Sokeriaineenvaihdunta: Fruktolyysi ja glykolyysi

Hiljattain joukko amerikkalaisia professoreita määritteli sokerin terveydelle haitallisimmaksi ravintoaineeksi.  Sokerin terveydelliset vaikutukset palautuvat erityisesti glukoosin ja fruktoosin aineenvaihduntaan. Kuinka glykolyysi ja fruktolyysi eroavat toisistaan?

Sokereiden aineenvaihdunta

Ravinto sisältää useita sokereita erilaisina molekyylirakenteina. Niiden pilkkominen imeytyvään muotoon alkaa jo suussa. Yleisimmät ravinnosta saatavat sokerit ovat, glukoosi, fruktoosi, laktoosi, galaktoosi ja maltoosi.

Kasvien sisältämä tärkkelys on sokerin varastomuoto. Tärkkelys on monimutkainen glukoosiyksiköistä muodostuva haarautumaton amyloosi tai haarautunut amylopektiini. Se on polysakkaridi, jossa glukoosimonomeerit ovat liittyneet toisiinsa. Kasvit valmistavat tärkkelystä fotosynteesissä. Erityisen tärkkelyspitoisia ravintoaineita ovat esimerkiksi perunat, maissi ja riisi.

Solujen energiantuotannon kannalta glukoosi ja fruktoosi ovat tärkeimpiä sokereita. Niilläkin on omat aineenvaihduntapolkunsa.

Sokereita kuljettavat molekyylit

Glukoosimolekyylejä kuljettavat ohutsuolesta verenkiertoon insuliinin säätelemät GLUT1- ja GLUT4-molekyylit. Fruktoosi ei aktivoi insuliinintuotantoa ja sitä  kuljettavat GLUT5-molekyylit.

Käytännössä GLUT1-molekyyli kuljettaa glukoosimolekyylin ohutsuolen endoteelisoluun ja GLUT4-molekyyli kuljettaa glukoosimolekyylin endoteelisolusta verenkiertoon.

Fruktoosimolekyyli kulkeutuu ohutsuolesta endoteelisoluun GLUT5-molekyylin kuljettamana ja endoteelisolusta verenkiertoon GLUT2-molekyylin kuljettamana.

Sokereita pilkkovat entsyymit

Ruoansulatuskanavassa sokereita pilkkoo joukko entsyymejä, joista tärkkelystä maltoosiksi pilkkova amylaasi on ehkä tutuin. Amylaasi aloittaa tärkkelyksen pilkkomisen jo suussa, johon amylaasia erittyy sylkirauhasista.  Sokereiden pilkkominen imeytyvään muotoon jatkuu vatsassa ja suolistossa. Haima erittää amylaasia ohutsuoleen.

Maltoosi on kahdesta glukoosimolekyylistä muodostuva disakkaridi. Ruoansulatuskanavassa maltoosia pilkkoo suolinesteen maltaasi-entsyymi. Laktoosi eli maitosokeri koostuu glukoosista ja galaktoosista. Laktoosia pilkkoo laktaasi. Sakkaroosi muodostuu fruktoosista ja glukoosista. Sakkaroosia pilkkoo sakkaraasi.

Ruoansulatuskanavassa sokerit pilkotaan yksinkertaisiksi sokerimolekyyleiksi, jotka kulkeutuvat ohutsuolesta verenkertoon sokereille spesifien kuljetusmolekyylien kuljettamina. Sokereiden aineenvaihduntareitit poikkeavat toisistaan.

Esimerkiksi: Aldoosi-1-epimeraasi (GALM) muuttaa β-D-galaktoosin ensin α-D-galaktoosiksi. Tämä muutetaan edelleen UDP-glukoosiksi kolmen pääasiallisen entsyymin avulla (GALK, GALT ja GALE). UDP-glukoosi (uracil-diphosphate glucose) on nukleotidin, eli nukleiinihappojen (DNA, RNA) rakenneyksikön sokeriosa. Nukleotidiin kuuluu kolme osaa, emäs, sokeriosa ja fosfaatti. Galaktoosi vaikuttaa siis nukleiinihappojen aineenvaihduntaan ja rakenteeseen.

Pöytäsokeri on fruktoosia ja glukoosia

Tavallinen pöytäsokeri on ruokosokeria eli sakkaroosia, joka muodostuu yhtäläisestä määrästä glukoosia ja fruktoosia. Sakkaroosi on disakkaridi, jossa kaksi erilaista sokerimolekyyliä on tiukasti sitoutunut toisiinsa.

Glukoosi (rypälesokeri) on elimistön tärkein energianlähde. Glukoosi on yhdestä sokerimolekyylistä muodostuva monosakkaridi. Myös glukoosia selvästi makeampi fruktoosi (hedelmäsokeri) on yhdestä sokerimolekyylistä muodostuva monosakkaridi.

Kasveissa sakkaroosi on yleinen. Sitä on paljon esimerkiksi sokeriruo’ossa, sokerijuurikkaassa, ananaksessa, maississa ja porkkanassa.

Ruoansulatus pilkkoo hiilihydraateista ja tärkkelyksestä yksinkertaisia ohutsuolesta verenkiertoon imeytyviä sokerimolekyylejä. Glukoosi ja fruktoosi ovat yleisimmät ravinnosta saatavat sokerit, mutta ne eivät toimi elimistössä aivan samalla tavalla. Näiden sokereiden reaktioketjut eroavat aineenvaihdunnan kannalta merkittävästi toisistaan.

Fruktoosi ja fruktolyysi

Fruktoosi

Fruktoosi on yhdestä fruktoosimolekyylistä muodostuva monosakkaridi, jota esiintyy luonnostaan hedelmissä, marjoissa ja vihanneksissa joko vapaina fruktoosimolekyyleinä, kahdesta sokerimolekyylistä muodostuvina disakkarideina (kuten ruokosokeri) tai fruktoosin polymeerina (inuliini).

Inuliini on fruktoosista muodostunut varastopolysakkaridi, jossa on 30-50 fruktoosimolekyyliä. Inuliinia esiintyy mm. maa-artisokassa, sipulissa, parsassa, banaanissa, rukiissa, vehnässä, mustajuuressa, ohrassa sekä asterikasvien, kuten daalian, voikukan ja sikurin juurissa ja juurimukuloissa. Inuliinia käytetään elintarviketeollisuudessa makeutusaineena. Se sisältää noin kolmanneksen vastaavan sokerimäärän energiasta.

Teollinen fruktoosi

Fruktoosi on makeampaa kuin glukoosi, joten sitä käytetään yleisesti makeutusaineena. Tavallinen kidesokeri sisältää 50:50 suhteessa glukoosia ja fruktoosia. Fruktoosia saa runsaasti mm. hedelmistä ja marjoista. Teollisesti valmistettua fruktoosia ja fruktoosisiirappia käytetään yhä useammissa elintarvikkeissa.

Edullinen nestemäinen fruktoosisiirappi on syrjäyttämässä perinteisen sakkaroosin yleisimpänä makeutusaineena. Amerikkalaisessa ruokavaliossa päivittäisestä energiansaannista jopa 10 % saadaan fruktoosista. Jos suomalaisen päivittäisestä energiansaannista 10% on peräisin lisätystä sokerista, silloin fruktoosin osuus energiansaannista voi olla jopa 5 %.

Teollinen fruktoosi korreloi vahvasti monien kardiometabolisten sairauksien kanssa. Tätä selittää todennäköisesti fruktoosin glukoosista poikkeava aineenvaihdunta. Erityisen ongelmallista on fruktoosisiirapista nopeasti elimistöön imeytyvät vapaat fruktoosimolekyylit, jotka voivat horjuttaa sokeriaineenvaihdunnan toimintaa, rasittaa maksaa ja altistaa esimerkiksi alkoholista riippumattomalle rasvamaksalle.

Huomio: Korrelaatio fruktoosisiirapin ja kardiometabolisten sairauksien välillä on vahva, mutta kausaliteettia ei välttämättä ole osoitettu.

Fruktolyysi

Fruktoosin aineenvaihdunta tapahtuu pääasiassa maksassa. Maksan lisäksi fruktolyysiä tapahtuu jonkin verran ohutsuolessa, luurankolihaksissa, kiveksissä, rasvakudoksessa ja aivoissa.

Noin prosentti syödystä fruktoosista muutetaan maksassa suoraan plasman triglyserideiksi. 29-54% fruktoosista syntetisoidaan maksassa glukoosiksi. Neljännes fruktoosista muutetaan laktaatiksi eli maitohapon suoloiksi tai estereiksi. 15-18% fruktoosista syntetisoiduista glykoosimolekyyleistä varastoidaan glykogeenien polymerisaatiossa polysakkarideina glykogeeneiksi.

Glykogeenit ovat tuhansista glukoosimolekyyleistä muodostavia pitkäketjuisia ja pitkähaaraisia polysakkarideja.

Glykogeenien polymerisaatio

Glykogeenin polymerisaation lähtöaineina toimivat sokeri-nukleotidit, joissa sokerimonomeeri on aktivoitu kiinnittämällä siihen nukleotidi. Glykogeenin polymerisaatiossa vaikuttavat glykogeenisyntaasi, joka liittää glukoosimolekyylejä pitkään ketjuun sekä entsyymi, joka tekee glykogeeniin haarakohtia. Koska glykogeenisyntaasi voi vain lisätä glukoosimolekyylejä valmiiseen ketjuun, tarvitaan oma entsyymi aloittamaan glykogeenin valmistus (glykogeniini). Lähde: Solunetti

Kehon solut voivat käyttää fruktolyysin syntetisoimaa glukoosia ja laktaattia energianlähteenä solujen glykolyysissä. Aineenvaihdunta voi myös purkaa maksaan ja lihassoluihin varastoituneita fruktoosista valmistettuja glykogeenejä glukagonin stimuloimana glykogenolyysissä, jolloin vereen vapautuu glukoosia. Tämä mekanismi turvaa solujen energiansaannin ruokailujen välillä sekä raskaissa fyysisissä suorituksissa.

Alhainen verensokeri aktivoi haiman erittämään glukagonia, joka purkaa maksan ja lihasten glykogeenejä glukoosiksi. Glukagoni aktivoi myös maksassa ja munuaisissa tapahtuvaa glukoneogeneesiä, ketogeneesiä sekä rasvojen β-oksidaatiota. Matala verensokeri aktivoi rasvan käyttämistä energianlähteenä.

Glykolyysi

Kaikki solut saavat energiaa glukoosista. Solu saa energiantuotantoon tarvittavan glukoosin joko solun ulkopuolelta, josta se kulkeutuu soluun osmoottisesti eli suuremmasta pitoisuudesta pienempään, tai purkamalla solun sisäisen glykogeenin glukoosimolekyyleiksi.

Glykolyysi on solulimassa tapahtuva monimutkainen reaktiosarja, jossa glukoosimolekyylit hajotetaan kahdeksi palorypälehapon anionimuodoksi eli pyruvaatiksi.

Yhdestä glukoosimolekyylistä saadaan kahden pyruvaattimolekyylin lisäksi kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä. Solujen anaerobinen energiansaanti perustuu glykolyysiin.

Soluhengitys

Jos solussa on mitokondrioita ja happea, energiantuotanto jatkuu sitruunahappokierrossa (Krebsin sykli). Eräiden entsyymien avustuksella pyruvaateista saadaan mitokondrioissa tapahtuvassa oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta.

Rasvahapot hajoavat energiaksi pääasiassa hapettumalla β-oksidaatiossa siten, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

Asetyylikoentsyymi-A eli aktiivinen etikkahappo on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa. Asetyylikoentsyymi-A:ta saadaan monosakkarideista, triglyserideista sekä aminohapoista erilaisten reaktiovaiheiden kautta. Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi. Lähde: Wikipedia

Anaerobinen ja aerobinen glykolyysi

Soluissa, joissa ei ole mitokondrioita (esim. veren punasolut) tai riittävästi happea, pyruvaatti pelkistyy maitohapoksi. Maitohappoon pelkistyvää glykolyysiä kutsutaan anaerobiseksi glykolyysiksi ja asetyylikoentsyymi-A:han päättyvää glykolyysiä aerobiseksi glykolyysiksi.

Asetyylikoentsyymi-A:han päättyvän reaktiossa glukoosimolekyylistä jää jäännöstuotteena hiilidioksidia ja vettä, jotka poistuvat kehosta ihon ja hengityksen kautta.

Laktaatin muodostuminen ei tuota energiaa, mutta se on välttämätöntä, jotta saadaan pelkistyneet NADH-molekyylit takaisin hapettuneeseen NAD+-muotoon, jota tarvitaan glykolyysissä.

 Glykolyysin vaiheet (Lähde: Wikipedia – Glykolyysi)

  1. Glukoosiin liitetään fosfaattiryhmä ATP:ltä heksokinaasin tai glukokinaasin avulla, jolloin syntyy glukoosi-6-fosfaattia. Heksokinaasia inhiboi glukoosi-6-fosfaatti ja glukokinaasia fruktoosi-6-fosfaatti. Lisäksi insuliini aktivoi glukokinaasin transkriptiota tumassa.
  2. Glukoosi-6-fosfaatti muutetaan fosfoheksoosi-isomeraasin avulla fruktoosi-6-fosfaatiksi.
  3. Fruktoosi-6-fosfaatti fosforyloidaan ATP:n avulla fruktoosi-1,6-bisfosfaatiksi. Tätä reaktiota katalysoi fosfofruktokinaasi-1 eli PFK-1. PFK-1:tä inhiboi ATP, sitraatti ja H+. Aktivoivia molekyylejä ovat puolestaan AMP ja fruktoosi-2,6-bisfosfaatti.
  4. Fruktoosi-1,6-bisfosfaatti muutetaan aldolaasi A:n:n avulla dihydroksiasetonifosfaatiksi ja glyseraldehydi-3-fosfaatiksi.
  5. Dihydroksiasetonifosfaatti muutetaan trioosifosfaatti-isomeraasin avulla glyseraldehydi-3-fosfaatiksi.
  6. Neljännen ja viidennen vaiheen reaktioista saaduista glyseraldehydi-3-fosfaateista muodostetaan glyseraldehydi-3-rosfaattidehydrogenaasin avulla 1,3-bisfosfoglyseraattia. Samalla NAD+ pelkistyy NADH:ksi.
  7. 1,3-bisfosfoglyseraatti defosforyloidaan fosfoglyseraattikinaasin avulla 3-fosfoglyseraatiksi. Samalla ADP fosforyloituu ATP:ksi.
  8. 3-fosfoglyseraatti muutetaan fosfoglyseraattimutaasin avulla 2-fosfoglyseraatiksi.
  9. 2-fosfoglyseraatti muutetaan enolaasin avulla fosfoenolipyruvaatiksi.
  10. Fosfoenolipyruvaatti defosforyloidaan pyruvaattikinaasin avulla pyruvaatiksi. Samalla ADP fosforyloituu ATP:ksi. Pyruvaattikinaasia inhiboivat ATP, alaniini ja glukagoni. Aktivoiva molekyyli on puolestaan glykolyysin kolmannessa vaiheessa muodostuva fruktoosi-1,6-bisfosfaatti.

Glukoosin ja fruktoosin aineenvaihduntaan osallistuu samoja entsyymejä ja solujen rakenteita sekä niitä yhdistäviä reaktioketjuja, mutta monista yhtäläisyyksistä huolimatta niiden aineenvaihdunta eroaa toisistaan merkittävällä tavalla.

Fruktoosi ei stimuloi insuliinin eritystä

Fruktoosi ei stimuloi insuliinin eritystä samalla tavalla kuin glukoosi, eikä sen pääsy soluihin ole insuliinista riippuvainen. Glukoosin aineenvaihdunta puolestaan tarvitsee insuliinia.

Insuliinin tuotannon loppuminen tyypin 1 diabeteksessa sekä solujen kasvanut insuliiniresistenssi tyypin 2 diabeteksessa aiheuttavat sen, että solut eivät saa energiantuotannossa tärkeää glukoosia, vaan glukoosimolekyylit jäävät verenkiertoon, jossa ne vaurioittavat verisuonia ja sisäelimiä.

Veren glukoosipitoisuus stimuloi haiman insuliinineritystä. Insuliinin säätelemät kuljetusmolekyylit (GLUT1 ja GLUT4) kuljettavat glukoosin soluihin. Fruktoosin kuljetusmolekyyli on GLUT5.

Haiman erittämä insuliini kiinnittyy solujen insuliinireseptoreihin, mikä käynnistää soluissa toisioviestintäjärjestelmän. Se houkuttelee solun sisällä olevan solukalvon läpäisevän glukoosinsiirtokanavan solukalvolle. Glukoosi pääsee tämän avulla solun sisälle, jossa glukoosimolekyyli osallistuu energiaa tuottavaan glykolyysiin.

Sokereiden rakenne

Monosakkaridit, kuten fruktoosi ja glukoosi voivat olla joko avoketjuisia tai renkaita, mutta elimistössä monosakkaridien vallitsevana muotona on rengasmainen rakenne.

Rengasmaisessa rakenteessa anomeerihiileksi kutsutaan hiiltä, joka on lähimpänä karbonyyliryhmää muodostavaa hiiltä. Karbonyyliryhmästä aloitetaan monosakkaridien hiilten numerointi. Hiiliketjun pituus monosakkaridissa voi olla kolme tai suurempi. Tärkeimpiä elimistössä esiintyviä monosakkarideja ovat heksoosit, joissa on kuuden hiiliatomin ketju.

  • Trioosi: kolme hiiliatomia
  • Totroosi: neljä hiiliatomia
  • Pentoosi: viisi hiiliatomia
  • Heksoosi: kuusi hiiliatomia
  • Heptoosi: seitsemän hiiliatomia

Karbonyyliryhmä koostuu toisiinsa kaksoissidoksella kiinnittyneistä hiili- ja happiatomeista. Esimerkkejä karbonyyliryhmän sisältävistä yhdisteistä ovat: aldehydi, ketoni, karboksyylihappo, esteri ja amidi. Karbonyyliryhmä antaa näille yhdisteille niille ominaisen kemiallisen luonteen.

Fruktolyysi ja glykolyysi ovat itsenäisiä metabolisia reaktioketjuja (metabolic pathway)

 ”Suuri osa syödystä glukoosista kulkeutuu maksan läpi luurankolihaksiin, jossa se metaboloituu glykolyysissa ja edelleen sitruunahappokierrossa ensin pyruvaateiksi ja edelleen hiilidioksidiksi (CO2), hapeksi (H2O) ja ATP-molekyyleiksi, tai rasvasoluihin, jossa glukoosimolekyyleistä metaboloidaan glyserolifosfaattia triglyseridien synteesiin ja energiantuotantoon.”

Fruktoosin aineenvaihdunta syntetisoi maksassa glykogeenejä ja de novo lipogeneesissä rasvahappoja ja triglyseridejä.

Tämä synteesi voidaan jakaa kahteen päävaiheeseen:

  1. Trioosien, dihydroksiasetonin (DHAP) ja glyseraldehydin synteesi.
  2. Toisessa vaiheessa trioosit jatkavat aineenvaihduntaa joko glukoneogeneesissä, täyttävät maksan glykogeenejä ja/tai fruktolyysin reaktioketjussa pyruvaatiksi; pyruvaatti muutetaan sitruunahappokierrossa sitraatiksi ja lopuksi de novo synteesissä vapaista rasvahapoista syntetisoidaan palmitiinihappoa.

Palmitiinihappo

Palmitiinihappo on yleisin tyydyttynyt rasvahappo sekä eräs yleisimmistä rakenneosasista eläin- ja kasvirasvoissa. Esimerkiksi ihrassa ja voissa on 25 % palmitiinihappoa. Myös ihmisen rasvasta 25 % on palmitiinihappoa. Palmitiinihapon estereitä ja suoloja kutsutaan palmitaateiksi.

Trioosit ovat kolmesta hiiliatomista muodostuvia monosakkarideja. Dihydroksiasetoni on kaksi hydroksyyliryhmää sisältävä ketoni. Glyseraldehydi on yksinkertaisin monosakkarideista. Se on makea yhdiste, jota syntyy hiilihydraattien hajoamisen seurauksena.

Fruktoosi metaboloituu DHAP:ksi ja glyseraldehydiksi

Fruktoosin aineenvaihdunnan ensimmäinen askel on fruktoosin fosforylaatio, jossa fruktokinaasi muuttaa fruktoosimolekyylin fruktoosi-1-fosfaatiksi. Tämä reaktioketju sitoo fruktoosin aineenvaihdunnan maksaan.

Maksassa esiintyy myös heksokinaasi IV-entsyymiä (Glukokinaasi), joka voi fosforyloida vähäisestä määrästä fruktoosia fruktoosi 6-fosfaattia (glukoneogneettisen reaktioketjun välivaihe). Käytännössä kaikki fruktoosimolekyylit fosforyloidaan maksassa kuitenkin fruktoosi-1-fosfaatiksi.

Kuvakaappaus: Wikipedia

Toisaalta suurin osa glukoosimolekyyleistä jää fosforyloimatta ja kulkee maksan läpi rasvakudokseen ja luurankolihaksiin insuliiniriippuvaisen glukoosinkuljetusmolekyylin (GLUT4) kuljettamana.

Fruktoosi-1-fosfaatti hydrolysoidaan fruktoosi-1fosfaatti aldolaasin (aldolaasi B) avulla dihydoksiasetonifosfaatiksi (DHAP). Dihydroksiasetonifosfaatti on orgaaninen molekyyli, joka esiintyy välituotteena monissa biokemiallisissa reaktioissa, esimerkiksi glykolyysissä. Aldolaasi eli fruktoosi-1,6-bisfosfaattialdolaasi on entsyymi, joka osallistuu glykolyysiin ja glukoneogeneesiin katalysoimalla fruktoosi-1,6-bisfosfaatin reversiibeliä hajoamista glyseraldehydi-3-fosfaatiksi tai glyseraldehydiksi ja dihydroksiasetonifosfaatiksi.

DHAP voi isomerisoitua glyseraldehydi-3-fosfaatiksi, tai glyseroli-3-fosfaatiksi. Glyseraldehydi kinaasi voi muuttaa glyseraldehydin glyseraldehydi-3-fosfaatiksi tai glyseroli-3-fosfaatiksi.

Fruktoosin aineenvaihdunnan tuottamat väliaineet voivat osallistua glukoneogeneesiin ja glykogeenin synteesiin, tai ne voidaan hapettaa pyruvaatiksi ja edelleen laktaatiksi, tai dekarboksyloida asetyylikoentsyymi-A:ksi mitokondrioissa sekä edelleen siirtää vapaiden rasvahappojen synteesiin ja lopulta triglyseridien synteesiin.

Kuva: Fruktoosin aineenvaihdunta dihydroksifosfaatiksi (DHAP), glyseraldehydiksi ja glyseraldehydi-3-fosfaatiksi maksassa.

Glykogeenin synteesi dihydroksiasetonifosfaatista ja glyseraldehydi-3-fosfaatista

Fruktoosin aineenvaihdunta jatkuu glukoneogeneesin lähtöaineista. Fruktoosista metaboloidaan aluksi dihydroksiasetonifosfaattia (DHAP) ja glyseraldehydia fruktokinaasin ja aldolaasi B:n katalysoimana.

Lisääntynyt DHAP- ja glyseraldehydi-3-fosfaatin konsentraatio maksassa ohjaa glukoneogeneesin reaktioketjun kohti glukoosi-6-fosfaattia, glukoosi-1-fosfaattia ja glykogeenin synteesiä.

Fruktoosi on parempi substraatti glykogeenin synteesille kuin glukoosi. Glykogeenivaraston täydennys on etusijalla triglyseridien synteesiin nähden. Kun maksan glykogeenivarasto on täydennetty, fruktoosin ylimääräiset aineenvaihduntatuotteet jatkavat triglyseridien synteesiin.

Kuva: Fruktoosin aineenvaihdunta glykogeeniksi maksassa

Triglyseridien synteesi dihydroksiasetonifosfaatista ja glyseraldehydi-3-fosfaatista

Ravinnosta saatu ylimääräinen fruktoosi voidaan muuttaa pyruvaatiksi ja siirtää sitruunahappokiertoon, jossa se muutetaan edelleen sitraatiksi, tai ohjata reaktiosarjaa vapaiden rasvahappojen synteesiin soluliman nestemäisessä sytosolissa. Fruktolyysin syntetisoima DHAP voidaan muuttaa glyseroliksi ja edelleen glyseroli-3-fosfaatiksi triglyseridien synteesiin de novo lipogeneesissa.

”Thus, fructose can provide trioses for both the glycerol 3-phosphate backbone, as well as the free fatty acids in TG synthesis. Indeed, fructose may provide the bulk of the carbohydrate directed toward de novo TG synthesis in humans.

Kuva: Triglyseridien synteesi maksassa

Maksassa fruktoosi aktivoi useita rasvahappojen synteesiin (lipogeneesi) osallistuvia insuliinista riippumattomia entsyymejä. Nämä ovat: pyruvate kinase, NADP+-dependent malate dehydrogenase, citrate lyase, acetyl CoA carboxylase, fatty acid synthase, pyruvate dehydrogenase.

Runsaasti teollista fruktoosia sisältävän ravinnon on havaittu altistavan hypertriglyseridemialle eli veren liialliselle triglyseridipitoisuudelle.

”The hypertriglyceridemic effects observed are a hallmark of increased dietary carbohydrate, and fructose appears to be dependent on a number of factors including the amount of dietary fructose consumed and degree of insulin resistance.”

Fruktoosin aineenvaihdunnan virheet

Fruktoosin aineenvaihduntaan vaikuttavien kahden tärkeän entsyymin puutos aiheuttaa kaksi synnynnäistä hiilihydraattien aineenvaihdunnan virhettä.

Fruktokinaasin puutos aiheuttaa essentiaalisen fruktosurian. Fruktokinaasi osallistuu reaktioketjuun, jossa fruktoosi muutetaan fruktoosi-1-fosfaatiksi. Tämän entsyymin puutoksen seurauksena fruktoosin aineenvaihdunta jää epätäydelliseksi, jolloin fruktoosia erittyy virtsaan. Fruktosuria on perinnöllinen tila, joka ei kuitenkaan aiheuta kliinisiä oireita, sillä fruktoosi voidaan metaboloida fruktoosi-6-fosfaatiksi heksokinaasin avulla esimerkiksi rasva- ja lihaskudoksissa.

Fruktoosin imeytymishäiriö ja perinnöllinen fruktoosi-intoleranssi

Fruktoosin imeytymishäiriö on ruoansulatuskanavan häiriö, jossa fruktoosin imeytyminen ohutsuolesta verenkiertoon on heikentynyt fruktoosinkuljetusmolekyylien vähäisyyden vuoksi. Imeytymishäiriön oireita ovat mm. vatsakipu, turvotus, ilmavaivat ja ripuli.

Fruktoosin imeytymishäiriö muistuttaa oireiltaan ärtyvän suolen oireyhtymää sekä laktoosi-intoleranssia.

Fruktoosin imeytymishäiriötä ei pidä sekoittaa mahdollisesti hengenvaaralliseen perinnölliseen fruktoosi-intoleranssiin, jossa maksassa fruktoosia pilkkovat entsyymit eivät toimi oikein.

Fruktoosi imeytyy ohutsuolesta ilman ruoansulatusentsyymien apua. Terveen henkilön ohutsuoli pystyy kerrallaan imeyttämään ohutsuolesta verenkiertoon 25-50 grammaa fruktoosia. Fruktoosin imeytymishäiriötä sairastavilla jo alle 25 g fruktoosiannos voi aiheuttaa vatsavaivoja. Sorbitoli voi edelleen heikentää fruktoosin imeytymistä ja lisätä vatsavaivoja. Imeytymätön fruktoosi fermentoituu suolistobakteerien vaikutuksesta ja lisää suolistokaasujen muodostumista.

Monet runsaasti fruktoosia sisältävät hedelmät, esimerkiksi omenat, päärynät, mangot ja vesimelonit, voivat aiheuttaa oireita fruktoosin imeytymishäiriötä sairastavalla. Oireita voi tulla myös runsaasti fruktoosia sisältävästä pöytäsokerista, hunajasta, maissisiirapista, rusinoista, hedelmämehuista ja fruktaaneista (FODMAP).

Fruktoosin imeytyshäiriöön ei ole parantavaa hoitoa, mutta sen aiheuttamia oireita voi välttää minimoimalla fruktoosin saannin. Myös FODMAP-ruokavalio voi auttaa oireiden helpottamisessa. Lähde: Wikipedia

Perinnöllinen fruktoosi-intoleranssi (HFI)

Perinnöllinen fruktoosi-intoleranssi (HFI) johtuu synnynnäisestä aldolaasi B-entsyymin puutoksesta. Puutoksen seurauksena sakkaroosi, fruktoosi ja sorbitoli aiheuttavat oireita synnynnäistä fruktoosi-intoleranssia sairastavilla. Aldolaasi-B entsyymin puutos johtaa fruktoosi-1-fosfaatin kerääntymiseen maksasoluihin, munuaisiin ja ohutsuoleen. Ajan mittaan tämä johtaa maksasolujen tuhoutumiseen. HFI vaikuttaa myös glukoneogeneesiin, glykogenolyysiin ja adenosiinitrifosfaatin (ATP) regeneraatioon. HFI aiheuttaa mm. pahoinvointia, oksentelua, kouristeluja, ärtyisyyttä, hypoglykemiaa, keltatautia, verenvuotoa, maksan liikakasvua sekä mahdollisesti munuaisten vajaatoimintaa. HFI voi johtaa kuolemaan, mutta se on melko harvinaista.

Kuva: Fruktolyysin ja glykolyysin aineenvaihdunta




Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen ruokavalio kääntää perinteiset ravintosuositukset päälaelleen. Vähähiilihydraattisena ruokavaliona se ylittää aika ajoin uutiskynnyksen ja keskustelu sen ympärillä on ollut kiivasta karppausbuumin alkuajoista alkaen.

Viime kuussa joukko amerikkalaisia asiantuntijoita rankkasi ketogeenisen ruokavalion 40 dieetin vertailussa pitkäaikaisvaikutuksiltaan huonoimmaksi laihdutusruokavalioksi. Luulen, että ketogeeniseen ruokavalioon liittyy paljon epätietoisuutta. Mitä ketogeenisellä ruokavaliolla tarkoitetaan ja kuinka se toimii?

Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen dieetti on vähähiilihydraattinen ruokavalio, jossa tavoitellaan aineenvaihdunnan ketoositilaa. Kun maksaan ja lihaksiin varastoidut hiilihydraattivarastot tyhjenevät, maksa ryhtyy tuottamaan ketoaineita ketogeneesissä ja käyttämään rasvakudokseen säilöttyä energiaa tasapainottaakseen elimistön energiavajetta.

Käytännössä ketogeenisessä ruokavaliossa tavoitellaan sellaista aineenvaihdunnan tilaa, jossa elimistö oppii käyttämään tehokkaasti rasvakudokseen varastoitua läskiä energianlähteenä.

Ketogeneesin käynnistyminen edellyttää, että ravinnon hiilihydraattien saantia rajoitetaan. Ketoosi alkaa, kun elimistö ei saa riittävästi hiilihydraatteja ja elimistön hiilihydraattivarastot eli glykogeenit tyhjenevät.

Varsinkin ruokavalion alkuvaiheessa hiilihydraatteja rajoitetaan reilusti. Tämän ”induktiovaiheen” tavoitteena on uudelleenohjelmoida elimistö käyttämään energianlähteenä aluksi ketoaineita ja myöhemmin pääasiassa rasvaa. Hiilihydraattien saanti lasketaan 20-100 grammaan vuorokaudessa.

Ketogeeninen ruokavalio lääketieteessä

Lääketieteessä ketogeenista ruokavaliota käytetään erityisesti vaikean epilepsian hoitoon lapsilla. Käypä hoito -suosituksissa neuvotaan harkitsemaan ketogeenista ruokavaliota yhteistyössä ravitsemusterapeutin kanssa vaikean epilepsian hoidossa silloin, kun epilepsialääkkeet eivät käy eikä kirurgisen hoidon mahdollisuutta ole. Ketogeenista ruokavaliota on käytetty myös lasten lihavuuden hoidossa.

Vähähiilihydraattinen ruokavalio on hyväksi diabeetikoille, sydän- ja syöpäpotilaille sekä ylipainoisille. Vähän hiilihydraatteja sisältävä ravinto laihduttaa ja vähentää ylipainoisten ihmisten sydäntautien riskiä tehokkaammin kuin vähärasvainen ruokavalio, osoittaa laajameta-analyysi, jossa käytiin läpi tutkimukset vuosilta 1966-2014 (Sackner-Bernstein ym. 2015).

Induktiovaiheen ravintosisältö

Alkuvaiheessa ketogeeninen ruokavalio sisältää yleensä noin 20 – 50 grammaa hiilihydraatteja vuorokaudessa hieman henkilöstä ja ruokavalion tavoitteista riippuen. Proteiinien saanniksi suositellaan 1-2 grammaa / painokilo, mutta ikääntyneillä proteiinien saanti voi olla korkeampikin lihaksia energianlähteeksi pilkkovan katabolisen aineenvaihdunnan vuoksi. Suurin osa ravinnosta muodostuu ketogeenisessä ruokavaliossa rasvasta.

Vettä on tärkeää juoda runsaasti (3-4 l/vuorokaudessa), sillä ketogeeninen ruokavalio poistaa vettä sitovien hiilihydraattien puutoksen vuoksi runsaasti kehoon sitoutuneita nesteitä. Myös suolan saannista on tärkeä huolehtia, koska se sitoo elimistöön nestettä ja ehkäisee elimistön kuivumista hiilihydraattien puuttuessa.

Noin neljän viikon induktiojakson jälkeen hiilihydraattien määrää voi lisätä  alle 50 grammasta 50-100 grammaan vuorokaudessa esimerkiksi kasviksia lisäämällä.

  • 5-10 % Ravinnon energiamäärästä (kcal) tulisi saada hiilihydraateista
  • 30 % Ravinnon energiamäärästä (kcal) tulisi saada proteiineista
  • 60 % Ravinnon energiamäärästä (kcal) tulisi saada rasvasta

Ketogeenisen ruokavalion tiedetään aiheuttavan päänsärkyä monilla, mutta se on yleensä seurausta veden liian vähäisen juomisen aiheuttamasta nestehukasta.Silloin kannattaa juoda enemmän vettä.

Ketoosi ja ketoasidoosi eivät ole sama asia

Ketoasidoosi eli happomyrkytys on toksinen tila, jossa ketoaineiden määrä verenkierrossa voi kasvaa monikymmenkertaiseksi ketoosiin verrattuna. Lievimmillään ketoasidoosia ei välttämättä edes huomaa, mutta vakavimmillaan se on hengenvaarallinen myrkytystila. Ketoosi ja ketoasidoosi ovat siis kaksi eri asiaa.

Ketogeeninen ruokavalio ja aineenvaihdunta

Aineenvaihdunnan tasolla ketogeneesi tarkoittaa energianlähteiksi kelpaavien ketoaineiden tuottamista rasvahapoista silloin kun hiilihydraattien saanti on niukkaa tai olematonta.

Ketoaineet ovat rasvasta ja etanolista muodostuvia pienimolekyylisia yhdisteitä. Elimistössä muodostuu kolmea eri ketoainetta:

  • asetoasetaattia
  • beeta-hydroksibutyraattia
  • asetonia

Ketoaineiden tuotannon käynnistyminen

Aineenvaihdunta aloittaa ketoaineiden tuotannon, kun maksan ja lihasten sokerivarastot (glykogeenit) on kulutettu loppuun esimerkiksi intensiivisen urheilusuorituksen, vähän hiilihydraatteja sisältävän ravinnon tai paaston vaikutuksesta.

Ketoaineiden tuotannon käynnistyminen ei tarkoita, että elimistö on ketoosissa. Se on vain merkki siitä, että hiilihydraattivarastot ovat loppu ja elimistö siirtyy ”varavoimanlähteen” käyttöön. Ketoosi alkaa yleensä muutamassa päivässä ja rasvan käyttäminen solujen polttoaineena vakiintuu 3-4 viikossa.

Kun keho menee ketoosiin, aineenvaihdunta turvaa elintoimintojen tarvitseman energian saannin glukoneogeneesillä ja ketogeneesillä myös paaston ja hiilihydraatittoman ruokavalion aikana. 3-4 viikossa elimistö korvaa ketoaineet energianlähteinä rasvakudoksen ja ravinnon rasvoilla.

Näiden aineenvaihduntamekanismien ansiosta terve ihminen selviää elossa pelkällä vedellä jopa kuukauden ajan.

Ketoaineita syntyy maksassa ja munuaisissa

Yleensä ketoaineita syntyy maksan ja munuaisten solujen mitokondrioissa solujen glukoneogeneesin sivutuotteina. Kun solut tuottavat glukoosia, ne tuottavat tarvitsemansa energian hapettamalla rasvahappoja asetyylikoentsyymi-A:ksi.

Asetyylikoentsyymi-A

Wikipedia kertoo, että asetyylikoentsyymi-A, eli aktiivinen etikkahappo, on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa.  Asetyylikoentsyymi-A:ta saadaan monosakkarideista (sokereista), triglyserideistä (rasvoista) ja aminohapoista (proteiineista) erilaisten reaktiovaiheiden kautta.

Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä (sitruunahappokierto) ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Glukoosi hajoaa solulimassa tapahtuvassa glykolyysissä kahdeksi pyruvaatiksi, joista molemmista saadaan edelleen oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos happea ja mitokondrioita ei ole riittävästi, pyruvaatti pelkistyy maitohapon anioniksi laktaatiksi.

Rasvahapot hajoavat hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

Wikipedia

Asetyylikoentsyymi-A, joka ei hapetu normaalisti sitruunahappokierrossa glukoneogeneesin ollessa käynnissä, muuntuu ketogeneesissä asetoasetaatiksi ja edelleen betahydroksibutyraatiksi.

Ketoaineet kulkeutuvat verenkierron mukana maksasta ja munuaisista muualle elimistöön. Aivojen gliasolut käyttävät asetoasetaattia ja betahydroksibutyraattia lipidien rakennusaineena. Sydän, lihakset ja aivot voivat tarvittaessa käyttää ketoaineita solujen energianlähteenä.

Ketogeneesi on elintoimintojen varavoimanlähde

Glukoneogeneesi ja ketogeneesi toimivat itsenäisesti energiantuotannon taustaprosesseina ja ylläpitävät solujen energiansaantia silloin, kun syömisestä on kulunut paljon aikaa. Glukoneogeneesi käynnistyy haiman erittämän glukagonin aktivoimana maksassa ja munuaisissa ja se johtaa edelleen ketogeneesin käynnistymiseen maksan ja munuaisten mitokondrioissa.

Ilman näitä aineenvaihdunnan prosesseja evoluutio ja aivojen kehitys olisivat pysähtyneet esihistorian aamuhämärissä, eikä nykyihmistä olisi koskaan kehittynyt.

In essence, a ketogenic diet mimics starvation, allowing the body to go into a metabolic state called ketosis (key-tow-sis). Normally, human bodies are sugar-driven machines: ingested carbohydrates are broken down into glucose, which is mainly transported and used as energy or stored as glycogen in liver and muscle tissue. When deprived of dietary carbohydrates (usually below 50g/day), the liver becomes the sole provider of glucose to feed your hungry organs – especially the brain, a particularly greedy entity accounting for ~20% of total energy expenditure. The brain cannot DIRECTLY use fat for energy. Once liver glycogen is depleted, without a backup energy source, humanity would’ve long disappeared in the eons of evolution. . Scientific American

Ketogeneesi on osa kehon normaalia aineenvaihduntaa. Nykyisin ravinto on sen verran energiatiheää ja hiilihydraattipainotteista, että elimistö turvautuu ketogeneesiin vain satunnaisesti, vaikka se esi-isillämme oli luontainen osa elimistön energiantuotantoa. Viimeisten vuosisatojen aikana ravintotottumukset ovat muuttuneet valtavasti, mutta aineenvaihdunnan mekanismit muuttuvat hitaammin.

Aineenvaihduntamme on lapsesta lähtien opetettu saamaan energia hiilihydraateista, mutta se ei tarkoita sitä, etteikö energiansaantiin olisi muita tapoja. Aineenvaihdunta voidaan uudelleenohjelmoida ”sokeripolttoisesta” tehtaasta ”rasvapolttoiseksi” ravintoon liittyvillä valinnoilla.

Aineenvaihdunta biohakkeroimalla rasvaa polttavaksi

Ketoosi on ketogeneettisessä ruokavaliossa tavoiteltava aineenvaihdunnan tila. Siihen päästään ”biohakkeroimalla” aineenvaihdunnan toimintaa.

Käytännössä biohakkeroinnilla tarkoitetaan ravinnosta saatavien hiilihydraattien rajoittamista 20-50 grammaan vuorokaudessa. Aineenvaihdunta opetetaan käyttämään ketoaineita ja rasvasolujen sisältämiä energiavarastoja energianlähteenä, koska sille ei tarjota helppoa energianlähdettä hiilihydraattien muodossa.

Kuvan lähde: Wikipedia – Glycogen

Glykogeenit

Oheinen kuva esittää kaksiulotteisen mallin glykogeenistä, joka on jopa 30 000 glukoosimolekyylistä muodostuva monihaarainen ja pitkäketjuinen polysakkaridi. Osa verensokerista varastoidaan tällaisina polysakkarideina maksa- ja lihassoluihin.

Kun verensokeri laskee, haima erittää glukagonia, joka purkaa glykogeenejä maksasta verenkiertoon. Se kohottaa verensokeria ja antaa lihas- ja aivosoluille nopeaa energiaa glukoosin muodossa. Lihassolujen varastoimat glykogeenit eivät vapaudu verenkiertoon, vaan lihas käyttää ne nopeana energianlähteenä itse.

Glykogeneesi

Glykogeenit muodostuvat insuliinin aktivoimana glykogeneesissä maksa- ja lihassoluissa. Maksasolut ylläpitävät veren glukoosipitoisuutta glykogeenivarastojensa avulla syömisten välissä.

Aivot käyttävät valtavasti energiaa

Glykogeenivarastot ovat kooltaan varsin pienet ja elimistö kuluttaa varastosokerit nopeasti loppuun.  Pelkästään aivot kuluttavat vuorokaudessa noin 100 g glukoosia, joka saadaan syödyistä hiilihydraateista sekä glukagonin avulla puretuista maksan varastosokereista.

Glukoneogeneesin sivutuotteena syntyy ketoaineita

Kun glykogeenit tyhjenevät, maksa ryhtyy korvaamaan aivojen tarvitsemaa glukoosia ketoaineilla. Glykogeenejä purkava glukagoni aktivoi glukoosia tuottavan glukoneogeneesin maksassa ja munuaisten kuoriosissa.

Glukoosimolekyylin syntetisoiminen kuluttaa enemmän energiaa kuin glukoosimolekyyli tuottaa

Glukoneogeneesi hyödyntää mm. vapaita aminohappoja ja rasvoja sekä glykolyysissä syntyneitä maitohappoja, sitruunahappokierron sivutuotteita sekä ketoaineita glukoosin syntetisoimisessa.

Yhden glukoosimolekyylin tuottaminen vaatii 2 pyruvaattimolekyyliä, 4 ATP:tä, 2 GTP:tä, 2 NADH-molekyyliä ja neljä vesimolekyyliä. Se vaatii siten enemmän energiaa kuin glykolyysi tuottaa yhdesta glukoosimolekyylistä.

Glykogeenit purkautuvat glukagonin vaikutuksesta glykogenolyysissa

Haiman alfasolujen erittämä glukagoni aktivoi glykogeenien purkamisen eli glykogenolyysin maksassa ja lihassoluissa, jolloin glykogeeni purkautuu glukoosiksi (maksasta) ja glukoosi-1-fosfaatiksi (lihaksissa).

Glukagoni käynnistää glykogenolyysin yhteydessä glukoneogeneesin. Haiman beetasolujen erittämä insuliini puolestaan pysäyttää glukongeogeneesin, kun verensokeri nousee ja aineenvaihdunnan energianlähde muuttuu glukoosiksi.

Induktio

Scientific American kirjoittaa, että aivot toimivat hyvin myös ketoaineilla. Aivojen toiminta on turvattu, jos ~70 % aivojen energiatarpeesta saadaan ketoaineista. Prosessi, jossa aivot oppivat käyttämään ketoaineita energianlähteenä 0 – 70 % vie kolmisen viikkoa. Tämä on eräänlainen aineenvaihdunnan induktiovaihe.

Induktiovaiheen aikana aivoja lukuun ottamatta kaikki kehon kudokset vähentävät ketoaineiden käyttöä energianlähteenä. 3-4 viikon aikana solut sopeutuvat käyttämään energianlähteenä rasvasoluista vapautuvia vapaita rasvahappoja.

Induktion jälkeen elimistö tuottaa hyvin vähän ketoaineita (vähemmän kuin 280 kcal / päivä), mutta riittävästi aivosolujen energiantarpeen turvaamiseksi.

Ketogeenisessä ruokavaliossa painosta putoaa ennen induktiovaiheen loppua lähinnä nesteitä, joten nestetasapainon kanssa tulee olla tarkkana ja juoda reilusti vettä. Rasvan käyttö energianlähteenä tehostuu hitaasti koko ajan ja on tehokkaimmillaan vasta kolmisen viikkoa ruokavalion aloittamisen jälkeen. Sen verran kestää, että solut sopeutuvat uuteen energianlähteeseen.

Seuraavalla sivulla käsitellään tarkemmin aineenvaihduntaa

 

Aineenvaihdunta

Aineenvaihduntaan vaikuttaa useita tekijöitä: ravinnon määrä ja laatu, makroravinteet, ravinnon sisältämät vitamiinit ja mineraalit, stressi, nestetasapaino, maksan ja haiman terveys, geenit, hormonit, insuliinisensitiivisyys, liikunta, ja uni.

Oheinen Jonathan Bailorin luento sisältää mielenkiintoisia huomioita aineenvaihdunnan toiminnasta, lihomisesta ja laihtumisesta

Aineenvaihdunta ylläpitää elämää sitkeästi. Se on joustava ja pystyy hyödyntämään tehokkaasti erilaisia ravinnonlähteitä elintoimintojen ylläpidossa.

Perusaineenvaihdunta kuluttaa valtavasti energiaa

Sängyssä makaaminen kuluttaa 80 kg painavalla, 180 cm pitkällä 30 vuotiaalla miehellä noin 1780 kcal vuorokaudessa. Aivojen ja välttämättömien elintoimintojen ylläpito edellyttävät paljon energiaa.

Keskimäärin aikuinen tarvitsee ravinnosta 2000-2500 kcal vuorokaudessa. Liikunta lisää energiantarvetta, mutta ikä, paino ja kehon rakenne vaikuttavat lepokulutukseen.

Tärkeimpiä elintoimintoja ylläpitää perusaineenvaihdunta. Siihen kuuluvat keuhkojen ja sydämen toiminta, kemiallisten yhdisteiden eristys ja synteesit, sekä ionien siirto solukalvojen läpi. Vuorokautisesta kokonaisenergiankulutuksesta 65–75 prosenttia on perusaineenvaihduntaa, miehillä keskimäärin 4,2 kJ/min ja naisilla 3,8 kJ/min. Perusaineenvaihdunta koostuu aivojen (21 %), lihasten (22 %), maksan (18 %), munuaisten (6 %), sydämen (12 %) ja muiden kudosten (21 %) energiankulutuksesta. Sen suuruuteen vaikuttaa sukupuolen lisäksi ikä, kehon tyyppi ja koostumus, paasto, lämpötila ja laihduttaminen. – Wikipedia

Anabolinen ja katabolinen aineenvaihdunta

Solun aineenvaihdunta voidaan jakaa kahteen toimintamekanismiin: anaboliseen ja kataboliseen aineenvaihduntaan.

Anaboliset reaktiot ovat biosynteettisiä eli kokoavia aineenvaihduntatapahtumia, joissa yksinkertaisemmista molekyyleistä rakennetaan monimutkaisempia molekyylejä.

Katabolisissa reaktioissa monimutkaisempia molekyylirakenteita pilkotaan yksinkertaisemmiksi molekyyleiksi.

Energian tuotanto

ADP + Pi      –                ATP
NAD+              –                 NADH +H+

 

  • Energianlähteenä voi hyödyntää hiilihydraatteja, rasvoja ja proteiineja
  • Solut saavat energiaa orgaanisista molekyyleistä hapettamalla niitä esimerkiksi:
    – Glukoosin hapetus tapahtuu sytoplasman glykolyysissä
    – Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Kuvan lähde: Nina Peitsaro

Anabolinen ja katabolinen aineenvaihdunta vuorottelevat elimistössä päivittäisten rutiinien lisäksi myös iän ja elämäntilanteen mukaan. Fyysinen harjoittelu ja sairaudesta toipuminen kallistavat aineenvaihduntaa anaboliseksi, jolloin aineenvaihdeunta rakentaa lihaskudosta tai korjaa sairauden aiheuttamia vaurioita. Myös kasvavien lasten aineenvaihdunta on anabolinen, mutta vanhemmilla ihmisillä ja hyvin vähän liikkuvilla aineenvaihdunta on yleensä pitkäkestoisessa katabolisessa tilassa.

Anabolisen aineenvaihdunnan käynnistyminen

Anabolinen aineenvaihdunta käynnistyy yleensä ruokailun jälkeen. Ravinnosta saaduista perusmolekyyleistä muodostetaan elimistössä suurempia molekyylejä, kuten lihasten tarvitsemia proteiineja.

Kun ruokailusta kuluu enemmän aikaa ja ravintoaineiden saatavuus ruoansulatuskanavan kautta vähenee, aineenvaihdunnan painopiste siirtyy katabolisten reaktioiden puolelle.

Anaboliset reaktiot kuluttavat energiaa

Anaboliset reaktiot kuluttavat energiaa ATP:n tai NADH:n (ja NADPH:n) muodossa.
ATP à ADP + Pi
NADH + H+ — NAD+

Katabolinen aineenvaihdunta tuottaa ravintoaineista soluhengityksen avulla energiaa. Anabolinen aineenvaihdunta rakentaa ja uusii elimistön rakenteita mm. proteiinisynteesissä.

Kehon energiantuotanto: Kuinka hiilihydraatit tuottavat energiaa

Hiilihydraatit ovat energiansaannin kannalta tehokkaimpia ravintoaineita. Myös rasvat ja proteiinit voidaan hyödyntää energiaksi.

Rasvat ovat hiilihydraatteja edullisempi tapa varastoida energiaa, sillä niissä on yli kaksinkertainen määrä energiaa painoyksikköä kohden.

Hiilihydraateista pilkotut sokerit imeytyvät verenkiertoon ohutsuolessa. Glukoosi kohottaa verensokeria, johon haima reagoi erittämällä vereen insuliinia. Insuliini kiinnittyy solun pinnassa olevaan insuliinireseptoriin, jolloin solussa olevat sokerikanavat (kalvorakkulat) siirtyvät solukelmulle ja päästävät glukoosimolekyylin solun sisälle.

Solulimassa glukoosi osallistuu glykolyysiin eli reaktioiden sarjaan, jossa glukoosimolekyyli hajotetaan pyruvaatiksi. Glukoosi on solujen energiantuotannon yleisin lähtöaine. Fruktoosin aineenvaihdunta tapahtuu maksassa, jossa se muutetaan lipogeneesissä triglyseridiksi eli rasvaksi.

Glukoosi, joka ei ravitse solujen energiantarvetta, varastoituu maksa- ja lihassoluihin glykogeeneinä, joista energiavarasto on nopeasti purettavissa. Glukoosi, joka ei ravitse solujen energiantarvetta tai mahdu glykogeenivarastoihin, siirtyy insuliinin avaamien sokerikanavien avulla rasvakudoksen rasvasoluihin, jossa se muutetaan lipogeneesissa rasvaksi.

Lipogeneesi

Insuliini säätelee lipogeneesiä, jossa veren ylimääräiset glukoosimolekyylit muutetaan triglyserideiksi eli rasvoiksi maksassa, rasvakudoksessa ja toimivan maitorauhasen soluissa. Lipogeneesissä yhdestä glukoosimolekyylistä muodostuu ensin kaksi glyserolimolekyyliä, joihin liittyy glukoosin auenneesta renkaasta muodostunut, pelkistynyt rasvahappoketju.

  • Keho käyttää arviolta 45 % ravinnosta saatavista hiilihydraateista energiantuotantoon ja 55 % hiilihydraateista muutetaan lipogeneesissä rasvahapoiksi.

Rasva-aineenvaihdunta on hyvin dynaaminen. Osa vapaista rasvahapoista hyödynnetään glukoneogeneesissä ja osa varastoituu rasvasoluihin. Rasvasoluista vapautuu kuitenkin jatkuvasti rasvasoluja verenkiertoon. Yksittäisen lipidimolekyylin elinaika on arviolta 2-10 vuorokautta.

Solulimassa tapahtuva reaktioketju – glykolyysi tuottaa energiaa

Glykolyysi tuottaa energiaa ATP-molekyylien muodossa. Soluissa, joilla on käytettävissään happea, energiaa tuottava reaktio etenee glykolyysistä mitokondrioiden soluhengitykseen.

Haima ja haiman tehtävät aineenvaihdunnassa

Haima osallistuu ravintoaineiden aineenvaihduntaan erittämiensä ruoansulatusentsyymien sekä insuliinin ja glukagonin avulla.

Haima muodostuu kahdesta toiminnallisesti erilaisesta solukkotyypistä: avorauhas- ja umpirauhasosasta. Avorauhasosa tuottaa ruoansulatusentsyymejä, jotka pilkkovat kaikkia ravintoaineita (sokereita, rasvoja, proteiineja ja nukleiinihappoja).

Haiman erittämät ruoansulatusentsyymit ja niiden tehtävät

  • Amylaasi: pilkkoo sokereita
  • Peptidaasit: pilkkovat proteiineja
  • Lipaasit: pilkkovat rasvahappoja
  • Nukleaasit: pilkkovat nukleiinihappoja (DNA ja RNA)

Insuliini ja glukagoni säätelevät sokeriaineenvaihduntaa

Haiman umpirauhasosa tuottaa elintärkeitä hormoneja: insuliinia ja glukagonia. Useimmista kehon umpirauhasista poiketen glukagonin ja insuliinin eritystä säätelee veressä olevan sokerin määrä eikä aivojen hypotalamus.

Jos veren sokeripitoisuus on matala, haiman Alfa-solut erittävät glukagonia, joka nostaa verensokeria purkamalla maksaan ja lihaksiin varastoituneita glykogeenejä.

Jos veren sokeripitoisuus on korkea, haiman Beta-solut erittävät insuliinia, joka kiinnittyessään solun insuliinireseptoriin, päästää sokerimolekyylin solun sisälle, jossa se osallistuu energiantuotantoon glykolyysissa ja mahdollisesti edelleen mitokondrion soluhengityksessä.

Glukagoni ja glykogeenit

Keho varastoi osan ravinnosta saaduista sokereista maksa- ja lihassoluihin glykogeeneinä, joista energia on nopeasti purettavissa energiaa tuottavan glykolyysin ja soluhengityksen tarvitsemiksi lyhytketjuisiksi sokereiksi.

Kun haiman erittämä glukagoni kiinnittyy maksa- tai lihassolun pinnalla olevaan reseptoriinsa, sokerin pitkäketjuiset varastomolekyylit eli glykogeenit alkavat hajota solussa lyhytketjuisemmiksi sokereiksi. Glykogeeneistä puretut sokerit kulkeutuvat maksasta verenkiertoon, jolloin verensokeri nousee.

Glukagonin purkaa glykogeenejä ja käynnistää glukoneogeneesin

Verensokerin lasku lisää glukagonin eritystä haimasta. Glukagoni purkaa maksa- ja lihassolujen sokerivarastoja, jolloin verensokeri jälleen nousee.

Glukagoni käynnistää myös maksassa ja munuaisten kuorikerroksessa tapahtuvan glukoneogeneesin, joka syntetisoi glukoosia muista yhdisteistä. Glukoneogeneesin yhteydessä maksassa ja munuaisissa alkaa syntyä ketoaineita.

Insuliinin merkitys glukoosin aineenvaihdunnalle

Kaikkien solujen pinnalla on insuliinireseptoreita. Insuliinin kiinnittyminen solureseptoriinsa laukaisee solun sisällä toisiolähettijärjestelmän. Tämä saa aikaan sen, että solun sisällä olevat transmembraanisia (kalvon läpi ulottuvia) sokerikanavaproteiineja kuljettavat kalvorakkulat kiinnittyvät solukelmuun.

Insuliini saa siis sokerikanavat siirtymään solun ulkopinnalle jolloin glukoosi pääsee siirtymään verestä sokerikanavan läpi solun sisälle.

Mutta on hyvä muistaa, että insuliini myös varastoi ylimääräiset glukoosimolekyylit rasvakudoksen, maksan ja maitorauhasten rasvasoluihin eli adiposyytteihin, joissa sokerit muutetaan lipogeneesissä rasvahapoiksi. Näin veren runsas insuliini- ja glukoosipitoisuus aiheuttavat lihomista.

Glykolyysi

Solu saa energiantuotantoon tarvitsemansa glukoosin joko solun ulkopuolelta tai lihassolun sisällä olevasta glykogeenistä.

Glykolyysi on monesta reaktiovaiheesta muodostuva reaktioketju. Solulimassa tapahtuvassa glykolyysissä glukoosi hajotetaan palorypälehapon anionimuodoksi eli pyruvaatiksi. Anaerobinen energiansaanti perustuu glykolyysiin, joka tuottaa kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä.

Jos solulla on happea käytettävissään, energiantuotanto jatkuu soluhengityksessä mitokondrioissa. Pyruvaateista saadaan mitokondrioissa eräiden entsyymien avulla tapahtuvassa oksidatiivisessa dekarboksylaatiossa asetyylikoentsyymi-A:ta.

Jos solulta puuttuu mitokondriot (kuten veren punasoluilta) tai happea ei ole käytettävissä, pyruvaatti pelkistyy maitohapoksi.

  • Anaerobinen glykolyysi päättyy pyruvaatin pelkistyessä maitohapoksi
  • Aerobinen glykolyysi jatkaa energiantuotantoa ja tuottaa pyruvaatista edelleen asetyylikoentsyymi-A:ta.

Sokerikanavaproteiinit kiertävät jatkuvasti soluliman ja solukelmun välillä. Kun insuliinipitoisuus laskee veressä, solu imee sokerikanavia sisältävät solukelmun osat sisäänsä.

Ihminen voi kuluttaa vuorokauden aikana painonsa verran ATP-molekyylejä.

ATP eli Adenosiinitrifosfaatti on runsasenerginen mitokondrioiden soluhengityksessä, tai glykolyysin solulimassa tuottama yhdiste. ATP:tä käytetään energian siirtoon ja lyhytaikaiseen varastointiin lihaksissa.

Kun elimistön solut tarvitsevat ATP-molekyyleihin sitoutunutta energiaa, ATPaasi-entsyymi pilkkoo runsasenergisiä sidoksia fosfaattiryhmien väliltä.

ATP:ssä on emäsoasa (adeniini), sokeriosa (riboosi) ja 3 fosfaattiosaa. Kun ATP:stä irtoaa yksi fosfaattiosa, siitä tulee adenosiinidifosfaattia eli ADP:tä ja kun ADP:stä irtoaa fosfaattiosa, syntyy adenosiinimonofosfaatti eli AMP.

Ihminen kuluttaa vuorokauden aikana arviolta painonsa verran ATP-molekyylejä. Yksi ATP-molekyyli kierrätetään jopa 1000-1500 kertaa vuorokauden aikana.

ATP on lihassupistuksen ainoa energianlähde. Sitä on hieman varastoituneena lihaksissa, mutta nämä varastot hyödynnetään nopeasti.

Energian varastomolekyyli: ADP+ADP à ATP+AMP

Kuinka ketogeneesin aineenvaihdunta toimii

Paasto, intensiivinen liikunta tai vähähiilihydraattinen ruokavalio saa aineenvaihdunnan tuottamaan ketoaineita energianlähteeksi. Muutaman päivän vähähiilihydraattinen jakso siirtää aineenvaihdunnan ketoosiin, jolloin ketoaineiden käyttö energianlähteenä tehostuu. Ketoaineiden tuotanto käynnistyy aina, kun veren insuliinipitoisuus laskee.

Haima erittää insuliinia verensokerin eli glukoosipitoisuuden kohotessa. Kun veressä ei ole glukoosia energianlähteenä, aineenvaihdunta ryhtyy hyödyntämään ketoaineita energianlähteenä ja ”polttamaan” rasvoja.

Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Lähteet:

Scientific American
KetoSchool
CNN
Wikipedia – Ketoasidoosi
Wikipedia – Glykolyysi
Wikipedia – Ketoaine
Wikipedia – Ketogeneesi
Wikipedia – Glukoneogeneesi
Solunetti – Solun aineenvaihdunta
Solun aineenvaihdunta – Nina Peitsaro
Safkatutka
Laihdutus.info