butyraattilisän edut synergisesti.

Butyraatti lisää FGF21:n pitoisuutta seerumissa, maksassa ja rasvasoluissa, mikä puolestaan stimuloi rasvahappojen β-hapettumista ja maksan ketonituotantoa [135, 136]. Tämä on butyraattifarmakologian keskeinen piirre, joka synergisoi suoraan sen aktiivisuuden ketogeeniseen aineenvaihduntaan ja tukee sen terveydellisiä vaikutuksia. Butyraatti itsessään voi myös toimia substraattina β-hapettumiselle [137].

8. Butyraatin (lyhytketjuisen rasvahapon) ja BHB: n yhdistämisen edut

Butyraatti toimii merkittävänä ketoosin induktiota kiihdyttävänä synergistisenä tekijänä, joka parantaa:

  • BHB-ligandivuorovaikutuksia ja farmakologiaa

  • yleistä terveydentilaa

  • kuntoa ja suorituskykyä

Ketonien, kuten BHB-suolan eksogeeninen saanti lisäravinteena tarjoaa aivosolujen ATP-tuotannolle välittömän vaihtoehtoisen energiasubstraatin kalori- tai hiilihydraattirajoituksen aikana.

Samanaikainen butyraattilisäys natriumin, kalsiumin tai kaliumbutyraatin (tai sen estereiden) muodossa:

  • indusoi elimistön endogeeniseen ketonisynteesin

  • toimii ligandina stimuloimalla reseptoreita, joihin ketonit vaikuttavat

  • myötävaikuttaa insuliinin ja aineenvaihdunnan yleisen terveyden parantamiseen

  • tukee tulehduksellista ja yleistä immuunijärjestelmän terveyttä

  • tukee neurologista terveyttä

  • tukee ruoansulatuskanavan terveyttä ja eheyttä

  • toimii suoraan ATP:n muodostamisen energiasubstraattina

Kaikki nämä toteutuvat rinnakkain niiden etujen kanssa, joita sisarketoaineen (BHB) samanaikainen lisäys tuottaa. Tämän synergistisen järjestelmän arvo ketogeenisen ruokavalion yhteydessä on hyvin perusteltu ja järkevä.

On kuitenkin muistettava, että ketogeeniselle elämäntavalle on ominaista vähäinen hiilihydraattien saanti, mikä johtaa heikentyneeseen sulamattoman kuidun ja resistentin tärkkelyksen saantiin. Sillä on negatiivinen vaikutus suoliston mikrobiomiin ja sen kykyyn tuottaa lyhytketjuisia rasvahappoja, kuten voihappoa.

Suoliston mikrobiomi on säännöllisesti kovan paineen alla ympäristötekijöiden, kuten ruokavalion ja lääkkeiden (esim. antibioottien) vaikutuksesta [138, 139]. Butyraatin ottaminen lisäravinteena suojaa  suoliston mikrobiomia, etenkin jos sulamattomien kuitujen ja resistentin tärkkelyksen saanti on vähäistä.

9. Voihappo ja ketogeeninen painonpudotusstrategiaa

Lisäravinteena otetun BHB:n vaikutusta painonpudotuksessa on tutkittu hyvin paljon. Erityisen paljon huomiota on kiinnitetty lisäravinteisiin, jotka sisältävät BHB:n lisäksi keskipitkäketjuisia triglyseridejä (MCT). Ketoaineet ja MCT sisältävät energiaa ja lisäävät siten päivittäistä energiansaantia.

Tutkimuksissa on havaittu, että seerumin ketonipitoisuuden kasvu ei lisää, vaan estää lipolyysiä. Siltä kannalta lisäravinteena otetut ketoaineet ja MCT itse asiassa estävät rasvasolujen purkamista vapaiksi rasvahapoiksi, ketonien synteesiä ja laihtumista [53, 140]. Toisaalta butyraatti tukee ruokahalun hallintaa ja parantaa kehon rasva-lihas-koostumusta [107, 112–114].

On olemassa näyttöä, jonka mukaan butyraatti vaikuttaa suotuisasti sydän- ja verisuoniterveyteen ja ehkäisee sydän- ja verisuonitauteja [112]. Tasapaino eksogeenisten ja endogeenisten ketoaineiden välillä on oleellista aivojen ja kognitiivisen terveyden silloitustekijänä ja neuroniin liittyvien signaaliligandien riittävän saannin kannalta. Aktivointisignaali, kuten voihaposta peräisin oleva signaali rasvahappojen β-oksidaation käynnistämiseksi aivosoluissa, on neuronien toiminnan kannalta tärkeää.

Lisäravinteena otetutun butyraatin ja beta-hydroksibutyraatin käyttö on perusteltua ruokavalion siirtymäajalla sekä solujen energia-aineenvaihdunnan tehostajana monissa metabolisissa ja neurodegeneratiivisissa sairauksissa, mutta laihtumisen suhteen tällaisesta lisäravinnecocktailista ei ole hyötyä. Sen sijaan lisäaineina syiötävien butyraatin ja beta-hydroksibutyraatin hyödyntäminen paastolla tapahtuvan liikunnan energiabuusterina ja rasvahappojen hapettumisen tehostajana on perusteltua.

Ruokavalion tuottama ketoosi vähentää laktaatin tuotantoa ja parantaa suorituskykyä erityisesti kestävyyttä vaativissa lajeissa, kuten pyöräilyssä [141]. Sen on osoitettu estävän lihaskatoa (kataboliaa) ja suojaavan aivoja ja muita kudoksia hapettumiselta [142].

10. Kurkistus ketoaineiden solunsisäiseen farmakologiaan

BHB-BA-kompleksin farmakologiasta vastaavien mekanismien kartoittamiseksi ravintolisien yhteydessä on tehty useita tutkimuksia. Tutkimukset osoittavat, että erilaiset G-proteiiniin kytketyt HCA-reseptorit toimivat kohteina endogeenisille ketonille ja ketoaineiden ligandeille [143].

Tämä reseptoriperhe luokitellaan useisiin alatyyppeihin, joilla on erillisiä piirteitä, kuten ligandispesifisyys. Vaikka BHB toimii tehokkaana agonistina esimerkiksi HCA2-reseptoreille, se ei kykene toimimaan agonistina muille HCA-reseptoreille. Sekä BA että BHB ovat signalointiligandeja erilaisille reseptoreille, jotka osallistuvat neuroinflammatoriseen säätelyyn, mukaan lukien HCA2-reseptori [144].

Muut ligandit, kuten muut ketonit, voivat toimia agonisteina vaihtamalla HCA-reseptoreita, mutta ne eivät välttämättä pysty käynnistämään HCA2 reseptorista transduktiokaskadia. HCA-reseptoreita voi esiintyä erilaisissa kudos- ja solutyypeissä, kuten rasvasoluissa ja makrofageissa [143].

Näiden reseptorien ilmentyminen voidaan myös indusoida immuunisoluissa, kuten makrofageissa, erilaisilla sytokiineilla ligandiensa solunsisäisen vaikutuksen säätelemiseksi. Vapaat rasvahappo- (FFAR) ja HCA-reseptorit voivat hyvinkin olla keskeisiä kohteita tyypin 2 diabeteksen, lihavuuden ja inflammaation ehkäisyssä ja hoidossa [145].

Ravinnetasapainoa ylläpitävät rasvahapporeseptorit, jotka säätelevät kolekystokiniiniä, peptidiä YY ja leptiiniä ovat kasvavan kiinnostuksen kohteena diabeteksen hoidossa.

Luonnossa esiintyvät ligandit, BHB ja BA moduloivat jo tehokkaasti näitä terapeuttisia kohteita. Kaikki kolme HCA-reseptoria ekspressoidaan rasvasoluissa. HCA1-reseptori aktivoidaan esimerkiksi hydroksipropaanihapolla (laktaatilla), kun taas HCA2:n agonisti on β-hydroksibutyraatti (BHB), ja HCA3 aktivoidaan toisella β-hapetusvälituotteella [146].

Näiden kahden luonnollisen butyraatin säätelyvaikutukset tulehduksellista kaskadia ja immuunijärjestelmän aktiivisuutta säätelevien sytokiinien transkriptiotekijöihin liittyvät läheisesti NF-kB-modulointiin.

Tumatekijä erytroidiin 2 liittyvä tekijä 2 (Nrf2) on ensisijainen transkriptiotekijä, joka käynnistää vasteen oksidatiiviseen stressiin. Ketogeeninen ruokavalio indusoi systemaattisesti Nrf2:ta lievän oksidatiivisen ja elektrofiilisen stressin kautta [147, 148].

Nrf2:n transkriptio avaa sarjan endogeenisiä antioksidanttisia puolustusjärjestelmiä. Transkriptiotekijä siirtyy tumaan ja sitoo antioksidanttivaste-elementin (ARE) transkriptoimaan solua suojaavat sytoprotektiiviset geenit [149].

Nrf2 transkriptoi endogeeniset antioksidanttipeptidit: hemeoksigenaasi-1, katalaasi (CAT), superoksididismutaasi (SOD) ja glutationiperoksidaasi (GSH / GPx) [150-152] oksidatiivisen stressin suojamekanismina. Viime aikoina tätä mekanismia on kohdennettu kemopreventiivisesti, millä on haluttu stimuloida endogeenista antioksidanttisaturaatiota, joka estää syöpä- ja kemoterapialääkkeiden aiheuttamat vahingot isäntäsolun terveessä DNA:ssa [153, 154].

Nrf2 lisää solujen puolustusmekanismeja. Se välittää mitokondrioille hermosuojauksen toksiinin aiheuttaman stressin aikana ja ehkäisee vaurioiden (leesioiden) muodostumista [155, 156].

Tätä solusuojausta nähdään myös kemoterapian yhteydessä, jossa Nrf2-induktio suojaa terveitä soluja [157]. Nrf2-induktio suojaa soluja LPS:n aiheuttamalta tulehdukselliselta aktiivisuudelta ja kuolleisuudelta [158].

Nrf2-signalointireitit ovat lupaavia Parkinsonin taudin mitokondrioiden toimintahäiriöiden vastatoimena [159]. Nrf2-induktion välittää myös puolustuksen sydänlihassolujen kohonneesta seerumin-glukoosin aiheuttamasta oksidatiivisesta vahingosta [160].

Diabeettinen tila liittyy Nrf2-aktiivisuuden alasregulaatioon ERK:n kautta. Tämän uskotaan vaikuttavan stressin aiheuttamaan insuliiniresistenssiin sydämen soluissa [161]. Tutkimukset osoittavat, että Nrf2-aktivaatiota voidaan käyttää terapeuttisena sovelluksena diabeteksen ”metabolisen häiriön parantamiseen ja munuaisvaurioiden lievittämiseen” [162].

Nrf2:n rooli solujen suojauksessa antioksidanttisen puolustuksen pääregulaattorina tekevät siitä kiinnostavan kohteen kudosten ja solujen suojaamisessa hapettavilta ja toksisilta tekijöiltä [163, 164]. Nrf2:lla on huomattava merkitys antioksidanttipuolustusmekanismissa muiden yleisten endogeenisten antioksidanttien rinnalla. Se tukee myös vammoista, toksisuudesta ja hypoksiasta palautumista [165, 166].

Iskemia (paikallinen hapenpuute) on yleinen solun toimintahäiriön ja solukuoleman syy. Iskemia johtuuu verenkierron keskeytymisestä tai hapen saatavuuden heikkenemisestä kudoksissa, mikä johtaa soluvaurioihin. Sen tiedetään olevan keskeinen tekijä aivohalvauksen patologiassa ja yksi yleisimmistä pysyvien solu- ja kudosvaurioiden aiheuttajista sydänsairauksissa [167].

Hemeoksigenaasi-1-induktio suojaa neuroneja [168] ja sydänkudosta [169] iskemialta ja sen aiheuttamilta vaurioilta. Myös glutationiperoksidaasin yliekspressio suojaa sydänlihasta iskeemisiltä reperfuusiovaurioilta [170, 171].

Butyraatti aktivoi Nrf2:ta [172, 173]. Tutkimuskirjallisuudessa on viitteitä siitä, että käsittely butyraatilla tai sen suoloilla (natriumbutyraatilla) lievittää oksidatiivista stressiä [174] ja parantaa katalaasiaktiivisuutta [175]. Esikäsittely BA-annoksella suojaa iskemiaan liittyviä sydänlihaksen vaurioita estämällä tulehduksellisten sytokiinien ilmentymistä [174].

Se myös suojaa keuhkovaltimon sileän lihaksen soluja hyperoksiaan liittyvältä hapettumiselta [175] ja parantaa ikääntymiseen liittyvää aineenvaihduntaa ja lihasten surkastumista [176].

11. Opittavaa on paljon

Monet voivat hyötyä ketogeenisestä ruokavaliosta tai suun kautta otettavista ketoaineista ja niiden tuottamasta ketoositilasta.

Ketoosi ylläpitää parempaa ruokahalun hallintaa, fyysistä kuntoa, aivojen tehostunutta energiansaantia, neuroplastisuutta, neurogeneesiä, oppimiskykyä ja parempaa muistia. Ketoosin aiheuttama beta-oksidaatio ylläpitää tasaista eenergiavirtaa, joka lisää kestävyyttä ja polttaa tehokkaasti rasvaa.

Solutasolla ketonit vaikuttavat neuro- ja sytoprotektiivisesti suojaten soluja ja hillitsevät vapaiden happiradikaalien ja oksidatiivisen stressin aiheuttamia solu- ja kudosvaurioita. Tutkimuskirjallisuuden meta-analyysin perusteella ketoosin hyötyjä ovat:

  • tulehduksen (inflammaation) lievittäminen

  • neurologiseen sairauteen liittyvä kognitiivisen heikentymisen korjaantuminen

  • parantunut ruoansulatuskanavan terveys

  • nopeampi palautuminen liikunnan tai intensiivisen harjoituksen lihasrasituksesta

Lisää työtä ja kliinisiä tutkimuksia tarvitaan, jotta tiedämme tarkemmin, miten näitä strategioita voidaan käyttää potilaiden terapiana.

12. Keskustelua

Tutkimuskirjallisuuden tämänhetkisen näytön perusteella lisäravinteena otetun eksogeenisen ketonin käyttö näyttää olevan toteuttamiskelpoinen strategia, joka tukee ketogeenisen ruokavalion siirtymävaihetta, jossa keho totutetaan glukoosin sijaan uuteen energiasubstraattiin. Butyraatinn on raportoitu antavan positiivisia tuloksia kunto-, painonhallinta-, kognitio- ja suorituskyvyn parantamisen tueksi joko ruokavalion rajoituksilla tai ilman.

Laboratoriomme nykyinen tutkimushanke on suunniteltu tutkimaan edelleen BHB:n ja BHB-BA:n solunsisäisiä vaikutuksia immuunijärjestelmän tärkeimpiin soluihin seerumipitoisuuksilla, jotka voimme saavuttaa suositellulla vähimmäisannoksella.

Eksogeeninen BHB-BA-ravintolisä voi olla toiminnallinen strategia, joka indusoi β-hapettumista ja auttaa nostamaan seerumin ketonitasoja, jotka tuottavat ketoosin (> 0,2 mmol) metaboliset hyödyt ilman makroravinteiden ankaraa säätelyä. BHB:n samanaikainen antaminen siihen liittyvän BA-molekyylin kanssa näyttää olevan tehokas tapa saavuttaa tämä tavoite käyttämällä erittäin pieniä ja turvallisia oraalisia annoksia. Vaikka ketoosin metabolisia hyötyjä saatetaan saavuttaa lisäravinteilla, on todennäköistä, että ketogeeninen ruokavalio yhdessä lisäravinteina otettavien butyraatin ja beta-hydroksibutyraatin kanssa toimii terapiana etenkin kognitiivisten häiriöiden ja painonhallinnan yhteydessä paremmin kuin lisäravinteet yksin.

Ruokavalion täydentäminen BHB-BA-lisäravinteella tukee ketoosissa pysymistä pienistä ruokavaliolipsahduksista huolimatta.

Huomio: Ota yhteys lääkäriin ennenBHB-BA-lisäravinteiden käyttöä. Älä käytä, jos olet raskaana tai imetät. Ei suositella tyypin I diabeetikoille.

Ps. Pahoittelut kirjoitus- ja/tai asiavirheistä. Nppäilyvirheille tulee jotenkin sokeaksi.

Conflicts of Interest

Franco Cavaleri is the owner of a biomedical research group, Biologic Nutrigenomics Health Research Corp., and Biologic Pharmamedical Research that funds and executes research on the pharmacology of nutritional, nutraceutical, and pharmaceutical agents that are studied in the context of disease pathology including characteristics that have been associated with inflammation and dementias. Franco Cavaleri is also the owner of ketone-based and other related intellectual properties. Emran Bashar is an employee of the Biologic Pharmamedical Research.Authors’ ContributionsFranco Cavaleri was responsible for background research and preparation and editing of the manuscript. Emran Bashar was responsible for conducting research and preparation and editing of the manuscript. Franco Cavaleri and Emran Bashar generated research plans.

Lähde: https://www.hindawi.com/journals/jnme/2018/7195760/
References

  1. A. Gjedde and C. Crone, “Induction processes in blood-brain transfer of ketone bodies during starvation,” American Journal of Physiology–Legacy Content, vol. 229, no. 5, pp. 1165–1169, 1975. View at: Publisher Site | Google Scholar
  2. M. Pollay and F. Alan Stevens, “Starvation-induced changes in transport of ketone bodies across the blood-brain barrier,” Journal of Neuroscience Research, vol. 5, no. 2, pp. 163–172, 1980. View at: Publisher Site | Google Scholar
  3. S. Cunnane, S. Nugent, M. Roy et al., “Brain fuel metabolism, aging, and Alzheimer’s disease,” Nutrition, vol. 27, no. 1, pp. 3–20, 2011. View at: Publisher Site | Google Scholar
  4. M. A. Reger, S. T. Henderson, C. Hale et al., “Effects of β-hydroxybutyrate on cognition in memory-impaired adults,” Neurobiology of Aging, vol. 25, no. 3, pp. 311–314, 2004. View at: Publisher Site | Google Scholar
  5. L. C. Costantini, L. J. Barr, J. L. Vogel, and S. T. Henderson, “Hypometabolism as a therapeutic target in Alzheimer’s disease,” BMC Neuroscience, vol. 9, no. 2, p. S16, 2008. View at: Publisher Site | Google Scholar
  6. W. R. Leonard, “Dietary change was a driving force in human evolution,” Scientific American, vol. 287, no. 6, pp. 106–116, 2002. View at: Publisher Site | Google Scholar
  7. S. M. Innis, “Dietary (n−3) fatty acids and brain development,” Journal of Nutrition, vol. 137, no. 4, pp. 855–859, 2007. View at: Publisher Site | Google Scholar
  8. E. Cohen, M. Cragg, A. Hite, M. Rosenberg, and B. Zhou, “Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity,” Nutrition, vol. 31, no. 5, pp. 727–732, 2015. View at: Publisher Site | Google Scholar
  9. J. Scholl, “Traditional dietary recommendations for the prevention of cardiovascular disease: do they meet the needs of our patients?” Cholesterol, vol. 2012, pp. 1–9, 2012. View at: Publisher Site | Google Scholar
  10. G. Mullins, C. Hallam, and I. Broom, “Ketosis, ketoacidosis and very-low-calorie diets: putting the record straight,” Nutrition Bulletin, vol. 36, no. 3, pp. 397–402, 2011. View at: Publisher Site | Google Scholar
  11. D. K. Layman and D. A. Walker, “Potential importance of leucine in treatment of obesity and the metabolic syndrome,” Journal of Nutrition, vol. 136, no. 1, pp. 319S–323S, 2006. View at: Publisher Site | Google Scholar
  12. M. Lawson and V. Shaw, “Ketogenic diet for epilepsy,” in Clinical Paediatric Dietetics, pp. 222–232, Blackwell Science Ltd., Oxford, UK, 2nd edition, 2001. View at: Google Scholar
  13. R. Krikorian, M. D. Shidler, K. Dangelo, S. C. Couch, S. C. Benoit, and D. J. Clegg, “Dietary ketosis enhances memory in mild cognitive impairment,” Neurobiology of Aging, vol. 33, no. 2, pp. 425. e19–425. e27, 2012. View at: Publisher Site | Google Scholar
  14. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  15. P. G. Sullivan, N. A. Rippy, K. Dorenbos, R. C. Concepcion, A. K. Agarwal, and J. M. Rho, “The ketogenic diet increases mitochondrial uncoupling protein levels and activity,” Annals of Neurology, vol. 55, no. 4, pp. 576–580, 2004. View at: Publisher Site | Google Scholar
  16. E. C. Westman, J. Mavropoulos, W. S. Yancy Jr., and J. S. Volek, “A review of low-carbohydrate ketogenic diets,” Current Atherosclerosis Reports, vol. 5, no. 6, pp. 476–483, 2003. View at: Publisher Site | Google Scholar
  17. K. M. Maruschak, Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Anthropometrics, Biochemical Values, and Gastrointestinal Symptoms in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  18. S. R. Send, The Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Seizure Severity, Seizure Frequency, and Quality of Life in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  19. C. Dudick, “Carb”(not “Keto”) is a Four Letter Word, 2016.
  20. M. Schmidt, N. Pfetzer, M. Schwab, I. Strauss, and U. Kämmerer, “Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial,” Nutrition and Metabolism, vol. 8, no. 1, p. 54, 2011. View at: Publisher Site | Google Scholar
  21. D. K. Layman and J. I. Baum, “Dietary protein impact on glycemic control during weight loss,” Journal of Nutrition, vol. 134, no. 4, pp. 968S–973S, 2004. View at: Publisher Site | Google Scholar
  22. C. Remesy, P. Fafournoux, and C. Demigne, “Control of hepatic utilization of serine, glycine and threonine in fed and starved rats,” Journal of Nutrition, vol. 113, no. 1, pp. 28–39, 1983. View at: Publisher Site | Google Scholar
  23. N. J. Krilanovich, “Benefits of ketogenic diets,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 238-239, 2007. View at: Publisher Site | Google Scholar
  24. D. W. Kim, H. C. Kang, J. C. Park, and H. D. Kim, “Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet,” Pediatrics, vol. 114, no. 6, pp. 1627–1630, 2004. View at: Publisher Site | Google Scholar
  25. R. L. Veech, “The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 309–319, 2004. View at: Publisher Site | Google Scholar
  26. J. D. McGarry, “Disordered metabolism in diabetes: have we underemphasized the fat component?” Journal of Cellular Biochemistry, vol. 55, no. S1994A, pp. 29–38, 1994. View at: Publisher Site | Google Scholar
  27. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends in Endocrinology and Metabolism, vol. 25, no. 1, pp. 42–52, 2014. View at: Publisher Site | Google Scholar
  28. O. Owen, G. Reichard Jr., H. Markus, G. Boden, M. Mozzoli, and C. Shuman, “Rapid intravenous sodium acetoacetate infusion in man metabolic and kinetic responses,” Journal of Clinical Investigation, vol. 52, no. 10, pp. 2606–2616, 1973. View at: Publisher Site | Google Scholar
  29. E. O. Balasse and F. Féry, “Ketone body production and disposal: effects of fasting, diabetes, and exercise,” Diabetes/Metabolism Reviews, vol. 5, no. 3, pp. 247–270, 1989. View at: Publisher Site | Google Scholar
  30. R. Wilson and W. Reeves, “Neutrophil phagocytosis and killing in insulin-dependent diabetes,” Clinical and Experimental Immunology, vol. 63, no. 2, p. 478, 1986. View at: Google Scholar
  31. M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, and A. Cerami, “Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking,” Science, vol. 232, no. 4758, pp. 1629–1632, 1986. View at: Publisher Site | Google Scholar
  32. N. Ahmed, “Advanced glycation endproducts—role in pathology of diabetic complications,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 3–21, 2005. View at: Publisher Site | Google Scholar
  33. P. Marceau, S. Biron, F. S. Hould et al., “Liver pathology and the metabolic syndrome X in severe obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 5, pp. 1513–1517, 1999. View at: Publisher Site | Google Scholar
  34. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at: Publisher Site | Google Scholar
  35. K. Moley, M. Y. Chi, C. Knudson, S. Korsmeyer, and M. Mueckler, “Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways,” Nature Medicine, vol. 4, no. 12, pp. 1421–1424, 1998. View at: Publisher Site | Google Scholar
  36. S. P. Hays, E. B. Smith, and A. L. Sunehag, “Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants,” Pediatrics, vol. 118, no. 5, pp. 1811–1818, 2006. View at: Publisher Site | Google Scholar
  37. H. Vlassara, “Advanced glycation end-products and atherosclerosis,” Annals of Medicine, vol. 28, no. 5, pp. 419–426, 1996. View at: Publisher Site | Google Scholar
  38. H. Yki-Jarvinen, “Glucose Toxicity,” Endocrine Reviews, vol. 13, no. 3, pp. 415–431, 1992. View at: Publisher Site | Google Scholar
  39. L. L. Madison, D. Mebane, R. H. Unger, and A. Lochner, “The hypoglycemic action of ketones. II. Evidence for a stimulatory feedback of ketones on the pancreatic beta cells,” Journal of Clinical Investigation, vol. 43, no. 3, pp. 408–415, 1964. View at: Publisher Site | Google Scholar
  40. A. Baron, G. Brechtel, and S. Edelman, “Effects of free fatty acids and ketone bodies on in vivo non-insulin-mediated glucose utilization and production in humans,” Metabolism, vol. 38, no. 11, pp. 1056–1061, 1989. View at: Publisher Site | Google Scholar
  41. T. A. Hussain, T. C. Mathew, A. A. Dashti, S. Asfar, N. Al-Zaid, and H. M. Dashti, “Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes,” Nutrition, vol. 28, no. 10, pp. 1016–1021, 2012. View at: Publisher Site | Google Scholar
  42. T. D. Noakes, “Low-carbohydrate and high-fat intake can manage obesity and associated conditions: occasional survey,” South African Medical Journal, vol. 103, no. 11, pp. 826–830, 2013. View at: Publisher Site | Google Scholar
  43. J. Ratliff, G. Mutungi, M. J. Puglisi, J. S. Volek, and M. L. Fernandez, “Carbohydrate restriction (with or without additional dietary cholesterol provided by eggs) reduces insulin resistance and plasma leptin without modifying appetite hormones in adult men,” Nutrition Research, vol. 29, no. 4, pp. 262–268, 2009. View at: Publisher Site | Google Scholar
  44. J. S. Volek, M. J. Sharman, D. M. Love, N. G. Avery, T. P. Scheett, and W. J. Kraemer, “Body composition and hormonal responses to a carbohydrate-restricted diet,” Metabolism, vol. 51, no. 7, pp. 864–870, 2002. View at: Publisher Site | Google Scholar
  45. C. A. Major, M. J. Henry, M. de Veciana, and M. A. Morgan, “The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes,” Obstetrics and Gynecology, vol. 91, no. 4, pp. 600–604, 1998. View at: Publisher Site | Google Scholar
  46. A. Accurso, R. K. Bernstein, A. Dahlqvist et al., “Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal,” Nutrition and Metabolism, vol. 5, no. 1, p. 9, 2008. View at: Publisher Site | Google Scholar
  47. R. D. Feinman, W. K. Pogozelski, A. Astrup et al., “Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base,” Nutrition, vol. 31, no. 1, pp. 1–13, 2015. View at: Publisher Site | Google Scholar
  48. M. K. Badman, A. R. Kennedy, A. C. Adams, P. Pissios, and E. Maratos-Flier, “A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss,” American Journal of Physiology-Endocrinology and Metabolism, vol. 297, no. 5, pp. E1197–E1204, 2009. View at: Publisher Site | Google Scholar
  49. K. Xu, X. Sun, B. O. Eroku, C. P. Tsipis, M. A. Puchowicz, and J. C. LaManna, “Diet-induced ketosis improves cognitive performance in aged rats,” in Advances in Experimental Medicine and Biology, pp. 71–75, Springer, Berlin, Germany, 2010. View at: Google Scholar
  50. K. D. Ballard, E. E. Quann, B. R. Kupchak et al., “Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins,” Nutrition Research, vol. 33, no. 11, pp. 905–912, 2013. View at: Publisher Site | Google Scholar
  51. R. A. Hawkins, A. M. Mans, and D. W. Davis, “Regional ketone body utilization by rat brain in starvation and diabetes,” American Journal of Physiology-Endocrinology and Metabolism, vol. 250, no. 2, pp. E169–E178, 1986. View at: Publisher Site | Google Scholar
  52. T. N. Seyfried and P. Mukherjee, “Targeting energy metabolism in brain cancer: review and hypothesis,” Nutrition and Metabolism, vol. 2, no. 1, p. 30, 2005. View at: Publisher Site | Google Scholar
  53. L. Laffel, “Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes,” Diabetes/Metabolism Research and Reviews, vol. 15, no. 6, pp. 412–426, 1999. View at: Publisher Site | Google Scholar
  54. H. Krebs, “The regulation of the release of ketone bodies by the liver,” Advances in Enzyme Regulation, vol. 4, pp. 339–353, 1966. View at: Publisher Site | Google Scholar
  55. J. McGarry and D. Foster, “Regulation of hepatic fatty acid oxidation and ketone body production,” Annual Review of Biochemistry, vol. 49, no. 1, pp. 395–420, 1980. View at: Publisher Site | Google Scholar
  56. M. T. Newport, T. B. VanItallie, Y. Kashiwaya, M. T. King, and R. L. Veech, “A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease,” Alzheimer’s and Dementia, vol. 11, no. 1, pp. 99–103, 2015. View at: Publisher Site | Google Scholar
  57. E. C. Westman, R. D. Feinman, J. C. Mavropoulos et al., “Low-carbohydrate nutrition and metabolism,” American Journal of Clinical Nutrition, vol. 86, no. 2, pp. 276–284, 2007. View at: Publisher Site | Google Scholar
  58. C. Harvey, What is Nutritional Ketosis? 2015.
  59. I. F. Kodde, J. van der Stok, R. T. Smolenski, and J. W. de Jong, “Metabolic and genetic regulation of cardiac energy substrate preference,” Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 146, no. 1, pp. 26–39, 2007. View at: Publisher Site | Google Scholar
  60. B. Plecko, S. Stoeckler-Ipsiroglu, E. Schober et al., “Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy,” Pediatric Research, vol. 52, no. 2, pp. 301–306, 2002. View at: Publisher Site | Google Scholar
  61. H. White and B. Venkatesh, “Clinical review: ketones and brain injury,” Critical Care, vol. 15, no. 2, p. 219, 2011. View at: Publisher Site | Google Scholar
  62. E. P. Vining, “Clinical efficacy of the ketogenic diet,” Epilepsy Research, vol. 37, no. 3, pp. 181–190, 1999. View at: Publisher Site | Google Scholar
  63. E. H. Kossoff, B. A. Zupec-Kania, and J. M. Rho, “Ketogenic diets: an update for child neurologists,” Journal of Child Neurology, vol. 24, no. 8, pp. 979–988, 2009. View at: Publisher Site | Google Scholar
  64. G. F. Cahill Jr., “Fuel metabolism in starvation,” Annual Review of Nutrition, vol. 26, no. 1, pp. 1–22, 2006. View at: Publisher Site | Google Scholar
  65. M. Gasior, M. A. Rogawski, and A. L. Hartman, “Neuroprotective and disease-modifying effects of the ketogenic diet,” Behavioural Pharmacology, vol. 17, no. 5-6, pp. 431–439, 2006. View at: Publisher Site | Google Scholar
  66. R. de Oliveira Caminhotto and F. B. Lima, “Low carbohydrate high fat diets: when models do not match reality,” Archives of Endocrinology and Metabolism, vol. 60, no. 4, pp. 405-406, 2016. View at: Publisher Site | Google Scholar
  67. M. G. Abdelwahab, S. H. Lee, D. O’Neill et al., “Ketones prevent oxidative impairment of hippocampal synaptic integrity through K ATP channels,” PLoS One, vol. 10, no. 4, Article ID e0119316, 2015. View at: Publisher Site | Google Scholar
  68. J. X. Yin, M. Maalouf, P. Han et al., “Ketones block amyloid entry and improve cognition in an Alzheimer’s model,” Neurobiology of Aging, vol. 39, pp. 25–37, 2016. View at: Publisher Site | Google Scholar
  69. J. Zhang, Q. Cao, S. Li et al., “3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism,” Biomaterials, vol. 34, no. 30, pp. 7552–7562, 2013. View at: Publisher Site | Google Scholar
  70. L. Siegel, N. I. Robin, and L. J. McDonald, “New approach to determination of total ketone bodies in serum,” Clinical Chemistry, vol. 23, no. 1, pp. 46–49, 1977. View at: Google Scholar
  71. D. J. Angus, M. Hargreaves, J. Dancey, and M. A. Febbraio, “Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance,” Journal of Applied Physiology, vol. 88, no. 1, pp. 113–119, 2000. View at: Publisher Site | Google Scholar
  72. L. Misell, N. Lagomarcino, V. Schuster, and M. Kern, “Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners,” Journal of Sports Medicine and Physical Fitness, vol. 41, no. 2, p. 210, 2001. View at: Google Scholar
  73. V. Ööpik, S. Timpmann, L. Medijainen, and H. Lemberg, “Effects of daily medium-chain triglyceride ingestion on energy metabolism and endurance performance capacity in well-trained runners,” Nutrition Research, vol. 21, no. 8, pp. 1125–1135, 2001. View at: Publisher Site | Google Scholar
  74. Y. M. C. Liu, “Medium-chain triglyceride (MCT) ketogenic therapy,” Epilepsia, vol. 49, no. s8, pp. 33–36, 2008. View at: Publisher Site | Google Scholar
  75. A. E. Jeukendrup, W. Saris, P. Schrauwen, F. Brouns, and A. Wagenmakers, “Metabolic availability of medium-chain triglycerides coingested with carbohydrates during prolonged exercise,” Journal of Applied Physiology, vol. 79, no. 3, pp. 756–762, 1995. View at: Publisher Site | Google Scholar
  76. A. Poff, C. Ari, P. Arnold, T. Seyfried, and D. D’Agostino, “Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer,” International Journal of Cancer, vol. 135, no. 7, pp. 1711–1720, 2014. View at: Publisher Site | Google Scholar
  77. Y. H. Youm, K. Y. Nguyen, R. W. Grant et al., “The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease,” Nature Medicine, vol. 21, no. 3, pp. 263–269, 2015. View at: Publisher Site | Google Scholar
  78. D. P. D’Agostino, R. Pilla, H. E. Held et al., “Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 304, no. 10, pp. R829–R836, 2013. View at: Publisher Site | Google Scholar
  79. L. C. Gormsen, M. Svart, H. H. Thomsen et al., “Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study,” Journal of the American Heart Association, vol. 6, no. 3, p. e005066, 2017. View at: Publisher Site | Google Scholar
  80. S. T. Henderson, J. L. Vogel, L. J. Barr, F. Garvin, J. J. Jones, and L. C. Costantini, “Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial,” Nutrition and Metabolism, vol. 6, no. 1, p. 31, 2009. View at: Publisher Site | Google Scholar
  81. E. Arnaiz, V. Jelic, O. Almkvist et al., “Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment,” Neuroreport, vol. 12, no. 4, pp. 851–855, 2001. View at: Publisher Site | Google Scholar
  82. C. X. Gong, F. Liu, and K. Iqbal, “Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation,” Journal of Alzheimer’s Disease, vol. 9, no. 1, pp. 1–12, 2006. View at: Publisher Site | Google Scholar
  83. C. Messier, “Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging,” Neurobiology of Aging, vol. 26, no. 1, pp. 26–30, 2005. View at: Publisher Site | Google Scholar
  84. S. T. Henderson, “Ketone bodies as a therapeutic for Alzheimer’s disease,” Neurotherapeutics, vol. 5, no. 3, pp. 470–480, 2008. View at: Publisher Site | Google Scholar
  85. T. B. VanItallie and T. H. Nufert, “Ketones: metabolism’s ugly duckling,” Nutrition Reviews, vol. 61, no. 10, pp. 327–341, 2003. View at: Publisher Site | Google Scholar
  86. M. Maalouf, P. G. Sullivan, L. Davis, D. Y. Kim, and J. M. Rho, “Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation,” Neuroscience, vol. 145, no. 1, pp. 256–264, 2007. View at: Publisher Site | Google Scholar
  87. C. B. Henderson, F. M. Filloux, S. C. Alder, J. L. Lyon, and D. A. Caplin, “Efficacy of the ketogenic diet as a treatment option for epilepsy: meta-analysis,” Journal of Child Neurology, vol. 21, no. 3, pp. 193–198, 2006. View at: Publisher Site | Google Scholar
  88. J. Sirven, B. Whedon, D. Caplan et al., “The ketogenic diet for intractable epilepsy in adults: preliminary results,” Epilepsia, vol. 40, no. 12, pp. 1721–1726, 1999. View at: Publisher Site | Google Scholar
  89. M. A. McNally and A. L. Hartman, “Ketone bodies in epilepsy,” Journal of Neurochemistry, vol. 121, no. 1, pp. 28–35, 2012. View at: Publisher Site | Google Scholar
  90. A. J. Murray, N. S. Knight, M. A. Cole et al., “Novel ketone diet enhances physical and cognitive performance,” Federation of American Societies for Experimental Biology Journal, vol. 30, no. 12, pp. 4021–4032, 2016. View at: Publisher Site | Google Scholar
  91. P. J. Pinckaers, T. A. Churchward-Venne, D. Bailey, and L. J. van Loon, “Ketone bodies and exercise performance: the next magic bullet or merely hype?” Sports Medicine, vol. 47, no. 3, pp. 383–391, 2017. View at: Publisher Site | Google Scholar
  92. T. Larsen and N. I. Nielsen, “Fluorometric determination of β-hydroxybutyrate in milk and blood plasma,” Journal of Dairy Science, vol. 88, no. 6, pp. 2004–2009, 2005. View at: Publisher Site | Google Scholar
  93. N. I. Nielsen, T. Larsen, M. Bjerring, and K. L. Ingvartsen, “Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents,” Journal of Dairy Science, vol. 88, no. 9, pp. 3186–3200, 2005. View at: Publisher Site | Google Scholar
  94. B. Stubbs, K. Willerton, S. Hiyama, K. Clarke, and P. Cox, Concomitant Meal Ingestion Alters Levels of Circulating Ketone Bodies following a Ketone Ester Drink, The Physiological Society, London, UK, 2015.
  95. K. Clarke, K. Tchabanenko, R. Pawlosky et al., “Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects,” Regulatory Toxicology and Pharmacology, vol. 63, no. 3, pp. 401–408, 2012. View at: Publisher Site | Google Scholar
  96. K. Clarke, K. Tchabanenko, R. Pawlosky et al., “Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate,” Regulatory Toxicology and Pharmacology, vol. 63, no. 2, pp. 196–208, 2012. View at: Publisher Site | Google Scholar
  97. J. L. Van Hove, S. Grünewald, J. Jaeken et al., “D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD),” The Lancet, vol. 361, no. 9367, pp. 1433–1435, 2003. View at: Publisher Site | Google Scholar
  98. H. Endo, M. Niioka, N. Kobayashi, M. Tanaka, and T. Watanabe, “Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis,” PLoS One, vol. 8, no. 5, Article ID e63388, 2013. View at: Publisher Site | Google Scholar
  99. K. M. Maslowski and C. R. Mackay, “Diet, gut microbiota and immune responses,” Nature Immunology, vol. 12, no. 1, pp. 5–9, 2011. View at: Publisher Site | Google Scholar
  100. K. M. Tuohy, L. Conterno, M. Gasperotti, and R. Viola, “Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber,” Journal of Agricultural and Food Chemistry, vol. 60, no. 36, pp. 8776–8782, 2012. View at: Publisher Site | Google Scholar
  101. J. M. Wong, R. De Souza, C. W. Kendall, A. Emam, and D. J. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at: Publisher Site | Google Scholar
  102. M. Velasquez-Manoff, “Gut microbiome: the peacekeepers,” Nature, vol. 518, no. 7540, pp. S3–S11, 2015. View at: Publisher Site | Google Scholar
  103. O. Kanauchi, T. Iwanaga, K. Mitsuyama et al., “Butyrate from bacterial fermentation of germinated barley foodstuff preserves intestinal barrier function in experimental colitis in the rat model,” Journal of Gastroenterology and Hepatology, vol. 14, no. 9, pp. 880–888, 1999. View at: Publisher Site | Google Scholar
  104. H. Yadav, J. H. Lee, J. Lloyd, P. Walter, and S. G. Rane, “Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion,” Journal of Biological Chemistry, vol. 288, no. 35, pp. 25088–25097, 2013. View at: Publisher Site | Google Scholar
  105. H. J. Kim, P. Leeds, and D. M. Chuang, “The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain,” Journal of Neurochemistry, vol. 110, no. 4, pp. 1226–1240, 2009. View at: Publisher Site | Google Scholar
  106. Y. Yamawaki, M. Fuchikami, S. Morinobu, M. Segawa, T. Matsumoto, and S. Yamawaki, “Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus,” World Journal of Biological Psychiatry, vol. 13, no. 6, pp. 458–467, 2012. View at: Publisher Site | Google Scholar
  107. H. V. Lin, A. Frassetto, E. J. Kowalik Jr. et al., “Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms,” PLoS One, vol. 7, no. 4, Article ID e35240, 2012. View at: Publisher Site | Google Scholar
  108. Z. Gao, J. Yin, J. Zhang et al., “Butyrate improves insulin sensitivity and increases energy expenditure in mice,” Diabetes, vol. 58, no. 7, pp. 1509–1517, 2009. View at: Publisher Site | Google Scholar
  109. K. M. Tuohy, H. M. Probert, C. W. Smejkal, and G. R. Gibson, “Using probiotics and prebiotics to improve gut health,” Drug Discovery Today, vol. 8, no. 15, pp. 692–700, 2003. View at: Publisher Site | Google Scholar
  110. R. B. Canani, M. Di Costanzo, and L. Leone, “The epigenetic effects of butyrate: potential therapeutic implications for clinical practice,” Clinical Epigenetics, vol. 4, no. 1, p. 4, 2012. View at: Publisher Site | Google Scholar
  111. A. Alvaro, R. Sola, R. Rosales et al., “Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids,” IUBMB Life, vol. 60, no. 11, pp. 757–764, 2008. View at: Publisher Site | Google Scholar
  112. J. W. Finley, J. B. Burrell, and P. G. Reeves, “Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans,” Journal of Nutrition, vol. 137, no. 11, pp. 2391–2398, 2007. View at: Publisher Site | Google Scholar
  113. E. E. Canfora, J. W. Jocken, and E. E. Blaak, “Short-chain fatty acids in control of body weight and insulin sensitivity,” Nature Reviews Endocrinology, vol. 11, no. 10, pp. 577–591, 2015. View at: Publisher Site | Google Scholar
  114. J. Darzi, G. S. Frost, and M. D. Robertson, “Do SCFA have a role in appetite regulation?” Proceedings of the Nutrition Society, vol. 70, no. 1, pp. 119–128, 2011. View at: Publisher Site | Google Scholar
  115. A. Hague, B. Singh, and C. Paraskeva, “Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate,” Gastroenterology, vol. 112, no. 3, pp. 1036–1040, 1997. View at: Publisher Site | Google Scholar
  116. J. R. Davie, “Inhibition of histone deacetylase activity by butyrate,” Journal of Nutrition, vol. 133, no. 7, pp. 2485S–2493S, 2003. View at: Publisher Site | Google Scholar
  117. D. P. Stefanko, R. M. Barrett, A. R. Ly, G. K. Reolon, and M. A. Wood, “Modulation of long-term memory for object recognition via HDAC inhibition,” Proceedings of the National Academy of Sciences, vol. 106, no. 23, pp. 9447–9452, 2009. View at: Publisher Site | Google Scholar
  118. S. G. Gray, “Epigenetic treatment of neurological disease,” Epigenomics, vol. 3, no. 4, pp. 431–450, 2011. View at: Google Scholar
  119. J. Segain, D. R. De La Blétiere, A. Bourreille et al., “Butyrate inhibits inflammatory responses through NFkappa B inhibition: implications for Crohn’s disease,” Gut, vol. 47, no. 3, pp. 397–403, 2000. View at: Publisher Site | Google Scholar
  120. E. L. Vieira, A. J. Leonel, A. P. Sad et al., “Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis,” Journal of Nutritional Biochemistry, vol. 23, no. 5, pp. 430–436, 2012. View at: Publisher Site | Google Scholar
  121. A. Sabatino, R. Morera, R. Ciccocioppo et al., “Oral butyrate for mildly to moderately active Crohn’s disease,” Alimentary Pharmacology and Therapeutics, vol. 22, no. 9, pp. 789–794, 2005. View at: Publisher Site | Google Scholar
  122. A. Kotunia, J. Wolinski, D. Laubitz et al., “Effect of sodium butyrate on the small intestine,” Journal of Physiology and Pharmacology, vol. 55, no. 2, pp. 59–68, 2004. View at: Google Scholar
  123. Y. Furusawa, Y. Obata, S. Fukuda et al., “Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells,” Nature, vol. 504, no. 7480, pp. 446–450, 2013. View at: Publisher Site | Google Scholar
  124. H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. Troost, and R. J. Brummer, “Review article: the role of butyrate on colonic function,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 2, pp. 104–119, 2008. View at: Publisher Site | Google Scholar
  125. D. F. MacFabe, N. E. Cain, F. Boon, K. P. Ossenkopp, and D. P. Cain, “Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder,” Behavioural Brain Research, vol. 217, no. 1, pp. 47–54, 2011. View at: Publisher Site | Google Scholar
  126. D. F. MacFabe, D. P. Cain, K. Rodriguez-Capote et al., “Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders,” Behavioural Brain Research, vol. 176, no. 1, pp. 149–169, 2007. View at: Publisher Site | Google Scholar
  127. N. Kratsman, D. Getselter, and E. Elliott, “Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model,” Neuropharmacology, vol. 102, pp. 136–145, 2016. View at: Publisher Site | Google Scholar
  128. M. W. Bourassa, I. Alim, S. J. Bultman, and R. R. Ratan, “Butyrate, neuroepigenetics and the gut microbiome,” Physiological Reviews, vol. 81, pp. 1031–1064, 2001. View at: Google Scholar
  129. N. I. McNeil, J. Cummings, and W. James, “Short chain fatty acid absorption by the human large intestine,” Gut, vol. 19, no. 9, pp. 819–822, 1978. View at: Publisher Site | Google Scholar
  130. O. C. Velazquez, H. M. Lederer, and J. L. Rombeau, Butyrate and the Colonocyte. Dietary Fiber in Health and Disease, Springer, Berlin, Germany, 1997.
  131. G. Sandle, “Salt and water absorption in the human colon: a modern appraisal,” Gut, vol. 43, no. 2, pp. 294–299, 1998. View at: Publisher Site | Google Scholar
  132. R. Havenaar, “Intestinal health functions of colonic microbial metabolites: a review,” Beneficial Microbes, vol. 2, no. 2, pp. 103–114, 2011. View at: Publisher Site | Google Scholar
  133. R. B. Canani, G. Terrin, P. Cirillo et al., “Butyrate as an effective treatment of congenital chloride diarrhea,” Gastroenterology, vol. 127, no. 2, pp. 630–634, 2004. View at: Publisher Site | Google Scholar
  134. J. Butzner, R. Parmar, C. Bell, and V. Dalal, “Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat,” Gut, vol. 38, no. 4, pp. 568–573, 1996. View at: Publisher Site | Google Scholar
  135. H. Li, Z. Gao, J. Zhang et al., “Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3,” Diabetes, vol. 61, no. 4, pp. 797–806, 2012. View at: Publisher Site | Google Scholar
  136. X. Zhang, D. C. Yeung, M. Karpisek et al., “Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans,” Diabetes, vol. 57, no. 5, pp. 1246–1253, 2008. View at: Publisher Site | Google Scholar
  137. F. Hird and R. Symons, “The mechanism of ketone-body formation from butyrate in rat liver,” Biochemical Journal, vol. 84, no. 1, pp. 212–216, 1962. View at: Publisher Site | Google Scholar
  138. R. Linskens, X. Huijsdens, P. Savelkoul, C. Vandenbroucke-Grauls, and S. Meuwissen, “The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics,” Scandinavian Journal of Gastroenterology, vol. 36, no. 234, pp. 29–40, 2001. View at: Publisher Site | Google Scholar
  139. R. B. Sartor, “Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics,” Gastroenterology, vol. 126, no. 6, pp. 1620–1633, 2004. View at: Publisher Site | Google Scholar
  140. A. K. Taggart, J. Kero, X. Gan et al., “(D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G,” Journal of Biological Chemistry, vol. 280, no. 29, pp. 26649–26652, 2005. View at: Publisher Site | Google Scholar
  141. B. Egan and D. P. D’Agostino, “Fueling performance: ketones enter the mix,” Cell Metabolism, vol. 24, no. 3, pp. 373–375, 2016. View at: Publisher Site | Google Scholar
  142. A. J. Murray and H. E. Montgomery, “How wasting is saving: Weight loss at altitude might result from an evolutionary adaptation,” Bioessays, vol. 36, pp. 721–729, 2014. View at: Google Scholar
  143. C. C. Blad, K. Ahmed, A. P. Ijzerman, and S. Offermanns, “Biological and pharmacological roles of HCA receptors,” Advances in Pharmacology, vol. 62, pp. 219–250, 2014. View at: Publisher Site | Google Scholar
  144. S. Offermanns and M. Schwaninger, “Nutritional or pharmacological activation of HCA 2 ameliorates neuroinflammation,” Trends in Molecular Medicine, vol. 21, no. 4, pp. 245–255, 2015. View at: Publisher Site | Google Scholar
  145. S. Offermanns, “Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors,” Annual Review of Pharmacology and Toxicology, vol. 54, no. 1, pp. 407–434, 2014. View at: Publisher Site | Google Scholar
  146. S. Offermanns, S. L. Colletti, T. W. Lovenberg, G. Semple, A. Wise, and A. P. Ijzerman, “International union of basic and clinical pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B),” Pharmacological Reviews, vol. 63, no. 2, pp. 269–290, 2011. View at: Publisher Site | Google Scholar
  147. J. B. Milder, L. P. Liang, and M. Patel, “Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet,” Neurobiology of Disease, vol. 40, no. 1, pp. 238–244, 2010. View at: Publisher Site | Google Scholar
  148. M. Storoni and G. T. Plant, “The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis,” Multiple Sclerosis International, vol. 2015, Article ID 681289, 9 pages, 2015. View at: Publisher Site | Google Scholar
  149. M. Sandberg, J. Patil, B. D’angelo, S. G. Weber, and C. Mallard, “NRF2-regulation in brain health and disease: implication of cerebral inflammation,” Neuropharmacology, vol. 79, pp. 298–306, 2014. View at: Publisher Site | Google Scholar
  150. H. C. Huang, T. Nguyen, and C. B. Pickett, “Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42769–42774, 2002. View at: Publisher Site | Google Scholar
  151. J. Vriend and R. J. Reiter, “The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome,” Molecular and Cellular Endocrinology, vol. 401, pp. 213–220, 2015. View at: Publisher Site | Google Scholar
  152. N. Wei, D. Yuan, H. B. He et al., “Saponins from Panax japonicas reduces myocardial infarction induced reactive oxygen species production and cardiomyocyte apoptosis via activation of the Nrf-2 pathway,” Advanced Materials Research, vol. 881–883, pp. 339–346, 2014. View at: Publisher Site | Google Scholar
  153. J. S. Lee and Y. J. Surh, “Nrf2 as a novel molecular target for chemoprevention,” Cancer Letters, vol. 224, no. 2, pp. 171–184, 2005. View at: Publisher Site | Google Scholar
  154. S. Braun, C. Hanselmann, M. G. Gassmann et al., “Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound,” Molecular and Cellular Biology, vol. 22, no. 15, pp. 5492–5505, 2002. View at: Publisher Site | Google Scholar
  155. A. Y. Shih, S. Imbeault, V. Barakauskas et al., “Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo,” Journal of Biological Chemistry, vol. 280, no. 24, pp. 22925–22936, 2005. View at: Publisher Site | Google Scholar
  156. J. M. Lee, A. Y. Shih, T. H. Murphy, and J. A. Johnson, “NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37948–37956, 2003. View at: Publisher Site | Google Scholar
  157. R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto, and S. Biswal, “Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray,” Cancer Research, vol. 62, no. 18, pp. 5196–5203, 2002. View at: Google Scholar
  158. R. K. Thimmulappa, C. Scollick, K. Traore et al., “Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide,” Biochemical and Biophysical Research Communications, vol. 351, no. 4, pp. 883–889, 2006. View at: Publisher Site | Google Scholar
  159. K. U. Tufekci, E. Civi Bayin, S. Genc, and K. Genc, “The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease,” Parkinson’s Disease, vol. 2011, p. 314082, 2011. View at: Publisher Site | Google Scholar
  160. X. He, H. Kan, L. Cai, and Q. Ma, “Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 1, pp. 47–58, 2009. View at: Publisher Site | Google Scholar
  161. Y. Tan, T. Ichikawa, J. Li et al., “Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress–induced insulin resistance in cardiac cells in vitro and in vivo,” Diabetes, vol. 60, no. 2, pp. 625–633, 2011. View at: Publisher Site | Google Scholar
  162. H. Zheng, S. A. Whitman, W. Wu et al., “Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 3055–3066, 2011. View at: Publisher Site | Google Scholar
  163. J. M. Lee, J. Li, D. A. Johnson et al., “Nrf2, a multi-organ protector?” Federation of American Societies for Experimental Biology, vol. 19, no. 9, pp. 1061–1066, 2005. View at: Publisher Site | Google Scholar
  164. A. Neymotin, N. Y. Calingasan, E. Wille et al., “Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 88–96, 2011. View at: Publisher Site | Google Scholar
  165. S. Yu, T. O. Khor, K. L. Cheung et al., “Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice,” PLoS One, vol. 5, no. 1, Article ID e8579, 2010. View at: Publisher Site | Google Scholar
  166. H. Nagatomo, Y. Morimoto, A. Ogami et al., “Change of heme oxygenase-1 expression in lung injury induced by chrysotile asbestos in vivo and in vitro,” Inhalation Toxicology, vol. 19, no. 4, pp. 317–323, 2007. View at: Publisher Site | Google Scholar
  167. S. Suzuki, L. Toledo-Pereyra, F. Rodriguez, and D. Cejalvo, “Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury,” Transplantation, vol. 55, no. 6, pp. 1265–1272, 1993. View at: Publisher Site | Google Scholar
  168. P. Bowman, Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage, DTIC Document, 2012.
  169. R. Hinkel, B. Petersen, M. Thormann et al., “hHO-1 overexpression in transgenic pigs is cardioprotective after acute myocardial ischemia and reperfsuion,” Circulation, vol. 120, no. 18, p. S1042, 2009. View at: Google Scholar
  170. T. Yoshida, M. Watanabe, D. T. Engelman et al., “Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury,” Journal of Molecular and Cellular Cardiology, vol. 28, no. 8, pp. 1759–1767, 1996. View at: Publisher Site | Google Scholar
  171. N. S. Dhalla, A. B. Elmoselhi, T. Hata, and N. Makino, “Status of myocardial antioxidants in ischemia–reperfusion injury,” Cardiovascular Research, vol. 47, no. 3, pp. 446–456, 2000. View at: Publisher Site | Google Scholar
  172. W. Dong, Y. Jia, X. Liu et al., “Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC,” Journal of Endocrinology, vol. 232, no. 1, pp. 71–83, 2017. View at: Publisher Site | Google Scholar
  173. X. Chen, W. Su, T. Wan et al., “Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway,” Biochemical Pharmacology, vol. 142, pp. 111–119, 2017. View at: Publisher Site | Google Scholar
  174. X. Hu, K. Zhang, C. Xu, Z. Chen, and H. Jiang, “Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion,” Experimental and Therapeutic Medicine, vol. 8, no. 1, pp. 229–232, 2014. View at: Publisher Site | Google Scholar
  175. S. Yano and D. F. Tierney, “Butyrate increases catalase activity and protects rat pulmonary artery smooth muscle cells against hyperoxia,” Biochemical and Biophysical Research Communications, vol. 164, no. 3, pp. 1143–1148, 1989. View at: Publisher Site | Google Scholar
  176. M. E. Walsh, A. Bhattacharya, K. Sataranatarajan et al., “The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging,” Aging Cell, vol. 14, no. 6, pp. 957–970, 2015. View at: Publisher Site | Google Scholar

Copyright

Copyright © 2018 Franco Cavaleri and Emran Bashar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Mitä on kolesteroli?

Kehotan tarkkaavaisuuteen ja avoimeen mieleen, koska tämä voi järkyttää herkempiä lukijoita. LDL ei ole kolesterolia! Paha kolesteroli on sellainen kummitusjuttu?

Pahamainen LDL on lipoproteiini (Low Density Lipoprotein), eli kuljetusmolekyyli, jota elimistö tarvitsee triglyseridien, kolesterolin ja rasvaliukoisten vitamiinien kuljettamiseen verenkierrossa.

LDL on kuin pizzataksi, joka kuljettaa ravintoa nälkäisille soluille.

Elimistö saa kolesterolia ravinnosta ja syntetisoi sitä itse soluissa tapahtuvasssa kolesterolisynteesissä. Kolesterolisynteesin lopputuotteita ovat mm. ruoansulatusneste, steroidihormonit, kuten testosteroni ja estrogeeni sekä kalsiumin homeostaasia ja immuunijärjestelmää säätelevä D-vitamiini. Elimistö tarvitsee välttämättä kaikkia näitä.

Koska kolesteroli on elämälle välttämätön steroli, elimistö pyrkii pitämään kolesterolin määrän tasaisena. Ravinnosta saatu kolesteroli vähentää soluissa tapahtuvaa kolesterolisynteesiä.

Ei liene sattumaa, että samalla kun miesten kolesteroli laskee, yhä useampi mies huomaa kärsivänsä testosteronin vajauksesta. Mieskunto laskee samaa tahtia kolesterolin kanssa. Voiko se olla sattumaa? Ehkä, mutta epäilen vahvasti?

Nykyisen lääketieteellisen paradigman karikatyyri on seuraava: laske kolesterolia statiineilla, nosta testoja lääkkeillä, sairastu metaboliseen oireyhtymään ja diabetekseen, korjaa korkea verensokeri metformiinilla tai insuliinilla, syö ohjeiden mukaan riittävästi sokeria ja vedä helvetisti verenpaine-, verensokeri- ja muita lääkkeitä. Syö lääkkeitä lääkkeiden aiheuttamiin sivuoireisiin, äläkä missään nimessä hairahdu ketogeeniseen ruokavalioon, koska siitä voit sairastua! Tuo voisi olla tinfoil-tuesdayn big pharma-hupailu, mutta surullista kyllä se on hyvin lähellä arkista totuutta.

Multippeliskleroottisesti suuntautuneena onnen kerjäläisenä pääsin osaksi institutionalisoitua medikalisaatiota. Etenevään multippeliskleroosiin ei tunneta oireita hidastavaa, tai parantavaa hoitoa, mutta minulla oli reseptillä parhaimmillaan kymmenkunta erilaista droppia ja nappia. Ja voi pojat, että rouskin uskollisesti erilaisia pillereitä ja palleroita, kunnes havahduin siihen, että jokainen syömäni lääke loi tarpeen uudelle lääkkeelle: lepovapinaa korjaavat lääkkeet edellyttivät vastapainoksi lihasrelaksantteja jne.

Oloni oli saamaton, tyhjämielinen, ahdistunut ja fyysisesti heikko. Älkää ymmärtäkö väärin: osa lääkkeistä on potilaille elintärkeitä ja välttämättömiä, mutta kaikki lääkkeet eivät ole kaikille välttämättömiä ja elintärkeitä. Siinä on merkittävä ero. Suunta on aivan väärä, jos meidät medikalisoidaan parhaassa iässä.

Syö, juo, liho, liiku, laihdu, mies, nainen!

Jokainen kolmekymppinen tarvitsee pian oman dosetin. Päivittäinen ääkecocktail on uskonnollinen rituaali, joka pitää kehon kasassa ja maailman radallaan. Mutta ei helvetti! Minun mielestäni ei ole tervettä tai normaalia, että jo kolme- ja nelikymppiset syövät päivittäin 5-10 reseptilääkettä statiineista masennuslääkkeisiin ja närästyslääkkeistä verenohennuslääkkeisiin. Jossain on nyt menty pahasti metsään. Ilmiö on globaali.

Suomessa on puoli miljoonaa diabeetikkoa ja saman verran verenpainelääkkeitä syöviä. Masennuslääkkeitä määrätään yhä nuoremmille ja yhä lievemmillä perusteilla. Joka toinen lapsi sairastaa ADHD:tä ja joka toinen ADD:tä. Terveitä lapsia mahtuu kourallinen tiuhun. Lähes kaikki suomalaiset kärsivät närästyksestä, ummetuksta, turvotuksesta, vitutuksesta ja muista ruoansulatus- ja suolistovaivoista.

Pahaa kolesterolia ei oikeastaan ole olemassa sen enempää kuin yksisarvisia, vampyyrejä tai ihmissusia. On olemassa vain kolesterolia ja erilaisia kolesterolia kuljettavia molekyylejä.

Jos muutat kolesterolimolekyylissä yhdenkin atomin paikan, se ei enää ole kolesterolia. LDL ja HDL ovat kuljetusmolekyylejä, jotka sisältävät samaa kolesterolia, mutta toinen on pahaa kolesterolia ja toinen hyvää kolesterolia.

Mitä se kolesteroli on?

Dave Feldman on käyttänyt vuosikymmenen vastatakseen tähän kysymykseen ja selvittääkseen, mitä kolesteroli oikeasti on. Tutustutaan Feldmanin havaintoihin.

Jos noudatat vähähiilihydraattista ja runsaasti rasvaa sisältävää ketogeenistä ruokavaliota, sinun on hyvä ymmärtää muutama asia kolesterolista ja siitä, kuinka kolesteroli liittyy valitsemaasi elämäntapaan.

Kolesterolista liikkuu paljon kummallisia ja kauhistuttavia juttuja. Osa niistä on totta. Hapettuneet lipoproteiinit ovat todellakin terveydelle haitallisia ja voivat ennustaa sydän- ja verisuonitauteja. Kolesterolia voi kumuloitua verisuonten seinämiin, mutta kysymys kuuluu: onko kolesterolin kumuloituminen verisuonten endoteeleihin syy vai seuraus. Tästä, kuten kaikista asioista, on vähintään kaksi keskenään kinastelevaa näkemystä.

Tässä jutussa käsitellään kolesterolia ensiksi hyvin yksinkertaisella ja yleisellä tavalla. Tämä ei ole täydellinen selvitys kolesterolista. Tätä on yksinkertaistettu tarkoituksella, jotta se olisi helpompi lukea ja ymmärtää. Kirjoituksen toisessa osassa siirrytään vaikeammin sulaviin rasva- ja kolesterolijuttuihin ja lopuksi luodaan katsaus todisteisiin, jotka kyseenalaistavat lipidihypoteesin.

Ennen kuin tutustutaan kolesteroliin, hiljennytään rasvaisten juttujen ja rasvasta saadun energian äärelle. Mitä ruoka ylipäätään on? Mitä rasva on? Mieti sitä hetki. Onko ruoka makaroonilaatikkoa, katkarapusalaattia vai sisäfilepihvi pippurikastikkeella? Ehkä maksalaatikkoa ja puolukkahilloa?

Ihan sama, mitä suuhusi lapioit. Ruoka on elimistölle ensisijaisesti energiaa ja rakennusaineita.

Kaikki elävät organismit muodostuvat ahneista soluista, jotka himoitsevat sokeria, rasvaa ja välttämättömiä ravinteita. Sydän koostuu soluista. Aivot koostuvat soluista. Jokainen solu sisältää kolesterolia ja rasvaa. Puolet aivojen kuivapainosta on rasvaa. Neljännes kehon kolesterolista on aivoissa. Äidin rintamaito sisältää runsaasti myrkyllistä tyydyttynyttä rasvaa ja kolesterolia. Yrittääkö luonto myrkyttää imeväiset?

Hyvä Jumala! Miksei äidinmaito voisi olla kuin kolesterolitonta, laktoositonta, ja rasvatonta monityydyttämätöntä sokeripitoista teollista mönjää?

Biljoonien solujen solupilvet muodostavat jalat, kädet, sormet, varpaat jne. Me ihmiset olemme eräänlaisia mutualistisesti toimivia soluparvia, jotka sekoilevat erilaisten mikrobien kanssa. Kaikki kehon solut ja kehon ulkopuoliset mikrobit janoavat energiaa ja rakennusaineita, jotta ne voivat jakautua.

Solut jakautuvat mitoosissa. Ex nihilo nihil fit – mitään ei synny tyhjästä. Solut tarvitsevat erilaisia aineita uusiutuakseen. Yksi solujen uusiutumisen tarvitsema aine on kolesteroli.

Ja joka Jumalan siunaama päivä noin 200 grammaa soluja uusiutuu sinussakin. Se edellyttää rakennuspalikoita (proteiineja, rasvoja ja suojaravinteita, kuten vitamiineja ja mineraaleja) sekä energiaa (hiilihydraatteja ja rasvaa). Solujen jakautumiseen tarvitaan myös kolesterolia.

Entä kuinka ravinnon sisältämä energia pääsee lautaselta elimistön kaikkiin soluihin ja sinne pikkuvarpaan päähän asti?

Valtaosa soluista ottaa energiaa vereen imeytyneistä ravinteista. Solujen yleisin energialähde on hiilihydraattien sisältämä glukoosi (sokeri). Hiilihydraatit pilkotaan ruoansulatuskanavassa yksittäisiksi sokerimolekyyleiksi, jotka imeytyvät ohutsuolesta verenkiertoon. Verenkierrossa glukoosi pääsee kaikkialle kehoon, sinne pikkuvarpaan päähän asti, jolloin nälkäiset solut voivat napata verenkierrosta joitain ravinteita itselleen.

Solujen ruokailu tapahtuu insuliinin avulla. Insuliini ja glukagoni orkestroivat energia-aineenvaihduntaa energiantuotannosta energian varastointiin. Ilman insuliinia solut eivät pysty tehokkaasti ottamaan verenkierrosta ravintoa, mutta jos insuliinia on liikaa, solut kyllästyvät, eivätkä enää reagoi insuliiniin halutulla tavalla.

Elimistö haluaa pitää sokeriaineenvaihdunnan tasapainossa. Nykyinen elämäntapa ei tue sokeri- ja insuliiniaineenvaihdunnan tasapainoa. Jatkuvasti korkea verensokeri ja insuliini vaurioittavat verisuonia ja elimiä altistaen insuliiniresistenssille, metaboliselle oireyhtymälle (mikä itse asiassa on vain toinen nimitys insuliiniresistenssille), diabetekselle, lihomiselle, Alzheimerin taudille ja sydän- ja verisuonitaudeille.

Glukoosin ohella rasva on myös tärkeä energialähde soluille. Esimerkiksi sydänlihaksen solut hapettavat pitkäketjuisia rasvahappoja betaoksidaatiossa.

Solut saavat rasvahappoja verenkierrosta, mutta hieman eri tavalla kuin glukoosia. Glukoosi voi antautua verenkierron vietäväksi, mutta rasvahapot eivät voi. Rasvahapot tarvitsevat kyydin!

Rasvahapot ja veri ovat kuin öljy ja vesi: ne eivät sekoitu keskenään. Rasvahapot ovat siis hydrofobisia

Rasvahappojen kuljetuksesta vastaa lipoproteiinit. Ensiksikin elimistö pakkaa kolme rasvahappoa yhdistelmämolekyyleiksi, joita kutsutaan triglyserideiksi. Triglyseridit ovat nisäkkäiden tärkein rasva. Ne muodostuvat kolmesta rasvahaposta ja glyseroliosasta (tri-glyseridi).

Seuraavaksi keho valmistaa rasvahapoille kuljetusvälineen. Tämä rasvahappoja kuljettava taksi on lipoproteiini. Perinteisissä tulkinnoissa  LDL-lipoproteiineja kutsutaan pahaksi kolesteroliksi. Lipoproteiineja on useita erilaisia. Kullakin on oma tarkoituksensa ja oma reittinsä.

Itse asiassa sellainen lipoproteiini, joka toimittaa kaikkia rasvahappoja, tunnetaan hyvin pienitiheyksisenä lipoproteiinina – tai VLDL:nä (Very Low Density Lipoprotein). Pakettien toimittamisen jälkeen se muuttuu matalatiheyksiseksi lipoproteiiniksi – mutta luultavasti tunnet sen jo lyhenteellä LDL (Low Density Lipoprotein) tai vain pahana kolesterolina.

Kolesteroli on steroideihin kuuluva tyydyttymätön, rengasrakenteinen, veteen liukenematon kiteinen alkoholi, joka ei triglyseridiserkkujensa tapaan sekoitu vereen. Kolesteroli hylkii vettä.

Lääketieteellisessä maailmassa triglyseridi- ja kolesterolimolekyylejä kutsutaan yleisesti lipideiksi. Lipidit hylkivät vettä, joten niitä sanotaan hydrofobisiksi (hydro = vesi, fobinen = hylkivä).

Elimistöllä voi olla syitä kolesterolin saatavuudelle myös verenkierrossa, mutta palataan siihen tuonnempana. On vielä muutama muu vesikammoinen paketti, jotka keho haluaa toimittaa soluihin kyydillä: nimittäin rasvaliukoiset A-, E-, D- ja K-vitamiinit.

Pitäisikö kehon valmistaa erillinen lipoproteiinitaksi kullekin näistä molekyyleistä?

Elimistö pakkaa kaikki munat tehokkaasti samaan koriin: lipoproteiiniin. Ihmiskeho on hämmästyttävän älykkäästi kehittynyt ja joustava. Elämä on kehittänyt eräänlaisen FedEx-kuljetuspalvelun kaikille solujen tarvitsemille vesikammoisille elementeille. Se ei ole ihmisen suuri saavutus, sillä kolesteroli on välttämätöntä kaikelle elämälle.

Suurin osa kolesterolista, jota ei käytetä solujen uusiutumiseen, kierrätetään muihin käyttötarkoituksiin, kuten steroidihormonien tai sappinesteen tuotantoon.

Olet ehkä kuullut sanottavan, että triglyseridit lisääntyvät vähähiilihydraattisella ruokavaliolla. Se ei täsmälleen ottaen ole totta.

Itse asiassa rasvassa rietastelevien LCHF-ketohörhöjen verikokeissa triglyseridipitoisuudet ovat alhaisempia, kuin teveellistä 40-60 prosenttista sokeridieettiä noudattavilla ravitsemusneuvottelukunnan ohjeiden mukaista ruokavaliota suosivilla verrokki-ihmisillä.

Hiljattain ystäväni mittautti veriarvot. Vuoden ketogeenisen ruokavalion jälkeen triglyt olivat optimaaliset, trigly-HDL-suhde optimaalinen, HDL erinomainen ja LDL:n määrässä ei ollut tapahtunut muutosta suhteessa esiketoilevaan aikaan. Sen sijaan hän oli pudottanut painoa 19 kiloa, päässyt verenpainelääkkeistä ja laskenut verensokerin esidiabeettiselta tasolta optimaaliseksi. Lääkäri oli aiheellisen huolestunut,..

Analogia: Verenkierto on kuin liikenneväylä. Tehtaat, eli solut, tarvitsevat ravinteita ja energiaa. Välillä liikenne ruuhkautuu. Erityisesti niin tapahtuu ruokailun jälkeen, jolloin veressä on runsaasti erilaisia ravinteita matkalla soluihin. Verikoe kertoo miten aktiivista työmatkaliikenne on. Se kertoo kuinka paljon glukoosia tai rasvaa on matkalla soluihin. Se ei kuitenkaan suoraan kerro, kuinka paljon ja kuinka tehokkaasti solut käyttävät ko. ravintoaineita.

Tyypin 2 diabeteksen yleinen oire on, että veressä on erittäin paljon glukoosia myös silloin kuin työmatkaliikenne ei ole aktiivista. Tämä kertoo siitä, että glukoosin pääsy soluihin on heikentynyt. Aikuistyypin diabeetikot ovat insuliiniresistenttejä. Insuliiniresistentit solut ovat ikään kuin lakossa. Ne eivät reagoi insuliiniin toivotulla tavalla. Insuliiniresistentit solut päästävät vain vähän ravinteita soluun. Seurauksena on, että solulaitteet ja solut surkastuvat ja kuolevat energianpuutteeseen.

Samalla verenkierron työmatkaliikenne uhkaa kirjaimellisesti puuroutua, sillä glukoosi aiheuttaa veressä glykaatiota, joka tekee verestä siirappia. Se kohottaa verenpainetta, ja on muutenkin rinnastettavissa kymmenen auton ketjukolariin Länsi- tai Itäväylällä.

Diabetesta sairastavat voivat syödä saman määrän ruokaa kuin terveet, mutta diabeetikon verensokeri nousee korkeammaksi ja laskee hitaammin insuliinin heikentyneen vaikutuksen vuoksi.

Insuliiniresistenssit solut eivät saa energiaa yhtä tehokkaasti kuin terveet solut. Se voi lisätä nälkää säätelevien hormonien, kuten greliinin eritystä, jolloin olo on nälkäinen pian syömisen jälkeen.

Veren glukoosista on päästävä eroon, koska muuten se tukkii suonet glykatoitumalla muiden ravinteiden kanssa.

Osa glukoosista säilötään rasvasoluihin, joiden insuliinisensitiivisyys säilyy lihassoluja kauemmin. Osan elimistö yrittää pissata pois. Siksi diabetesta sairastavien virtsaneritys lisääntyy.

Hyvin yleinen uniapnea johtuu erään hypoteesin mukaan myös korkeasta verensokerista, joka kuluttaa B1-vitamiinia; tiamiini on välttämätön vitamiini aivojen hengityskeskuksen autonomisen toiminnan säätelyssä. Tiamiinin puute aiheuttaa beriberiä ja SIDS-oireyhtymää (kätkytkuolema). Yksinkertaisin ja halvin tapa helpottaa uniapneaa on laskea verensokeria ja varmistaa B1-vitamiinin riittävä saanti.

Jos olet vähentänyt hiilihydraatteja ja saat energiasi pääasiassa rasvasta, solusi ottavat rasvaa tehokkaasti verenkierrosta. Vaikka ruokavalio sisältäisi enemmän rasvaa ja kolesterolia, niiden määrä verenkierrossa laskee, koska solut ottavat verenkierrosta glukoosin puutteessa rasvaa ja kolesterolia tehokkaammin.

Toinen yleinen oletus ketogeenisestä ruokavaliosta on, että suurin osa energiasta saadaan ketoneista, koska ketogeeninen ruokavalio johtaa ketoosiin. Maksa valmistaa ketogeenisellä ruokavaliolla energiasubstraateiksi kelpaavia ketoaineita vapaista rasvahapoista, mutta vaikka ketoaineiden tuotanto ja käyttö lisääntyy, ne ovat toissijainen energianlähde. Ensisijainen energianlähde ovat vapaat rasvahapot,joita hapetetaan energiaksi betaoksidaatiossa. Toisaalta aivojen soluille ketoaineet, kuten beta-hydroksibutyraatti, ovat optimaalista ravintoa.

Entä kuinka vapaat rasvahapot pääsevät soluihin, jossa niitä hapetetaan energiaksi? Vapaat rasvahapot kuljetetaan soluihin LDL-kuljetusmolekyylien kuljettamina. Siis se paha kolesteroli vie ruokaa soluille. Aika paha, vai mitä luulet?

Hiilihydraatteja rajoittavalla ruokavaliolla elimistön on korvattava glukoosin puute ja liikuteltava enemmän triglyseridejä solujen polttoaineeksi, koska suurin osa energiasta otetaan rasvasta. Ruokavalion vaikutuksesta veren triglyseriditasot laskevat, koska solut ottavat rasvaa vastaan ja hapettavat siitä energiaa.

Veren rasva- ja kolesteroliarvot korjaantuvat jo kolmessa kuukaudessa. Samalla verenpaine ja paino laskevat. Lue tästä!

  1. Solut tarvitsevat energiaa
  2. Rasvaisella ruokavaliolla solujen ensisijainen energialähde on triglyseridit
  3. Triglyseridit kuljetetaan soluihin hyvin pienitiheyksisissä lipoproteiineissa (VLDL), jotka lopulta muuttuvat pienitiheyksisiksi lipoproteiineiksi (LDL)
  4. Kaikki hyvin pienitiheyksiset lipoproteiinit (VLDL) sisältävät sekä triglyseridejä että kolesterolia (mutta enimmäkseen triglyseridejä)

Meidät on ehdollistettu uskomaan, että kolesteroli on tosi paha asia. Niin yksinkertaista se ei suinkaan ole. Kolesteroli voi tietyissä tilanteissa kasvattaa sairastumisen riskiä, mutta laajasti ottaen elimistömme ja itse asiassa elämä itsessään on täysin riippuvainen kolesterolista.

Lipoproteiini on hieman kuin postin pakettiauto. Se kuljettaa triglyserdien lisäksi kolesterolia ja rasvaliukoisia vitamiineja. Kolesterolin osuus lipoproteiinin lastista on hyvin niukka.

Kolesteroli kierrätetään enimmäkseen takaisin maksassa. Kolesterolin olemassaolo itsessään ei ole riski. Riski syntyy lipoproteiinien oksidoituessa ja tulehdustilanteissa.

Tämä on kolesterolista käytävän tulehduskeskustelun ydin. Vahingoittaako kolesteroli verisuonia? Vai onko kolesteroli laastari, joka paikkaa verisuoniin syntyneitä vaurioita? Perinteinen muna-kana-kysymys siis!

Monet arvovaltaiset tutkijat, lääkärit ja laitokset ovat kallistuneet jälkimmäisen hypoteesin kannattajiksi. Kolesterolikeskustelua tärkeämpää olisi varoittaa korkean verensokerin, hyperinsulinemian, insuliiniresistenssin ja diabeteksen aiheuttamista sydän- ja verisuonitautiriskeistä. Ne nimittäin ovat hyvin todellisia riskejä yli puolelle miljoonalle suomalaiselle diabeetikolle.

2. osa: Mitä se kolesteroli siis on?

Tämä on astetta laajempi ja teknisempi selitys kolesterolista. Kolesteroli (tulee antiikin Kreikan sanoista chole– (sappi) ja stereos (kiinteä), jota seuraa alkoholin kemiallinen loppuliite -ol) on orgaaninen molekyyli.

Se on steroli (tai modifioitu steroidi), siis eräänlainen lipidi. Kolesterolia biosyntetisoituu kaikissa eläinsoluissa, ja se on olennainen eläinsolukalvojen rakenteellinen komponentti. Kolesteroli toimii myös esiasteena steroidihormonien, sappihapon ja D-vitamiinin biosynteesissä.

Kolesteroli on tärkein kaikkien eläinten syntetisoima steroli. Selkärankaisilla maksan solut tuottavat tyypillisesti suurimman osan kolesterolista. Sitä ei ole prokaryooteilla (bakteereilla ja arkeilla), vaikka on olemassa joitain poikkeuksia, kuten Mycoplasma, jotka edellyttää kasvua varten kolesterolia.

François Poulletier de la Salle tunnisti kolesterolin kiinteässä muodossa sappikivissä ensimmäisen kerran vuonna 1769. Vasta vuonna 1815 kemisti Michel Eugène Chevreul nimitti yhdisteen ”kolesteriiniksi”.

Kolesteroli on välttämätöntä elämälle, ja jokainen solu kykenee syntetisoimaan sen monimutkaisen 37-vaiheisen prosessin avulla. Tämä alkaa mevalonaatti- tai HMG-CoA-reduktaasireitillä, joka on statiinilääkkeiden kohde, joka käsittää ensimmäiset 18 vaihetta. Tätä seuraa 19 lisävaihetta saadun lanosterolin muuttamiseksi kolesteroliksi.

Mies, joka painaa 68 kg, syntetisoi normaalisti noin 1 gramman (1000 mg) kolesterolia päivässä, ja hänen kehossaan on noin 35 g kolesterolia (lähinnä solukalvoissa). Tyypillinen päivittäinen kolesterolin saanti ravinnosta Yhdysvalloissa on 307 mg.

Suurin osa nautitusta kolesterolista on esteröitynyttä, minkä vuoksi se imeytyy suolesta elimistöön hyvin huonosti. Elimistö kompensoi myös nautittavan kolesterolin meytymistä vähentämällä omaa kolesterolisynteesiään. Näistä syistä ravinnon sisältämällä kolesterolilla on seitsemän – kymmenen tuntia nauttimisen jälkeen vain vähän tai ei lainkaan vaikutusta veren kolesterolipitoisuuksiin.

Mutta kolesterolin saanti ravinnosta nostaa kolesterolipitoisuutta seitsemän ensimmäisen tunnin aikana ruokailun jälkeen. Tämä johtuu siitä, että lipoproteiinit (jotka kuljettavat kaikkia elimistöön imeytyneitä lipidejä solujen ulkopuolella) jakautuvat kehon ympäri solunulkoiseen veteen, Tämän vuoksi pitoisuudet kasvavat.

Kasvit eivät tuota kolesterolia, mutta ne tuottavat fytosteroleja, jotka ovat kemiallisesti samanlaisia aineita. Samankaltaisuutensa vuoksi ne voivat kilpailla kolesterolin kanssa suoliston takaisinimeytymisestä ja siten vähentää kolesterolin reabsorptiota.

Kun suoliston vuoraussolut imevät fytosteroleja kolesterolin sijasta, ne erittävät tavallisesti fytosterolimolekyylit takaisin ruoansulatuskanavaan, mikä on tärkeä suojamekanismi. Luonnossa esiintyvien kasvisterolien ja stanolien sisältämien fytosterolien saanti vaihtelee välillä ~ 200–300 mg päivässä syömistottumuksista riippuen. Kasvisruokavalioissa fytosterolien saanti voi kasvaa 700 mg:n vuorokausisaantiin.

Kolesteroli muodostaa noin 30% kaikista eläinsolujen kalvoista eli membraaneista. Sitä tarvitaan solukalvojen rakentamiseksi ja ylläpitämiseksi. Kolesteroli moduloi kalvojen juoksevuutta fysiologisten lämpötilojen alueella. Kunkin kolesterolimolekyylin hydroksyyliryhmä on vuorovaikutuksessa kalvoa ympäröivien vesimolekyylien kanssa, samoin kuin kalvon fosfolipidien ja sfingolipidien napapäät, kun taas iso steroidi- ja hiilivetyketju on upotettu kalvoon, polaarisen rasvahappoketjun rinnalla.

Muut lipidit

Kolesteroli lisää kalvopakkauksia vuorovaikutuksessa fosfolipidirasvahappoketjujen kanssa, mikä muuttaa kalvon juoksevuutta ja ylläpitää kalvon eheyttä siten, että solujen ei tarvitse rakentaa erillisiä soluseiniä (kuten kasvien ja useimpien bakteerien). Kalvo pysyy vakaana ja kestävänä olematta jäykkä, jolloin solut voivat muuttaa muotoa ja soluelimet liikkua.

Kolesterolin tetrasyklisen renkaan rakenne edistää solukalvon juoksevuutta, koska molekyyli on trans-konformaatiossa, joka tekee kolesterolin sivuketjun paitsi jäykäksi, myös tasomaiseksi. Tässä rakenteellisessa roolissa kolesteroli vähentää neutraalien liuenneiden aineiden, sekä vety- ja tatriumionien plasmakalvon läpäisevyyttä.

Kolesteroli vaikuttaa solunsisäisessä kuljetuksessa, solujen signaloinnissa ja hermoissa kulkevien signaalien johtamisessa. Kolesteroli on välttämätön invasiivisten caveolae- ja klatrriinipäällysteisten kuoppien rakenteelle ja toiminnalle, mukaan lukien caveolasta riippuvainen ja klathriinista riippuvainen endosytoosi.

Kolesterolin roolia tämän tyyppisessä endosytoosissa voidaan tutkia käyttämällä metyylibeta-syklodekstriiniä (MβCD) kolesterolin poistamiseksi plasmamembraanista. Kolesteroli säätelee substraatin esittelyn biologista prosessia ja entsyymejä, jotka käyttävät substraatin esittelyä aktivoitumismekanismina. (PLD2) on hyvin määritelty esimerkki entsyymistä, joka aktivoituu substraatin esittämisen avulla. Entsyymi palmitoyloidaan*, jolloin entsyymi kulkeutuu kolesterolista riippuvaisiin lipididomeeneihin, joita kutsutaan joskus ”lipidilautoiksi”.

*Palmitoylaatio tapahtuu, kun rasvahappoihin sitoutuu kovalenttisesti kalvoproteiini, kuten palmitiinihappo, johon on sitoutunut kysteiini ( S -palmitoylation) ja harvemmin seriini tai treoniini. Palmitoylaation tarkka toiminta riippuu tarkasteltavasta proteiinista. Palmitoylaatio lisää proteiinien hydrofobisuutta ja myötävaikuttaa niiden kalvoyhdistelmään. Palmitoylaatiolla näyttää myös olevan merkittävä rooli proteiinien solunsisäisessä liikenteessä membraaniosastojen välillä sekä proteiini-proteiini-vuorovaikutuksen moduloinnissa .

Toisin kuin prenylaatio ja myristoylaatio, palmitoylaatio on yleensä palautuva,k koska palmitiinihapon ja proteiinin välinen sidos on usein tioesterisidos. Käänteisen reaktion nisäkkään soluissa katalysoivat asyyli-proteiini tioesteraasit (APT) solujen sytosolissa ja palmitoyyli-proteiinin tioesteraasit lysosomeissa.

Koska palmitoylaatio on dynaaminen, translaation jälkeinen prosessi, solun uskotaan käyttävän sitä muuttavan proteiinin solunsisäistä sijaintia, proteiini-proteiini-vuorovaikutusta tai sitoutumiskapasiteettia.

Esimerkki palmitoylaation läpikäyvästä proteiinista on hemagglutiniini , membraaniglykoproteiini, jota influenssa-virus käyttää isäntäsolureseptoreihin kiinnittymiseen. Lukuisten entsyymien palmitoylaatiojaksot on tunnistettu viime vuosina, mukaan lukien: H-Ras , Gsα , β2-adrenerginen reseptori ja endoteelin typpioksidisyntaasi (eNOS).

Signaalitransduktiossa G-proteiinin kautta a-alayksikön palmitoylaatio, y-alayksikön prenylaatio ja myristoylaatio osallistuvat G-proteiinin sitomiseen plasmakalvon sisäpintaan niin, että G-proteiini voi olla vuorovaikutuksessa reseptorinsa kanssa.

S-palmitoylaation tekevät yleensä proteiinit, joilla on DHHC-domeeni . Ei-entsymaattisissa reaktioissa on poikkeuksia. Asyyliproteiinitioesteraasi (APT) katalysoi käänteisen reaktion. Myös muut asyyliryhmät, kuten stearaatti tai oleaatti, hyväksytään usein kasvien ja virusten proteiineissa, mikä tekee S-asyloinnista käyttökelpoisemman nimen.

Noin 40% synaptisista proteiineista löydettiin palmitoylomeista. Palmitoylaatio välittää proteiinin affiniteetin lipidilauttoihin ja helpottaa proteiinien klusteroitumista. Klusterointi voi lisätä kahden molekyylin läheisyyttä. Vaihtoehtoisesti klusterointi voi sitoa proteiinin pois substraatista.

Esimerkiksi fosfolipaasi D:n (PLD) palmitoylaatio erottaa entsyymin pois substraatistaan fosfatidyylikoliinista. Kun kolesterolitasot laskevat tai PIP2-tasot lisäävät palmitaatin välittämää lokalisoitumista , entsyymi siirtyy PIP2:een, jossa se kohtaa substraatinsa ja on aktiivinen substraatin esittämisen kautta .

Tärkein proteiinin klustereiden välittäjä synapsissa on postsynaptisen tiheyden ( 95 kD) proteiini PSD-95 . Kun tämä proteiini palmitoyloidaan, se rajoittuu kalvoon. Tämän kalvoon kohdistuvan rajoituksen avulla se voi sitoutua postsynaptiseen kalvoon ja klusteroida sen . Presynaptisessa hermosolussa SNAP-25:n palmitoylaatio ohjaa sen jakautumaan solukalvoon ja antaa SNARE- kompleksin hajota vesikkelifuusion aikana. Tämä tarjoaa palmitoylaatiolle roolin välittäjäaineiden vapautumisen säätelyssä . Delta-kateniinin palmitoylaatio näyttää koordinoivan aktiivisuudesta riippuvia muutoksia muistinmuodostukseen osallistuvissa synaptisissa adheesiomolekyyleissä, synapsiorakenteessa ja reseptoripaikannuksissa. Gefyriinin palmitoylaation on raportoitu vaikuttavan GABAergisiin synapseihin.

Palmitoylaatio – https://fi.qaz.wiki/wiki/Palmitoylation


Fosfolipaasi D:n substraatti on fosfatidyylikoliini (PC), joka on tyydyttymätön ja jota on vähän
lipidilautoissa. PC lokalisoituu solun häiriintyneelle alueelle yhdessä monityydyttymättömän lipidifosfatidyyli- inositoli 4,5-bisfosfaatin (PIP2) kanssa. PLD2:lla on PIP2:ta sitova domeeni.

Kun PIP2-pitoisuus membraanissa kasvaa, PLD2 poistuu kolesterolista riippuvaisista domeeneista ja sitoutuu PIP2:een, missä se sitten saa pääsyn substraatti-PC:hen ja aloittaa katalyytin substraatin esityksen perusteella.

Solujen signallointi

Kolesteroli on osallisena myös solujen signalointiprosesseissa, mikä auttaa lipidilautojen muodostumista plasmamembraanissa. Prosessi tuo korkean toisioviestimolekyylikonsentraation reseptoriproteiinit esiin. Kolesteroli ja fosfolipidit (sähköeristimet), voivat monella tavalla helpottaa sähköimpulssien siirtonopeutta hermokudosta pitkin.

Monissa hermokuiduissa runsaasti kolesterolia sisältävä myeliinivaippa (joka on peräisin tiivistetyistä Schwannin solukalvokerroksista) tarjoaa eristeen sähköisten impulssien tehokkaammalle johtamiselle. Myeliinivaipan vaurioituminen esimerkiksi multippeliskleroosissa hidastaa tai katkaisee hermostossa kulkevia sähköisiä impulsseja, jolloin aivojen lähettämät toimintakäskyt eivät aina saavuta lihaksia.

Demyelinaation (Schwann-solujen surkastuminen) uskotaan olevan osa multippeliskleroosin patogeneesiä. Multippelisklerootikkona minulla on siis oma lehmä ojassa. Minä tunnen kolesterolin hieman eri merkityksessä, kuin monet muut. Minä näen kolesterolin hermovälittäjiä suojaavien myeliinivaippojen välttämättömänä rakennusaineena.

Kolesteroli sitoutuu ja vaikuttaa useiden ionikanavien, kuten nikotiiniasetyylikoliinireseptorin, GABA A-reseptorin ja sisäänpäin suuntautuvan kaliumkanavan välityksellä. Kolesteroli aktivoi myös estrogeeniin liittyvän alfa-reseptorin (ERRα) ja se voi olla reseptorin endogeeninen ligandi.

Reseptorin rakenteeltaan aktiivinen luonne voidaan selittää sillä, että kolesterolia on kaikkialla kehossa. ERRα-signaloinnin estäminen kolesterolin tuotannon vähentämisellä on tunnistettu keskeiseksi välittäjäksi statiinien ja bisfosfonaattien vaikutuksissa luuhun, lihakseen ja makrofageihin. Näiden havaintojen perusteella on ehdotettu, että ERRα tulisi luokitella kolesterolin reseptoriksi.

Kolesteroli on mm. steroidihormonien lähtöaine

Kolesteroli on useiden solunsisäisten biokemiallisten reittien edeltäjämolekyyli. Se on lähtöaine D-vitamiinin synteesissä, kalsiumin aineenvaihdunnassa ja kaikkien steroidihormoneien synteesissä, mukaan lukien lisämunuaishormonit kortisoli ja aldosteroni, sekä sukupuolihormonit progesteroni, estrogeenit, testosteroni ja niiden johdannaiset. Elimistö ei syntetisoi kolesterolia turhaan. Sitä tarvitaan lukemattomiin aineenvaihduntatapahtumiin, solukalvoihin, solusignalointiin ja hermoratoja suojaavien myeliinivaippojen rakenteisiin.

Kolesteroli kierrätetään elimistössä. Maksa erittää kolesterolia sappinesteisiin, jotka sitten varastoidaan sappirakoon, joka edelleen erittää kolesterolin esteröimättömässä muodossa (sapen kautta) ruoansulatuskanavaan. Tyypillisesti noin 50% erittyvästä kolesterolista imeytyy ohutsuolessa takaisin verenkiertoon.

Kaikki eläinsolut tuottavat kolesterolia sekä kalvorakenteeseen että muuhun käyttöön, suhteelliset tuotantonopeudet vaihtelevat solutyypin ja elimen toiminnan mukaan. Noin 80% päivittäisestä kolesterolituotannosta tapahtuu maksassa ja suolistossa; muita korkeampia synteesinopeuspaikkoja ovat aivot, lisämunuaiset ja lisääntymiselimet. Kolesterolin biosynteesiä säätelevät suoraan olemassa olevat kolesterolitasot, vaikka mukana olevat homeostaattiset mekanismit ymmärretään vain osittain. Suurempi ravinnon kolesterolipitoisuus johtaa endogeenisen tuotannon nettovähennykseen, kun taas pienemmällä kolesterolin saannilla on päinvastainen vaikutus.

Tärkein säätelymekanismi on solunsisäisen kolesterolin havaitseminen endoplasman verkkokalvossa SREBP-proteiinin (sterolia säätelevää elementtiä sitova proteiini 1 ja 2) avulla.

Kolesterolin läsnä ollessa SREBP sitoutuu kahteen muuhun proteiiniin: SCAP:iin (SREBP:n pilkkoutumista aktivoivaan proteiiniin) ja INSIG-1:een. Kun kolesterolitaso laskee, INSIG-1 irtoaa SREBP-SCAP-kompleksista, mikä antaa kompleksin siirtyä Golgin laitteisiin. Tässä SREBP katkaistaan S1P: llä ja S2P: llä (site-1-proteaasi ja site-2-proteaasi), kahdella entsyymillä, jotka aktivoituvat SCAP:lla, kun kolesterolitasot ovat alhaiset. Pilkottu SREBP siirtyy sitten solun tumaan ja toimii transkriptiotekijänä sitoutuakseen sterolin säätelyelementtiin (SRE), joka stimuloi monien geenien transkriptiota. Näitä ovat pienitiheyksinen lipoproteiinireseptori (LDL) ja HMG-CoA-reduktaasi. LDL-reseptori imee verenkierrossa kiertävää LDL:ää, kun taas HMG-CoA-reduktaasi johtaa kolesterolin endogeenisen tuotannon lisääntymiseen.

Suuren osan tästä signalointireitistä selvittivät tohtori Michael S. Brown ja tohtori Joseph L. Goldstein 1970-luvulla. Vuonna 1985 he saivat Nobel-palkinnon fysiologisesta ja lääketieteestä työstään. Heidän myöhempi työ osoittaa, kuinka SREBP-reitti säätelee monia lipidien metaboliaa ja muodostumista sekä energiasubstraattien allokointia kontrolloivien geenien ilmentymistä.

Kolesterolisynteesi voidaan myös kytkeä pois päältä, kun kolesterolitaso on korkea. HMG-CoA-reduktaasi sisältää sekä sytosolidomeenin (vastuussa sen katalyyttisestä toiminnasta) että kalvodomeenin. Kalvodomeeni tunnistaa signaalit sen hajoamisesta. Kolesterolin (ja muiden sterolien) lisääntyvät pitoisuudet aiheuttavat muutoksen tämän domeenin oligomerisaatiotilassa, mikä tekee siitä alttiimman proteosomin tuhoamiselle. Tämän entsyymin aktiivisuutta voidaan vähentää myös fosforyloimalla AMP-aktivoidulla proteiinikinaasilla. Koska tämä kinaasi aktivoituu AMP:llä, joka syntyy, kun ATP hydrolysoidaan, seuraa, että kolesterolisynteesi pysähtyy, kun ATP-tasot ovat alhaiset.

Eristettynä molekyylinä kolesteroli liukenee huonosti veteen (se on heikosti hydrofiilinen). Tämän vuoksi kolesterolia liukenee vereen erittäin pieninä pitoisuuksina.

Lipoproteiinit

Tehokkaasta kolesterolin kuljetuksesta vastaavat lipoproteiinit, joihin kolesteroli pakataan. Lipoproteiinit ovat monimutkaisia diskoidisia molekyylejä, joissa on ulkopuolisia amfifiilisiä proteiineja ja lipidejä, joiden ulospäin suuntautuvat pinnat ovat vesiliukoisia ja sisäänpäin osoittavat pinnat rasvaliukoisia.

Rakenteensa ansiosta lipoproteiini voi kulkea veren läpi emulgoinnin avulla. Sitoutumaton kolesteroli, joka on amfipaattinen, kulkeutuu lipoproteiinimolekyylin yksikerroksisella pinnalla fosfolipidien ja proteiinien mukana. Rasvahappoon sitoutuneet kolesteroliesterit kulkeutuvat toisaalta lipoproteiinin rasva-hydrofiilisen ytimen sisällä yhdessä triglyseridin kanssa.

Veressä on useita lipoproteiinityyppejä. Suuren tiheyden järjestyksessä ne ovat kylomikronit, hyvin matalatiheyksinen lipoproteiini (VLDL), keskitiheyksinen lipoproteiini (IDL), matalatiheyksinen lipoproteiini (LDL) ja suuritiheyksinen lipoproteiini (HDL).

Eri lipoproteiinien kuljettma kolesteroli on kemiallisesti on identtistä, vaikka jotkut kolesterolimolekyylit kulkeutuvatkin kolesterolin natiivina ”vapaana” alkoholimuotona (kolesteroli-OH-ryhmä), kun taas toisissa molekyyleissä kolesteroli on rasva-asyyliestereinä, jotka tunnetaan myös kolesteroliesterinä.

Lipoproteiinimolekyylit organisoidaan monimutkaisilla apolipoproteiineilla, tyypillisesti 80-100 erilaista proteiinia partikkelia kohden, jotka voidaan tunnistaa ja sitoa solukalvojen spesifisillä reseptoreilla, ohjaamalla niiden lipidien hyötykuorma spesifisiin soluihin ja kudoksiin, jotka ovat herkistyneitä näille rasvansiirtomolekyyleille.

Nämä pintareseptorit toimivat ainutlaatuisina molekyylirekistereinä, jotka auttavat rasvan jakautumisen koko kehoon. Kylomikronit, eli vähiten tiheät kolesterolia kuljettavat molekyylit, sisältävät kuorissaan apolipoproteiini B-48:n, apolipoproteiini C:n ja apolipoproteiini E:n (tärkein kolesterolin kuljettaja aivoissa). Kylomikronit kuljettavat rasvoja suolesta lihaksiin ja muihin kudoksiin, jotka tarvitsevat rasvahappoja energiaksi tai rasvan tuottamiseksi.

Maksa tuottaa VLDL-molekyylejä triglyserideistä ja kolesterolista, jota ei käytetty sappihappojen synteesissä. Nämä molekyylit sisältävät kuorissaan apolipoproteiini B100:n ja apolipoproteiini E:n, ja valtimon seinämän lipoproteiinilipaasi voi hajottaa ne IDL:ksi. Tämä valtimon seinämän pilkkominen sallii triglyseridin imeytymisen ja lisää kiertävän kolesterolin pitoisuutta. IDL-molekyylejä kulutetaan sitten kahdessa prosessissa: puolet metaboloituu HTGL:n kautta ja LDL-reseptori vie ne maksan solupinnoille, kun taas toinen puoli menettää edelleen triglyseridejä verenkierrossa, kunnes niistä tulee kolesterolipitoisia LDL-molekyylejä.

LDL-molekyylit ovat tärkeimmät veren kolesterolinkuljettajat. Jokainen niistä sisältää noin 1500 kolesteroliesterimolekyyliä. LDL-molekyylikuoret sisältävät vain yhden molekyylin apolipoproteiini B100:n, jonka perifeeristen kudosten LDL-reseptorit tunnistavat. Apolipoproteiini B100:n sitoutuessa monet LDL-reseptorit keskittyvät klatriinilla päällystettyihin kuoppiin. Sekä LDL että sen reseptori muodostavat rakkuloita solussa endosytoosin kautta. Nämä rakkulat sulautuvat sitten lysosomiin, jossa lysosomaalihappo-lipaasientsyymi hydrolysoi kolesteroliesterit.

Kolesterolia voidaan sitten käyttää membraanin biosynteesiin tai esteröidä ja varastoida soluun, jotta se ei häiritse solukalvoja. LDL-reseptorit kuluvat kolesterolin imeytymisen aikana, ja sen synteesiä säätelee SREBP, sama proteiini, joka kontrolloi kolesterolin synteesiä de novo, sen mukaan, onko se solussa. Solun, jossa on runsaasti kolesterolia, LDL-reseptorisynteesi estetään, jotta estetään uuden kolesterolin lisääntyminen LDL-molekyyleissä. Päinvastoin, LDL-reseptorisynteesi etenee, kun solussa on kolesterolipuutetta.

Paha kolesteroli

Kun tämä prosessi muuttuu sääntelemättömäksi, veressä alkaa näkyä LDL-molekyylejä, joissa ei ole reseptoreita. Nämä LDL-molekyylit hapetetaan ja ne imeytyvät makrofageihin, jotka tukkeutuvat ja muodostavat vaahtosoluja. Nämä vaahtosolut jäävät usein kiinni verisuonten seinämiin ja edistävät ateroskleroottisten plakkien muodostumista. Tämä on se paha kolesteroli.

Kolesterolihomeostaasin häiriöt vaikuttavat varhaisen ateroskleroosin (kaulavaltimon intima-väliaineen paksuus) kehittymiseen. Näiden plakkien yhteys sydänkohtauksiin, aivohalvauksiin ja muihin vakaviin lääketieteellisiin ongelmiin on syy, minkä vuoksi kolesterolia kauhistellaan.

HDL-molekyylien uskotaan kuljettavan kolesterolia takaisin maksaan joko erittymiseen tai muihin hormoneja syntetisoiviin kudoksiin prosessissa, joka tunnetaan käänteisenä kolesterolikuljetuksena (RCT). Suuri määrä HDL-molekyylejä korreloi parempaan terveyteen

Kolesteroli on altis hapettumiselle ja muodostaa helposti hapetettuja johdannaisia, joita kutsutaan oksysteroleiksi. Kolme erilaista mekanismia voi muodostaa tällaisia: autoksidaatio, sekundaarinen hapettuminen lipidiperoksidaatioksi ja kolesterolia metaboloiva entsyymihapetus.

Suuri kiinnostus oksysteroleihin syntyi, kun niiden osoitettiin vaikuttavan estävästi kolesterolin biosynteesiin. Tämä havainto tunnettiin nimellä ”oksysterolihypoteesi”. Oksysterolien lisärooleja ihmisen fysiologiassa ovat niiden osallistuminen sappihappojen biosynteesiin, toiminta kolesterolin kuljetuksessa ja geenitranskription säätely.

Kolesteroli hapetetaan maksassa erilaisiksi sappihapoiksi. Nämä puolestaan ovat konjugoituja glysiinin, tauriinin, glukuronihapon tai sulfaatin kanssa. Konjugoitujen ja konjugoimattomien sappihappojen seos yhdessä kolesterolin kanssa erittyy maksasta sappeen. Noin 95% sappihapoista imeytyy takaisin suolistosta ja loput häviävät ulosteiden mukana. Sappihappojen erittyminen ja imeytyminen muodostavat enterohepaattisen verenkierron perustan, mikä on välttämätöntä ravintorasvojen sulatukselle ja imeytymiselle. Tietyissä olosuhteissa kolesteroli voi kiteytyä sappirakossa ja vaikuttaa sappikivien muodostumiseen (myös lesitiinistä ja bilirubiinista muodostuvia sappikiviä esiintyy, mutta harvemmin).

Joka päivä paksusuoleen pääsee jopa 1 g kolesterolia. Tämä kolesteroli on peräisin ruokavaliosta, sapesta ja suolen poistetuista suolistosoluista, ja paksusuolibakteerit voivat metaboloida sen. Kolesteroli muuttuu pääasiassa koprostanoliksi, imeytymättömäksi steroliksi, joka erittyy ulosteisiin.

Vaikka kolesteroli on steroidi, joka yleensä liittyy nisäkkäisiin, ihmisen patogeeni Mycobacterium tuberculosis pystyy hajottamaan tämän molekyylin täysin ja sisältää suuren määrän geenejä, joita sen läsnäolo säätelee.

Monet näistä kolesterolilla säädellyistä geeneistä ovat rasvahappojen β-hapetusgeenien homologeja, mutta ne ovat kehittyneet sitomaan suuria steroidisubstraatteja, kuten kolesterolia. Eläinrasvat ovat monimutkaisia triglyseridiseoksia, joissa on vähäisempiä määriä sekä fosfolipidejä että kolesterolimolekyylejä, joista kaikki eläin- (ja ihmisen) solukalvot rakennetaan.

Koska kaikki eläinsolut tuottavat kolesterolia, kaikki eläinperäiset elintarvikkeet sisältävät kolesterolia vaihtelevissa määrissä. Suurimpia ruokavalion kolesterolilähteitä ovat punainen liha, munankeltuainen ja kokonaiset munat, maksa, munuaiset, pikkulohet, kalaöljy ja voi. Ihmisen äidinmaito sisältää myös merkittäviä määriä kolesterolia. Kasvisolut syntetisoivat kolesterolia muiden yhdisteiden, kuten fytosterolien ja steroidisten glykoalkaloidien, esiasteena, ja kolesterolia on kasviruoissa vain vähän tai ei ollenkaan. Jotkut kasviruoat, kuten avokado, pellavansiemenet ja maapähkinät, sisältävät fytosteroleja, jotka kilpailevat kolesterolin kanssa imeytymisestä suolistossa, vähentävät sekä ruokavalion että sappikolesterolin imeytymistä. Tyypillinen ruokavalio myötävaikuttaa noin 0,2 gramman fytosteroleihin, mikä ei riitä vaikuttamaan merkittävästi kolesterolin imeytymisen estoon.

Fytosterolien saantia voidaan täydentää käyttämällä fytosterolia sisältäviä funktionaalisia elintarvikkeita tai ravintolisiä, joiden tiedetään olevan potentiaalisia alentamaan LDL-kolesterolitasoja. Vuonna 2016 Yhdysvaltain maatalousministeriön ruokavalion ohjeiden neuvoa-antava komitea suositteli amerikkalaisia syömään mahdollisimman vähän kolesterolia. Useimmissa kolesterolipitoisissa elintarvikkeissa on myös runsaasti tyydyttyneitä rasvoja, mikä voi siten lisätä sydän- ja verisuonitautien riskiä. [57] Joissakin täydentävissä ohjeissa suositellaan fytosterolien annoksia 1,6–3,0 grammaa päivässä (Health Canada, EFSA, ATP III, FDA).

Äskettäinen meta-analyysi osoittaa LDL-kolesterolin laskevan 12%:lla fytosterolien 2,1 gramman päiväsaannilla. Fytosteroleilla täydennetyn ruokavalion edut on kuitenkin kyseenalaistettu.

Perinteisen ja institutionalisoidun lipidihypoteesin mukaan kohonnut kolesterolitaso veressä aiheuttaa ateroskleroosia, mikä voi lisätä sydänkohtauksen, aivohalvauksen ja perifeerisen valtimosairauden riskiä. Koska veren korkeammat LDL-pitoisuudet ja pienempi LDL-partikkelikoko – vaikuttavat tähän prosessiin enemmän kuin HDL-hiukkasten kolesterolipitoisuus, LDL-partikkeleita kutsutaan usein ”pahaksi kolesteroliksi”.

Suuret toiminnallisen HDL:n pitoisuudet, jotka voivat poistaa kolesterolin soluista ja ateroomista, tarjoavat suojan ja niitä kutsutaan yleisesti ”hyväksi kolesteroliksi”. Nämä tasapainot määritetään enimmäkseen geneettisesti, mutta niitä voidaan muuttaa kehon koostumuksen, lääkkeiden, ruokavalion ja muiden tekijöiden perusteella. Vuoden 2007 tutkimus osoitti, että veren kokonaiskolesterolitasoilla on eksponentiaalinen vaikutus sydän- ja verisuonitauteihin ja kokonaiskuolleisuuteen, ja yhteys on selvempi nuoremmilla koehenkilöillä.

Koska sydän- ja verisuonitaudit ovat suhteellisen harvinaisia nuoremmalla väestöllä, korkean kolesterolin vaikutus terveyteen on suurempi iäkkäillä ihmisillä. Kohonnut lipoproteiinifraktioiden, LDL-, IDL- ja VLDL-tasojen, sijaan kokonaiskolesterolitaso, korreloivat ateroskleroosin laajuuden ja etenemisen kanssa.

Päinvastoin, kokonaiskolesteroli voi olla normaaleissa rajoissa, mutta se koostuu pääasiassa pienistä LDL- ja pienistä HDL-hiukkasista, joissa aterooman kasvunopeus on korkea. IDEALin ja EPIC:n prospektiivisten tutkimusten post hoc -analyysi havaitsi yhteyden korkeaan HDL-kolesterolitasoon (mukautettu apolipoproteiini AI ja apolipoproteiini B) ja lisääntyneeseen sydän- ja verisuonitautien riskiin, mikä epäili ”hyvän kolesterolin” kardioprotektiivista roolia.

Yhdellä 250 aikuisesta voi olla geneettinen mutaatio LDL-kolesterolireseptorille, mikä aiheuttaa heille familiaalisen hyperkolestrolemian. Peritty korkea kolesteroli voi myös sisältää geneettisiä mutaatioita PCSK9-geenissä ja apolipoproteiini B -geenissä.

Kohonnutta kolesterolitasoa hoidetaan tiukalla ruokavaliolla, joka koostuu vähärasvaisista ruoista, transrasvattomista sejö vähän kolesterolia sisältävistä elintarvikkeista. Usein (lähes poikkeuksetta) kolesterolin laskua tehostetaan hypolipideemisillä aineilla, kuten statiineilla, fibraateilla, kolesterolin imeytymisen estäjillä, nikotiinisillä happojohdannaisilla tai sappihappoa sitovilla lääkkeillä.

Hyperkolesterolemian hoidossa on useita kansainvälisiä ohjeita. Ihmiskokeet, joissa käytettiin HMG-CoA-reduktaasin estäjiä, jotka tunnetaan nimellä statiinit, ovat toistuvasti vahvistaneet, että lipoproteiinien kuljetusmallien muuttaminen epäterveellisistä terveellisempiin kuvioihin alentaa merkittävästi sydän- ja verisuonitautitapahtumien määrää myös ihmisillä, joiden kolesteroliarvot katsotaan tällä hetkellä alhaisiksi aikuisille.

Tutkimukset ovat osoittaneet, että LDL-kolesterolitasojen alentaminen noin 38,7 mg / dl statiinien avulla voi vähentää sydän- ja verisuonitauteja ja aivohalvausriskiä noin 21%. Tutkimukset ovat myös havainneet, että statiinit vähentävät aterooman etenemistä. Tämän seurauksena ihmiset, joilla on ollut sydän- ja verisuonitauteja, voivat hyötyä statiineista riippumatta heidän kolesterolipitoisuudestaan (kokonaiskolesteroli alle 5,0 mmol / L [193 mg / dl]), ja miehillä, joilla ei ole sydän- ja verisuonitauteja, on hyötyä poikkeuksellisen korkean kolesterolitason alentamisesta (”ensisijainen ennaltaehkäisy”).

Ensisijaista ennaltaehkäisyä naisilla harjoitettiin alun perin vain laajentamalla miehillä tehtyjen tutkimusten tuloksia, koska naisilla yksikään ennen vuotta 2007 toteutetuista suurista statiinitutkimuksista ei osoittanut merkittävää kokonaiskuolleisuuden tai kardiovaskulaaristen päätetapahtumien vähenemistä.

Meta-analyysit ovat osoittaneet merkittävän vähenemisen kaikista syistä ja kardiovaskulaarisesta kuolleisuudesta ilman merkittävää heterogeenisyyttä sukupuolen mukaan. Kansallisen kolesterolikoulutusohjelman vuonna 1987 julkaisema raportti, Aikuisten hoitopaneelit, ehdottaa, että veren kokonaiskolesterolitason tulisi olla: <200 mg / dl normaalia veren kolesterolia, 200–239 mg / dl raja-korkea,> 240 mg / dl korkea kolesteroli.

American Heart Association (AHA) tarjoaa samanlaiset ohjeet veren (paasto) kokonaiskolesterolipitoisuuksista ja sydänsairauksien riskistä: Statiinit alentavat tehokkaasti LDL-kolesterolia ja niitä käytetään laajalti ensisijaiseen ennaltaehkäisyyn ihmisillä, joilla on suuri sydän- ja verisuonitautiriski samoin kuin toissijaisessa ennaltaehkäisyssä niille, joille on kehittynyt sydän- ja verisuonitauti. Nykyisemmät testausmenetelmät määrittävät LDL (”huono”) ja HDL (”hyvä”) kolesterolin erikseen, jolloin kolesterolianalyysi on vivahteikkaampi. Halutun LDL-tason katsotaan olevan alle 130 mg / dl (2,6 mmol / L), vaikka uudempaa ylärajaa 70 mg / dl (1,8 mmol / L) voidaan harkita korkeamman riskin omaavilla henkilöillä joitakin edellä mainituista kokeista. Kokonaiskolesterolin suhde HDL: ään – toinen hyödyllinen mitta – on paljon alle 5: 1.

Keskustelu kolesterolista ja erityisesti pahasta LDL-kolesterolista käy kiivaana. Kaikki eivät suhtaudu luottavaisesti lipidihypoteesin paradigmaan. Epidemiologiset tutkimukset, joita kolesterolihypoteesin tukemiseksi laaditaan, ovat todistusvoimaltaan kovin heppoisia. Virallinen lääke- ja ravitsemustieteellinen linja on selvä: vähemmän kolesterolia ja tyydyttyneitä rasvoja sekä enemmän statiineja. Mitä nuorempana aloitat statiinit, sitä parempi (lääkeyhtiöille). On nimittäin kiusallista tutkimusnäyttöä, jonka mukaan kolesterolin laskeminen lisää sydänkuolleisuutta (Minnesota Heart Study, Framingham Heart Study ja Sydney Heart Study, jotka olivat kontrolloituja satunnaistettuja tutkimuksia).

Palataan rasvateoriaan

Kolesteroliteoria on hallinnut vuosikymmeniä lääkäreiden ja maallikoiden käsityksiä sydän- ja verisuonitautien syistä, mutta on tullut aika hylätä tämä käsitys, kirjoittavat ruotsalaiset tiedemiehet, sisätautiopin professori Lars Werkö, kirurgian professori Tore Schrestén ja elinsiirtokirurgian dosentti Ralf SundBerg.

Sydänkohtaukseen sairastuneiden ja kuolleiden ihmisten kolesterolilukemat ovat usein muita pienempiä. Matala seerumin kolesteroli liittyy suurentuneeseen kuoleman riskiin.

Kiista kolesterolin merkityksestä vauhdittui 1990-luvulla, jolloin monet tutkijat (mm. Ruotsissa sisätautiopin dosentti Uffe Ravnskov) kyseenalaistivat syy-yhteyden korkeiden kolesteroliarvojen ja sydäntautien välillä.

Tämä perustui suureksi osaksi 30 vuotta jatkuneeseen Framinghamin tutkimukseen. Se näet osoitti, ettei kohonnut kolesteroli ole sydäntaudin riskitekijä yli 47-vuotiailla ihmisillä. Asia oli pikemminkin niin päin, että kolesterolin aleneminen lisäsi kuolleisuutta verrattuna niihin, joiden kolesterolipitoisuus suureni.

Sachdevan työryhmä julkaisi tammikuussa 2009 jättitutkimuksen Amerikan Sydänliiton aloitteesta, jossa mitattiin veren kolesteroliarvot lähes 137 000 sydänkohtauksen vuoksi sairaalahoitoa saaneelta potilaalta. Kaikki kolesteroliarvot olivat oletettuja pienempiä, jopa huomattavasti alle amerikkalaisten keskiarvon.

Emeriusprofessorit Matti Järvilehto Oulusta ja Pentti Tuohimaa Tampereelta kritisoivat Medical Hypotheses-lehden artikkelissaan kolesterolihoitoja. Medialle lähettämässään tiedotteessa he esittävät näkemyksensä, joka tukee täysin Erkki Antilan, Pentti Raasteen ja Matti Tolosen vuosia esittämiä näkemyksiä: ravinnon rasvat ja kolesteroli eivät ole valtimotautien syy ja kolesterolin alentaminen lääkkein on enimmäkseen turhaa ja jopa terveydelle haitallista.

Statiinien käyttäjillä D-vitamiinin vajauksen yhteydessä lähes kaikilla esiintyy lihas- ja sidekudoskipuja. Statiinit saattavat lisäksi heikentää D-vitamiinin vaikutusta syrjäyttämällä hoitopitoisuuksilla D-vitamiinin reseptoristaan.

Etusivun uutiseksi päätynyt Oxfordin yliopiston professori Rory Collins myöntää salanneensa tutkimuksissaan statiinien sivuvaikutuksia. Statiineista voi olla vakavaa haittaa sydänlihakselle kirjoittavat japanilaiset sydänlääkärit yhdessä amerikkalaisen kardiologin Peter Langsjoenin kanssa julkaisemassaan artikkelissa.

Vääristeltyjen tutkimusten perusteella miljoonat britit syövät statiineja turhaan. Collins johtaa vuonna 1994 perustettua Cholesterol Treatment Trialists (CTT) Collaborationia, jonka tutkimuksiin mm. Suomen Sydänliiton ylilääkäri Mikko Syvänne on vedonnut statiineja puolustaessaan.

Yli 20 tutkimusta osoittaa, että pisimpään elävät ne ihmiset, joiden veressä on riittävästi kolesterolia. Siis enemmän kuin 5 mmol/l, jota lääkärit pitävät lääkehoidon rajana.

Päivi Tirkkalan väitöskirjassa (2011)osoitettiin, että matalat kolesteroliarvot ovat yhteydessä kuolleisuuteen. Sen sijaan korkeat kolesterolitasot yli 74-vuotiailla eivät lisänneet sairastumisen tai kuoleman riskiä. Lisäksi kolesterolit ovat yhteydessä kognitiivisiin kykyihin. Matalat kolesterolitasot heikentävät muistia ja voivat aiheuttaa dementiaa.

Norjan HUNT2-tutkimuksessa seurattiin yli 50 000 20-74 vuotiasta henkilöä. 1,0 mmol/l kokonaiskolesterolin nousu naisilla vähensi kuolleisuutta 6 %, kun alle 5 mmol/l tasot lisäsivät kuoleman riskiä. Miehillä kuolleisuus oli pienintä, kun kolesteroli oli 5,0-5,9 mmol/l. Naisten kuoleman riski on 28 % pienempi, kun kokonaiskolesteroli on yli 7,0 mmol/l verrattuna arvoon alle 4,9 mmol/l.

Myös Pietarissa ja Honolulussa tehdyissä tutkimuksissa toistuu sama ilmiö: matala kolesteroli korreloi suurentuneen kuolemanriskin kanssa (Shestov ym. 1993, Schatz ym 2001). Kelan autoklinikkatutkimus tukee näitä tutkimuksia: sen mukaan miesten optimaalinen kolesterolitaso on 5-7 mmol/l ja naisilla vastaava suositus on 6-9 mmol/l.

Statiinit nostavat verensokeria ja lisäävät aikuistyypin diabeteksen riskiä keskimäärin 9-13 %, mutta naisilla riski kasvaa lähes 50 %. Suomalaiseen tutkimukseen osallistui 10 149 henkilöä, joilla oli suurentunut diabeteksen riski.

Amit Sachdeva ym. havaitsivat 136 905 potilaan tutkimusaineisossa, että akuutin sydänkohtauksen saaneiden potilaiden kolesteroli oli merkittävästi matalampi kuin samanikäisten terveiden verrokkien (American Heart Journal 2009).

Al-Mallah ym. totesivat, että ”pahan” LDL-kolesterolin pioisuudet olivat tavallista pienempiä ja kuolleisuus kaksin verroin yleisempää matalien LDL-lukemien potilailla (Cardiology Journal 2009). Nämä tutkimukset osoittavat, että seerumin kohonneen kolesterolipitoisuuden ja sydänkuoleman välillä ei vallitse kausaalisuhdetta.


Pohjoismaiden tunnetuin ja vaikutuvaltaisin ravitsemustieteilijä, tanskalainen professori Arne Astrup on muuttanut täysin mielipiteensä rasvoista ja kolesteroliteoriasta. Aikaisemmin hyvin kriittisesti tyydyttyneisiin rasvoihin suhtautunut Astrup kirjoitti vastattain maailman johtavan ravitsemuslääketieteen lehden pääkirjoituksessa, ettei tyydyttyneillä rasvoilla ole syy-yhteyttä sydän- ja verisuonitauteihin.

Astrupin kanssa samoilla linjoilla on myös professori Heikki Karppanen, joka sai melkoisesti kuraa niskaansa puhuessaan kolesteroliteoriaa vastaan.

Arne Astrup oli vannoutunut tyydyttyneiden rasvojen vastustaja ja hiilihydraattien puolestapuhuja. Vuonna 2013 Astrup siirtyi näkemykissään lähelle vähähiilihydraattisen ruokavalion periaatteita.

Hän myönsi julkisesti, ettei rasva ole vaarallista, kuten vuosikymmeniä on opetettu. Samaa sanoi myös professori Jussi Huttunen Suomessa. Nykyisin tiedetään, että elintasosairauksien taustalla ei ole välttämätön rasva, vaan hiilihydraattien liiallinen painottaminen ruokavaliossa.

Ryhmä tutkijoita Oaklandin lasten sairaalasta Kaliforniassa ja Harvardin kansanterveyslaitoksen ravitsemus- ja epidemiologian osastolta Bostonissa, Massachusettsissa, tekivät meta-analyysin prospektiivisista epidemiologisista tutkimuksista tyydyttyneiden rasvahappojen saannin ja sepelvaltimotauti-, aivohalvaus- tai sydän- ja verisuonitauti-riskin assosiaatiosta yleensä.

Prospektiivisissä epidemiologisissa tutkimuksissa seurataan ajan mittaan ryhmää alun perin terveitä ihmisiä, kohorttia, ja koetetaan selvittää, liittyykö taudin esiintyminen tiettyjen tunnistettavien tekijöiden toteutumiseen esim. ruokavalio- ja muut elämäntapatekijät. Meta-analyysissä kerätään ja analysoidaan yhdessä tiettyä aihetta koskevien eri tutkimusten tuloksia yleisen johtopäätöksen tekemiseksi kertyneen tieteellisen tiedon perusteella.

Kaksikymmentäyksi tutkimusta vastasi nykyisen meta-analyysin sisällyttämisperusteita. Yhdessä nämä käsittivät 347 747 henkilöä, joista noin 11 000 sairastui sydän- ja verisuonitauteihin.

Analyysin tulokset eivät osoittaneet merkittävää yhteyttä tyydyttyneiden rasvahappojen suuren saannin ja sepelvaltimotaudin, aivohalvauksen tai sydän- ja verisuonitautien lisääntyneen riskin välillä. Ikä, sukupuoli ja tutkimuksen laatu olivat tekijöitä, jotka otettiin huomioon analyysissä, mutta ne eivät vaikuttaneet tulokseen. Linkki

Prospektiivisten kohorttitutkimusten ja satunnaistettujen kontrolloitujen tutkimusten meta-analyysi tutki rasvahappojen ja sepelvaltimotaudin välistä yhteyttä. Tähän analyysiin tunnistettiin yhteensä 32 prospektiivista kohorttitutkimusta, jotka sisälsivät tietoja ruokavalion rasvahappojen saannista.

Analyysissä tutkittiin 530 525 osallistujaa. Tutkimus käsitti 15 907 sepelvaltimotautitapausta. Tutkimusten kesto oli 5–23 vuotta. Kirjoittajat tutkivat myös 17 havainnointitutkimusta, joissa oli tietoja kiertävästä rasvahappokoostumuksesta (ts. Rasvahapot veressä). Näihin tutkimuksiin osallistui 25721 osallistujaa, joista 5 519 johti sepelvaltimotautiin. Näissä tutkimuksissa seuranta oli 1,3-30,7 vuotta.

Tyydyttyneiden rasvahappojen kokonaissaantiin ei liittynyt sepelvaltimotaudin riskiä (yhdistetty suhteellinen riski 1,02, 95%:n luottamusväli: 0,97-1,07).

Kiertävien tyydyttyneiden rasvahappojen kokonaismäärään ei liittynyt sepelvaltimotaudin riskiä (yhdistetty suhteellinen riski 1,06, 95%: n luottamusväli: 0,86-1,30)

Yksittäisiin kiertäviin rasvahappoihin, kuten palmitiini- ja steariinihappoihin, ei myöskään liittynyt sepelvaltimotaudin riskiä.

Margariinihappoon (maitotuotteissa esiintyvä tyydyttynyt rasvahappo) liittyi merkittävästi pienempi sepelvaltimotaudin riski

Kirjoittajat päättelivät, että olemassaolevat todisteet eivät tue selvästi sydän- ja verisuonitautien suuntaviivoja, jotka suosivat tyydyttyneiden rasvojen korvaamista monityydyttämättömillä rasvoilla.

Toinen 26 kohorttitutkimuksen ameta-analyysi rvioi runsaasti tyydyttyneitä rasvoja sisältävien elintarvikkeiden ja kuolleisuuden riskin välistä yhteyttä. Runsas maidon, juuston, jogurtin ja voin saanti ei lisännyt sydän- ja verisuonitautiekuolleisuuden tai kaikkien syiden aiheuttaman kuolleisuuden riskiä matalaan saantiin verrattuna.

Runsaan maitotuotteiden, maidon ja juuston kokonaissaanti ei liittynyt sydän- ja verisuonikuolleisuuteen.

Vuoden 2010 meta-analyysi kohorttitutkimuksista, joka seurasivat 347747 ihmistä 5-23 vuoden aikana, toimitti seuraavat todisteet tyydyttyneen rasvan ja sepelvaltimotaudin, aivohalvauksen ja sydän- ja verisuonitautien välisestä yhteydestä:

Tyydyttyneiden rasvojen saanti ei liittynyt sepelvaltimotaudin, aivohalvauksen tai sydän- ja verisuonitautien lisääntyneeseen riskiin

Yhdistetyt suhteelliset riskit olivat 1,07 (95%: n luottamusväli: 0,96–1,19, p = 0,22) sepelvaltimotaudissa, 0,81 (95%: n luottamusväli: 0,62–1,05, p = 0,11) aivohalvauksessa ja 1,00 (95%: n luottamusväli: 0,89- 1,11, p = 0,95) sydän- ja verisuonitaudeissa.

Kovarianttien, kuten ikä, sukupuoli ja tutkimuksen laatu, mukauttamisen jälkeen tulokset eivät muuttuneet eikä merkittävää yhteyttä tyydyttyneiden rasvojen ja sydän- ja verisuonitautitapahtumien välillä havaittu.

Ruokavalion tyydyttyneiden rasvojen ja sairauksien esiintyvyyden välillä ei havaittu yhteyttä muiden ravintoaineiden ja kokonaisenergian mukauttamisen jälkeen.

Vuoden 2009 järjestelmällisessä katsauksessa toimitettiin seuraava yhteenveto mahdollisista kohorttitutkimuksista ja satunnaistetuista kontrolloiduista tutkimuksista:

Tyydyttyneiden rasvojen ja sepelvaltimotaudin kohorttitutkimusten meta-analyysin perusteella tyydyttyneiden rasvahappojen saanti ei liittynyt merkittävästi sepelvaltimotauditapahtumiin.

Suhteelliset riskit korkeimmalle verrattuna pienimpään tyydyttyneiden rasvojen saantiluokkaan olivat sepelvaltimotautikuolleisuuden osalta 1,14 (95%: n luottamusväli: 0,82–1,60, p = 0,431) ja 0,93 (95%: n luottamusväli: 0,83–1,05, p = 0,269). sepelvaltimotautitapahtumiin.

Tyydyttyneiden rasvojen ja kuoleman tai sydän- ja verisuonitautitapahtumien välillä ei ollut merkittävää yhteyttä tyydyttyneiden rasvahappojen saannin 5 prosentin kokonaisenergian lisäyksellä.

Ruokavalion rasvan ja sepelvaltimotaudin satunnaistettujen kontrolloitujen tutkimusten meta-analyysin perusteella kuolemaan johtavan sepelvaltimotaudin suhteellista riskiä ei vähennetty rasvamodifioiduilla ruokavalioilla.

Ruotsissa julkaistu väestötutkimus käsitti lähes kaksi miljoonaa miestä ja kaksi miljoonaa naista. Vuosina 1998–2002 määrätyt statiinit eivät olleet yhtään vähentäneet sydänkohtauksia eikä sydänkuolemia.

Tulos on yhdenmukainen Ray et. al. meta-analyysin kanssa (2010): Statiinien käyttö ei lisännyt elinikää satunnaistetuissa primaaripreventiotutkimuksissa, joihin oli osallistunut 65 229 ”suuren riskin” henkilöä. Analyysi käsitti 244 000 henkilövuotta ja 2793 kuolemantapausta.

Kelan ja Tilastokeskuksen tilastot kertovat samaa Suomesta: Statiinien jyrkästi lisääntynyt käyttö ei ole vähentänyt sydänkuolemia.

Amerikkalaiset lääkärit Hayward ja Krumholz kritisoivat LDL-kolesterolin saamaa liaallista huomiota hoidossa. Heidän mielestään pitäisi hoitaa todellisia risikitekijöitä, ei LDL:ää. ”On aika jättää hyvästit tälle vanhalle, perusteettomalle ja harhaanjohtavalle rasvateorialle”, kirjoittivat ruotsalaislääkärit.

Mitään kovin kummoista konsensusta kolesterolin ja tyydyttyneiden rasvojen yhteydestä sydän- ja verisuonitauteihin ei ole. Nykyisestä käytännöstä hyötyvät lääketeollisuus ja siihen sijoittaneet enemmän kuin kolesterolilääkkeitä ahmivat statinistit. Oma kantani on, että ihminen tarvitsee välttämättä kolesterolia ja sen laskeminen johtaa terveyden heikkenemiseen. Uskon, että sydän- ja verisuonitautien todellinen syypää on hyperglykemia ja hyperinsulinemia. Jokainen tehköön omat johtopäätöksensä.

Täydentävää materiaalia

https://cholesterolcode.com/a-simple-guide-to-cholesterol-on-low-carb-part-i/https://cholesterolcode.com/a-simple-guide-to-cholesterol-on-low-carb-part-ii/

https://ruokasota.fi/2020/11/27/90-paivan-ketohaaste-sokeri-ja-rasva-arvot-paranevat-90-paivan-ketogeenisella-dieetilla/

https://ruokasota.fi/2020/11/23/ketogeeninen-ruokavalio-neuromuskulaarisiset-ja-neurodegeneratiiviset-taudit/

https://ruokasota.fi/2020/11/20/ketogeeninen-ruokavalio-ja-epilepsia/

https://ruokasota.fi/2020/11/12/%ce%b2-hydroksibutyraatin-oksidaatio-edistaa-immunometaboliittien-kertymista-aktivoituneisiin-mikroglia-soluihin/

https://ruokasota.fi/2020/11/03/insuliini-ja-terveys-neljas-luku/

https://ruokasota.fi/2020/10/27/insuliini-ja-terveys-kolmas-luku/

https://ruokasota.fi/2020/10/20/insuliini-ja-terveys-hiilihydraatti-insuliinimalli/

https://ruokasota.fi/2020/09/01/ruokasotaa-ja-anarkiaa-osa-3/

https://ruokasota.fi/2020/08/23/mozaffarianin-meta-analyysin-kritiikki/

https://ruokasota.fi/2020/08/12/hammentavia-ruokajuttuja-osa-1/

https://ruokasota.fi/2020/10/11/insuliini-ja-terveys-johdanto/

https://ruokasota.fi/2015/03/26/rasvateoria/

https://en.wikipedia.org/wiki/Cholesterol




Ketogeeninen ruokavalio ja epilepsia

Ketogeenisen ruokavalion neuroprotektiiviset ominaisuudet on tunnettu pitkään. Jo vuosisadan ajan lasten lääkeresistenttia epilepsiaa on hoidettu ketogeenisellä ruokavaliolla. Kuva ketogeenisen ruokavalion neuroprotektiivisista vaikutuksista tarkentuu jatkuvasti.

Ketogeenisen ruokavalion (KD) hyöty epilepsian ja eräiden muiden neurologisten häiriöiden terapiana hyväksytään laajalti, mutta sen kaikkia toimintamekanismeja ei täysin tunneta.

KD:n noudattaminen johtaa merkittäviin metabolisiin muutoksiin. Eräs tärkeimmistä metabolisista muutoksista on ketoosi. Toisaalta ketogeeninen ruokavalio lisää myös monityydyttämättömien rasvahappojen pitoisuutta ja laukaisee solujen puhdistusjärjestelmän, eli autofagian, joka hidastaa solujen ikääntymistä ja siivoaa soluista erilaisia kuona-aineita.

Nämä ”primaariset” vaikutukset johtavat ”toissijaisiin”, osittain adaptiivisiin vaikutuksiin, esimerkiksi muutoksiin mitokondrioiden tiheydessä ja geeniekspressiossa. Kliinisesti ruokavalion vaikutuksia pidetään epileptisiä kouristuksia estävinä ja neuroprotektiivisina.

Ketogeenisen ruokavalion aineenvaihduntamekanismien mahdollisiä kliinisiä, neuroprotektiivisia ja kognitiivisia vaikutuksia tutkitaan laajasti NASA:a ja Yhdysvaltojen puolustusministeriötä myöten.

1. Ketogeenisen ruokavalion metabolia

Ketogeenisen ruokavalion (KD) arvo epilepsian hoidossa tunnustetaan, vaikka tarkat mekanismit, joilla se vaikuttaa, ovat edelleen osin selvittämättä [1]. Ketogeenisen ruokavalion tuottamat metaboliset muutokset ovat kuitenkin erilaisia kuin epilepsialääkkeiden (AED) [2] vaikutusmekanismit. Näiden mekanismien selvittäminen voi johtaa ketogeenisen ruokavalion hyödyntämiseen myös muiden neurologisten sairauksien terapiana [3].

KD koostuu neljästä elementistä, joista minkä tahansa muutokset voivat selittää sen kouristuksia ehkäiseviä eli antikonvulsantteja vaikutuksia:

  1. lisääntynyt rasvan määrä, yleensä suhteessa 3-4 grammaa rasvaa kutakin proteiini- ja hiilihydraattigrammaa kohti
  2. mahdollisimman pieni glukoosin kulutus
  3. kalorirajoitus
  4. nesterajoitus

[1] Vaikka viimeisestä elementistä (4) on esitetty jonkin verran kritiikkiä, kliininen käytäntö on osoittanut, että nesteen rajoittamisen lopettaminen voi johtaa kohtausten uusiutumiseen hyvin samalla tavalla kuin lopetettaessa glukoosirajoitus.

KD: n noudattaminen johtaa krooniseen ketoosiin [5]. Ruokavalion noudattamisen tärkein tulos on vapaiden rasvahappojen (FFA) pitoisuuden lisääntyminen veressä. Vapaat rasvahapot (FFA) kuljetetaan mitokondrioihin, jossa ne päätyvät β -oksidatiiviseen prosessiin. Tämä β-oksidaatio, jossa vapaat rasvahapot hajotetaan ketoneiksi, edellyttää karnitiinia.

Kuva: Ketogeenisen ruokavalion metaboliset muutokset

Ketoaineisiin kuuluvat β-hydroksibutyraatti, asetoasetaatti ja asetoni [5]

1.1. Ketoaineiden merkitys

Ketoneiden (asetonin, asetoasetaatin ja beta-hydroksibutyraatin) lisääntynyt pitoisuus veressä voi olla ketogeenisen ruokavalion merkittävin epileptisiä kohtauksia hillitsevistä metabolisista vaikutuksista.

Ketoaineiden hajoaminen toimittaa asetyyli-CoA:n suoraan trikarboksyylihapposykliin, mikä tehostaa energia-aineenvaihduntaa. Samalla tämä aineenvaihduntakanava kiertää glykolyysissä syntyvän asetyylikoentsyymi-A:n tarpeen ATP:n tuotannossa.

Toisin kuin glukoosi, joka vaatii kuljettajan läpäistäkseen veri-aivoesteen, ketoaineet läpäisevät veri-aivoesteen helposti. Kun kuljetusmolekyyleistä, kuten glut 1, on puutetta, KD on suositeltava epilepsiaterapia, koska sen avulla on mahdollista kiertää solujen glukoosin tarve [1]. Lapset, joilla pyruvaatin muuntuminen asetyyli-CoA:ksi on estynyt esimerkiksi pyruvaattidehydrogenaasin (PDH) puutteessa, hyötyvät glukoosin aineenvaihduntareitin ohittamisesta [3].

β-hydroksibutyraatti on veressä mitattavista ketoneista hallitseva ketoaine, ja sitä käytetään ketoosin asteen seuraamiseen terapian aikana. Beta-hydroksibutyraatin hajoaminen johtaa lisääntyneeseen asetonin tuotantoon [6].

Asetoni on yksi ketoaineista, joilla on kouristuksia hillitsevä, eli antikonvulsanttinen vaikutus erilaisissa hiirien kliinisissä kohtausmalleissa [7]. Tämän vaikutusmekanismia ei tunneta, vaikka vaikutusta K2p-kanaviin pidetään mahdollisena [5]. TCA-syklin (sitruunahappokierron) avulla asetyyli-CoA lisää hermovälittäjäaineiden glutamaatin ja gamma-aminovoihapon (GABA) ja vastaavasti tärkeimpien aivojen eksitatoristen ja estävien välittäjäaineiden määrää aivoissa.

Gamma-aminovoihappo eli GABA on tärkein aivojen ja muun keskushermoston hermosolujen toimintaa jarruttava välittäjäaine. GABA:n välittämä viesti on luonteeltaan inhibitorinen eli vaimentava tai lamaava: GABA välittää hermosolulle käskyn vähentää toimintaa tai lopettaa toimintansa. Noin 40 % aivosoluista reagoi gamma-aminovoihapon inhibitoriseen vaikutukseen. Yksittäisissä neuroneissa GABAn vaikutus voi olla myös eksitoiva eli kiihdyttävä. Elimistön tärkein kiihottava välittäjäaine, GABA:n vastavaikuttaja, on glutamaatti.
GABA:n nauttiminen lisää kasvuhormonin ja prolaktiinin synteesiä. GABA voi auttaa nukahtamisvaikeuksista kärsiviä ja parantaa unen laatua.
GABA- eli gamma-aminovoihapporeseptoreita on kahta päätyyppiä; GABAA ionikanavareseptori ja GABAB G-proteiinikytkentäinen reseptori. GABAC tunnetaan nykyään GABAA-rho reseptorina. Myös reseptorien alatyyppejä tunnetaan.
Monet rauhoittavat lääkeaineet kuten bentsodiatsepiinit ja barbituraatit lisäävät hermoston GABA-aktiivisuutta aiheuttaen hermoratojen toiminnan epäspesifiä, yleistynyttä hidastumista. Bentsodiatsepiiniryhmään kuuluvat lääkeaineet sitoutuvat bentsodiatsepiinireseptoreihin, GABAA-reseptorin alatyyppiin aiheuttaen positiivisen allosteerisen modulaation johtaen kloridikavanan avautumistaajuuden kiihtymiseen. Barbituraattien vaikutusmekanismi on hieman erilainen, ne pidentävät suoraan kloridikanavan aukioloaikaa sitoutumalla GABAA β-aliyksikköön. Tässä on syy barbituraattien myrkyllisyyteen bentsodiatsepiineihin verrattuna yliannostustapauksissa. Näitä reseptoreita on sekä aivoissa että sisäelimissä.
Myös monet epilepsialääkkeet (esimerkiksi valproaatti, vigabatriini, gabapentiini ja topiramaatti) tehostavat elimistön oman GABA:n vaikutusta.
Baklofeeni (Baclon, Baclopar, Lioresal) on GABAB-agonisti eli se jäljittelee GABA:n vaikutusta elimistössä ja sitoutuu GABAB-reseptoreihin. Baklofeenia käytetään yleisimmin keskushermoston toiminnan aiheuttaman liiallisen lihasjänteyden ja spasmien hoidossa. Sairauksia, joissa baklofeenia yleisesti käytetään, ovat muun muassa MS-tauti ja selkäydinvammat. Baklofeenista voi olla apua dystoniaan.
GABA:n puute voi aiheuttaa ahdistuneisuutta, masentuneisuutta ja epileptisiä kohtauksia.
GABA transaminaasi entsyymi katalysoi gamma-aminovoihapon ja 2-oksoglutaraatin muuntumista sukkiinisemialdehydiksi ja glutamaatiksi. Sukkiinisemialdehydin taas hapettaa sukkiinihapoksi sukkiinisemialdehydi dehydrogenaasientsyymi, ja sen jälkeen se on käypä energianlähde sitruunahappokierrossa. – Wikipedia

GABAn lisääntynyt vaikutus keskushermostossa voi selittää ketogeenisen ruokavalion kouristuksia hillitsevää vaikutusta[5].

1.2. Monityydyttymättömien rasvahappojen (PUFA) merkitys

Vapaiden rasvahappojen lisääntymisen seurauksena on monityydyttymättömien rasvahappojen (PUFA) pitoisuuden kasvu.

PUFA:n potentiaalinen kyky estää kohtauksia aivoissa saattaa liittyä melko monimutkaisiin mekanismeihin, kuten:

  1. sähköisen jännitteen rajoittamien natrium- ja kalsiumkanavien estäminen
  2. lipidille herkän kaliumkanavan aktivointi
  3. hermosolujen stimulaatiota rajoittavan natriumpumpun aktiivisuuden tehostaminen
  4. peroksisomiproliferaattorilla aktivoituvan reseptori-a:n (PPARa) aktivoiminen
  5. PUFA indusoi aivospesifisten irrotusproteiinien ilmentymistä ja aktiivisuutta mitokondrioissa, vaikuttaen siten neuroprotektiivisesti

[5]. Tämä viimeinen vaikutus toimii rajoittamalla reaktiivisten happiradikaalien (ROS) syntymistä.

1.3. Bioenergetiikka ja neuroprotektiivinen

Ketogeenistä ruokavaliota on ensisijaisesti pidetty epileptisia kouristuksia ehkäisevänä. KD-ruokavalion tutkimukset viittaavat paljon laajempiin ja monimutkaisempiin nuroprotektiivisiin vaikutuksiin.

Neuroprotektiivisuus voi vaikuttaa antikonvulsanttisesti (kouristuksia ehkäisevästi), mutta sillä on myös muita merkittäviä metabolisia vaikutuksia [3]. Kaiken kaikkiaan KD:n noudattaminen lisää ja tehostaa energian tuotantoa aivoissa. Appleton ja De vivo [8] kertoivat, että KD lisäsi bioenergeettisten substraattien (adenosiinitrifosfaatti (ATP)) kokonaismäärää ja nosti energian varausta rottien aivoissa.

Asetoasetaatti, beta-hydroksibutyraatin dehydraustuote, muutetaan asetyylikoentsyymi-A:ksi, joka kulkeutuu trikarboksyylihapposykliin (TCA), eli sitruunahappokiertoon.

Asetyylikoentsyymi-A eli aktiivinen etikkahappo on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa. Asetyylikoentsyymi-A:ta saadaan monosakkarideista, triglyserideistä sekä aminohapoista erilaisten reaktiovaiheiden kautta.Asetyylikoentsyymi-A:n asetyyliryhmän hiilet (C) hapettuvat hiilidioksidiksi TCA-syklissä ja vedyt (H) siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Solujen energialähteinä toimivat ensi sijassa hiilihydraatit ja rasvahapot, mutta muitakin molekyylejä esimerkiksi aminohappoja voidaan käyttää. Aminohappojen käyttö energialähteenä on tosin normaalitilanteissa vähäistä.

Glukoosi hajoaa glykolyysissä kahdeksi pyruvaatiksi, joista edelleen molemmista saadaan oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos taas happea (O) ja mitokondrioita ei ole tarpeeksi saatavilla, pyruvaatti pelkistyy edelleen maitohapon anioniksi laktaatiksi. Rasvahapot hajoavat pääasiassa hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

TCA-syklin lisääntynyt energiatuotanto tuottaa protoneja ja elektroneja, jotka kanavoituvat elektronien siirtoketjuun. Tämä puolestaan lisää ATP:n muodostumista adenosiinidifosfaatista (ADP) ATP-syntaasin avulla.

ATP voidaan joko muuttaa fosfokreatiiniksi energian varastointia varten tai hajottaa adenosiiniksi. Lisääntyneet ATP-tasot tarjoavat energiavaroja hermosolun toiminnan ylläpitämiseksi myös silloin, kun solun glukoosinotto on häiriintynyt. Lisääntynyt solunulkoinen adenosiini toimii eräänlaisena neuroprotektiivisena puskurina laskemalla jännitettä ja estämällä siten paikallisia kohtauksia [6].

On myös arveltu, että KD vaikuttaa energiametaboliaentsyymejä koodaavien transkriptiotekijöiden säätelyyn (ylösregulointiin) ja mitokondrioiden tiheyden lisääntymiseen hermosoluissa, mikä johtaa kasvaneisiin energiavarastoihin.

Energian saannin helpottuminen voi tukea kohtausten ehkäisemistä esimerkiksi tukemalla GABAergistä estoa [9].

Wikipedia:Aivojen välittäjäaineet ovat kemiallisia välittäjämolekyylejä, jotka välittävät (eksitoivat, inhiboivat tai moduloivat) signaaleja aivojen hermosolujen eli neuronien välillä. Eksitoiva välittäjäaine kiihdyttää, inhiboiva välittäjäaine jarruttaa aivotoimintaa. Välittäjäaineet eli neurotransmitterit siirtyvät neuronien välillä synapseissa.Keskushermoston eli aivojen ja selkäytimen tärkeimpiä neurotransmittereita ovat aminohapot. Noin 80–90 prosentissa keskushermoston synapseista välittäjäaineena toimii aminohappo, 5–10 prosentissa amiini ja 1–2 prosentissa peptidi.

Aivoissa tärkeitä aminohappotransmittereita ovat muun muassa glutamaatti ja glysiini, joista edellinen saattaa olla aivojen tärkein kiihdyttävä välittäjäaine. Glutamaatilla on kolmentyyppisiä reseptoreita. Ne on nimetty niille suhteellisen spesifien agonistien mukaan N-metyylidekstroaspartaatti (NMDA)-, kainaatti- ja 1-amino-3-hydroksi-5-metyyli-iso-oksatsoli-4-propionaatti (AMPA)-reseptoreiksi; mahdollisesti on olemassa muunkin tyyppisiä reseptoreita.

Gamma-aminovoihappo eli γ-aminovoihappo eli GABA on tärkein aivojen toimintaa jarruttava välittäjäaine. Jopa yli kolmasosa aivojen synapseista on GABAergisiä. GABA:lla on monia reseptoreita, esimerkiksi GABAA ja GABAB. Glutamaatti ja GABA muodostavat ikään kuin eksitoiva/inhiboiva välittäjäaineparin aivoissa.

Aminohapoista yksinkertaisin eli glysiini toimii inhibitorisena välittäjäaineena keskushermostossa. Sen reseptoreita löytyy etupäässä selkäytimestä. Glysiinin välittäjäaineparina etupäässä selkäytimen alueella toimii eksitoiva aminohappo aspartaatti. Asetyylikoliinin vaikutus aivokuorella ja hippokampuksessa on pääosin eksitoiva; myös inhibitiota saattaa esiintyä, mutta se on liitetty viereisten inhiboivien GABAergisten solujen aktivaatioon.

Alzheimerin taudissa asetyylikoliiniradat isoaivokuorelle ja hippokampukseen vaurioituvat, mikä aiheuttaa dementian. Noradrenaliinia on runsaasti aivorungon pienissä locus coeruleus -tumakkeissa, joista lähtevät aksonit haarautuvat eri tahoille, muun muassa hypotalamukseen, pikkuaivoihin ja isoaivokuorelle. Noradrenaliini osallistuu muun muassa vireystilan säätelyyn.

Dopamiinia sisältäviä neuroneja on runsaasti erityisesti keskiaivoissa substantia nigran ja tegmentumin tienoilla. Näiden aksonit haarautuvat laajalle alueelle. Aivoissa on neljä dopaminergista päärataa: mesokortikaalinen, mesolimbinen, nigrostriataalinen ja tuberoinfundibulaarinen. Nigrostriataalisen radan tuhoutuessa ilmentyy Parkinsonin tauti.

Skitsofrenian ajatellaan johtuvan mesokortikaalisen ja mesolimbisen radan dopamiinin D2-reseptorien ylistimuloitumisesta. Serotoniinia eli 5-hydroksitryptamiinia sisältävien hermosolujen soomaosista suurin osa sijaitsee ydinjatkoksen keskiviivalla olevassa raphe-tumakkeessa. Näiden neuronien aksonit ulottuvat aivojen kaikkiin osiin. Serotoniini osallistuu muun muassa tunne-elämän, muistin, syömiskäyttäytymisen ja ruumiinlämmön säätelyyn.

Histamiinia on ennen muuta hypotalamuksen corpora mamillare -alueella olevissa neuroneissa, jotka projisoituvat useimpiin aivojen osiin. Keskushermostossa histamiini osallistuu muun muassa neuroendokriiniseen säätelyyn, uni-valverytmin, vireystilan ja ruokahalun säätelyyn. Edellä mainittujen välittäjäaineiden lisäksi aivoissa vaikuttaa muun muassa suuri määrä erilaisia neuropeptidejä.

Merkittävimmät

Muut

On esitetty hypoteesi, jonka mukaan metaboliset sopeutumisprosessit ruokavalion aiheuttamiin muutoksiin aiheuttaa muutoksia geeniekspressiossa, mikä puolestaan johtaa joihinkin edellä mainituista muutoksista. Muu neuroprotektiivinen polku moduloidaan vähentämällä reaktiivisten happiradikaalien muodostumista, jonka katsotaan liittyvän monityydyttämättömien rasvahappojen vaikutukseen solujen irrotettavissa proteiineissa [5].

1.4. Ketogeenisen ruokavalion muita kliinisiä etuja

Ketogeenistä ruokavaliota pidetään todistetusti toimivana terapiamuotona, jolla on hyvin vähän haitallisia vaikutuksia. Laaja KD-terapiaa tukeva kliininen näyttö erityisesti lapsilla esiintyvän epilepsian hoitona on johtanut viimeaikaisiin laajempiin tutkimuksiin ketogeenisen ruokavalion metabolisista hyödyistä esimerkiksi neurodegeneratiivisten sairauksien hoidossa[3].

Eräs mielenkiintoisimmista ja aktiivisimmista tutkimusalueista on runsaasti rasvaa sisältävän kaloripitoisen ruokavalion vaikutus aivokasvainsolujen selviytymiseen. Aivosyöpäsoluilla on rajoitettu metabolinen joustavuus. Ne ovat hyvin riippuvaisia glukoosimetaboliasta.

Mitokondrioiden poikkeavuudet heikentävät aivokasvainten kykyä tuottaa energiaa ketoaineista. Toisin kuin normaaleissa soluissa, pahanlaatuisilla kasvainsoluilla on heikentynyt geneettinen sopeutumiskyky muuttuviin energiasubstraatteihin. Niiden energiansaanti rajoittuu lähinnä glukoosiin, minkä vuoksi paasto, niukkaenerginen ruoka ja ketogeeninen ruokavalio heikentävät syöpäsoluja. Näitä samoja aivokasvainten kehittymiseen liittyviä geneettisiä vikoja voidaan hyödyntää pahanlaatuisten solujen tuhoamisessa [3, 10, 11].

Vuonna 1995 Nebeling et al. [12] raportoi kahdesta nuoresta tytöstä, joilla oli pitkälle edennyt aivokasvain. Tyttöjen syövät reagoivat heikosti sädehoitoon ja kemoterapiaan. Lopulta tyttöjä päätettiin hoitaa ketogeenisella ruokavaliolla. Heidän vasteensa KD-hoidolle oli merkittävä sekä kliinisesti että positroniemissiotomografian seurantatutkimusten mukaan.

Zuccoli et al. [13] kuvasi potilasta, jolla oli erittäin pahanlaatuinen multippeli glioblastoma ( kasvain), joka parani ketogeenisella ruokavaliolla. Hullua kyllä, hoidon houkuttelevasta tehokkuudesta ja hyvistä alustavista tuloksista huolimatta aivokasvainten hoitoa ketogeenisellä ruokavaliolla ei ole sittemmin kliinisesti tutkittu ihmisillä. Miksi?

Useat hiiri- ja rotamalleilla tehdyt laboratoriotutkimukset ovat äskettäin vahvistaneet, että aivokasvaimen kasvun estyminen liittyy suoraan alentuneisiin glukoosipitoisuuksiin ja kohonneisiin ketoaineiden pitoisuuksiin. Lisäksi KD:n osoitettiin vähentävän aivojen reaktiivisia happiradikaaleja (ROS) [5].

Syöpäsolut tarvitsevat korkeita ROS-tasoja angiogeneesin indusoimiseksi ja kasvainten kasvutekijöiden tuottamiseksi [11], joten tämä mekanismi selittää KD:n vaikutusta.

Esimerkki:

12-vuotiaalla tytöllä todettiin keskushermostoon vaikuttava neurokutaaninen melanoosi Kasvain oli erittäin pahanlaatuinen ja eteni nopeasti. Kliiniset oireet olivat pääasiassa vaikeita kohtauksia, jotka edellyttivät toistuvaa pääsyä tehohoitoyksikköön sekä kohtausten lisäksi vakavia kognitiivisia ja valppauteen liittyviä oireita. Kun onkologit päättivät, että kasvainten vastainen hoito olisi tehotonta, tyttöä ryhdyttiin hoitamaan ketogeenisella ruokavaliolla. Neljän viikon kokeilun jälkeen KD:llä ei ollut mitään vaikutusta kasvaimen etenemiseen. Kohtausten taajuus ja vakavuus parani, mutta häntä hoidettiin samanaikaisesti AED:n kanssa. Ketogeenisellä ruokavaliolla oli kuitenkin huomattava parantava vaikutus tytön kognitioon, valppauteen ja mielialaan sairauden vakavuudesta ja etenemisestä huolimatta.

KD:n myönteinen vaikutus kognitioon, valppauteen ja mielialaan tunnetaan hyvin [1]. Tämä voi olla erityisen tärkeää nuorten vakavien kasvainten etenevissä vaiheissa. KD:n mahdollinen neuroprotektiivinen vaikutus motivoi tutkimuksia sen potentiaalista hoitovaihtoehtona muissa neurologisissa häiriöissä [3].

Yhä useammat eläintutkimukset osoittavat, että paastolla ja ketogeenisellä ruokavaliolla saavutetulla ketoosilla on selkä ja johdonmukainen neuroprotektiivinen vaikutus erilaisisten aivovaurioiden jälkeen.

Yksi ihmisillä toteutettu pienimuotoinen pilottitutkimus ja useat eläinmallitutkimukset ovat osoittaneet autististen käyttäytymisparametrien parantuneen KD-hoidolla. Vielä on selvitettävä, liittyykö tämä vähentyneeseen epileptiseen aktiivisuuteen, jota havaitaan jopa 30%: lla näistä potilaista, vai KD:n ensisijaiseen vaikutukseen [3]. Tämä tekijä, joka voi olla ratkaiseva KD:n soveltamiselle muiden neurologisten häiriöiden hoitoon, kuin kuin vaikeasti hoidettava epilepsia [14].

Yhteenvetona voidaan todeta, että ketogeenisen ruokavalion pääasiallinen metabolinen vaikutus on aivojen energiansaannin turvaaminen vapailla rasvahapoilla. Niiden hajoaminen ketoaineiksi yhdessä PUFA-yhdisteiden lisääntymisen kanssa johtaa merkittäviin muutoksiin aineenvaihdunnan, bioenergian, mitokondrioiden ja jopa geenien toiminnassa. Näillä primaarisilla ja sekundaarisillä muutoksilla on kouristuksia estäviä ja neuroprotektiivisia vaikutuksia. KD on merkittävä osa lasten epileptologien terapiavaihtoehtoja. Onko ketogeeninen ruokavalio yhtä tehokas hoitoväline myös neurodegeneratiivisten tautien, kuten Parkinsonin ja Alzheimerin taudin hoidossa ja muissa patologioissa, kuten pahanlaatuisten kasvainten hoidossa? Tätä tutktitaan. Tulokset tämän artikkelin julkaisun (2011) jälkeen ovat olleet hyvin lupaavia.

Viitteet

  1. A. L. Hartman and E. P. G. Vining, “Clinical aspects of the ketogenic diet,” Epilepsia, vol. 48, no. 1, pp. 31–42, 2007. View at: Publisher Site | Google Scholar
  2. A. L. Hartman and J. M. Freeman, “Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?” Epilepsia, vol. 49, supplement 8, pp. 53–56, 2008. View at: Publisher Site | Google Scholar
  3. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  4. E. C. Wirrell, “Ketogenic ratio, calories, and fluids: do they matter?” Epilepsia, vol. 49, supplement 8, pp. 17–19, 2008. View at: Publisher Site | Google Scholar
  5. K. J. Bough and J. M. Rho, “Anticonvulsant mechanisms of the ketogenic diet,” Epilepsia, vol. 48, no. 1, pp. 43–58, 2007. View at: Publisher Site | Google Scholar
  6. S. A. Masino, M. Kawamura, C. A. Wasser, L. T. Pomeroy, and D. N. Ruskin, “Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity,” Current Neuropharmacology, vol. 7, no. 3, pp. 257–268, 2009. View at: Publisher Site | Google Scholar
  7. N. Hasebe, K. Abe, E. Sugiyama, R. Hosoi, and O. Inoue, “Anticonvulsant effects of methyl ethyl ketone and diethyl ketone in several types of mouse seizure models,” European Journal of Pharmacology, vol. 642, pp. 66–71, 2010. View at: Publisher Site | Google Scholar
  8. D. B. Appleton and D. C. De Vivo, “An experimental animal model for the effect of ketogenic diet on epilepsy,” Proceedings of the Australian Association of Neurologists, vol. 10, pp. 75–80, 1973. View at: Google Scholar
  9. K. Bough, “Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet,” Epilepsia, vol. 49, supplement 8, pp. 91–93, 2008. View at: Publisher Site | Google Scholar
  10. B. T. Seyfried, M. Kiebish, J. Marsh, and P. Mukherjee, “Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet,” Journal of Cancer Research and Therapeutics, vol. 5, supplement 1, pp. S7–15, 2009. View at: Google Scholar
  11. P. Stafford, M. G. Abdelwahab, D. Y. Kim, M. C. Preul, J. M. Rho, and A. C. Scheck, “The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma,” Nutrition and Metabolism, vol. 7, article 74, 2010. View at: Publisher Site | Google Scholar
  12. L. C. Nebeling, F. Miraldi, S. B. Shurin, and E. Lerner, “Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports,” Journal of the American College of Nutrition, vol. 14, no. 2, pp. 202–208, 1995. View at: Google Scholar
  13. G. Zuccoli, N. Marcello, A. Pisanello et al., “Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report,” Nutrition & Metabolism, p. 33, 2010. View at: Publisher Site | Google Scholar
  14. J. H. Cross, A. Mclellan, E. G. Neal, S. Philip, E. Williams, and R. E. Williams, “The ketogenic diet in childhood epilepsy: where are we now?” Archives of Disease in Childhood, vol. 95, no. 7, pp. 550–553, 2010. View at: Publisher Site | Google Scholar

Keren Politi, Lilach Shemer-Meiri, Avinoam Shuper, and S. Aharoni, Department of Pediatric and Adolescent Neurology, Schneider Children’s Medical Center of Israel, Faculty of Medicine, Tel Aviv University, Tel Aviv, IsraelCopyright © 2011 Keren Politi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.hindawi.com/journals/ert/2011/963637/




Insuliini ja terveys: Neljäs luku

Jatkan insuliinia käsittelevää kirjoitussarjaa syventymällä insuliinin terveysvaikutuksiin erityisesti sydän- ja verisuonitauteihin liittyen. Aiemmissa artikkeleissa (Insuliini ja terveys: Johdanto, Insuliini ja terveys: Hiilihydraatti-insuliinimalli, Insuliini ja terveys: Kolmas luku)käsittelin insuliinin kemiallista rakennetta, aineenvaihduntaa ja biokemiaa yleisellä tasolla.

Aihe on vaikea ja joiltain osin kiistanalainen, joten esittelen tässä kirjoituksessa kaksi hyvin perusteltua näkemystä insuliiniresistenssin syistä. Ne ovat osittain yhteneviä ja osittain ristiriitaisia. Kahden tutkiimuskatsauksen käsittelyn vuoksi teksti on todella pitkä ja paikoin myös vaikeaselkoinen.

Tässä tutkimuskatsauksessa osoitetaan, että:

Heikentynyt ravinnonsaanti edistää hyperlipidemiaa ja insuliiniresistenssiä aiheuttaen hyperglykemiaa. Tämä tila muuttaa solujen metaboliaa ja solunsisäistä signalointia, joka vaikuttaa negatiivisesti soluihin.

Kardiomyosyytissä tämä vaurio voidaan tiivistää kolmeen vaikutukseen:

  1. muutos insuliinin signalointiin
  2. kasvanut substraatin saavutettavuus ja
  3. aineenvaihdunnan muutosten joustamattomuus

Kaikki nämä vaikutukset edistävät solutapahtumia, kuten:

  1. geeniekspressiomodifikaatiot
  2. hyperglykemia ja dyslipidemia
  3. oksidatiivisen stressin ja tulehdusvasteen aktivoituminen,
  4. endoteelin toimintahäiriöt ja
  5. kohdunulkoisten lipidien kumuloituminen, joka ylläpitää metabolisen sääntelyn purkamista

Kaiken kaikkiaan insuliiniresistenssi vaikuttaa sydän- ja verisuonitauteihin (CVD) kahden itsenäisen aineenvaihdutareitin kautta:

  1. ateroomapleksin muodostuminen
  2. kammion hypertrofia ja diastolinen poikkeavuus

Lyhyesti: Tämä tutkimuskatsaus osoittaa, että korkea verensokeri ja insuliiniresistenssi ovat merkittäviä sydäntautien riskitekijöitä.

Diabeetikoilla on suurempi sydäninfarktin, sydäntautien ja sydänkuolleisuuden riski kuin diabetesta sairastamattomilla. Tätä riskiä ei selitä muut muuttujat, kuten tupakointi, kolesteroli, verenpaine tai kehon rasvan jakautuminen.

Hypo- ja hyperinsulinemiaan liittyvät sairaudet

Insuliinilla on merkittäviä metabolisia vaikutuksia koko kehossa. Haiman Langerhansin saarekkeiden beetasolut säätelevät insuliinin tuotantoa seuraamalla plasman glukoosin, aminohappojen, ketohappojen ja rasvahappojen pitoisuuksia. Insuliini säätelee energiaravinteiden hapettamista energiaksi ja varastointia rasvakudokseen triglyserideina.

Diabetes mellitus (DM1) on insuliinin puutokseen (hypoinsulinemiaan) liittyvä sairaus, jossa elimistön oma immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden beetasoluja, mikä nopeasti johtaa elintärkeän insuliinin tuotannon vähenemiseen ja loppumiseen.Tyypin 1 diabetes puhkeaa tavallisesti alle 40-vuotiaana ja usein jo lapsena ennen murrosikää.

Beetasolujen tuhoutuminen on todennäköisesti seurausta beetasolujen yhteen tai useampaan rakenteeseen kohdistuvasta virheellisen tunnistamisen aiheuttamasta autoimmunireaktiosta, jossa elimistön oma immuunijärjestelmä kohdistaa aktivaation omia kudoksia vastaan.

Taudin tarkkaa syytä ei tunneta, mutta sairastuminen edellyttää geneettisen alttiuden sekä yhden tai useamman taudin laukaisevan ympäristömuuttujan. Tyypin 1 diabeteksen saattaa laukaista esimerkiksi sikiöaikainen D-vitamiinin puutos ja yleinen herpes zoster-infektio.

Taudin oireet saadaan hallintaan insuliinikorvaushoidolla. Verensokeripitoisuuden muutosten tarkkailu, tasaisen verensokerin ylläpitäminen, insuliinihoito ja ruokavaliomuutokset minimoivat tyypin 1 diabeteksen pitkän aikavälin komplikaatioita, kuten verisonten ja hermoston vaurioitumista. Insuliinihoito on elinkautinen.

DM2

Tyypin 2 diabetes mellitus (DM2) on useiden vuosien aikana kehittyvä solujen insuliiniherkkyyden heikentymisestä johtuva elintapasairaus. Toisin sanoen kohdekudokset eivät reagoi asianmukaisesti haiman tuottamaan insuliiniin. Seurauksena voi olla hyperinsulinemia, jossa vereen erittyvä runsaskaan insuliini ei avaa soluja glukoosinotolle.

Rasvakudoksen ja elinten adiposyyttien insuliiniherkkyys säilyy yleensä pitkään, joten glukoosi ohjautuu rasvasoluihin lihasten sijaan.

Tyypillisesti DM2 puhkeaa aikuisiässä. Massiivisista tutkimusponnisteluista huolimatta tyypin 2 diabetekseen johtavien tekijöiden tarkkaa luonnetta on ollut vaikea varmistaa. Taudin patogeneesi on selvästi monitekijäinen.

Lihavuutta pidetään riskitekijänä, mutta lihavuus voi itsessään olla diabetesta edeltävä oire insuliiniresistenssistä. Kaikki diabeetikot eivät ole lihavia, mutta monet lihavat sairastavat insuliiniresistenssiä. Insuliiniresistenssi todennäköisesti johtaa aikuistyypin diabetekseen. Insuliiniresistenssin aiheuttama lihavuus ei aina näy ulospäin, sillä se aiheuttaa tavallisesti elinten rasvoittumista ja viskeraalista keskivartalon elimiä ympäröivää läskiä.

Aikuistyypin diabeteksessa haiman kyky syntetisoida ja erittää insuliinia säilyy ainakin taudin varhaisvaiheessa melko normaalina. Insuliinilääkityksestä ei siis taudin varhaisvaiheessa ole sanottavaa hyötyä. Pikemminkin päinvastoin. Tautia hallitaan ruokavaliohoidolla ja verensokeria laskevilla hypoglykeemisillä lääkkeillä.

Tyypin 2 diabetes on kuitenkin etenevä sairaus, jossa insuliinilääkityskin tulee todennäköisesti ajankohtaiseksi jossain vaiheessa, mikäli verensokeri- ja insuliinipitoisuuksia ei ruokavaliolla saada korjattua.

Hyperinsulinemia, eli liiallinen insuliinin eritys on yleisimmin seurausta insuliiniresistenssistä, joka liittyy tyypin 2 diabetekseen tai metaboliseen oireyhtymään. Hyperinsulinemia voi myös johtua haiman insuliinia erittävästä kasvaimesta (insulinooma), mutta se on harvinaista.

Hyperinsulinemia voi olla hengenvaarallinen tila, josssa veren glukoosipitoisuus laskee nopeasti ja aivojen energiansaanti romahtaa (insuliinishokki).

Glukagoni

Glukagonilla on tärkeä rooli veren normaalin glukoosipitoisuuden säätelyssä. Se on insuliinin vastavaikuttaja. Toisin sanoen glukagonin vaikutus veren glukoosipitoisuuteen on päinvastainen insuliinin vaikutukselle. Insuliini on anabolinen hormoni, joka orkestroi energiaravinteiden käyttöä ja varastoimista. Glukagoni on katabolinen hormoni, joka purkaa energiavarastoja, kuten glykogeenejä verenkiertoon.

Glukagoni on lineaarinen peptidi, jossa on 29 aminohappoa. Sen ensisijainen sekvenssi on melkein täysin konservoitunut (identtinen) selkärankaisten keskuudessa, ja se on rakenteellisesti sukua peptidihormonien sekretiiniperheeseelle.

Glukagoni syntetisoidaan proglukagonina ja prosessoidaan proteolyyttisesti glukagonin tuottamiseksi haimasaarien alfasoluissa. Proglukagonia ilmentyy myös suolistossa, jossa sitä ei prosessoida glukagoniksi, vaan glukagonin kaltaisten peptidien perheeksi (enteroglukagoni).

Glukagonin fysiologiset vaikutukset

Glukagonin tärkein vaikutus on stimuloida veren glukoosipitoisuuden nousua.

Kun veren glukoosipitoisuus alkaa laskea normaalin alapuolelle, on välttämätöntä löytää ja pumpata lisää glukoosia vereen. Glukagoni hallitsee kahta keskeistä metaboliareittiä maksassa, mikä johtaa siihen, että elin luovuttaa glukoosia muuhun kehoon:

  • Glukagoni stimuloi maksassa varastoituneen glykogeenin hajoamista.

    Kun veren glukoosipitoisuus on korkea, maksa varastoi suuria määriä glukoosia glykogeeneiksi. Maksan glykogeenien koko vaihtelee ihmisten ja elämäntilanteiden välillä, mutta keskimäärin glukoosia varastoituu maksaan noin 200-250 g.

    Insuliinin vaikutuksesta osa glukoosista varastoidaan glykogeenin muodossa. Myöhemmin, kun veren glukoosipitoisuus alkaa laskea, glukagonin erittyminen vaikuttaa maksasoluihin aktivoiden entsyymejä, jotka depolymeroivat glykogeenejä glukoosiksi ja vapauttavat glukoosia verenkiertoon.

  • Glukagoni aktivoi maksan glukoneogeneesiä. Glukoneogeneesi on aineenvaihduntakanava, jossa sitruunahappokierron väliaineita, eräitä aminohappoja ja glyserolia muutetaan glukoosiksi.

    Glukoneogeneesi tuottaa tarvittaessa kaiken elimistön tarvitseman glukoosin.

Glukagonilla näyttää olevan vähäinen vaikutus triglyseridien lipolyysin tehostamisessa rasvakudoksessa.

Lipolyyttiset hormonit, kuten kortikotropiini, glukagoni ja adrenaliini aktivoivat rasvasolujen lipolyysin, jossa triglyseridejä pilkotaan verenkiertoon vapaiksi rasvahapoiksi ja glyseroliksi.

Insuliini on puolestaan lipolyyttisten entsyymien, kuten hormonisensitiivisen lipaasin (HSL) estäjä. Veren korkea insuliinipitoisuus estää rasvasolujen purkamisen energiakäyttöön.

Glukagonierityksen hallinta

Glukagonin tärkein vaikutus on lisätä veren glukoosipitoisuutta. Glukagonia erittyy hypoglykemian, eli matalan veren glukoosipitoisuuden vaikutuksesta. Kahden muun mekanismin tiedetään laukaisevan glukagonin erityksen:

  1. Kohonnut aminohappopitoisuus veressä: Tässä tilanteessa glukagoni edistää ylimääräisten aminohappojen muuntumista glukoosiksi lisäämällä glukoneogeneesiä.

    Koska korkea veren aminohappopitoisuus stimuloi myös insuliinin erittymistä, tämä on poikkeuksellinen tilanne, jossa sekä insuliini että glukagoni ovat samanaikaisesti aktiivisia.

  2. Liikunta: Tässä tapauksessa ei ole täysin selvää, onko todellinen glukoosin erittymisen laukaiseva ärsyke liikunta sinänsä vai liikunnan aiheuttama veren glukoosipitoisuuden lasku.

    Glukagonin eritystä estävät korkeat verensokeritasot. Ei ole selvää, heijastako tämä glukoosin suoraa vaikutusta alfasoluun vai ehkä insuliinin vaikutusta, jonka tiedetään vaimentavan glukagonia.

    Toinen hormoni, jonka tiedetään estävän glukagonin eritystä, on somatostatiini.

Glukagoniin liittyvät sairaudet

Glukagonin korkeaan tai matalaan eritykseen liittyvät sairaudet ovat hyvin harvinaisia. Alfa-solujen (glukagonomat) syövät ovat eräs sairaus, jonka tiedetään aiheuttavan liiallista glukagonieritystä.

Vaikka insuliinipuutos on selvästi tärkein tekijä tyypin 1 diabetes mellituksessa, on huomattavaa näyttöä siitä, että glukagonin poikkeava eritys edistää taudissa havaittuja metabolisia häiriöitä.

Monilla diabetesta sairastavilla potilailla, joilla mitataan hyperglykeminen verensokeri, on myös kohonnut glukagonipitoisuus veressä, vaikka kohonnut verensokeritaso estää glukagonin eritystä.

Sydän- ja verisuonitaudit: Yleinen näkemys

Vuosikymmenten ajan sydän- ja verisuonitaudit (CVD) ovat olleet johtava kuolinsyy ympäri maailmaa.

Sydän- ja verisuonitauteihin liittyy useita samanaikaisia sairauksia, kuten lihavuus, epänormaalit lipidiprofiilit ja insuliiniresistenssi. Vaikka insuliiniresistenssi ja DM2 hyväksytään vihdoin sydän- ja verisuonitautien itsenäisiksi riskitekijöiksi, yleinen sydänsairauksien malli nojaa vahvasti perinteiseen oppiin rasvojen ja erityisesti tyydyttyneiden rasvojen haitallisuudesta.

Vaikka vapaat rasvahapot näyttävät kasvattavan insuliiniresistenssin riskiä, mekanismi jolla rasvahapot aiheuttavat insuliiniresistenssin, on tuntematon.

Kyse lienee perinteisestä muna-kana-ongelmasta: kumpi oli ensin? Aineenvaihdunnan tasolla syy- ja seuraussuhteet kääntyvät herkästi nurinniskoin.

Insuliiniresistenssistä on ainakin kaksi vaihtoehtoista mallia: a) rasva aiheuttaa insuliiniresistenssia, ja b) insuliiniresistenssi aiheuttaa kehon ja veren rasvapitoisuuden lisääntymistä ja lihomista.

Avaan tässä tutkimuskatsausta, jonka ovat koonneet Valeska Ormazabal, Soumyalekshmi Nair, Omar Elfeky, Claudio Aguayo, Carlos Salomon & Felipe A. Zuñiga. Association between insulin resistance and the development of cardiovascular disease on julkaistu alun perin Cardiovascular Diabetology -lehdessä.

Lopuksi tutustun vielä lyhyesti James J. DiNicolantonion ja James H. O’keefen BMJ-lehdessä julkaistuun artikkeliiin: Added sugars drive coronary heart disease via insulin resistance and hyperinsulinaemia: a new paradigm.

Ensimmäinen tutkimuskatsaus noudattaa nähdäkseni yleistä ja perinteisempää  lääke- ja ravintotieteellistä tulkintaa insuliiniresistenssistä ja sen vaikutuksista sydän- ja verisuonitauteihin.

Tämä käsitys on osittain ristiriidassa kasvavan rasvojen aineenvaihduntaa selittävän tutkimusaineiston kanssa. Tieteen periaatteisiin kuuluu tieteen itseään korjaava luonne; paremmin ilmiöitä selittävä evidenssin tukema malli kumoaa heikommin ilmiöitä selittävän mallin. Nähdäkseni tyydyttyneisiin rasvoihin liittyvä paradigma on romahtamassa ja oppi sokereiden haitallisuudesta täsmentyy jatkuvasti.

Kasvavan evidenssin mukaan hyperglykemia ja insuliiniresistenssi ovat sydän- ja verisuoniterveyden kannalta merkittävämpiä riskitekijöitä, kuin LDL.

Jälkimmäinen artikkeli vastaa lähemmin uutta käsitystä insuliiniresistenssista sydän- ja verisuonitautien riskitekijänä. Siinä sydän- ja verisuonitaudit palautuvat hyperglykemiaan, insuliiniresistenssiin ja hyperinsulinemiaan.

Insuliini on avainhormoni, joka toimii solujen aineenvaihdunnan säätelijänä monissa ihmiskehon kudoksissa.

Insuliiniresistenssi määritellään kudosvasteen heikkenemisenä insuliinin stimulaatiolle, joten insuliiniresistenssille on tunnusomaista glukoosin imeytymisen ja hapettumisen häiriöt, glykogeenisynteesin väheneminen ja vähäisemmässä määrin kyky estää lipidien hapettumista ( β-oksidaatiota).

Vapaat rasvahapot ovat hallitseva substraatti, jota aikuisen sydänlihaksessa käytetään ATP:n tuotantoon, mutta sydämen metabolinen verkosto on erittäin joustava ja se voi käyttää muita substraatteja, kuten glukoosia, laktaattia, ketoaineita tai aminohappoja energian tuotantoon.

Substraatilla tarkoitetaan yhdistettä, jota entsyymi- tai muu reaktio muuttaa. Energia-aineenvaihdunnan substraatteja ovat glukoosi, vapaat rasvahapot, ketoaineet ja aminohapot.

Insuliiniresistenssin aikana useat metaboliset muutokset johtavat sydän- ja verisuonitautien riskin lisääntymiseen. Insuliiniresistenssi voi esimerkiksi aiheuttaa glukoosimetabolian epätasapainon, kuten kroonisen hyperglykemian, mikä puolestaan laukaisee oksidatiivisen stressin, joka aiheuttaa soluvaurioihin johtavan tulehdusreaktion.

Insuliiniresistenssi voi myös muuttaa systeemistä lipidimetaboliaa, joka johtaa sitten dyslipidemiaan ja haitallisen lipiditriadin kehittymiseen:

  1. korkeat plasman triglyseridipitoisuudet

  2. matalat korkean tiheyden lipoproteiinipitoisuudet (HDL)

  3. matalatiheyksisten lipoproteiinien lisääntyminen (LDL)

Tämä lipiditriadi yhdessä endoteelin insuliinisignaloinnin toimintahäiriöiden kanssa myötävaikuttaa ateroskleroottisen plakin muodostumiseen.

Insuliiniresistenssin ja sydämen metabolisten muutosten systeemiset seuraukset aiheuttavat vahinkoa ainakin kolmella mekanismilla:

  1. insuliinisignaloinnin muuttuminen
  2. heikentynyt energiasubstraatin aineenvaihdunnan säätely

  3. muuttunut substraattien kulku sydänlihakseen

Insuliiniresistenssin vähentämiseen keskittyvät hoidot voivat vähentää sekä sydän- ja verisuonitautien että ateroskleroottisten plakkien muodostumista.

Sydäntautien tausta

Sydän- ja verisuonitauteihin liittyvät patologiset prosessit ja riskitekijät alkavat jo lapsuudessa.

Erityisesti lihavuus, joka liittyy epänormaaliin lipidiprofiiliin nuoremmalla iällä, assosioituu vahvasti insuliiniresistenssin kanssa. Kuten tutkimuksissa korostetaan, monilla tekijöillä, kuten lihavuudella, epänormaalilla lipidiprofiililla ja insuliiniresistenssillä, on keskeinen rooli sydän- ja verisuonitautien (CVD) kehittymisessä.

Fysiologisissa olosuhteissa insuliini stimuloi metabolisten substraattien käyttöä monissa kudoksissa, kuten sydämessä, luurankolihaksissa, maksassa ja rasvakudoksessa.

Kardiomyosyyteissä, eli sydänlihassoluissa insuliini edistää glukoosin ja rasvahappojen imeytymistä, mutta estää β-ksidaation eli rasvahappojen hapettamisen energiaksi.

Haima yrittää kompensoida solujen heikentynyttä insuliiniherkkyyttä erittämällä kasvavia määriä insuliinia, mikä johtaa hyperinsulinemiaan.

Insuliiniresistenssin ja / tai hyperinsulinemian aikana normaali glukoositoleranssi säilyy johtuen joukosta fysiologisia muutoksia, jotka tämä ilmiö aktivoi.

Insuliiniresistenssin ja CVD:n kehittymisriskin välillä on todettu vahva korrelaatio. Useat molekyylimekanismit edistävät insuliiniresistenssin ja CVD:n välistä yhteyttä. Nämä mekanismit sisältävät insuliiniresistenssin roolin ateroskleroosin kehittymisessä, verisuonten (endoteelin) toiminnassa, verenpainetaudissa ja makrofagien lisääntymisessä.

Insuliinisignalointi

Insuliini on voimakas anabolinen hormoni, jolla on laajasti vaikutuksia monentyyppisiin soluihin.

Jotkut insuliinin tärkeimmistä metabolisista vaikutuksista ovat glukoosinoton stimuloiminen luurankolihaksissa ja adiposyyteissä, glykogeenisynteesin edistäminen luurankolihaksissa, maksan glukoosituotannon (glukoneogeneesin) tukahduttaminen ja lipolyysin estäminen adiposyyteissä.

Ruokailun seurauksena insuliinia erittyy haimasta verenkiertoon. Se aiheuttaa kiertävän glukoosin imeytymistä kohdekudoksiin sitoutumalla solujen insuliinireseptoreihin.

Tämä sitoutuminen aktivoi reseptorin autofosforylaation, joka laukaisee alavirran signalointikaskadin fosforyloimalla insuliinireseptorisubstraattien tyrosiinitähteet, IRS (IRS-1 tai IRS-2), mitä seuraa reaktiosarja, jossa fosfatidyyli-inositoli-3-kinaasi (PI3K), fosfoinositidista riippuvainen kinaasi -1, Akt (Akt1 ja Akt2), proteiinikinaasi C (PKC) ja rapamysiinin* nisäkäskohde (mTOR), samoin kuin ribosomaalinen proteiini S6-kinaasi beeta 1 (S6K1) fosforyloituvat.

Substraattitason fosforylaatio

Substraattitason fosforylaatio on soluissa tapahtuva kemiallinen reaktio, jossa syntyy ATP:tä fosfaattiryhmän liittyessä ADP:hen. Reaktio tapahtuu solulimassa glykolyysin yhteydessä sekä aerobisissa että anaerobisissa oloissa.

Substraattitason fosforylaatiossa voi syntyä neljä ATP:tä. Kaksi ATP-molekyyliä syntyy kahden 1,3-bisfosfoglyseraatin luovuttaessa fosfaattiryhmän ADP:lle fosfoglyseraattikinaasientsyymin avulla. Samalla syntyy 3-fosfoglyseraattia. Kaksi ATP:tä syntyy myös, kun fosfoenolipyruvaatti luovuttaa fosfaattiryhmän ADP:lle pyruvaattikinaasientsyymin avulla. Lisäksi syntyy palorypälehappoa.

Substraattitason fosforylaatio toimii myös luustolihaksissa ja aivoissa, joissa on energiaa varastoivaa ja fosfaattiryhmän sisältävää fosfokreatiinia ja kreatiinifosfokinaasientsyymi siirtää fosfaattiryhmän ADP:lle, jolloin tuloksena on ATP:tä. – Wikipedia

*Rapamysiini (sirolimuusi) on immunosuppressiivinen lääke, jota käytetään elinsiirron, varsinkin munuaisensiirron jälkeisen hylkimisreaktion estossa. Se löydettiin alun perin Pääsiäissaarelta (Rapa Nui), mistä tulee nimitys rapamysiini.

Yhdysvaltalaisessa tutkimuksessa sirolimuusi pidensi vanhojen hiirten jäljellä olevaa elinajanodotetta 28–38%:lla. Aine kuitenkin heikentää immuniteettia, joten ihmisille se ei sovi vanhenemisen hidastamiseen.

Rapamysiini lisää henkilön alttiutta saada vaarallinen infektio. Lääkkeen aiheuttama immuunijärjestelmän heikkeneminen voi myös lisätä syöpäriskiä. Lääkkeellä on runsaasti sivuvaikutuksia, kuten hypertensio, nivelkivut, vatsavaivat, kuume, virtsatietulehdus, pahoinvointi, päänsärky, anemia ja hypokalemia. Rapamysiini hidastaa energian kulutusta.

GLUT4

Nämä aineenvaihduntatapahtumat johtavat lisääntyneeseen glukoosinkuljettaja-4:n (GLUT4) siirtymään (translokaatio) solukalvolle, mikä helpottaa glukoosinottoa.

Imeytymisen jälkeen vapaa glukoosi fosforyloituu nopeasti glukoosi-6-fosfaatiksi (G6P), joka myöhemmin siirtyy eri metaboliareiteille.

Insuliinisignalointi tehostaa lipidien varastoitumista rasvasoluihin kahdella mekanismilla, stimuloimalla triglyseridisynteesiä ja estämällä lipolyysin käynnisymistä.

Triglyseridejä varastoidaan lipidipisaroihin, jotka sisältävät lipidipisaraproteiineja, kuten perilipiiniä.

Lipolyysin esto tapahtuu vähentämällä cAMP-tasoja ja estämällä proteiinikinaasi A:n (PKA) -aktiivisuutta, mikä heikentää siten hormoniherkän lipaasin -fosforylaatiota ja perilipiiniä aiheuttaen lipolyysinopeuden laskun.

Adiposyyttien lipidipisaroiden sisältämät triglyseridit hydrolysoituvat rasvahapoiksi, asyyliglyserideiksi ja glyseroliksi aktivoimalla hormoniherkkää lipaasia.

Maksassa insuliini estää glukoosin tuotantoa ja vapautumista estämällä glukoneogeneesin ja glykogenolyysin säätämällä fosfoenolipyruvaattikarboksylaasin (PEPCK) ilmentymistä.

Lisäksi insuliini voi stimuloida glykogeenisynteesiä Akt2-aktivaation, glykogeenisyntaasikinaasi 3:n (GSK3) estämisen ja glykogeenisyntaasin (GS) aktivaation kautta seriinitähteiden desfosforylaation kautta näiden proteiinien NH2- ja COOH-terminaaleissa.

Insuliinin verisuonivaikutukset ovat monimutkaisia: insuliinilla voi olla joko suojaavia tai haitallisia vaikutuksia verisuonistossa.

Insuliinin verisuonia suojaavat vaikutukset liittyvät endoteelin typpioksidisyntaasin (eNOS) aktivaatioon PI3K / Akt-reitin kautta.

Haitallisiin vaikutuksiin sisältyy verisuonten sileän lihassolun (VSMC) lisääntymisen indusointi, verisuonten supistuminen ja proinflammatorinen aktiivisuus.

Nämä verisuonivaikutukset välittyvät mitogeeniaktivoidun proteiinikinaasireitin (MAPK) kautta. Tämä osallistuu vain insuliinin mitogeenisiin vaikutuksiin, mutta ei sen metabolisiin vaikutuksiin. Mitogeeni on yhdiste, joka käynnistää solunjakautumisen.

Insuliiniresistenssi

Yleisen hypoteesin mukaan insuliiniresistenssi määritellään kliiniseksi tilaksi, jossa insuliinilla on odotettua pienempi fysiologinen vaikutus.

Insuliiniresistenssi tarkoittaa tilaa, jossa insuliinin vaikutus heikkenee. Insuliiniresistenssi aiheuttaa verensokerin nousua (hyperglykemia). Insuliiniresistenssi lisää huomattavasti kakkostyypin diabeteksen sekä sydän- ja verisuonisairauksien riskiä.

Muutos voi olla lyhyt- tai pitkävaikutteinen aiheuttajasta riippuen. Resistenssille herkistäviä tekijöitä tunnetaan yli 30, niitä ovat muun muassa lihavuus, tupakointi, asidoosi, alkoholi, korkea verenpaine, raskaus (raskausajan diabetes) ja palovammat. Insuliiniresistenssi on yhteinen nimittäjä monille sairauksille, jotka yleistyvät länsimaissa. Yksi yleisimmistä on metabolinen oireyhtymä.

Insuliiniresistenssi voi johtua häiriöstä insuliinin sitoutumisessa solun insuliinireseptoriin, reseptorien määrän tai toiminnan muutoksesta, glukoosin-sokerin kuljetusproteiinin (GLUT4) määrän tai toiminnan häiriöstä tai glukoosiaineenvaihdunnan häiriöstä solun sisällä. Häiriö on siis glukoosin otossa soluun tai sen aineenvaihdunnassa solun sisällä.

Insuliiniresistenssistä kärsiviä suositellaan valitsemaan matalan glykemiaindeksin ruoka-aineita ja ruokia. Lisäksi heidän kannattaa valita sellaisia ruoka-aineita, joilla on myös matala insuliini-indeksi. – Wikipedia

Glukoosinoton häiriö

Tämä ilmiö johtuu puutteista insuliinin stimuloimassa glukoosinotossa, erityisesti glykogeenisynteesissä, ja vähemmässä määrin glukoosin hapettumisessa. Insuliiniresistenssin vaikutukset eri kudoksiin riippuvat kudosten fysiologisesta ja metabolisesta toiminnasta.

Suuren aineenvaihduntavaikutuksen vuoksi insuliiniresistenssillä on merkittäviä vaikutuksia luurankolihakseen, rasvasoluihin ja maksakudokseen, jotka ovat solunsisäisen glukoosikuljetuksen sekä glukoosi- ja lipidimetabolian pääkohteet.

Luurankolihasten ja rasvasolujen osuus GLUT4 -reseptorien insuliinin stimuloimasta glukoosinotosta ovat noin 60–70%.

Insuliiniresistenssi heikentää maksan ja lihasten glykogeenisynteesiä, lisää proteiinikataboliaa luurankolihaksissa (lihasten kannibalisoiminen energiaksi) ja estää lipoproteiinilipaasiaktiivisuutta adiposyyteissä, mikä johtaa vapaiden rasvahappojen ja tulehduksellisten sytokiinien, kuten IL-6, TNFa sekä kylläisyyshormoni leptiinin, erityksen lisääntymiseen.

Maksan aineenvaihdunta kattaa karkeasti 30% insuliinin stimuloimasta glukoosin metaboliasta. Insuliiniresistenssi heikentää maksan glukoosiaineenvaihduntaa ja rasvahappojen aineenvaihduntaa, mikä puolestaan lisää veren triglyseridipitoisuutta ja VLDL-lipoproteiinien eritystä maksasta.

Insuliiniresistenssi aiheuttaa endoteelisolujen toimintahäiriöitä vähentämällä typpioksidin tuotantoa endoteelisoluissa ja lisäämällä veren hyytymistä estävien tekijöiden vapautumista. Tämä johtaa verihiutaleiden aggregaatioon (puuroutumiseen).

Insuliiniresistenssi vaikuttaa PI3K-reitin metaboliaan, kun taas MAP-kinaasireitti toimii normaalisti. Tämä aiheuttaa insuliinin mitogeenisen vaikutuksen endoteelisoluissa ja kasvattaa ateroskleroosin riskiä.

Veren matalalalla insuliinipitoisuudella ja insuliiniresistenssillä on merkittävä fysiologinen rooli raskauden ja nälkiintymisen aikaisen aineenvaihdunnan säätelyssä.

Ravinnon puutteellisen saannin aiheuttama alhainen glukoosipitoisuus johtaa heikentyneeseen insuliinin eritykseen, mikä helpottaa glukoosin mobilisoitumista maksasta.

Matala insuliinipitoisuus edistää lipolyysin käynnistymistä, jolloin rasvasoluista vapautuu vereen vapaita rasvahappoja ja glyserolia, joita voidaan käyttää ketoaineiden, β-oksidaation ja glukoosin lähtöaineina.

Nämä kompensointimekanismit auttavat ylläpitämään verensokeritasoja poikkeusolosuhteissa, kuten paastolla. Nykyään tiedetään, että aivosolut osaavat tuottaa energiaa ketoaineista, mutta vielä kymmenisen vuotta sitten aivotoiminnan uskottiin edellyttävän tasaista glukoosinsaantia.

β-hydroksibutyraatti on aivojen kuvantamisen ja kognitiivisten testien perusteella erinomainen energianlähde aivosoluille.

Veren punasoluilta puuttuu mitokondriot, joten niiden energianluotanto on glukoosista energiaa tuottavan glykolyysin varassa. Gukoosin puuttuessa ja glykogeenien ehtyessä glukoneogeneesi valmistaa glukoosia veren punasoluille.

Odottavan äidin insuliiniresistenssi sekä glukoosinsaannin turvaavat kompensoivat aineenvaihduntamekanismit varmistavat sikiölle kasvun ja kehityksen kannalta riittävän energian- ja ravinteiden saatavuuden.

Insuliiniresistenssi on avainasemassa metabolisten sairauksien, kuten tyypin 2 diabeteksen patogeneesissä. Insuliiniresistenssi on osallisena useissa muissakin sairauksissa, kuten rintasyövässä, nivelreumassa, munasarjojen monirakkulaoireyhtymässä, alkoholista riippumattomassa rasvamaksassa sekä sydän- ja verisuonitaudeissa. Insuliinimetabolian häiriöt vaikuttavat useimpien elintapasairauksien taustalla.

Ei-hapettavalle aineenvaihduntareitille päätyneiden lipidien liiallinen määrä kardiomyosyyteissä johtaa myrkyllisten lipidilajien (lipotoksiinien) kertymiseen soluihin, mikä muuttaa solujen signalointia ja sydämen rakennetta.

Lipotoksiinit

Lipotoksisuus on metabolinen oireyhtymä, joka johtuu lipidivälituotteiden kertymisestä ei-rasvakudokseen. Tämä johtaa solujen toimintahäiriöihin ja solukuolemaan. Kudoksiin, joihin lipotoksisuus normaalisti vaikuttaa, kuuluvat munuaiset, maksa, sydän ja luurankolihakset.

Lipotoksisuudella uskotaan olevan huomattava merkitys sydämen vajaatoiminnassa, liikalihavuudessa ja diabeteksessa.

Normaaleissa solutoiminnoissa lipidien tuotannon ja niiden hapettumisen tai kuljetuksen välillä on tasapaino.

Lipotoksisissa soluissa tuotettujen lipidien määrän ja energian tuotantoon hapetettujen lipidien määrän välillä on epätasapaino. Soluuntulon jälkeen rasvahapot voidaan muuntaa erityyppisiksi lipideiksi varastointia varten.

Rasvan yleinen varastomuoto, eli triglyseridi koostuu kolmesta glyserolimolekyyliin sitoutuneesta rasvahaposta, ja sitä pidetään neutraalimpana ja vaarattomimpana solunsisäisenä lipidivarastona.

Vaihtoehtoisesti rasvahapot voidaan muuntaa lipidivälituotteiksi, kuten diasyyliglyseroliksi, keramideiksi ja rasva-asyyli-CoA:ksi.

Nämä lipidivälituotteet voivat heikentää solun toimintaa, jota kutsutaan lipotoksisuudeksi

Adiposyytit, solut, jotka normaalisti toimivat kehon lipidivarastona, pystyvät käsittelemään ylimääräisiä lipidejä. Liian suuri lipidien määrä ylikuormittaa soluja ja aiheuttaa lipidien leviämisen ei-rasvasoluihin, joilla ei ole rasvoille tarvittavaa varastotilaa.

Kun ei-rasvasolujen varastointikapasiteetti ylitetään, seurauksena on solujen toimintahäiriö ja / tai solukuolema. Mekanismia, jolla lipotoksisuus aiheuttaa solun kuoleman ja toimintahäiriöitä, ei tunneta hyvin. Apoptoosin syy ja solun toimintahäiriön laajuus liittyvät solutyyppiin sekä ylimääräisten lipidien tyyppiin ja määrään.

Lihavuuden syy-vaikutus lipotoksisuudessa on kiistanalainen aihe. Jotkut tutkijat väittävät, että lihavuudella on suojaavia vaikutuksia lipotoksisuutta vastaan, koska se johtaa ylimääräiseen rasvakudokseen, johon voidaan varastoida ylimääräisiä lipidejä. Toiset väittävät, että lihavuus on lipotoksisuuden riskitekijä. Molemmat osapuolet myöntävät, että runsasrasvainen ruokavalio lisää lipotoksisten solujen määrää.

Henkilöt, joilla on paljon lipotoksisia soluja, sairastuvat yleensä sekä leptiini- että insuliiniresistenssiin. Tälle korrelaatiolle ei kuitenkaan ole löydetty selvää syy-mekanismia.

Häiriöt useilla solun signalointireiteillä, kuten mitokondrioiden toimintahäiriöissä ja endoplasmisen verkkokalvon stressissä, on liitetty lipotoksisuuteen.

Välittäjien, kuten reaktiivisten happilajien (ROS), typpioksidin (NO), keramidin, fosfatidyyli-inositoli-3-kinaasin, diasyyliglyserolin (DAG), PPAR-ydinreseptorien ligandien, leptiinin, on ehdotettu edistävän näitä lipotoksisia vaikutuksia ja lisäävän solujen apoptoosinopeutta.

Insuliiniresistenssi solutasolla

Insuliini vaikuttaa useissa aineenvaihduntaprosesseissa ja toimii signalointijärjestelmänä, joka mahdollistaa tasapainon ravinteiden tarjonnan ja tarpeen välillä.

Insuliiniresistenssissä kohdesolut eivät reagoi veresssä kiertävän insuliinin tavanomaisiin tasoihin, joten normaalia vastetta varten tarvitaan suurempia insuliinipitoisuuksia.

Insuliiniresistentti tila määritellään glukoosin imeytymisen heikkenemisenä lihaksissa ja maksan lisääntyneenä glukoneogeneesinä, mikä johtaa hyperglykemiaan, eli postbrandiaaliseen ja paastonjälkeiseen kohonneeseen verensokeriin.

Insuliiniresistenssiin liittyviä mekanismeja on selitetty monin tavoin, mutta kiistatonta tieteellistä konsensusta insuliiniresistenssin syystä ei taida olla.

Insuliiniresistenssin patogeneesi voidaan kuitenkin ryhmitellä geneettisiin virheisiin, rasvasta peräisin olevaan signaalointiin (kohdunulkoisten rasvojen kertyminen), fyysiseen passiivisuuteen, lihavuuteen ja tulehduksiin.

Insuliiniresistenssi ja geenit

Yksi lähestymistapa sairastumisen selittämiseen on insuliiniresistenssiin johtavan geneettisen virheen analysointi selvittämällä insuliinin signalointiketjuun assosioituvia ehdokasgeenejä. Insuliiniresistenssissä ja tyypin 2 diabeteksessa on havaittu useita muutoksia insuliinin signalointiin liittyvissä geeneissä.

IRS-1- ja IRS-2-geenien poikkeavuudet hiirikokeissa osoittavat, että IRS-1-hiiret ovat insuliiniresistenttejä, mutta eivät hyperglykeemisiä. Hiiret, joilta puuttuu IRS-2-geeni ovat vakavasti hyperglykeemisiä johtuen perifeerisen insuliinin toiminnan poikkeavuuksista ja β-solujen insuliinin erityksen häiriöistä.

Akt1:n häiriö hiirissä ei aiheuta merkittäviä häiriöitä aineenvaihdunnassa, kun taas hiiret, joilta Akt2 on estetty, osoittavat insuliiniresistenssiin viittaavia oireita, jotka fenotyypiltään muistuttavat läheisesti tyypin 2 diabetesta.

Muita mutaatioita, jotka on tunnistettu ja tutkittu tyypin 2 diabetekseen liittyen, ovat mutaatiot insuliinireseptorissa, PI3K:ssa, maksan glukokinaasipromoottorissa, GLUT4, glykogeenisyntaasissa ja proteiinifosfataasi-1:ssä.

Erilaisista tyypin 2 diabetekseen assosioituvista mutaatioista huolimatta, harvat henkilöt ovat diabeettisia geneettisten mutaatioiden vuoksi.

Geneettinen alttius aikuistyypin diabetekseen kuitenkin kasvattaa sairastumisriskiä. Voi myös olla useita muita geneettisiä poikkeamia, joita ei ole vielä tunnistettu ja jotka voivat vaikuttaa insuliiniresistenssin ja tyypin 2 diabeteksen patogeneesiin.

Ympäristötekijät

Lihavuuden aiheuttama vapaiden rasvahappojen (FFA) lisääntyminen verenkierrossa saattaa laukaista insuliiniresistenssin lipidien kertymisen kautta.

Tämä voi aktivoida epätyypillisen PKC:n, joka estää insuliinin solusignaloinnin ja insuliinin stimuloiman glukoosinoton luuston lihaksissa, sekä vähentää insuliinin stimuloimaa maksan glykogeenisynteesiä. Tämä voi johtaa insuliiniresistenssiin ja lisääntyneeseen glukoosin kulkeutumiseen maksassa.

Lisäksi vapaat rasvahapot laukaisevat insuliiniresistenssin aktivoimalla suoraan Tollin kaltaisen reseptorin 4 (TLR4) ja luontaisen immuunivasteen.

Lihavuus liittyy tulehdustekijöihin, joille on tunnusomaista ATM:ien (rasvakudoksen makrofagien) lisääntyminen

Tulehdustekijät lisäävät lipolyysiä ja edistävät maksan triglyseridisynteesiä ja hyperlipidemiaa lisääntyneen rasvahappoesteröinnin vuoksi.

ATM stimuloi tulehdussytokiineja, jotka estävät insuliinin signalointia ja nopeuttavat maksan glukoneogeneesiä sekä postbrandiaalista eli aterianjälkeistä hyperglykemiaa.

Muita insuliiniresistenssiä selittäviä mekanismeja ovat sekä mTOR- että S6K1-reittien aktivaatio. Nämä aktivaatiot aiheuttavat IRS-1: n seriinifosforylaation ja sen jälkeen IRS-1:een liittyvän PI3K-aktiivisuuden vähenemisen. On arveltu, että ravinteiden kyllästysolosuhteissa S6K1 voi säätää negatiivisesti insuliinin signalointia ja herkkyyttä.

Lisäksi IRS-1:n seriinifosforylaatiota on tutkittu eri olosuhteissa. Näyttää siltä, että mTOR-S6K1:stä riippuvaisen mekanismin lisäksi erilaiset seriinikinaasit, kuten c-Jun NH2-terminaalinen kinaasi (JNK), stressillä aktivoidut proteiinikinaasit, tuumorinekroositekijä-alfa (TNF-a) ja PKC voivat edistää IRS:n seriinifosforylaatiota aiheuttaen insuliinisignaalin voimakkuuden vähenemisen metaboliareitillä.

Lihavuuden merkitys insuliiniresistenssissa

Ihmisillä, joiden painoindeksi (BMI) on korkea (BMI ≥ 30 kg / m2), on suurempi sydän- ja verisuonitautien riski verrattuna ihmisiin, joilla on normaali BMI (BMI = 18,8–24,9 kg / m2).

Lihavuus assosioituu insuliiniresistenssiin. Molekyylimekanismi, jolla rasvan lisääntyminen selittäisi insuliiniresistenssin, on kuitenkin epäselvä; lipidien kertymisestä johtuva tulehdus, rasvahappojen hapettumisen estävä vaikutus glukoosin hapettumiseen, lipotoksiinien kertyminen ja adiposytokiinien eritys on kaikki yhdistetty paikallisen ja systeemisen insuliiniresistenssin kehittymiseen.

Lisääntyvä näyttö viittaa siihen, että rasvakoostumuksen heterogeenisuus ja rasvakudoksen jakautuminen voi olla ratkaisevan tärkeää insuliiniresistenssin ja kardiometabolisten häiriöiden kehittymisessä.

Viskeraalinen rasvakudos (VAT) assosioituu vahvasiti insuliiniresistenssin, DM2:n lisääntyvään esiintyvyyteen ja suurempaan sydän- ja verisuonitautien riskiin.

Viskeraalinen rasva liittyy tulehdusta edistävien adiposytokiinien korkeaan tuotantoon, oksidatiiviseen stressiin ja reniini-angiotensiini-aldosteronijärjestelmän (RAAS) aktivaatioon.

Krooninen energian (kalorien) liikasaanti aiheuttaa sisäelinten rasvamassan lisääntymisen, yksittäisten adiposyyttien hypertrofian ja adiposyyttien jakautumisen uusiksi rasvasoluiksi.

Rasvapitoisuuden lisääntyessä adiposyytit vapauttavat kemotaktisia tekijöitä, kuten monosyyttien kemoattraktantiproteiini-1 (MCP-1) ja tuumorinekroositekijä-a (TNFa), jotka moduloivat tulehdusvastetta rasvakudoksessa. MCP-1 aloittaa monosyyttien migraation viskeraaliseen rasvakudokseen ja edistää niiden erilaistumista makrofageiksi.

Makrofagit erittävät suuria määriä TNF-alfaa. Lipolyysi lisääntyy samalla kun insuliinin stimuloiman glukoosin kuljettaja-4 (GLUT4), triglyseridien biosynteesi ja adiposyyttien varastointi viskeraalisessa rasvakudoksessa vähenevät, mikä tämän mallin mukaan johtaa kiertävien veressä triglyseriditasojen nousuun.

Tämä tapahtuma voi johtaa toksisten rasvahappolajien (eli diasyyliglyserolin, keramidin) lipidisaostumiin rasvakudoksessa, haimassa, munuaisten verisuonissa, maksassa, luurankolihaksissa ja sydämessä, mikä johtaa epikardiaalisen rasvakudoksen (EAT) lisääntymiseen.

EAT:n kasvu aiheuttaa sydämen rasvoittumiseen ja massan lisääntymiseen molemmissa kammioissa, mikä johtaa kammion hypertrofiaan, supistumishäiriöön, apoptoosiin, fibroosiin ja heikentyneeseen vasemman kammion diastoliseen toimintaan.

Insuliiniresistenssi ja sydäntaudit

Kohonnneet LDL-tasot, tupakointi, korkea verenpaine ja tyypin 1 ja 2 diabetes ovat tunnettuja sydän- ja verisuonitautien riskitekijöitä, mutta insuliiniresistenssi, hyperglykemia ja inflammaatio voivat myös ennakoida haitallisia sydän- ja verisuonitapahtumia.

Insuliiniresistenssi liittyy aineenvaihdunnan häiriöihin, kuten hypertriglyseridemiaan sekä mataliin HDL-tasoihin. Lisäksi insuliiniresistenssiä on havaittu noin 30%:lla potilaista, joilla on diagnosoitu verenpainetauti (hypertensio).

Vuonna 1996 toteutetussa insuliiniresistenssin ateroskleroositutkimuksessa (IRAS) tutkijat osoittivat suoran yhteyden insuliiniresistenssin ja ateroskleroosin välillä. Jatkotutkimuksessa 2938 potilaan kohortissa määriteltiin insuliiniresistenssi tärkeäksi sydäninfarktin riskitekijäksi.

Vuonna 2012 tehty 65 tutkimuksen ja yhteensä 516 325 henkilön meta-analyysi, osoitti, että HOMA-indeksillä arvioituna insuliiniresistenssi ennustaa hyvin sydän- ja verisuonitauteja.

Archimedes-mallin ja 20–30-vuotiaiden nuorten diabetesta sairastamattomien aikuisten populaation seurannan perusteella tutkijat päätyivät johtopäätökseen, että insuliiniresistenssin estäminen populaatiotasolla voisi vähentää 42% sydäninfarkteista simuloidun 60 vuoden seurantajakson aikana.

Vaikka useat tutkimukset tukevat ajatusta siitä, että sydän- ja verisuonitaudit liittyvät insuliiniresistenssiin, on myös eräitä kiisteltyjä raportteja.

Insuliiniresistenssin lisäksi insuliiniresistenssiin liittyvällä kompensoivalla hyperinsulinemialla voi olla kriittinen rooli ateroskleroottisten plakkien muodostumisessa muuttamalla estrogeenireseptoreihin liittyvää geeniekspressiomallia, kuten eläinmalleissa on havaittu.

Hyperglykemia aiheuttaa muutoksia aineenvaihdunnan- ja solujen toiminnoissa: dyslipidemia (veren huono lipiditasapaino), hypertensio, endoteelin toimintahäiriöt, oksidatiivinen stressi ja muutokset sydämen aineenvaihdunnassa näyttävät liittyvän hyperglykemiaan.

Noin 50–70% sydänlihaksen tarvitsemasta ATP:stä  tuotetaan (pitkäketjuisten) rasvahappojen hapetuksella ( β-oksidaatio). Glykolyysin osuus terveessä sydämessä on alle 10% ATP:n kokonaistuotannosta.

Sydän käyttää energiantuotantoon ensisijaisesti pitkäketjuisia rasvahappoja, mutta sydämellä on kyky vaihtaa toiseen energiasubstraattiin ATP:n tuottamiseksi sydämen energiantarpeen varmistamiseksi. Myös substraattikuljettimilla, GLUT4 (glukoosille) ja CD36 (rasvahapoille), on merkitys tässä substraatin käyttöasteen dynaamisessa tasapainossa.

Loukkaantumisen aikana sydän siirtyy rasvahappojen käytöstä energia-substraateina kohti glukoosia, mutta tämä metabolinen joustavuus heikentyy insuliiniresistenssin aikana, jolloin rasvahappo on ainoa polttoaineen lähde.

Tämä muutos indusoi lipidien imeytymisen ja kertymisen lisääntymistä sydämessä tuottaen lipotoksisuutta. Tässä mielessä tasapaino lipidien hajoamisen ja glukoosin hapettumisen välillä voi vähentää diabeettista kardiomyopatiaa.

Insuliiniresistenssi ja dyslipidemia

Insuliiniresistenssin ja tyypin 2 diabeteksen (diabeettinen dyslipidemia) aiheuttamalle dyslipidemialle on tunnusomaista lipidien kolmikko:

  1. korkeat plasman triglyseriditasot
  2. matalat HDL-tasot

  3. pienten tiheiden matalatiheyksisten lipoproteiinien (sdLDL) pitoisuuden kasvu sekä liiallinen aterianjälkeinen lipidemia

Hypertriglyseridemia lisää sydän- ja verisuonitautien ilmaantuvuutta miehillä 32% ja naisilla 76%.

10 038 ihmisellä, joilla oli normaali verenpaine tai pre-hypertensio, tehty tutkimus osoitti dyslipidemian olevan vahva ennuste tyypin 2 diabeteksen kehittymiselle.

Usein diabeettinen dyslipidemia kehittyy vuosia ennen tyypin 2 diabetesta, mikä viittaa siihen, että epänormaali lipidimetabolia on varhainen sydän- ja verisuonitautien indikaattori tyypin 2 diabeteksessa.

Lihavuus on maailmanlaajuinen epidemia, joka liittyy läheisesti tyypin 2 diabeteksen sekä sydän- ja verisuonitautien (CVD) kehittymiseen.

Lihavuuteen liittyvä viskeraalinen ja epikardiaalinen rasva ovat sydänsairauksien riskitekijöitä. Lihavuudella on merkittävä vaikutus lipoproteiiniprofiilin ja systeemiseen ja verisuonitulehdukseen sekä endoteelin toimintahäiriöön liittyvien tekijöiden modifioinnissa.

Epänormaalit lipidien ja apolipoproteiinien pitoisuudet voivat aiheuttaa muutoksia lipoproteiinihiukkasten tuotannossa, konversiossa tai kataboliassa.

Nämä muutokset voivat myötävaikuttaa liikalihavuuden lisääntyneeseen basaaliseen lipolyysiin ja rasvahappojen vapautumiseen verenkiertoon, mikä johtaa proaterogeeniseen fenotyyppiin.

Insuliiniresistenssi ja liporoteiinieprofiilien muutokset

VLDL, hyvin matalatiheyksinen lipoproteiini, kootaan ja tuotetaan substraattien saatavuuden perusteella maksassa.

Insuliini säätelee tiukasti VLDL-tuotantoa. Maksan VLDL-tuotanto indusoituu paastotilassa, mikä johtaa lisääntyneeseen VLDL-pitoisuuteen veressä.

Eri lähteistä peräisin olevien lipidien lisääntyminen, kuten verenkierron vapaat rasvahapot, triglyseridipitoisten lipoproteiinien endosytoosi ja de novo lipogeneesi mahdollistavat apoB:n translaation jälkeisen stabiloinnin ja tehostavat VLDL-hiukkasten kokoonpanoa ja eritystä.

Tämä johtaa VLDL:n ja vapaiden rasvahappojen uotantoon. Lipoproteiinit kuljettavat energiaa maksan ja rasvakudoksen välillä. Vastauksena insuliinin eritykseen VLDL-synteesi estetään plasman triglyseriditason rajoittamiseksi. Normaalisti insuliini edistää PI3K-aktivaation avulla apoB:n hajoamista, mutta insuliiniresistenssin aikana tämä hajoaminen on heikentynyt.

Yhdistelmä:

  1. käytettävissä olevien rasvahappojen ylimäärä

  2. apoB: n rajoitettu hajoaminen

  3. apoB: n suurempi stabiloituminenVLDL-synteesin kasvu selittää insuliiniresistenssissä havaitun hypertriglyseridemian

Insuliiniresistenssi vähentää myös lipoproteiinilipaasiaktiivisuutta, joka on tärkeä VLDL-puhdistuman välittäjä. Tällä vaikutuksella on vähäinen vaikutus plasman triglyseriditasoon, vaikka se on myös mekanismi, jota myös muutetaan.

Tyypin 2 diabetesta sairastavilla potilailla VLDL:n, IDL:n ja LDL:n imeytyminen maksassa vähenee, mikä johtaa näiden lipoproteiinien viipymisaikojen pitenemiseen plasmassa.

SdLDL: n muodostuminen ja alentuneet HDL-tasot liittyvät läheisesti insuliiniresistenssiin. Ateroskleroosiriskien (ARIC) prospektiivisessa tutkimuksessa sdLDL: n plasmatasoihin liittyi sepelvaltimotaudin (CHD) riski. Lisäksi VLDL-tasot ovat tärkein LDL-koon ennustaja.

SdLDL: n muodostuminen riippuu sekä kolesteryyliesterin siirtoproteiinin (CETP) että maksan lipaasin osallistumisesta. CETP helpottaa triglyseridien siirtymistä VLDL:stä LDL:ään ja HDL:ään, tuottaa triglyseridipitoisen LDL:n ja johtaa matalaan HDL-C:hen.

Triglyseridipitoinen LDL on maksalipaasin substraatti, mikä lisää triglyseridipitoisen LDL:n lipolyysiä, mikä johtaa sdLDL: n muodostumiseen. Erilaisia mekanismeja on ehdotettu selittämään sdLDL:n lisääntynyttä aterogeenistä vaikutusta.

Näitä mekanismeja ovat:

  1. alempi affiniteetti LDL-reseptoriin

  2. helpotettu pääsy valtimon seinämään

  3. valtimon retentio

  4. suuri hapettumisherkkyys

  5. pidempi puoliintumisaika

Lisääntyneet sdLDL-tasot edustavat lisääntynyttä määrää aterogeenisiä hiukkasia, mikä ei välttämättä heijastu LDL-tasoilla, koska sdLDL-hiukkaset sisältävät vähemmän kolesterolia.

HDL-hiukkasten triglyseridirikastus CETP:llä yhdistettynä maksalipaasin lipolyyttiseen vaikutukseen johtaa plasman HDL-C:n ja apoA-I:n vähenemiseen, mikä vaikuttaa pienen tiheän HDL:n muodostumiseen ja johtaa näiden hiukkasten lisääntyneeseen kataboliaan.

Vuonna 1932 ei-diabeetikoilla tehdyssä retrospektiivisessä tutkimuksessa raportoitiin, että triglyseridin ja HDL-kolesterolin suhde voi ennustaa insuliiniresistenssin ja metabolisten sairauksien todennäköisyyden. Lisäksi on osoitettu lipidien kerääntymistuotteiden ja triglyseridien glukoosindeksin korrelaatio insuliiniresistenssin ja CVD:n kanssa.

Insuliiniresistenssi johtaa lisääntyneeseen vapaiden rasvahappojen (FFA) vapautumiseen rasvasoluista. Plasman paasto-FFA:n kohonnut suhde insuliinipitoisuuteen on rasvakudoksen insuliiniresistenssi. Rasvakudoksen insuliiniresistenssin on raportoitu olevan riskitekijä aortan venttiilin kalkkeutumisessa, mikä ennustaa sydän- ja verisuonitaudit.

Insuliiniresistenssi, verenpainetauti ja endoteelin häiriöt

Kliiniset tutkimukset ovat osoittaneet, että noin 50 prosentilla hypertensiivisistä koehenkilöistä on komorbidi hyperinsulinemia tai glukoosi-intoleranssi, kun taas vähintään 80 prosentilla tyypin 2 diabetesta sairastavista potilaista on komorbidi hypertensio.

Komorbiditeetti tarkoittaa kahden tai useamman itsenäisen sairauden esiintymistä samanaikaisesti. Komorbidi sairaus tai häiriö voi olla seurausta perussairaudesta tai suorassa yhteydessä siihen. Tämä johtuu usein erilliseksi luokiteltujen ongelmien yhteisestä taustatekijästä.

Komorbidit häiriöt ovat silti usein vaikeammin hoidettavissa kuin yksittäisesti esiintyvät häiriöt, sillä hoitoa suunniteltaessa on otettava huomioon kunkin häiriön yksittäiset ominaispiirteet ja niiden yhdistelmien variaatiot. – Wikipedia

Verenpainetaudin ja diabeteksen yhdistelmää sairastavilla potilailla on selvästi korostunut sydän- ja verisuonitautien riski.

On ehdotettu, että poikkeavuudet vasodilataatiossa, verenkierrossa ja reniini-angiotensiini-aldosteronijärjestelmässä (RAAS) voivat liittyä hypertensioon ja insuliiniresistenssiin. Lisäsyynä verenpainetautiin insuliiniresistentillä potilaalla on sympaattisen hermoston yliaktiivisuus, joka edistää myosyyttien hypertrofiaa, interstitiaalista fibroosia ja heikentynyttä verisuonten supistumista, johon liittyy lisääntynyt myosyyttien apoptoosi (solukuolema).

RAAS-järjestelmässä angiotensinogeeni muuttuu reniiniksi angiotensiini I:ksi, joka sitten ACE:n (angiotensiiniä konvertoivan entsyymin) avulla muutetaan angiotensiini II:ksi (Ang II). Lopuksi Ang II vaikuttaa sekä AT1- että AT2-reseptoreihin. AT1-reseptori välittää kaikki Ang II:n klassiset vaikutukset, kuten verenpaineen nousu, verisuonten supistuminen, lisääntynyt sydämen supistuvuus, munuaisten natriumpitoisuus, veden reabsorptio ja aldosteronin vapautuminen lisämunuaisen kuoren zona glomerulosasta lisämunuaisessa.

Yksi aldosteronin rooleista on lisätä natriumin reabsorptiota distaalisessa nefronissa. Tämän vaikutuksen tarkoituksena on ylläpitää natriumtasapainoa aktivoimalla apikaalisen epiteelin natriumkanava ja basolateraalinen Na +, K + -ATPaasi. Aldosteronilla on kuitenkin vaikutuksia myös munuaisiin, verisuoniin ja sydänlihakseen, millä voi olla patofysiologisia seurauksia.

Tutkimukset ovat osoittaneet, että hyperglykemia lisää angiotensinogeenin, ACE:n ja Ang II:n transkriptiota. Tyypin 2 diabetesta sairastavilla on havaittu RAAS:n ylöspäin säätely sydän- ja verisuonijärjestelmässä. Ylössäädelty RAAS voi vaikuttaa monien diabeettisten komplikaatioiden, kuten mikrovaskulaaristen ja makrovaskulaaristen sairauksien, kehittymiseen. Lisäksi on osoitettu, että Ang II:n ylössäätely ja mineralokortikoidireseptorin aktivointi aldosteronilla voivat edistää insuliiniresistenssia aktivoimalla mTOR – S6K1-signaalinsiirtoreitti indusoimalla fosforylaatio IRS:n seriinitähteissä.

Diabeettisen kardiomyopatian kehittymiseen liittyvät mekanismit

Normaalisti insuliinin signalointi säätelee glukoosin ja lipidien aineenvaihduntaa sydämessä. Insuliiniresistenssi aiheuttaa metabolisen häiriön, joka johtaa korkeaan lipidihapetukseen ja matalaan glukoosihapetukseen.

Reniini-angiotensiini-aldosteronijärjestelmän (RAAS) aktivaatio voi aiheuttaa mitokondrioiden toimintahäiriöitä, endoplasmisen verkkokalvon stressiä ja oksidatiivista stressiä. Tämä voi johtaa epänormaaliin Ca2 + -käsittelyyn ja alhaiseen ATP-tuotantoon, mikä johtaa kardiomyosyyttien kuolemaan.

RAAS:n aktivaatio ja hyperinsulinemia voivat synergistisesti stimuloida MAPK-reittiä, jolla on verisuoniseinää vahingoittava vaikutus, koska se indusoi endoteelin toimintahäiriöitä ja edistää näin ateroskleroosia.

Tutkimuksissa on pohdittu, että insuliinin ja Ang II:n signaalinsiirtoreitit jakavat useita alavirran tehosteita ja kommunikoivat useilla tasoilla. RAAS:n (Ang II ja aldosteroni) ja yliravitsemuksen aktivaatio edistää endoteelin toimintahäiriötä lisäämällä nikotiiniamidiadeniinidinukleotidifosfaatti (NADPH) -oksidaasin välittämää ROS-tuotantoa, mekanismia, joka myös kohottaa verenpainetta.

Itse asiassa ROS johtaa redox-herkkien kinaasien, kuten S6K1:n ja mTOR:n, aktivoitumiseen, aiheuttaen insuliini-PI3K-signalointireitin, fosforylaation kautta IRS-1: n seriinitähteissä. Viimeksi mainittu mekanismi estää Akt-fosforylaation, Glut-4-translokaation sarkolemmaan ja typpioksidin (NO) tuotannon alavirran signaloinnin endoteelissä.

Lisäksi hypertensioon ja tyypin 2 diabetekseen liittyy myös endoteelin esisolujen määrän väheneminen ja toimintahäiriöt, jotka ovat kiertäviä luuytimestä peräisin olevia kantasoluja, joilla on tärkeä rooli verisuonten seinämän endoteelikorjauksessa.

Joissakin kliinisissä ja kokeellisissa tutkimuksissa on osoitettu, että RAAS-esto paransi insuliinin signalointia ja insuliiniherkkyyttä, mutta toisissa ei ole osoitettu mitään hyödyllistä vaikutusta. Tämä ero voidaan selittää joko eroilla kokeiden suunnittelussa tai tutkimuspopulaatioissa.

Yhteenvetona voidaan todeta, että TOR / S6K: n aktivointi RAAS:lla tai yliravitsemuksella johtaa insuliiniresistenssiin, jolla on metabolisia ja biologisia seurauksia. Se johtaa myös heikentyneeseen sydänlihaksen glukoosikäyttöön ja diastolisen rentoutumisen vähenemiseen.

Insuliiniresistenssi ja endoteelin toimintahäiriöt

Funktionaalisen endoteelin eheys on tärkeä verisuonten terveyselementti. Typpioksidia (NO) pidetään kehon tehokkaimpana endogeenisena vasodilataattorina (verisuonten laajentajana), ja NO:n biologisen hyötyosuuden väheneminen on endoteelin toimintahäiriön tunnusmerkki.

Endoteelin toimintahäiriö vaikuttaa sydän- ja verisuonitauteihin, kuten hypertensio, ateroskleroosi ja sepelvaltimotauti, jotka myös aiheutuvat insuliiniresistenssistä.

NO osallistuu verisuonten seinämän homeostaasiin verihiutaleiden aggregaation, leukosyyttien adheesion eston ja anti-inflammatoristen ominaisuuksien avulla. Fysiologisissa olosuhteissa insuliinin NO-tuotannon konstitutiivisella stimulaatiolla voi olla tärkeä rooli verisuonten terveyden ylläpidossa, koska se kykenee rentouttamaan verisuonen sileää lihasta.

Insuliiniresistenssitilassa insuliinin stimuloima NO-synteesi on kuitenkin heikentynyt selektiivisesti ja kompensoiva hyperinsulinemia voi aktivoida MAPK-reitin, mikä johtaa verisuonten supistumiseen, tulehdukseen, lisääntyneeseen natriumin ja veden kertymiseen, mikä johtaa verenpaineen nousuun.

Insuliiniresistenssi endoteelisoluissa lisää protromboottisia tekijöitä, tulehdusta edeltäviä markkereita ja vapaita happiradikaleja, mikä johtaa adheesiomolekyylin 1 (ICAM-1) ja verisuonisolujen adheesiomolekyylin 1 (VCAM-1) solunsisäisten tasojen nousuun.

Endoteelin toiminnan ja insuliinin aineenvaihdunnan välinen suhde on erittäin tärkeä. Tämä johtuu siitä, että insuliiniresistenssin ja endoteelin signaalihäiriöiden välinen yhteys edistää tulehdusta, häiritsee endoteelin tasapainoa vasodilataattorin ja vasokonstriktorimekanismien välillä ja lisää kardiovaskulaarista riskiä.

Tutkimuksessa, joka tehtiin ei-diabeetikoilla, joilla epäillään sydänlihasvaurioita, raportoitiin, että HOMA-IR:llä mitattu insuliiniresistenssi korreloi voimakkaasti endoteelin toimintahäiriöiden ja prognostisen arvon kanssa.

Krooninen hyperglykemia sydän- ja verisuonitaudeissa

Lisääntynyt sydän- ja verisuonitautiriski tyypin 2 diabetesta sairastavilla potilailla on tunnettu jo pitkään. Diabetesta sairastavilla potilailla on lisääntynyt verisuonten sairastuvuus ja kuolleisuus, mikä alentaa heidän elinajanodotettaan noin 5–15 vuodella.

Lisäksi on osoitettu, että sydän- ja verisuonitautien ilmaantuvuus on 2–8 kertaa suurempi tyypin 2 diabetesta sairastavilla henkilöillä kuin diabeetikoilla, ja tämä tauti aiheuttaa suurimman osan kuolemista.

Jälkimmäisen tueksi epidemiologiset ja patofysiologiset tutkimukset viittaavat siihen, että hyperglykemia (kroonisesti korkea verensokeri) voi olla suurelta osin vastuussa sydän- ja verisuonitaudeista.

Verensokerin on raportoitu ennakoivan luotettavasti ateroskleroosia, ja yli 90 mg / dl: n verensokeritaso voi johtaa ateroskleroosiin kaulavaltimossa. Pitkän aikavälin seurantatiedot tyypin 1 ja 2 diabetesta sairastavilta potilailta viittaavat siihen, että hyperglykemia on diabetekseen liittyvien sairauksien ja CVD:n riskitekijä.

Salvin et al. Havaitsi, että yhden yksikön nousu glykosyloidussa hemoglobiinissa tai HbA1C:ssä voi lisätä sydän- ja verisuonitautien riskiä 18%.

Jopa selkeän diabeteksen puuttuessa glukoosihomeostaasin heikkeneminen voi vaikuttaa sydämen autonomiseen toimintaan, mikä johtaa korkeaan sydänsairauksien riskiin.

Hyperglykemian haitalliset vaikutukset kardiomyosyyteihin voidaan selittää ilmiöllä, jota kutsutaan hyperglykeemiseksi muistiksi. Ilmiössä hyperglykeeminen stressi jatkuu pitkään verensokeritason normalisoitumisen jälkeen.

Glukoosivaihtelut ja hyperglykemia laukaisevat tulehdusreaktioita mitokondrioiden toimintahäiriöiden ja endoplasmisen verkkokalvon kautta. Tämä edistää vapaiden reaktiivisten happiradikaalien kertymistä, mikä puolestaan aiheuttaa soluvaurioita.

Hyperglykemia voi myös lisätä tulehdusta edistävien ja hyytymistä estävien tekijöiden ilmentymistä, mikä edistää leukosyyttien tarttumista endoteelisoluihin. Se indusoi apoptoosia ja heikentää typpioksidin vapautumista, mikä johtaa endoteelin toimintahäiriöön. Tästä syystä tulehdus johtaa insuliiniresistenssiin ja β-solujen toimintahäiriöihin, mikä pahentaa edelleen hyperglykemiaa.

Lisäksi glukoosivaihteluiden ja hyperglykemian tuottamat muutokset voivat aiheuttaa pitkäaikaisia epigeneettisiä modifikaatioita NF-KB: n promoottorissa, jonka näyttää vaikuttavan lisääntyneestä oksidatiivisesta stressistä.

Toinen pysyvän hyperglykemian haitallinen vaikutus on pitkälle edenneiden glykaation lopputuotteiden (AGE) sukupolvi, jotka ovat proteiinien ja lipidien ei-entsymaattisia glykaation tuotteita sokereille altistumisen seurauksena.

Yleensä AGE:t kertyvät verisuonen seinämään, mikä vaikuttaa solunulkoisen matriisin (ECM) rakenteelliseen eheyteen (tunnetaan myös nimellä matriisisoluvuorovaikutukset). Jälkimmäinen aiheuttaa endoteelivaurioita ja vähentää NO-aktiivisuutta. Kaiken kaikkiaan AGE:t edistävät diabeettisten komplikaatioiden, kuten retinopatian, nefropatian sekä sydän- ja verisuonitautien etenemistä.

Insuliiniresistenssi ja muutokset sydänmetaboliassa

Sydänseinämän paksuin kerros on sydänlihassoluista koostuva sydänlihas, joten luurankolihassolujen fysiologian tarjoama tieto auttaa selittämään sydämen aineenvaihduntaa.

Nisäkkään sydämen on supistettava lakkaamatta; mikä tarkoittaa, että optimaalisen toiminnan energiantarve on valtava. Tämä on mielenkiintoinen ilmiö, koska sydämen lihaksessa ei ole ATP-varausta.

Energiaa varastoidaan sydämen lihassoluihin kolmessa muodossa:

  1. Ensimmäinen on fosfokreatiini (PCr), joka voi nopeasti luovuttaa korkean energian fosfaatit ATP:n tuottamiseksi ADP:stä. PCr: stä saatavissa oleva energia on suhteellisen vaatimaton, sitä käytetään vain erittäin nopeiden harjoitusten aikana

  2. Toinen on glykogeeni, joka muodostaa solussa endogeenisen energiamuodon. Lihaksen glykogeenivarastokapasiteetti on rajallinen. Sen etuna on kuitenkin se, että se kuluttaa paljon vähemmän happea kuin rasvahapot ja on helposti saatavilla käytettäväksi polttoaineena lihaksissa.

  3. Kolmas muoto on triglyseridit ja vapaat rasvahapot (FFA). Niiden hapettuminen on vähemmän tehokasta verrattuna glykogeeniin, vaikka ne sisältävät enemmän energiaa.
    On yleisesti hyväksyttyä, että vapaat rasvahapot ovat hallitsevia substraatteja, joita käytetään aikuisen sydänlihaksessa ATP:n tuotantoon mitokondriossa. Siten 60-70% sydämen työn ylläpitoon tarvittavasta energiasta tulee vapaiden rasvahappojen β-oksidaatiosta. Verenkierron vapaiden rasvahappojen tasot määräävät suurelta osin vapaiden rasvahappojen imeytymisen sydämessä. Kun FFA on imeytynyt, sen metaboliaa säätelee pääasiassa transkriptiotasolla ligandiaktivoitujen transkriptiotekijöiden perhe, nimittäin peroksisomiproliferaattorin aktivaattorireseptori a (PPAR-a).

Sydämen aineenvaihduntaverkosto on ravinnon, paaston ja intensiivisen liikunnan suhteen erittäin joustava energiasubstraattien käytössä. Kardiomyosyytit, eli sydänlihassolut pystyvät käyttämään glukoosia ja laktaattia, aminohappoja, sekä ketoaineita.

Glukoosinottoa välitetään glukoosikuljettimien kautta. Kuljettimia on kahta erilaista tyyppiä, Na2 + -kytketty kantajajärjestelmä ja helpottavat glukoosikuljettimet (GLUT). GLUT1 ja GLUT4 ovat tärkeimmät toimijat sydämen glukoosikuljetuksissa.

GLUT4 edustaa tärkeintä mekanismia, joka säätelee glukoosin sisäänpääsyä sykkivässä sydämessä. GLUT1:llä on vähäisempi rooli, koska se on ensisijaisesti paikallaan plasmamembraanilla ja vastuussa sydämen glukoosin perusinsuliinista.

GLUT4:ää esiintyy enimmäkseen solunsisäisissä rakkuloissa lepovaiheissa ja se siirtyy plasmamembraaniin insuliinistimulaation yhteydessä. Imeytymisen jälkeen vapaa glukoosi fosforyloituu nopeasti glukoosi-6-fosfaatiksi (G6P), joka myöhemmin pääsee moniin metaboliareitteihin.

Glykolyysi edustaa glukoosin aineenvaihdunnan pääreittiä, joka tuottaa pyruvaatin myöhempää hapetusta varten. Glykolyysin ohella G6P voidaan myös kanavoida glykogeenisynteesiin tai pentoosifosfaattireittiin (PPP). PPP on tärkeä NADPH-lähde, jolla on kriittinen rooli solun oksidatiivisen stressin säätelyssä ja jota tarvitaan lipidisynteesiin.

Vastauksena lisääntyneeseen energiantarpeeseen sydämen lihassolut luottavat aluksi hiilihydraattien hapettumiseen. Esimerkiksi stressin, kuten liikunnan, iskemian ja patologisen hypertrofian alaisena, glukoosin substraattipreferenssiä voidaan muuttaa. Stressin aikana GLUT4-ilmentymisen nopea kasvu on varhainen adaptiivinen vaste, joka viittaa siihen, että tämän sopeutumisen fysiologisena tehtävänä on parantaa lihasten glykogeenivarastojen täydennystä.

Kun glykogeenipitoisuus on korkea, sydän käyttää ensisijaisesti glykogeenia energiasubstraatin lähteenä, mutta kun glykogeenivarastot ovat vähäisiä, se muuttuu rasvahappojen hapettumiseksi. Tämä induktio voidaan estää suurella hiilihydraattiruokavaliolla palautumisen aikana. Aineenvaihdunnan hallinta palautumisessa glykogeenitasojen avulla korostaa sen merkitystä aineenvaihdunnan lihasten varaan.

Insuliiniresistenssissä sydän on rikkaassa rasvahappo- ja glukoosiympäristössä. Ylimääräinen insuliini edistää vapaiden rasvahappojen lisääntynyttä imeytymistä sydämessä klusterin erilaistumisproteiinin 36 (CD36) säätelyn seurauksena. Se on voimakas vapaiden rasvahappojen kuljettamiseen ja säätelyyn vaikuttava proteiini. Tämä lisää solunsisäisiä rasvahappoja ja PPAR-a-ilmentymistä. Viimeksi mainittu lisää geeniekspressiota rasvahappojen hapettumisen kolmessa vaiheessa lisäämällä (1) FFA-kuljettajien synteesiä solussa, (2) proteiineja, jotka tuovat FFA:ta mitokondrioon, ja (3) entsyymejä rasvahappojen hapetuksessa.

Toisaalta glukoosin käytön eston takia kardiomyosyytteihin kertyy glykolyyttistä välituotetta, mikä indusoi glukotoksisuutta

Kun diabetes etenee tai kun sydämeen kohdistuu lisärasituksia; metabolista sopeutumista voi esiintyä, ja aineenvaihdunnan joustavuus heikkenee huomattavasti. Sydän heikentää kykyään käyttää rasvahappoja, lisää vapaiden rasvahappojen kulkeutumista ja johtaa lipidien (keramidit, diasyyliglyserolit, pitkäketjuiset asyyli-CoA:t ja asyylikarnitiinit) kertymiseen sydänlihakseen.

Tämä lipidien kertyminen voi vaikuttaa solujen kuolemaan (apoptoosiin), heikentää mitokondrioiden toimintaa, sydämen hypertrofiaa ja supistushäiriöitä. Esimerkiksi diasyyliglyseroli ja rasva-asyylikoentsyymi (CoA) indusoivat epätyypillisen PKC: n aktivaation, mikä johtaa heikentyneeseen insuliinin signalointiin.

Keramidit, jotka yhdistävät lipidien aiheuttaman tulehduksen insuliinin signaloinnin estoon, toimivat lipotoksisten signalointireittien avainkomponentteina. Toisaalta korkea lipidipitoisuus voi aiheuttaa supistushäiriöitä insuliiniresistenssistä riippumatta. Seurauksena oleva sydänlihaksen energiantuotannon vika heikentää myosyyttien supistumista ja diastolista toimintaa. Nämä muutokset aiheuttavat toiminnallisia muutoksia, jotka johtavat kardiomyopatiaan ja sydämen vajaatoimintaan.

Glukoosin puuttuessa maksassa syntyvät ketoaineet pääsevät verenkiertoon, ja elimet, kuten aivot, munuaiset, luurankolihakset ja sydän, käyttävät niitä energiasubstraatteina. Sydänlihaksen polttoaineenvaihdunnan ja bioenergian häiriöt vaikuttavat sydän- ja verisuonitauteihin, koska aikuisen sydän vaatii paljon energiaa supistumiseen.

Sydän- ja verisuonitauteissa sydämen kyky käyttää rasvahappoja, sydämen ensisijaista polttoainetta, on heikentynyt

Tässä tilanteessa sydän käyttää vaihtoehtoisia reittejä, kuten ketoaineita, polttoaineena ATP:n tuotannossa. Edelleen kiistellään siitä, kuinka hyvin sydänlihas sopeutuu tähän energiasubstraatin muutokseen.

Viime aikoina on osoitettu, että syklinen ketoaineiden käyttö energiasubstraattina ylläpitää sydämen nuoruutta vanhoilla hiirillä. Toisaalta on raportoitu, että isokalorinen (yhtäläisen energian sisältävä) ketogeeninen ruokavalio (hyvin vähän hiilihydraatteja ja runsaasti rasvoja ja / tai proteiineja) pidentää elinikää.

Ketogeenisen ruokavalion vaikutus voidaan välittää tukahduttamalla pitkäikäisyyteen liittyvä insuliinin signalointi ja mTOR-reitti sekä aktivoimalla peroksisomiproliferaattorilla aktivoitunut reseptori a (PPARa), pääsäädin, joka kytkee päälle ketogeneesiin osallistuvat geenit.

Useat raportit viittaavat siihen, että ketogeeniseen ruokavalioon voi liittyä sydän- ja verisuonitautien riskitekijöiden, kuten liikalihavuuden, diabeteksen, valtimoverenpaineen ja kolesterolitasojen, esiintyvyyden väheneminen. Toisaalta monien raporttien mukaan sydän- ja verisuonitautien riskitekijöiden väheneminen vastasi painonlaskua käytetystä ruokavaliosta riippumatta.

Muut tekijät, jotka vaikuttavat diabeettisen kardiomyopatian patogeneesiin

Muita diabeettisen kardiomyopatian patogeneesiin vaikuttavia tekijöitä ovat metaboliset poikkeavuudet, joihin liittyy mitokondrioiden toimintahäiriöitä, endoplasman verkkokalvon stressiä ja heikentynyttä Ca2 + -käsittelyä. Reaktiivisten happiradikaalien (ROS) liiallinen tuotanto johtaa proteiini-, DNA- ja kalvovaurioihin. Lisäksi ROS:lla on haitallisia vaikutuksia endoplasmiseen verkkokalvoon.

Oksidatiivinen stressi ja endoplasman verkkokalvon stressi voivat aiheuttaa solunsisäisen Ca2 + -tason nousun. Mitokondrioiden ylimääräinen Ca2 +:n otto johtaa Ca2 +:n ylikuormitukseen ja mitokondrioiden läpäisevyyden siirtymähuokosten avautumiseen, mikä johtaa myöhemmin mitokondrioiden toimintahäiriöihin ja solujen apoptoosiin. Tämä vaikuttaa myös diabeettisen kardiomyopatian patogeneesiin.

Sokerit ohjaavat sepelvaltimotautia insuliiniresistenssin ja hyperinsulinemian kautta: uusi paradigma

I know of no single acceptable study that shows a high intake of sugar in a population that is almost entirely free from heart disease.’1—John Yudkin

Sepelvaltimotauti (CHD) aiheuttaa joka kuudennen kuolemantapauksen Yhdysvalloissa. Sepelvaltimotauti johtaa lopulta akuuttiin infarktiin (MI). Yhdysvalloissa tapahtuu vuosittain melkein miljoona akuuttia sydäninfarktia, ja noin 15% potilaista kuolee sydäninfarktin seurauksena.

Oireeton hyperglykemia on sydän- ja verisuonitautien ja infarktin riskitekijä. Hyperglykemia voi kehittyä akuutin infarktin aikana myös potilaille, joilla ei ole diabetesta. Hyperglykemian voi aiheuttaa insuliinin erityksen väheneminen, insuliiniresistenssin kehittyminen sekä katekoliamiinien (adrenaliini, noradrenaliini ja dopamiini), kortisolin ja kasvuhormonin lisääntyminen.

Monilla infarktipotilailla on diagnosoitu tai diagnosoimaton diabetes, jossa akuutti stressi pahentaa diabeettista tilaa ja johtaa hyperglykemiaan. Erään tutkimuksen mukaan 73%:lla akuutin infarktin saaneista potilaista oli epänormaali glukoositoleranssi ja 50%:lla diabetes. 6 kuukauden kuluttua infarktista 43%:lla oli epänormaali glukoositoleranssi, mikä on noin kolminkertainen määrä terveisiin verrokkeihin nähden.

Hyperglykemia ei siis näytä olevan akuutti tai väliaikainen löydös potilailla, joilla on ollut infarkti. Monilla potilaalla on havaittavissa jatkuvasti epänormaali glukoositoleranssi.

Whitehall-tutkimus (prospektiivinen kohorttitutkimus), johon osallistui 18 403 potilasta, osoitti, että verensokeri 2 tuntia suun kautta otetun glukoositoleranssitestin jälkeen liittyi iän mukaan mukautettuun kardiovaskulaariseen kuolleisuuteen 7,5 vuoden jälkeen.

Ei-diabeetikoilla 2 tunnin veri glukoosipitoisuus 96 mg / dl tai korkeampi liittyi kaksinkertaiseeb sydän- ja verisuonitautien kuolleisuuden riskiin.

Suun kautta otettavaan glukoosin aiheuttama korkea insuliinivaste on todettu perifeeristen-, aivo- ja sepelvaltimoiden ateroskleroosipotilailla.

Australian Busseltonissa tehdyssä tutkimuksessa, insuliinipitoisuudet tunnin kuluttua 50 g:n glukoosiannoksen jälkeen korreloivat merkittävästi 60-vuotiaiden ja sitä vanhempien miesten 6 vuoden CVD-ilmaantuvuuteen ja 12-vuotiseen CVD-kuolleisuuteen.

Sekä Helsingin poliisitutkimuksessa että Pariisin siviilipalveluksessa olevien tutkimuksessa paastotilassa otetun 75 g tai 90 g oraalisen glukoosiannoksen jälkeinen insuliinipitoisuuden kasvu korreloi infarkti- ja sydäntautikuolemiin 5 vuotta myöhemmin 30–59-vuotiailla miehillä.

Insuliini-glukoosisuhteella oli selvin yhteys sydän- ja verisuonitauteihin. Kaikissa kolmessa tutkimuksessa insuliinin suhde sydän- ja verisuonitautiin oli riippumaton muista muuttujista, kuten lipidit, verenpaine ja verensokeri.

Puhdistetun sokerin aiheuttama insuliinivaste on jopa tärkkelyksen insuliinivastetta suurempi. Tämä on vakuuttava osoitus siitä, että lisättyjen sokereiden (sakkaroosi sekä runsaasti fruktoosia sisältävä maissisiirappi) liiallinen käyttö voi johtaa lisääntyneeseen sydän- ja verisuonitautieriskiin kohonneiden insuliinitasojen kautta.

Insuliinin ja hiilihydraattehin rooliin aterogeneesissä viittaava näyttö on vahva. Tämä järjestelmä yhdistää ateroskleroosin diabetekseen, lihavuuteen, hyperlipidemiaan ja mahdollisesti verenpainetautiin. (Stout ja Vallance-Owen)

Yli 50 vuoden ajan on ollut tiedossa, että hyperkolesterolemiaa ja hyperlipatemiaa sairastavilla ihmisillä on yleensä epänormaali hiilihydraattien aineenvaihdunta. Kohonneet insuliinitasot johtavat usein hyperlipidemiaan.

Insuliinin on todettu lisäävän lipogeneesiä (glukoosin muuttamista triglyserideiksi, eli varastorasvaksi) ja stimuloivan sileiden lihassolujen lisääntymistä. Hyperinsulinemia on itsenäinen sydänsairauksien riskitekijä. Insuliiniresistenssi ennustaa hyvin kardiovaskulaarisia riskejä. Näin ollen kaikki ruokavalion tekijät, jotka heikentävät glukoosinsietokykyä tai edistävät insuliiniresistenssiä, lisäävät todennäköisesti myös akuutin infarktin, sydän- ja verisuonitautien (CHD) ja CHD-kuolleisuuden riskiä.

Runsaasti lisättyä sokeria (erityisesti teollisesti käsiteltyä fruktoosia) sisältävä ruokavalio johtaa insuliiniresistenssiin. Lisättyjen sokereiden liiallinen kulutus on vaikuttava tekijä CHD- ja CVD-kuolleisuudessa.

Ihmisillä, joiden ruokavaliossa päivittäisestä energiasta alle 10% saadaan lisätyistä sokereista, on lähes kolme kertaa pienempi sydän- ja verisuonitautien riski, kuin ihmisillä, joiden ruokavalio sisältää 25% tai enemmän energiaa lisätyistä sokereista.

Eläin- ja ihmistutkimuksissa on havaittu, että tärkkelyksen, glukoosin tai molempien yhdistelmän isokalorinen (yhtäläisen energiapitoisuuden) korvaaminen sakkaroosilla tai fruktoosilla lisää paastoinsuliinipitoisuutta, heikentää insuliiniherkkyyttä, lisää paastoglukoosipitoisuutta, lisää glukoosi- ja insuliinivasteita sakkaroosikuormitukseen ja vähentää solun insuliiniin sitoutumista.

Toisin sanoen kalori on kalori, mutta lisättyjen sokereiden kulutus on selvästi haitallisempaa kuin tärkkelys ja/tai glukoosi, koska lisätyt sokerit heikentävät insuliiniherkkyyttä ja glukoositoleranssia.

Rottien ruokinta sakkaroosilla johtaa heikentyneeseen glukoositoleranssiin ja rasvakudokseen, joka on vähemmän herkkä insuliinin vaikutuksille.Eläimiltä ja ihmisiltä saadut tiedot viittaavat siis siihen, että lisättyjen sokereiden liiallinen kulutus johtaa insuliiniresistenssiin ja hyperinsulinemiaan.

Akuutin sydäninfarktin aikana sydän siirtyy ensisijaisesta rasvahappojen käytöstä energiana glukoosin käyttämiseen. Koska insuliini helpottaa glukoosinottoa soluihin, insuliiniresistenttien potilaiden ennuste on huonompi.

Insuliiniresistenssin aste liittyy sydäninfarktin vakavuuteen. Sydäninfarktin saanet diabeetikot kuolevat todennäköisemmin kuin ei-diabeetikot. Runsas lisättyä sokeria sisältävä ruokavalio edistää insuliiniresistenssiä ja diabetesta, ja voi siten johtaa sydäninfarkteihin ja lisätä sydänkuolleisuuden riskiä.

Diabeetikoilla on suurempi sydäninfarktin, sydäntautien ja sydänkuolleisuuden riski kuin diabetesta sairastamattomilla. Tätä riskiä ei selitä muut muuttujat, kuten tupakointi, kolesteroli, verenpaine tai kehon rasvan jakautuminen.

Potilailla, joilla on diagnosoitu äskettäin diabetes, on myös suurempi sydäninfarktin riski. Diabeetikoilla on enemmän sepelvaltimoiden ateroskleroosia kuin ei-diabeetikoilla. Erityisesti vasemman sepelvaltimon kapeneminen ja parantuneiden transmuraalisten ventrikulaaristen arpien esiintymistiheys on diabeetikoilla verrokkeja yleisempää.

Framingham-tutkimus osoitti, että diabeetikoilla on likimäärin kolminkertainen riski kuolla sydän- ja verisuonitautiin verrattuna väestöön keskimäärin, sekä lisääntynyt aivohalvauksen, sydänsairauden ja perifeerisen valtimosairauden riski.

Korkeampi verenpaine tai korkeammat lipoproteiiniarvot eivät selitä sydänsairauden lisääntynyttä esiintyvyyttä diabeetikoilla

Runsaasti lisättyä sokeria sisältävän ruokavalion on osoitettu lisäävän diabeteksen esiintyvyyttä, kun taas vähäisempi sokerin saanti assosioituu pienempään diabetesriskiin.

Lisätyt sokerit edistävät insuliiniresistenssiä. Akuutin sydäninfarktiin kokevat ovat todennäköisemmin insuliiniresistenttejä. Lisättyjen sokereiden liiallinen kulutus on sydän- ja verisuonitautien riskitekijä.

Me olemme kasvaneet uskossa, että kohonnut kolesteroli selittää sydän- ja verisuonitautien syntymekanismia, mutta se ei suinkaan ole ainoa tai ehkä edes merkittävin riskitekijä.

Sydänsasairauksissa havaitaan kolesterolin ohella monia muita kliinisiä poikkeavuuksia, kuten kohonnut glukoosi (hyperglykemia), insuliini (hyperinsulinemia), triglyseridit, virtsahappo ja matalat korkean tiheyden lipoproteiinikolesterolin (HDL) tasot. Kaikki nämä CHD-riskitekijät aiheutuvat tai pahenevat ihmisillä ja eläimillä, kun he noudattavat runsaasti sokeria sisältävää ruokavaliota.

Lisättyjen sokereiden liiallinen kulutus on tärkein sydänsairauksien aiheuttaja

Korkean glykeemisen kuorman ruokavalion noudattaminen vain muutaman viikon ajan kasvatti sydäntautien ja perifeeristen verisuonitautien riskitekijöitä kolmanneksella tutkimukseen osallistuneista.

Tämä viittaa siihen, että sokerin liiallinen kulutus ja sitä seuraava insuliiniresistenssi ja / tai hyperinsulinemia lisäävät sydän- ja verisuonitautien sekä monien muiden sairauksien, kuten verenpainetaudin, diabeteksen, lihavuuden ja kihdin riskiä.

Mielenkiintoista on, että tupakoinnin, joka on sydänsairauksien riskitekijä, on todettu aiheuttavan hyperinsuliniaa, mikä viittaa siihen, että sekä lisättyjen sokereiden liiallinen kulutus että tupakointi altistavat sydänsairauksille samalla mekanismilla (hyperinsulinemian kautta; vaikka molemmat aiheuttavat myös inflammaatiota, oksidatiivista stressiä ja lisääntynyttä verihiutaleiden puuroutumista).

Viimeisten 200 vuoden aikana keskimääräinen lisättyjen sokerien saanti on kasvanut vajaasta kahdesta kilosta lähes 60 kiloon vuodessa. Se, että diabeetikoilla on kasvanut okklusiivisen valtimosairauden riski, ja että ei-diabeetikoilla, joilla on verisuonisairaus, on myös selvästi kohonneet insuliinitasot, viittaa siihen, että insuliiniresistenssilla on merkittävä vaikutus sydäntautien patogeneesissä.

Kun otetaan huomioon, että runsaasti lisättyä sokeria sisältävä ruokavalio voi aiheuttaa ihmisille insuliiniresistenssin ja hyperinsulinemian, ja toisaalta lisättyjen sokerien vähentäminen voi parantaa näitä aineenvaihdunnan häiriöitä, on vakuuttavaa näyttöä siitä, että lisättyjen sokereiden (runsaasti fruktoosia sisältävä maissisiirappi ja sakkaroosi) runsas saanti on keskeinen sydäntautien vaikuttaja.

Puhdistettu sokeri verrattuna rasvaan, tärkkelykseen, glukoosiin tai tärkkelyksen ja glukoosin yhdistelmään, edistää suurempia haittoja ihmisen glukoositoleranssille ja insuliiniherkkyydelle.

Vieläkin uskotaan, että tärkein ruokavalion sydän- ja verisuonitautien riskiä kasvattava yksittäinen ravintoaine on tyydyttynyt rasva. Lisättyjen sokerien (sakkaroosi- tai pöytäsokeri ja runsasfruktoosinen maissisiirappi) liialliseen kulutukseen liittyy myös lisääntynyt sydän- ja verisuonitautien riski sekä sydän- ja verisuonitaudeista johtuva kuolleisuus.

Korkean glykeemisen kuorman lisättyjä sokereita sisältävä ruokavalio kasvattaa sydäntautien riskitekijöitä jo muutaman viikon aikana. Vielä tärkeämpää on, että ruokavalion, jossa on vähän lisättyjä sokereita ja puhdistettuja hiilihydraatteja, on havaittu korjaavan nämä aineenvaihduntahäiriöt.

Todisteet osoittavat, että lisätyt sokerit kasvattavat sydän- ja verisuonitautien riskiä enemmän kuin tyydyttyneet rasvat, jotka itse asiassa ovat viimeisimpien tutkimusten mukaan sydänterveyden kannalta neutraaleja. Asiasta on siis vähintään kaksi perusteltua mielipidettä. Sokereiden haitallisuutta korostava näyttö on lisääntynyt ja tyydyttyneiden rasvojen maine on vastaavasti puhdistunut.




Insuliini ja terveys: Kolmas luku

Kuvasin kahdessa edellisessä artikkelissa (Insuliini ja terveys: Johdanto & Insuliini ja terveys: Hiilihydraatti-insuliinimalli) insuliinin toimintaperiaatteita ja vaikutuksia yleisellä tasolla. Insuliini on elintärkeä hormoni, joka vaikuttaa moniin aineenvaihduntatapahtumiin.

Insuliiniresistenssi liittyy useimpiin elintapasairauksiin lihavuudesta aikuistyypin diabetekseen. Amerikkalaisista jo lähes puolet sairastaa tietämättään insuliiniresistenssiä.

Insuliiniresistenssi ylläpitää nälkää ja lihomista kahdella tavalla:

  1. Veressä on syömisen jälkeen runsaasti glukoosia, mutta insuliiniresistenttien solujen glukoosinotto on häiriintynyt, jolloin ne eivät pysty hyödyntämään glukoosia energian tuotannossa. Veren sokeripitoisuus pysyy korkeana.

     

  2. Tämän vuoksi insuliini päästää verestä glukoosia rasvasoluihin, joiden insuliiniherkkyys säilyy pidempään kuin lihasten insuliiniherkkyys. Rasvasoluissa glukoosi muutetaan triglyserideiksi, eli läskiksi.

    Insuliiniresistenssi ylläpitää nälkää, koska solut eivät pysty tuottamaan glukoosista riittävästi energiaa ja elimistö reagoi solujen energianpuutteeseen hormonaalisesti.

Verestä glukoosi on siirrettävä johonkin, koska korkea verensokeri kasvattaa glykaation riskiä. Glykaatiossa glukoosi sokeroi aminohappoja ja rasvahappoja, jolloin niistä tulee melkein siirappia. Se ei ole ollenkaan toivottavaa.

Glykaation tuottamat AGE:t (Advanced Glycation End-products), eli glykaation lopputuotteet kasvattavat sairastumisen riskiä.

Myös diabetekseen liittyvä virtsaamistarpeen lisääntyminen liittyy siihen, että elimistö yrittää päästä eroon ylimääräisestä sokerista. Diabetes tunnettiin aluksi makeavirtsaisuutena ja monet lääkärit varmistuivat diabetes-diagnoosista haistamalla tai maistamalla potilaansa virtsaa.

Insuliinia käytetään yhä yleisemmin doping-aineena

Yhä useammat urheilijat ja kuntoilijat käyttävät insuliinia suorituskyvyn parantamiseksi, kertoo New Scientist. Insuliinia on käytännössä melkein mahdotonta havaita verestä dopingtesteillä.

Väärin annosteltuna insuliini voi tappaa

Kehonrakentajat olivat edelläkävijöitä insuliinin doping-käytössä jo vuosia sitten. Näyttöä insuliinin laajemmasta hyväksikäytöstä ei ole aiemmin juuri saatu, mutta näyttö on viime aikoina lisääntynyt erityisesti kuntoilijoille ja kehonrakentajille tarkoitetun neulanvaihtojärjestelmän kokoamien tietojen avulla.

Insuliini auttaa urheilijoita kahdella tavalla:

Kehonrakentajilla insuliini toimii anabolisten steroidien, kuten testosteronin tai ihmisen kasvuhormonin rinnalla lihaskudoksen vahvistajana. Steroidit rakentavat lihaskudosta ja insuliini estää lihasproteiinien hajoamisen.

Insuliini vahvistaa myös mm. keskimatkan juoksijoiden ja muiden urheilijoiden kestävyyttä mahdollistamalla tehokkaamman lihasglykogeenien sokeritankkauksen.

Mitä suuremmat glykogeenivarastot lihaksilla on, sitä kauemmpin lihakset jaksavat puurtaa väsymättä. Kestävyysurheilijoilla tankkaus voi vaikuttaa kilpailun lopputulokseen.

Tankatessa urheilijoiden on infusoitava insuliinia ja glukoosia samanaikaisesti muutaman tunnin ajan vereen. Menetelmä aiheuttaa tarkoituksellisen hyperinsulinemian.

Pitkällä aikavälillä anabolisten steroidien käyttö voi vahingoittaa mm. lisääntymisterveyttä ja mieskuntoa. Insuliinin yliannostus voi myös aiheuttaa kuolemaan johtavan kooman poistamalla verestä niin paljon sokeria, että aivosolut eivät saa riittävästi energiaa ja happea.

Houkutus insuliinin käyttöön on kuitenkin suuri. Sen teho on ilmeinen ja se häviää nopeasti verenkierrosta. Noin puolet insuliinista poistuu verenkierrosta vain neljässä minuutissa. Vaikka insuliinia havaittaisiin, sitä ei voida mitenkään erottaa ihmisen omasta insuliinista.

Hyperinsulinemia voi kasvattaa glukoosimetabolian nopeutta kaksinkertaiseksi

Kansainvälinen olympiakomitea kielsi insuliinin vuonna 1998. Kielto ei kuitenkaan koske diabeetikkoja, joiden terveys riippuu insuliinista. Diabetes UK, joka edustaa maan diabeetikkoja, myöntää, että joillakin diabeetikoilla saattaa olla taloudellinen houkutus myydä insuliinia doping-käyttöön.

Insuliini on anabolinen hormoni

Insuliini on anabolinen hormoni, jolla on metabolisia vaikutuksia koko kehossa. Haiman Langerhansin saarekkeiden beetasolut vastaavat insuliinisynteesistä.

Beetasolut säätelevät insuliinin tuotantoa seuraamalla plasman sisällä kiertävien energiaravinteiden, glukoosin, aminohappojen, ketohappojen ja rasvahappojen tasoja.

Insuliini orkestroi energiansäästöä ja -käyttöä ravinnonsaannin ja paaston aikana.

Insuliiniaineenvaihdunnan käsitteitä

  • Glukoneogeneesi: Glukoosin syntetisoiminen eräistä aminohapoista, glyserolista ja sitruunahappokierron väliaineista
  • Glykolyysi: Glukoosin hajoaminen pyruviinihapoksi* sekä energian tuottaminen glukoosista
  • Glykogeneesi: Glykogeenin synteesi glukoosista
  • Glykogenolyysi: Glykogeenin hajoaminen glukoosiksi
  • Lipogeneesi: Asetyylikoentsyymi-A:n muuttaminen rasvahapoiksi ja sitä seuraava triglyseridisynteesi
  • Lipolyysi: Lipidien ja triglyseridien hajoaminen vapaiksi rasvahapoiksi ja glyseroliksi. Vapaista rasvahappoista valmistetaan ketoaineita (asetoni, asetoasetaatti ja betahydroksibutyraatti). Glyserolia käytetään glukoneogeneesissä glukoosin syntetisoimiseen.

Pyruviinihappo ja pyruvaatti

*Termejä pyruvaaatti (pyruvate) ja pyruviinihappoa (pyruvic acid) käytetään usein rinnakkain. Niiden välillä on selvä ero. Pyruviinihappo on happo, joka voi vapauttaa vetyionin ja sitoutua positiivisesti varautuneeseen natrium- tai kaliumioniin happosuolan muodostamiseksi.

Happosuola tunnetaan nimellä pyruvaatti. Toisin sanoen pyruvaatti on pyruviinihapon suola tai esteri.

Keskeinen ero pyruviinihapon ja pyruvaatin välillä on, että karboksyylihapporyhmän vetyatomi puuttuu tai se on poistettu. Pyruviinihapon heikon happamuusluonteen vuoksi se dissosioituu helposti vedessä ja muodostaa siten pyruvaatin.

Pyruvaatti on tärkeä kemiallinen yhdiste ihmisen aineenvaihdunnassa ja biokemiassa. Pyruvaatti osallistuu glukoosin metaboliaan, eli glykolyysiin, jossa yksi glukoosimolekyyli hajoaa kahdeksi pyruvaattimolekyyliksi. Pyruvaattimolekyylejä käytetään edelleen muissa reaktiosarjoissa (sitruunahappokierrossa) energian tuottamiseksi.

Insuliinin solumetabolia

Lihaskudoksen, verisuonten endoteelin, sydämen ja maksan soluissa tapahtuu insuliinin aktivoima kaskadi.

Biokemiallinen kaskadi tunnetaan myös signalointikaskadina tai signalointireitinä. Kaskadi tarkoittaa yleensä jonkin ärsykkeen laukaisemia soluissa lineaarisesti eteneviä kemiallisia reaktioita. Suurin osa biokemiallisista kaskadeista on tapahtumasarjoja, joissa yksi biokemiallinen tapahtuma laukaisee seuraavan jne.

Insuliinin tuottama vaste näissä soluissa on kudosspesifinen. Rasvakudoksessa, luurankolihaksissa ja sydämessä insuliinin aktivoima kaskadi johtaa glukoosimetaboliaan,josa solut ottavat vastaan glukoosia.

Vasodilataatio ja erektion helppous

Vasodilataatio, eli verisuonten laajeneminen typpioksidin (NO) tuotannon kautta on insuliinisignaloinnin seuraus verisuonten endoteelissa ja sydämessä.

Typpioksidi ja vasodilataatio näyttelevät tärkeää roolia myös makuuhuoneissa vaikuttamalla erektioon.

Insuliiniresistenssi ennakoi aikuistyypin diabetesta, joka tunnetusti aiheuttaa erektiohäiriöitä, mutta insuliiniresistenssi on myös täysin itsenäinen erektiohäiriöiden aiheuttaja jo ennen diabetekseen sairastumista.

Erektiohäiriöt lisääntyvät selvästi 40 ikävuoden jälkeen. Erektiohäiriöiden syy ei ole itsenäinen sairaus, vaan siihen vaikuttavat erityisesti:

  • verenkiertoelinten sairaudet ja niiden hoitoon käytetyt lääkkeet
  • insuliiniresistenssi
  • metabolinen oireyhtymä
  • diabetes
  • lihavuus
  • tupakointi
  • testosteronipitoisuuden lasku
  • kilpirauhasen ali- tai ylitoiminta
  • neurologiset sairaudet

PDE5-estäjät, kuten sildenafiili, tadalafiili, vardenafiili ja avanafiili parantavat erektiota lisäämällä solunsisäistä syksista guanosiinimonofosfaattia, jolloin peniksen paisuvaiskudoksen, virtsarakon, eturauhasen ja virtsaputken sileä lihas rentoutuu.

Lyhyestä virsi kaunis: Seksi on kivaa. Lihominen, insuliiniresistenssi, metabolinen oireyhtymä ja diabetes tekevät seksistä kuitenkin hankalaa tai mahdotonta. Näiden ongelmien esiintyminen on signaali, johon miehen tulee kiinnittää huomiota. Erektiovaikeus voi kertoa sydän- ja verisuonitaudeista, diabeteksesta tai jostakin muusta sairaudesta.

Tämä vaiettu ongelma on hyvin yleinen. Noin 200 000 suomalaismiestä kärsii vaikeasta tai keskivaikeasta erektiohäiriöstä. 300 000 suomalaismiehellä on lievä erektiohäiriö. Pieni elintapojen korjaus voi siis parantaa terveyttä monin tavoin.

Kerrataan: Insuliiniresistenssi ja hyperinsulinemia ovat sydän- ja verisuonitautien itsenäisiä riskitekijöitä. Fokusointi LDL-kolesterolin vähentämiseen on johtanut tilanteeseen, jossa ihmiset sairastuvat ja kuolevat kardiometabolisiin sairauksiin, jotka saataisiin lääkkeettömään remissioon verensokeria ja insuliinia laskevilla pienillä elintapojen korjauksilla.

Aineenvaihdunta

Maksassa insuliinin määrä vaikuttaa glukoneogeneesiin, joka hidastuu ja loppuu. Sen sijaan glukoosin varastoiminen glykogeeneihin glykogeneesissä lisääntyy insuliinin vaikutuksesta.

Insuliinin vaikutus ulottuu myös lipidi- ja proteiinimetaboliaan. Se stimuloi lipogeneesiä ja proteiinisynteesiä ja päinvastoin estää lipolyysiä ja proteiinin hajoamista.

Molekyylinebiologia: tekninen ja huonosti suomennettu osa!

Insuliini on peptidihormoni, joka koostuu 51 aminohaposta, jotka  jakautuvat kahden peptidiketjun, 21 ja 30 aminohappotähteen A- ja B-ketjuiksi.

Kysteiinitähteiden disulfidisidokset yhdistävät nämä kaksi ketjua. Preproinsuliini on insuliinin alkuperäinen esiasteproteiini. Se on yksiketjuinen polypeptidi, joka koostuu proinsuliinista ja signaalipeptidisekvenssistä. Sen siirtyessä endoplasmiseen retikulumiin preproinsuliini pilkkoutuu sen signaalipeptidistä vapauttaen proinsuliinia. Yksiketjuinen proinsuliini sisältää A- ja B-ketjut ja C-peptidin (tai C-domeenin), kuten kuvassa.

C-peptidi muodostuu haiman Langerhansin saarekkeiden β-soluissa syntetisoidusta proinsuliinista sen pilkkoutuessa insuliiniksi ja C-peptidiksi. Sitä erittyy vereen insuliinin kanssa ekvimolaarisina määrinä.

Kaksiemäksiset tähteet reunustavat C-domeenia kummassakin päässä. Jokaisen kaksiemäksisen jäännöksen kohdalla trypsiinin kaltainen entsyymi katkaisee proinsuliinin.

Tämä vapauttaa lopulta insuliinin ja C-peptidin. Insuliinia varastoidaan sinkki-insuliiniheksameereinä glukoosille herkissä eritysrakkuloissa, kunnes sitä tarvitaan metabolisesti.

Muuttumattoman proinsulinin määrä korreloi merkitsevästi insuliiniresistenssin kanssa. Adiponektiiniarvot ovat insuliiniresistenteillä hieman normaalia alhaisemmat, mutta resistiini ei näytä korreloivan insuliiniresistenssin kanssa. Kohonnut proinsuliini kuvastaa pitkälle edennyttä solujen vauriota ja on hyvin spesifinen insuliiniresistenssin indikaattori. – Terve.fi

Insuliinin merkitys glukoosimetaboliassa

Glukoosimetabolian homeostaasia ylläpidetään kahdella signalointikaskadilla. Ne ovat: insuliinin välittämä glukoosinotto (IMGU) ja glukoosistimuloitu insuliinin eritys (GSIS).

IMGU-kaskadi antaa insuliinin lisätä glukoosin imeytymistä luurankolihaksissa ja rasvakudoksessa sekä estää glukoosin muodostumista maksasoluissa.

Insuliinikaskadin alavirran signaloinnin aktivointi alkaa, kun solun ulkopuolinen insuliini on vuorovaikutuksessa insuliinireseptorin alfa-alayksikön kanssa. Tämä vuorovaikutus johtaa konformaatiomuutoksiin insuliinireseptorikompleksissa, mikä edelleen johtaa insuliinireseptorisubstraattien tyrosiinikinaasifosforylaatioon ja sen jälkeiseen fosfatidyyli-inositoli-3-kinaasin aktivoitumiseen.

Fosfatidyyli-inositoli on fosfolipidi, joka koostuu glyserolista, rasvahaposta ja inositolista. Fosfatidyyli-inositoli ja sen fosforyloidut johdokset ovat solujen toisiolähettejä, jotka osallistuvat solun toiminnan säätelyyn. Fosfatidyyli-inositoli-4,5-bisfosfaatin plasmamebraanipää toimii solutukirangan proteiinien sekä joidenkin eksosytoosissa tarvittavien proteiinien kiinnityskohtana. Lipidi osallistuu myös solun signaalinvälitykseen. Tällöin se vapautuu solun reagoidessa solun ulkoiseen signaaliin tiettyjen reseptorien välityksellä. Signaalinvälitys tapahtuu reaktiosarjassa, joka alkaa lipidin fosfaattipään poistamisella ja päättyy proteiinikinaasi C:n aktivaatioon. – Wikipedia

Nämä alavirran tapahtumat aktivoivat GLUT-4-kuljettusmolekyylin siirtymisen solun plasmakalvolle. Solunsisäisesti GLUT4:ää esiintyy rakkuloissa. Näiden GLUT4-rakkuloiden eksosytoitumisnopeus kasvaa insuliinin toiminnan vuoksi. Lisäämällä GLUT-4-kuljetttimien läsnäoloa plasmakalvossa, insuliini sallii glukoosin pääsyn luurankolihassoluihin, jossa se voi metaboloitua glykolyysissä pyruvaateiksi tai varastoitua glykogeeniksi.

Insuliinin rooli glykogeenimetaboliassa

Maksassa insuliini vaikuttaa glykogeenimetaboliaan stimuloimalla glykogeenisynteesiä. Proteiinifosfataasi I (PPI) on avainmolekyyli glykogeenimetabolian säätelyssä.

Defosforylaation kautta PPI hidastaa glykogenolyysinopeutta inaktivoimalla fosforylaasikinaasin ja fosforylaasi A:n. Sitä vastoin PPI kiihdyttää glykogeneesiä aktivoimalla glykogeenisyntaasi B:n. Insuliini lisää PPI-substraattikohtaista aktiivisuutta glykogeenipartikkeleille puolestaan stimuloimalla glykogeenin synteesiä maksan glukoosista.

Insuliini hallitsee suoraan erilaisia maksan metabolisia entsyymejä geenitranskriptiolla. Tämä vaikuttaa geenien ilmentymiseen aineenvaihduntareiteillä

Glukoneogeneesissä insuliini estää nopeutta rajoittavan fosfoenolipyruvaattikarboksylaasin, samoin kuin fruktoosi-1,6-bisfosfataasin ja glukoosi-6-fosfataasin geeniekspressiota.

Glykolyysissä glukokinaasin ja pyruvaattikinaasin geeniekspressio kasvaa. Lipogeneesissä ilmentyminen lisääntyy rasvahapposyntaasista, pyruvaattidehydrogenaasista ja asetyyli-CoA-karboksylaasista.

Insuliinin rooli lipidien aineenvaihdunnassa

Kuten aiemmin todettiin, insuliini lisää joidenkin lipogeenisten entsyymien ilmentymistä. Tämä johtuu rasvasoluihin eli adiposyytteihin lipidiksi varastoituneesta glukoosista. Rasvasolujen kasvu lisää adiposyyttien glukoosinottoa.

Insuliini säätelee tätä prosessia edelleen defosforyloimalla ja estämällä sen jälkeen hormoniherkän lipaasin (HSL) erittymistä, mikä johtaa lipolyysin estoon. Viime kädessä insuliini vähentää näin seerumin vapaiden rasvahappojen määrää.

Tällä on välitön vaikutus painonhallintaan. Insuliini estää rasvasoluihin varastoidun energian hyödyntämisen estämällä triglyseridejä vapaiksi rasvahapoiksi pilkkovan lipolyysin kannalta välttämättömän hormoniherkän lipaasin vaikutuksen.

Lipolyysi pilkkoo rasvasoluihin varastoituneita triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi. Vapaista rasvahapoista maksa tuottaa ketoaineita. Glyserolia käytetään glukoneogeneesissä, joka tuottaa glukoosia. Ajan mittaan solut oppivat tuottamaan vapaista rasvahapoista energiaa beetaoksidaatiossa. 

Insuliinin rooli proteiinien aineenvaihdunnassa

Insuliini säätelee osittain proteiinien vaihtuvuutta. Lyhytketjuisten aminohappojen, kuten alaniinin, arginiinin ja glutamiinin soluunotto lisääntyy insuliinin vaikutuksesta. Tämä stimuloi proteiinisynteesiä.

Protein turnover rate is regulated in part by insulin. Protein synthesis is stimulated by insulin’s increase in intracellular uptake of alanine, arginine, and glutamine (short chain amino acids), as well as gene expression of albumin and muscle myosin heavy chain alpha.

Regulation of protein breakdown is affected by insulin’s downregulation of hepatic and muscle cell enzymes responsible for protein degradation. The impacted enzymes include ATP-ubiquitin-dependent proteases, and ATP-independent lysosomal proteases and hydrolases.

Insuliinin rooli tulehduksessa ja vasodilataatiossa

Insuliini vaikuttaa verisuonten endoteelisoluissa ja makrofageissa anti-inflammatorisesti, eli tulehdusta ehkäisevästi. Endoteelisoluissa insuliini stimuloi endoteelin typpioksidisyntaasin (eNOS) ilmentymistä. eNOS toimii vapauttamalla typpioksidia (NO), mikä johtaa verisuonten laajenemiseen.

Insuliini vaimentaa endoteelisolujen tumatekijä-kappa-B:tä (NF-kB). Endoteelin NF-KB aktivoi adheesiomolekyylien, E-selektiinin ja ICAM-1:n ilmentymisen, joka vapauttaa liukoisia soluadheesiomolekyylejä verenkiertoon.

Tutkimukset ovat yhdistäneet solujen adheesiomolekyylien esiintymisen verisuonten endoteelissa valtimoiden ateroskleroottisten plakkien muodostumiseen ja sydäntauteihin.

Insuliini estää reaktiivisten happiradikaalien (ROS) muodostumisen. Makrofagissa insuliini estää NADPH-oksidaasin ilmentymistä tukahduttamalla yhtä sen avainkomponenteista, p47phoxia.

NADPH-oksidaasia tarvitaan synnyttämään happiradikaaleja, jotka aktivoivat NF-kB:n estäjää, eli kinaasibeeta-inhibiittoria (IKKB). IKKB fosforyloi IkB:n, mikä johtaa sen hajoamiseen. Tämä hajoaminen vapauttaa NF-kB:n, mikä mahdollistaa sen translokaation makrofagin ytimessä.

Solun tumassa ollessaan NF-kB stimuloi verenkiertoon vapautuvien tulehdusta edistävien proteiinien geenien transkriptiota:

  • indusoituva typpioksidisyntaasi (iNOS)
  • tuumorinekroositekijä-alfa (TNF-alfa)
  • interleukiini-6 (IL -6)
  • interleukiini-8 (IL-8)
  • monosyyttien kemoattraktantiproteiini (MCP-1)
  • matriisimetalloproteinaasi (MMP)

Lääketieteellinen merkitys

Monet metaboliset sairaudet liittyvät krooniseen hyperglykemiaan, hyperinsulinemiaan ja insuliiniresistenssiin.

Tyypin 1 insuliinista riippuvainen diabetes mellitus (DM1) on tauti, jossa haiman insuliinin tuotanto on vähäistä tai kokonaan loppunut. Koska insuliinia tarvitaan solujen glukoosinottoon, diabeteksessa solujen kyky tuottaa glukoosista energiaa romahtaa. Tämän seurauksena hoitamaton tyypin 1 diabetes johtaa nälkiintymiseen ja kuolemaan.

Tyypin 2 insuliinista riippumaton diabetes mellitus (DM2) on metabolinen sairaus, jossa keho tuottaa yhä insuliinia, mutta jatkuvan hyperglykemian (korkean verensokerin) vuoksi solujen glukoosinotto vuosien mittaan heikentyy. Tämä tarjonnan ja kysynnän epäsuhta johtaa insuliiniresistenssiin ja epänormaaliin glukoosimetaboliaan.

Molemmat diabetekset ovat sokeriaineenvaihdunnan häiriöitä. Ruokailun jälkeen verensokeri pysyy koholla, koska haima ei tuota insuliinia (DM1) tai solujen insuliiniherkkyys on vaurioitunut (DM2). Kohollaan oleva verensokeri ja korkeat veren insuliinipitoisuudet vahingoittavat verisuonia ja elimiä. Tyypin 2 diabetes lisää erektiovaikeuksia, lihomista ja komplikaatioita, joihin kuuluvat mm. neuropatia, munuaisten vajaatoiminta, retinopatia, sydän- ja verisuonitaudit sekä perifeeriset verisuonisairaudet.

Tyypin 2 diabeteksen alkuvaiheessa haiman beetasolut tuottavat riittävästi insuliinia energia-aineenvaihdunnan ylläpitämiseksi, mutta insuliinin tuotanto muuttuu tehottomaksi, kun osa insuliinin välittämästä glukoosinottokaskadista ei enää toimi.

Erityisesti glukoosin kulkeutuminen plasmamembraanin läpi GLUT-4-kuljettimien kautta heikentyy, mikä kertoo solujen insuliiniresistenssista. Insuliiniresistenssi vaikuttaa ensin lihassoluihin. Rasvasolujen insuliinisensitiivisyys pysyy yleensä hyvänä varsin pitkään, minkä vuoksi glukoosia päätyy rasvasoluihin lihasten sijaan.

Pahoittelen, jos tekstiin jäi käännös- ja/tai asiavirheitä.


https://www.ncbi.nlm.nih.gov/books/NBK525983/




Insuliini ja terveys: Hiilihydraatti-insuliinimalli

Käsittelin edellisessä artikkelissa (Insuliini ja terveys: Johdanto) insuliinin aineenvaihduntaa ja toimintamekanismeja. Insuliini liittyy moniin elintapasairauksiin, kuten lihavuuteen, jota tarkastelen tässä hiilihydraatti-insuliinimallin kautta.

Insuliinin säätelemä anabolinen aineevaihdunta rakentaa uutta kudosta, kuten lihaksia ja rasvakudosta varastoimalla energiaa ja säätelemällä rasva- ja proteiinisynteesiä.

Rasvan varastoiminen läskinä ärsyttää monia, mutta se on fysiologisesti perusteltua. Lähes kaikki eläimet, mukaan lukien ihmiset, varastoivat energiaa rasvakudokseen. Niin luonto toimii. Läski on luonnon tapa varmistaa, että energiaa on saatavilla myös silloin, kun ravintoa ei ole saatavilla.

Kesällä lihova karhu ei pidä läskiä rumana. Läskin turvin karhu voi nukkua talven yli ja synnyttää talvipesässä terveitä ja vilkkaita karhunpentuja.

Koska läski on arvokasta energiaa, karhun ei tarvitse poistua pesästä etsimään ravintoa. Yhdessä grammassa karhun rasvakudokseen keräämää läskiä on yli tuplasti enemmän akkuvirtaa kuin grammassa hiilihydratteja tai proteiineja.

Rasvavarastojen täyttäminen kesällä ja talviuni talvella on karhun keino sopeutua talven ravintopulaan. Läski on ihmisen elimistön tapa turvata energian saanti. Lihominen on evoluution kannalta perusteltua.

Karhun lihomiseen kiteytyy läskin filosofia

Miten insuliini vaikuttaa lihomiseen?

Lihominen muuttuu herkästi sairaalloiseksi. Se vaikuttaa terveyteen ja  sosiaaliseen elämään.

Tri Fatima Cody Stanford käyttää lihavuudesta samanlaista terminologiaa, kuin muista sairauksista: ihmisellä voi olla diabetes, tai hän voi sairastaa lihavuutta. Hän siis haluaa poistaa lihavuuteen liittyvät laiskuuteen ja ylensyöntin viittavat stigmat. Lihavuus on elämäntapasairaus.

Lihavuus on usein seuraus aineenvaihdunnan häiriintymisestä aivan kuten diabetes.

Hormonit säätelevät aineenvaihduntaa ja kertovat aivoille ravinnontarpeesta. Jos ja kun tämä järjestelmä menee sekaisin, ihminen alkaa varastoida energiaa sen sijaan, että kuluttaisi sitä. Tähän vaikuttaa erityisesti insuliini.

Rasvakudoksella on tärkeä fysiologinen rooli. Sen lisäksi, että rasvakudos varastoi energiaa ja turvaa energiansaannin silloin, kun ravintoa ei ole tarjolla, rasvakudos säätelee aktiivisesti kylläisyyden tunnetta leptiini-hormonin välityksellä. Nälän tunnetta säätelee suolistosta erittyvä greliini.

Biologiaa ja kemiaa ei oikein voi paeta. Informaatioajan bittivirtojen some-olentoina olemme kuitenkin hormonien välittämiä signaaleja tyydyttäviä eläimiä.

Hormonien vaikutuksen ymmärtäminen voi auttaa ymmärtämään nälkää ja lihottavia mielihaluja. Hormonitoiminnan häiriintyminen auttaa ymmärtämään lihavuutta aineenvaihdunnan sairautena.


Rasvasotaa

Ihminen lihoo syömällä liikaa. Se ei ole mikään salaisuus. Todellinen mysteeri on se, miksi ihminen syö liikaa ja lihoo silloinkin, kun hänellä on rasvavarastoissaan kuukaudeksi energiaa.

Lihavien määrä on kolminkertaistunut vuoden 1980 jälkeen. Intensiivisestä tutkimuksesta huolimatta globaalin lihavuusepidemian syyt ovat yhä arvailujen ja kiistojen aihe.

Rasvasota ei päättynyt 1970-luvulla, vaan jatkuu siirappisena asemasotana. Tämän sodan sokereiden sairastuttamat siviiliuhrit kamppailevat nyt lihavuuden, metabolisen oireyhtymän, rasvamaksan ja aikuisyypin diabeteksen lisäksi muisti- ja suolistosairauksia vastaan ahmimalla samaa korkean glykeemisen kuorman sokeripitoista roskaa, joka sai heidät alun alkaenkin sairastumaan. John Yudkin ja monet muut varoittivat tästä jo 1970-luvulla.

Aineenvaihduntaan liittyvät sairaudet kuormittavat taloutta ja kasvattavat terveydenhoitomenoja. Yhdysvalloissa lihavia on pian yhtä paljon kuin television omistajia.

Perinteisillä kalorirajoitetuilla dieeteillä ei ole pitkäkestoista laihduttavaa vaikutusta. Lihavuustutkimukset osoittavat, että vain yksi kuudesta kaloreita rajoittamalla laihtunut onnistuu välttämään yli 10 prosentin lihomisen laihduttamista seuraavan vuoden aikana. Lähes kaikki kaloreiden rajoittamiseen perustuvat laihdutuskuurit epäonnistuvat.


Dieettien ympärille on kasvanut hedelmällisiä laihdutus- ja hyvinvointibisneksiä, joiden rahavirtoja ohjaa usko perinteiseen kaloriteoriaan.

Ajatus, että kaikki kalorit ovat samanarvoisia, on hieman harhainen. Kalorien rajoittaminen johtaa usein painon jojoiluun, koska se hidastaa perusaineenvaihduntaa.

Miksi lihavalla on nälkä, vaikka hän karhuemon tapaan olisi varastoinut rasvakudokseen riittävästi energiaa koko talveksi?

Nälkää ja kylläisyyttä säätelee hormonitoiminta (erityisesti greliini ja leptiini). Insuliinin ja glukagonin eritystä säätelee ruokaan liittyvät aistimukset ja verensokeripitoisuuden muutokset.

Hormonaalisesti ravinnon kalorimäärää tärkeämpi tekijä on ravinnon laatu. Laadullisilla valinnoilla voi vaikuttaa nälän tunteeseen ja ohjata elimistö rasvan aktiiviseen polttamiseen betaoksidaatiossa. Se on oikeastaan aika helppoa.

CIM (hiilihydraatti-insuliinimalli)

Lihomisen hiilihydraatti-insuliinimallin (CIM/Carbohydrate-Insulin-Model) mukaan pitkälle jalostettujen, korkean glykeemisen kuorman ruokien kulutuksen kasvu määrittelee syömistavoissa tapahtunutta muutosta ja korreloi lihavuusepidemian kanssa.

Vuoden 1980 jälkeen yhä suurempi osa päivittäisestä energiasta on saatu sokereista (hiilihydraateista). Rasvan ja aivan erityisesti tyydyttyneen rasvan kulutus on samaan aikaan laskenut. Hiilihydraatit eivät pidä nälkää loitolla läheskään niin hyvin, kuin rasva, ja siksi ihmiset puputtavat sokereita aamusta iltaan.

Jatkuvasti korkea verensokeri ja verenkierrossa raivoava insuliinimyrsky vaikuttavat nälkää ja kylläisyyttä säätelevien hormonien lisäksi terveyteen.

Korkea verensokeri ja insuliini ovat tunnettuja verisuonia ja elimiä vaurioittavia sydän- ja verisuonitautien riskitekijöitä. Nykyinen hiilihydraattipainotteinen elämäntapa altistaa insuliiniresistenssille, lihomiselle, aikuistyypin diabetekselle, sydän- ja verisuonitaudeille, suolistosairauksille ja muistisairauksile.

Tämä kaikki on todistettu lukemattomissa in vivo ja in vitro ihmis- ja eläinkokeissa sekä laboratorioiden solumaljoissa.

Kuinka korkean glykeemisen kuorman ruoka vaikuttaa?

Hiilihydraattipainotteinen ruokavalio aiheuttaa hormonaalisia muutoksia, jotka vaikuttavat aineenvaihduntaan. Ne edistävät energian varastoimista rasvakudokseen, kasvattavat nälkää ja vähentävät energiankulutusta.

Aineenvaihdunnan toimintaa ja terveyttä ei paranna se, että hiilihydraatit ja suositut siemenöljyt ylläpitävät inflammaatiota tuottamalla vapaita happiradikaaleja. Liiallinen omega6-rasvahappojen saanti johtaa arakidonihapon muodostumiseen, josta elimistö syntetisoi prostaglandiineja. Prostaglandiinien synteesi elimistössä kiihtyy tavallisesti kuumeen ja kivun seurauksena, sillä ne vaikuttavat tulehdusreaktion syntyyn.

Tutkimuksista

Tutkimustulokset tukevat hiilihydraatti-insuliinimallia. Eläinten ruokavalio vaikuttaa CIM-mallin antaman ennusteen mukaisesti eläimen aineenvaihduntaan ja kehon koostumukseen kalorien määristä riippumatta.

Rottakoe: Samat makrot ja kalorimäärä. 3 viikon koe. Ainoana muuttujana omega6, jota lihakarjan talissa on vähän, oliiviöljyssä hieman enemmän saffloriöljyssä on valtavasti.

Omegakutosten vaikutus painoon ja kehon rasvakoostumukseen.

Kalorimäärät, eli rottien energiansaanti oli täsmälleen sama ja omegakutosia paitsi myös ravinnonlähteet olivat samoja. Näin suuri vaikutus painoon oli pelkästään omegakutosilla.

Käyttäytymistutkimusten meta-analyysit kertovat tehokkaammasta painonpudotuksesta vähäisellä glykeemisellä kuormalla verrattuna vähärasvaiseen ruokavalioon.

Verensokerin laskeminen ja insuliinitasojen pitäminen matalina vähän hiilihydraatteja ja runsaasti rasvaa sisältävällä ruokavaliolla laihduttaa varmemmin ja terveellisemmin kuin kaloreiden rajoittaminen. Se on terveellisin tapa hoitaa alkoholista riippumatonta rasvamaksaa, metabolista oireyhtymää ja aikuistyypin diabetesta.

Lääkeresistenttiä epilepsiaa on hoidettu jo sata vuotta hiilihydraatteja rajoittamalla. Nyt positiivisia hoitotuloksia saadaan myös Parkinsonin taudin ja Alzheimerin taudin hoidossa.

Pienen glykeemisen kuorman ravinto ja ketoosi kiinnostavat NASA:a ja Yhdysvaltojen puolustusministeriötä. Äärioloissa ketoosi on osoittautunut ylivoimaiseksi aineenvaihduntamekanismiksi. Siksi ketoosia tutkitaan taistelusukeltajien ja astronauttien toimintakyvyn tehostajana.

Vielä vuosikymmen sitten luultiin, että aivosolut tarvitsevat välttämättä glukoosia, mutta nyt tiedetään, että betahydroksibutyraatti on aivosoluille optimaalista ravintoa. Elimistö valmistaa betahydroksibutyraattia rasvasta, kun sokerin saanti loppuu. Neurodegeneratiivisia tauteja sairastavien koehenkilöiden aivojen magneettikuvissa  sairauden hiljentämät alueet ovat aktivoituneet uudestaan ja kognitiiviset kyvyt parantuneet rasvapainotteisella ravinnolla. Erityisesti keskipitkät rasvahapot (MCT) ovat tutkimuksissa kohentaneet koehenkilöiden aivojen aktiivisuutta ja kognitiota.


Olemassaolevat tutkimukset vahvistavat kuitenkin matalan glykeemisen kuorman ruokien edistävän laihtumista ja terveyttä korkean glykeemisen kuorman ruokia paremmin.

Hiilihydraattien laadun ja määrän lisäksi hiilihydraatti-insuliinimallia voi hyödyntää käsitteellisenä kehyksenä, joka auttaa ymmärtämään, kuinka eräät ravintoaineet altistavat aineenvaihdunnan lihomista edistäville hormonaalisille muutoksille.

Korkean glykeemisen kuorman ruokien rajoittaminen on käytännöllinen laihdutusmenetelmä, jonka painopiste ei ole rasvan ja kaloreiden vähentämisessä, vaan verensokeri- ja insuliinitasojen madaltamisessa.

Syö vähemmän” ja ”liiku enemmän!

Me opimme tuon imperatiivin jo peruskoulussa. Voipaketti, pekoni ja kananmunat palauttavat mieleen vanhat pelot: yydyttynyt rasva on lihottavaa myrkkyä, joka murhaa sinut hitaasti, mutta varmasti tukkimalla verisuonesi.

Pelottavien kummitusjuttujen rinnalla olemme oppineet, että siemenöljyt ja margariinit ovat superhyperextraterveellisiä rasvoja, jotka laskevat vastenmielistä kolesterolia. Se on pitkälti roskaa!

Tieteellinen näyttö, ihmisen fysiologia ja miljoonien ihmisten henkilökohtaiset kokemukset osoittavat, että painonpudotuksen myötä nälkä lisääntyy ja energiankulutus laskee.

Toisin sanoen laihduttajan paino jumittaa nälkäkuurilla ja nälkä kurnii vatsanpohjassa. Useimmat kaloreita rajoittamalla laihduttavat lihovat lähtöpainoon pian laihdutuskuurin jälkeen. Tiukka kaloreiden rajoittaminen hidastaa perusaineenvaihduntaa, minkä vuoksi ihminen lihoo entistä helpommin. Se voi olla ongelma laihduttajalle, mutta ei laihdutusbisnekselle.

Hiilihydraattien rajoittaminen ei edellytä kallista kuntosalikorttia tai hintavia laihdutusruokia. Sen sijaan vähähiilihydraattinen, runsaasti rasvaa ja kohtuullisesti proteiinia sisältävä ruokavalio pudottaa tehokkaasti painoa, tehostaa rasvan polttoa, laskee verensokeria ja verenpainetta.

Rasvapainotteinen ruokavalio voi nostaa lipoproteiinien määrää (kolesterolia), mutta elimistö säätelee kolesterolin homeostaasia. Lipoproteiinien määrä lisääntyy, koska LDL ja HDL ovat rasvaa, kolesterolia ja rasvaliukoisia vitamiineja soluihin kuljettavia molekyylejä.

Kun solujen energia otetaan rasvasta, veressä kulkee luonnollisesti enemmän rasvaa kuljettavia molekyylejä

Lisääntyvä tutkimusnäyttö rauhoittelee kolesteroliin ja tyydyttyneisiin rasvoihin liittyviä pelkoja. Kolesteroli on elintärkeä aine ja tyydyttyneet rasvat ovat sydäntautien osalta pahimmillaankin neutraaleja.

On siis aika kääntää uusi lehti terveystiedoissa: sydän- ja verisuonitaudit johtuvat kasvavan näytön perusteella jatkuvasti korkeasta verensokerista ja insuliinista. Kolesteroli on todennäköisesti seuraus verisuonten vahingoittumisesta, ei syy vahintoittumiselle.

Ajatus laihdutuskuurista on muutenkin nurinkurinen. Teoria, että laihduttaja vähentää energian saantia, kunnes tavoitepaino saavutetaan ja palaa ihannepainoisena ruokavalioon, joka johti lihomiseen, on yksinkertaisesti kestämätön.

Pysyvä laihtuminen edellyttää elämäntaparemonttia. Pelkkä laihdutuskuuri ei riitä, koska paino palaa korkojen kera heti kun kuuri loppuu.

Matalan glykeemisen kuorman ruokavalio (esimerkiksi ketogeeninen ruokavalio) laskee painoa käyttämällä rasvakudokseen varastoitua energiaa.

Hiilihydraattipainotteinen ruokavalio estää rasvan käyttämisen energianlähteenä, koska insuliini on lipolyysin estäjä. Kaloreita rajoittamalla laihduttaja kannibalisoi lihaksiaan vähintään yhtä paljon kuin rasvakudosta. Ketogeeninen aineenvaihduntaan perustuva ruokavalio käynnistää lipolyysin, jolloin keho saa tarvitsemansa energian rasvakudoksesta, eikä elimistön tarvitse pilkkoa lihaksia ravinnoksi. Tämä on osoitettu mm. Minnesota Starvation Experimentissä 1944-1945.

Hiilihydraatti-insuliinimalli

Vaihtoehtoisen näkemyksen mukaan syömistottumusten ja syödyn ravinnon muutokset johtavat hormonaalisiin reaktioihin, jotka ohjaavat ravinnosta saatua energiaa rasvasoluihin.

Hiilihydraatti-insuliinimallissa rasvasolujen rooli on aktiivinen lihavuuden etiologian kannalta. Rasvakudos kertoo leptiinin välityksellä aivoille kehon energiabalanssista. Tämän mekanismin häiriintyminen, leptiiniresistenssi, johtaa tilaan, jolloin ihminen kokee itsensä nälkäiseksi, vaikka hän olisi hetkeä aimmin täyttänyt itsensä runsasenergisella aterialla.

Vaikka monet tekijät vaikuttavat rasvan kumuloitumiseen, anabolisena hormonina insuliini heiluttelee tahtipuikkoa energia-aineenvaihdunnan säätelyssä ja ravinteiden varastoimisessa.

Insuliini vähentää kaikkien energiaravinteiden kiertokonsentraatiota stimuloimalla glukoosinottoa kudoksiin, tukahduttamalla rasvahappojen vapautumista rasvakudoksesta, estämällä ketonien tuotantoa maksassa ja edistämällä rasvan ja glykogeenin varastoimista.

Insuliini on lipolyysin estäjä

Insuliini on kolmen lipolyysiin osallistuvan entsyymin estäjä. Estämällä hormonisensitiivistä lipaasia (HSL), rasvakudoksen triglyseridilipaasia (ATGL) ja epäsuorasti CPT1-entsyymiä, insuliini estää rasvasolujen purkamisen vapaiksi rasvahapoiksi lipolyysissä.

Veren kohonnut insuliinipitoisuus (hyperinsulinemia) esimerkiksi tyypin 2 diabeteksen insuliinihoitojen aloittamisen jälkeen ennustaa suurella todennäköisyydellä painonnousua.

Osa insuliinin aiheuttamasta painonnoususta liittyy aineenvaihdunnan muutoksiin. Tyypin 1 diabeteksen haiman Langerhansin saarekkeiden beetasolujen tuhoutuminen, riittämätön insuliinihoito tai insuliinin eritystä estävät lääkkeet aiheuttavat tunnetusti laihtumista. Insuliinin vaikutukset painoon on kattavasti dokumentoitu.

Haima on erityisen herkkä hiilihydraateille. Verensokerin kohoaminen johtaa moninkertaiseen insuliinin eritykseen muihin ravintoaineisiin verrattuna. Glukoosipitoisuuden kohoaminen veressä johtaa insuliinivasteeseen, joka on jotakuinkin kymmenkertainen rasvan aiheuttamaan insuliinivasteeseen nähden. Myös hiilihydraattien määrällä ja laadulla on selvä vaikutus insuliinin eritykseen.

Glykeeminen kuorma

Glykeeminen indeksi (GI) kuvaa, kuinka nopeasti tietyt elintarvikkeet nostavat verensokeria (ja siten insuliinia) 2 tunnissa syömisen jälkeen.

Suurin osa valkoisista jauhoista, perunaruoista ja lisätyistä sokereista sulavat nopeasti ja niillä on korkea GI, kun taas ei-tärkkelystä sisältävillä vihanneksilla, palkokasveilla, kokonaisilla hedelmillä ja täysjyvillä on yleensä matalampi GI.

Tähän liittyvä mitta, glykeeminen kuorma (GL, Glycemic Load) on paras ruokailun jälkeisen verensokerin ennustaja. Se selittää jopa 90% varianssista. Glykeeminen kuorma kertoo ruoan sisältämien hiilihydraattien laadusta ja määrästä.

Tämä on tuttua tyypin 1 diabetesta sairastaville, mutta monet tyypin 2 diabetekseen sairastuneet jatkavat lääkkeiden avustuksella lihottavan ja sairautta ylläpitävän ruokavalion noudattamista.

Tyypin 2 diabeteksen saa remissioon hiilihydraatteja rajoittamalla, esimerkiksi ketogeenisellä ruokavaliolla. Tätä hoitomuotoa suosittelee jo yli 10 000 lääkäriä ympäri maailman. Se on tehokkain tapa hoitaa tyypin 2 diabetesta, alkoholista riippumatonta rasvamaksaa ja metabolista oireyhtymää.

Glykemiakuormaa voidaan hyödyntää arvioitaessa aterian vaikutusta veren sokeriin ja veren insuliinivasteeseen. Vaikka aterialla nautittaisiin ruoka-aineita, joilla on korkea glykeeminen indeksi (GI), ei vaikutus veren sokeriin ole kovin suuri jos näitä ruoka-aineita on vain vähän suhteessa aterian kokoon. Tällöin aterian glykemiakuorma on pieni. Suuri hiilihydraattimäärä ja glykeeminen indeksi taas kasvattavat myös glykemiakuormaa.

Glykemiakuorma lasketaan seuraavasti: GI x imeytyvän hiilihydraatin määrä / 100. Aterian glykemiakuormaa määritettäessä lasketaan yhteen sen sisältämien ruoka-aineiden GL-arvot.

Proteiini stimuloi insuliinin eritystä aminohappokoostumuksesta riippuen, mutta proteiini vaikuttaa myös insuliinin vastavaikuttajan, katabolisen glukagonin, eritykseen. Ravinnon rasvalla on vain vähän suoraa vaikutusta insuliinin eritykseen, mikä muodostaa teoreettisen perustan runsaasti rasvaa sisältävien ruokavalioiden terveys- ja laihdutusvaikutuksille.

Hiilihydraatti-insuliinimallin mukaan runsashiilihydraattinen, erityisesti lisättyä sokeria ja/tai tärkkelystä sisältävä ruokavalio aiheuttaa aterianjälkeistä hyperinsulinemiaa, mikä lisää energian varastoimista rasvasoluihin altistaen lihomiselle.

Ylimääräinen glukoosi varastoidaan rasvasoluihin, koska veressä glukoosi voi aiheuttaa glykaation muiden ravinteiden kanssa.

Glykaatio

Glykaatio on mikä tahansa ei-entsymaattinen reaktio, jossa glukoosi tai mikä tahansa muu hiilihydraatti liittyy kovalenttisesti muunlaisiin molekyyleihin kuten proteiineihin, lipideihin tai DNA:han. Kehittynyt glykaation lopputuote (eng. advanced glycation end-product, AGE) on yleisnimitys suurelle joukolle erilaisia proteiineja tai rasvoja, jotka ovat glykatoituneet ei-entsymaattisesti altistuttuaan joillekin sokereille, eli liittyneet näihin sokereihin.AGE:ja voidaan myös kutsua glykotoksiineiksi ja ne saattavat olla pahentava osatekijä ikääntymisessä ja osallistua useiden rappeuttavien sairauksien kuten Alzheimerin taudin, diabeteksen, valtimonkovettumataudin ja kroonisen munuaisten vajaatoiminnan kehittymiseen. Lisäksi niiden on tutkittu osallistuvan harmaakaihin, lihasheikkouden ja syöpäkasvainten kehittymiseen.

CIM vs. kalorimalli

Kuten perinteinen kalorimalli, myös CIM pohjautuu termodynamiikan ensimmäiseen lakiin, jossa verrataan energiansaannin ja energiankulutuksen erotusta.

CIM pitää ylensyöntiä rasvan määrän lisääntymisen seurauksena, ei rasvan määrän ensisijaisena syynä.

Toisin sanoen hiilihydraatti-insuliinimallissa syy-seuraus-suhde, joka yhdistää energian tasapainon rasvakudokseen, virtaa vastakkaiseen suuntaan hormonaalisten signaalien ohjaamana. Tästä näkökulmasta kalorien rajoittamista voidaan pitää oireenmukaisena hoitona, joka valitettavan usein epäonnistuu nykyaikaisessa ravintoympäristössä.

Vähäkaloriset / vähärasvaiset ruokavaliot voivat pahentaa taustalla olevaa aineenvaihdunnan häiriötä rajoittamalla edelleen veressä olevan energian hyödyntämistä ja käynnistämällä nälkävasteen, johon liittyy kasvanut nälän tunne, aineenvaihdunnan hidastuminen ja kohonnneet stressihormonitasot.

Eläintutkimusten kertomaa

Insuliinin injektio keskushermostoon aiheuttaa ruokahaluttomuutta ja laihtumista, mutta insuliinin antaminen perifeerisesti edistää rasvan varastoitumista rasvakudokseen, kasvattaa nälän tunnetta ja aiheuttaa painonnousua.

Vaikka koe-eläinten kaloreita rajoitetaan painonnousun estämiseksi, insuliinia saaneilla eläimilä rasvakudokseen varastoituu yhä rasvaa, mikä vastaa CIM:n ennustetta energiatalouden muuttuneista painopisteistä.

Ruokavalioilla, jotka luontaisesti lisäävät insuliinin eritystä, on samanlaisia metabolisia vaikutuksia kuin insuliinin injektiolla.

Jyrsijöillä, joita ruokitaan korkean glykeemisen kuorman ruokavaliolla, ilmenee progressiivisia poikkeamia aineenvaihdunnasa. Näitä ovat:

  • hyperinsulinemia
  • rasvasolujen koon kasvu
  • lisääntynyt rasvan varastointi
  • pienempi energiankulutus
  • kasvanut nälkä

Kaloreiden rajoittaminen painonnousun estämiseksi eläimillä, jotka saivat korkean glykeemisen kuorman ravintoa, ei estänyt lihomista tai siihen liittyviä kardiometabolisia riskitekijöitä. Koe tuki insuliininantokokeiden tuloksia.

Sen sijaan jyrsijöiden energiankulutus kasvoi ja paino laski niillä hiirillä, jotka saivat hyvin vähän hiilihydraatteja verrattuna tavanomaisella ruokavaliolla ruokittuihin hiiriin. Tämä toteutui, vaikka hiirien ravinnon kalorimääräisessä saannissa ei ollut eroja.

Geneettiset mallit

Korkeat insuliinipitoisuudet veressä voivat johtua primaarisesta insuliinin ylierityksestä (joka usein aiheuttaa painonnousua) tai olla vaste insuliiniresistenssille (joka voi suojata painonnousulta, etenkin jos insuliiniresistenssiä esiintyy rasvakudoksessa. Siksi paastoinsuliiniin ja painoon perustuvat havainnointitutkimukset eivät anna luotettavaa CIM-ennustetta.

Geneettisten tutkimusten avulla voidaan havaita syy-seuraus-suhteita

”In a recent report, bi-directional Mendelian Randomization was used to examine the relationship between insulin secretion and BMI, potentially free from confounding by socio-demographic and behavioral factors inherent to most conventional associational analyses. This study found that genetically-determined insulin secretion strongly predicted BMI , whereas genetically-determined BMI did not predict insulin secretion. In addition, variants in the insulin promotor gene associated with insulin hypersecretion in humans predict weight gain during adolescence. Furthermore, transgenic mice with reduced insulin secretion had increased energy expenditure and were protected from diet-induced obesity, leading the investigators to conclude, in accordance with the CIM, that “circulating hyperinsulinemia drives diet-induced obesity and its complications.”

Käyttäytymiskokeet ja havainnointitutkimukset

Toisin kuin tavanomaisessa lihomismallissa ennustetaan, vähärasvaisten ruokavalioiden luonnostaan pienempi energiamäärä ei itsestään ylläpidä jatkuvaa laihtumista.

Useissa viimeaikaisissa meta-analyyseissä on osoitettu, että vähärasvaiset ruokavaliot ovat pitkällä aikavälillä huonompia laihdutusruokavalioita kuin korkeamman rasvapitoisuuden (vähähiilihydraattiset) ruokavaliot.

Of note, two major trials that employed special measures to improve compliance, Diogenes and the DIRECT trial found greater weight loss on low- vs high-GL diets A third major study, DIETFITS, reported non-significantly more weight loss on a Healthy Low-Carbohydrate Diet vs Healthy Low-Fat Diet, but both groups were counselled to avoid refined grains, sugar and other processed foods. Consequently, the GL of the Healthy Low-Fat Diet was exceptionally low for a higher-carbohydrate diet – similar to that of the lowest-GL diet in Diogenes.”

Suurissa, pitkäkestoisissa kohorttitutkimuksissa eräillä erittäin rasvaisilla elintarvikkeilla (esim. pähkinät ja täysrasvaiset maitotuotteet), on joko olematon tai käänteinen yhteys painonnousuun. S

itä vastoin monet runsaasti kulutetut korkean glykeemisen kuorman elintarvikkeet (esim. perunat, riisi, maissi, vaaleat viljat, makeat jälkiruoat, sipsit, sokerijuomat ja hedelmämehut) assosioituivat vahvasti lihomiseen.

Ravintotutkimukset

Hiilihydraatti-insuliinimallin mukaan korkean glykeemisen kuorman ateria rajoittaa energiaravinteiden saantia noin 3-5 tuntia syömisen jälkeen, vähentää rasvan polttoa, pienentää energiankulutusta, stimuloi stressihormonin eritystä ja kasvattaa nälkää.

Nämä vaikutukset on raportoitu useissa tutkimuksissa. Pitkällä aikavälillä rasvan varastointi lisääntyy korkean glykeemisen kuorman ruokavalion noudattamisen seurauksena.

Tavanomaisessa runsaasti hiilihydraatteja sisältävässä ruokavaliossa aivot ovat riippuvaisia glukoosista (yli 100 g / päivä). Ketogeenisen ruokavalion alkuvaiheessa aineenvaihdunnan on tuotettava glukoosia verenkierron vapaista aminohapoista, sitruunahappokierron väliaineista ja glyserolista maksassa tapahtuvassa glukoneogeneesissä.

Jos veressä ei ole riittävästi vapaita aminohappoja glukoneogeneesiin, kehon on väliaikaisesti katabolisoitava (tai kannibalisoitavat) lihasten proteiineja glukoneogeneesin lähtöaineiksi. Tämä on kuitenkin väliaikainen vaihe, koska ketogeneesin tuottamien ketonien pitoisuus ja merkitys aivojen ravintona lisääntyy muutamassa päivässä.

Hyvin vähähiilihydraattisen ruokavalion (ja pitkittyneen paaston) tunnusmerkki on ketoosin kehittyminen – josta on peräisin nimitys ”ketogeeninen ruokavalio”.

Nälkää käsittelevät tutkimukset kertovat rasva-aineenvaihduntaan sopeutumisen etenemisestä.

Owen et al., osoitti, että ketonipitoisuus: ß-hydroksibutyraatti, asetoetikkahappo ja asetoni lisääntyivät asteittain 10 päivän ajan ja saavuttavat vakaan tason vasta noin 3 viikon paaston jälkeen.

Yang et al. osoitti, että ketonien erittyminen virtsaan lisääntyi 10 päivän ajan hyvin vähähiilihydraattisella ruokavaliolla, mutta hitaammin kuin paaston aikana.

Vazquez et al. osoitti, että typpitasapaino oli negatiivisempi vähäkalorisella ketogeenisellä ruokavaliolla verrattuna ei-ketogeeniseen ruokavalioon noin 3 viikon ajan, ja saavutti sitten neutraalin nettotasapainon (eli ei lisännyt rasvattoman massan menetystä).

On hyvin dokumentoitu, että rasva-aineenvaihduntaan sopeutuminen edellyttää vähintään 2-3 viikon vähähiilihydraattisen ruokavalion noudattamista. Ehkä pidempäänkin. Lyhyemmät tutkimukset eivät osoita makroravintoaineiden aiheuttamia aineenvaihdunnan muutoksia.

Liiallinen syöminen aiheuttaa liikalihavuutta

Kalorien liiallinen kulutus johtaa painonnousuun, kuten termodynamiikan ensimmäisessä laissa määritellään. Keho pyrkii kuitenkinsäilyttämään painon tasapainossa. Pitkällä aikavälillä liiallinen energian saanti kasvattaa dynaamisesti energiankulutusta ja vähentää nälän tunnetta. Nämä fysiologiset mekanismit pyrkivät vähentämään jatkuvaa painonnousua.

Klassisissa yliruokintatutkimuksissa monet kokeisiin osallistuneet ilmoittivat tuntevansa olonsa epämukavaksi liiallisella energian saannilla. Useilla oli vaikeuksia jatkaa liian paljon energiaa sisältävää ruokavaliota. Kun ohjelmat päättyivät, useimpien kokeisiin osallistuneiden ruumiinpaino palasi spontaanisti lähtötasolle tai sen lähelle.

Eläimillä ja ihmisillä tehdyt tutkimukset vahvistavat, että fysiologiset tekijät rajoittavat liiallista lihomista ja liiallista painonlaskua. Näiden mekanismien häiriintyminen (sairastuminen) aiheuttaa lihomista.
Hiilihydraatti-insuliinimallin mukaan korkean glykeemisen kuorman ruokavalio muuttaa näitä luonnollisia homeostaattisia mekanismeja epäterveelliseen suuntaan.

Lihominen liittyy tyypillisesti verenkierron kohonneisiin glukoosi-, insuliini- ja rasvahappopitoisuuksiin

”Unfortunately, cross-sectional studies after development of obesity may also confound understanding of etiology. The CIM proposes that metabolic fuel concentration is reduced with a high-GL diet in the late postprandial period (approximately 2.5 to 5 hr after eating) due to excessive adipose anabolic activity during the dynamic stage of obesity development. Eventually, fat cells reach a limit, beyond which they cannot effectively expand storage capacity.At this stage, weight gain plateaus (at the cost of increasing insulin resistance and chronic inflammation) and circulating metabolic fuel concentrations consequently rise.”

Toisaalta Yhdysvalloissa proteiinin ja rasvan absoluuttinen saanti ei ole juurikaan muuttunut 1970-luvulta lähtien, kun taas hiilihydraattien, (pääasiassa korkean glykeemisen kuorman valkoisten jauhojen, perunoiden, pikakruoan ja lisätyn sokerin) saanti on lisääntynyt huomattavasti, mikä on kasvattanut merkittävästi kalorien kokonaissaantia.

Kansainväliset epidemiologiset tutkimukset eivät aina osoita selkeää rinnakkaisuutta korkean glykeemisen kuorman ja liikalihavuuden esiintyvyyden välillä.

Historiallisesti maatalousyhteisöjen aasialaiset pysyivät hoikkina runsashiilihydraattisella riisipohjaisella ruokavaliolla.Tätä voi selittää aasialaisten luonnollisesti vähäisempi rasvakudoksen määrä, niukka ravinnon saanti ja korkea energiankulutus.

Japanissa lihavia on nelisen prosenttia väestöstä, vaikka diabetesta sairastavia on yli seitsemän prosenttia. Lihavuus ja aikuistyypin diabetes kulkevat usein käsikkäin. Yhdysvalloissa lihavia on lähes kolmannes väestöstä ja diabetesta sairastavia yksi kymmenestä.

Kun fyysisen aktiivisuuden taso on laskenut kaupungistumisen myötä (esim. Kiina), lihavien ja diabetesta sairastavien määrät ovat nousseet dramaattisesti.

Kliiniset vaikutukset

CIM on käytännöllinen vaihtoehto lihavuuden, metabolisen oireyhtymän ja diabeteksen hoitoon. Viime aikoina on osoitettu, että tavanomaiset vähärasvaiset ja vähäkaloriset ruokavaliot eivät hillitse lihavuus- ja diabetesepidemioita.

Ensisijainen painopiste olisi asetettava kulutettujen kaloreiden laatuun eikä määrään, jotta kalorien jakaminen siirrettäisiin pois rasvakudoksen varastoinnista ja parannettaisiin energiaravinteiden saatavuutta muuhun kehoon. Tällä tavoin negatiivinen energiatasapaino ja laihtuminen voidaan saavuttaa helpommin ja kestävämmillä tuloksilla.

Ruokavalioilla, joilla on erilainen makroravinnekoostumus, on kaloripitoisuuden erojen lisäksi erilaisia vaikutuksia hormoneihin, aineenvaihduntareiteihin, geenien ilmentymiseen ja suolen mikrobiomeihin. Nämä vaikuttavat rasvan varastointiin.

Väittämällä, että kaikki kalorit ovat samanarvoisia keholle, perinteinen malli sulkee pois ympäristötekijät, jolla on kaikkein vahvin yhteys painonhallintaan. Mitkä muut tekijät voisivat selittää lihavuuden esiintyvyyden kasvua 1980-luvulta, kuin samaan aikaan tapahtuneet merkittävät muutokset syömistavoissa?

Hiilihydraatti-insuliinimalliin perustuvat ruokavaliosuositukset

  • Vähennä valkoisia viljoja, perunatuotteita ja lisättyjä sokereita sekä korkean glykeemisen kuorman hiilihydraatteja, joiden yleinen ravitsemuksellinen laatu on heikko
  • Suosi matalan glykeemisen kuorman hiilihydraatteja, mukaan lukien ei-tärkkelyspitoiset vihannekset, palkokasvit ja ei-trooppiset kokonaiset hedelmät (kuten omenat)
  • Jos syöt viljatuotteita, valitse kokojyväviljat ja perinteisesti jalostetut vaihtoehdot (esim. Kokonainen ohra, quinoa ja perinteiseen taikinajuureen tehty leipä
  • Lisää pähkinöitä, siemeniä, avokadoa, oliiviöljyä ja muita terveellisiä rasvaisia ruokia
  • Syö riittävästi proteiinia (myös kasviperäistä)
  • Hiilihydraattien saannin rajoittaminen ja korvaaminen rasvalla tuottaa suurimman hyödyn

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082688/

http://www.vivo.colostate.edu/hbooks/pathphys/endocrine/pancreas/insulin_phys.html

https://www.verywellhealth.com/how-insulin-works-in-the-body-1087716

https://www.ncbi.nlm.nih.gov/books/NBK525983/

https://thefastingmethod.com/understanding-joseph-kraft-diabetes-in-situ-t2d-24/

https://denversdietdoctor.com/diabetes-vascular-disease-joseph-r-kraft-md/

https://dopinglinkki.fi/en/info-bank/doping-substances/insulin

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038351/




Insuliini ja terveys: Johdanto

95-vuotiaana kuollut tohtori Joseph Kraft teki lääkärinurallaan yli 14 000 sokerirasitustestiä, joiden rinnalla hän mittasi potilaidensa insuliinitasoja. Kraftin kliiniset havainnot johtivat insuliiniresistenssin tunnistamiseen. Hän osoitti myös, että alkavan diabeteksen voi havaita insuliinipitoisuuden ja insuliiniherkkyyden muutoksista jo ennen kuin sokerirasitustestit viittaavat diabetekseen.

25 vuotta kardiologina työskennellyt Nadir Ali kertoo, että korkeat kolesterolipitoisuudet ja kolesterolin kumuloituminen verisuoniin on insuliiniresistenssin biomarkkeri.

Entä jos kolesteroli ei ole sydän- ja verisuonitautien ensisijainen syy, vaan seuraus verisuonten vahingoittumisesta? Korkea verensokeri ja hyperinsulinemia vahingoittavat tunnetusti verisuonia.

Diabeetikoilla on poikkeuksellisen suuri sydän- ja verisuonitautien riski, sillä noin 70 % diabeetikoista kuolee sydän- ja verisuonitauteihin. Voisiko jatkuvasti korkea veren insuliinipitoisuus (hyperinsulinemia) selittää tämän?

Kraft arveli, että suurin osa sydän- ja verisuonitaudeista johtuu diagnosoidusta tai diagnosoimattomasta diabeteksesta. Oliko Kraft oikeassa?

”Those with cardiovascular disease not identified with diabetes… are simply undiagnosed.” – Joseph Kraft

Tutkimukset ovat sittemmin osoittaneet, että nsuliiniresistenssi ja hyperinsulinemia ovat itsenäisiä sydän- ja verisuonitautien riskitekijöitä. Lisääntyvä kliininen potilasnäyttö viittaa siihen, että Kraft oli oikeassa.

Insuliiniin palautuvat häiriötilat, insuliiniresistenssi ja hyperinsulinemia, vaikuttavat terveyteen paljon uskottua enemmän.

Insuliini

Insuliini on elintärkeä hormoni, josta puhutaan melkeinpä vain sokeriaineenvaihdunnan ja diabeteksen yhteydessä. Erityisesti tyypin 1 diabetesta sairastaville 1920-luvulla keksitty insuliinilääkitys on elämän ja kuoleman kysymys.

Tieto insuliinin tärkeydestä on diabeteksen ansiota, mutta kääntöpuolena on se, että diabeteksen vuoksi moni ei tiedä, että insuliinilla on elimistössä muitakin tehtäviä, kuin sokeriaineenvaihdunnan säätely. Insuliini on anabolinen hormoni, jota hyödynnetään enenevässä määrin doping-aineena. Sitä tarvitaan moniin aineenvaihduntatapahtumiin proteiinisynteesistä lipogeneesiin, eli läskisynteesiin.

Ennen kuin Frederic G. Banting, Charles H. Best ja J.J. Macleod löysivät insuliinin1921, tyypin 1 diabetes oli kuolemantuomio. Haiman Langerhansin insuliinia tuottavien betasolujen tuhoutuminen aiheutti sen, että diabeetikon elimistö ei pystynyt hyödyntämään ravintoa.

Ilman insuliinilääkitystä diabeetikot kuihtuivat ja kuolivat nälkään syödyn ravinnon määrästä riippumatta.


Haima: eksokriininen ja endokriininen osa

Haima tuottaa ruoansulatusnestettä, insuliinia ja insuliinin vastavaikuttajaa, glukagonia.

Haima muodostuu kahdesta kudostyypistä. Eksokriininen, eli avoeritteinen osa käsittää jopa 98 % haimasta. Eksokriininen kudos erittää ruoansulatusnesteitä haimatiehyen välityksellä pohjukaissuoleen.

Haimasta erittyy noin puolitoista litraa haimanestettä vuorokaudessa. Neste sisältää tiehytsolujen emäksistä eritettä ja rauhassolujen entsyymipitoista eritettä. Haimanesteen sisältämä natriumvetykarbonaatti neutraloi mahasta tulevan ruokasulan happamuutta.

Haimaneste sisältää ravinnon pilkkomisen kannalta tärkeitä entsyymejä:

Haimaneste sisältää myös trypsiininestäjää, joka estää trypsiiniä aktivoitumasta liian aikaisin niin, ettei se pilkkoisi elimistön omia proteiineja.

Haimanesteen eritystä ohjailevat pohjukaissuolen limakalvon vereen erittämät hormonit sekä parasympaattinen hermosto.

  • Hapan mahaneste saa pohjukaissuolessa aikaan sen, että vereen erittyy sekretiiniä, joka aiheuttaa natriumvetykarbonaattipitoisen haimanesteen erityksen tiehytsoluista
  • Rasvojen ja valkuaisaineiden pilkkoutumistuotteet saavat aikaan pankreotsymiinin eli kolekystokiniinin erityksen, joka taas aiheuttaa entsyymipitoisen haimanesteen erityksen

Haiman endokriininen osa

Umpieritteinen, eli endokriininen osa käsittää vain pari prosenttia koko haimasta. Endokriininen osa koostuu noin miljoonasta Langerhansin saarekkeesta (haimasaarekkeesta), jotka ovat levittäytyneet eri puolille haimaa.

Langerhansin saarekkeiden alfasolut erittävät glukagonia, beetasolut insuliinia ja deltasolut somatostatiinia, joka on kasvuhormonia hillitsevä hormoni. Lisäksi PP-solut tuottavat haiman polypeptidejä.

Katabolinen ja anabolinen aineenvaihdunta

Katabolinen aineenvaihdunta kuluttaa energiaa. Anabolinen aineenvaihdunta rakentaa lihasmassaa ja varastoi energiaa glykogeeneihin ja/tai rasvasoluihin.

Katabolisen aineenvaihdunnan aikana haiman erittämä glukagoni tehostaa maksan glykogenolyysiä ja maksassa (sekä munuaisten kuoriosassa) tapahtuvaa glukoneogeneesiä.

Glykogenolyysi pilkkoo tuhansista glukoosimolekyyleistä muodostuvia maksan ja lihasten sokerivarastoja (glykogeenejä) glukoosiksi. Lihassolujen glykogeeneistä pilkotut glukoosimolekyylit jäävät lihassolujen ravinnoksi.

Maksa erittää glykogeeneistä purettuja glukoosimolekyylejä vereen, jolloin verensokeri kohoaa.

Glukoneogeneesi valmistaa glukoosia mm. maitohaposta, rasvojen glyseroliosasta sekä eräistä aminohapoista. Tämä mekanismi ylläpitää elimistön glukoosihomeostaasia.

Glukagoni nostaa veren glukoosipitoisuutta silloin, kun ravinnon syömisetä on kulunut aikaa ja/tai kun ravintoa ei ole saatavilla (kuten paaston aikana). Glukagonin eritys alkaa, kun veren insuliinipitoisuus laskee riittävän matalaksi.

Katabolinen ja anabolinen aineevaihdunta vaihtelevat jatkuvasti

Katabolisessa aineenvaihdunnassa glukagoni ohjaa elimistön energiavarastojen purkamista ensiksi glukoosiksi ja myöhemmin yhdessä lipolyyttisten hormonien kanssa vapaiksi rasvahapoiksi.

Anabolisessa aineenvaihdunnassa insuliini ohjaa energiaravinteiden oksidaatiota ja varastoimista sekä proteiini- ja rasvasynteesiä.

Insuliini säätelee anabolista aineenvaihdutaa, jossa elimistöön varastoidaan enemmän energiaa kuin sitä kuluu. Anabolisen aineenvaihdunnan aikana insuliini toimii energia-aineenvaihdunnan kapellimestarina: se avaa solukalvot niin, että ravinteet pääsevät soluihin.

Kehon kaikki solut osaavat tuottaa glukoosista energiaa glykolyysissä. Suurin osa soluista (punasoluja paitsi) tuottaa energiaa glykolyysissä, sitruunahappokierrossa ja elektroninsiirtoketjussa.

Lihas- ja maksasoluissa glukoosista syntetisoidaan glykogeenejä, eli kymmenistä tuhansista glukoosimolekyyleistä muodostuvia sokerivarastoja.

Insuliinituotannon heikkeneminen tai sen loppuminen johtaa diabetekseen.

Mitä insuliini on?

Insuliini on haiman Langerhansin saarekkeiden betasolujen erittämä hormoni, joka säätelee mm. sokeriaineenvaihduntaa.

Insuliini on keskeinen vaikuttaja useissa aineenvaihduntareaktioissa. Insuliini ohjaa energiaravinteiden oksidaatiota ja varastoimista. Se säätelee sekä hiilihydraattien että rasvojen energia-aineenvaihduntaa ja sillä on keskeinen rooli proteiinien ja mineraalien aineenvaihdunnassa.

Insuliinisignallointi vaikuttaa merkittävällä tavalla monien elinten ja kudosten toimintaan.

Tyypin 1 diabetes on autoimmuunitauti, jossa kehon immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden betasoluja. Näin haiman kyky tuottaa insuliinia heikkenee ja loppuu. Aikuistyypin diabeteksessa solujen insuliiniherkkyys häiriintyy, jolloin insuliinin teho heikkenee.

Insuliini on proteiinihormoni, jonka reseptorit sijaitsevat solukalvoilla. Reseptorit muodostuvat kahdesta disulfidisidoksen liittämästä alfa-alayksiköstä ja kahdesta beta-alayksiköstä.

Insuliinimolekyylit kiinnittyvät solunulkoisiin alfaketjuihin, jotka puolestaan läpäisevät solukalvon ja yhdistyvät solunsisäisiin betaketjuihin.

Insuliinin synteesi ja eritys

Insuliini on pieni kahdesta disulfidisidoksen yhdistämästä ketjusta muodostuva proteiini. Selkärankaisten insuliinin aminohapposekvenssi on erittäin konservoitunut (pysynyt eri lajeilla samanlaisena), joten yhden nisäkkään erittämä insuliini on yleensä biologisesti aktiivinen myös muilla nisäkkäillä. Vielä nykyäänkin monia diabetesta sairastavia potilaita hoidetaan sian haimasta saadulla insuliinilla.

Insuliinin biosynteesi

Insuliinia syntetisoidaan haiman betasoluissa. Insuliinin mRNA muunnetaan yksiketjuiseksi esiasteeksi, jota kutsutaan preproinsuliiniksi, ja sen signaalipeptidin poisto endoplasman verkkokalvoon insertoinnin aikana tuottaa proinsuliinia.

Proinsuliini muodostuu kolmesta jaksosta:

  • aminoterminaalinen B-ketju
  • karboksiterminaali A-ketju
  • C-peptidi, joka yhdistää edellisiä

Endoplasmisessa verkkokalvossa proinsuliini altistetaan useille erityisille endopeptidaaseille, jotka leikkaavat C-peptidin, jolloin muodostuu kypsän insuliinin rakenne. Insuliini ja vapaa C-peptidi pakataan Golgin laitteen eritysrakkuloihin, jotka kertyvät sytoplasmaan.

Kun betasolua stimuloidaan, insuliini erittyy solusta eksosytoosin avulla ja sekoittuu saarekkeen kapillaarivereksi. C-peptidi erittyy myös vereen, mutta sillä ei ole tunnettua biologista aktiivisuutta.

Insuliinin rakenne

Insuliini muodostuu kahdesta peptidiketjusta, joihin viitataan A- ja B-ketjuina. A- ja B-ketjut kytkeytyvät toisiinsa kahdella disulfidisidoksella, ja A-ketjussa muodostuu ylimääräinen disulfidi.

Useimmilla nisäkkäillä insuliinin A-ketju koostuu 21 aminohaposta ja B-ketju 30 aminohaposta. Vaikka insuliinin aminohapposekvenssi vaihtelee lajeittain, molekyylin tietyt segmentit ovat erittäin konservoituneita. Erityisesti kolmen disulfidisidoksen asemat, A-ketjun molemmat päät ja B-ketjun C-terminaaliset tähteet vastaavat useilla lajeilla toisiaan. Nämä samankaltaisuudet insuliinin aminohapposekvenssissä johtavat insuliinin kolmiulotteiseen konformaatioon, joka on hyvin samanlainen lajien välillä.

Yhden eläimen insuliini on hyvin todennäköisesti biologisesti aktiivista muilla lajeilla

Sian insuliinia on käytetty laajalti ihmispotilaiden hoidossa. Insuliinimolekyyleillä on taipumus muodostaa dimeerejä liuoksessa johtuen vety-sitoutumisesta B-ketjujen C-päiden välillä. Lisäksi sinkki-ionien läsnä ollessa insuliinidimeerit sitoutuvat heksameereiksi.

Näillä vuorovaikutuksilla on merkittäviä kliinisiä seurauksia. Monomeerit ja dimeerit sekoittuvat (diffundoituvat) helposti vereksi, kun taas heksameerit diffundoituvat huonosti. Siksi suurta osaa heksameerejä sisältävien insuliinivalmisteiden imeytyminen on hidasta. Tämä havainto on stimuloinut useiden rekombinanttien insuliinianalogien kehitystä.

Ensimmäinen tällaisista molekyyleistä – lisproinsuliini – on suunniteltu siten, että lysiini- ja proliinitähteet B-ketjun C-terminaalisessa päässä ovat päinvastaiset; tämä modifikaatio ei muuta reseptoriin sitoutumista, mutta minimoi taipumuksen muodostaa dimeerejä ja heksameerejä.

Insuliinin erityksen hallinta

Insuliinin eritystä säätelee erityisesti veren glukoosipitoisuuden muutokset. Tämä on perusteltua, koska insuliini säätelee glukoosin pääsyä solukalvon läpi soluihin.

Eräät hermoston ärsykkeet (esim. ruoan näkeminen, haistaminen ja maistaminen) sekä muiden energiaravinnemolekyylien, aminohappojen ja rasvahappojen lisääntyneet veripitoisuudet lisäävät myös insuliinin eritystä, mutta selvästi vähemmän kuin glukoosi.

Tieto insuliinin erityksen taustalla olevista mekanismeista on edelleen hajanaisia. Aineenvaihduntaprosessin tietyt piirteet on kuitenkin osoitettu selvästi ja toistuvasti, mikä antaa seuraavan mallin:

  • Glukoosi kuljetetaan beetasoluun helpotetun diffuusion avulla glukoosin kuljettajamolekyylin (GLUT4) kautta; kohonneet glukoosipitoisuudet solunulkoisissa nesteissä johtavat kohonneisiin glukoosipitoisuuksiin beetasolussa.
  • Kohonnut glukoosipitoisuus beetasolussa vaikuttaa solukalvon depolarisaatioon, eli solukalvon jännitteen purkautumiseen ja solunulkoisen kalsiumin soluun pääsyyn.Kalsiumin lisääntyminen solussa on yksi insuliinia sisältävien eritysrakkuloiden (granuloiden) ensisijaisista laukaisijoista. Mekanismeja, joilla beetasolun kohonnut glukoosipitoisuus aiheuttaa solukalvojen jännitteen purkamisen (depolarisaation), ei täysin tunneta, mutta ne näyttävät johtuvan glukoosin ja muiden solun sisällä olevien energiaravinemolekyylien aineenvaihdunnasta.Tähän reaktioon voi vaikuttaa myös ATP:ADP-suhde, joka vaikuttaa solukalvon läpäisevyyteen.
  • Beetasolujen lisääntynyt glukoosipitoisuus näyttää myös aktivoivan kalsiumista riippumattomia reittejä, jotka osallistuvat insuliinin eritykseen.


Haiman insuliinivaste voidaan tarkistaa helposti. Ihmisillä ja useilla nisäkkäillä normaali paastoverensokeripitoisuus on 4,5-5,5 mmol /l, mikä assosioituu vähäiseen insuliinin eritykseen.

Glukoosin infuusiolla (glukoosin tiputuksella vereen) haiman insuliinivatetta tai insuliinin erittymistä voidaan mitata

Melkein heti glukoosiinfuusion jälkeen plasman insuliinipitoisuudet kohoavat dramaattisesti. Tämä pitoisuuden kohoaminen johtuu ennalta muodostetun insuliinin erityksestä. Valmis insuliini kuitenkin ehtyy nopeasti.

Toissijainen insuliinipitoisuuden kohoaminen heijastaa välittömästi erittyvää vasta syntetisoitua insuliinia. Kohonnut glukoosi vaikuttaa insuliinin erityksen lisäksi myös insuliinigeenin transkriptioon ja sen mRNA:n translaatioon.

Insuliinireseptori on tyrosiinikinaasi. Se toimii entsyyminä, joka siirtää fosfaattiryhmät ATP:stä solun sisäisten kohdeproteiinien tyrosiinitähteisiin.

Insuliinin sitoutuminen alfa-alayksiköihin saa beeta-alayksiköt fosforyloimaan itsensä (autofosforylaatio) aktivoiden siten reseptorin katalyyttisen aktiivisuuden. Aktivoitu reseptori fosforyloi sitten useita solunsisäisiä proteiineja, mikä puolestaan muuttaa niiden aktiivisuutta ja tuottaa siten biologisen vasteen.

Useat solunsisäiset proteiinit on tunnistettu insuliinireseptorin fosforylaatiosubstraateiksi. Näistä tunnetuin ja tutkituin on insuliinireseptorisubstraatti 1 tai IRS-1. Kun IRS-1 aktivoidaan fosforylaatiolla, tapahtuu useita asioita.

IRS-1 toimii muun muassa telakointikeskuksena muiden insuliinin vaikutuksia välittävien entsyymien rekrytoinnissa ja aktivoinnissa.

Glukoosia saadaan hiilihydraateista ohutsuolessa tapahtuvan hydrolyysin avulla. Glukoosi imeytyy ohutsuolesta verenkiertoon.

Kohonnut veren glukoosipitoisuus stimuloi insuliinin eritystä. Insuliini vaikuttaa soluihin kehon ulkopuolella stimuloiden glukoosin imeytymistä, käyttöä ja varastointia. Insuliinin vaikutukset glukoosimetaboliaan vaihtelevat kohdekudoksesta riippuen. Kaksi tärkeää vaikutusta ovat:

  1. Insuliini helpottaa glukoosin pääsyä lihas- ja rasvasoluihin sekä muihin kudoksiin. Ainoa mekanismi, jolla useimmat solut voivat ottaa glukoosia, on helpotettu diffuusio heksoosikuljettajaperheen kautta.Monissa kudoksissa glukoosin ottoon käytetty kuljettajamolekyyli (GLUT4) on insuliinin vaikutuksesta saatavilla plasmakalvossa.Alhaisilla insuliinipitoisuuksilla, GLUT4-glukoosinkuljetusmolekyylejä on solujen sytoplasmisissa rakkuloissa.Insuliinin kiinnittyminen solujen insuliinireseptoreihin johtaa näiden rakkuloiden plasmakalvoon fuusioitumiseen ja GLUT4-kuljetusmolekyylien esiintyöntymiseen, mikä antaa solulle mahdollisuuden ottaa glukoosia tehokkaasti solun sytoplasmaan.

    Kun veren insuliinitasot laskevat ja insuliinireseptorit eivät enää ole käytössä, glukoosinkuljettajat kierrätetään takaisin sytoplasmaan.

    On eräitä sellaisia kudoksia, jotka eivät edellytä insuliinia tehokkaaseen glukoosinottoon: tällaisia ovat aivot ja maksa.

    Tämä johtuu siitä, että nämä solut eivät käytä GLUT4-kuljetusmolekyylejä glukoosin tuontiin, vaan toista kuljetusmolekyyliä, jonka aktivaatio ei vaadi insuliinia.

  2. Insuliini stimuloi maksaa varastoimaan glukoosia glykogeeneiksi. Suuri osa ohutsuolesta imeytyneestä glukoosista imeytyy välittömästi maksasoluihin, jotka muuttavat sen varastointipolymeeriglykogeeniksi.Insuliini stimuloi glykogeenisynteesiä maksassa monin tavoin. Ensinnäkin insuliini aktivoi heksokinaasientsyymin, joka fosforyloi glukoosin, vangitsemalla sen soluun.Samalla insuliini estää glukoosi-6-fosfataasin aktiivisuutta. Insuliini aktivoi entsyymejä, jotka osallistuvat suoraan glykogeenisynteesiin:- fosfofruktokinaasi
    – glykogeenisyntaasi

    Vaikutus on selvä: kun glukoosia on runsaasti saatavilla, insuliini ”käskee” maksaa tallentamaan mahdollisimman suuren määrän glukoosia myöhempää käyttöä varten.

  3. Insuliini vähentää glukoosipitoisuutta veressä, mikä on ymmärrettävää ottaen huomioon edellä kuvatut mekanismit.Toinen tärkeä huomio on, että verensokeripitoisuuden laskiessa insuliinin eritys vähenee.Jos veren insuliinipitoisuus laskee, suurin osa kehon soluista ei pysty ottamaan glukoosia energiakäyttöön. Näiden solujen on siirryttävä käyttämään vaihtoehtoisia polttoaineita, kuten rasvahappoja.Kun veren insuliinipitoisuus laskee, maksan glykogeenisynteesi vähenee ja glykogeenin hajoamisesta vastaavat entsyymit aktivoituvat.

    Glykogeenin hajoamista stimuloi paitsi insuliinipitoisuudern lasku, myös glukagoni, jota erittyy, kun verensokeritaso laskee normaalin pitoisuuden alle.

Insuliinin ja lipidien aineenvaihdunta

Aineenvaihduntareitit rasvojen ja hiilihydraattien hyödyntämiseksi ovat monimutkaisia. Insuliinin vaikutukset hiilihydraattien aineenvaihduntaan ovat kiistattomasti osoitettu ja elintärkeä.

Insuliinilla on myös merkittäviä vaikutuksia lipidien aineenvaihduntaan, mukaan lukien seuraavat:

  1. Insuliini edistää rasvahappojen synteesiä maksassa. Insuliini stimuloi glykogeenin synteesiä maksassa. Kun glykogeenivarastojen koko kasvaa suureksi (noin 5% maksan massasta), synteesi jatkuu tukahdutettuna.Kun maksan glykogeenivarastot ovat täyttyneet, kaikki maksasolujen ottama ylimääräinen glukoosi siirtyy aineenvaihduntareitille, joka johtaa rasvahappojen synteesiin. Rasvahappoja viedään maksasta lipoproteiineina (esim. LDL, HDL). Lipoproteiinit kuljettavat vapaita rasvahappoja ja kolesterolia maksasta verenkierron välityksellä muihin kudoksiin. Esimerkiksi adiposyyteissä, eli rasvasoluissa, lipoproteiinien kuljettamat vapaat rasvahapot syntetisoidaan triglyserideiksi.
  2. Insuliini estää triglyseridien purkamista rasvakudoksesta estämällä solunsisäistä lipaasia, joka hydrolysoi triglyseridejä rasvahappojen vapauttamiseksi. Toisin sanoen insuliini on lipolyysin estäjä.
    Veren korkea insuliinipitoisuus estää rasvasolujen purkamisen vereen vapaiksi rasvahapoiksi, joita maksa voi muuttaa energiaksi kelpaaviksi ketoaineiksi.

    Insuliini myös helpottaa glukoosin pääsyä rasvasoluihin. Rasvasoluissa glukoosia voidaan käyttää glyserolin syntetisoimiseksi.

    Lipogeneesissä glyseroliin liitetääna vapaita rasvahappoja, jolloin rasvasoluun muodostuu triglyseridejä – kolmesta rasvahappoketjusta ja glyseroliosasta koostuvia rasvamolekyylejä.

    Yllä kuvattujen mekanismien avulla insuliini lisää triglyseridien eli rasvan kertymistä rasvasoluihin, ja rasvasolujen purkamista verenkiertoon.

    Elimistössä insuliinilla on rasvaa säästävä vaikutus

    Paitsi että insuliini ohjaa useimpia soluja hapettamaan ensisijaisesti hiilihydraatteja rasvahappojen sijaan, se stimuloi epäsuorasti rasvan kertymistä rasvakudokseen.

Insuliinin muita vaikutuksia

Sen lisäksi, että insuliini vaikuttaa glukoosin soluihin viemiseen ja rasva-aineenvaihduntaan, se stimuloi myös aminohappojen imeytymistä, mikä osaltaan edistää insuliinin yleistä anabolista vaikutusta.

Insuliini lisää myös solujen läpäisevyyttä kalium-, magnesium- ja fosfaatti-ioneille. Vaikutus kaliumiin on kliinisesti tärkeä.

Insuliini aktivoi natrium-kalium-ATPaaseja monissa soluissa aiheuttaen kaliumvirtauksen soluihin. Tietyissä olosuhteissa insuliinin injektio voi tappaa potilaan, koska se kykenee tukahduttamaan plasman kaliumpitoisuuden.

Tämä oli johdanto insuliinia käsittelevään artikkelisarjaan. Tulevissa katsannoissa avaan täsmällisemmin insuliinin toimintaa ja merkitystä aineenvaihdunnan ja terveyden säätelijänä.




Ruokasotaa ja anarkiaa osa 3

Diet Heart-hypoteesin jälkeinen ravitsemuspolitiikka hukutti kuluttajat kelvottomaan teolliseen mönjään ja väitti monityydyttämätöntä hydrattua mönjää sydänterveyttä edistäväksi rasvaksi. Kovat tyydyttyneet rasvat voivat olla mainettaan parempia.

Ruokasotaa ja anarkiaa osa 3 jatkaa ravinnosta räksytyttämistä, annettujen tosiasioiden kyseenalaistamista ja ravitsemussuositusten solvaamista. Suhtaudun ravintoon aiheellisen asenteellisesti.

Tiesitkö, että

  • Ranskassa syödään enemmän tyydyttyneitä rasvoja, kuin missään muussa Euroopan maassa, mutta ranskalaisilla esiintyy vähiten sydäntauteja Euroopassa.
  • Ranskalaisten jälkeen sveitsiläiset syövät toiseksi eniten tyydyttyneitä rasvoja. Vastaavasti sveitsiläisten sydäntautikuolleisuus on toiseksi matalin Euroopassa.
  • Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautien ja sydäntautikuolleisuuden esiintyvyys on alhaisinta.
  • Vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä Euroopassa.

Edelliset tilastolliset tosiasiat eivät todista, että tyydyttyneet ravat olisivat terveellisiä. Tällaiset tilastot ovat ns. ekologista dataa, johon voi vaikuttaa sadat tai tuhannet tunnistetut ja tunnistamattomat muuttujat. Näistä ei saa vetää hätiköityjä johtopäätöksiä. Havainnot julkaisi British Journal of Nutrition.

Ne ovat kuitenkin tosiasioita, jotka osoittavat, että ravintosuositusten ja todellisuuden välillä on kiusallinen ristiriita.

Miksi niissä maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautikuolleisuus on vähäistä, kun niissä maissa, joissa syödään eniten pehmeitä ja terveellisiä monityydyttämättömiä kasvirasvoja, sydäntautikuolleisuus on Euroopan korkeinta. Se on hämmentävää.

Tällaiset tosiasiat eivät mahdu ravitsemussuosituksiin. Mikä tällaisen selittäisi?

Aikahyppy

1950-luvulla amerikkalainen tutkija, Ancel Keys päätyi hypoteesiin, jonka mukaan kolesteroli ja tyydyttyneet eläinrasvat selittävät valtimonkovettumatautia.

Ensin tieteellinen yhteisö huvittui Keysin absurdeista väitteistä, mutta seitsemän maan tutkimus sai joidenkin tutkijoiden silmät avautumaan. Entä jos Keys on oikeassa?

Sydäntautikuolleisuus oli lisääntynyt Yhdysvalloissa kiihtyvästi 1900-luvun alusta alkaen, mutta syytä ilmiölle ei tunnettu. Sydänkohtauksia oli ilmassa, kortisolia veressä ja paniikin hajua kongressin käytävillä. Jotain pitäisi kai tehdä!

Jo 1950-luvulla saatiin osviittaa siitä, että runsas sokereiden saanti assosioituu sydän- ja verisuonitautien lisäksi moniin syöpiin. Tämä havahdutti sokeriteollisuuden johtajat. Sugar Research Foundation ei piitannut tutkimuksista tai terveydestä, mutta sokeriteollisuuden voitot piti turvata ja maksimoida. Business as usual!

Poliittinen ilmasto muuttui eläinrasvojen vastaiseksi 1960- ja 1970-luvuilla. Yleiseen mielialaan vaikuttivat sokeriteollisuuden aggressiivinen lobbaus Washingtonissa ja ja tyydyttyneitä rasvoja mustamaalaava tutkimus, jonka Sugar Research Foundation rahoitti.

Ancel Keysin teoria vaikutti hyväksyttävältä ja se sai taakseen vaikutusvaltaisia tukijoita ja tutkijoita.

Keys tarjosi yksinkertaisen ratkaisun: jos eläinrasvat ja kolesteroli aiheuttavat sydän- ja verisuonitauteja, eläinrasvojen ja kolesterolin kulutuksen vähentäminen väestötasolla laskee sydän- ja verisuonitautien esiintyvyyttä väestötasolla. Ihmisiä pitäisi kehottaa välttämään rasvaa ja erityisesti kovia eläinrasvoja.

Sugar Daddy Cool

Tyydyttyneiden rasvojen haittoja korostava näkemys sopi mainiosti Mark Hegstedille, joka oli kansallisten ravitsemussuositusten laatimisen aikaan (1977) Yhdysvaltojen maatalousministeriön ravitsemusasioista vastaava johtaja.

Kymmenen vuotta aikaisemmin Hegsted toimi tutkijana Harvardissa. Hän oli yksi niistä kolmesta tutkijasta, jotka Sugar Research Foundation (Sugar Association) palkkasi nykyrahassa 49 000 dollarin korvausta vastaan kirjoittamaan sokereiden haittoja vähättelevän ja eläinrasvojen haittoja liioittelevan tutkimuksen sokeriteollisuuden kokoaman aineiston pohjalta. Maatalousministeriön kansalaisille laatimat yleiset ravitsemussuositukset olivat Hegstedin vastuulla. Lue tästä.

Suositusten läpimeno Yhdysvalloissa perustui enemmänkin aggressiiviseen lobbaukseen ja politiikkaan kuin tieteesen ja terveyteen.

Kansikuvapoika ja ravitsemustieteen supertähti

Keys oli ravitsemustieteen kansikuvapoika ja aikalaisten palvoma komea ja karismaattinen supertiedemies. Seitsemän maan tutkimuksessa seurattiin kahdenkymmenenkahden maan rasvalla lotraamista, mutta vain ne seitsemän maata, joissa lotrattiin paljon tyydyttyneillä rasvoilla ja kuoltiin riittävän usein sydäntauteihin, täyttivät Keysin vaatimukset tyydyttyneiden rasvojen vaaroista. Tällaista tutkimusmetodia kutsutaan ”kirsikoiden poimimiseksi” (cherry picking).

Keys poimi tutkimusaineistosta vain alkuperäistä hypoteesiaan tukevat tulokset (kirsikat) ja sivuutti tulokset, jotka olivat ristiriidassa hypoteesin kanssa. Näin lopullisessa tutkimuksessa tutkimusaineistosta hylättiin yli puolet. Jos koko Keysin tutkimusaineisto analysoidaan, tutkimuksen johtopäätökset muuttuvat.

Tarkemmin analysoituna Keysin aineisto osoittaa, että sydäntautien ja sokerin korrelaatio on vahvempi kuin sydäntautien ja tyydyttyneiden rasvojen korrelaatio, mutta sellainen mahdollisuus ei sopinut Keysin todellisuuteen. Se hylättiin.

Keysin alkuperäinen data sisältää mielenkiintoisia havaintoja. Tyydyttyneiden rasvojen saanti Ranskassa oli samalla tasolla tai korkeampi kuin Suomessa, mutta sydäntautikuolleisuuden esiintyvyys oli Ranskassa hyvin alhainen. Tämä ilmiö tunnetaan ranskalaisena paradoksina.

Ranska on mielenkiintoinen kuriositeetti muutenkin. Runsaasta tyydyttyneiden rasvojen kulutuksesta huolimatta simerkiksi ärtyvän suolen oireyhtymä, närästys ja sydäntaudit ovat selvästi harvinaisempia Ranskassa, kuin Suomessa ja Yhdysvalloissa.

Myös muissa pohjoismaissa tyydyttyneitä rasvoja syötiin enemmän kuin Suomessa, mutta sydäntautien esiintyvyys ja sydäntautikuolleisuus oli Suomeen verrattuna vähäistä. Kuinka se voi olla mahdollista, jos tyydyttyneet rasvat aiheuttavat sydäntauteja?

Rasvateorian kritiikki

Rasvan ja erityisesti tyydyttyneiden rasvojen saannin vähentämistä suosittava diet-heart-hypoteesi on ollut ankaran kiistelyn kohteena vuosikymmenten ajan.

Vähärasvainen ja runsaasti hiilihydraatteja sisältävä ruokavalio, jollaista Yhdysvaltojen kansalliset terveysjärjestöt (NCEP, NIH ja AHA) ovat suositelleet vuoden 1984 LCR-CPPP:n (Lipid Research Clinics-Primary Prevention Program) ja Yhdysvaltojen maatalousministeriön 1977 julkaisemien ravintosuositusten jälkeen, saattoi hyvinkin osaltaan vaikuttaa nykyisten elintapasairauksien nopeaan yleistymiseen.

Aikuistyypin diabetes, lihavuus, metabolinen oireyhtymä ja erilaiset suolistosairaudet lähtivät laukalle 1980-luvun alussa. Miksi? Voisiko liika sokerinsaanti selittää elämäntapasairauksien epidemiaa?

Sydäntautien esiintyvyys ja sydäntautikuolleisuus ovat hieman laskeneet. Lasku voidaan selittää esimerkiksi tupakoinnin ja ilmansaasteiden vähenemisellä, vähäisemmällä altistumisella terveydelle haitallisille kemikaaleille sekä paremmilla lääkkeillä ja tehokkaammilla hoitomuodoilla.

Sydäntautikuolleisuuden lasku selitetään nimenomaasn tyydyttyneiden rasvojen käytön vähenemisen seurauksena ja sillä perustellaan yhä tyydyttyneiden rasvojen välttämiseen kehottavia toimia.

Esimerkiksi Pekka Puskan mukaan Pohjois-Karjala-projekti pelasti neljännesmiljoona suomalaista. Se on roskaa, sillä sydäntaudit olivat kääntyneet laskuun jo ennen Pohjois-Karjala-projektia, ja laskivat nopeammin Länsi-Suomessa, joka ei ollut interventiotutkimuksen piirissä!

Tyydyttyneiden rasvojen ja hiilihydraatteja rajoittavien ruokavalioiden haittoja korostavaa narratiivia ruokitaan jatkuvasti uusilla absurdeilla valheilla: insuliiniresistenssi ja aikuistyypin diabetes ovat viimeisimpien mielikuvituksellisten satujen mukaan seurausta tyydyttyneistä rasvoista ja – Herra tietää – karppaamisesta.

Tyydyttyneiden rasvojen tuotanto, käyttö ja myynti ovat laskeneet tasaisesti 1980-luvulta alkaen. Samaan aikaan monityydyttämättömien kasvirasvojen ja hiilihydraattien kulutus on lisääntynyt. Vaikka runsasenergisten rasvojen saanti kääntyi 1980-luvulla laskuun, amerikkalaisten kaloreiden saanti lisääntyi huomattavasti.

Kaloreiden saannin kasvu USA:ssa

Ketogeenistä ruokavaliota noudattavia on kourallinen maailman ihmisistä, mutta diabetesta sairastaa jo lähes 10 % maailman väestöstä, ja suurin osa diabetesta sairastavista ei karpannut sairastuessaan. Väite siitä, että ketogeeninen ruokavalio lisäisi insuliiniresistenssin ja diabeteksen riskiä esiteltiin taannottain erään iltapäivälehden terveyssivuilla. Se on epätieteellistä roskaa.

Tällaisen epätieteellisen roskan mukaan kaikki karppaaminen on saatanasta.

Ketoilusta maalataan käsittämättömiä kauhukuvia. Syy voi olla se, että ketoilu uhkaa perinteisten ravitsemussuositusten legitimiteettiä. Ketoilu on anarkismia, jossa valistuneet yksilöt uskaltavat kyseenalaistaa norsunluutorneissa elävien viranomaisten antamien ohjeiden legitimiteettiä.

Maailmassa jo yli 10 000 lääkäriä hoitaa lihavuutta ja aikuistyypin diabetesta ketogeenisellä ruokavaliolla. Pelkästään Kanadassa on yli 4000 naistentautien lääkäriä, jotka suosittelevat potilailleen vähän hiilihydraatteja ja runsaasti rasvaa sisältävää ruokavaliota. Jatkuvasti kasvava evidenssi tukee tätä lähestymistapaa. Valitettavasti vakiintuneet paradigmat kumoutuvat hitaasti.

Ketogeenisen ruokavalion terveyshyötyjä osoittavia kontrolloituja satunnaistettuja tutkimuksia julkaistaan kiihtyvällä tahdilla, mutta ne tunnetaan yhä valitettavan huonosti.

Surulliset tilastot

Maailman terveysjärjestön (WHO) raportin mukaan lihavien määrä on kolminkertaistunut vuoden 1975 jälkeen. Jopa 39 % kaikista aikuisista (n.1,9 miljardia) oli ylipainoisia 2016. Ylipainoisista lihavia oli yli 650 miljoonaa. 340 miljoonaa lasta ja nuorta (5-19) ja 38 miljoonaa alle 5-vuotiasta oli ylipainoisia tai lihavia vuoden 2016 raportin mukaan.

Lihavuus tappaa enemmän ihmisiä kuin nälkä

Diabetesta sairastavien määrä on kasvanut 108 miljoonasta (1980) 422 miljoonaan (2014). Taudin esiintyvyys lähes tuplaantui 4,7 % > 8,5 %. Vuosien 2000 ja 2016 kuolleisuus diabetekseen kasvoi 5 %.

Diabetes aiheuttaa mm. sokeutta, munuaissairauksia ja sydän- ja verisuonitauteja. Vuonna 2016 diabetes oli globaalisti seitsemänneksi yleisin kuolinsyy.

Insuliiniresistenssin tunnistanut tri Joseph Kraft uskoi, että lähes kaikki sydän- ja verisuonitaudit johtuvat diagnosoidusta tai diagnosoimattomasta diabeteksesta.

Sydän- ja verisuonitaudit ovat ”terveelliseen” mönjään siirtymisestä huolimatta yhä maailmanlaajuisesti yleisin kuolinsyy.

Sydäntautikuolleisuus on hitaasti laskenut, mutta lasku voidaan selittää mm. tupakoinnin vähenemisellä, aiempaa paremmilla lääkkeillä ja hoitojen kehittymisellä.

Diabeetikoista suurin osa sairastuu ja kuolee sydän- ja verisuonitauteihin

Ehkä Kraft oli oikeassa? Aikuistyypin diabetes voi olla paljon laajempi ongelma kuin halutaan tunnustaa.

Diabetes ei ole vain kansanterveydellinen ongelma, vaikka se on todennäköisesti tärkein sydän- ja verisuonitaudeille altistava riskitekijä. Aikuistyypin diabetes on myös kansantaloudellinen ongelma, jonka kustannukset syövät leijonanosan terveydenhoitomenoista ja -resursseista.

Kraft on purkanut pitkän lääkärinuransa aikana hyperinsulinemiaa ja osoittanut kuinka jatkuvasti koholla oleva insuliini (hyperinsulinemia) altistaa sydän- ja verisuonitaudeille. Tämä ei voi olla yllätys, kun tiedetään, että diabetes vahingoittaa verisuonia ja on yleisin syy verenkiertohäiriöistä johtuville raajojen amputaatioille. Jatkuvasti korkea verensokeri ja insuliini vahingoittavat verisuonia ja elimiä.

Vähärasvaisia ravintosuosituksia ei voi perustella ohjeilla, jotka nojaavat auttamattomasti vanhentuneeseen dataan ja epäluotettaviin tutkimuksiin.

Kasvava kliininen näyttö kiistää opit tyydyttyneiden rasvojen haitoista ja monityydyttämättömien rasvojen eduista. Vahvistuva näyttö osoittaa, että paljon parjattu vähän hiilihydraatteja sisältävä ruokavalio on paljon mainettaan parempi. Se on tutkimusten valossa tehokas tapa hoitaa lihavuutta, metabolista oireyhtymää, aikuistyypin diabetesta ja verenpainetautia.

Ketogeeninen ruokavalio vähentää elimistön hiljaista tulehdusta, joka assosioituu lähes kaikkiin nykyisiin sairauksiin. Viimeaikainen näyttö viittaa siihen, että ketogeeninen ruokavalio voi hillitä Covid-19-tautiin liittyvää sytokiinimyrskyä. Lue tästä. Aihetta tutkitaan ja palaan siihen myös Ruokasodassa.

Enemmän monityydyttyneitä rasvoja, enemmän sydäntauteja

Ancel Keysin kokoaman aineiston olisi pitänyt herättää kriittisiä kysymyksiä jo viime vuosisadalla. Hypoteesin heikkouksia ei korjattu. Seitsemn maan tutkimus vahvisti mielikuvaa tyydyttyneiden rasvojen ja kolesterolin haitoista, vaikka tutkimuksesta johdetut päätelmät vuotavat kuin seula. Surullista kyllä, se on ravitsemussuositusten perusta.

Diet-heart-hypoteesi juntattiin ravitsemustieteen perustaksi kirsikoita poimimalla ja tutkimusaineistoa manipuloimalla.

Ranskalainen paradoksi on eurooppalainen paradoksi, joka ei oikeastaan ole paradoksi lainkaan, jos hyväksytään, ettei tyydyttyneet rasvat ole sydäntautien tärkein syy.

Ranskalaiset syövät paljon tyydyttyneitä rasvoja, mutta eivät sairastu tai kuole sydäntauteihin samassa suhteessa kuin vähemmän tyydyttyneitä rasvoja syövät. Kuinka se on mahdollista?

Ehkäpä ranskalaisten sydänterveyden perusta on punaviinin sisältämä resvetratoli?

Tehtyä virhettä on piiloteltu vuosikymmeniä. On helpompi keksiä erilaisia hassuja meriselityksiä ranskalaiselle paradoksille, kuin myöntää, että rasvojen suhteen tehtiin virhe, joka on vaikuttanut negatiivisesti satojen miljoonien ihmisten terveyteen.

Punaviini ehkäisee sydäntauteja ja syöpiä Ranskassa yhtä todennäköisesti kuin Koskenkorva ehkäisee alkoholismia Suomessa. Riittävä määrä kossua poistaa alkoholismin luonnollisen poistuman kautta. Ehkä meidän kaikkien pitäisi juoda enemän punaviiniä tai kossua ja sairastua maksakirroosiin ranskalaisten tapaan.

Resveratroli on tärkeä antioksidantti. Sydänterveydelle hyödylliset vaikutukset edellyttäisivät annostusta, jonka saa 400 viinilasillisesta. Kyllä minä kannatan punaviinin juomista, mutta ei se sydäntäni suojaa, paitsi sydänsuruilta.

On hyväksyttävä mahdollisuus, että tyydyttyneet rasvat eivät ole sydäntautien pääasiallinen syy. Jos sydäntauteja aiheuttaa jokin muu tekijä, silloin ranskalaisen paradoksin ongelma ratkeaa kuin itsestään.

Ongelmaksi jää se, että meitä on viety kuin pässiä narussa viimeiset viisikymmentä vuotta.

Onko ranskalainen paradoksi totta?

Ranskalainen paradoksi on totta, mutta se on eräänlainen tilastollinen illuusio. Laajoja populaatioita käsittelevistä tilastoista voi vetää jännittäviä korrelaatioita. Isojen väestöjen kohdalla vaikuttavia muuttujia on kuitenkin valtavasti. Jonkin havaitun ilmiön ja valitun muuttujan välille on helppoa vetää korrelaatio, mutta syy- ja seuraussuhteen osoittaminen onkin jo vaikeampaa.

Esimerkiksi margariinien kulutus korreloi avioerojen kanssa Mainen osavaltiossa. Suomessa jäätelön kulutus korreloi hukkumistapausten kanssa. Nämä ovat tosiasioita, mutta niiden välillä ei vallitse suoraa syy- ja seuraussuhdetta.

Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntaudit ja sydäntautikuolleisuus on vähäisintä. Vastaavasti on totta, että sydäntautien esiintyvyys ja sydäntautikuolleisuus on korkeinta maissa, joissa tyydyttyneitä rasvoja syödään vähiten. Kansallisia ja alueellisia muuttujia on paljon, eikä korrelaatiosta voi johtaa kausaliteettia.

Joissain vanhoissa seurantatutkimuksissa tyydyttyneiden rasvojen ja sydäntautien esiintyvyyden välillä on havaittu heikko korrelaatio

Vähemmän tyydyttyneitä rasvoja syöneet ihmiset ovat todennäköisesti noudattaneet muutenkin terveellisempiä elämäntapoja. Terveellisiä elämäntapoja noudattavan ihmisen efekti on hyvin tunnettu ilmiö.

Terveelliset elämäntavat ovat yleisiä muitakin terveellisiä elämäntapojan noudattavassa ihmisryhmässä. Tähän ryhmään kuuluvat liikkuvat enemmän, ovat hoikempia, sairastavat vähemmän diabetesta, tupakoivat vähemmän, juovat vähemmän alkoholia jne.

Sydänterveyttä ylläpitää yleisesti terveellisemmät elintavat. Ihminen, joka välttää tyydyttyneitä rasvoja sen vuoksi, että viranomaiset ovat kehottaneet välttämään epäterveellisiä rasvoja, välttää usein myös muita epäterveellisiksi luokiteltuja elämäntapoja, kuten tupakointia, yletöntä alkoholilla läträämistä, ylimääräistä suolaa tai sokeria jne.

Totuus on ranskalaisen paradoksin ja seurantatutkimusten välillä. Tyydyttyneet rasvat eivät ole sydäntautien merkittävin aiheuttaja. Elämäntapojen kokonaisuus vaikuttaa sairastumisriskiin enemmän, kuin yksittäinen muuttuja, kuten tyydyttynyt rasva.

 Ruokavalion ja muiden elämäntapojen lisäksi terveyteen vaikuttaa geeneistä ja ympäristöstä alkaen suuri määrä tunnettuja ja tuntemattomia muuttujia, joiden kontrollointi tutkimuksissa on hankalaa.

Oheinen kaavio, jonka julkaisi British Journal of Nutrition, perustuu Maailman terveysjärjestön (WHO) ja YK:n elintarvike- ja maatalousjärjestön (FAO) tilastoihin tyydyttyneiden rasvojen keskimääräisestä saannista 41 Euroopan maassa vuonna 1998, sekä ikään mukautetusta riskistä kuolla sydänsairauksiin. Se kertoo sen, mitä kysyin tekstin aluksi.

  • Ranskassa syödään enemmän tyydyttyneitä rasvoja, kuin missään muussa Euroopan maassa, mutta ranskalaisilla esiintyy vähiten sydäntauteja Euroopassa.
  • Ranskalaisten jälkeen sveitsiläiset syövät toiseksi eniten tyydyttyneitä rasvoja. Vastaavasti sveitsiläisten sydäntautikuolleisuus on toiseksi matalin Euroopassa.
  • Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautien ja sydäntautikuolleisuuden esiintyvyys on alhaisinta.
  • Vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä Euroopassa.

Vähemmän tyydyttynyttä rasvaa, enemmän sydäntauteja

Euroopassa vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä.

Tämä ei tietenkään todista, että tyydyttynyt rasva suojaisi sydänsairauksilta.

Tämä havainto nostaa esiin aiheellisen kysyyksen: Jos tyydyttyneiden rasvojen kulutus assosioituu suurempaan sydäntautikuolleisuuteen, kuten viranomaiset väittävät, miksi niissä maissa, joissa tyydyttyneitä rasvoja syödään eniten, sydäntautikuolleisuus on todellisuudessa harvinaisempaa, kuin maissa, jossa tyydyttyneitä rasvoja syödään vähiten?

Ovatko tyydyttyneet rasvat sittenkin haitallisia?


Paleoruokavalion johtava teoreetikko, Loren Cordain arvioi, että varhaisten metsästäjä-keräilijöiden energiansaannista 15 % oli peräisin tyydyttyneistä rasvoista. Jos se on totta, kehomme on hyvin adaptoitunut käyttämään tyydyttyneistä rasvoista saatavaa energiaa.

Ihminen voi Cordainin hypoteesin mukaan syödä yli kaksi kertaa enemmän tyydyttyneitä rasvoja, kuin mitä Yhdysvalloissa suositellaan. Ranskassa ja Sveitsissä ihmisten energiansaannista jo noin 15 % saadaan tyydyttyneistä rasvoista, mikä tukee Cordainin näkemystä.

Onko raskalaisten ja sveitsiläisten parempi sydänterveys vain ilahduttava sattuma, vai voisiko se liittyä tyydyttyneisiin rasvoihin?

Savua ja peilejä

Ravitsemustieteessä käytetään paljon savua ja peilejä. Tilastollisten silmänkääntötemppujen soveltaminen taloudellisten ja poliittisten päämäärien saavuttamiseksi on yleistä.

Joskus iltapäivälehtien ravitsemusta käsittelevät jutut ovat yhtä epätieteellisiä, kuin astrologiset väittämät, joiden mukaan ravuilla on erityinen alttius suolistotaudeille, koska kuun merkeissä syntyneet ravut stressaavat muita tähtimerkkejä enemmän.

Kritiikkiä kovista rasvoista

Rasvojen merkitystä ateroskeloosin patogeneesissä on tutkittu siitä alkaen, kun Anitschkow kidutti kaneja monilla mielikuvituksellisilla menetelmillä. Hänen tutkimuksensa osoittivat, että kolesteroli ja tyydyttyneet rasvat aiheuttavat kanien valtimoissa ateroskleroosiin viittaavia muutoksia.

Kriittinen pilkunnussija voisi kysyä: pitäisikö tämän yllättää? Tyydyttyneet eläinrasvat ja kolesteroli eivät ole kanien luontaista ravintoa. Kanin aineenvaihdunnalta puuttuu keinot hyödyntää eläinrasvoja ja kolesterolia.Ihmisen aineenvaihdunta sen sijaan osaa hyödyntää kovia eläinrasvoja ja kolesterolia.

Seerumin kohonneen kolesterolin ja sepelvaltimotaudin suhde on vuosikymmenten aikana vakiintunut tieteelliseksi paradigmaksi, mutta ruokavalion rooli sepelvaltimotaudin ehkäisyssä ja hoidossa on edelleen epäselvä ja kiistelty aihe.

Mann kirjoitti vuonna 1977: ”Vuosikymmenen jatkunut kiista ruokavalion yhteydestä sydäntauteihin on johtanut kaaokseen”. E.H. Ahrens, Jr., joka oli yksi diet-heart-hypoteesin alullepanijoista, totesi vuonna 1985, että vielä ei ole osoitettu ruokavalion muuttamisen ehkäisevän sepelvaltimotautia.

Ancel Keysin 1950-luvulla tekemät tutkimukset keskittyivät tyydyttyneitä rasvoja sisältäviin ruokavalioihin.

1960-luvulla senaattori George McGovern johti senaatin molempien puolueiden komiteaa, joka yhdessä Yhdysvaltain maatalousministeriön (USDA) kanssa päätyi suosittelemaan Ancel Keysin mallin mukaista ruokavaliota, jossa kovat rasvat korvataan monityydyttämättömillä kasvirasvoilla.

Väestötasolla ravitsemuksen ohjaaminen vähärasvaiseen, ja erityisesti vähän kovia rasvoja sisältävään suuntaan alkoi toden teolla, kun Kansallisen terveysjärjestön (NIH) rahoittamien Lipiditutkimusklinikoiden sepelvaltimotaudin ennaltaehkäisyyn tähtäävä ohjelma (LRC-CPPT) valmistui.

Silmänkääntötemppuja

LRC-CPPT osoitti, että kolestyramiini, jota annettiin koehenkilöille noin seitsemän vuoden ajan, laski seerumin kolesterolia 10% ja sepelvaltimotautikuolleisuutta 24%. Tämä oli tilastollisesti merkittävä tulos.

Absoluuttinen sepelvaltimotaudin väheneminen oli selvästi maltillisempi ja lumelääkettä saavassa ryhmässä tulokset olivat jopa hieman paremmat: sepelvaltimotaudin esiintyvyys laski 2 % lumelääkettä saaneessa, ja 1,6 % kolestyramiinia saaneessa kohortissa.

Tämän tutkimuksen perusteella LRC-CPPT-tutkijat päättelivät kuitenkin, että seerumin kolesterolin laskeminen oli merkittävä tekijä sydäntautien ehkäisyssä ja hoidossa. Tämä päätös vahvistettiin, kun statiinikokeissa seerumin kolesterolia onnistuttiin laskemaan 30% – 35%.

Tämä antoi vahvaa näyttöä siitä, että seerumin kolesterolin laskeminen vaikuttaa positiivisesti sydäntautien ennusteeseen.

Nykyään toisaalta tunnustetaan, että osa statiinien hyödyistä voi johtua mekanismeista, jotka eivät liity rasva-aineenvaihduntaan ja kolesteroliin.

LCR-CPPT oli lääketutkimus. Se ei tutkinut ruokavalion vaikutuksia terveyteen.

LRC-CPPT:n tutkijat, NIH, kansallinen kolesterolikoulutusohjelma (NCEP) ja Amerikan sydänliitto (AHA) tekivät tulosten pohjalta uskoon perustuvan hypoteesin:

Jos seerumin kolesterolin lasku lääkkeillä on tehokas tapa ehkäistä sydäntauteja, silloin ravinnosta saatavan rasvan ja kolesterolin saannin vähentäminen laskee seerumin kolesterolia ja vaikuttaa myönteisesti sydän- ja verisuoniterveyteen.

Tämä oli tutkijoiden valistunut arvaus. Vain arvaus. Päätelmä ei perustunut kliiniseen näyttöön ruokavalion sisältämien rasvojen vaikutuksista sydänterveyteen.

Päätelmää seurasi eräs Yhdysvaltojen laajimmista PR-kampanjoista. Tutkijoiden ja viranomaisten oli vakuutettava ammattilaiset, lääkärit, organisaatiot ja kansalaiset siitä, että ravinnon sisältämän rasvan vähentäminen on tehokkain tapa ehkäistä sydän- ja verisuonitauteja.

Elintarviketeollisuus liittyi terveysjärjestöjen (NIH, NCEP, AHA), maatalousministeriön (USDA) ja lukemattomien lääketieteellisten järjestöjen kanssa edistämään tätä konseptia.

Lyhyessä ajassa marketit täyttyivät sydänterveellisistä vähärasvaisista tuotteista, joissa kovat eläinrasvat oli korvattu pehmeillä monityydyttämättömillä kasvirasvoilla ja sokerilla.

Viesti oli selvä: vähärasvaisten ruokien syöminen on turvallista

Valitettavasti 1980-luvun ihminen ei ymmärtänyt, että vähärasvaisissa tuotteissa rasvat korvattiin sokereilla. Rasvojen saannin väheneminen johti hiilihydraattien saannin kasvuun.

Mozaffarianin vuoden 2010 meta-analyysin eräs avainhuomioista oli, että tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla saattaa pitkällä aikavälillä suojata sydänterveyttä, mutta vastaavaa vaikutusta ei ole, jos tyydyttyneet rasvat korvataan hiilihydraateilla. Ja juuri näin tehtiin iloisella 1980-luvulla.

Valitettavasti tämä ei ollut ainoa ongelma. Prosessoitujen öljyjen, margariinien ja lähes kaikkien rasvaa sisältävien elintarvikkeiden mukana tuli transrasvoja, jotka ihan aikuisten oikeasti ovat helvetin haitallisia terveydelle.

”I hope that when you have read this book I shall have convinced you that sugar is really dangerous.” – John Yudkin (Pure, White and Deadly)

Lääketieteellisestä kirjallisuudesta löytyi varoituksia, mutta ne jätettiin suurelta osin huomiotta. John Yudkin kamppaili 1970-luvulla Keysin hypoteesia vastaan ja varoitti sokereiden vaaroista mm. kirjassa Pure, White and Deadly (1972). Yudkin oli oikeassa ja hänen pelkonsa toteutuivat valitettavan tarkasti. Yudkinin varoitukset kaikuivat kuitenkin kuuroille korville.

Rosenman totesi laaja-alaisessa katsauksessa, että ruokavalio ei juurikaan vaikuta seerumin kolesteroliin. Hän mainitsi myös ristiriitaiset uskomukset ruokavalion kausaalisesta roolista sydäntautien patogeneesissä.

Hu et al.wrote that replacing saturated and trans-unsaturated fats with unhydrogenated mono-unsaturated and poly-unsaturated fats was more effective in preventing CAD in women than in reducing overall fat intake. They noted that low-fat–high-carbohydrate (LF-HCarb) diets were widely recommended to reduce the risk of CAD by reducing low-density lipoprotein (LDL) by limiting dietary fat. However, because of its high-Carb content, LF-HCarb diets also decrease high-density lipoprotein (HDL) and increase triglycerides, well-established independent risk factors for coronary disease.”

Yancey et al. kirjoitti: ”Tiedot parhaasta ruokavaliosta sydäntautien ehkäisemiseksi ovat puutteellisia, epätieteellisiä ja usein ristiriitaisia.”
Elämäntapoihin liittyvät epidemiat (lihavuus, tyypin II diabetes ja metabolinen oireyhtymä) ovat vähän rasvaa ja runsaasti hiilihydraatteja sisältävän LFHC-ruokavalion väistämätön seuraus.

Yudkin varoitteli tämänkaltaisesta kehityksestä jo 1970-luvulla. Monista varoituksista, kliinisestä näytöstä ja lihavuus- yms. epidemioista piittaamatta lääketieteelliset organisaatiot ja viranomaiset jatkavat aggressiivista kampanjaa vähärasvaisen elämäntavan edistämiseksi.

Välillä minusta tuntuu siltä, kuin järkevät ihmiset olisivat itsesuggestion avulla hypnotisoineet itsensä uskomaan täysin absurdeja väitteitä.

Covid-19 pandemian rinnalla yhteiskunnan rajallisia resursseja syövät lihavuuteen, aikuistyypin diabetekseen, suolistosairauksiin ja kardiometabolisiin sairauksiin liittyvät pandemiat. Niiden taloudellista rasitetta yhteiskunnille voi vain arvailla.

Yhdysvalloissa lähestytään tilannetta, jossa kaikilla kuolevilla on diabetes. Tämä ei tarkoita, että kaikki kuolevat diabetekseen, mutta se kertoo kuinka nopeasti tauti on yleistynyt. Se kertoo, että pian kaikki amerikkalaiset sairastuvat diabetekseen. Se on aivan sairasta!

Samaan aikaan Yhdysvalloissa tiedostetaan, että lihavuuden ja diabeteksen hoitoon ei pian riitä resursseja.

Ei siis ole lainkaan yllättävää, että miljoonat lihavuuden ja kardiometabolisten sairauksien kanssa kamppailevat ihmiset ovat löytäneet avun ketogeenisistä ruokavalioista, jotka kääntävät viralliset suositukset ylösalaisin ja nurinkurin. Jatkan tätä anarkistista ruokasotaa pian. Siihen asti hyvää syksyä. Pysykää terveinä!

https://www.researchgate.net/publication/322861096_The_Diet-Heart_Hypothesis_Changing_Perspectives

https://www.sciencedirect.com/science/article/pii/S0735109703016310

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950931/

https://www.nutritioncoalition.us/there-is-concern-about-the-dietary-guidelines

https://www.ncbi.nlm.nih.gov/books/NBK190354/

https://www.repository.cam.ac.uk/bitstream/handle/1810/247312/Chowdhury_et_al-2014-Annals_of_Internal_Medicine.pdf?sequence=1

https://pubmed.ncbi.nlm.nih.gov/28526025/




Ruokasotaa ja anarkiaa osa 2

Jatkan anarkistista tutustumista ravinnon ympärillä käytävään ruokasotaan. Artikkelisarjan ensimmäisessä osassa pohjustin näkemystä, jonka mukaan ravintoon liittyviä väestötason ravintosuosituksia pitäisi kriittisesti uudelleenarvioida.

Jatkan kiukuttelua referoimalla LessLikely-sivustolla julkaistun kriittisen analyysin paljon siteeratusta Mozaffarianin meta-analyysistä.

Laajat ravitsemustutkimukset antavat ristiriitaisia tuloksia eri ravintoaineiden terveysvaikutuksista. Vallitsevat ravitsemussuositukset eivät hillitse maailmanlaajuista elämäntapasairauksien epidemiaa. Vaikuttaa pikemminkin siltä, että vallitsevat ravitsemussuositukset ylläpitävät ja lisäävät kardiometabolisten sairauksien riskiä.

Epidemiologisissa tutkimuksissa yksittäisten ravinteiden erottaminen ravintokokonaisuudesta ei anna kovin luotettavaa kuvaa ravintoaineen merkityksestä ihmisen terveydelle.

Ravinteet vaikuttavat elimistössä usein yhdessä. Riskienhallinnan kannalta kokonaisuuksilla on suurempi merkitys kuin yksittäisillä ravinteilla. Mikro- ja makroravinteet vaikuttavat keskenään eri tavoin. Esimerkiksi

  • C-vitamiini hidastaa lihan sisältämän raudan imeytymistä
  • Tyydyttyneen rasvan korvaaminen monityydyttämättömillä rasvoilla voi suojata sydänterveyttä, mutta vastaava hyöty ei toteudu, jos tyydyttyneet rasvat korvaa hiilihydraateilla
  • Fruktoosin ja glukoosin aineenvaihdunta eroaa toisistaan kuin yö ja päivä
  • Kaikki kalorit eivät ole elimistölle samanarvoisia (vrt. etanoli*)
  • Hiilihydraattien ja rasvan yhteisvaikutus on se, että solut käyttävät energiaksi ensin glukoosia ja varastoivat rasvaa. Solut eivät voi hapettaa samaan aikaan glukoosia ja rasvahappoja

*Etanoli ei tiettävästi varastoidu läskinä, vaikka etanoli (7 kcal/g) on melkein yhtä energiatiheää kuin rasva (9 kcal/g). Maksa priorisoi etanolin aineenvaihdunnan ennen kuin keho alkaa prosessoida muita ravintoaineita. Maksa polttaa alkoholin ennen kuin aineenvaihdunta ryhtyy polttamaan tai varastoimaan muita ravinteita.

Entä jos aineenvaihdunta prosessoi energianlähteet myrkyllisyysjärjestyksessä: ensin etanolin, sitten glukoosin ja lopuksi rasvan?

Sellainenkin näkemys on esitetty. Kyse on mielipiteestä, mutta sen taustalla on järkevä ajatusketju. Alkoholin aineenvaihduntatuotteena on mm. karsinogeenisiä aldehydejä. Veren korkea sokeripitoisuus altistaa verisuoni- ja elinvaurioille sekä tyypin 2 diabetekselle.

Lähes koko nykyihmisen 200 000-vuotisen historian ajan eläinrasva oli ihmisen tärkein energianlähde.

Hiilihydraattien merkitys energianlähteenä lisääntyi vasta maanviljelyn kehittymisen ja kaupungistumisen jälkeen noin 10 000 vuotta sitten. Viime vuosisadalla hiilihydraattien osuus päivittäisestä energiansaannista kasvoi nopeasti ja lisättyjen sokereiden saanti moninkertastui.

Syömämme ravinto on muuttunut enemmän ja nopeammin kuin ihmisen fysiologia ja aineenvaihdunta.

Rasvaista lihaa

Kriittinen analyysi Mozaffarianin meta-analyysistä

Viittasin juttusarjan ensimmäisessä osassa Suomalaiseen mielisairaalatutkimukseen. Se on eräs vahvimmista tyydyttyneiden rasvojen ja kolesterolin haittoja puoltavista tutkimuksista.

Suomalainen mielisairaalatutkimus saa toimia aasisiltana LessLikely-sivustolla julkaistulle analyysille, jota referoimalla jatkan kriittistä syventymistä ravitsemuksen taustoihin.

Suomalaisessa mielisairaalatutkimuksessa (1959-1971) verrattiin ravinnon sisältämien rasvojen vaikutuksia kahdella potilasryhmällä, joista toisessa tyydyttyneiden rasvojen saantia ei rajoitettu, ja toisessa tyydyttyneet rasvat korvattiin monityydyttämättömillä rasvoilla.

Kahdessa Helsingin lähellä sijaitsevassa mielisairaalassa tehtiin valvottu interventiotutkimus, jonka tarkoituksena oli testata hypoteesia, jonka mukaan sepelvaltimotautien (CHD) ilmaantuvuutta voidaan vähentää käyttämällä seerumin kolesterolia alentavaa (SCL) ruokavaliota.

Koehenkilöt olivat sairaalahoidossa olevia mielenterveyspotilaita. Toisessa sairaalassa potilaat noudattivat vain vähän tyydyttyneitä rasvoja, kolesterolia, sekä suhteellisen runsaasti tyydyttymättömiä rasvoja sisältävää SCL-ruokavaliota.

Toisen sairaalan potilaat olivat normaalia sairaalaruokaa saava kontrolliryhmä. Kokeen ensimmäinen vaihe kesti kuusi vuotta. Sen jälkeen seurantaryhmien noudattamat ruokavaliot vaihdettiin ja koetta jatketiin toiset kuusi vuotta.

Suomalaisessa mielisairaalatutkimuksessa seurattiin miehiä ja naisia, mutta naisia käsitellään saman tutkimusryhmän laatimassa erillisessä tutkimuskatsauksessa.

Kahden suomalaisen mielisairaalatutkimuksen, (jotka ovat vain yksi tutkimus, josta laadittiin erilliset raportit miesten ja naisten tuloksista) kokonaisotanta oli 818 potilasta.

Tutkimusmenetelmät: Mitä meta-analyysillä tarkoitetaan (Wikipedia)

Haluan kirjoittaessani oppia jotain uutta, joten selvitän teksteissä iteellisiä menetelmiä ja käsitteitä, joista voi myöhemmin olla apua.

Tutkimusmenetelmät kuuluvat yleissivistykseen, mutta niiden ymmärtäminen ei ole itsestäänselvää. Minä käyn tätä kirjoittaessani läpi yleisimpiä tutkimusmenetelmiä ja niiden tulosten tulkitsemista.

Meta-analyysi on tilastollinen menetelmä, jolla pyritään johtamaan kvantitatiivisia päätelmiä yhdistelemällä systemaattisesti aiempia yksittäisiä tutkimuksia. Tarkoituksena on koota tutkimusten synteesi, joka antaa tutkittavasta kysymyksestä vahvempaa näyttöä kuin yksittäiset tutkimukset.

Tutkimustyypit – Lähde: Duodecim

Meta-analyysiin valittavat tutkimukset voivat olla johtopäätöksiltään ristiriitaisia.

Meta-analyysin tarkoitus on yhdistää aihetta käsittelevät tutkimukset tilastollisesti, jolloin voidaan tehdä luotettavampia johtopäätöksiä. Tilastollista lähestymistapaa sovelletaan useiden aikaisempien tulosten yhdistämiseen. Käytännössä meta-analyysi kokoaa painotetun keskiarvon useista tutkimuksista.

Lähestymistavan hyötyjä:

  • Tulokset ovat yleistettävissä laajempaan tilastolliseen populaatioon
  • Tulosten tarkkuus paranee kun käytettävissä on enemmän dataa
  • Aikaisempien tutkimusten erot voidaan kvantifioida ja analysoida.
  • Hypoteesien testaus voidaan tehdä aikaisemmista tutkimuksista muodostetuille yhteisestimaateille
  • Julkaisuharhan olemassaoloa voidaan arvioida

Meta-analyysia kritisoidaan yleensä seuraavista puutteista:

  • menetelmä ei pyri kontrolloimaan aikaisempien tutkimusten harhaa: jos huonosti toteutetuista tutkimuksista tehdään meta-analyysi, meta-analyysikin on huono.
  • julkaisuharha. Tutkijoille ei ole insentiivia (kannustinta/motivaatiota) julkaista tuloksia, jotka eivät ole mielekkäitä. Tutkimukset, joita ei julkaista eivät päädy meta-anayyseihin, mikä heikentää meta-analyyseja.
  • tavoite-harha. Meta-analyysiin poimitaan vain sellaisia tutkimuksia, jotka sopivat tutkijan omiin tavoitteisiin.

Cochrane-verkosto käyttää oppaassaan Cochrane Handbook for Systematic Reviews of Interventions seuraavaa vaiheistusta meta-analyysiin pohjautuvan systemaattisen kirjallisuuskatsauksen luomisessa:

  1. Tutkimusongelman muodostaminen ja meta-analysoitavien tutkimusten valintakriteerin määrittäminen
  2. Tutkimuskirjallisuuteen tutustuminen
  3. Tutkimusten valinta ja datan kerääminen valituista tutkimuksista
  4. Valittujen tutkimusten harhan riskiarviointi
  5. Datan analysointi ja varsinaisten meta-analyysiestimointien suorittaminen
    1. Yhdistettyjen estimaattien laskenta
    2. Tutkimusten heterogeenisuuden mallintaminen
    3. Sensitiivisyysanalyysi
  6. Raportointiharhojen käsittely
  7. Tulosten esittely ja yhteenveto
  8. Johtopäätökset

Meta-analyysin havaintoja voidaan esittää esimerkiksi forest plot -diagrammilla, joka on tapa visualisoida meta-analyysin tilastollista synteesiä.

Yleensä forest ploteissa on kaksi saraketta. Vasemmanpuoleisessa sarakkeessa esitetään tutkimusten nimet aikajärjestyksessä. Oikeanpuoleisessa sarakkeessa esitetään yksittäisten tutkimusten tulokset. Yksittäisen tutkimuksen tuloksessa on kaksi komponenttia:

  • Jana, joka kuvaa tutkimuksen luottamusväliä
  • Neliö, jonka sijainti kuvaa yksittäisen tutkimuksen keskimääräistä vaikutusta. Neliön koko kuvaa yksittäisen tutkimuksen painoarvoa yhdistetyssä meta-analyysissä.

Kuvaajan alaosassa oleva timantti kuvaa yhdistettyjä tuloksia. Sen pystydiagonaalin sijainti kuvaa yhdistettyä keskimääräistä vaikutusta ja neliön leveys tutkimusten yhdistettyä luottamusväliä. Keskimääräistä vaikutus piirretään yleensä myös katkoviivalla, jotta sitä voi vertailla yksittäisiin tutkimuksiin.

Kuvaajaan merkitään yhtenäisellä pystyviivalla tilanne, jossa vaikutusta ei ole. Jos timatti on tämän viivan päällä, voidaan todeta että vaikutusta ei ole havaittavissa kyseisellä luottamusvälillä.

Mozaffarianin meta-analyysin tulokset

Funnel plot-kuvaajaa käytetään meta-analyyseissä harhan ja systemaattisen heterogeenisuuden tarkasteluun. Hajontakuviolla piirretään yksittäisten tutkimusten vaikutus vaaka-akselille ja tutkimuksen koko pystyakselille. Pystysuoralla katkoviivalla merkitään meta-analyysin yhdistettyä keskimääräistä vaikutusta.

”Hyvin käyttäytyvässä” funnel plotissa tuloksena on tasasivuinen kolmio. Tämä johtuu siitää, että isokokoisten tutkimusten tulisi olla lähempänä yhdistettyä vaikutusta kuin pienikokoisten. Pyramidin vinous tai huipukkuuden puute taas implikoivat mahdollisista ongelmista. Tutkimuksen koon mittana voidaan käyttää esim. vaikutuksen keskihajontaa tai otoksen kokoa.

Mozaffarian – funnel plot

LessLikely: Mozaffarianin meta-analyysin kritiikki

Kokoan Ruokasotaan kriittisiä havaintoja ravitsemuksesta ja terveydestä. Perustelen kantani tutkitulla tiedolla ja luotettavilla lähteillä. Opiskelen samalla ravitsemukseen liittyviä ilmiöitä ja tutkimusmenetelmiä.

Hämmentävissä ruokajutuissa tutustu vallitseviin suosituksiin kriittisesti suhtautuviinravitsemusoppeihin

Erilaiset meta-analyysit antavat erilaisia tuloksia monityydyttämättömien ja tyydyttyneiden rasvojen terveysvaikutuksista. Siri-Tarinon ja Chowdhuryn meta-analyysit eivät löytäneet yhteyttä tyydyttyneiden rasvojen ja sydäntautien väliltä. Sen sijaan Mozaffarianin tutkimus osoitti, että monityydyttämättömät rasvat laskevat sydäntautien riskiä. Tilastollisia tutkimuksia kriittisesti tulkitseva LessLikely havaitsi Mozaffarianin meta-analyysissä virheen, joka vähentää meta-analyysin luotettavuutta.

”Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.” – Chowdhury

Sydän- ja verisuonitautitapahtumien osalta Suomalaisen mielisairaalatutkimuksen painoarvo on varsin merkittävä useita tutkimuksia käsittävissä meta-analyyseissä. Tämä selviää mm. Mozaffarianin & Wallacen meta-analyysistä (2010), joka on yksi tieteellisissä lähteissä eniten siteeratuista tämän aihepiirin meta-analyyseistä.

Mozaffarianin metaanalyysin tutkimusten sisällyttämis- ja poissulkemiskriteerejä kuvatan suurin piirtein näin:

Etsimme tutkimukseen kaikkia kontrolloituja satunnaistettuja tutkimuksia (RCT), jotka satunnaistivat aikuisten monityydyttämättömien omega6-rasvojen saannin vähintään vuodeksi ilman muita kontrollitoimia (tupakointi, verenpaine, muut ruokavalion toimenpiteet tms.).

Avokado

Mozaffarianin meta-analyysiin kelpasivat vain satunnaistetut vähintään vuoden mittaiset tutkimukset. Lisäksi meta-analyysi poissulki ei-satunnaistetut tutkimukset ja seurantatutkimukset.

Seuraavassa Mozaffarianin meta-analyysin sisältämien tutkimusten lista. Huomioi suomalaisten tutkimusten tutkimussuunnitelma.

Mozaffarianin meta-analyysin tutkimukset

Millaisia tutkimuksen tulokset olivat?

Vuoden 2010 meta-analyysissä havaittiin, että ruokavalion tyydyttyneiden rasvojen (SFA) korvaaminen monityydyttämättömillä rasvoilla (PUFA) laskee tilastollisesti merkittävällä tavalla sydän- ja verisuonitautitapahtumia.

19%:n lasku sydäntautitapahtumissa on sen verran merkittävä, että tulosta ei voi sivuuttaa. Luottamusväli (CI) kallistuu kohti luotettavaa.

Sydänterveyden kannalta tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla vaikuttaa siis lupaavalta ruokavaliointerventiolta. Tämän vuoksi Mozaffarianin meta-analyysiin viitataan ahkerasti. Metaanalyysiin sisältyvien tutkimusten laatu oli heikko tai kohtalainen.

Many of the trials had design limitations, such as single-blinding, inclusion of electrocardiographically defined clinical endpoints, or open enrollment. All trials utilized blinded endpoint assessment. Quality scores were in the modest range and relatively homogeneous: all trials had quality scores of either 2 or 3.”

Mikä sitten meni metsään?

Suurin ongelma Mozaffarianin meta-analyysissä on se, että kahta kvantitatiiviseen analyysiin sisältyvää suomalaista tutkimusta ei ole satunnaistettu. Tutkijat tekivät sisällyttämisperusteillaan selväksi, että he halusivat sisällyttää meta-analyysiin vain satunnaistettuja tutkimuksia. Mitä se tarkoittaa?

Satunnaistettu kontrolloitu tutkimus (Randomized Controlled Trial, RCT)

Satunnaistettu kontrolloitu tutkimus on terveyttä selvittävien interventiotutkimusten laadullisesti paras ja luotettavin tutkimusasetelma.

Satunnaistetun kontrolloidun tutkimuksen perusidea on, että verrataan interventioryhmää ja kontrolliryhmää keskenään. Kontrolliryhmän avulla ruokavalioon tehtävien muutosten, lääkityksen tai muiden interventioiden vaikutuksista voidaan tehdä päätelmiä intervention vaikutuksista.

Kontrolliryhmän lisäksi tärkeää on satunnaistaminen (randomointi). RCT-asetelmassa koehenkilöt jaetaan kahteen tai useampaan ryhmään niin, että tutkija ei itse vaikuta millään tavoin ryhmäjakoon, vaan se tapahtuu satunnaisesti, arpomalla. Tämä takaa sen, että tuloksiin (tutkittavan intervention lisäksi) mahdollisesti vaikuttavat tekijät jakautuvat ryhmien välillä satunnaisesti.

Ihannetapauksessa toteutetaan koe lisäksi sokkoutettuna, jolloin tutkimukseen osallistuja ja tutkimushenkilökunta eivät tiedä kuuluuko osallistuja interventio- vai kontrolliryhmään, lääketutkimuksien ulkopuolella tämä tosin on usein vaikeaa tai mahdotonta toteuttaa.

Edes RCT ole täysin aukoton tutkimusasetelma. Julkaistujen tutkimusten metodien sekä tulosten raportoinnissa havaitaan usein puutteita (Montgomery, 2018). RCT-asetelmaan voi liittyä myös eettisiä haasteita.

Satunnaistetulla kontrolloidulla tutkimuksella on kuitenkin vahva asema tutkimusmenetelmien joukossa.

Kaksi suomalaista mielensairaalatutkimusta merkittiin ryvästetyksi (cluster) satunnaistetuksi tutkimukseksi”. Kun tämä meta-analyysi julkaistiin, monet tutkijat suhtautuivat kriittisesti siihen, että ryvästetty satunnaistettu tutkimus oli merkitty satunnaistetuksi tutkimukseksi, etenkin kun ryhmiä oli vain kaksi (kahden sairaalan potilaat).

Tämä on pätevä ja perusteltu kritiikki, koska ryvästetty satunnaistettu tutkimus, jossa on vain yksi klusteri ehtoa kohden, ei kelpaa ryhmien välisiin tilastollisiin vertailuihin. Brown ym., 2015 selittävät tässä kattavassa artikkelissa,

A particularly pernicious and invalid design that requires recognition is the inclusion of only one cluster per condition… Such designs are unable to support any valid analysis for an intervention effect, absent strong and untestable assumptions. In such designs, the variation that is due to the cluster is not identifiable apart from the variation due to the condition.

A one-cluster-per-condition design is analogous to assigning one person to the treatment and one person to the control in an ordinary (nonclustered) RCT, measuring each person’s outcome multiple times, treating the multiple observations per person like independent observations, and interpreting the results like a valid RCT. In such a situation, the observations on person A can be tested as to whether they are significantly different from those on person B but cannot support an inference about the effect of treatment per se.

Joten on selvää, että yhden klusterin ehtoa koskeva malli ei ole pätevä antamaan luotettavaa tietoa interventiosta. Monet eivät kuitenkaan kiinnittäneet huomiota siihen, että Suomalaiset mielisairaalatutkimukset eivät edes olleet ryvästettyjä satunnaistettuja tutkimuksia.

Yhdessäkään näiden kahden tutkimuksen viidestä julkaisusta ei ole viitteitä satunnaistumisesta. Voit tarkistaa kaikki viisi artikkelia täältä:


Journal

Year

Title

International Journal of Epidemiology

1983

Dietary Prevention of Coronary Heart Disease in Women: The Finnish Mental Hospital Study

Circulation

1979

Effect of Cholesterol-Lowering Diet on Mortality from Coronary Heart Disease and Other Causes

American Journal of Clinical Nutrition

1968

Dietary Prevention of Coronary Heart Disease: Long-Term Experiment: I. Observations on Male Subjects

International Journal of Epidemiology

1979

Dietary Prevention of Coronary Heart Disease: The Finnish Mental Hospital Study

The Lancet

1972

Effect of Cholesterol-Lowering Diet on Mortality from Coronary Heart-Disease and Other Causes a Twelve-Year Clinical Trial in Men and Women


Ryvästetyt satunnaistetut tutkimukset eivät oleet Suomalaisten mielisairaalatutkimusten aikaan tilastollisessa analyysissä vielä yleisesti käytössä. Tämän vuoksi on aiheellista suhtautua skeptisesti ryvästettyihin satunnaistettuihin tutkimuksiin.

Nämä kaksi tutkimusta kuitenkin nimettiin virheellisesti ryvästetyiksi satunnaistetuiksi tutkimuksisksi ja sisällytettiin siksi metaanalyysiin. Tutkimusten painoarvo meta-analyysissä oli 16 %.

Tekijät havaitsivat melko merkittävän laskun CVD-tapahtumissa (RR: 0,81, 95% CI 0,70 – 0,95, p = 0,008)

 


LessLikely korjasi tutkimusasetelman virheen

Mitä tuloksille tapahtuu, kun virhe korjataan poistamalla meta-analyysistä kaksi tutkimussuunnitelman kannalta epäkelpoa tutkimusta?

Kuten havaitaan, analyysin uudelleentarkastelu suomalaisten tutkimusten poistamisen jälkeen johtaa siihen, että intervention vaikutuksen koko supistuu 19%:n alenemisesta 13%:n pienenemiseen (RR: 0,87, 95% CI 0,76 – 1,00). Tuo on suuri ero!

LessLikely – korjattu tutkimus

Suomalaisten mielisairaalatutkimusten poistamisen jälkeen Mozaffarianin meta-analyysin tulokset eivät ole enää tilastollisesti merkittäviä.

Tilastofilosofiasta riippumatta tämä on merkittävä objektiivinen virhe. Kahden tutkimusaineistolle määriteltyihin kriteereihin sopimattoman tutkimuksen merkitseminen sisällyttämiskriteerien mukaisiksi oli virhe.

Tämän virheen korjaaminen johtaa tulosten tilastollisesti merkittävään muutokseen. Mozaffarianin meta-analyysia ei ole korjattu, vaikka virheestä on tekijöille tiedotettu.

Monet, jotka lukevat artikkelin tai lainaavat sitä, eivät tiedä, että yhteenvetovaikutukset ovat virheelliset ja että joitain analyysiin liittyviä tutkimuksia ei pitäisi olla mukana meta-analyysissä!

On tärkeää korostaa, että tämän tutkimuksen virheiden korjaaminen ei johda täysin erilaisiin johtopäätöksiin.

Vaikka vaikutus ei ole enää tilastollisesti merkitsevä, vaikutus on silti olemassa vaikutuksen koon ja luottamusvälien kattavuuden perusteella.

Systematic reviews by other groups including Cochrane did not include the Finnish studies in their meta-analyses because the authors didn’t believe that a “cluster randomized trial” with so few clusters (2) met the inclusion criteria for a randomized trial (also worth remembering, that there is no indication in any of the papers that this was even cluster randomized!). Some of these systematic reviews that exclude the Finnish studies still find a benefit to replacing saturated fats in the diet with polyunsaturated fats.

Assosiaatio monityydyttämättömien rasvojen ja paremman sydänterveyden välillä on puutteellisesti osoitettu. Steven Hamleyn meta-analyysi ei pystynyt osoittamaan sydän- ja verisuonitautien vähenemistä, jos tyydyttyneet rasvat korvatiin monityydyttämättömillä rasvoilla.

Conclusion: Available evidence from adequately controlled randomised controlled trials suggest replacing SFA with mostly n-6 PUFA is unlikely to reduce CHD events, CHD mortality or total mortality. The suggestion of benefits reported in earlier meta-analyses is due to the inclusion of inadequately controlled trials. These findings have implications for current dietary recommendations.

Rasvojen vaikutuksista sydän- ja verisuoniterveydelle vallitsee yhä valtavasti erimielisyyksiä. Tieteellinen näyttö ei ole lainkaan selvä. Tutkimukset eivät osoita, että tyydyttyneet rasvat kasvattaisivat sydän- ja verisuonitautien riskejä, tai että tyydyttyneiden rasvojen korvaaminen monityydyttämättöukkö rasvoilla laskisi sydäntautien riskiä.

Mozaffarianin meta-analyysi teki merkittävän virheen. Se on ongelma, vaikka sen yleiset päätelmät eivät muuttuisi korjauksen jälkeen. Ongelma on olemassa, koska:

  • Kaksi merkittävää tutkimusta luokiteltiin väärin
  • Tutkimukset eivät täyttäneet tutkimukselle asetettuja kriteerejä, mutta niitä käytettiin analyysissä
  • Tutkimusten hyväksyminen analyysiin johti merkittävästi erilaiseen lopputulokseen
  • Tutkimusta siteerataan muissa tutkimuksissa ja sillä perustellaan vallitsevia rasvasuosituksia

Mozaffarianin meta-analyysia lainataan muissa tutkimuksissa jatkuvasti. Sen katsotaan tukevan ja perustelevan vallitsevia oppeja tyydyttyneiden rasvojen terveyshaitoista ja monityydyttämättömien rasvojen terveyshyödyistä. Näin ei ole. Mozaffarianin tutkimuksen korjatun analyysin tulokset eivät ole tilastollisesti merkittäviä, tai tue vallitsevia ravintosuosituksia.




Ruokasotaa ja anarkiaa osa 1

Ravintoon liittyy väärinkäsityksiä ja myyttejä. Eräiden ravitsemusoppien tieteellinen perusta on vuosikymmenten jälkeen kyseenalainen. Tyydyttynyt rasva ei ehkä olekaan niin vaarallista kuin meille uskotellaan. Ruokasotaa ja anarkiaa kompuroi ravitsemusteorian sudenkuoppiin.

Noam Chomsky sanoo, että anarkismin pitää haastaa, kyseenalaistaa ja ravistella vallitsevien sosiaalisten rakenteiden ja normien legitimiteettiä.

Asioiden vallitsevasta tilasta ei nimittäin voi päätellä, että vallitseva asioiden tila on ainoa oikea, paras mahdollinen tai edes toivottavin tila. Chomskyn ja veljeni määritelmän mukaan minä taidan olla anarkisti.

Uskon, että maailmassa on aina korjattavaa. Monet ravitsemusohjeet vaikuttavat lähemmin tarkasteltuna pikkiriikkisen puskaabeleilta. Jätän tuon termin määrittelemättä.

Myös ravitsemusohjeita pitää aika ajoin ravistella, pureskella ja töniä, ettei ohjeita automaattisesti kuvitella muuttumattomiksi tosiasioiksi. Täysin kiistattomat tosiasiat ovat harvinaisia.

Kaikkien ravitsemusohjeiden tieteellinen perusta ei kestä kirkasta päivänvaloa

Tutkimuksissa ilmeneviä aukkoja tilkitään, mutta esimerkiksi oppi tyydyttyneeen rasvan ja kolesterolin haitoista vuotaa. Nähdäkseni ravintotieteessä soudetaan venellä, jonka toinen airo on poikki.

Ravitsemusoppeja voidaan perustella vääriin tietoihin perustuneilla päätöksillä, eettisillä, ideologisilla ja polittisilla mielipiteillä sekä tutkimustulosten tietoisella tai tiedostamattomalla vääristelyllä ja peittelyllä.

Kansanterveyden ja taloudellisen kantokyvyn vuoksi ravintoa koskeavien ohjeiden pitäisi kuitenkin perustua viimeisimpään tieteelliseen dataan. Näin ei aina tapahdu.

Vallitsevat ohjeet ovat osaltaan vaikuttaneet kardiometabolisten tautien nopean lisääntymiseen. Suolistosairaudet ovat yleistynet tyypin 2 diabeteksen ja lihavuuden rinnalla nopeasti vuoden 1980 jälkeen.

SARS-CoV-2 ei ole ainoa yhteiskunnan voimavaroja kuluttava globaali terveysuhka.

Lihavuuden yleistyminen

Lisääkö punainen liha suolistosyöpien riskiä?

Lihansyöjiä varoitettiin jälleen 17. huhtikuuta 2019 punaisen ja prosessoidun lihan syömiseen liittyvistä riskeistä. Se ei ollut ensimmäinen, eikä varmasti viimeinen kerta, jolloin kasvissyöjät korottavat ääntään. 

Terveyspommi räjähti, kun the Guardian uutisoi, että ”jopa maltillinen punaisen lihan syöminen lisää syöpäriskiä”. CNN heitti bensaa liekkeihin raportoimalla, että ”vain yksi pekoniviipale päivässä on yhteydessä suurempaan paksusuolen syövän riskiin”. The Telegraph kasvatti uhkaa varoittamalla, että ”punaisen lihan syöminen kerran päivässä lisää syöpäriskiä viidenneksellä”.

Luotettavien uutistoimistojen syöpäpeloilla leikittelevät jutut nostivat monen lihansyöjän niskakarvat pystyyn. Jeremy Braude kiinnostui syöpäpelkoja lietsovista uutisotsikoista niin paljon, että päätti hillitä lihapaniikkia avaamalla uutisten taustalla vaikuttavaa tilastotiedettä.

Tilastot ovat tehokkaita vaikuttamisvälineitä, koska ne voivat olla uskomattoman petollisia.

Alkuperäisessä tutkimuksessa, joka julkaistiin International Journal of Epidemiology -lehdessä, todettiin, että ”ihmisillä, jotka syövät punaista ja prosessoitua lihaa neljä kertaa viikossa tai useammin, on 20 % suurempi paksusuolen syövän riski verrattuna niihin, jotka yövät punaista tai prosessoitua lihaa vähemmän kuin kahdesti viikossa.”

Selvä homma! Punaisen ja prosessoidun lihan syöminen on hemmetin vaarallista

Näissä tutkimuksissa 20 % on kuitenkin suhteellinen ja tilastollinen, ei absoluuttinen arvo. On toinenkin tapa tarkastella täsmälleen samoja lukuja.

Kaikista tutkimukseen osallistujista, jotka söivät punaista tai prosessoitua lihaa vähemmän kuin kaksi kertaa viikossa, 0,40 %:lle kehittyi paksusuolen syöpä. Ihmiset, jotka söivät punaista ja prosessoitua lihaa enemmän kuin neljä kertaa viikossa, 0,63 %:lle kehittyi paksusuolen syöpä.

Ero paksusuolen syövän kehittymisen todennäköisyydessä vähän punaista lihaa ja paljon punaista lihaa syövien väestöryhmien välillä oli vain 0,23 %. Harvempi kuin 1 % ”korkeamman riskin” ryhmästä sairastui paksusuolen syöpään.

Punaisen ja prosessoidun lihan kulutus voi tilastollisesti lisätä suolistosyövän riskiä, mutta syy-seuraussuhde ei ole selvä ja todellinen riski sairastua suolistosyöpään punaisen lihan vuoksi on hyvin pieni.

Vertailun vuoksi paksusuolen syöpää havaittiin samassa tutkimuksessa 0,48 prosentilla osallistujista, jotka käyttivät vähemmän kuin gramman alkoholia päivässä, ja 0,68 prosentilla osallistujista, jotka käyttivät yli 16 grammaa alkoholia päivässä.

Tilastollisesti oluen tai viinilasillisen juomisella joka päivä on yhtäläinen vaikutus paksusuolen syövän riskiin kuin punaisen tai prosessoidun lihan syömisellä neljä kertaa viikossa. Riski oli kuitenkin selvästi alle prosentin ja mahtuu tutkimuksen virhemarginaaliin.

Laajennetaan katsantoa

Verrataan lihan syömisen riskejä tupakoinnin riskeihin. Länsimaissa keuhkosyövän riski on 9,4 – 23,2 kertainen tupakoitsijoilla tupakoimattomiin verrattuna. Punaisen ja prosessoidun lihan syöminen neljä kertaa viikossa voi lihapaniikkia lietsovan uutisoinnin mukaan kasvattaa paksusuolen syövän riskiä noin 20 %, mutta tupakointi kasvattaa keuhkosyövän riskiä jopa 840–2220%.

Punaisen lihan syömisen riskit ovat siedettäviä tupakointiin verrattuna.

Experimental Biology and Medicine kertoo tutkimuskatsauksessaan, että havaintojen mukaan hemirauta ja heterosykliset amiinit kasvattavat paksusuolen syövän riskiä. Hemirautaa saa punaisesta lihasta. Heterosyklisiä amiineja kehittyy, kun liha valmistetaan korkeassa lämpötilassa.

Monet tutkimukset tehdään laboratorio-oloissa joko soluviljelmillä tai koe-eläimillä. Näissä tutkimuksissa käytetään lihakomponenttitasoja, jotka ylittävät selvästi ihmisten normaalin punaisen lihan kulutuksen. Tutkimukset eivät yleensä huomioi muista ravinteista saatavien biologisesti aktiivisten yhdisteiden vaikutuksia. Esimerkiksi C-vitamiini hidastaa hemiraudan imeytymistä.

Kausaalista ja mekaanista yhteyttä punaista lihaa sisältävän monipuolisen ruokavalion ja lisääntyneen suolistosyövän riskin välillä on hankala osoittaa.

Muistelen, että punaisen lihan syöpäriskiä kasvattavan ideologian lanseerasi maailman medioille ja Maailman terveysjärjestölle pelkästään vegetaristeista ja vegaaneista koostuva tieteellinen paneeli. Vaikuttiko punaisen lihan mustamaalaamiseen eettiset, ideologiset ja poliittiset syyt?

Suattaapi olla, että vaikutti, mutta suattaapi olla ettei vaikuttanut, sanoisi poliittisesti korrekti savolainen.

Kyselykaavakkeisiin perustuvat epidemiologiset väestötutkimukset eivät yleensäkään anna täsmällistä ja luotettavaa tietoa tutkittavan väestön todellisista elintavoista. Ihmiset unohtavat, liioittelevat, väheksyvät ja valehtelevat tietoisesti tai tietämättään syömistään ruoista. Tämän vuoksi epidemiologisista väestötason kyselytutkimuksista ei pitäisi johtaa muuta kuin yleisiä suuntimia ja väestötason tendenssejä.

Australialaistutkimuksessa osoitettiin, että punaisen lihan syöminen osana Välimeren ruokavaliota laskee MS-tautiin sairastumisen riskiä 38 % (1).

Okei. Minä olen multippelisklerootikko ja lihansyöjä. Minulla kävi sitten vain helvetin huono tsägä!

Vastaavat tutkimukset ovat osoittaneet, että Mainen osavaltiossa margariinien syönti korreloi avioerojen kanssa. Onko ilmiö yleistettävissä ja voisiko voihin siirtyminen vähentää avioerojen riskiä globaalisti?

Minä kokeilin, mutta ei se toiminut. Voihin siirtyminen ei pelastanut minun avioliittoani, joten syy erolle taisi olla jokin muu kuin margariini.

Vastaavasti voidaan kysyä, vähentääkö punaisesta lihasta luopuminen paksusuolen syövän riskiä yhtä paljon kuin punaisesta lihasta luopuminen lisää multippeliskleroosin riskiä? Entä lisääkö punaisesta lihasta luopuminen diabeteksen riskiä?

Nämä ovat hankalia monivalintatehtäviä: ms, diabetes vai syöpä? Siinäpä pulma.

Tyydyttynyt rasva ja rasvaisia ruokajuttuja

Kova tyydyttynyt rasvat ja kolesteroli voivat nykytiedon mukaan kasvattaa sydän- ja verisuonitautien riskiä. Kolesterolin vaarallisuutta ei epäillä juuri koskaan.

Kolesteroli tappaa yhtä varmasti kuin glyfosaatti, mutta hitaammin kuin syanidi tai arsenikki. Näyttö ja ihmisen historia ei yksiselitteisesti ja kiistattomasti tue tällaisia uskomuksia. Epäilylle jää tilaa.

Elämä tarvitsee vältämättä kolesterolia ja tyydyttynyttä rasvaa. Kaikissa ihmisen solujen rakenteissa on kolesterolia.

Kolesteroli vaikuttaa steroidihormonien, kuten sukupuolihormonien synteesiin. Hermoston ja aivojen normaali kehitys edellyttää, että imeväisikäiset vauvat saavat äidinmaidosta tärkeitä eläinrasvoja ja kolesterolia.

Rintaruokittavat vauvat noudattavat ketogeenistä ruokavaliota. Karppaus on kaikesta siihen liittyvästä pelottelusta huolimatta ihmisen ensimmäinen ruokavalio.

Jos tyydyttynyt rasva ja kolesteroli olisivat yhtä haitallisia, kuin uskotaan, evoluutio olisi miljoonien vuosien kehityshistorian aikana muuttanut rintamaidon rasvakoostumusta terveellisempään suuntaan. Ei pelkästään ihmisellä, vaan kaikilla muillakin nisäkkäillä.

Miksi nisäkkäät tuottavat kolesterolia kolesterolisynteesissä, jos se on kovin haitallista?

Kolesterolia tuotetaan asetyylikoentsyymi-A:sta nelivaiheisessa synteesissä. Ensimmäisessä vaiheessa kolme asetyyli-KoA:ta yhdistetään mevalonaatiksi.

Mevalonaatista syntyy kaksi fosfaattiryhmillä aktivoitua isopreenimolekyyliä. Kuusi tällaista isopreenimolekyyliä polymerisoituu ketjuksi, jossa on useita kaksoissidoksia. Nämä kaksoissidokset muutetaan hiiliatomien välisiksi sidoksiksi, jolloin syntyy nelirenkainen rakenne, joka on kaikkien sterolien perusrakenne.

Suurin osa maksasolun tuottamasta kolesterolista kuljetetaan ulos solusta esimerkiksi sappihappoina tai kolesteryyliesterinä. Kolesteryyliesteri on kolesterolia hydrofobisempi molekyyli, joka kuljetetaan maksasta muualle elimistöön lipoproteiinipartikkeleissa, erityisesti LDL-partikkeleissa

Lisämunuaisessa kolesterolista valmistetaan steroidihormoneja, kuten lisämunuaiskuoren mineralokortikoideja ja glukokortikoideja, jotka säätelevät munuaisten ionien imeytymistä ja glukoneogeneesiä. Sukupuolihormoneja, kuten androgeenejä, estrogeenejä ja progesteronia, tuotetaan sukupuolirauhasissa ja istukassa.

Pahaa kolesterolia ei ole – on vain kolesterolia, joka on elimistön välttämättä tarvitsema aine

”Kolesteroli on ihmisen ja muiden eläinten kudoksissa, etenkin maksassa, tuotettu steroideihin kuuluva tyydyttymätön, rengasrakenteinen, veteen liukenematon kiteinen alkoholi.

Kolesteroli on ihmisen kaikkien kudosten toiminnalle välttämätön aine, jota esiintyy runsaasti varsinkin äidinmaidossa, rasvakudoksessa, aivoissa, hermoissa, maksassa ja munuaisissa. Usein puhutaan kansanomaisesti ”hyvästä” ja ”pahasta” kolesterolista, mutta kaikki kolesteroli on silti kemialliselta rakenteeltaan täysin samanlaista.” – Wikipedia/Kolesteroli

LDL ja HDL ovat rasvaa, rasvaliukoisia vitamiineja ja kolesterolia kuljettavia lipoproteiineja. Lyhenteet viittaavat Low Density Lipoprotein- ja High Density Lipoprotein -kuljetusmolekyyleihin.

Keho tarvitsee pieniä määriä omega6-rasvoja, kuten linolihappoa. Mutta käynnissä oleva tutkimus viittaa siihen, että linolihapon runsas saanti voi ylläpitää kehon hiljaista tulehdusta (inflammaatiota) ja altistaa monille sairauksille. Omega3- ja omega6 rasvahappojen tasapainoinen saanti lienee terveyden kannalta tärkeämpää kuin kiista kovista tyydyttyneistä ja pehmeistä tyydyttämättömistä rasvahapoista.

Ihminen, läski ja kolesteroli – miksi?

Ihmisen suolisto ja ruoansulatus käyttää vähemmän energiaa kuin useinpien muiden eläinten suolisto. Mikään muu laji ei toisaalta käytä niin paljan ravinnosta saatua energiaa aivojen toiminnan ylläpitoon kuin ihminen.

Tyydyttynyt rasva on erinomainen ja runsaasti energiaa sisältävä ravintoaine. Rasvan sisältämä energia, 9 kcal/g, piti varhaiset metsästäjä-keräilijät hengissä ennen maanviljelyn ja säilöntämenetelmien kehittymistä.

On selvää, että puolukoiden kerääminen talvihangilla ei taannut pohjoisten ihmisten selviytymistä. Minä uskon, että eläinrasvan sisältämä energia joudutti ihmisaivojen kehittymistä ja auttoi ihmislajin selvitymään.

Rasva on syntyvän ihmisen ensimmäistä ravintoa, joten ihmisen aineenvaihdunta virittyy rasvaan ravinnonlähteenä jo hyvin varhain.

Rintaruokinnassa olevat vauvat ovat ketoosissa. Vauvat karppaavat.

Tyydyttynyt rasva on ollut osa ihmisten ruokavaliota koko ihmislajin kehityshistorian ajan. Ihmisen aivot eivät ehkä olisi koskaan kehittyneet nykyihimisen suuriksi ja runsaasti energiaa kuluttaviksi ihmisaivoiksi, jos kaukaiset esivanhempamme eivät olisi saaneet riittävästi energiaa eläinrasvoista. 

Maanviljely kehittyi noin 10 000 vuotta sitten. Ennen maanviljelyn kehittymistä eläneet varhaiset metsästäjä-keräilijät saivat suuren osan ravinteista ja energiasta eläinproteiineista ja eläinrasvoista lähes 200 000 vuoden ajan.

Tyydyttyneistä rasvoista varoittelevat ravitsemussuositukset julkaistiin Yhdysvalloissa alle 50 vuotta sitten. Onko ihmisen aineenvaihdunta ratkaisevasti muuttunut viimeisen vuosisadan kuluessa?

Syömämme ravinto on muuttunut enemmän kuin aineenvaihduntamme. Monityydyttämättömiä siemenöljyjä on hyödynnetty ravinnossa vain noin sata vuotta.

Ravinto on osatekijänä monissa nopeasti yleistyvissä sairauksissa. Lihavuus, metabolinen oireyhtymä, aikuistyypin diabetes, suolistosairaudet, sydän- ja verisuonitaudit ja monet syövät voidaan tietyin varauksin palauttaa syötyyn ravintoon, ja aivan erityisesti sellaiseen prosessoituun ruokaan, jonka käyttöön aineenvaihduntamme ei ole ehtinyt adaptoitua.

60– ja 70-luvuilla rasvojen terveysvaikutuksista tehtiin kiinnostavia kontrolloituja satunnaistettuja tutkimuksia (CRT). Nämä tutkimukset eivät kuitenkaan mahtuneet vallitsevaan hypoteesiin kovien rasvojen haitallisuudesta, joten ne niiden annettiin unohtua.

Minnesota Coronary Experiment

Hiljattain pölyisestä kellarista löydetty vuosikymmeniä vanha tutkimus herättää kysymyksiä vallitsevista ravitsemusohjeista.

Minnesota Coronary Experiment, oli kontrolloitu satunnaistettu tutkimus (CRT), joka toteutettiin vuosina 1968 – 1973.

Valtion mielisairaaloissa ja vanhainkodeissa tutkittiin yli 9000 ihmisen avulla ruokavalion sisältämien rasvojen vaikutuksia terveyteen, kolesterolitasoihin sekä sydäntautien ja sydänkuolemien riskiin.

Kansallisen sydän-, keuhko- ja veri-instituutin (National Heart, Lung and Blood Institute) rahoittamaa tutkimusta johti Minnesotan yliopiston lääketieteellisen koulun tohtori Ivan Frantz Jr.

Institutionalisoituneiden tutkimushenkilöiden ruokavalion sisältämiä rasvoja kontrolloitiin. Puolet koehenkilöistä sai ravintoa, jossa oli runsaasti maidon, juuston ja naudanlihan sisältämiä tyydyttyneitä rasvoja (SFA – saturated fatty acids).

Vertailuryhmän ruokavaliosta tyydyttyneet rasvat poistettiin lähes täysin ja korvattiin monityydyttämättömillä kasvirasvoilla (PUFA – poly unsaturated fatty acids).

Tutkimuksen tavoitteena oli todistaa, että tyydyttyneiden eläinrasvojen korvaaminen kasviöljyistä saatavilla tyydyttymättömillä rasvoilla laskee sydäntautien ja -kuolleisuuden riskiä.

Tietoja ei koskaan analysoitu täysin, vaikka Minnesota Coronary Experiment oli eräs laajimmista kontrolloiduista satunnaistetuista ruokavaliotutkimuksista, joita koskaan on tehty.

Joitain vuosia sitten Kansallisen terveysinstituutin (National Health Institute) lääketutkija Christopher E. Ramsden kuuli unohdetusta tutkimuksesta. Hän kiinnostui aiheesta ja otti yhteyttä Minnesotan yliopistoon tutustuakseen julkaisemattoman tutkimuksen aineistoon.

Vuonna 2009 kuollut tohtori Frantz oli elinaikanaan tyydyttyneiden rasvojen terveysvaikutuksiin perehtynyt tutkija Minnesotan yliopistossa. Eräs Frantzin läheisistä kollegoistaan oli vaikutusvaltainen ravitsemustutkija Ancel Keys.

Ancel Keysin alkuperäistä dataa 7 maan tutkimuksesta. Maita oli 22, mutta tutkimukseen Keys hyväksyi vain ne 7 maata, joiden data tuki hänen ennakkohypoteesiaan. Esimerkiksi Ranskassa tyydyttyneiden rasvojen kulutus on runsasta, mutta sydätaudit ja -kuolemat harvinaisia. Tämä tunnetaan ranskalaisena paradoksina.

Keys uskoi kolesterolin ja tyydyttyneiden rasvojen lisäävän sydäntautien riskiä. Häntä voi pitää nykyisten ravitsemussuositusten isänä.

Tohtori Frantz uskoi Keysin tavoin tyydyttyneiden rasvojen haitallisuuteen, kertoi tutkijan poika, sydänlääkäri tohtori Robert Frantz, joka löysi Minnesotan pölyttyneen tutkimusraportin vanhempiensa kellarista.

Minnesota Coronary Experiment oli yllättävä. Koehenkilöillä, joiden ravinto sisälsi vain vähän tyydyttyneitä eläinrasvoja, kolesteroli laski keskimäärin 14 prosenttia. Vertailuryhmässä muutos kolesterolitasoissa oli vain prosentin luokkaa.

Vähän tyydyttyneitä rasvoja sisältävä ruokavalio ei kuitenkaan laskenut sydänkuolleisuutta. Päinvastoin. Tutkimuksen havainnot osoittivat, että mitä enemmän kolesteroli laski, sitä korkeammaksi sydäntautikuoleman riski kasvoi. Toisin sanoen kolesterolin laskeminen lisäsi kuolleisuutta.

Framingham Heart Study oli tehnyt samankaltaisen havainnon 1960-luvulla, mutta sekin jäi muiden Framinghamin tutkimusten varjoon.

Tulokset ovat ristiriidassa tyydyttyneiden rasvojen välttämiseen ohjaavien neuvojen kanssa. Kellarista löydetty tutkimus aiheutti melkoisen pöhinän ja pienimuotoisen skandaalin tutkijapiireissä. Pian ravitsemuspiireissä alkoi kiivas selittely ja tutkimuksen vähättely.

Huoli: institutionalisoidut opit vaarassa?

Analyysi, joka julkaistiin BMJ-lehdessä, nostatti ravitsemustutkijoiden keskuudessa kiivaita vastalauseita. Kritiikin mukaan Minnesotan tutkimus oli puutteellinen.

Walter Willett, Harvardin yliopiston ravitsemusosaston puheenjohtaja, väitti tutkimusta merkityksettömäksi. Willett tunnetaan mm. siitä, että hän laati monissa nykyisissä epidemiologisissa ravitsemustutkimuksissa käytettävät kyselykaavakkeet, joiden tutkimuksellista arvoa pidetään epäluotettavana.

Vuoden 2015 kansallisten ravintosuositusten päivittämiseen osallistunut ravitsemusasiantuntija Frank Hu väitti puolestaan, että Minnesotan tutkimus ei ollut tarpeeksi pitkäkestoinen osoittamaan monityydyttämättömien kasviöljyjen sydän- ja verisuonitautien riskiä alentavaa vaikutusta, koska koehenkilöitä seurattiin keskimäärin vain noin 15 kuukautta. Ehkäpä Hu on oikeassa, tai sitten ei ole.

Mozaffarianista Chowdhuryyn ja Zamoraan

Frank Hu viittasi Mozaffarianin vuoden 2010 metaanalyysiin, jonka mukaan ihmisillä oli 10 % vähemmän sydänkohtauksia, kun he korvasivat 5 % päivittäisistä tyydyttyneistä rasvoista monityydyttymättömillä rasvoilla vähintään neljän vuoden ajan.

Mozaffarianin tutkimuksessa oli kiinnostava havainto: jos tyydyttyneiden rasvojen saanti korvattiin hiilihydraateilla, hyötyä ei saavutettu.

Mozaffarian ja Skeaff/Miller (2009) suosittavat meta-analyysiensa perusteella tyydyttyneiden rasvojen korvaamista monityydyttämättömillä kasvirasvoilla. Siri-Tarino (2010), ja Chowdury (2014) saivat meta-analyyseissaan tuloksia, jotka eivät tue nykyisiä ravitsemussuosituksia ja väitteitä tyydyttyneiden rasvojen haitoista.

Tohtori Zamora ja hänen kollegansa puolestaan analysoivat neljä vastaavaa ravitsemuskoetta, joissa tutkittiin tyydyttyneen rasvan korvaamista kasviöljyillä ja rasvatyypin vaihdon terveysvaikutuksia.

Zamoran ryhmän analysoimat kontrolloidut satunnaistetut tutkimukset eivät tukeneet vallitsevia ravitsemussuosituksia tai väitettä, että monityydyttämättömät rasvat vähentävät sydänsairauksiin kuolleisuutta.

Vallitseva näkemys on, että matalat kolesterolitasot ovat yhteydessä pienempään sydäntautien riskiin ja sydäntautikuolleisuuteen.

Minnesota Coronary Experiment havaitsi kuitenkin täysin päinvastaisen yhteyden. Tutkimus osoitti, että kolesterolin lasku lisää kuolleisuutta.

Minnesotan tutkimuksessa interventio-ryhmän seerumin kolesteroli laski merkittävästi verrattuna kontrolliryhmään.

Jokainen 0,78 mmol / l seerumin kolesterolipitoisuuden lasku kasvatti sydäntautikuoleman riskiä 22%.

Interventioryhmässä ei saatu näyttöä monityydyttämättömien rasvahappojen ateroskleroosilta ja sydäninfarkteilta suojaavasta vaikutuksesta. Systeemisessä katsauksessa huomioitiin viisi satunnaistettua kontrolloitua tutkimusta. Meta-analyyseissä nämä kolesterolia laskevat interventiot eivät osoittaneet sepelvaltimotautikuolleisuuden tai kokonaiskuolleisuuden laskua.

Satunnaistettujen kontrolloitujen tutkimusten käytettävissä olevat todisteet osoittavat, että ruokavalion tyydyttyneiden rasvojen korvaaminen linolihapolla alentaa tehokkaasti seerumin kolesterolia, mutta ei tue hypoteesia, jonka mukaan kolesterolin lasku vähentäisi sepelvaltimotaudin, sydäninfarktien tai kaikkien syiden aiheuttamaa kuoleman riskiä.

Minnesota Coronary Study on osa kasvavaa näyttöä siitä, että monityydyttämättömien kasviöljyjen ja tyydyttyneiden rasvojen vaikutuksia sydänterveydelle on liioiteltu.

Tyydyttyneiden rasvojen vaihtaminen monityydyttämättömiksi kasvirasvoiksi voi tutkimuksesta riippuen olla jopa sydänterveydelle haitallista.


Eräs selitys yllättävälle havainnolle voi olla omega6-rasvahapot, joita on korkeina pitoisuuksina maissi-, soija-, puuvillansiemen- ja auringonkukkaöljyissä.

Johtavat ravitsemusasiantuntijat korostavat, että ruoanlaitto kasviöljyillä laskee kolesterolia ja estää sydänsairauksia.

Mutta on sellaistakin tutkimusnäyttöä, että runsas omega6-rasvojen saanti voi ylläpitää hiljaista tulehdusta (inflammaatiota) ja siten lisätä sairastumisalttiutta ja kuolleisuutta.

Inflammaatioon kytkeytyvät terveysriskit voivat olla suurempia kuin kolesterolin alentamiseen liittyvät edut.

Ramsden ja Sydney Diet Heart Study

Vuonna 2013 tohtori Ramsden kollegoineen julkaisi hämmennystä herättäneen selvityksen Australiassa 1960-luvulla toteutetusta kliinisestä tutkimuksesta. Tämän tutkimuksen tuloksia ei koskaan julkaistu tai analysoitu.

Australialaisessa tutkimuksessa havaittiin, että miehillä, jotka korvasivat tyydyttyneet rasvat monityydyttämättömillä omega6-rasvoilla, kolesteroli laski, mutta sydänkuolleisuus vastaavasti kasvoi enemmän kuin tyydyttyneitä rasvoja syövällä kontrolliryhmällä. Tulos on nykyisten suositusten vastainen.

Ramsden korosti, että havaintoja tulee tulkita varovaisesti. Tutkimus ei osoittanut, että tyydyttyneet rasvat olisivat terveellisempiä kuin monityydyttämättömät rasvat, hän sanoi. Mutta ehkä ne eivät ole niin haitallisia kuin yleisesti uskotaan.

Ravintorasvojen taustalla oleva tiede on monimutkaisempaa kuin ravitsemussuositukset antavat ymmärtää. Rasvojen ja kolesterolin vaikutukset eivät ole yksinkertaisia ja mustavalkoisia. Syöty ravinto on aina monista ravintoaineista muodostuva kokonaisuus.

Sata vuotta sitten amerikkalaisten päivittäisestä energiasta vain 2 prosenttia tuli linolihaposta. Nykyään amerikkalaiset saavat linolihaposta keskimäärin yli kolminkertaisen määrän energiaa.


Suuri osa omega6-rasvoista saadaan prosessoiduista ruoista, kuten makeisista, pizzasta, ranskalaisista, välipaloista, perunalastuista, kekseistä ja salaattikastikkeista.

Luonnollisemmat rasvalähteet, kuten oliiviöljy, voi ja munankeltuaiset, sisältävät myös linolihappoa, mutta vähemmän kuin monet kasviöljyt ja margariinit.

Alkuperäisen jutun lähde: New York Times

Sydney Diet Heart Study

Linolihappoa (omega6) saaneessa interventioryhmässä oli korkeampi kuolleisuus sydäntauteihin ja kaikkiin syihin kuin verrokkiryhmässä.

Suositukset tyydyttyneiden rasvojen korvaamisesta tyydyttämättömillä kasvirasvoilla ovat keskeinen osa kansainvälisiä ravitsemusohjeita. Ohjeiden tavoite on laskea sepelvaltimotaudin ja muiden sydänsairauksien riskiä.

Sydneyn tutkimuksessa ei havaittu linolihapon (omega6) kliinisiä etuja sydänterveydelle.

Tässä kohortissa tyydyttyneiden rasvojen korvaaminen linolihapolla itse asiassa lisäsi kuolleisuutta sepelvaltimotautiin, sydän- ja verisuonisairauksiin ja kaikkiin syihin.

Linolihappojen terveydellisten vaikutusten interventiotutkimuksen päivitetty meta-analyysi ei löytänyt näyttöä, joka tukisi nykykäsitystä monityydyttämättömien rasvojen eduista sydän- ja verisuoniterveydelle.

Muita tutkimuksia tyydyttyneiden ja tyydyttymättömien rasvojen vaikutuksista terveyteen

Suomalainen mielisairaalatutkimus

Kellokosken ja Nikkilän mielisairaaloissa tehtiin 1959-71 kontrolloitu interventiotutkimus, jonka tarkoituksena oli selvittää, voiko sepelvaltimotaudin (CHD) ilmaantuvuutta laskea seerumin kolesterolia alentavalla ruokavaliolla.
Suomalainen mielisairaalatutkimus on eräs vahvimmista Keysin Diet-Heart-hypoteesia tukeva tutkimus.

Koehenkilöt olivat sairaalahoidossa olevia naisia ja miehiä. Osa koehenkilöistä sai kolesterolia laskevaa ravintoa. Ruokavalio sisälsi vain vähän tyydyttyneitä rasvoja ja kolesterolia sekä runsaasti tyydyttymättömiä rasvoja.

Toinen potilasryhmä sai normaalia sairaalaruokaa. Kuusi vuotta myöhemmin koehenkilöiden ruokavaliot vaihdettiin ja tutkimusta jatkettiin vielä kuusi vuotta.

Vähän tyydyttyneitä rasvoja sisältävä ruokavalio laski koehenkilöiden kolesterolia huomattavasti. Sepelvaltimotauti ja sepelvaltimotautikuolemat laskivat noin puoleen normaalia sairaalaruokaa syövään kontrolliryhmään nähden.

Johtopäätöksenä oli, että seerumin kolesterolia alentavan ruokavaliolla oli huomattava ehkäisevä vaikutus sepelvaltimotaudin esiintymiseen.

Suomalaisessa mielisairaalatkimuksessa maitorasvan vaihtaminen soijaöljyyn laski tyydyttyneen rasvan saantia 27 grammaan päivässä, jolloin veren kokonaiskolesteroli laski n. 13 % naisilla ja 16 % miehillä.

Sepelvaltimotautitapahtumat lähtökohtaisesti sydänterveillä vähenivät seuraavasti:

Miehillä 44 % (p=0,008)
Naisilla 37 % (p=0,04)

Lisäksi yhteisanalyysinä erikseen julkaistussa tutkimuksessa sydänperäinen kuolleisuus laski miehillä 53 % mutta naisilla ei.

Siri-Tarino 2010

Oletusarvoisesti ruokavalion tyydyttyneiden rasvojen vähentämisen uskotaan parantavan sydän- ja verisuoniterveyttä.

Siri-Tarinon meta-analyysin tavoitteena oli koota yhteenveto epidemiologisten tutkimusten näytöstä, jonka mukaan ruokavalion sisältämät tyydyttyneet rasvat lisäävät sepelvaltimotaudin (CHD), aivohalvauksien ja sydän- ja verisuonisairauksien riskiä. Analyysiin koottiin 24 tutkimusta MEDLINE- ja EMBASE-tietokannoista

5–23 vuoden aikana seurattiin 347 747 henkilöä, joista 11 006:lle kehittyi sepelvaltimotauti tai aivohalvaus.

Tyydyttyneen rasvan saanti ei liittynyt lisääntyneeseen sairastumisriskiin.

Prospektiivisten epidemiologisten tutkimusten meta-analyysin näyttö ei tue oletusta, jonka mukaan tyydyttyneet rasvat kasvattavat sydän- ja verisuonitautien riskiä

Mozaffarian 2010

Sydäntautien riskejä kartoittavien satunnaistetujen kontrolloitujen tutkimusten, suurten kohorttien taudin päätetapahtumien ja kontrolloitujen satunnaistettujen tutkimusten tulokset viittaavat siihen, että tyydyttyneiden rasvojen merkitys sydäntautien selittäjänä on puutteellinen.

Merkittävät todisteet osoittavat, että tyydyttyneiden rasvojen vähentämisen terveysvaikutukset vaihtelevat korvaavasta ravintoaineesta riippuen.

Ihmistutkimuksista saatujen parhaiden todisteiden perusteella tydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvahapoilla (esim. margariinit, kasviöljyt) vähentää sydän- ja verisuonitautien riskiä, kun taas tyydyttyneiden rasvojen korvaaminen hiilihydraateilla ei tuo minkäänlaisia terveysetuja.

Mozaffarianin meta-analyysin mukaan merkittävät todisteet osoittavat, että tyydyttyneiden rasvahappojen (SFA) vähentämisen terveysvaikutukset vaihtelevat korvaavien ravintoaineiden mukaan.

Seurantatutkimusten perusteella tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvahapoilla (PUFA) vähentää sydäntautien riskiä, mutta tyydyttyneiden rasvojen korvaaminen hiilihydraateilla (CHO) ei tuottanut mitään terveysvaikutuksia.

Tyydyttyneiden rasvojen korvaaminen kertatyydyttämättömillä rasvoilla antoi tutkimuksissa epävarmoja tuloksia.

Tyydyttyneiden rasvojen korvaaminen hiilihydraateilla, kuten tavallisesti tehdään, ei vaikuta sydäntautiriskiä alentavasti. Mozzaffarianin tutkimuksen mukaan ei ole perusteltua nostaa hiilihydraattien saantisuosituksia ja laskea tyydyttyneen rasvan saantisuosituksia.

Tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla vaikuttaa Mozaffarianin tutkimusaineiston ja muuttujien huomioimisen jälkeen laskevan sydäntautien riskiä 10 %, kun tyydyttyneiden rasvojen saantia vähennetään 5 % päivittäisestä kokonaisenergiansaannista. Yhdysvalloissa kansanterveydellisen hyödyn toteutuminen edellyttäisi, että väestötasolla ltyydyttyneiden rasvojen saanti putoiaisi 11,5 %:sta 6,5 %:iin.

Suositukset tyydyttyneiden rasvojen korvaamisesta tyydyttämättömillä rasvoilla voi tuntua tarkoituksenmukaiselta, mutta sydäntautiriskin kannalta tyydyttyneiden rasvojen kulutusta merkittävämpiä tekijöitä ovat matalat omega3-tasot, hedelmien ja vihannesten vähäinen saanti, transrasvojen saanti, sokeri ja runsas suolan kulutus.

Lopuksi haluan todeta, että ravitsemussuositukset eivät ole aivan niin ristiriidattomia ja kiistattomia kuin monet haluavat uskoa.