Kasvisruokailijan käsikirja

Kasvisruokavalioiden suosio on lisääntynyt räjähdysmäisesti, kirjoittaa Julieanna Hever (MS, RD, CPT) PubMedissa julkaistussa pitkässä lääkäreille suunnatussa artikkelissa. Kasvisruokailijan käsikirja sisältää vastaukset yleisimpiin kasvisruokavalioiden herättämiin kysymyksiin sekä ohjeita tasapainoisen kasvisruokavalion noudattamiseen.

Tämä opas on käännetty ja kirjoitettu henkilökohtaisena valmentajana ja ravintoneuvojana työskentelevän Julieanna Heverin artikkelin pohjalta.

Miksi valita vegaaninen tai vegetaristinen ruokavalio?

Kasvisravinnon suotuisat terveysvaikutukset on kattavasti dokumentoitu1.

Kasvipainotteinen ruokavalio laskee sydän- ja verisuonitautikuolleisuutta 2, auttaa painonhallinnassa3, vähentää lääkkeiden tarvetta4–6, pienentää riskiä sairastua moniin kroonisiin tauteihin7,8, ylläpitää tervettä painonhallintaa9 ja verenpainetta10 sekä ehkäisee hyperlipidemiaa ja hyperglykemiaa11.

Kasvisruokavalio voi jopa kääntää pitkälle edenneen valtimonkovettumataudin12,13 ja tyypin 2 diabeteksen suunnan6.

Kasvispainotteinen ravinto on terveellistä, koska se sisältää runsaasti arvokkaita mikroravinteita (vitamiinit, mineraalit, kuidut, antioksidantit, fytokemikaalit ja prebiootit). Toisaalta kasvisruokailija välttyy myös monilta teollisesti tuotetun ja ultraprosessoidun eläinperäisen ravinnon sisältämiltä epäterveellisiltä ravinteilta, kuten:

  • Tyydyttyneet (”kovat”) rasvat: Tyydyttyneet rasvat ovat ryhmä rasvahappoja, joita saadaan yleensä eläinperäisestä ravinnosta. Tyydyttyneitä keskipitkäketjuisia rasvoja esiintyy myös eräissä trooppisissa öljyissä, kuten kookos- ja palmuöljyissä.Tyydyttyneiden rasvojen vaikutuksista sydänterveyteen väännetään yhä kättä, mutta vallitsevan näkemyksen mukaan ”kovat” rasvat ovat haitallisia sydämen ja verisuonten terveydelle14,15.Erityisen haitallisia ovat teolliset transrasvat, joita muodostuu valmistuksessa moniin prosessoituihin elintarvikkeisiin, kuten kekseihin.
  • Ravinnon sisältämä kolesteroli: Elimistö tuottaa tarvitsemansa kolesterolin itse. Ravinnon sisältämän kolesterolin vaikutuksista seerumin kolesterolitasoihin on väitelty vuosikymmeniä, mutta nykytiedon valossa ravinnosta saatu kolesteroli ei juurikaan vaikuta veren kolesterolitasoihin.Ravinnosta saatu kolesteroli voi kuitenkin joidenkin tutkimusten mukaan lisätä LDL-kolesterolin oksidaatiota, mikä voi lisätä sydän- ja verisuonitauteja16–18. Ravinnon sisältämä kolesteroli on lähes aina peräisin eläinperäisestä ravinnosta.
  • Antibiootit: 70-80 % USA:ssa käytetyistä antibiooteista syötetään terveille tuotantoeläimille 19,20. Tämän tarkoituksena on ennaltaehkäistä puutteellisissa oloissa elävien tuotantoeläinten saamat infektiot. Antibioottien syöttäminen tuotantoeläimille on merkittävin yksittäinen tekijä antibioottiresistenttien bakteerikantojen kehittymiselle. Vuonna 2013 antibioottiresistentit infektiot vaivasivat 2 miljoonaa amerikkalaista, joista noin 23 000 kuoli 20.
  • Insuliinin kaltainen kasvutekijä-1 (IGF-1): Insuliinin kaltainen kasvutekijä-1 on hormoni, jota luonnostaan syntyy eläimillä ja ihmisillä. Kuten nimestä voi päätellä, se on kasvuhormoni, jota käytetään myös anabolisena steroidina. IGF-1 osallistuu elimistön kasvuun ja kudosten rakentumiseen. Se siis lisää tuotantoeläimen lihasmassaa. IGF-1 stimuloi eläimen kasvuhormonien tuotantoa 21. Kasvuhormonina IGF-1 voi lisätä syöpää täysikasvuisilla.
  • Hemirauta: Rauta on välttämätön ravintoaine, jota saa runsaasti eläinperäisestä ravinnosta, josta se imeytyy tehokkaasti verenkiertoon. Kasveissa esiintyy rautaa hieman huonommin imeytyvässä muodossa (nonhemirauta), joten kasvisravintoon voidaan lisätä rautaa.Raudan saantia ja imeytymistä voi kasvisravinnossa tehostaa C-vitamiinilla22. Eläinperäisestä ravinnosta rautaa saadaan usein liikaa; tutkimusten mukaan ylimääräinen rauta on pro-oksidatiivista ja se voi aiheuttaa paksusuolen syöpää, ateroskleroosia sekä insuliiniresistenssiä23, 24, 25, 26.
  • Karsinogeenit: Prosessoituihin eläinperäisiin ruokiin kehittyy usein valmistuksessa käytettävien korkeiden lämpötilojen vuoksi syöpiä aiheuttavia ja tulehdusta edistäviä inflammatorisia ja syöpää aiheuttavia yhdisteitä, kuten karsinogeenejä27,28, 29. Lihatuotteisiin valmistuksessa muodostuvat kemialliset yhdisteet kasvattavat kroonisten sairauksien riskiä.
  • Karnitiini: Karnitiini on aminohappo ja lysiinin johdannainen. Se kuljettaa aktiivisia rasvahappoja eläinsolun sytoplasmasta mitokondrioon, jossa rasvahappo pilkotaan energiaa tuottavassa soluhengitysreaktiossa. Elimistö valmistaa karnitiinia lysiinistä ja metioniinista, mutta sitä saa myös liha- ja maitotuotteista.Liika karnitiini voi suoliston mikrobiomin vaikutuksesta muuttua trimetyyliamiini N-oksidiksi (TMAO), joka on yhdistetty tulehduksiin, ateroskleroosiin, sydänkohtauksiin ja ennenaikaiseen kuolemaan30.
  • N-glykolyylineuramiinihappo (Neu5Gc): On lihan sisältämä yhdiste, jota ei elimistöstä luonnostaan löydy. Neu5Gc aiheuttaa tulehdusreaktion, koska immuunijärjestelmä hyökkää vierasainetta vastaan. Tulehdusreaktio voi altistaa syövälle. Krooninen tulehdus kasvattaa tyypin 2 diabeteksen riskiä ja lisää valtimoiden rasvoittumista31,32.

Fytokemikaalit

Kasviruokavalio sisältää valtavasti hyödyllisiä mikroravinteita, kuten fytokemikaaleja ja kuituja, jotka edistävät tutkimusten mukaan terveyttä. Fytokemikaalit ovat kasveissa esiintyviä yhdisteitä, jotka suojelevat kasvia UV-säteilyltä, tuholaishyönteisiltä, bakteereilta, viruksilta ja sieniltä.

Kasviperäinen ravinto on fytokemikaalien ja kuitujen sekä useimpien vitamiinien ainoa lähde. Erilaisia fytokemikaaleja, kuten karotenoideja, glukosinolaatteja ja flavonoideja on tuhansia.

Fytokemikaalit:

  • Ovat antioksidantteja, jotka neutraloivat vapaita radikaaleja33
  • Anti-inflammatorisia eli tulehduksia ehkäiseviä34
  • Fytokemikaalit estävät syöpäsolujen kasvua ja lisääntymistä35
  • Parantavat immuunijärjestelmän toimintaa36
  • Suojaavat eräiltä taudeilta, kuten osteoporoosilta ja eräiltä syöviltä, sydän- ja verisuonitaudeilta (CVD) sekä viher- ja harmaakaihilta37–39
  • Optimoi veren kolesterolitasot40,41

Kasveista ja erityisesti täysjyväviljoista saatavat kuidut hyödyttävät suoliston, verenkierron ja immuunijärjestelmän toimintaa monin tavoin. Kuitujen terveysväittämät on vahvasti todennettu ja lisää tutkimusnäyttöä kuitujen terveellisyydestä saadaan koko ajan. Kuitenkin esimerkiksi USA:ssa yli 90 % aikuisista ja lapsista syö suosituksiin nähden aivan liian vähän kuituja42.

Kasvipainotteisen ravinnon syöminen parantaa terveyttä käytännössä kaikkien ravintoa ja terveyttä käsittelevien tutkimusten mukaan. Se voi ennaltaehkäistä monia sairauksia ja siten se tuottaa säästöjä myös yhteiskunnalle43.

Sairaanhoidon ammattilaisten tulisi suositella kasvisruokavaliota terveyttä ja hyvinvointia edistävänä ja lääketieteellistä hoitoa tukevana vaihtoehtona potilaille, kirjoittaa Hever.

Ohjeita kasvisruokailun aloittamiseen

Tähän artikkeliin on koottu ohjeita ja vinkkejä tasapainoisen ja ravinnepitoisen kasvisruokavalion suunnitteluun ja aloittamiseen.

Tärkeät ravintoaineet ja niiden riittävä saanti

Kasvisruokavalion sisältämien ravintoaineiden mahdolliset puutokset herättävät kysymyksiä. Saako kasvisruokavalioista kaikki elimistön tarvitsemat ravinteet, kuten proteiinit?

Vegetaristinen ja vegaaninen ruokavalio sisältävät riittävästi elimistön tarvitsemia ravintoaineita ja edistävät monin tavoin terveyttä, toteaa Academy of Nutrition and Dietetics 44. Samassa yhteydessä painotetaan, että hyvin suunniteltu ja tasapainoinen kasvisruokavalio sopii kaikille lapsista aikuisiin, odottaville ja imettäville äideille sekä urheilijoille.

Makro- ja mikroravinteiden saannin kannalta hyvin suunniteltu ja tasapainoinen ruokavalio on yleensä suunnittelematonta ruokavaliota terveellisempi ja tukee tarvittavien ravintoaineiden saantia tehokkaasti riippumatta siitä, mistä ruokavaliosta on kyse45. Ravintoaineiden tuntemus lisää terveyttä ylläpitäviä valintoja.

Tasapainoinen kasvisruokavalio

Tasapainoinen kasvisruokavalio sisältää vihanneksia, hedelmiä, täysjyväviljoja, palkokasveja, yrttejä, mausteita sekä pähkinöitä ja siemeniä.

Puolet lautasesta tulisi täyttää vihanneksilla ja hedelmillä (US Department of Agriculture, American Cancer Society, American Heart Association), eli ravintoaineilla, jotka sisältävät runsaasti kuituja, kaliumia, magnesiumia, rautaa, folaattia sekä C- ja A-vitamiineja. Nämä ovat ravintoaineita, joita amerikkalaiset (ja ehkä myös monet suomalaiset) saavat ravinnosta liian vähän (2015 Dietary Guidelines Advisory Committee46).

Lysiini

Palkokasvit ovat hyvä lysiinin lähde. Lysiini on välttämätön aminohappo, jonka saanti voi jäädä yksipuolisissa kasvisruokavalioissa liian vähäiseksi. Palkokasvit sisältävät lisäksi mm. kuituja, kalsiumia, rautaa, sinkkiä ja seleeniä. On suositeltavaa syödä pari desiä (1,5 cups) palkokasveja päivässä.

Pähkinät sisältävät elimistön tarvitsemia välttämättömiä rasvahappoja, proteiineja, kuituja, E-vitamiinia sekä terveellisiä kasvissteroleja. Ne ylläpitävät sydämen terveyttä ja vähentävät riskiä sairastua tyypin 2 diabetekseen. Pähkinät auttavat painonhallinnassa, suojaavat silmiä kaihilta ja ehkäisevät sappikivien muodostumista47-50. Suositeltava päiväannos pähkinöitä on 30-60 g.

Siemenissä on hyviä rasvahappoja sekä runsaasti tärkeitä hivenaineita ja fytokemikaaleja. Siemeniä suositellaan syötäväksi 1-2 ruokalusikallista päivässä.

Täysjyväviljat sisältävät kaikki viljan hyvät ominaisuudet. Täysjyväviljoissa on runsaasti kuituja, B- ja E-vitamiineja, hivenaineita, rautaa, magnesiumia ja seleeniä. Hiilihydraatit antavat elimistölle energiaa.

Elimistö tarvitsee välttämättömiä rasvoja (omega-3 ja omega-6). Valitsemalla rasvojen lähteeksi ravinnon, kuten pähkinät, siemenet ja avokadot teollisten rasvojen sijaan, elimistö saa vähemmän kaloritiheiden ja hitaammin imeytyvien rasvojen lisäksi kuituja sekä muita tärkeitä ravintoaineita.

Myös yrtit ja mausteet sisältävät fytokemiaaleja. Niiden avulla ravintoon saa jännittäviä makuja ja vaihtelua.

Ruokaryhmät ja suositeltava päivittänen saanti

Ruokaryhmä Suositeltu päivittäinen annos
Vihannekset (myös tärkkelyspitoiset) Vihanneksia ja kasviksia saa syödä niin paljon, kuin jaksaa. Muista syödä monenvärisiä vihanneksia
Hedelmät 2–4 annosta (1 annos = n. 1,2 dl)
Täysjyväviljat (esim. kvinoa, täysjyväriisi, kaura) 6–11 annosta (1 annos = n. 1,2 dl keitettynä tai 1 siivu täysjyväleipää)
Palkokasvit (pavut, herneet, linssit, soijaruoat) 2–3 annosta (1 annos = n. 1,2 dl keitettynä)
Lehtivihreät vihannekset (esim. lehtikaali, salaatti, pinaatti, parsakaali) Vähintään 2–3 annosta (1 annos = n. 2,4 dl raakana tai 1,2 dl kypsänä)
Pähkinät (esim. saksanpähkinät, mantelit, pistaasit) 30-60 grammaa päivässä
Siemenet (esim. chia, hamppu, pellava) 1–3 ruokalusikallista päivässä
Vitaminoidut kasvismaidot (soijamaito, mantelimaito, kauramaito) Halutessa 4-6 dl
Tuoreet yrtit ja mausteet Mieltymysten mukaan niin paljon kuin haluaa

 

Kasvispohjaiset makroravinteet

Ravinnon sisältämää energiaa mitataan usein kilokaloreina (kcal). Energia saadaan energiaravinteista ja niiden erilaisista kombinaatioista. Hiilihydraatit (4 kcal/g), proteiinit (4 kcal/g) ja rasvat (9 kcal/g) ovat energia- ja makroravinteita. Alkoholi sisältää 7 kcal/g, mutta se ei ole oikeastaan ravintoaine – tai ehkä se joillekin on.

Makroravinteiden saantisuosituksista käydään kovaa kädenvääntöä, mutta mitään yleistä konsensusta ei ole. Toisilla runsaasti rasvaa ja vähän hiilihydraatteja sisältävät ruokavaliot toimivat, toiset suosivat vähärasvaisia ja hiilihydraattipainotteisia ruokavalioita.

Kasvava näyttö viittaa siihen, että yleispätevää yksittäistä totuutta makroravinteiden suhteista ei ole. Aineenvaihdunta on mutkikas kokonaisuus, johon vaikuttavat geenien ohella hormonit, suoliston mikrobit, maksan ja haiman terveys sekä lukemattomat muut asiat.

Stanfordin yliopiston tuore tutkimus vertasi vähähiilihydraattisen ja vähärasvaisen ruokavalion terveysvaikutuksia vuoden kestäneessä seurannassa. Mitään selkeää eroa ruokavalioiden vaikutuksista painonhallintaan ei havaittu tutkittavien ryhmien väliltä. Molemmissa seuratuissa ryhmissä esiintyi valtavasti ryhmän sisäistä vaihtelua. Keskimäärin koehenkilöiden paino putosi noin 6 kiloa, mutta suurimmilla pudottajilla painoa katosi lähes kaksikymmentä kiloa. Mayo Clinic pitää vähähiilihydraattista ruokavaliota hieman tehokkaampana laihdutusruokavaliona lyhyellä tähtäimellä kuin vähärasvaista ruokavaliota.

On myös runsaasti tutkimusnäyttöä, jonka perusteella elimistön hyvinvoinnin ja painonhallinnan kannalta parhaiten toimivat vähärasvaiset/runsashiilihydraattiset ruokavaliot (perinteinen Okinawan ruokavalio), Dean Ornish-ruokavalio, Caldwell Esselstyn-ruokavalio, Neal Barnard-ruokavalio  51, 12, 13, 6.

Ja kuitenkin Välimeren ruokavaliossa52 sekä eräissä raakaruokavalioissa päivittäisestä energiasta yli 36 % voi tulla rasvoista, mutta näilläkin ruokavalioilla on runsaasti suotuisia terveysvaikutuksia53.

On siis todennäköistä, että ruokavalioiden kokonaisuus sekä tärkeiden mikroravinteiden saanti on terveyden ja painonhallinnan kannalta tärkeämpää kuin makroravinteiden saantisuhteet.

Hiilihydraatit

Hiilihydraattien optimaaliset lähteet ovat vihannekset, hedelmät, täysjyväviljat ja palkokasvit. Nämä sisältävät hiilihydraattien lisäksi runsaasti muita hyödyllisiä ravinteita ja kuituja. Saantisuositus kaikille (paitsi odottaville ja imettäville äideille) on 130 g pivässä (The Institute of Medicine54).

Prosessoidut hiilihydraatit (sokerit, valkoiset jauhot, valkoiset pastat) eivät energian lisäksi sisällä juurikaan tärkeitä ravinteita, joten niiden runsas kulutus voi johtaa aliravitsemukseen ja elimistön sairastumiseen.

Proteiinit

Proteiinien saantisuosituksissa on hieman vaihtelua. Keho tarvitsee aminohapoista muodostuvia proteiineja, jotka se pilkkoo ravinnosta aminohapoiksi ja käyttää pääasiassa rakennusaineina (lihakset, luut, veri, entsyymit, hormonit, iho jne.). Proteiineissa esiintyy 20 aminohappoa, joista 9 on ihmiselle välttämättömiä.

Riittävä proteiinien saanti riippuu painosta ja iästä. Kasvavien lasten ja ikääntyvien vanhusten proteiinien tarve on hieman nuorten ja aikuisten tarvetta suurempi54. Vaihtelua on, mutta proteiineja tulisi saada iästä riippuen 0,8 – 1,6 grammaa painokiloa kohden päivässä. Urheilijat ja lihasmassaa kasvattavat voivat tarvita enemmänkin.

Monipuolisen kasvisruokavalion tulee sisältää riittävästi proteiineja. Parhaita proteiinien kasvislähteitä ovat: palkokasvit, pähkinät, siemenet, täysjyväviljat, soija sekä pähkinä- ja siemenvoit.

Rasvat

PUFA

Rasvat ovat haastavampi kokonaisuus, koska rasvahapot esiintyvät erilaisina rakenteina, tyydyttyneinä ja tyydyttämättöminä. Ihminen tarvitse ravinnosta monityydyttämättömiä omega-3 ja omega-6 rasvahappoja (PUFA). Kaikki muut tarvittavat rasvahapot elimistö syntetisoi näistä. Rasvahapot toimivat elimistössä eri tavoin ja niillä on omat tarkoituksensa14.

ALA, EPA ja DHA

Lyhytketjuisia omega-3 rasvoja (alfalinoleenihappo – ALA) voidaan hyödyntää energiansaannissa. Elimistö muodostaa lyhytkejuisista alfalinoleenihapoista pidempiketjuisia eikosapentaeenihappoja (EPA) ja edelleen dokosaheksaeenihappoja (DHA).

Elimistö muuttaa lyhytkestoisia omega-3 rasvahappoja pidempiketjuisiksi kuitenkin melko tehottomasti ja siksi niiden saanti lisäravinteista on suositeltavaa. EPAn ja DHAn riittävän saannin voi turvata kasvispohjaisilla omega-3 ravintolisillä, jotka on valmistettu mikrolevistä.

Alfalinoleenihapppoa saa mm. pellavansiemenistä, hampunsiemenistä, chia-siemenistä sekä vihreistä lehtikasveista ja levistä, soijasta, maapähkinöistä sekä näistä valmistetuista öljyistä.

Omega-3 mielletään helposti kalaöljystä saatavaksi, mutta EPAn ja DHAn lähteenä mikrolevistä valmistetut lisäravinteet ovat oivallinen lähde, sillä mikrolevät ovat näiden rasvojen lähde myös kaloille.

Välttämättömien rasvojen lähteenä mikrolevät voivat olla kaloja terveellisempi vaihtoehto, koska ne eivät sisällä myrkyllisiä raskasmetalleja (lyijyä, kadmiumia, elohopeaa) tai muita saastejäämiä, kuten kalat. (Itämeren silakat eivät kelpaa Euroopan markkinoille ravintona, koska ne sisältävät niin paljon myrkkyjä ja raskasmetalleja. On hullua, että niitä Suomessa voidaan markkinoida terveellisenä ruokana.)55. Mikrolevät ovat myös kestävän kehityksen kannalta järkevämpi vaihtoehto omega-3 rasvojen lähteinä kuin kalat56.

MUFA

Kertatyydyttämättömät rasvahapot (MUFA) eivät ole elimistölle välttämättömiä rasvoja, mutta niillä voi olla suotuisia vaikutuksia seerumin kolesterolitasoihin.

Jos MUFAlla korvataan tyydyttyneitä rasvoja, transrasvoja tai prosessoituja hiilihydraatteja, se voi laskea huonon LDL-kolesterolin määrää ja lisätä hyvän HDL-kolesterolin määrää.

Toisaalta kertatyydyttämättömistä kasvirasvoista valmistettuja prosessoituja kasvirasvalevitteitä ja -öljyjä on myös voimakkaasti kritisoitu. Ne käyvät läpi rajuja teollisia prosesseja, joissa rasvojen luontainen rakenne muuttuu.

Kertatyydyttämättömiä rasvahappoja on mm. oliiveissa, avokadoissa, macadamia- ja hasselpähkinöissä, pekaanipähkinöissä, maapähkinöissä sekä pähkinäöljyissä ja rypsi-, rapsi-, auringonkukka- ja safloriöljyistä.

Tyydyttyneet rasvat

Tyydyttyneet rasvat eivät ole elimistölle välttämättömiä ja ne saattavat altistaa sydän- ja verisuonitaudeille. Tyydyttyneiden rasvojen terveysvaikutuksista on kalisteltu peistä 1970-luvulta alkaen. On tutkimuksia, joiden mukaan tyydyttyneet rasvat aiheuttavat sydän- ja verisuonitauteja, mutta toisaalta tuoreimpien tutkimusten mukaan tyydyttyneet rasvat eivät itsenäisesti vaikuta sydän- ja verisuoniterveyteen negatiivisesti. Mutta se ja sama, elimistö ei välttämättä niitä tarvitse.

Tyydyttyneet rasvat ovat lähes poikkeuksetta lähtöisin eläinperäisestä ravinnosta, kuten lihasta ja meijerituotteista. Eräät trooppiset kasvirasvat, kuten kookos- ja palmuöljyt ovat myös tyydyttyneitä rasvoja. Myös avokadoissa, oliiveissa, pähkinöissä ja siemenissä on jonkin verran tyydyttyneitä rasvoja.

Tyydyttyneiden rasvojen osuus päivittäisestä energiansaannista tulisi olla 5-6 % (American Heart Organization).

Transrasvat

Transrasvat ovat epäterveellisiä rasvoja, joita on mm. uppopaistetuissa ja ultraprosessoidussa ravinnossa sekä pikaruoassa. Transrasvat kehiteltiin alun alkaen terveelliseksi vaihtoehdoksi voille ja laardille, mutta niiden on sittemmin osoitettu lisäävän sydäntautien ja syöpien riskiä.

Marraskuussa 2013 FDA julkaisi tiedonannon, jonka mukaan transrasvoja ei voi pitää terveydelle turvallisina rasvoina57. Tarkoituksena on kieltää täysin teollisten transrasvojen käyttö elintarvikkeissa. Transrasvoja esiintyy luonnostaan jonkin verran liha- ja meijerituotteissa.

Jos tuotteen paketissa lukee, että se ei sisällä transrasvoja, niitä voi siinä kuitenkin olla 0,5 grammaa per annos. Hydrogenoidut (kovetetut) ja osittain kovetetut kasvirasvat, margariinit ja prosessoidut öljyt saattavat olla epäterveellisiä ja ne kannattaa jättää kaupan hyllyyn. Myös erilaiset snacksit, keksit ja monet makeiset sisältävät haitallisia transrasvoja.

Kolesteroli

Ravinnon sisältämä kolesteroli on steroli, jota esiintyy pääasiassa eläinperäisessä ravinnossa. Keho tarvitsee kolesterolia mm. hormonien, D-vitamiinin, ruoansulatusnesteiden sekä hermoratoja suojaavien myeliinikalvojen rakentamiseen, mutta elimistö valmistaa kolesterolia itse ns. kolesterolisynteesissä.

Ravinnon sisältämän kolesterolin vaikutuksista on olemassa runsaasti ristiriitaista tietoa. Kananmunat tai muut kolesterolia sisältävät elintarvikkeet eivät ilmeisesti lisää seerumin kolesterolitasoja, mutta joidenkin tutkimusten mukaan ne voivat lisätä LDL-kolesterolia. 1970-luvulta peräisin olevan lipiditeorian mukaan kolesteroli aiheuttaa sydäntauteja, mutta tästä hypoteesista ei enää vallitse tieteellistä konsensusta.

Fytosterolit eli kasvisterolit

Fytosterolit eli kasvisterolit ovat steroidialkoholeja, yhdisteitä, joita kasveissa esiintyy luonnollisesti. Kasvisteroleja käytetään yleisesti elintarviketeollisuudessa ja kosmetiikassa.

Fytosterolit muistuttavat hieman kolesterolia. Kasvisteroleja esiintyy kaikissa kasveissa.Fytosterolit vähentävät kolesterolin imeytymistä suolistossa ja parantavat lipidien profiileja. Joidenkin tutkimusten mukaan fytosterolit, soijaproteiinit, viskoosit kuidut ja mantelit voivat laskea LDL-kolesterolia yhtä tehokkaasti kuin statiinit5,58.

Kasvisteroleja mg/100g annos:

  • Appelsiinit: 24 mg
  • Ananas: 17 mg
  • Banaani: 16 mg
  • Omena: 12-13 mg
  • Parsakaali: 39 mg
  • Lehtisalaatti: 38 mg
  • Porkkana: 16 mg
  • Tomaatti: 5-7 mg
  • Vehnä: 69 mg
  • Kaurahiutaleet: 39 mg
  • Rypsiöljy: 668 mg
  • Soijaöljy: 221 mg
  • Oliiviöljy: 154-176 mf
  • Mantelit: 143 mg
  • Pavut: 76 mg

Täysipainoinen kasvisruokavalio

Täysipainoinen ruokavalio koostuu kaikista kolmesta makroravinteesta. Ruokien ajatteleminen vain hiilihydraatteina, proteiineina ja rasvoina on eräänlainen median ja muodikkaiden laihdutusruokavalioiden ylläpitämä ajatusharha, joka ei palvele aineenvaihdunnan ja elimistön hyvinvoinnin tarpeita.

Ravintoaineet ovat komplekseja, joihin sisältyy veden ja pääravintoaineiden lisäksi runsaasti erilaisia vitamiineja ja hivenaineita, antioksidantteja, kuituja jne.

Panosta laatuun!

Terveellinen ja tasapainoinen ruokavalio sisältää runsaasti hyviä hiilihydraatteja kuten täysjyväviljoja sekä kohtuullisesti hyviä rasvoja ja proteiineja. Ravinnon terveellisyyttä tavoiteltaessa painopisteen tulee olla ravintoaineiden laadussa ja niiden sisältämissä ravinteissa.

Makroravinteiden keskinäisten suhteiden arviointi ja kaloreiden laskeminen ei ole tärkeää silloin kun syö ravinnepitoista ja terveellistä kasvisruokaa.

 

Kasvisravinnon kannalta tärkeät mikroravinteet

Kasvisravinnosta saa kaikki välttämättömät ravintoaineet, paitsi B12-vitamiinia eli kobalamiinia. Suomessa lähes kaikki tarvitsevat myös D-vitamiinia lisäravinteena lyhyen kesän ja pitkän talven vuoksi59.

Kasveista saatava D2-vitamiini eli ergokalsiferoli toimii ihmisen aineenvaihdunnassa aivan samoin kuin lampaanvillasta uutettu tai kalasta ja kalaöljystä saatava D3-vitamiini (kolekalsiferoli).

Kaikkien suomalaisten tulisi syödä D-vitamiinia lisäravinteena 50-100 µg/vuorokaudessa etenkin pimeinä vuodenaikoina. Erityisen tärkeää D-vitamiinin saanti on odottaville ja imettäville äideille, sillä sikiön matalat D-vitamiinitasot lisäävät lapsen riskiä sairastua mm. MS-tautiin ja tyypin 1 diabetekseen. Rintaruokinta ja äidinmaidosta saatava D-vitamiini tehostavat lapsen kehittyvää immuunijärjestelmää.

D-vitamiinin bioaktiivinen muoto toimii elimistössä immuunijärjestelmää säätelevänä hormonin kaltaisena sekosteroidina, joka vaikuttaa yli 200 geenin toimintaan solujen kromosomin DNA:ssa sijaitsevan VDRE-sekvenssin kautta.

B12 eli kobalamiini

B12-vitamiini eli kobalamiini on välttämätön ravintoaine. Kobalamiineja tunnetaan parikymmentä, mutta aineenvaihdunnassa bioaktiivisia ovat vain metyylikobalamiini ja adeniinikobalamiini sekä ravintolisistä saatava synteettinen syanokobalamiini.

Eräät bakteerit tuottavat kobalamiinia, Suolistobakteerit ja arkit syntetisoivat B12-vitamiineja ihmisen paksusuolessa, mutta ne eivät imeydy paksusuolesta aineenvaihdunnan käyttöön. Kasveista saatavat kobalamiinit eivät ole ihmisellä bioaktiivisia.

No fungi, plants, or animals (including humans) are capable of producing vitamin B12. Only bacteria and archaea have the enzymes needed for its synthesis.

Mihin kobalamiinia tarvitaan?

Kobalamiinia tarvitaan nopeasti uusiutuvien veren puna- ja valkosolujen valmistuksessa sekä hermosolujen ja aivojen toimintaan. Aineenvaihdunnassa kobalamiini osallistuu myös homokysteiinin metylaatioon metioniiniksi (aminohappo).

B12-vitamiinia on välttämätön tekijä foolihapon (B9-vitamiini) eli folaatin valmistuksessa. Yhdessä nämä ovat tärkeitä, koska kobalamiinia ja foolihappoa tarvitaan nukleotidien ja DNA:n synteesiin solujen uusiutuessa.

Kasvisruokailijan on turvattava B12-vitamiinin saanti

B12-vitamiini on käytännössä ainut välttämätön ravintoaine, jota kasvisruokailijat eivät ravinnosta saa. Idut, tempe ja merilevät eivät sisällä biologisesti aktiivista B12-vitamiinia, kuten jotkut uskovat. Nori-levä on ainoa poikkeus, mutta kuivattaminen tuhoaa nori-levästä B12-vitamiinin. Sekaravintoa syövät saavat kobalamiinia riittävästi lihasta, kalasta, kananmunista ja meijerituotteista.

Although there are claims that fermented foods, spirulina, chlorella, certain mushrooms, and sea vegetables, among other foods, can provide B12, the vitamin is not usually biologically active. These inactive forms act as B12 analogues, attaching to B12receptors, preventing absorption of the functional version, and thereby promoting deficiency. The most reliable method of avoiding deficiency for vegans or anyone else at risk is to take a B12 supplement. Julieanna Hever

Kobalamiinia on myös vegaaneille

Apteekeista ja luontaistuotekaupoista saa vegaaneille sopivaa bakteeriperäistä B12-vitamiinivalmistetta. Lisäksi moniin kasviperäisiin ruoka-aineksiin, kuten kasvimaitoihin lisätään usein B12-vitamiinia.

B12-vitamiinin (kobalamiinin) vähimmäistarve on

  • naisilla: 2,0 µg/vrk
  • miehillä: 2,4 µg/vrk
  • lapsilla: 0,7 – 1,4 µg/vrk

Kobalamiinivarastot

Elimistön B12-varastot ovat suhteellisen suuret (2 – 3 mg). Varastot riittävät useamman vuoden tarpeisiin. Mikäli vitamiinin saanti vaikeutuu, kliinisen puutostilan kehittyminen voikin kestää useita vuosia. Keskimääräinen B12-vitamiinin saanti ravinnosta on 5-8 µg/vrk, mikä ylittää suositukset moninkertaisesti.

Kobalamiinin puutos

B12-vitamiinin puutoksen alkuoireena on kihelmöinti ja tunnottomuus ääreishermostossa, kuten sormenpäissä. Oireet voivat ilmentyä myös lihasheikkoutena ja muistin häiriöinä. Harvinaisempia oireita ovat kielitulehdukset, verisuonitukokset ja ihon pigmentin lisääntyminen.

Pitkäaikainen B12-vitamiinin puutos johtaa peruuttamattomiin hermostollisiin vaurioihin sekä perniöösiin anemiaan.

B12-vitamiinin tarve korostuu tietyissä tapauksissa:

  • laktoosi-intoleranssi
  • kasviruokavalio
  • keliakia
  • raskaus
  • imetys
  • sairaus- ja toipilasaika
  • kova fyysinen rasitus
  • yksipuolinen ravinto
  • pitkäaikainen paasto
  • dieetti ja laihdutuskuurit
  • ehkäisypillerien käyttö
  • runsas alkoholinkäyttö

D-vitamiini

Paljas iho syntetisoi D-vitamiinia auringon UVB-säteilyn avulla keskikesän kuukausina riittävästi. Vain 15-30 minuuttia keskipäivän auringonvalossa riittää syntetisoimaan paljaalla iholla 250 µg D-vitamiinin lähtöaineena toimivaa7-dehydrokolesterolia, josta kolesterolisynteesissä muodostuu kolekalsiferolia eli D3-vitamiinia,

Kalsidioli

Kolekalsiferoli hydroksyloidaan maksassa kalsidioliksi, joka on D-vitamiinin verestä mitattava varastomuoto. Aineenvaihdunta tarvitsee vuorokaudessa noin 40 µg D-vitamiinia ja loput varastoituvat rasvasoluihin, joista sitä vapautuu aineenvaihdunnan käyttöön pimeänä aikana.

D-vitamiinia tarvitaan mm. kalsiumin homeostaasin säätelyyn sekä verisuonten terveyden ja immuunijärjestelmän toiminnan turvaamiseen.

Kalsitrioli

Kalsidiolista munuaiset hydroksyloivat edelleen pieniä määriä hormonin tavoin vaikuttavaa kalsitriolia. Kalsitrioli on sekosteroidi, joka vaikuttaa monin tavoin aineenvaihdunnassa.

Kalsitrioli kuljetetaan solujen pinnalla oleviin D-vitamiinireseptoreihin ja niiden kautta edelleen soluissa olevan kromosomin D-vitamiiniin reagoivaan DNA:n osaan (Vitamin D Responding Elements). VDRE:ssä kalsitrioli vaikuttaa yli 200 geenin toimintaan.

Nykykäsityksen mukaan kalsitrioli on immunomodulatorinen eli immuunijärjestelmän toimintaa ohjaava hormoni.

D-vitamiinin saanti

D-vitamiini vaikuttaa kaikkien elävien organismien aineenvaihduntaan. Se kehittyi evoluutiossa ilmeisesti jo noin 500 miljoonaa vuotta sitten. Kaikilla selkärankaisilla on monimutkainen D-vitamiiniin liittyvä umpieritysjärjestelmä ja lähes kaikkien solujen pinnalla on D-vitamiiniin reagoiva reseptori.

Vaikka iho syntetisoi D-vitamiinia, on sen puutos valitettavan yleinen ongelma maailmanlaajuisesti. D-vitamiini edellyttää riittävästi auringon UVB-säteilyä, mutta Suomen korkeudella sen saanti rajoittuu vain keskikesän kuukausiin. Muina aikoina otsonikerros estää UVB-säteilyn, jolloin D-vitamiinia ei muodostu iholla. D-vitamiinin puutokseen voi vaikuttaa myös se, että suurin osa ihmisistä viettää päivät sisätiloissa.

Ravinnosta, kuten rasvaisista kaloista, sienistä ja kananmunankeltuaisista saa jonkin verran D-vitamiinia, mutta ei riittävästi. Siksi D-vitamiinia lisätään moniin elintarvikkeisiin, kuten maitoihin ja margariineihin.

Kasvisruokailijoiden on turvattava D-vitamiinin saanti. Kasvipohjainen ergokalsiferoli (D2) toimii aivan kuten kolekalsiferoli (D3). Lisäksi on löydetty jäkälää, josta saa D3-vitamiinia60.

Kalsium

Makromineraali kalsiumia on elimistössä enemmän kuin mitään muuta mineraalia. Noin 99% kalsiumista on varastoituneena luustoon ja hampaisiin ja 1 % on vapaana kudoksissa ja verenkierrossa.

Ihmisen elimistö tarvitsee kalsiumia luuston rakennusaineena ja lihastoiminnassa sekä veren hyytymisprosesseissa. Se säätelee mm. hermo-lihasärtyvyyttä, solukalvoissa tapahtuvia kuljetuksia, hormoni- ja välittäjäaineiden vapautumista sekä useita entsyymireaktioita.

Kasvisruokailijat saavat yleensä riittävästi kalsiumia, mutta koska kalsiumin aineenvaihdunta edellyttää muita ravinteita, kuten D-vitamiinia, K-vitamiinia ja kobalamiinia, kasvisruokailijan on huolehdittava myös niiden riittävästä saannista. Kalsiumin aineenvaihduntaan ja luuston hyvinvointiin vaikuttavat myös magnesium, fosfori ja kalium.

Kalsiumin saanti

Hyviä kalsiumin lähteitä ovat vihreät vihannekset ja salaatit, kuten brokkoli, lehtikaali ja pinaatti, seesaminsiemenet, tahini, tempe, mantelit ja mantelivoi, appelsiinit, bataatit ja pavut.

Riippumatta ravinnosta saadusta kalsiumista, tärkeää on se, kuinka paljon kalsiumista todellisuudessa imeytyy ravinnosta elimistön hyödynnettäväksi. Monet tekijät vaikuttavat kalsiumin imeytymiseen:

  • Kalsiumin kokonaissaanti vaikuttaa imeytymiseen: Vain noin 500 mg imeytyy kerralla ja imeytyminen vähenee saannin kasvaessa.
  • Ikä vaikuttaa kalsiumin imeytymiseen. Vauvoilla ja lapsilla kalsiumin imeytyminen on tehokasta, koska luusto kasvaa voimakkaasti. Ikääntyminen hidastaa imeytymistä.
  • Fylaatit,joita saadaan mm. täysjyväviljoista, pavuista, siemenistä ja pähkinöistä voivat sitoutua kalsiumiin sekä muihin mineraaleihin ja rajoittaa niiden imeytymistä.
  • Oksalaatit, joita saadaan mm. monista vihreistä lehtikasveista, kuten pinaatista, lehtijuurikkaista, persiljasta, purjosta, punajuuren lehdistä sekä marjoista, manteleista, maapähkinöistä, soijapavuista, okrasta, kvinoasta, kaakaosta, teestä ja suklaasta voivat myös heikentää kalsiumin ja muiden mineraalien imeytymistä.
  • Kalsiumia ei imeydy, jos D-vitamiinitasot ovat liian alhaiset.
  • Runsas suolan, proteiinien, kahvin ja fosforin saanti lisää kalsiumin poistumista elimistöstä62.

Rauta

Raudan puutos on yleisin ravintoaineen puutos sekä teollistuneissa että kehittyvissä maissa 63. Raudan puutos on erityisen yleistä nuorilla naisilla, odottavilla äideillä, vauvoilla ja lapsilla sekä teini-ikäisillä tytöillä. Myös runsaat kuukautiset voivat altistaa raudanpuutokselle.

Sekä sekasyöjät että kasvisravintoa syövät voivat kärsiä raudanpuutteesta.

Hemi- ja nonhemirauta

Rautaa esiintyy kahdessa muodossa: hemi- ja nonhemirautana. Lihassa ja kalassa on noin puolet hemirautaa, joka imeytyy nonhemirautaa paremmin. Kasviksissa esiintyy vain nonhemirautaa. Tästä syystä on suositeltavaa, että kasvisruokavaliossa rautaa pyritään saamaan ravinnosta hieman yleisiä suosituksia enemmän.

Tämä ei ole vaikeaa, sillä monet kasvit sisältävät runsaasti rautaa. Vihreät lehtikasvit ja palkokasvit ovat erinomaisia raudan lähteitä. Myös soijavalmisteissa, tummassa suklaassa, seesaminsiemenissä, auringonkukansiemenissä, rusinoissa, luumuissa ja cashew-pähkinöissä on runsaasti rautaa.

Raudan imeytyminen

Raudan imeytymistä ravinnosta voivat heikentää fytaatit, teen sisältämät tanniinit, kalsium, kuidut, kahvin ja kaakaon polyfenolit sekä eräät mausteet (korianteri, chili, kurkuma).

Raudan imeytymistä voi tehostaa syömällä runsaasti rautaa sisältäviä kasviksia eri aikoina kuin imeytymistä heikentäviä aineita. Raudan imeytymistä tehostaa myös, jos syö runsaasti rautaa sisältäviä kasviksia yhdessä C-vitamiinia ja orgaanisia happoja sisältävien kasvisten kanssa.

Esimerkiksi: smoothie, joka sisältää vihreitä lehtikasveja (lehtikaalia, pinaattia tms), joista saa rautaa sekä hedelmiä tai tomaatteja, jossa on C-vitamiinia.

Jodi

Jodia ei välttämättä saa riittävästi kasviravinnosta, mutta sitä on mm. levissä. On kuitenkin huomattava, että levissä jodin pitoisuudet vaihtelevat todella paljon ja joissain levissä jodin määrä on voi ylittää toksisen rajan. Nori-levä on hyvä jodin lähde, mutta hijiki tai hiziki sisältää niin paljon arseenia, että sen syömistä ei suositella.

Jodioidusta suolasta saa riittävästi jodia. Puolikas teelusikallinen jodioitua suolaa riittää kattamaan päivittäisen jodin tarpeen (150 µg). Merisuola ei sisällä jodia.

Jodi vaikuttaa kilpirauhasen toimintaan

Kilpirauhanen säätelee elimistön aineenvaihduntaa ja erittää tärkeitä kilpirauhashormoneja, jotka huolehtivat sisäelinten toiminnasta. Kilpirauhasen toiminnalle jodin saanti on tärkeää.

Kilpirauhasen vajaatoimintaa sairastavan on jodin imeytymisen varmistamiseksi hyvä välttää ns. goitrogeenisiä ruokia, koska ne heikentävät jodin imeytymistä ja voivat pahentaa olemassa olevaa kilpirauhasen vajaatoimintaa.

Goitrogeeniset ruoat

Goitrogeenejä on mm. ruusukalissa, kukkakaalissa, parsakaalissa, retiisissä, sellerissä, maississa, soijatuotteissa, maapähkinöissä, avokadoissa, appelsiineissa, viikunoissa, pinaatissa, bataatissa, mansikoissa ja vehnässä. Näiden välttely on perusteltua, jos on sairastunut kilpirauhasen vajaatoimintaan.

Goitrogeenisten ruokien välttäminen ei ole tarpeen, jos jodin saanti on riittävää ja kilpirauhanen toimii normaalisti.

Seleeni

Seleeni on voimaks antioksidantti, joka suojaa soluja. Sitä tarvitaan kilpirauhashormin säätelyyn, reproduktioon sekä DNA:n synteesiin. Kasvisravinto sisältää riittävästi seleeniä. Sitä saa runsaasti mm. täysjyväviljoista, palkokasveista, siemenistä ja pähkinöistä. Venäjällä ja Kiinassa on alueita, joissa maaperän ravinnepitoisuus on niin köyhtynyttä, että seleenin puutosta voi esiintyä. Muualla seleenin puutos on harvinaista.

Sinkki

Sinkki tukee immuunijärjestelmän toimintaa ja tehostaa haavojen parantumista. Sinkki osallistuu myös proteiinien ja DNA:n synteesiin, sikiön kehitykseen, sekä lasten kasvuun.

Kasvien sisältämien fylaattien vaikutuksesta sinkin saanti kasviksista on vähäisempää kuin eläinperäisestä ravinnosta. Sinkin puutos on vaikea havaita verikokeissa, mutta puutos voi ilmentyä haavojen paranemisen hitautena, kasvun pysähtymisenä (lapsilla), kaljuuntumisena, heikentyneenä vastustuskykynä, ruokahaluttomuutena, makuhäiriöinä sekä ihon ja silmien leesioina.

Puutteellisen imeytymisen vuoksi kasvissyöjien on syötävä sinkkiä jopa 50 % virallisia suosituksia enemmän. Hyviä lähteitä sinkin saannille ovat palkokasvit, pähkinät, siemenet, soijatuotteet ja täysjyväviljat.

 

Tärkeimpien ravintoaineiden lähteet

Ravinne Ruoka
Proteiini palkokasvit (pavut, linssit, herneet, maapähkinät), pähkinät, siemenet, soijatuotteet (tempe, tofu)
Omega-3 rasvat siemenet (chia, hamppu, pellava), vihreät lehtikasvit, mikrolevät, soijapavut ja soijavalmisteet, saksanpähkinät
Kuitu vihannekset, hedelmät (marjat, päärynät, papaijat, kuivatut hedelmät), avokado, palkokasvit (pavut, linssit, herneet), pähkinät, siemenet, täysjyväviljat
Kalsium vähän oksalaattia sisältävät vihreät lehtikasvit (brokkoli, bok choy, kaali, lehtisalaatit, voikukan lehdet, vesikrassi), kalsiumia sisältävä tofu, mantelit, mantelivoi, kalsiumia sisältävät kasvimaidot (mantelimaito, kauramaito, soijamaito) seesaminsiemenet, tahini, viikunat, melassi (blackstrap molasses)
Jodi vesikasvit ja levät (arame, dulse, nori, wakame), jodioitu suola
Rauta palkokasvit (pavut, linssit, herneet, maapähkinät), vihreät lehtikasvit, soijapavut ja soijatuotteet, kvinoa, perunat, kuivatut hedelmät, tumma suklaa, tahini, siemenet (kurpitsa, seesami, auringonkukka), levät (dulse, nori)
Sinkki palkokasvit (pavut, linssit, herneet, maapähkinät) soijatuotteet, pähkinät, siemenet, kaura
Koliini palkokasvit (pavut, linssit, herneet, maapähkinät), bnaani, brokkoli, kaura, appelsiinit, kvinoa, soijatuotteet
Folaatti vihreät lehtikasvit, mantelit, parsa, avokado, punajuuret, folaattia sisältävät viljat (leivät, pastat, riisit), appelsiinit, kvinoa, ravintohiiva
B12 –Vitamiini elintarvikkeet, joihin B12 -vitamiinia eli kobalamiinia on lisätty (ravintohiiva, kasvimaidot), kasvipohjainen B12 lisäravinne (2500 μg viikossa)
C -Vitamiini hedelmät (marjat, sitrushedelmät, verkkomeloni, kiwi-hedelmä, mango, papaya, ananans), vihreät lehtikasvit, perunat, herneet, paprikat, chilipippurit, tomaatit
D – Vitamiini sun, fortified plant milks, supplement if deficient
K -Vitamiini vihreät lehtikasvit, levät, parsa, avokado, brokkoli, ruusukaali, kukkakaali, linssit, herneet, nattō (a traditional Japanese food made from soybeans fermented with Bacillus subtilis var nattō)

 

Tutustu elintarvikkeiden ravintosisältöön ennen tuotteen ostoa!

  • Sivuuta harhaanjohtava markkinointilauseet elintarvikepakkauksissa, kuten (”erinomainen …”, ”…vapaa”, ”luonnollinen”)
  • Keskity elintarvikkeen ravintosisältöön ja unohda kaikki ylimääräiset merkinnät pakkauksessa (ne ovat markkinointia)
  • Suosi elintarvikkeita, jotka:
    • – sisältävät tuttuja ravintoaineita
    • – joiden tuoteseloste on lyhyt (ilman useita lisäaineita)
    • – eivät sisällä keinotekoisia makeutusaineita, makuvahventeita, värejä, säilöntäaineita, stabilointiaineita jne.
    • – älä osta elintarvikkeita, joihin on lisätty tuntemattomia lisäaineita

Suositeltavia sivustoja terveellisestä kasvisravinnosta kiinnostuneille

 

Lähteet:

Julieanna Haver (Ms, RD, CPT): Plant-Based Dietes: A Physician’s Guide, 6.6.2016

  1. Graffeo C. Is there evidence to support a vegetarian diet in common chronic diseases? [Internet] New York, NY: Clinical Correlations; 2013. Jun 20, [cited 2015 Mar 17]:[about 8 p]. Available from:www.clinicalcorrelations.org/?p=6186.
  2. Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013 Jul 8;173(13):1230–8. DOI:http://dx.doi.org/10.1001/jamainternmed.2013.6473. [PMC free article] [PubMed]
  3. Rosell M, Appleby P, Spencer E, Key T. Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes (Lond) 2006 Sep;30(9):1389–96. DOI:http://dx.doi.org/10.1038/sj.ijo.0803305. [PubMed]
  4. Ornish D. Statins and the soul of medicine. Am J Cardiol. 2002 Jun 1;89(11):1286–90. DOI:http://dx.doi.org/10.1016/S0002-9149(02)02327-5. [PubMed]
  5. Jenkins DJ, Kendall CW, Marchie A, et al. Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr. 2005 Feb;81(2):380–7.[PubMed]
  6. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009 May;89(5):1588S–1596S. DOI: http://dx.doi.org/10.3945/ajcn.2009.26736H. [PMC free article] [PubMed]
  7. Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab. 2012;60(4):233–40.DOI: http://dx.doi.org/10.1159/000337301. [PubMed]
  8. Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013 Spring;17(2):61–6. DOI: http://dx.doi.org/10.7812/TPP/12-085. [PMC free article] [PubMed]
  9. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009 May;32(5):791–6. DOI: http://dx.doi.org/10.2337/dc08-1886. [PMC free article] [PubMed]
  10. Appleby PN, Davey GK, Key TJ. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002 Oct;5(5):645–54. DOI:http://dx.doi.org/10.1079/PHN2002332. [PubMed]
  11. Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol. 2009 Oct 1;104(7):947–56. DOI: http://dx.doi.org/10.1016/j.amjcard.2009.05.032. [PubMed]
  12. Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998 Dec 16;280(23):2001–7. DOI: http://dx.doi.org/10.1001/jama.280.23.2001.[PubMed]
  13. Esselstyn CB, Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014 Jul;63(7):356–364b. [PubMed]
  14. Vannice G, Rasmussen H. Position of the Academy of Nutrition and Dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014 Jan;114(1):136–53. DOI:http://dx.doi.org/10.1016/j.jand.2013.11.001. Erratum in: J Acad Nutr Diet 2014 Apr;114(4):644. DOI:http://dx.doi.org/10.1016/j.jand.2014.02.014. [PubMed]
  15. Saturated Fats [Internet] Dallas, TX: American Heart Association; 2015. Jan 12, [cited 2015 Mar 17]. Available from: www.heart.org/HEARTORG/GettingHealthy/NutritionCenter/HealthyEating/Saturated-Fats_UCM_301110_Article.jsp.
  16. Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr. 1992 Jun;55(6):1060–70. [PubMed]
  17. Howell WH, McNamara DJ, Tosca MA, Smith BT, Gaines JA. Plasma lipid and lipoprotein responses to dietary fat and cholesterol: a meta-analysis. Am J Clin Nutr. 1997 Jun;65(6):1747–64. [PubMed]
  18. Spence JD, Jenkins DJ, Davignon J. Dietary cholesterol and egg yolks: not for patients at risk of vascular disease. Can J Cardiol. 2010 Nov;26(9):e336–9. [PMC free article] [PubMed]
  19. Record-high antibiotic sales for meat and poultry production [Internet] Philadelphia, PA: The Pew Charitable Trusts; 2013. Feb 6, [cited 2015 Apr 7]. Available from: www.pewtrusts.org/en/about/news-room/news/2013/02/06/recordhigh-antibiotic-sales-for-meat-and-poultry-production.
  20. Antibiotic resistance threats in the United States, 2013 [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2014. Jul 17, [cited 2015 Apr 7]. Available from:www.cdc.gov/drugresistance/threat-report-2013/.
  21. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002 Nov;11(11):1441–8. [PubMed]
  22. Iron: dietary supplement fact sheet [Internet] Bethesda, MD: National Institutes of Health, Office of Dietary Supplements; 2015. Feb 19, [cited 2015 Apr 12]. Available from:http://ods.od.nih.gov/factsheets/Iron-HealthProfessional/.
  23. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2–3):65–87. DOI: http://dx.doi.org/10.1016/j.tox.2011.03.001. [PubMed]
  24. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 2011 Feb;4(2):177–84. DOI:http://dx.doi.org/10.1158/1940-6207.CAPR-10-0113. [PubMed]
  25. Ahluwalia N, Genoux A, Ferrieres J, et al. Iron status is associated with carotid atherosclerotic plaques in middle-aged adults. J Nutr. 2010 Apr;140(4):812–6. DOI: http://dx.doi.org/10.3945/jn.109.110353. [PMC free article] [PubMed]
  26. Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003 Sep;78(3 Suppl):633S–639S. [PubMed]
  27. European Commission Scientific Committee on Food . Polycyclic aromatic hydrocarbons— occurrence in foods, dietary exposure and health effects [Internet] Brussels, Belgium: European Commission Health and Consumer Protection Directorate-General; 2002. Dec 4, [cited 2015 Apr 7]. Available from:http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf.
  28. Chemicals in meat cooked at high temperatures and cancer risk [Internet] Bethesda, MD: National Cancer Institute at the National Institutes of Health; 2010. Oct 15, [cited 2015 Apr 7]. Available from:www.cancer.gov/cancertopics/causes-prevention/risk/diet/cooked-meats-fact-sheet.
  29. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010 Jun;110(6):911–6. DOI:http://dx.doi.org/10.1016/j.jada.2010.03.018. [PMC free article] [PubMed]
  30. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576–85. DOI:http://dx.doi.org/10.1038/nm.3145. [PMC free article] [PubMed]
  31. Hedlund M, Padler-Karavani V, Varki NM, Varki A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18936–41. DOI: http://dx.doi.org/10.1073/pnas.0803943105. [PMC free article] [PubMed]
  32. Taylor RE, Gregg CJ, Padler-Karavani V, et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010 Aug 2;207(8):1637–46. DOI: http://dx.doi.org/10.1084/jem.20100575. [PMC free article] [PubMed]
  33. Food Insight Functional foods fact sheet: antioxidants [Internet] Washington DC: International Food Information Council Foundation; 2009. Oct 14, [cited 2015 Apr 17]. Available from:www.foodinsight.org/Functional_Foods_Fact_Sheet_Antioxidants.
  34. Bellik Y, Boukraâ L, Alzahrani HA, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2012 Dec 27;18(1):322–53. DOI:http://dx.doi.org/10.3390/molecules18010322. [PubMed]
  35. Phytochemicals: the cancer fighters in the foods we eat [Internet] Washington, DC: American Institute for Cancer Research; 2013. Apr 10, [cited 2015 Apr 17]. Available from: www.aicr.org/reduce-your-cancer-risk/diet/elements_phytochemicals.html.
  36. Schmitz H, Chevaux K. Defining the role of dietary phytochemicals in modulating human immune function. In: Gershwin ME, German JB, Keen CL, editors. Nutrition and immunology: principles and practice. Totowa, NJ: Humana Press Inc; 2000. pp. 107–19.
  37. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas. 2011 Dec;70(4):333–8. DOI: http://dx.doi.org/10.1016/j.maturitas.2011.09.001.[PubMed]
  38. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med. 2012 Mar;5(3):243–8. DOI: http://dx.doi.org/10.1016/S1995-7645(12)60033-9. [PubMed]
  39. Basu HN, Del Vecchio AJ, Filder F, Orthoeter FT. Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc. 2001 Jul;78(7):665–75. DOI:http://dx.doi.org/10.1007/s11746-001-0324-x.
  40. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007 Apr;85(4):1148–56. [PubMed]
  41. Howard BV, Kritchevsky D. Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation. 1997 Jun 3;95(11):2591–3. DOI:http://dx.doi.org/10.1161/01.CIR.95.11.2591. [PubMed]
  42. Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012 Jul;142(7):1390S–401S. DOI:http://dx.doi.org/10.3945/jn.112.160176. [PubMed]
  43. National Center for Chronic Disease Prevention and Health Promotion . The power of prevention: chronic disease … the public health challenge of the 21st century [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2009. [cited 2015 Mar 17]. Available from:www.cdc.gov/chronicdisease/pdf/2009-power-of-prevention.pdf.
  44. Craig WJ, Mangels AR, American Dietetic Association Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009 Jul;109(7):1266–82. DOI:http://dx.doi.org/10.1016/j.jada.2009.05.027. [PubMed]
  45. Farmer B, Larson BT, Fulgoni VL, III, Rainville AJ, Liepa GU. A vegetarian diet pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999–2004. J Am Diet Assoc. 2011 Jun;111(6):819–27. DOI: http://dx.doi.org/10.1016/j.jada.2011.03.012.[PubMed]
  46. 2015 Dietary Guidelines Advisory Committee . Scientific report of the 2015 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture [Internet] Washington, DC: USDA, Department of Health and Human Services; 2015. Feb, [cited 2015 Mar 18]. Available from: www.health.gov/dietaryguidelines/2015-scientific-report/PDFs/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf.
  47. Sabaté J. Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. Am J Clin Nutr. 1999 Sep;70(3 Suppl):500S–503S. [PubMed]
  48. O’Neil CE, Keast DR, Nicklas TA, Fulgoni VL., 3rd Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in US adults: NHANES 1999–2004. J Am Coll Nutr. 2011 Dec;30(6):502–10. DOI: http://dx.doi.org/10.1080/07315724.2011.10719996.[PubMed]
  49. Seddon JM, Cote J, Rosner B. Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol. 2003 Dec;121(12):1728–37. DOI:http://dx.doi.org/10.1001/archopht.121.12.1728. Erratum in: Arch Ophthalmol 2004 Mar;122(3):426. DOI:http://dx.doi.org/10.1001/archopht.122.3.426. [PubMed]
  50. Tsai CJ, Leitzmann MF, Hu FB, Willett WC, Giovannucci EL. Frequent nut consumption and decreased risk of cholecystectomy in women. Am J Clin Nutr. 2004 Jul;80(1):76–81. [PubMed]
  51. Wilcox DC, Wilcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009 Aug;28(Suppl):500S–516S. DOI: http://dx.doi.org/10.1080/07315724.2009.10718117. [PubMed]
  52. Allbaugh L. Crete: a case study of an underdeveloped area. Princeton, NJ: Princeton University Press; 1953.
  53. Davis B, Melina V. Becoming vegan: comprehensive edition. Summertown, TN: Book Publishing Company; 2014.
  54. Dietary reference intakes: macronutrients [Internet] Washinton, DC: Institute of Medicine of the National Academies; 2005. [cited 2015 Apr 15]. Available from:https://iom.nationalacademies.org/~/media/Files/Activity%20Files/Nutrition/DRIs/DRI_Macronutrients.pdf.
  55. Fish [Internet] Washington DC: Physicians Committee for Responsible Medicine; 2009. Jan, [cited 2016 Mar 17]. Available from: www.pcrm.org/health/reports/fish.
  56. Worm B, Barbier EB, Beaumont N, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006 Nov 3;314(5800):787–90. DOI: http://dx.doi.org/10.1126/science.1132294. [PubMed]
  57. FDA cuts trans fats in processed foods [Internet] Washington DC: US Food and Drug Administration; 2015. Jun 16, [2016 Mar 17]. Available from:www.fda.gov/ForConsumers/ConsumerUpdates/ucm372915.htm.
  58. Jenkins DJ, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003 Jul 23;290(4):502–10. DOI:http://dx.doi.org/10.1001/jama.290.4.502. [PubMed]
  59. Jacobs DR, Jr, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009 May;89(5):1543S–1548S. DOI:http://dx.doi.org/10.3945/ajcn.2009.26736B. [PMC free article] [PubMed]
  60. Watson E. Veggie vitamin D3 maker explores novel production process to secure future supplies [Internet] Montpelier, France: William Reed Business Media; 2012. Mar 13, [cited 2016 Jun 6]. Available from: www.nutraingredients-usa.com/Suppliers2/Veggie-vitamin-D3-maker-explores-novel-production-process-to-secure-future-supplies.
  61. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011 Jan;96(1):53–8. DOI: http://dx.doi.org/10.1210/jc.2010-2704. [PMC free article] [PubMed]
  62. National Institutes of Health Office of Dietary Supplements . Calcium: dietary supplement fact sheet [Internet] Washington, DC: National Institutes of Health; 2013. Nov 21, [cited 2015 Mar 26]. Available from: http://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/.
  63. Part II. Evaluating the public health significance of micronutrient malnutrition. In: Allen L, de Benoist B, Dary O, Hurrell R, editors. Guidelines on food fortification with micronutrients. Geneva, Switzerland: World Health Organization; 2006. pp. 43–56.
  64. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014 Sep;68(9):856–62. DOI: http://dx.doi.org/10.1136/jech-2013-203500. [PMC free article] [PubMed]
  65. Gallant MP. The influence of social support on chronic illness self-management: a review and directions for research. Health Educ Behav. 2003 Apr;30(2):170–95. DOI:http://dx.doi.org/10.1177/1090198102251030. [PubMed]



Raskausajan matalat D-vitamiinitasot voivat lisätä lapsen ms-taudin riskiä

Ana Sandoiu raportoi Medical News Today’lle tanskalaistutkimuksesta, jonka mukaan odottavan äidin matalat D-vitamiinitasot ja lapsen riski sairastua ms-autiin myöhemmin elämässä korreloivat. Raskausajan matalat D-vitamiinitasot voivat lisätä lapsen ms-taudin riskiä.

Multippeli skleroosi (MS) on usein arvaamaton invalidisoiva sairaus, jota maailmanlaajuisesti sairastaa noin 2,3 miljoonaa ihmistä. Taudin perimmäinen syy on yhä arvoitus, eikä tautiin tunneta parantavaa hoitoa.

Tuore tanskalaistutkimus arvioi, että raskausaikaiset riittävän korkeat D-vitamiinitasot laskevat syntyvän lapsen riskiä sairastua ms-tautiin myöhemmin elämässä.

Myös Alberto Ascharion johtama laajasti uutisoitu tutkimus päätteli, että odottavan äidin alhaiset D-vitamiinitasot korreloivat lapsen lisääntyneen ms-tautiriskin kanssa.  Alberto Ascherion johtamaan tutkimukseen voit tutustua tästä>>

Ms-taudin tarkkaa syytä ei tunneta, mutta tiedetään, että sairastuminen edellyttää perinnöllistä alttiutta sairastua sekä taudin laukaisevia ympäristötekijöitä.

Autoimmuunisairauden laukaisevista ympäristötekijöistä on käyty kiivasta keskustelua. Tiedetään, että rokotukset voivat pahimmassa tapauksessa laukaista mm. narkolepsian (vrt. Pandemrix) ja viljojen sisältämä gluteeni voi laukaista keliakian.

Kasvava tutkimusnäyttö viittaa siihen, että ms-taudin (yhtenä) laukaisevana tekijänä voi olla odottavan äidin ja vastasyntyneen lapsen alhaiset D-vitamiinitasot.

Kommentti: D-vitamiini on elimistölle välttämättömän immunomodulatorisen eli immuunijärjestelmää säätelevän sekosteroidin – kalsitriolin esiaste. D3-vitamiini hydroksyloidaan ensin maksassa kalsidioliksi, josta hydroksyloidaan munuaisissa edelleen hormonin tavoin vaikuttavaa kalsitriolia. Kalsitrioli vaikuttaa sekosteroidina arvioiden mukaan jopa 2000 geenin toimintaan.

D-vitamiinin yhteys ms-tautiin, jossa immuunijärjestelmän toiminta on häiriintynyt, selittyykin ehkä D-vitamiinin immuunijärjestelmää säätelevien ominaisuuksien avulla.

Tiedetään, että ms-tautia sairastavilla on muutoksia CYP27B1-geenissä, joka säätelee kalsidiolin hydroksylaatiota munuaisissa. Ehkäpä ms-tautia sairastavien kyky tuottaa elimistön tarvitsemaa immuunijärjestelmää säätelevää kalsitriolia on alentunut, minkä seurauksena immuunijärjestelmä on villiintynyt. D-vitamiinin toimintamekanismeista laajemmin täällä >>

Laskeeko odottavan äidin korkeammat D-vitamiinitasot lapsen riskiä sairastua myöhemmin ms-tautiin?

Vastasyntyneen D-vitamiinitasojen ja ms-taudin korrelaatio

Tohtori Nete Munk Nielsen (State Serum Institute in Copenhagen) ja hänen tutkijaryhmänsä toteuttivat populaatioon pohjautuvan tapaus-verrokkitutkimuksen määritelläkseen vastasyntyneen 25hydroksivitamiini D-tasojen (25OHD) ja ms-taudin riskin korrelaatiota.

Tutkimuksessa hyödynnettiin Tanskan kansallista MS-arkistoa ja vastasyntyneiden verinäytteitä säilyttävää biopankkia (Danish Newborn Screening Biobank).

Tutkimusaineistosta valikoitiin kaikki henkilöt, jotka olivat syntyneet 30.4.1981 jälkeen, ja joille oli kehittynyt ms-tauti vuoteen 2012 mennessä. Nämä kriteerit täyttyivät 521 ms-tautia sairastavan kohdalla.

Näiden 521 ms-tautiin sairastuneen vastasyntyneinä otettuja verinäytteitä verrattiin tämän jälkeen samana ajanjaksona syntyneiden, samaa sukupuolta olevien 972 ms-tautia sairastamattoman verrokkihenkilön DNSB:ssä säilytettäviin verinäytteisiin. Näytteistä tarkastettiin vastasyntyneiden D-vitamiinitasot.

Neurology-lehdessä julkaistu tutkimus osoitti 30-50 nmol/l D-vitamiinitasot (25OHD) riittämättömiksi ja yli 50 nmol/l tasot riittäviksi suojaamaan myöhemmin kehittyvältä ms-taudilta.

Tutkittavat jaettiin D-vitamiinitasojen perusteella viiteen ryhmään. Alimmassa ryhmässä D-vitamiinitasot olivat alle 21 nmol/l ja korkeimmassa ryhmässä 49 nmol/l tai sitä korkeammat.

Raskausajan matalat D-vitamiinitasot voivat lisätä lapsen ms-taudin riskiä

Tutkimus osoitti, että riski sairastua ms-tautiin oli 47 % pienempi niillä, joiden D-vitamiinitasot olivat vastasyntyneinä 49 nmol/l tai korkeammat.

Riski sairastua ms-tautiin myöhemmin elämässä laski sitä enemmän, mitä korkeammat vastasyntyneen D-vitamiinitasot olivat. Tutkimusnäytön perusteella vastasyntyneiden D-vitamiinitasojen jokaista 25 nmol/l lisäystä kohden ms-taudin riski aleni edelleen 30 %.

Tekijöiden mukaan tutkimus osoittaa, että vastasyntyneen riittävät D-vitamiinitasot suojaavat myöhemmin elämässä kehittyvältä ms-taudilta, ja että odottavan äidin matalat D-vitamiinitasot kasvattavat lapsen riskiä sairastua ms-tautiin.

”More research is needed to confirm these results, but considering that a high percentage of pregnant women worldwide have low levels of vitamin D our results may provide important information to the ongoing debate about vitamin D supplements for pregnant women.”

Dr. Nete Munk Nielsen

Nielsen painottaa kuitenkin, että tutkimus ei osoita suoraa kausaalisuhdetta matalien D-vitamiinitasojen ja ms-taudin kehittymisen välillä. Tutkimus vahvistaa tunnetun korrelaation.

Nielsen huomauttaa edelleen, että tutkimuksessa mukana olleet olivat noin 30-vuotiaita, ja että myös ms-tautia sairastamattomille tutkittaville saattaa kehittyä ms-tauti myöhemmin elämässä varhaislapsuuden korkeista D-vitamiinitasoista huolimatta.  Myöskään sattumaa ei voida täysin sulkea pois D-vitamiinitasojen ja ms-taudin korrelaation suhteen.

Lähde: Medical News Today




K1- ja K2-vitamiinit

K1- ja K2-vitamiinien terveysvaikutukset ovat kasvavan mielenkiinnon kohteena. K-vitamiineja pidetään elimistön hyvinvoinnille erittäin tärkeinä, mutta yleisesti K-vitamiinit tunnetaan valitettavan huonosti.

Välttämättömistä ravintoaineista puhutaan paljon, mutta vitamiinien, mineraalien, proteiinien ja rasvahappojen todellinen merkitys hyvinvoinnille unohdetaan helposti. Lähes jokainen tietää, että suojaravinteiden puutokset voivat johtaa sairastumiseen: C-vitamiinin puutos voi johtaa keripukkiin ja D-vitamiinin puutos voi aiheuttaa lapsilla riisitautia ja aikuisilla osteoporoosia.  Tarkastelen tässä artikkelissa K-vitamiinien merkitystä elimistön hyvinvoinnille.

Rasvaliukoiset K-vitamiinit jaetaan kahteen ryhmään: K1 (fyllokinoni) ja K2 (menakinoni: mm. MK-4 ja MK-7, MK-8 & MK-9). Molemmat ovat luonnollisia vitamiineja. Näiden lisäksi on olemassa synteettinen K3-vitamiini.

K1-vitamiinia saadaan runsaasti vihreitä kasviksia sisältävästä ravinnosta, mutta menakinonit (MK-1 – MK-12) ovat haasteellisempi vitamiiniryhmä. K2-vitamiinia saadaan pieniä määriä liha- ja meijerivalmisteista. Lisäksi suoliston bakteerit fermentoivat K2-vitamiineja paksusuolessa, mutta sen imeytyminen elimistön hyödynnettäväksi on hyvin vähäistä tai olematonta.

Journal of biological Chemistry arveli, että K1-vitamiini muutetaan ensin menadioniksi, joka edelleen metaboloidaan MK-4-menakinoniksi. Monet eläimet pystyvät muuntamaan K1-vitamiinin K2-vitamiineiksi, mutta merkittävä todistusaineisto viittaa siihen, että ihmisten aineenvaihdunnalta tämä ominaisuus puuttuu. Ihmiset tarvitsevatkin ravinnosta K2-vitamiinia.

” It was once erroneously believed that intestinal bacteria are a major contributor to vitamin K status. However, the majority of evidence contradicts this view. Most of the vitamin K2 produced in the intestine are embedded within bacterial membranes and not available for absorption. Thus, intestinal production of K2 likely makes only a small contribution to vitamin K status. (Unden & Bongaerts, 1997, pp. 217-234)”

MK-4 on K2-vitamiinin lyhytketjuinen muoto, jota saadaan mm. voista ja munankeltuaisista. MK-7 on K2-vitamiinin pitkäketjuisempi muoto, joka säilyy elimistössä pidempään. K-vitamiineista on olemassa myös vieläkin pidempiketjuisia muotoja (MK-8 ja MK-9, MK-10, MK-11 ja MK-12).

K-vitamiineilla on useita erilaisia kemiallisia rakenteita, jotka toimivat eri tavoin elimistössä.

K-vitamiinit vaikuttavat erityisesti veren normaaliin hyytymiseen sekä luuston terveyteen. Viime aikoina on julkaistu useita K-vitamiinien vaikutuksia selventäviä tutkimuksia, joissa on havaittu, että K-vitamiini aktivoi kehossa useita proteiineja.

Munuaisista, luukudoksesta ja verestä on löydetty ainakin 14 eri proteiinia, jotka tarvitsevat K-vitamiinia sitoakseen itseensä kalsiumia. Tämä käy järkeen: Silloin, kun ihminen saa riittävästi K-vitamiinia, proteiinit sitovat verestä kalsiumia ja ehkäisevät näin verisuonten kalkkeutumista ja huolehtivat verisuonten ja sydämen terveydestä.

Antibiootit, ripuli ja sappirakon vajaatoiminta kuluttavat elimistön K-vitamiinivarastoja. K1-vitamiini vaikuttaa erityisesti maksassa, jossa se imeytyy nopeasti verestä ja aktivoi proteiineja, jotka edistävät veren normaalia hyytymistä. Luukudoksessa on kolmea proteiinia, joita erityisesti K2-vitamiini aktivoi:

  • Osteokalsiini
  • Matrix-Gla-proteiini
  • S-proteiini

Nämä proteiinit vaikuttavat luukudoksen mineralisoitumiseen ja etenkin kalsiumin ja magnesiumin imeytymiseen. Mineraaleista kalsium ja magnesium sekä vitamiineista K- ja D-vitamiinit ovat luuston hyvinvoinnille välttämättömiä, koska ne osallistuvat kalsiumin kuljettamiseen verenkierrosta luustoon.

K-vitamiinit ja niiden lähteet

K1-vitamiinia saadaan erityisesti lehtivihreää sisältävistä kasviksista. Monipuolinen ravinto sisältää yleensä riittävästi K1-vitamiinia, joten sen saanti on suurempaa kuin K2-vitamiinin saanti. Erityisen hyviä K1-vitamiinin lähteitä ovat:

  • Lehtikaali
  • Pinaatti
  • Parsakaali
  • Ruusukaali
  • Salaatti
  • Juurikkaiden naatit
  • Kasviöljyt
  • Palkokasvit

Mikrobit muodostavat K2-vitamiineja käymisen seurauksena suolistossa. Valitettavasti elimistö voi käyttää vain murto-osan paksusuolessa muodostuneesta K2-vitamiinista. Elimistö muuttaa K1-vitamiinia menakinoni-4-muotoon, jota keho voi paremmin varastoida ja hyödyntää. K2-vitamiineja saadaan jonkin verran seuraavista ravintoaineista:

  • Hapankaali ja muut fermentoidut ruoat
  • Kana ja kananmaksa
  • Munuaiset
  • Mäti
  • Miso
  • Majoneesi
  • Munankeltuaiset
  • Voi
  • Maksa
  • Juusto ja meijerituotteet
  • Liha- ja siipikarja
  • Salami ja pepperoni
  • Natto (japanilainen käyneistä soijapavuista valmistettu perinneruoka)

Saanti ja suositukset

Sekä sydän että maksa varastoivat K-vitamiinia. Eniten varastoituu K2:ta. Suomessa ei ole virallisia K-vitamiinin saantisuosituksia. Normaaliin veren hyytymiseen tarvitaan noin 1µg painokiloa kohden, mutta luiden hyvinvoinnin turvaamiseksi saannin on oltava tätä suurempaa. Tutkimusten mukaan 45µg K-vitamiinin lisä painokilojen mukaisen saannin lisäksi edistää myös luuston terveyttä. Optimaalista saantia tutkitaan yhä, mutta nykyisin oletetaan, että 180-200µg päiväannos K2-vitamiinia riittää aktivoimaan kehon K2-riippuvaiset proteiinit ja ylläpitämään siten verisuonten, pehmytkudosten ja luuston terveyttä.

Huom! Odottavien äitien ei pitäisi syödä K2-vitamiinilisää, ellei sille ole erityistä lääkärin suositusta.

K-vitamiinien puutostaudit:

  • Osteoporoosi
  • Sydän- ja verisuonitaudit
  • Ateroskleroosi (valtimoiden kalkkeutuminen)
  • Sydän- ja aivoinfarktit
  • Munuaiskivet
  • Syövät

K1- ja K2-vitamiinien terveysvaikutukset

K1- ja K2-vitamiinien terveysvaikutukset: K-vitamiinit säätelevät veren hyytymistä ja osallistuvat luuston hyvinvointiin. K2 auttaa proteiineja sitomaan kalsiumia verestä ja kuljettamaan sen luustoon, mikä vahvistaa luita ja ehkäisee verisuonten kalkkeutumista. On myös osoitettu, että K2 aktivoi proteiineja, jotka ohjaavat solujen kasvua. Näin sillä on huomattava vaikutus syöpien ehkäisyssä.

Journal of Rheumatology on julkaissut tutkimuksen, jonka mukaan K2 voi vähentää reuman (rheumatoid arthiritis) oireita. Science havaitsi, että K2-vitamiini osallistuu mitokondioiden elektronien kuljettamiseen ja vaikuttaa näin solujen normaaliin ATP-tuotantoon; tällä havainnolla voi olla merkitystä mm. Parkinsonin taudin hoidossa.

We identified Drosophila UBIAD1/Heix as a modifier of pink1, a gene mutated in Parkinson’s disease that affects mitochondrial function. We found that vitamin K(2) was necessary and sufficient to transfer electrons in Drosophila mitochondria. Heix mutants showed severe mitochondrial defects that were rescued by vitamin K(2), and, similar to ubiquinone, vitamin K(2) transferred electrons in Drosophila mitochondria, resulting in more efficient adenosine triphosphate (ATP) production. Thus, mitochondrial dysfunction was rescued by vitamin K(2) that serves as a mitochondrial electron carrier, helping to maintain normal ATP production.”

Tanskalainen tutkijaryhmä selvitti K-vitamiinien (K1- ja K2) saannin ja sydäntautien yhteyttä Nutrition, Metabolism & Cardiovascular Diseases-lehden julkaisemassa tutkimuksessa vuonna 2008. Tutkimuksessa seurattiin terveiden 49-70-vuotiaiden naisten K1- ja K2-vitamiinien saannin vaikutuksia sydänterveyteen. Seurantatutkimuksen tulokset osoittivat, että K2 ja erityisesti menakinonit (MK-7, MK-8 ja MK-9) laskivat sydäntautien riskiä. Vastaavaa hyötyä ei havaittu K1-vitamiinissa. Tutkijaryhmä päätteli, että K2 suojaa sydäntaudeilta.

Saksalainen tutkijaryhmä tutki onko K-vitamiineilla vaikutusta eturauhassyöpään. Tutkimus perustui yli 11 000 EPIC-tutkimuksessa mukana olleen miehen aineistoon. The American Journal of Clinical Nutrition-lehdessä julkaistun tutkimuksen mukaan ravinnosta runsaasti K2-vitamiinia saaneiden eturauhassyövän riski laski jopa 35%. K1-vitamiini ei tutkimuksessa vaikuttanut sairastumisen riskiä alentavasti. (European Prospective Investigation into Cancer and Nutrition (EPIC)).

International Journal of Oncology julkaisi syyskuun 2003 numerossa tutkimuksen, jonka mukaan K2-vitamiinilla hoidettujen keuhkosyöpää sairastavien taudin eteneminen ja syöpäsolujen kasvu hidastuivat. Alternative Medicine Review julkaisi elokuussa 2003 tutkimuksen, jonka mukaan K2-vitamiinia saaneista 30 maksasyöpää sairastavasta potilaasta kuudella sairaus vakaantui, seitsemällä potilaalla oireet helpottivat hieman ja seitsemällä maksan toiminta koheni.

Tiedetään, että terveyden kannalta riittävä D-vitamiinin saanti on tärkeää. D-vitamiini tuottaa elimistössä proteiineja, jotka tarvitsevat K-vitamiinia sitoakseen kalsiumia. D-vitamiini lsiis luo elimistössä tarpeen lisääntyneelle K2-vitamiinin saannille. Monet D-vitamiinin hyödyt eivät toteudu, jos D-vitamiinin tuottamat K2-vitamiinista riippuvaiset proteiinit jäävät hyödyntämättä puutteellisen K2-vitamiinin saannin vuoksi. Yhdessä nämä kaksi vitamiinia toimivat hyvin vahvistaen luita ja parantaen sydänterveyttä.

Osteoporoosin välttämiseksi suositellaan yleisesti lisäravinteena kalsiumia ja D-vitamiinia. Kun kalsiumin saantia tutkittiin tarkemmin, havaittiin sen lisäävän sydän- ja verisuonisairauksia. Tämä aiheutti huolta ja sekaannusta kalsiumin terveysvaikutuksista. Ongelma selvisi, kun suosituksissa huomioitiin K2-vitamiini. D- ja K2-vitamiinit sekä kalsium tarvitsevat toisiaan toimiakseen oikein.

Varoitus: Jos syöt runsaasti D-vitamiinia, huolehdi riittävästä K2-vitamiinin saannista. Ilman K2-vitamiinia D-vitamiinin monet terveyshyödyt jäävät toteutumatta. Yleisesti tunnustettu D-vitamiinin optimaalinen päiväsaanti on 50-125 µg.  K-vitamiineja tulisi saada 150-200µg päivässä.

 




D-vitamiini

D-vitamiini on saanut valtavasti huomiota sekä erilaisissa medioissa että tutkijapiireissä. Sen vaikutuksista terveyteen on tehty viime vuosina tuhansia tutkimuksia ja uusista terveysvaikutuksista raportoidaan viikoittain. Joillekin on kaikesta huomiosta huolimatta jäänyt epäselväksi, kuinka tärkeä ja monivaikutteinen vitamiini D-vitamiini on.

D-vitamiinin vaikutukset luuston homeostaasiin tunnetaan hyvin, mutta viimeisten 10-15 vuoden aikana tehdyissä tutkimuksissa on on osoitettu, että D-vitamiinilla on myös immuunijärjestelmän toimintaan vaikuttavia ns. immunomodulatorisia ominaisuuksia.

” In addition to its role in calcium and skeletal homeostasis, there is increasing evidence that the hormonal form of vitamin D, 1,25-dihydroxyvitamin D3, appears to serve as a modulator of the immune system.”

”Vitamin D, the sunshine vitamin, has received a lot of attention recently as a result of a meteoric rise in the number of publications showing that vitamin D plays a crucial role in a plethora of physiological functions and associating vitamin D defieciency with many acute and chronic illnessess including disorders of calcium metabolism, autoimmune diseases, some cancers, type 2 diabetes mellitus, cardiovascular disease and infectious diseases. Vitamin D deficiency is now recognized as a global pandemic.”

D-vitamiinin vaikutusmekanismien toiminnan tunteminen on tärkeää D-vitamiinin puutoksen aiheuttamien oireiden ennaltaehkäisyn, tunnistamisen sekä riittävän D-vitamiinin saannin varmistamiseksi .

D-vitamiini

D-vitamiini ei ole ihmelääke, vaan hormonin tavoin vaikuttavan sekosteroidin esiaste ja sellaisena välttämätön elimistön normaalille toiminnalle. D-vitamiini osallistuu kalsiumin homeostaasiin ja säätelee noin 2000 geenin sekä immuunijärjestelmän toimintaa. Ihminen sairastuu, jos D-vitamiinitasot laskevat liian alhaisiksi. Tämän yksinkertaisemmin D-vitamiinia on vaikea määritellä.

Michael F. Holick’in luento oheisella videolla osoittaa, ettei tieteen tekeminen aina ole tylsää. Holick on tutkinut D-vitamiinia ja sen vaikutusmekanismeja lähes viisi vuosikymmentä ja tietää aiheesta todennäköisesti enemmän kuin kukaan muu. Luennolla hän kertoo D-vitamiinin tutkimuksesta, vaikutusmekanismeista sekä sairauksista, joille D-vitamiinin puutos altistaa. Jos, et jaksa kahlata tekstiä läpi, tämä video sisältää kaiken oleellisen ja enemmänkin. Videolla Holick sivuaa myös D-vitamiinisuositusten laskua seurannutta tyypin 1 diabeteksen dramaattista lisääntymistä Suomesta 1950-luvulta alkaen. Puolentoista tunnin luento on lennokas ja jopa hengästyttävä kokemus.

Aitotumallisista selkärankaisiin

D-vitamiini on osallistunut ihmisen elintoimintojen säätelyyn koko ihmisen kehityshistorian ajan ja siksi se on poikkeuksellisen tärkeä osa elimistön hyvinvointia.

Kolesterolisynteesin tuottama D-vitamiini on ollut osa organismien säätely- ja adaptoitumismekanismeja ainakin 500 miljoonaa vuoden ajan. Se kehittyi alkuaan ilmeisesti suojaamaan alkeellisten eliöiden, kuten fytoplanktonin ultraviolettisäteilylle herkkiä makromolekyylejä (proteiineja, ribonukleiinihappoa – RNA ja deoksiribonukleiinihappoa – DNA) auringon UVB-säteilyltä.

D3-vitamiini kehittyi 7-dehydrokolesterolin ja UVB-säteilyn fotokemiallisen reaktion lopputuotteena. Skvaleenista ja lanosterolista alkava kolesterolisynteesi on ilmiönä niin vanha, että se löytyy kaikilta alkeellisilta aitotumallisilta organismeilta, leviltä, kasveilta ja bakteereilta sekä myöhemmin kehittyneiltä selkärankaisilta.

”Cholesterol is important for membrane function regulating endo- and exocytosis and vitamin D may well have acquired such a function early in the evolution of unicellular eukaryocytes. Indeed, the photochemical reaction resulting in vitamin D is considered to be a highly efficient protection of life in early marine organisms against DNA damage induced by UVB.”

Monet kasvit kehittävät D-vitamiinia tai sen provitamiinia, vitamiineja tai vastaavia yhdisteitä ja esimerkiksi tomaatin UVB-säteilylle altistuneissa lehdissä kehittyy sekä D2– että D3-vitamiinia. , D2-vitamiinia, eli ergokalsiferoliakehittyy useimmissa kasveissa ja levissä sekä joissain hiivoissa. Etanoilla on 25-OH-D-vitamiinia, eli kalsidiolia, mutta ei kalsitriolia.

”Solanum glaucophyllum cells are able to synthesize even 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3), as glycoside, and sometimes this concentration is high enough to poison grazing animals.”

Sekä D2-vitamiinia (ergokalsiferolia) että D3-vitamiinia (kolekalsiferolia) esiintyi fotokemiallisen reaktion tuottamina inaktiivisina lopputuotteina miljoonien vuosien ajan ennen selkärankaisten kehittymistä.

Selkärankaisten monimutkainen D-vitamiinin aineenvaihduntaa säätelevä umpieritysjärjestelmä edellyttää solun tumissa sijaitsevien NR-reseptoreiden (nuclear receptor – VDR) ohella D-vitamiinia metaboloivia entsyymeitä (CYP450), D-vitamiinin kuljettamiseen erikoistuneita proteiineja (DBP) sekä FGF23-hormonia. Näiden ohella D-vitamiinin umpieritysjärjestelmään kuuluu monimutkainen solunsisäinen geenien tunnistamiseen ja ”koodaamiseen” liittyvä transkriptio- ja viestintäjärjestelmä.

Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor (Carsten Carlberg, 2013)

D-vitamiiniin liittyvät immunomodulatoriset ominaisuudet ovat kehittyneet myöhemmin kuin esimerkiksi luustoa ylläpitävä kalsiumhomeostaasin säätelyjärjestelmä, mutta toisaalta D-vitamiinin aineenvaihduntaan osallistuva umpieritysjärjestelmä löytyy kaikilta selkärankaisilta. Selkärankaisilla on tosin erilaisia menetelmiä D-vitamiinitarpeen tyydyttämiseen: lihansyöjät, kuten kissat, saavat D-vitamiinin ravinnosta ja vampyyrilepakot verestä.

”From amphibians onward, bone is gradually more dynamic with regulated bone resorption, mainly by combined action of PTH and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the generation and function of multinucleated osteoclasts. Therefore, bone functions as a large internal calcium reservoir, under the control of osteoclasts. Osteocytes also display a remarkable spectrum of activities, including mechanical sensing and regulating mineral homeostasis, but also have an important role in global nutritional and energy homeostasis.” Lue tästä

Vitamin D: calcium and bone homeostasis during evolution (Roger Buillon, Tatsuo Suda)

Skvaleeni

D-vitamiinin synteesissä skvaleenilla on merkittävä rooli. Auringon UVB-säteily syntetisoi D-vitamiinia ihon skvaleenista.

Skvaleeni (C30H50) on luonnollinen hiilivety ja triterpeeni, joka elimistössä muuttuu lanosteroliksi ja edelleen steroideiksi. Se on kaikkien steroidien, kuten nestetasapainoa säätelevän kortikosteroidi aldosteronin, sukupuolisteroidien – estrogeenin ja testosteronin sekä ergosteroleihin kuuluvien kolesterolin ja D3-vitamiinin, eli kolekalsiferolin esiaste. Kuuluisa sveitsiläinen kemian professori tri Paul Carer määritteli skvaleenin kemiallisen rakenteen vuonna 1936.

Skvaleenia kehittyi miljardeja vuosia sitten eläneissä mikrobeissa ja prekambrikaudella eläneiden eliöiden solukalvoissa ja sytoplasmassa. Ensimmäisen kerran skvaleenia eristettiin haikalojen maksaöljystä, mutta nykyään tiedetään, että myös ihmisen, etenkin vastasyntyneiden, elimistössä sitä on pieniä määriä. Hain maksassa esiintyvää skvaleenia on kutsuttu Izun niemimaalla Japanissa ”Samedawa’ksi” (”kaiken parantavaksi”). Japanissa ja Kiinassa hainmaksaöljyllä onkin vuosisatojen ajan lääkitty lähes kaikkia vaivoja ummetuksesta syöpiin.

Pari vuosikymmentä sitten osoitettiin, että skvaleenia esiintyy runsaasti amarantin siemenissä ja oliiviöljyssä. Tutkijat Theresa J. Smith ja Harold L. Newmark ovat esittäneet teorian, jonka mukaan oliiviöljyn (ja Välimeren ruokavalion) terveellisyys perustuu runsaaseen (200-400 mg / päivä) skvaleenin saantiin. On myös osoitettu, että skvaleeni on antioksidantti, jonka saanti laskee rintasyövän riskiä.

Skvaleenin biosynteesi tapahtuu kahdessa vaiheessa. Ensimmäisessä vaiheessa kahdesta farnesyylipyrofosfaattimolekyylistä muodostuu välimuoto preskvaleenipyrofosfaatti ja toisessa vaiheessa preskvaleenipyrofosfaatti hajoaa spontaanisti ja rakenne järjestyy skvaleenimolekyyliksi.

kolesterolibiosynteesi

Kolekalsiferoli ja ergokalsiferoli

D3-vitamiini, eli kolekalsiferoli on rasvaliukoinen vitamiini ja sekosteroidi. Se on kalsidiolin ja hormonin tavoin noin 2000 geenin toimintaan vaikuttavan kalsitriolin esiaste.

D2-vitamiini, eli ergokalsiferoli on kasviperäinen D-vitamiini, jota elimistö ei pysty itse valmistamaan. Yleisesti ajatellaan, että kolekalsiferoli imeytyy suolistosta paremmin kuin ergokalsiferoli, mutta tästä ei vallitse yksimielisyyttä.

D-vitamiinin metaboliitit: kalsidioli ja kalsitrioli

D-vitamiinin aineenvaihduntatuotteet syntyvät, kun auringon UVB-säteily syntetisoi ihon (orvaskeden) skvaleenia 7-dehydrokolesteroliksi eli kolekalsiferolin (D3-vitamiinin) esiasteeksi.

D3 (kolekalsiferoli) ja D2 (ergokalsiferoli) -vitamiinin esiasteet hydroksyloidaan 25-hydoksivitamiini D:ksi (25(OH)D), joka on D-vitamiinin epäaktiivinen ”varastomuoto”, kalsidioli. Kalsidiolista hydroksyloidaan edelleen biologisesti aktiivista hormonin tavoin vaikuttavaa 1,25-dihydroksivitamiini D:tä (1,25(OH)2D), eli kalsitriolia. Kalsidiolin puoliintumisaika on noin 20 päivää. Kalsitrioli puoliintuu muutamassa tunnissa.

7-Dehydrocholesterol is the precursor of cholecalciferol. Within the epidermal layer of skin, 7-Dehydrocholesterol undergoes an electrocyclic reaction as a result of UVB radiation, resulting in the opening of the vitamin precursor B-ring through a conrotatory pathway. Following this, the pre-cholecalciferol undergoes a antarafacial sigmatropic rearrangement and therein finally isomerizes to form vitamin D3. – Wikipedia

Kalsitriolin vaikutukset välittyvät soluihin ja geeneihin D-vitamiinireseptorin (VDR) kautta. VDR (Vitamin D(1,25-Dihydroxyvitamin D3) Receptor) on proteiineja ohjaava geeni, johon kalsitrioli sitoutuu ja siirtyy edelleen solun sytoplasmasta tumaan, jossa kalsitrioli-VDR- kompleksi kiinnittyy RXR-proteiiniin ja genomin VDRE-sekvenssiin.

Veren riittävät kalsidiolitasot kasvattavat kalsiumin imeytymistä suolistosta jopa 80 nmol/l tasolle. Mitä korkeammat kalsidiolitasot, sitä alhaisempi riski sairastua suolistosyöpiin. On myös havaittu, että alhaiset kalsidiolitasot vaikuttavat iäkkäämpien ihmisten lihaskuntoon.

Kalsidioli tunnetaan myös nimillä calsifediol, 25-hydroksikolekalsiferoli ja 25-hydroksivitamiini-D (25(OH)D. Helppoa, vai mitä!

A study by Cedric F. Garland and Frank C. Garland of the University of California, San Diego analyzed the blood from 25,000 volunteers from Washington County, Maryland, finding that those with the highest levels of calcifediol had a risk of colon cancer that was one-fifth of typical rates However, randomized controlled trials failed to find a significant correlation between vitamin D supplementation and the risk of colon cancer.

D-vitamiinin puutos lisää kuolleisuutta osoittaa yli 95 000 henkilön tanskalaisseurantatutkimus. http://www.bmj.com/content/349/bmj.g6330

Older people with reduced muscle function often had reduced levels of calcidiol serum concentration. Low levels of calcidiol were not associated with signs of general undernutrition, such as low body mass, or with reduced arm-muscle circumference or triceps skinfold thickness. This finding may suggest a physiological role for calcidiol in muscle function. Reduced muscle strength increased disability in our older subjects, which may be improved by vitamin D supplementation in vitamin D-deficient subjects.

Lähde: http://www.ncbi.nlm.nih.gov/pubmed/9988294

D-vitamiinin riittävä saanti turvaa:

  • Kalsiumin imeytymisen ja homeostaasin
  • Parathormonin (PTH) liikaerityksen estämisen
  • Luun normaalin histologisen rakenteen

Lähde: Ilari Paakkari, Biolääketieteen laitos, Helsingin yliopisto 2012

 D-vitamiinin valmistus

D-vitamiini valmistetaan yleensä lampaanvillasta, josta saatavasta lanoliinista (lampaanvillarasvasta) erotetaan 7-dehydrokolesterolia eli D-vitamiinin esiastetta. Se altistetaan ultraviolettisäteilylle, jolloin syntyy kolekalsiferolia.

Tuotantoprosessi on toki monimutkaisempi ja sisältää useita työvaiheita, mutta lyhyesti se menee näin: lampaanvilla puhdistetaan ja siitä erotetaan lanoliini. Seuraavaksi lanoliinista poistetaan rasva ja puhtaasta lanoliinista voidaan erottaa lanoliinialkoholit. Näiden toimenpiteiden jälkeen lanoliinista voidaan edelleen erotella 7-dehydroksikolesterolia, joka puhdistetaan, kuivataan ja altistetaan ultraviolettisäteilylle.

Näin tuotettu kiteinen, lähes puhdas kolekalsiferoli on erittäin vahvaa. 1 gramma lampaanvillasta valmistettua kolekalsiferolia sisältää jopa 750 000 µg eli 30 000 000 IU D-vitamiinia, joka on kemiallisesti identtistä ihmisen oman elimistön syntetisoiman D-vitamiinin kanssa: se toimii elimistössä samalla tavalla. Imeydyttyään ruoansulatuskanavasta verenkiertoon, se hydroksyloidaan ensin maksassa kalsidioliksi ja edelleen munuaisissa aktiiviseksi kalsitrioliksi.

Ergokalsiferolia, eli D2-vitamiinia voidaan valmistaa ainakin eräistä hiivoista.

D-vitamiinin vaikutusmekanismit

D-vitamiinia saadaan vähäisiä määriä ravinnosta, kuten kananmunista, sienistä, rasvaisista kaloista ja maitovalmisteista, mutta tärkein lähde on auringon UVB-säteily, joka syntetisoi ihon orvaskedessä olevasta skvaleenista 7-dehydroksikolesterolia, joka on D3-vitamiinin ja kolesterolin esiaste.

Iholla syntyvä ja suolistosta imeytynyt (syöty) D-vitamiini muuttuvat elimistössä biologisesti aktiiviseen 1,25(OH)2D-vitamiinimuotoon kahden reaktion: hydroksylaation, kautta. Ensimmäinen tapahtuu maksassa ja sen katalyytteinä toimii useita D-25-hydroksylaasientsyymeitä (tärkeimpänä CYP2R1). toinen hydroksylaatio tapahtuu munuaisissa ja sen katalyyttinä vaikuttaa 1α-hydroksylaasi-entsyymi (CYP27B1). Maksassa D-vitamiini muutetaan ensin inaktiiviseksi kalsidioliksi (25-OH-D) ja munuaisissa D-vitamiinin aktiiviseksi metaboliitiksi eli kalsitrioliksi (1,25-OH-2D). Kaavio:

hydroksylaasi

VDR ja kalsitriolin vaikutusmekanismit

Kalsitriolin vaikutukset välittyvät lähes kaikkiin soluihin D-vitamiinireseptoreiden (VDR) kautta.

”This gene encodes the nuclear hormone receptor for vitamin D3. This receptor also functions as a receptor for the secondary bile acid lithocholic acid. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows sequence similarity to the steroid and thyroid hormone receptors. Downstream targets of this nuclear hormone receptor are principally involved in mineral metabolism though the receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer. Mutations in this gene are associated with type II vitamin D-resistant rickets. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding different proteins. [provided by RefSeq, Feb 2011]”

D-vitamiinireseptoreita löytyy mm. makrofageista, monosyyteistä, dendriittisoluista sekä T-lymfosyyteistä ja keskushermoston soluista, kuten neuroneista, oligodendrosyyteistä, astrosyyteistä ja gliasoluista.

DBP (Vitamin D Binding Protein) on maksan tuottama globuliini (kuljetusproteiini), joka kuljettaa veressä D-vitamiinin metaboliitteja, kuten kalsitriolia kohdesoluihin.

” Globuliinit ovat tärkeitä muun muassa elimistön immuunireaktioissa ja hormonien sekä hivenaineiden kuljettajina.”

Kalsitrioli irrottautuu DBP-proteiinista saavuttaessaan kohdesolun, jossa se sitoutuu sytoplasmassa, eli solulimassa sijaitsevaan VDR-reseptoriin. Syntynyt kompleksi siirtyy edelleen solun tumaan ja kiinnittyy RXR-reseptoriin (Retinoid-X-receptor). Kalsitrioli-VDR-RXR sitoutuu lopulta DNA:ssa VDRE-sekvenssiin (Vitamin D Responsive Elements), jossa se vaimentaa (hiljentää) tai aktivoi sekvenssin geenejä.

D-vitamiini osallistuu kalsiumin ja fosfaatin säätelyjärjestelmään, suojaa verisuonia ja  vaikuttaa mm.solujen kasvuun ja erikoistumiseen, hermoston ja immuunijärjestelmän sekä lihasten toimintaan.  Kalsitrioli saattaa vaikuttaa myös keskushermostossa neuronien toimintaan ja myelinin tuotantoon, joskaan tätä ei ole aukottomasti todennettu.

VDR: 1,25 DIHYDROXYVITAMIN d3 RECEPTOR VITAMIN D HORMONE RECEPTOR

Besides its role in calcium physiology and bone health, vitamin D also has numerous potential extra-bone actions: protective for the cardiovascular system, antiproliferative (in certain cancers), anti-infectious (innate immunity) and anti-inflammatory and immunomodulatory (adaptive immunity), an effect which could be involved in autoimmune diseases such as type 1 diabetes, Crohn’s disease, rheumatoid arthritis and MS [Holick, 2004, 2007; Vieth, 2007; Vieth et al.. 2007; Borradale and Kimlin, 2009; Hewison, 2012].

We have determined the level of the 1,25-dihydroxyvitamin D3 receptor (VDR) in resting and activated lymphocytes by immuno- and ligand-binding assays. As expected from previous work, the total T lymphocyte population contains VDR whose levels are increased when activated and treated with 1,25-dihydroxyvitamin D3. Surprisingly, the highest concentrations of VDR are found in CD8 lymphocytes, although significant amounts are also present in CD4 lymphocytes. Furthermore, B lymphocytes do not contain detectable amounts of VDR. Cells of the monocyte/macrophage lineage possess small amounts of VDR that are not affected by activation but are increased by treatment with 1,25-dihydroxyvitamin D3. These results suggest that CD8 lymphocytes may be a major site of 1,25-dihydroxyvitamin D3 action, while B lymphocytes are likely not directly regulated by 1,25-dihydroxyvitamin D3. – Expression of 1,25-Dihydroxyvitamin D3 Receptor in the Immune System, Christian M Veldman, Margerita T. Cantoma, Hector F. DeLuca

tyroidiKuvan lähde: https://en.wikipedia.org/wiki/Parathyroid_hormone

 

The VDR is widely distributed in tissues, and is not restricted to those tissues considered the classic targets of vitamin D. The VDR upon binding to 1,25(OH)2D heterodimerizes with other nuclear hormone receptors, in particular the family of retinoid X receptors. This complex then binds to special DNA sequences called vitamin D response elements (VDRE) in the promoters of genes which it regulates. A variety of additional proteins called coactivators complex with the activated VDR/RXR heterodimers either to form a bridge from the VDR/RXR complex binding to the VDRE to the proteins responsible for transcription such as RNA polymerase II binding to the transcription start site or to help unravel the chromatin at the site of the gene via recruitment of histone acetyl transferases (HAT), allowing transcription to proceed. – Wikipedia

Kalsitriolin säätelyjärjestelmä

Veren matala kalsiumpitoisuus sekä paratyroidi hormoni (PTH) stimuloivat munuaisissa tapahtuvaa hydroksylaatiota lisäten veren kalsitriolipitoisuutta. Korkea kalsitriolipitoisuus ja seerumin FGF23 (phosphaturc hormone fibroblast growth factor 23) toimivat käänteisesti hilliten hydroksylaatiota. Näin kalsitriolin pitoisuus veressä säilyy hyvänä (45-165 pmol/l).

”The kidney is the principal target for FGF23, and the major function of this hormone is to regulate phosphate reabsorption and production of 1,25(OH)2D”.

D-vitamiini-24-hydroksylaasi-entsyymi, jota säätelee CYP24A1-geeni, voi myös passivoida D-vitamiinin aineenvaihduntatuotteita. FGF23 säätelee sekä D-vitamiini-24-hydroksylaasi-entsyymiä että seerumin kalsitriolipitoisuutta. CYP24A1-geenin vaimentavan geenimutaation on osoitettu aiheuttavan vastasyntyneillä vakavaa hyperkalsemiaa.

D-vitamiinin saanti, varastoiminen ja kulutus

Vain 15-30 minuutin altistuminen auringosta saatavalle säteilylle kesällä syntetisoi paljaalla iholla n. 250µg D-vitamiinia. Muutaman aurinkoisen kesäpäivän ”UVB-säteilyhoito” viikossa riittää ylläpitämään terveyden kannalta riittäviä kalsidiolitasoja myös syystalvea varten. D-vitamiinin synteesi käynnistyy kuitenkin vain keskikesän kuukausina ja kello 11-15 välisenä aikana. Muina aikoina otsonikerros imee noin 90 % UVB-säteilystä. Myös aurinkovoiteet estävät tehokkaasti D-vitamiinisynteesin. Aurinkoon ei kuitenkaan kannata mennä polttamaan itseään, koska ihosyöpä on kavala sairaus. 15-30 minuuttia  päivässä paljaille käsivarsille ja jaloille riittää.

Kesäkuukausina D-vitamiini varastoituu kalsidiolina mm. rasvasoluihin, joista sitä vapautuu elimistön käyttöön pimeinä talvikuukausina jolloin iho ei pysty syntetisoimaan D-vitamiinia auringon UVB-säteilystä.

D-vitamiinin vuorokausikulutus on n. 40 µg ja pimeänä aikana varastot supistuvat nopeasti. Myös tupakointi kuluttaa D-vitamiinia verestä ja kudoksista. D-vitamiinia voi täysin turvallisesti syödä pimeänä vuodenaikana (elokuun ja toukokuun välillä) 100-250 µg / vrk. Näin elimistön D-vitamiinitasot pysyvät riittävän korkeina. Päiväntasaajan lähellä luonnonvaraisesti elävillä kansoilla elimistön veren kalsidiolipitoisuudet ovat ympäri vuoden 100-200 nmol/l, kun suomalaisten kalsidiolipitoisuudet ovat keskimäärin 50 nmol/l. Tämä korreloi tilastollisesti mm. autoimmuunitautien esiintymisen kanssa.

Ikääntyneillä osteoporoosiin liittyvät luunmurtumat estyvät merkittävästi vasta kun kalsidiolin määrä veressä ylittää 75 nmol/l. Yleisesti hyväksytään se, että alle 50 nmol/l kalsidiolitasot merkitsevät D-vitamiinin puutosta, joka lisää lasten riisitaudin, aikuisten osteomalasian ja ikääntyneiden osteoporoosin riskiä. Luuston terveyden kannalta suositeltavana tasona voidaan pitää D-25-pitoisuutta, joka on yli 80 nmol/ l.

D-vitamiinin pitoisuuteen plasmassa vaikuttaa:

  • Painoindeksi (BMI)
  • UVB:n saanti (pigmentti, pukeutuminen ja leveyspiiri)
  • Kalsidiolipitoisuden taso hoidon alussa
  • Ruokavalio
  • Ikä (ikääntyneillä D-vitamiinin luonnollinen synteesi iholla hidastuu tai loppuu)
  • Suolistosairaudet ja -imeytymishäiriöt
  • Perinnölliset tekijät

Huom!

D-vitamiinin puute on sitä yleisempää, mitä kauempana päiväntasaajasta asutaan. Pohjois-Euroopassa S-D-25 vähenee kesän jälkeen keskimäärin 1 nmol/l/viikko, eli talven mittaan 25–35 nmol/l. Pitoisuudet ovat pienimmillään maalis-toukokuussa. Kesän auringonvalo suurentaa S-D-25:ttä sitä nopeammin ja enemmän, mitä pienemmästä lähtöarvosta lähdetään nousemaan (Wulf 2012).

S-D-25 pitoisuus on korkeimmillaan loppukesällä auringonvalon vaikutuksesta ja matalimmillaan keskitalvella. Kesällä runsas UVB-säteilyn saanti voi nostaa D-25 pitoisuudet tasolle 100-200 nmol/l. Korkeat tasot säilyvät kuitenkin vain 1-2 kuukautta. Auringosta ei voi saada D-vitamiinimyrkytystä, koska elimistössä on rajallisesti D-vitamiinisynteesin tarvitsemaan skvaleenia. Voisiko ihon palaminen liittyä siihen, että orvaskeden skvaleeni on syntetisoitu D-vitamiiniksi ja silloin UVB-muuttuu haitalliseksi – en tiedä. Ajatuksena se, että skvaleeni suojaisi ihoa palamiselta on kuitenkin kiinnostava.

Etelänavan retkikunnalla tehdyssä tutkimuksessa havaittiin, että ihminen kuluttaa päivässä n. 40 µg D-vitamiinia, eli tätä vähäisemmällä päiväsaannilla kalsidiolipitoisuus laski auringonvalon puuttuessa. On arvioitu, että päivittäinen 15-20 µg D-vitamiinilisä kohottaa veren kalsidiolin minimitasolle (50nmol/l) ja annos 40-50 µg kohottaa veren kalsidiolin vastaavasti tasolle 75 nmol/l, jota alhaisempia tasoja mm. Kanadassa, Espanjassa, Virossa ja USA:ssa pidetään riittämättöminä.

Yksiköt, pitoisuudet ja tavoitteet

D-vitamiinimääristä käytetään yksikköinä joko mikrogrammaa (µg) tai kansainvälistä yksikköä (IU, International Unit; joskus lyhenteenä käytetään kirjaimia KY). 40 IU on 1 µg. D-vitamiinin mittayksiköiden kanssa on syytä olla tarkkana, koska ne vaihtuvat usein lennossa nanogrammoista nano- tai pikomooleihin ja mikrogrammoista kansainvälisiin yksiköihin. Sekavaa. Tiedän.

1 gramma = 1000 milligrammaa (mg)

1 milligramma = 1000 mikrogrammaa (µg)

eli gramma on 1 000 000 µg.

Kansainväliset yksiköt (IU tai KY, kuinka haluatte):

400 IU = 10 µg
1000 IU = 25 µg
1200 IU = 30 µg
2000 IU = 50 µg
2400 IU = 60 µg
4000 IU = 100 µg
5000 IU = 125 µg
10000 IU = 250 µg

Veren kalsidiolipitoisuuksissa mittayksikkö on nanomoolia litrassa, eli mol/l. Kalsitriolin pitoisuudet ilmaistaan pikomooleina / litrassa, eli pmol/l. Kansainvälisissä julkaisuissa kalsidiolin pitoisuus voidaan ilmaista myös nanogrammoina / millilitra, jolloin kerroin on 2,5. Eli 10 ng/ml = 25 nmol/l.

Tavoitearvot, annostus ja yliannostus

D-vitamiinin määrää elimistössä arvioidaan määrittämällä verenkierrosta seerumin 25-hydroksi-D-vitamiini (S-D-25) pitoisuus, joka kuvaa hyvin elimistön D-vitamiinivarastoja ja D-vitamiinin saantia. Mittauksessa verestä tarkistetaan kemiluminesenssi-menetelmällä D2- ja D3-vitamiinien 25-hydroksyloituneet metaboliitit.

Huom!

1,25(OH)2-D- vitamiini (S -D-1,25, eli kalsitrioli) määritystä ei käytetä elimistön D-vitamiinivarastojen arviointiin. Tutkimus kuvaa biologisesti aktiivia hormonia ja sitä käytetään vain erikoistapauksissa, joissa selvitetään 1-hydroksylaatioon vaikuttavia sairauksia (munuaistauteja sekä perinnöllisiä D-vitamiiniaineenvaihdunnan tauteja).

Lähde: https://vita.fi/laboratoriokasikirja/tutkimus/69

D-vitamiinin (S-D-25) viitearvot Suomessa:

alle 25 nmol/l                              Vakava puutos

alle 50 nmol/l                              Puutos

50 – 75 nmol/l                             Yleensä riittäväksi katsottu pitoisuus

75 – 120 nmol/l                          Tavoitepitoisuus osteoporoosipotilailla

yli 375 nmol/l                              Toksinen pitoisuus / myrkytystila

Viitearvot Kanadassa, Virossa, Espanjassa ja Ranskassa:

25 – 74 nmol/l                             Riittämätön pitoisuus / D-vitamiinin puutos

75 -250 nmol/l                             Normaali pitoisuus

Viitearvot USA:ssa

75 – 150 nmol/l                          USA:n endokrinologiyhdistyksen suositus

Muita viitearvoja

<20 nmol/l                                    Vaikea puute

20-50 nmol/l                                 Puute1

50-75 nmol/l                                 Vaje (insufficiency)2,3

75-100 nmol/l                               Riittävä saanti (sufficiency) luuston kannalta

100-150 nmol/l                             Luustoon liittymättömiä terveyshyötyjä4

1 Institute of Medicine (IOM) 2011

2 International Osteoporosis Foundation (IOF) 2010

3 American Endocrine Society & Canadian Society of Endocrinology 2011

4 Ottawa Vitamin D Disease Prevention Symposium, 1.11.2012

1,25(OH)2-D- vitamiini (S -D-1,25, kalsitrioli), viitearvot:

45 -165 pmol/l*

*Mitataan poikkeustapauksissa(esim. eräiden munuaistautien ja perinnöllisten D-vitamiinin aineenvaihduntahäiriöiden yhteydessä.

D-vitamiinin vaikutuksia tehostavat koentsyymit.

Koentsyymi eli orgaaninen kofaktori on pieni orgaaninen yhdiste, joka auttaa muodostamaan toimivan entsyymin sitoutumalla entsyymin proteiiniosaan (apoentsyymi). Tällöin muodostuu täydellinen entsyyminä aktiivisesti toimiva holoentsyymi.

Koentsyymi ei ole proteiini, vaan usein vitamiini, vitamiinijohdos tai hivenaine. Koentsyymit osallistuvat entsyymien reaktioihin kulumatta itse reaktioissa. Koentsyymi on välttämätön joidenkin entsyymien toiminnalle. – Wikipedia

Magnesium

  • Yksi kolmestasadasta ihmisestä saa D-vitamiinista allergisia oireita. Ongelma johtuu usein magnesiumin puutoksesta.
  • Magnesium tehostaa D-vitamiinin vaikutuksia n. 30 %.

Omega-3

  • Omega-3 tehostaa kalsidiolin ja kalsitriolin tuotantoa ihmisillä, joilla on munuais- tai maksaongelmia.

K2-vitamiini

  • K2 ja D-vitamiini siivoavat verisuonia kuolleista soluista ja kuljettavat kalsiumia luustoon, mikä ehkäisee valtimoiden kalkkeutumista ja ateroskleroosia.
  • K2-vitamiinia tulisi syödä D-vitamiinin kanssa n. 100 µg

Onko Suomessa aihetta tarkastaa kalsidiolin viitearvoja?

Suomessa D-vitamiinin saannin turvallisena ylärajana pidetään 100 µg päivässä ympäri vuoden. Tästä johtuen yleisiä saantisuosituksia (10 µg / päivä) on vaikea perustella mitenkään järkevästi. Suositukset ovat pelottavan alhaiset kansanterveyttä ja kansantaloutta ajatellen. Vähintään 25-50 µg päivittäiset suositukset esikoululaisille ja sitä vanemmille parantaisivat ihmisten vastustuskykyä ja toisivat huomattavia säästöjä terveysmenoihin kautta linjan. D-vitamiinin puutoksesta on tullut globaali pandemia, joka altistaa useille vakaville sairauksille.

”Vitamin D may represent the single most cost effective medical intervention we have today.”- [Ottawa Vitamin D Disease Prevention Symposium, 1.112012]

Japanilaisessa koululaisilla tehdyssä tutkimuksessa osoitettiin, että vain 20 µg:n päivittäinen D-vitamiinilisä puolitti riskin sairastua A-influenssaan.  Voidaankin perustellusti kysyä, vähenisikö kausittaisiin A-influenssaan sairastuneiden määrä, jos Suomessa D-vitamiinin saantisuosituksia korotettaisiin.

Institute of Medicine (IOM) ja Euroopan elintarviketurvallisuusvirasto (EFSA) korottivat D-vitamiinin turvallisen päiväannoksen 100 µg/vrk tasolle 2011-2012. 100 µg päivittäinen D-vitamiinilisä siis tiedetään turvalliseksi myös Suomessa, mutta silti suomalaisten viranomaisten suositukset ovat vain kymmenesosa turvalliseksi osoitetusta päiväannoksesta.

Neo- ja perinatologit suosittelevat odottaville äideille 100 µg / vrk:

On tutkimusnäyttöä siitä, että sekä äidin alkuraskauden, että varhaislapsuuden aikaiset alhaiset D-vitamiinitasot kohottavat lapsen riskiä sairastua MS-tautiin.  Odottavan äidin alkuraskauden aikaiset alhaiset 25(OH)D-tasot lähes kaksinkertaistavat lapsen riskin sairastua MS-tautiin. Lue tästä.

”Supplementation of lactating mothers with high doses of vitamin D (100 µg/d) allows the achievement of optimal 25(OH)D concentrations (>80 nmol/l) in the maternal and infant serum without any risk of hypervitaminosis Di n the mother”- [Marshall, I., Mehta, R., & Petrova, A. 2012 – Vitamin D in the maternal-fetal-neonatal interface: Clinical implications and requirements for supplementation. The Journal of Maternal-Fetal & Neonatal Medicine]

Odottavilla naisilla D-vitamiinitasojen tulisi olla vähintään 100 nmol/l, mikä edellyttää 100 µg D-vitamiinia vuorokaudessa (sanoo Protect Our Children Now -kampanjaa johtava neonatologi (vastasyntyneiden erikoislääkäri) Carol Wagner. Hänen työryhmänsä antoi imettäville äideille 160 µg/vrk, mikä osoittautui tehokkaaksi ja turvalliseksi. Suomessa suositus on vain 10 µg/vrk. WTF!

Imetyksen aikana nautittu 6400 IU eli 160 mikrogrammaa (µg) päivässä on turvallista ja se nostaa äidinmaidon D-vitamiinin pitoisuuden sekä äidille että vauvalle riittäväksi (Hollis ym. 2015).

Entä jos kalsidiolipitoisuudet kasvaisivat tasolle 100-150 nmol/l

Ottawa Vitamin D Disease Prevention Symposium keräsi 2012  johtavia asiantuntijoita kouluttamaan lääkäreitä ja terveydenhoitohenkilökuntaa sekä pohtimaan, minkälaisia vaikutuksia korkeammilla kalsidiolipitoisuuksilla olisi terveyden ja kansantalouden kannalta. Symposiumiin osallistuivat Badeg A Quraishi, MD, Michael F Holick, PhD, MD, Robert P Heaney, MD, Reinhold Vieth, PhD, Gregory APlotnikoff, MD, Cedric F Garland, DR, PH.

Arvioidut vaikutukset olisivat huomattavia:

  • 100-150 nmol/l kalsidiolipitoisuus ehkäisisi Kanadassa 18 000 rintasyöpää (75 % tapauksista.
  • 15 000 paksusuolen syöpää (67 % tapauksista) voitaisiin ehkäistä.
  • MS-tautiin sairastuvien määrä puolittuisi 100-150 nmol/l kalsidiolipitoisuuksilla
  • Muina terveyshyötyinä olisi estovaikutus seuraaviin: astma, infektiot, karies, tyypin 1 diabetes, sydän- ja verenkiertotaudit, hypertonia, eturauhassyöpä, osteomalasia ja osteoporoosi.

Lähde: Ilari Paakkari, Biolääketieteen laitos, Helsingin yliopisto, 2012

Omat kokemukset

Sairastan MS-tautia ja olen lääkinnyt itseäni suuriannoksisella D-vitamiinilla  jo vuosia elo- ja toukokuun välisenä aikana. Pimeänä vuodenaikana olen syönyt 250-1000 µg / vrk ja kesäisin annostus on ollut pienempi, eli: 0-125 µg / vrk. Tämä voi vaikuttaa mielenvikaiselta, mutta korkeita määriä tukevia tutkimuksia MS-tautiin liittyen on useita. En tiedä, onko D-vitamiini hidastanut taudin etenemistä, koska eteneminen on yksilöllistä ja mitään vertailukohtaa ei ole. Sivuvaikutuksia runsaasta D-vitamiinista ei kuitenkaan ole seurannut. En tosin sellaisiin uskonutkaan.

Huom!

250 nmol/l on osoitettu turvalliseksi ylärajaksi (Mayo-klinikan julkaisema suurtutkimus, 2015).

Suomessa terveyssisaret antoivat vuosina 1946 ja 1948 lapsille D-vitamiinia pistoksina (kerta-annoksina) 7500 mikrogrammaa (µg), eikä mitään myrkytyksiä ilmennyt.

Iranilaisen lastenklinikan lääkkärit antoivat diabeetikkolapsille saman annoksen, 7500 µg, jolloin lasten HbA1c-lukemat (ns. pitkäsokeri) paranivat. Sivuvaikutuksia ei ilmennyt (Mohammadian ym. 2015).

Philadelphian lastensairaalan vuoden mittaisen tutkimuksen mukaan 175 µg (7000 IU) päivässä on täysin turvallista lapsille ja nuorille aikuisille (Shall ym.2015)

Iranilaisessa tutkimuksessa MS-potilaat saivat 12 vikkoa D-vitamiinia 250 µg/päivä. D-vitamiini lisäsi tulehdusta ehkäisevän interleukiini 17:n(IL-17 pitoisuutta merkittävästi, mikä ehkäisee taudin etenemistä. Sivuvaikutuksia ei todettu (Toghianifar ym. 2015).

Johns Hopkinsin yliopistossa Yhdysvalloissa neurologian professori Peter A. Calabresin johdolla tehtiin kliininen tutkimus, jossa MS-potilaille annettiin D-vitamiinia joko 260 tai 20 µg/vrk. Suurempi annos oli hyödyksi, pienempi tehoton.

Italialaisten neurologien tutkimus osoitti, ettei 5000 IU eli 125 µg/vrk riitä nostamaan riittävästi MS-potilaiden liian matalia D-vitamiinipitoisuuksia (Riccio ym. 2016).

Poikkeustapauksissa on suuria D-vitamiinin kerta-annoksia (500 000 KY eli 12 500 µg) annettu kerran vuodessa ilman haittavaikutuksia. Vaikka suurista kerta-annoksista ei ole ollut välitöntä haittaa, tutkimukset viittaavat siihen, että tällä antotavalla ei saavuteta osteoporoottisten murtumien estymistä.

Lähde: http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=dlk01044

Myrkytys

D-vitamiinimyrkytyksessä yleisimpiä myrkytysoireita ovat ruokahaluttomuus, laihtuminen, yleinen heikkous, sekavuus, oksentelu ja nestevajaus. Toksisuusrajana pidetään D-25-pitoisuutta 375 nmol/l.

Lähde: https://vita.fi/laboratoriokasikirja/tutkimus/69

Bostonissa arviolta 33 000 kuluttajaa altistui viiden ja puolen vuoden ajan maidolle, jossa oli D-vitamiinia litraa kohden yli satakertainen määrä normaalisaantiin verrattuna. Sadat ihmiset sairastuivat. Yleisimpiä myrkytysoireita olivat ruokahaluttomuus, laihtuminen, yleinen heikkous, sekavuus, oksentelu ja nestevajaus. Laboratoriotutkimuksissa veren kalsiumarvot ylittivät normaalin ja veren D-vitamiinin (kalsidiolin) pitoisuudet olivat hyvin suuret (keskimäärin 560 nmol/l).

Lähde: http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=dlk01044

Oireet, jotka saattavat viitata D-vitamiinin puutostilaan (hypovitaminosis D):

Eräät aivan arkipäiväiset oireet voivat viitata D-vitamiinin puutokseen. Näitä ovat mm: lihasheikkous, lievä päänsärky, lihasten kipeytyminen, krampit ja suonenveto, heikentynyt immuunijärjestelmä (jatkuva sairastelu) ja jopa lievät muisti- ja keskittymisvaikeudet. Vastaavia oireita voi aiheuttaa monet tekijät – ei pelkästään D-vitamiinin puutos. Se on kuitenkin yksi varteenotettava selitys monille arkisille oireille.

Yli kolmannes suomalaisista kärsii jatkuvasta D-vitamiinin puutoksesta ja edellä mainitut oireet ovat monille tuttuja. Ne ovat D-vitamiinin puutoksen tavallisimpia oireita. Jos D-vitamiinitasot ovat jatkuvasti hyvin alhaiset, seurauksena voi olla vakavia sairauksia, kuten: sydän- ja verisuonitaudit, autoimmuunisairaudet, eräät syövät, osteomalasia, osteoporoosi jne.

Michael F. Holick puhuu luennollaan teoriasta, jonka mukaan influenssojen esiintyminen etenkin kevättalvella (kun elimistön D-vitamiinitasot ovat alhaisimmillaan), johtuu siitä, että immuunijärjestelmä toimii alhaisilla D-vitamiinitasoilla huonommin kuin riittävillä D-vitamiinitasoilla. Tilastot ja tutkimukset tukevat hypoteesia.

Huom!

100 µg D-vitamiinia laskee infektioherkkien ihmisten sairastumisen ja antibioottien tarpeen puoleen, selviää ruotsalaisten infektiolääkäreiden tutkimuksesta (Bergman ym. 2015).

Joka viides masennus voitaisiin ehkäistä D-vitamiinilla, osoittaa puolestaan THL:n tutkimus.

Tuore kuopiolaistutkimus kertoo, että 6–8-vuotiaiden suomalaislasten D-vitamiinin saanti on järkyttävän vähäistä (Soininen ym. 2016). Se on keskimäärin vain 5,9 (SD 2,1) mikrogrammaa (µg) päivässä. Vain 40,8 % lapsista otti D-vitamiinilisää (koska ravitsemustieteilijät toitottavat mediassa, ettei D:tä tarvitse ottaa ”purkista” ja monet vanhemmat uskovat heitä). 82,4 % lapsista ei saanut D:tä edes 10 µg päivässä, vaikka joivat D-vitaminoitua maitoa. Maito antoi lähes puolet lasten saamasta D-vitamiinista. Joka viidennen lapsen S-D-25 oli alle 50 nmol/l eli heillä oli huutava D-vitamiinin puute (kansainvälinen viitearvo on 75–150 nmol/l, Virossa, Espanjassa, Ranskassa 75–250 nmol/l). Vain 31 % lapsista pääsi yli 75 nmolin/l. Puutetta oli jopa sellaisilla lapsilla, jotka joivat päivittäin yli ½ litraa maitoa, harrastivat yli 2,2 tuntia liikuntaa päivässä, jotka saivat päivänvaloa yli 13 t/vrk ja joiden verikoe oli otettu kesän jälkeen (jolloin pitoisuus on suurimmillaan) (Soininen ym. 2016). Moni näin vähän D-vitamiinia saavista lapsista tulee sairastumaan ihan turhaan valtimonkovetustautiin ja muihin pitkäaikaissairauksiin.Lähde: http://www.tritolonen.fi/artikkelit/247-ajankohtainen-d-vitamiini

D-vitamiinin puutos, geenit ja sairastuminen

Geenejä tunnetaan noin 23 000 ja ne ovat aina parilliset sukukromosomien geenejä lukuun ottamatta. Yhden geeniparin sairauksia tunnetaan noin 8000, mutta jokaisen geeniparin toiminnan häiriö voi aiheuttaa jonkun sairauden tai lievemmän poikkeaman. Tällä hetkellä D-vitamiinin säätelemiä geenejä tunnetaan arviolta 2000. MS-taudille altistavia geenimuutoksia on löydetty noin 200.

Perintötekijät vaikuttavat aina sairastumiseen, mutta vain harvoissa sairauksissa perintötekijät määräävät täysin sairastuuko ihminen vai ei. Useimmissa sairauksissa puhutaan ns. monitekijäisestä periytymisestä: eli sairastumiseen vaikuttaa sekä geenit että jokin taudin laukaiseva ympäristötekijä. Lue tästä.

D-vitamiinin puutos on osallisena kymmenissä sairauksissa autoimmuunitaudeista eräisiin syöpiin ja sydän- ja verisuonitauteihin. Syykin on ilmeinen: D-vitamiinin aktiivinen hormonin tavoin vaikuttava aineenvaihduntatuote, kalsitrioli säätelee immuunijärjestelmää ja osallistuu siten mm. solujen kasvuun ja erikoistumiseen. Jos ”hormonin tavoin vaikuttava” ei soita kelloja, kannattaa muistella hormonien merkitystä.

Hormoni on elimistön itse valmistama eli endogeeninen kemiallinen välittäjäaine, joka kulkee erittymispaikastaan kohdesoluihin pääosin verenkierron välityksellä. Hormonit osallistuvat lähes kaikkiin elimistön aineenvaihduntaprosesseihin, ja niitä erittyy eri puolilla elimistöä sijaitsevista umpirauhasista. Aivolisäke säätelee muiden umpirauhasten toimintaa ja hypotalamus säätelee autonomisen hermoston signaalien mukaan aivolisäkkeen toimintaa. Hormoni voi vaikuttaa aivan pieninäkin määrinä sellaiseen soluun, jossa on hormonille spesifisiä reseptoreja.

Hormonit vaikuttavat elimistössä lisääntymisen säätelyyn, kasvuun, kehitykseen sekä energian tuotantoon, käyttöön ja varastointiin.

Hormonit voivat olla joko vesi- tai rasvaliukoisia. Vesiliukoisia hormoneja ovat muun muassa katekoliamiinit, glukagoni ja insuliini, jotka vaikuttavat kohdesolunsa solukalvossa oleviin reseptoreihin. Solukalvon reseptorit puolestaan aktivoivat toisiolähettejä eli cAMP:ta, cGMP:ta tai kalsium-ioneja. Nämä toisiolähetit puolestaan aktivoivat solun toimintaa esimerkiksi aktivoimalla proteiinikinaaseja.

Rasvaliukoisia hormoneja puolestaan ovat steroidit, D-vitamiini ja kilpirauhashormonit, jotka kulkevat verenkierrossa veren proteiineihin sitoutuneina ja sitoutuvat kohdesolunsa reseptoreihin joko solulimassa tai tumassa, koska rasvaliukoisina ne pääsevät solukalvon läpi. Rasvaliukoiset hormonit aktivoivat tai inhiboivat tiettyjen proteiinien proteiinisynteesiä.

Lähde: Wikipedia

A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution – Seeram V. Ramagopalan, Andreas Heger, Antonio J. Berlanga etc. 2010

http://atlasgeneticsoncology.org/Genes/GC_VDR.html

Wikigenes: MS-Disease

Sairaudet, joille D-vitamiinin puutos voi altistaa

Michael F. Holick laskeskeli, että D-viamiinia käsitteleviä julkaisuja on ilmestynyt vuoden 1969 jälkeen noin 33 000. D-vitamiinin vaikutuksista eri sairauksiin on siis kirjoitettu äärettömän paljon. En tässä yksilöi ja selvittele sen tarkemmin sairauksia, joille D-vitamiinin puutos altistaa, koska se veisi aivan mielettömästi aikaa. Oheinen lista sisältää linkkejä ko sairautta käsitteleviin tutkimuksiin. Kannattaa tutustua.

Geeni-ympäristö-vuorovaikutus

Vuonna 1902 Sir Archibald Garrod havaitsi, että ruokavalion vaikutukset voivat vaimentaa eräitä synnynnäisiä aineenvaihdunnan häiriöitä. Tämä johti teoriaan geeni-ympäristö-vuorovaikutuksesta (gene-environment interaction), joka nyt yli sata vuotta myöhemmin tarjoaa lääketieteelle huimia mahdollisuuksia.

Geeni-ympäristö-vuorovaikutus vaikuttaa todennäköisesti monimutkaisten neurologisten sairauksien patogeneesissä. Tällaisia vuorovaikutuksia voidaan tarkastella tilastollisesti ja biologisesti. Tilastollinen esimerkki vuorovaikutuksesta löydetään esimerkiksi tupakoinnin ja CFH-geenin väliltä. CFH Y402H-geenimuutos ja tupakointi yhdessä lisäävät silmiä rappeuttavan ARMD-sairauden puhkeamista selvästi enemmän, kuin vain toinen riskitekijöistä yksin. Vaikka taudin mekanismia ei täysin tunneta, voidaan geneettisesti alttiita henkilöitä ohjeistaa geenimuutoksen aiheuttamasta kasvaneesta riskistä ja siihen vaikuttavasta ympäristötekijästä, jonka poistaminen laskee sairastumisen riskiä merkittävästi.

Biologinen vuorovaikutus voidaan määritellä suorista kemiallisista ja fysiologisista havainnoista, joissa ympäristötekijä ja geenimuuttuja reagoivat keskenään, niin, että tämän geeni-ympäristö-vuorovaikutuksen ja taudin etenemisen välille voidaan vetää kausaalinen yhteys. Tällaiset esimerkit ovat harvinaisia. Keliakiassa geneettinen alttius liittyy kromosomissa 6 sijaitsevaiin antigeenin esittelyä sääteleviin HLA-geeneihin ja erityisesti DQ2 ja DQ8-alleeleihin. Ympäristön laukaisevana mekanismina on gluteenin sisältämä glykoproteiini gliadiini.

D-vitamiini, geenit ja MS-taudin patogeneesi

Artikkelin lopuksi käsittelen lyhyesti geenien ja ympäristön merkitystä MS-taudin patogeneesissä.

Tieto D-vitamiinin vaikutusmekanismeista ja MS-taudin ptogeneesistä on kasvanut valtavasti viimeisten 10-15 vuoden aikana. Useat tutkimukset [Hayes, 2000; Van Amerogen et al. 2004; Ascherio & Munger, 2007; Holick, 2007; Ebers, 2008; Nino et al. 2010; Ascherio et al. 2010, 2012; Pierrot_Deseilligny & Souberbielle, 2010; Hanwell & Banwell, 2011; Mowry, 2011; Simon et al. 2012; Hølmoy et al. 2012; van der Mei et al. 2012] osoittavat, että D-vitamiinin puutos vaikuttaa merkittävällä tavalla MS-taudin kehittymiseen. Lue tarkemmin tästä linkistä!

MS-taudin epidemologiset tutkimukset ja runsas tieteellinen näyttö osoittavat sekä geenien että jonkin ympäristössä esiintyvän laukaisevan tekijän vaikuttavan taudin syntyyn. Jos oletetaan, että taudille altistavat geenit pysyvät muuttumattomina, laukaisevan ympäristötekijän merkitys etiologiassa kasvaa.  D-vitamiinin puutos ja/tai virheellinen toiminta elimistössä on vahva epäilty taudin laukaisevaksi tekijäksi.

D-vitamiinin ja MS-taudin välinen korrelaatio on tunnettu jo vuosikymmeniä [Goldberg, 1974], mutta viimeisimmät tutkimukset osoittavat kuinka tärkeällä tavalla D-vitamiini osallistuu elimistön immunomodulatorisiin, eli immuunijärjestelmän säätelyyn vaikuttaviin prosesseihin. Juuri tämän immuunijärjestelmän säätelyyn vaikuttavan ominaisuuden kautta D-vitamiinin puutos kytkeytyy merkittävällä tavalla MS-taudin patogeneesiin.

MS-taudin esiintyvyys on runsainta alueilla, joissa auringosta saatava UVB-säteily on vähäisintä ja päinvastoin: Alueilla, joissa UVB-säteilyä saadaan tasaisesti läpi vuoden, riski sairastua MS-tautiin on pieni, ja koska UVB-säteily on välttämätöntä D-vitamiinin luonnolliselle synteesille, on päätelty, että D-vitamiinin puutos vaikuttaa riskiin sairastua MS-tautiin. Teoriaa tukee löydöt, joiden mukaan odottavien äitien alkuraskauden aikaiset alhaiset D-vitamiinitasot lähes kaksinkertaistavat lapsen riskin sairastua MS-tautiin. Lisäksi on havaittu, että MS-potilaiden lapsuudenaikaiset veren D-vitamiini-, eli kalsidiolitasot ((25(OH)D) ovat merkittävästi alhaisemmat kuin sukupuoli-, ikä- ja etnisyys-kontrolloiduilla verrokeilla.  Myös Epstein-Barr virusinfektio ja tupakointi kasvattavat sairastumisen riskiä.

MS-taudin esiintyvyys näyttää korreloivan myös eräiden pohjois-eurooppalaisten geenien haploryhmien kanssa. Haploryhmät ovat ihmisen perimän tyyppejä, joka on eri alkuperää olevilla väestöryhmillä erilainen. Tarkemmin haploryhmä on keskenään lähisukuisten DNA:n haplotyyppien joukko tai tietyn geenin tai genominosan kehityslinja lajin sisällä. Esimerkiksi: Skotlannissa ja erityisesti Orkney-saarilla sekä MS-taudia että geenien DR2-haploryhmää esiintyy poikkeuksellisen paljon verrattuna Englantiin.

Eurooppalaistaustaisilla MS-taudin riski pieneni 41 % jokaista seerumin kalsidiolin 50 nmol/l lisäystä kohden; ts. niillä eurooppalaistaustaisilla, joiden veren 25(OH)D oli esimerkiksi 120 nmol/l, riski sairastua oli käytännössä hyvin pieni. Merkittävää on myös se, että esimerkiksi Englannista Etelä-Afrikkaan muuttavien lasten riski putoaa paikallisten hyvin alhaiselle riskitasolle. Sen sijaan Etelä-Afrikasta Englantiin muuttavien lasten riski kasvaa samalle korkealle riskitasolle kuin paikallisilla. Edelleen on osoitettu, että identtisten kaksosten konkordanssiprosentti on 30-40 % (ei-identtisillä kaksosilla ja muilla sisaruksilla selvästi alempi), eli jos toinen identtisistä kaksosista sairastuu, toisen riski sairastua on n. 30-40 %, mikä tukee vahvasti ympäristön roolia sairauden puhkeamisessa.

Kaksostutkimukset osoittavat, että geenit tai geenien haploryhmä eivät riitä selittämään sairastumista, vaan sairastumiselle täytyy olla jokin laukaiseva ympäristötekijä: jokin ympäristömuuttuja, jonka seurauksena toinen identtisistä kaksosista sairastuu ja toinen ei.

”The largest MS genetic association in Northern Europeans is with the extended major histocompatibility complex (MHC) haplotype HLA-DQB1*0602-DQA1*0102-DRB1*1501-DRB5*0101(DR2). Other haplotypes in this region also demonstrate epistatic interactions to modify risk, highlighting the MHC as the key susceptibility locus in MS.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882222/

D-vitamiinin ja HLA-DRB1-geenin vuorovaikutus

Useat HLA-geenialueen alleelit, erityisesti HLA-DRB1*1501, vaikuttavat sairastumiseen. D-vitamiini hydroksyloituu maksassa kalsidioliksi (CYP2R1-geeni) ja munuaisissa aktiiviseksi kalsitrioliksi (CYP27B1-geeni). MS-potilailla on havaittu noin 200 geenimuutosta. Yksi näistä on kalsitriolin hydroksylaatiota munuaisissa säätelevässä CYP27B1-geenissä.

”This (VDR) receptor is a member of the steroid receptor superfamily and influences the rate of transcription of vitamin D–responsive genes by binding to vitamin D response elements (VDREs) in the genome. The effects of vitamin D on MHC class II gene expression have long been appreciated and early studies demonstrate that vitamin D can alter HLA-DR antigen expression and presentation.”    

Ramagopalan tutkijaryhmineen halusi löytää sekä geenit että ympäristömuuttujan yhdistävän tekijän MS-taudille altistavista VDRE-lokuksista (geenin tai DNA-jakson sijaintipaikka kromosomissa) ja selvittää, voiko siihen vaikuttaa D-vitamiinilla. Yksittäinen VDRE promoottorioalueen (geenin perusaktiivisuudesta vastaava alue) HLA-DRB1 tunnistettiin. Tällä alueella oli selkeitä, hyvin säilyneitä haplotyyppi-spesifejä eroja tärkeässä MS-tautiin yhdistetyssä DR2-haploryhmässä sekä MS-tautiin vahvasti liittyvä HLA-DRB1*15-alleeli (saman geenin vaihtoehtoinen muoto, jolla on kromosomissa sama lokus eli paikka). HLA-DRB1*15-alleellin 1,25-dihydroksivitamiin D3-herkkyys varmennettiin ja osoitettiin, että tämä VDRE vaikutti geenin ilmenemiseen. On huomattava, että ei-MS-tautiin liittyvissä haploryhmissä VDRE-variantti HLA-DRB1 ei ollut responsiivinen 1,25 hydroksivitamiin D3:lle.

geeni

”..a recent study in twins with MS supports the notion that vitamin D levels are under regulation by genetic variation in the 1α-hydroxylase and vitamin D receptor genes, perhaps pointing to their importance in the disease pathogenesis.” – Neurology

 Multiple Sclerosis, vitamin D, and HLA-DRB1*15

Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis, Charles Pierrot-Deseilligny, Jean-Claude Souberbielle – 2013

CYP27B1-hypoteesi

Voisiko olla niin, että odottavan äidin alkuraskauden aikaiset alhaiset kalsidiolitasot vaimentavat sikiön CYP27B1-geenin (MS-taudissa yleinen geenimuutos)? Jos näin on, 25(OH)D-1alfa-hydroksylaasi-entsyymin toiminta MS-potilailla on häiriintynyt jo sikiövaiheessa ja se vaikuttaa kalsidiolin hydroksylaatioon munuaisissa, mikä voi estää tai heikentää tärkeän kalsitriolin tuotantoa.

Tässä hypoteesissa geneettinen alttius sairastua MS-tautiin liittyisi CYP27B1-geenin virheelliseen toimintaan ja taudin laukaisevana ympäristötekijänä olisi D-vitamiinin puutos.

MS-taudin patogeneesi voitaisiin siis määritellä siten, että potilaan elimistö ei geenivirheen vuoksi pysty tuottamaan immuunijärjestelmää ja noin 2000 geenin toimintaa säätelevää aktiivista kalsitriolia, joka joidenkin lähteiden mukaan osallistuu sekä solujen kasvuun ja erikoistumiseen että neurologisiin prosesseihin, kuten myeliinin valmistukseen. Jos näin on, meillä on savuava ase ja todennäköisesti toimiva hoitomuoto: kalsitrioli.

Myös ergokalsiferoli muutetaan maksassa kolekalsiferoliksi ja osa siitä 25-hydroksikalsiferoliksi eli kalsidioliksi. Pieni osa kalsidiolista muuttuu pääasiassa munuaisissa mutta myös paksusuolessa, eturauhasessa, rintarauhasessa ja veren valkosoluissa aktiiviseksi kalsitrioliksi eli 1,25-dihydroksikalsiferoliksi. – Wikipedia

Jos kalsitriolia hydroksyloituu pieniä määriä myös munuaisten ulkopuolella, kuten edellinen lainaus antaa ymmärtää, MS-tautia sairastavien kyky tuottaa kalsidiolista kalsitriolia on heikentynyt merkittävästi, mutta elimistö tuottaa sitä edelleen pieniä määriä. Oletan, että jos paksusuolessa, rinta- ja eturauhasessa sekä valkosoluissa hydroksyloituu kalsitriolia, prosessia ohjaa jokin toinen geeni ja entsyymi, kuin munuaisissa tapahtuvaa hydroksylaatiota. Voin olla väärässäkin.

Kalsitriolilla hoidetaan eräitä munuaistauteja sekä perinnöllistä D-vitamiinin aineenvaihdunasairautta sairastavia. Tyypin 1 diabeteksessa haima ei pysty tuottamaan elimistön tarvitsemaa insuliinia, joten potilaan on lääkittävä itseään insuliinilla. Voisiko MS-taudissa kyse olla vastaavasta tilanteesta, jossa munuaisten kyky tuottaa välttämätöntä kalsitriolia olisi häiriintynyt? Voitaisiinko kalsitriolilla hoitaa MS-potilaita samaan tapaan kuin insuliinilla hoidetaan diabeetikkoja? Onko tämä aivn hatusta vedetty hullu ajatus? Ei ole. Kalsitriolin vaikutuksia MS-tautiin on tutkittu mm. Wisconsinin yliopistossa.

VDRE on spesifi DNA-sekvenssi, joka sijaitsee D-vitamiinin ohjaamien geenien promoottorialueella. Promoottorialue vastaa geenin perusaktiivisuudesta. Lokus on geenin tai DNA-jakson sijaintipaikka kromosomissa ja alleeli on saman geenin vaihtoehtoinen muoto, jolla on kromosomissa sama lokus eli paikka.

DNA-molekyyli sisältää kaiken tiedon proteiinien rakentamiseksi ja siten se ohjaa elimistön toimintoja ja rakentumista. DNA:ssa tieto tallennetaan neljän emäksen avulla: adeniini (A), guaniini(G), sytosiini(C) ja tymiini(T). Emäksistä aneniini- ja guaniinimolekyylit muodostuvat kaksirenkaisesta rakenteesta ja niitä kutsutaan puriineiksi. Sytosiini- ja tymiinimolekyylit ovat molekyylirakenteeltaan yksirenkaisia ja niitä sanotaan pyrimidiineiksi. DNA-molekyylin (deoxyribonucleic acid) runko koostuu deoksiriboosi-sokerista ja fosforista.

Solujen välinen viestintä

Solujen välinen viestintä perustuu viestin lähettäjäsolun tuottamaan viestimolekyylin ja viestin vastaanottajasolun ilmentämän reseptoriproteiinin kohtaamiseen.

Viestimolekyylit voivat olla proteiineja, peptidejä, aminohappoja, steroideja tai kaasumaisia yhdisteitä kuten NO. Hydrofobiset eli rasvaliukoiset ja kaasumaiset aineet kulkeutuvat solukalvon läpi, mutta vesiliukoiset eivät läpäise kalvoa. Reseptorit voivat vastaanottajasolussa sijaita joko solukalvolla, solun sytoplasmassa tai tumassa. Solukalvoreseptorin viesti välittyy solussa solunsisäisten viestinvälitysketjujen avulla ja vaikutukset voivat kohdistua solun toiminnan säätelyyn joko proteiini- tai geenitasolla. Sytoplasmassa tai tumassa sijaitsevat tumareseptorit sitoutuvat DNA:han ja vaikuttavat solun geenien ilmenemiseen. Solun sisäiset viestinvälitysmekanismit pohjautuvat peräkkäisiin fosforylaatiotapahtumiin, jotka usein viime kädessä saavat aikaan DNA:han sitoutuvien transkriptiotekijöiden fosforylaatioon ja usein myös transkriptiotekijöiden oligomeerien muodostumiseen. Tällainen aktivoitunut transkriptiotekijä voi DNA:n kohdejaksoonsa sitoutuessaan aktivoida tietyn geenin.

Lähde: Solunetti

The Vitamin D response Element-binding Protein – Hong Chen, Bing Hu, Elizabeth A. Allegretto, John S. Adams

Expression of the Multiple Sclerosis-Associated MHC Class II Allele HLA-DrB1*1501 Is Regulated by Vitamin D – Seeram V. Ramagopalan, Narelle J. Maugen, Lahiru Handunnetthi, Matthew R. Lincoln, Sarah-Michelle Orton, David A. Dyment, Gabriele C. DeLuca etc.

Kalsitrioli tuhoaa autoreaktiivisia T-soluja keskushermostossa

Journal of Neuroimmunology raportoi 6.8.2013 Wisconsinin yliopiston hiirillä tehdystä kokeesta, joka osoitti, että yksi annos  biologisesti aktiivista D-vitamiinia, eli kalsitriolia (1,25(OH)2D) tuhosi keskushermostossa tulehdusta ylläpitäviä T-soluja, pysäytti EAE:n etenemisen (experimental autoimmune encephalomyelitis) ja johti EAE-taudin remissioon. Kalsitrioli aktivoi keskushermoston uinuvat T-auttajasolut (Treg), jotka hillitsevät immuunivastetta ja laskivat kudoksia tuhoavien Th1- ja Th17-solujen määrää. – Lähde: Multiple Sclerosis Discovery Forum.

CALCITRIOL, VITAMIN D AND MULTIPLE SCLEROSIS – Dr. C. E. Hayes, Ph.D.,Professor of Biochemistry, U. Wisconsin, Madison, Wi, 2014

Mouse studies reveal promising vitamin D-based treatment for MS

Th-solujen alaluokkien toiminnan ymmärtämisellä on myös kliinistä merkitystä. Esimerkiksi Th17-alatyypin toiminnan estävillä lääkkeillä toivotaan olevan autoimmuunitaudeissa sekä hyvä teho että mahdollisimman vähän vaikutuksia muuhun kuin ei-toivottuun immuunivasteeseen (van den Berg ja Miossec 2009). Lisäksi Th-solujen alatyyppien toiminnan molekylaarisen taustan tutkiminen valaisee myös häiriytyneen immunivasteen aiheuttamien tautien patogeneesiä. Tästä hyvänä esimerkkinä on tulehdusta kiihdyttävän Th1-alatyypin synnyssä välttämättömän Stat4-transkriptiotekijän geneettinen yhteys reumaan ja SLE:hen samoin kuin tuore suomalainen tutkimustulos, jonka mukaan Th17-solujen toimintaa säätelevän Stat3:n mutaatio suojaa MS-taudin kehittymiseltä (Remmers ym. 2007, Jakkula ym. 2010).

Lähde: Lääketieteellinen aikakauskirja Duodecim

EAE on MS-tautia muistuttava eläinten autoimmuunitauti, jonka tutkimusta sovelletaan MS-taudin tutkimukseen. MS-taudissa elimistön oma immuunijärjestelmä tuhoaa keskushermoston kudoksia, erityisesti aksoneita suojaavaa myeliiniä (demyelinoiva prosessi), mikä aiheuttaa keskushermostossa kulkevien signaalien hidastumista ja  edelleen taudille ominaisia oireita. Käytännössä elimistön immuunijärjestelmän solut menevät sekaisin ja niistä tulee ”tuholaisia”.

Multiple sclerosis (MS) is an incurable inflammatory demyelinating disease. We investigated one calcitriol dose plus vitamin D3 (calcitriol/+D) as a demyelinating disease treatment in experimental autoimmune encephalomyelitis (EAE). Evidence that calcitriol-vitamin D receptor pathway deficits may promote MS, and data showing calcitriol enhancement of autoimmune T cell apoptosis provided the rationale. Whereas vitamin D3 alone was ineffective, calcitriol/+D transiently increased central nervous system (CNS) Helios(+)FoxP3(+) T cells and sustainably decreased CNS T cells, pathology, and neurological deficits in mice with EAE. Calcitriol/+D, which was more effective than methylprednisolone, has potential for reversing inflammatory demyelinating disease safely and cost-effectively. – Nashold et al. 2013

Coimbra-protokolla

Brasiliassa MS-tautia ja muita autoimmuunitauteja hoidetaan ns. Coimbra-protokollan mukaisilla jopa 50 000 IU (1250 µg) D-vitamiiniannoksilla. Hoitotulokset ovat lupaavia, mutta tietoa Coimbra-protokollasta on saatavilla lähinnä portugaliksi. Michael F. Holick puhuu artikkelin alussa olevalla videolla Coimbra-protokollasta hyvin positiiviseen sävyyn. Euroopassa ja USA:ssa on yhteensä joitakin kymmeniä lääkäreitä, jotka noudattavat tätä hoitomuotoa. Oheisella videolla Coimbra kertoo hoidosta. Video on italiankielinen, mutta siihen on englanninkieliset tekstitykset.

 

D-vitamiinin tutkimus

Suuri tutkimustietokanta (PubMed) antaa haulla: ”Vitamin D” yli 67 000 osumaa. Se osoittaa, että D-vitamiini on kansainvälisissä tutkijapiireissä ”kuuma” aihe, johon viitataan tutkimuksissa hyvin aktiivisesti. D-vitamiinia käsittelevien tutkimusten selvittäminen ja jäsentely yksiin kansiin toisi motivoituneelle tutkijaryhmälle työsarkaa vuosiksi eteenpäin.

VitaminDwiki ylläpitää myös tutkimustietokantaa, joka raportoi säännöllisesti D-vitamiinia käsittelevistä uusista tutkimuksista. Sivustolla tutkimukset on organisoitu D-vitamiinin puutokseen liittyvien sairauksien mukaan.

Yhteinen nimittäjä viime vuosien tutkimuksissa on se, että D-vitamiinin puutos toimii altistavana tekijänä monille sairauksille ja, että monilla  sairailla mitataan keskiarvoa selvästi alhaisempia kalsidiolipitoisuuksia. Se ei voi olla sattumaa.

D-vitamiinin tutkimukseen ja kansainväliseen D-vitamiinin merkitystä korostavaan tendenssiin suomalaiset viranomaistahot suhtautuvat väheksyvästi. Se on hullua, kun huomioidaan, että D-vitamiinilla on ollut keskeinen merkitys immuunijärjestelmän säätelijänä koko ihmisen kehityshistorian ajan, sekä siksi, että uusimmissa tutkimuksissa D-vitamiinin merkitys n. 2000 geenin säätelijänä ja immunomodulatorisena vaikuttajana on entisestään vahvistunut.

Tuhannet tutkimukset tukevat D-vitamiiniin liittyviä terveysväittämiä. Se ei ehkä yksin paranna  sairauksia, mutta riittävät D-vitamiinitasot antavat hyvän ja tarpeellisen suojan sekä ehkäisevät monien sairauksien puhkeamista. Itse pidän hyvin todennäköisenä, että kalsitrioli voi toimia MS-taudin oireita helpottavana – jopa tapahtuneita myeliinivaurioita korjaavana lääkkeenä.

loista ja aurinkoista alkanutta kevättä kaikille!

T: Sami