Sokeriaineenvaihdunta: Fruktolyysi ja glykolyysi

Hiljattain joukko amerikkalaisia professoreita määritteli sokerin terveydelle haitallisimmaksi ravintoaineeksi.  Sokerin terveydelliset vaikutukset palautuvat erityisesti glukoosin ja fruktoosin aineenvaihduntaan. Kuinka glykolyysi ja fruktolyysi eroavat toisistaan?

Sokereiden aineenvaihdunta

Ravinto sisältää useita sokereita erilaisina molekyylirakenteina. Niiden pilkkominen imeytyvään muotoon alkaa jo suussa. Yleisimmät ravinnosta saatavat sokerit ovat, glukoosi, fruktoosi, laktoosi, galaktoosi ja maltoosi.

Kasvien sisältämä tärkkelys on sokerin varastomuoto. Tärkkelys on monimutkainen glukoosiyksiköistä muodostuva haarautumaton amyloosi tai haarautunut amylopektiini. Se on polysakkaridi, jossa glukoosimonomeerit ovat liittyneet toisiinsa. Kasvit valmistavat tärkkelystä fotosynteesissä. Erityisen tärkkelyspitoisia ravintoaineita ovat esimerkiksi perunat, maissi ja riisi.

Solujen energiantuotannon kannalta glukoosi ja fruktoosi ovat tärkeimpiä sokereita. Niilläkin on omat aineenvaihduntapolkunsa.

Sokereita kuljettavat molekyylit

Glukoosimolekyylejä kuljettavat ohutsuolesta verenkiertoon insuliinin säätelemät GLUT1- ja GLUT4-molekyylit. Fruktoosi ei aktivoi insuliinintuotantoa ja sitä  kuljettavat GLUT5-molekyylit.

Käytännössä GLUT1-molekyyli kuljettaa glukoosimolekyylin ohutsuolen endoteelisoluun ja GLUT4-molekyyli kuljettaa glukoosimolekyylin endoteelisolusta verenkiertoon.

Fruktoosimolekyyli kulkeutuu ohutsuolesta endoteelisoluun GLUT5-molekyylin kuljettamana ja endoteelisolusta verenkiertoon GLUT2-molekyylin kuljettamana.

Sokereita pilkkovat entsyymit

Ruoansulatuskanavassa sokereita pilkkoo joukko entsyymejä, joista tärkkelystä maltoosiksi pilkkova amylaasi on ehkä tutuin. Amylaasi aloittaa tärkkelyksen pilkkomisen jo suussa, johon amylaasia erittyy sylkirauhasista.  Sokereiden pilkkominen imeytyvään muotoon jatkuu vatsassa ja suolistossa. Haima erittää amylaasia ohutsuoleen.

Maltoosi on kahdesta glukoosimolekyylistä muodostuva disakkaridi. Ruoansulatuskanavassa maltoosia pilkkoo suolinesteen maltaasi-entsyymi. Laktoosi eli maitosokeri koostuu glukoosista ja galaktoosista. Laktoosia pilkkoo laktaasi. Sakkaroosi muodostuu fruktoosista ja glukoosista. Sakkaroosia pilkkoo sakkaraasi.

Ruoansulatuskanavassa sokerit pilkotaan yksinkertaisiksi sokerimolekyyleiksi, jotka kulkeutuvat ohutsuolesta verenkertoon sokereille spesifien kuljetusmolekyylien kuljettamina. Sokereiden aineenvaihduntareitit poikkeavat toisistaan.

Esimerkiksi: Aldoosi-1-epimeraasi (GALM) muuttaa β-D-galaktoosin ensin α-D-galaktoosiksi. Tämä muutetaan edelleen UDP-glukoosiksi kolmen pääasiallisen entsyymin avulla (GALK, GALT ja GALE). UDP-glukoosi (uracil-diphosphate glucose) on nukleotidin, eli nukleiinihappojen (DNA, RNA) rakenneyksikön sokeriosa. Nukleotidiin kuuluu kolme osaa, emäs, sokeriosa ja fosfaatti. Galaktoosi vaikuttaa siis nukleiinihappojen aineenvaihduntaan ja rakenteeseen.

Pöytäsokeri on fruktoosia ja glukoosia

Tavallinen pöytäsokeri on ruokosokeria eli sakkaroosia, joka muodostuu yhtäläisestä määrästä glukoosia ja fruktoosia. Sakkaroosi on disakkaridi, jossa kaksi erilaista sokerimolekyyliä on tiukasti sitoutunut toisiinsa.

Glukoosi (rypälesokeri) on elimistön tärkein energianlähde. Glukoosi on yhdestä sokerimolekyylistä muodostuva monosakkaridi. Myös glukoosia selvästi makeampi fruktoosi (hedelmäsokeri) on yhdestä sokerimolekyylistä muodostuva monosakkaridi.

Kasveissa sakkaroosi on yleinen. Sitä on paljon esimerkiksi sokeriruo’ossa, sokerijuurikkaassa, ananaksessa, maississa ja porkkanassa.

Ruoansulatus pilkkoo hiilihydraateista ja tärkkelyksestä yksinkertaisia ohutsuolesta verenkiertoon imeytyviä sokerimolekyylejä. Glukoosi ja fruktoosi ovat yleisimmät ravinnosta saatavat sokerit, mutta ne eivät toimi elimistössä aivan samalla tavalla. Näiden sokereiden reaktioketjut eroavat aineenvaihdunnan kannalta merkittävästi toisistaan.

Fruktoosi ja fruktolyysi

Fruktoosi

Fruktoosi on yhdestä fruktoosimolekyylistä muodostuva monosakkaridi, jota esiintyy luonnostaan hedelmissä, marjoissa ja vihanneksissa joko vapaina fruktoosimolekyyleinä, kahdesta sokerimolekyylistä muodostuvina disakkarideina (kuten ruokosokeri) tai fruktoosin polymeerina (inuliini).

Inuliini on fruktoosista muodostunut varastopolysakkaridi, jossa on 30-50 fruktoosimolekyyliä. Inuliinia esiintyy mm. maa-artisokassa, sipulissa, parsassa, banaanissa, rukiissa, vehnässä, mustajuuressa, ohrassa sekä asterikasvien, kuten daalian, voikukan ja sikurin juurissa ja juurimukuloissa. Inuliinia käytetään elintarviketeollisuudessa makeutusaineena. Se sisältää noin kolmanneksen vastaavan sokerimäärän energiasta.

Teollinen fruktoosi

Fruktoosi on makeampaa kuin glukoosi, joten sitä käytetään yleisesti makeutusaineena. Tavallinen kidesokeri sisältää 50:50 suhteessa glukoosia ja fruktoosia. Fruktoosia saa runsaasti mm. hedelmistä ja marjoista. Teollisesti valmistettua fruktoosia ja fruktoosisiirappia käytetään yhä useammissa elintarvikkeissa.

Edullinen nestemäinen fruktoosisiirappi on syrjäyttämässä perinteisen sakkaroosin yleisimpänä makeutusaineena. Amerikkalaisessa ruokavaliossa päivittäisestä energiansaannista jopa 10 % saadaan fruktoosista. Jos suomalaisen päivittäisestä energiansaannista 10% on peräisin lisätystä sokerista, silloin fruktoosin osuus energiansaannista voi olla jopa 5 %.

Teollinen fruktoosi korreloi vahvasti monien kardiometabolisten sairauksien kanssa. Tätä selittää todennäköisesti fruktoosin glukoosista poikkeava aineenvaihdunta. Erityisen ongelmallista on fruktoosisiirapista nopeasti elimistöön imeytyvät vapaat fruktoosimolekyylit, jotka voivat horjuttaa sokeriaineenvaihdunnan toimintaa, rasittaa maksaa ja altistaa esimerkiksi alkoholista riippumattomalle rasvamaksalle.

Huomio: Korrelaatio fruktoosisiirapin ja kardiometabolisten sairauksien välillä on vahva, mutta kausaliteettia ei välttämättä ole osoitettu.

Fruktolyysi

Fruktoosin aineenvaihdunta tapahtuu pääasiassa maksassa. Maksan lisäksi fruktolyysiä tapahtuu jonkin verran ohutsuolessa, luurankolihaksissa, kiveksissä, rasvakudoksessa ja aivoissa.

Noin prosentti syödystä fruktoosista muutetaan maksassa suoraan plasman triglyserideiksi. 29-54% fruktoosista syntetisoidaan maksassa glukoosiksi. Neljännes fruktoosista muutetaan laktaatiksi eli maitohapon suoloiksi tai estereiksi. 15-18% fruktoosista syntetisoiduista glykoosimolekyyleistä varastoidaan glykogeenien polymerisaatiossa polysakkarideina glykogeeneiksi.

Glykogeenit ovat tuhansista glukoosimolekyyleistä muodostavia pitkäketjuisia ja pitkähaaraisia polysakkarideja.

Glykogeenien polymerisaatio

Glykogeenin polymerisaation lähtöaineina toimivat sokeri-nukleotidit, joissa sokerimonomeeri on aktivoitu kiinnittämällä siihen nukleotidi. Glykogeenin polymerisaatiossa vaikuttavat glykogeenisyntaasi, joka liittää glukoosimolekyylejä pitkään ketjuun sekä entsyymi, joka tekee glykogeeniin haarakohtia. Koska glykogeenisyntaasi voi vain lisätä glukoosimolekyylejä valmiiseen ketjuun, tarvitaan oma entsyymi aloittamaan glykogeenin valmistus (glykogeniini). Lähde: Solunetti

Kehon solut voivat käyttää fruktolyysin syntetisoimaa glukoosia ja laktaattia energianlähteenä solujen glykolyysissä. Aineenvaihdunta voi myös purkaa maksaan ja lihassoluihin varastoituneita fruktoosista valmistettuja glykogeenejä glukagonin stimuloimana glykogenolyysissä, jolloin vereen vapautuu glukoosia. Tämä mekanismi turvaa solujen energiansaannin ruokailujen välillä sekä raskaissa fyysisissä suorituksissa.

Alhainen verensokeri aktivoi haiman erittämään glukagonia, joka purkaa maksan ja lihasten glykogeenejä glukoosiksi. Glukagoni aktivoi myös maksassa ja munuaisissa tapahtuvaa glukoneogeneesiä, ketogeneesiä sekä rasvojen β-oksidaatiota. Matala verensokeri aktivoi rasvan käyttämistä energianlähteenä.

Glykolyysi

Kaikki solut saavat energiaa glukoosista. Solu saa energiantuotantoon tarvittavan glukoosin joko solun ulkopuolelta, josta se kulkeutuu soluun osmoottisesti eli suuremmasta pitoisuudesta pienempään, tai purkamalla solun sisäisen glykogeenin glukoosimolekyyleiksi.

Glykolyysi on solulimassa tapahtuva monimutkainen reaktiosarja, jossa glukoosimolekyylit hajotetaan kahdeksi palorypälehapon anionimuodoksi eli pyruvaatiksi.

Yhdestä glukoosimolekyylistä saadaan kahden pyruvaattimolekyylin lisäksi kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä. Solujen anaerobinen energiansaanti perustuu glykolyysiin.

Soluhengitys

Jos solussa on mitokondrioita ja happea, energiantuotanto jatkuu sitruunahappokierrossa (Krebsin sykli). Eräiden entsyymien avustuksella pyruvaateista saadaan mitokondrioissa tapahtuvassa oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta.

Rasvahapot hajoavat energiaksi pääasiassa hapettumalla β-oksidaatiossa siten, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

Asetyylikoentsyymi-A eli aktiivinen etikkahappo on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa. Asetyylikoentsyymi-A:ta saadaan monosakkarideista, triglyserideista sekä aminohapoista erilaisten reaktiovaiheiden kautta. Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi. Lähde: Wikipedia

Anaerobinen ja aerobinen glykolyysi

Soluissa, joissa ei ole mitokondrioita (esim. veren punasolut) tai riittävästi happea, pyruvaatti pelkistyy maitohapoksi. Maitohappoon pelkistyvää glykolyysiä kutsutaan anaerobiseksi glykolyysiksi ja asetyylikoentsyymi-A:han päättyvää glykolyysiä aerobiseksi glykolyysiksi.

Asetyylikoentsyymi-A:han päättyvän reaktiossa glukoosimolekyylistä jää jäännöstuotteena hiilidioksidia ja vettä, jotka poistuvat kehosta ihon ja hengityksen kautta.

Laktaatin muodostuminen ei tuota energiaa, mutta se on välttämätöntä, jotta saadaan pelkistyneet NADH-molekyylit takaisin hapettuneeseen NAD+-muotoon, jota tarvitaan glykolyysissä.

 Glykolyysin vaiheet (Lähde: Wikipedia – Glykolyysi)

  1. Glukoosiin liitetään fosfaattiryhmä ATP:ltä heksokinaasin tai glukokinaasin avulla, jolloin syntyy glukoosi-6-fosfaattia. Heksokinaasia inhiboi glukoosi-6-fosfaatti ja glukokinaasia fruktoosi-6-fosfaatti. Lisäksi insuliini aktivoi glukokinaasin transkriptiota tumassa.
  2. Glukoosi-6-fosfaatti muutetaan fosfoheksoosi-isomeraasin avulla fruktoosi-6-fosfaatiksi.
  3. Fruktoosi-6-fosfaatti fosforyloidaan ATP:n avulla fruktoosi-1,6-bisfosfaatiksi. Tätä reaktiota katalysoi fosfofruktokinaasi-1 eli PFK-1. PFK-1:tä inhiboi ATP, sitraatti ja H+. Aktivoivia molekyylejä ovat puolestaan AMP ja fruktoosi-2,6-bisfosfaatti.
  4. Fruktoosi-1,6-bisfosfaatti muutetaan aldolaasi A:n:n avulla dihydroksiasetonifosfaatiksi ja glyseraldehydi-3-fosfaatiksi.
  5. Dihydroksiasetonifosfaatti muutetaan trioosifosfaatti-isomeraasin avulla glyseraldehydi-3-fosfaatiksi.
  6. Neljännen ja viidennen vaiheen reaktioista saaduista glyseraldehydi-3-fosfaateista muodostetaan glyseraldehydi-3-rosfaattidehydrogenaasin avulla 1,3-bisfosfoglyseraattia. Samalla NAD+ pelkistyy NADH:ksi.
  7. 1,3-bisfosfoglyseraatti defosforyloidaan fosfoglyseraattikinaasin avulla 3-fosfoglyseraatiksi. Samalla ADP fosforyloituu ATP:ksi.
  8. 3-fosfoglyseraatti muutetaan fosfoglyseraattimutaasin avulla 2-fosfoglyseraatiksi.
  9. 2-fosfoglyseraatti muutetaan enolaasin avulla fosfoenolipyruvaatiksi.
  10. Fosfoenolipyruvaatti defosforyloidaan pyruvaattikinaasin avulla pyruvaatiksi. Samalla ADP fosforyloituu ATP:ksi. Pyruvaattikinaasia inhiboivat ATP, alaniini ja glukagoni. Aktivoiva molekyyli on puolestaan glykolyysin kolmannessa vaiheessa muodostuva fruktoosi-1,6-bisfosfaatti.

Glukoosin ja fruktoosin aineenvaihduntaan osallistuu samoja entsyymejä ja solujen rakenteita sekä niitä yhdistäviä reaktioketjuja, mutta monista yhtäläisyyksistä huolimatta niiden aineenvaihdunta eroaa toisistaan merkittävällä tavalla.

Fruktoosi ei stimuloi insuliinin eritystä

Fruktoosi ei stimuloi insuliinin eritystä samalla tavalla kuin glukoosi, eikä sen pääsy soluihin ole insuliinista riippuvainen. Glukoosin aineenvaihdunta puolestaan tarvitsee insuliinia.

Insuliinin tuotannon loppuminen tyypin 1 diabeteksessa sekä solujen kasvanut insuliiniresistenssi tyypin 2 diabeteksessa aiheuttavat sen, että solut eivät saa energiantuotannossa tärkeää glukoosia, vaan glukoosimolekyylit jäävät verenkiertoon, jossa ne vaurioittavat verisuonia ja sisäelimiä.

Veren glukoosipitoisuus stimuloi haiman insuliinineritystä. Insuliinin säätelemät kuljetusmolekyylit (GLUT1 ja GLUT4) kuljettavat glukoosin soluihin. Fruktoosin kuljetusmolekyyli on GLUT5.

Haiman erittämä insuliini kiinnittyy solujen insuliinireseptoreihin, mikä käynnistää soluissa toisioviestintäjärjestelmän. Se houkuttelee solun sisällä olevan solukalvon läpäisevän glukoosinsiirtokanavan solukalvolle. Glukoosi pääsee tämän avulla solun sisälle, jossa glukoosimolekyyli osallistuu energiaa tuottavaan glykolyysiin.

Sokereiden rakenne

Monosakkaridit, kuten fruktoosi ja glukoosi voivat olla joko avoketjuisia tai renkaita, mutta elimistössä monosakkaridien vallitsevana muotona on rengasmainen rakenne.

Rengasmaisessa rakenteessa anomeerihiileksi kutsutaan hiiltä, joka on lähimpänä karbonyyliryhmää muodostavaa hiiltä. Karbonyyliryhmästä aloitetaan monosakkaridien hiilten numerointi. Hiiliketjun pituus monosakkaridissa voi olla kolme tai suurempi. Tärkeimpiä elimistössä esiintyviä monosakkarideja ovat heksoosit, joissa on kuuden hiiliatomin ketju.

  • Trioosi: kolme hiiliatomia
  • Totroosi: neljä hiiliatomia
  • Pentoosi: viisi hiiliatomia
  • Heksoosi: kuusi hiiliatomia
  • Heptoosi: seitsemän hiiliatomia

Karbonyyliryhmä koostuu toisiinsa kaksoissidoksella kiinnittyneistä hiili- ja happiatomeista. Esimerkkejä karbonyyliryhmän sisältävistä yhdisteistä ovat: aldehydi, ketoni, karboksyylihappo, esteri ja amidi. Karbonyyliryhmä antaa näille yhdisteille niille ominaisen kemiallisen luonteen.

Fruktolyysi ja glykolyysi ovat itsenäisiä metabolisia reaktioketjuja (metabolic pathway)

 ”Suuri osa syödystä glukoosista kulkeutuu maksan läpi luurankolihaksiin, jossa se metaboloituu glykolyysissa ja edelleen sitruunahappokierrossa ensin pyruvaateiksi ja edelleen hiilidioksidiksi (CO2), hapeksi (H2O) ja ATP-molekyyleiksi, tai rasvasoluihin, jossa glukoosimolekyyleistä metaboloidaan glyserolifosfaattia triglyseridien synteesiin ja energiantuotantoon.”

Fruktoosin aineenvaihdunta syntetisoi maksassa glykogeenejä ja de novo lipogeneesissä rasvahappoja ja triglyseridejä.

Tämä synteesi voidaan jakaa kahteen päävaiheeseen:

  1. Trioosien, dihydroksiasetonin (DHAP) ja glyseraldehydin synteesi.
  2. Toisessa vaiheessa trioosit jatkavat aineenvaihduntaa joko glukoneogeneesissä, täyttävät maksan glykogeenejä ja/tai fruktolyysin reaktioketjussa pyruvaatiksi; pyruvaatti muutetaan sitruunahappokierrossa sitraatiksi ja lopuksi de novo synteesissä vapaista rasvahapoista syntetisoidaan palmitiinihappoa.

Palmitiinihappo

Palmitiinihappo on yleisin tyydyttynyt rasvahappo sekä eräs yleisimmistä rakenneosasista eläin- ja kasvirasvoissa. Esimerkiksi ihrassa ja voissa on 25 % palmitiinihappoa. Myös ihmisen rasvasta 25 % on palmitiinihappoa. Palmitiinihapon estereitä ja suoloja kutsutaan palmitaateiksi.

Trioosit ovat kolmesta hiiliatomista muodostuvia monosakkarideja. Dihydroksiasetoni on kaksi hydroksyyliryhmää sisältävä ketoni. Glyseraldehydi on yksinkertaisin monosakkarideista. Se on makea yhdiste, jota syntyy hiilihydraattien hajoamisen seurauksena.

Fruktoosi metaboloituu DHAP:ksi ja glyseraldehydiksi

Fruktoosin aineenvaihdunnan ensimmäinen askel on fruktoosin fosforylaatio, jossa fruktokinaasi muuttaa fruktoosimolekyylin fruktoosi-1-fosfaatiksi. Tämä reaktioketju sitoo fruktoosin aineenvaihdunnan maksaan.

Maksassa esiintyy myös heksokinaasi IV-entsyymiä (Glukokinaasi), joka voi fosforyloida vähäisestä määrästä fruktoosia fruktoosi 6-fosfaattia (glukoneogneettisen reaktioketjun välivaihe). Käytännössä kaikki fruktoosimolekyylit fosforyloidaan maksassa kuitenkin fruktoosi-1-fosfaatiksi.

Kuvakaappaus: Wikipedia

Toisaalta suurin osa glukoosimolekyyleistä jää fosforyloimatta ja kulkee maksan läpi rasvakudokseen ja luurankolihaksiin insuliiniriippuvaisen glukoosinkuljetusmolekyylin (GLUT4) kuljettamana.

Fruktoosi-1-fosfaatti hydrolysoidaan fruktoosi-1fosfaatti aldolaasin (aldolaasi B) avulla dihydoksiasetonifosfaatiksi (DHAP). Dihydroksiasetonifosfaatti on orgaaninen molekyyli, joka esiintyy välituotteena monissa biokemiallisissa reaktioissa, esimerkiksi glykolyysissä. Aldolaasi eli fruktoosi-1,6-bisfosfaattialdolaasi on entsyymi, joka osallistuu glykolyysiin ja glukoneogeneesiin katalysoimalla fruktoosi-1,6-bisfosfaatin reversiibeliä hajoamista glyseraldehydi-3-fosfaatiksi tai glyseraldehydiksi ja dihydroksiasetonifosfaatiksi.

DHAP voi isomerisoitua glyseraldehydi-3-fosfaatiksi, tai glyseroli-3-fosfaatiksi. Glyseraldehydi kinaasi voi muuttaa glyseraldehydin glyseraldehydi-3-fosfaatiksi tai glyseroli-3-fosfaatiksi.

Fruktoosin aineenvaihdunnan tuottamat väliaineet voivat osallistua glukoneogeneesiin ja glykogeenin synteesiin, tai ne voidaan hapettaa pyruvaatiksi ja edelleen laktaatiksi, tai dekarboksyloida asetyylikoentsyymi-A:ksi mitokondrioissa sekä edelleen siirtää vapaiden rasvahappojen synteesiin ja lopulta triglyseridien synteesiin.

Kuva: Fruktoosin aineenvaihdunta dihydroksifosfaatiksi (DHAP), glyseraldehydiksi ja glyseraldehydi-3-fosfaatiksi maksassa.

Glykogeenin synteesi dihydroksiasetonifosfaatista ja glyseraldehydi-3-fosfaatista

Fruktoosin aineenvaihdunta jatkuu glukoneogeneesin lähtöaineista. Fruktoosista metaboloidaan aluksi dihydroksiasetonifosfaattia (DHAP) ja glyseraldehydia fruktokinaasin ja aldolaasi B:n katalysoimana.

Lisääntynyt DHAP- ja glyseraldehydi-3-fosfaatin konsentraatio maksassa ohjaa glukoneogeneesin reaktioketjun kohti glukoosi-6-fosfaattia, glukoosi-1-fosfaattia ja glykogeenin synteesiä.

Fruktoosi on parempi substraatti glykogeenin synteesille kuin glukoosi. Glykogeenivaraston täydennys on etusijalla triglyseridien synteesiin nähden. Kun maksan glykogeenivarasto on täydennetty, fruktoosin ylimääräiset aineenvaihduntatuotteet jatkavat triglyseridien synteesiin.

Kuva: Fruktoosin aineenvaihdunta glykogeeniksi maksassa

Triglyseridien synteesi dihydroksiasetonifosfaatista ja glyseraldehydi-3-fosfaatista

Ravinnosta saatu ylimääräinen fruktoosi voidaan muuttaa pyruvaatiksi ja siirtää sitruunahappokiertoon, jossa se muutetaan edelleen sitraatiksi, tai ohjata reaktiosarjaa vapaiden rasvahappojen synteesiin soluliman nestemäisessä sytosolissa. Fruktolyysin syntetisoima DHAP voidaan muuttaa glyseroliksi ja edelleen glyseroli-3-fosfaatiksi triglyseridien synteesiin de novo lipogeneesissa.

”Thus, fructose can provide trioses for both the glycerol 3-phosphate backbone, as well as the free fatty acids in TG synthesis. Indeed, fructose may provide the bulk of the carbohydrate directed toward de novo TG synthesis in humans.

Kuva: Triglyseridien synteesi maksassa

Maksassa fruktoosi aktivoi useita rasvahappojen synteesiin (lipogeneesi) osallistuvia insuliinista riippumattomia entsyymejä. Nämä ovat: pyruvate kinase, NADP+-dependent malate dehydrogenase, citrate lyase, acetyl CoA carboxylase, fatty acid synthase, pyruvate dehydrogenase.

Runsaasti teollista fruktoosia sisältävän ravinnon on havaittu altistavan hypertriglyseridemialle eli veren liialliselle triglyseridipitoisuudelle.

”The hypertriglyceridemic effects observed are a hallmark of increased dietary carbohydrate, and fructose appears to be dependent on a number of factors including the amount of dietary fructose consumed and degree of insulin resistance.”

Fruktoosin aineenvaihdunnan virheet

Fruktoosin aineenvaihduntaan vaikuttavien kahden tärkeän entsyymin puutos aiheuttaa kaksi synnynnäistä hiilihydraattien aineenvaihdunnan virhettä.

Fruktokinaasin puutos aiheuttaa essentiaalisen fruktosurian. Fruktokinaasi osallistuu reaktioketjuun, jossa fruktoosi muutetaan fruktoosi-1-fosfaatiksi. Tämän entsyymin puutoksen seurauksena fruktoosin aineenvaihdunta jää epätäydelliseksi, jolloin fruktoosia erittyy virtsaan. Fruktosuria on perinnöllinen tila, joka ei kuitenkaan aiheuta kliinisiä oireita, sillä fruktoosi voidaan metaboloida fruktoosi-6-fosfaatiksi heksokinaasin avulla esimerkiksi rasva- ja lihaskudoksissa.

Fruktoosin imeytymishäiriö ja perinnöllinen fruktoosi-intoleranssi

Fruktoosin imeytymishäiriö on ruoansulatuskanavan häiriö, jossa fruktoosin imeytyminen ohutsuolesta verenkiertoon on heikentynyt fruktoosinkuljetusmolekyylien vähäisyyden vuoksi. Imeytymishäiriön oireita ovat mm. vatsakipu, turvotus, ilmavaivat ja ripuli.

Fruktoosin imeytymishäiriö muistuttaa oireiltaan ärtyvän suolen oireyhtymää sekä laktoosi-intoleranssia.

Fruktoosin imeytymishäiriötä ei pidä sekoittaa mahdollisesti hengenvaaralliseen perinnölliseen fruktoosi-intoleranssiin, jossa maksassa fruktoosia pilkkovat entsyymit eivät toimi oikein.

Fruktoosi imeytyy ohutsuolesta ilman ruoansulatusentsyymien apua. Terveen henkilön ohutsuoli pystyy kerrallaan imeyttämään ohutsuolesta verenkiertoon 25-50 grammaa fruktoosia. Fruktoosin imeytymishäiriötä sairastavilla jo alle 25 g fruktoosiannos voi aiheuttaa vatsavaivoja. Sorbitoli voi edelleen heikentää fruktoosin imeytymistä ja lisätä vatsavaivoja. Imeytymätön fruktoosi fermentoituu suolistobakteerien vaikutuksesta ja lisää suolistokaasujen muodostumista.

Monet runsaasti fruktoosia sisältävät hedelmät, esimerkiksi omenat, päärynät, mangot ja vesimelonit, voivat aiheuttaa oireita fruktoosin imeytymishäiriötä sairastavalla. Oireita voi tulla myös runsaasti fruktoosia sisältävästä pöytäsokerista, hunajasta, maissisiirapista, rusinoista, hedelmämehuista ja fruktaaneista (FODMAP).

Fruktoosin imeytyshäiriöön ei ole parantavaa hoitoa, mutta sen aiheuttamia oireita voi välttää minimoimalla fruktoosin saannin. Myös FODMAP-ruokavalio voi auttaa oireiden helpottamisessa. Lähde: Wikipedia

Perinnöllinen fruktoosi-intoleranssi (HFI)

Perinnöllinen fruktoosi-intoleranssi (HFI) johtuu synnynnäisestä aldolaasi B-entsyymin puutoksesta. Puutoksen seurauksena sakkaroosi, fruktoosi ja sorbitoli aiheuttavat oireita synnynnäistä fruktoosi-intoleranssia sairastavilla. Aldolaasi-B entsyymin puutos johtaa fruktoosi-1-fosfaatin kerääntymiseen maksasoluihin, munuaisiin ja ohutsuoleen. Ajan mittaan tämä johtaa maksasolujen tuhoutumiseen. HFI vaikuttaa myös glukoneogeneesiin, glykogenolyysiin ja adenosiinitrifosfaatin (ATP) regeneraatioon. HFI aiheuttaa mm. pahoinvointia, oksentelua, kouristeluja, ärtyisyyttä, hypoglykemiaa, keltatautia, verenvuotoa, maksan liikakasvua sekä mahdollisesti munuaisten vajaatoimintaa. HFI voi johtaa kuolemaan, mutta se on melko harvinaista.

Kuva: Fruktolyysin ja glykolyysin aineenvaihdunta




Ovatko sokerit epäterveellisiä?

Ovatko sokerit epäterveellisiä? Keskustelu sokerin terveyshaitoista on saanut viime vuosina kiitettävästi näkyvyyttä myös suomalaisissa medioissa. Miksi lisätyn sokerin määrää ja laatua tulisi tarkkailla?

Eräs syy sokerin haitallisuudelle on se, että sokeri on sataprosenttista energiaa, josta puuttuvat kaikki elimistön tarvitsemat välttämättömät ravintoaineet. Sakkaroosi eli pöytäsokeri koostuu ”tyhjistä kaloreista”, jotka lihottavat.

Emeritusprofessori ja sisätautien erikoislääkäri Jussi Huttunen on kirjoittanut Duodecimiin valaisevan artikkelin sokereista. Artikkelissaan Jussi Huttunen kirjoittaa mm:

”Sakkaroosin sisältämä hedelmäsokeri näyttää olevan terveydelle erityisen haitallista. Vapaaehtoisille koehenkilöille tehdyssä kokeessa hedelmäsokeri aiheutti epäedullisia muutoksia rasva-aineenvaihdunnassa, lisäsi maksan rasvoittumista ja suurensi veren glukoosi- ja insuliinipitoisuutta. Havainnot sopivat siihen, että sakkaroosi ja sen sisältämä hedelmäsokeri voivat olla vyötärölihavuuden (”pömppövatsa”) ja siihen liittyvän metabolisen oireyhtymän tärkeä syy. Metabolinen oireyhtymä ja vyötärölihavuus diabeteksen tavoin ovat nopeasti yleistyneet teollistuneissa yhteiskunnissa, mahdollisesti juuri nopeasti kasvaneen sokerin kulutuksen seurauksena.

Sokeri on nousemassa myös tärkeäksi sepelvaltimotaudin syyksi. Äsken julkaistussa tutkimuksessa sokerilimuja säännöllisesti juoneiden sepelvaltimotautivaara oli viidenneksen suurempi kuin niiden, jotka nauttivat vain keinotekoisilla makeutusaineilla makeutettuja juomia. Osa mutta vain osa muutoksesta näytti johtuvan lihomisesta ja sen seurauksista. Aivan uusi havainto oli sokerijuomien yhteys tulehdusmittareihin (mm. CRP). Sokerijuomat voivat tavalla tai toisella lisäävän ihmisten tulehdusalttiutta ja mahdollisesti sitä kautta myös sydänoireita.” Lue koko artikkeli tästä >>

Mitä hiilihydraatit ja sokerit ovat?

Hiilihydraatteihin luetaan sokerit, tärkkelys ja ravintokuitu (selluloosa). Hiilihydraateista saatava glukoosi on solujen tärkein polttoaine. Glukoosi muutetaan energiaksi ensin glykolyysissä ja glykolyysin jälkeen hapen kanssa soluhengityksessä. Glykolyysi ja soluhengitys tuottavat energiaa ATP-molekyyleinä.

Hiilihydraatit eivät ole elimistölle välttämättömiä ravintoaineita vaikka aivot tarvitsevat glukoosista saatavaa energiaa. Elimistö on evoluution aikana kehittänyt mekanismeja, joilla se tuottaa glukoosia myös silloin, kun sitä ei ole ravinnosta saatavilla. Elimistö on oppinut turvaamaan solujen energiansaannin ketogeneesillä ja glukoneogeneesillä. Ketogeneesissä syntyy ketoaineita, joita elimistö voi käyttää energianlähteinä. Glukoneogeneesi syntetisoi glukoosia muista ravintoaineista ja vedestä.

Näiden evoluution aikana kehittyneiden aineenvaihduntamekanismien ja veden avulla terve normaalipainoinen ihminen selviää ilman ravintoa ainakin kuukauden. Esimerkiksi Gandhi paastosi vielä 74-vuotiaana 21 päivää pelkällä vedellä.

Ensimmäiset ihmiset saivat pääosan sokeristaan hunajasta, hedelmistä, kasviksista, juurista ja marjoista, mutta näistä saatavan sokerin määrä oli murto-osa siitä, mitä nykyihmiset kuluttavat. Sokerinlähteitä ei myöskään aina ollut saatavilla, joten elimistön piti syntetisoida solujen tarvitsemia sokereita mm. varastorasvasta ja proteiineista. Yhdysvalloissa sokerin kulutus on 40-kertaistunut 250 vuodessa.

Sokereiden kulutuksen merkittävin kasvupiikki alkoi 1970-luvulla. Diabeteksen ja lihavuuden kasvukäyrät noudattavat melko täsmällisesti sokereiden kulutuskäyrää, mutta onko sairastuvuuden ja sokerin kulutuksen välillä kausaalisuhdetta?

Hiilihydraatit ja sokerit

Hiilihydraatteihin lukeutuvat viljat ja perunat sisältävät runsaasti tärkkelystä ja pieniä määriä kivennäisaineita, proteiineja, rasvoja sekä vitamiineja. Tärkkelys muodostuu kymmenistä tai sadoista glukoosimolekyyleistä.  Ruoansulatuksessa tärkkelys pilkotaan glukoosimolekyyleiksi.

Hiilihydraattimolekyylit muodostuvat hiilestä, vedystä ja hapesta eli ne ovat hiilen hydraatteja. Yksinkertaiset hiilihydraatit tuottavat 3.87 kcal energiaa/g. Monimutkaisemmat hiilihydraatit tuottavat energiaa 3.57-4.12 kcal/g.

Hiilihydraatit ryhmitellään edelleen sokeriyksiköiden lukumäärän mukaan monosakkarideihin, joita ovat,

  • glukoosi
  • fruktoosi
  • galaktoosi
  • sekä riboosi ja deoksiriboosi, jotka ovat RNA:n ja DNA:n rakennusaineita

disakkarideihin, joita ovat,

  • sakkaroosi
  • maltoosi
  • laktoosi
  • trehaloosi

sekä oligosakkarideihin ja polysakkarideihin.

Tutuimmat monosakkaridit ovat glukoosi (rypälesokeri) ja fruktoosi (hedelmäsokeri). Disakkarideista tutuimmat ovat on glukoosista ja fruktoosista muodostuva sakkaroosi eli pöytäsokeri ja maitosokeri laktoosi.

Laktoosi

Vauvat saavat äidinmaidosta kaikki tarvitsemansa ravinteet, mutta joka kuudennen suomalaisen ohutsuoli ei enää varhaislapsuuden jälkeen tuota laktoosin pilkkomiseen tarvittavaa entsyymiä – laktaasia, minkä vuoksi maitosokeri aiheuttaa erilaisia vatsavaivoja. Laktoosin sietäminen aikuisena on epigeneettinen muutos, jota esiintyy lähinnä eurooppalaistaustaisilla ihmisillä. Suurin osa maailman väestöstä ei juo maitoa varhaislapsuuden jälkeen. Laktoosi-intoleranssi on käytännössä vallitseva ominaisuus Aasiassa ja Afrikassa toisin kuin Pohjoismaissa.

Uppsalan yliopiston ja Karoliinisen instituutin tekemän laajan seurantatutkimuksen mukaan runsas maidonjuonti voi ylläpitää kehon matala-asteista tulehdusta ja johtaa ennenaikaiseen kuolemaan. Lue tästä >>

Suomalaiset asiantuntijat kiirehtivät heti tyynnyttelemään ihmisiä toteamalla, että useimmat tutkimukset osoittavat, että maito on matala-asteisen tulehduksen suhteen neutraali vaikuttaja.

Maidossa ongelmia voi laktoosin ohella aiheuttaa kuitenkin maitoproteiinit, kuten A1 ja A2 beetakaseiinit. A1-beetakaseiini on ilmeisesti haitallista terveydelle.

” Research shows a strong association between the consumption of A1 casein and various health problems. Numerous studies, including data from the World Health Organization (WHO), have linked A1 with increased risk of heart disease, high cholesterol, type 1 diabetes, sudden infant death syndrome, and neurological disorders, such as autism and schizophrenia, and possibly allergies. But these health issues are not associated with consumption of A2 casein.” Tutkimuksia aiheesta löydät täältä >>

Sakkaroosi eli sukroosi (tavallinen sokeri)

Sokerilla tarkoitetaan puhekielessä yleensä sakkaroosia (pöytäsokeri), jota valmistetaan teollisesti sokeriruo’osta ja sokerijuurikkaasta. Sakkaroosi muodostuu yhtäläisestä määrästä tiukasti sitoutuneita glukoosi- ja fruktoosimolekyylejä (ts. sakkaroosia muodostuu, kun α-D-glukoosin 1-hiilen hydroksyyliryhmä sitoutuu β-D-fruktoosin 2-hiileen glykosidisidoksella).

Sakkaroosia esiintyy yleisesti kasveissa. Erityisen paljon sitä on sokeriruo’ossa, sokerijuurikkaassa, ananaksessa, maississa ja porkkanassa. Sokeria tuotetaan vuosittain noin 130 miljoonaa tonnia.

Polysakkaridit

Tavallisia polysakkarideja ovat kasveissa sokereiden varastomuoto tärkkelys ja selluloosa. Ne ovat useista yhteen liittyneistä monosakkarideista muodostuvia hyvin suuria molekyylejä, joissa on tyypillisesti yli 20 monosakkaridiyksikköä – joskus jopa satoja tai tuhansia.

Polysakkaridit eroavat useimmista sokereista siinä, että ne eivät maistu makealta tai liukene veteen. Selluloosa eli kuitu muodostuu jopa miljoonista glukoosimolekyyleistä. Ihmisen suolistossa ei ole selluloosaa pilkkovaa entsyymiä. Kuitu on kuitenkin suoliston hyvinvoinnille tärkeä ravinne, sillä sulamaton kuitu ja resistentti tärkkelys ravitsevat suoliston hyvää mikrobikantaa, joka puolestaan osallistuu kemiallisesti geenien säätelyyn, immuunijärjestelmän ylläpitoon ja eräiden vitamiinien tuotantoon.

Harvinaisempia sokereita ihmisen suolisto ei pysty pilkkomaan, vaan suoliston bakteerit käyttävät niitä ravintona. Esimerkiksi herneissä ja pavuissa on tällaisia oligosakkarideja, joissa sakkarideihin on sitoutunut myös aminohappoja.

Glukoosi eli rypälesokeri

Glukoosi (C6H12O6) on kasvien yhteyttämisen tärkein lopputuote ja useimpien eliöiden soluhengityksen lähtöaine yhdessä hapen kanssa. Glukoosi on ihmiselle elintärkeä sokeri, josta solut vapauttavat soluhengityksessä energiaa elimistön käyttöön.

Glukoosia on monissa muissa sokereissa, kuten sakkaroosissa ja laktoosissa sekä varasto- ja rakennepolysakkarideissa (glukaanit) kuten tärkkelys, glykogeeni ja selluloosa.

Glukoosi ja sen fosfaatit toimivat soluhengityksen lähtöaineina: glukoosi metaboloituu glykolyysin ja sitruunahappokierron seurauksena vedeksi ja hiilidioksidiksi ja tuottaa reaktiossa adenosiinitrifosfaattia eli ATP:ta. Yhdestä glukoosimolekyylistä vapautuu energiaa 26-38 ATP-molekyylin verran.

Hiilihydraatit pilkotaan ruoansulatuskanavassa ja ne imeytyvät ohutsuolesta verenkiertoon. Glukoosi nostaa verenkiertoon imeydyttyään verensokeria, mikä saa haiman erittämään insuliinia. Insuliinia tarvitaan, että glukoosi pääsee kulkemaan rasva- ja lihassolujen solukalvon läpi. Insuliinimolekyylit kiinnittyvät solukalvojen insuliinireseptoreihin.

Insuliinireseptorit säätelevät glukoosin varastoitumista glykogeeniksi ja rasvahapoiksi sekä mahdollistavat glukoosista syntyvien aineenvaihduntatuotteiden käytön sitruunahappokierrossa ja elektroninsiirtoketjussa. Haiman insuliinin eritystä lisää pääasiassa pohjukaissuolen seinämästä verenkiertoon erittyvä GIP-hormoni, parasympaattinen hermosto sekä glukoosin määrä veressä. Insuliinin vastavaikuttajia ovat glukagoni ja adrenaliini.

Insuliinireseptorit säätelevät glukoosin varastoitumista glykogeeniksi ja rasvahapoiksi.

Ylimääräinen glukoosi varastoidaan glykogeeninä maksaan ja lihaksiin, josta glukagoni vapauttaa sitä nopeasti elimistön ja lihasten energiaksi. Kun glykogeenivarastot ovat täynnä, maksa ja rasvakudos ryhtyvät muuttamaan glukoosia lipogeneesissä triglyserideiksi eli rasvahapoiksi, joka varastoidaan rasvasoluihin.

Fruktoosi eli hedelmäsokeri

Fruktoosi eli hedelmäsokeri (C6H12O6) on sokeri, jota esiintyy marjoissa, hedelmissä ja hunajassa. Fruktoosi on maultaan noin kaksi kertaa makeampaa kuin glukoosi ja siksi sitä käytetään paljon makeutusaineena. Fruktoosi ei ravitse solujen energiantarvetta, sillä elimistö voi metaboloida fruktoosia ainoastaan maksassa. Tavallinen fruktoosi imeytyy osalla ihmisistä epätäydellisesti suolistossa ja se voi aiheuttaa runsaasti oireita ärtyvän suolen oireyhtymästä (IBS) kärsiville. HS-artikkeli fruktoosista >>

Fruktoosia on pidetty terveellisenä sokerina, koska sen glykeeminen indeksi eli vaikutus verensokeriin, on matalampi kuin glukoosilla. Fruktoosia on tästä syystä suositeltu erityisesti diabeetikoille.

Viimeisimpien tutkimusten perusteella fruktoosi on glukoosia haitallisempi sokeri.

Suolistosta fruktoosi kulkeutuu maksaan, jossa se metaboloidaan. Osa maksaan kulkeutuneesta fruktoosista muutetaan glukoosiksi ja osa syntetisoidaan rasvahapposynteesissä eli lipogeneesissä triglyserideiksi, jotka lisäävät viskeraalisen rasvan kerääntymistä elimiin ja niiden ympärille. Viskeraalinen rasva altistaa erilaisille sydän- ja verisuonitaudeille. Tutkimuksia aiheesta llöydät täältä >>

Mitä viskeraalinen rasva on?

”Suuri vyötärönympärys kertoo sisäelinten ympärille kertyneestä rasvasta, joka on terveyden kannalta erityisen haitallista. Viskeraalinen, eli sisäelinten ympärille kertyvä rasva lisää huomattavasti enemmän terveysriskejä kuin esimerkiksi ihon alle reisiin, takamukseen tai käsivarsiin kerääntyvä rasva. Tutkimusten mukaan etenkin kakkostyypin diabeteksen vaara suurenee huomattavasti, jos henkilöllä on paljon viskeraalista rasvaa.

Jos rasva kerääntyy vatsaontelon sisään, se asettuu myös sisäelinten, kuten maksan, munuaisten, haiman ja sydämen seutuun. Kun nämä aineenvaihdunnalle ja elämälle tärkeät elimet rasvoittuvat, terveys on uhattuna. Sokeriaineenvaihdunta häiriintyy ja seurauksena on nopeasti tyypin 2 diabetes. Myös verisuonet rasvoittuvat ja kalkkeutuvat. Sydänkohtaukset ja aivohalvaukset ovat vatsakkailla huomattavasti yleisempiä kuin hoikkavatsaisilla.” Lue tästä >>

Triglyseridit varastoituvat mm. maksaan ja altistavat alkoholista riippumattomalle rasvamaksan kehittymiselle, metaboliselle oireyhtymälle ja aikuistyypin diabetekselle. Fruktoosi lihottaa ensinnäkin rasvahapposynteesin kautta, mutta myös siksi, että se ei lisää kylläisyyden tunnetta toisin kuin glukoosi. On myös viitteitä siitä, että runsas fruktoosinsaanti hidastaa oppimiskykyä ja heikentää muistia.

Erityisen haitallisena pidetään fruktoosisiirappia (HFCS, maissisiirappi), joka on glukoosisiirapista teollisten entsyymien avulla fruktoosisiirapiksi muutettu teollisesti prosessoitu makeutusaine. Siinä fruktoosimolekyylit ovat suolesta verenkiertoon nopeasti imeytyvässä muodossa. Fruktoosimolekyylien energiapitoisuus on sama kuin glukoosilla (n. 4 kcal/g), mutta fruktoosisiirapin energia ei ravitse kehon ”energian nälkää”, vaan se varastoidaan läskinä.

Hedelmät ja marjat ovat terveellisiä ja niiden syömistä suositellaan. Hedelmissä fruktoosia on yleensä alle puolet hedelmän sokereista ja sekin esiintyy monimutkaisina muita sokereita, flavonoideja, ravintokuitua, mineraaleja ja vitamiineja sisältävinä komplekseina. Lisäksi hedelmän kuidut hidastavat fruktoosimolekyylien imeytymistä. Mutta edes tuorepuristettuja mehuja ei kaikissa lähteissä suositella, koska ne sisältävät monen hedelmän sokerimäärän yhdessä lasillisessa.

Sakkaroosi on fruktoosia parempi vaihtoehto, koska se on disakkaridi, jossa glukoosi- ja fruktoosimolekyylejä sitoo vahva sidos. Se siis pilkkoutuu ja imeytyy fruktoosimolekyylejä hitaammin suolistossa.

Resistentti tärkkelys

Elimistön hyvää mikrobikantaa ravitsee resistentti tärkkelys. Se on siis suoliston hyvinvointia parantava prebiootti, joka ei imeydy suolistosta, vaan fermentoituu paksusuolessa mikrobien vaikutuksesta. Resistenttiä tärkkelystä saa

  • kokojyväviljoista
  • hieman raaoista banaaneista
  • ruskeasta riisistä
  • pavuista ja muista palkokasveista
  • maissista
  • siemenistä
  • raaoista perunoista
  • keitetyistä ja jäähdytetyistä perunoista sekä riisistä

Pronutritionist Reijo Laatikaisen mukaan resistentti tärkkelys saattaa muiden huonosti ohutsuolesta imeytyvien hiilihydraattien tapaan auttaa painonhallinnassa, suolistoterveyden ylläpidossa, estää sydän- ja verisuonisairauksia sekä infektioita. Pronutritionist >>

FODMAP-hiilihydraatit (Fermentable Oligo-, Di-, and Mono-saccharides And Polyols)

Harvemmin käsiteltyjä sokereita ovat paksusuolessa fermentoituvat lyhytketjuiset FODMAP-hiilihydraatit, jotka voivat aiheuttaa kipu- ja turvotusoireita ärtyvän suolen oireyhtymää sairastavilla. Terveillä FODMAP-hiilihydraatit aiheuttavat lähinnä ilmavaivoja. Fermentoituvat hiilihydraatit tuottavat lyhytketjuisia rasvahappoja, joilla on nykytietämyksen valossa terveyttä edistäviä vaikutuksia.

  • Oligosakkaridit à
  • Fruktaanit à FOS*(DP<10), Inuliini (DP>10), GOS (DP<10)
  • Galaktaanit
  • Raffinoosi

*FOS = frukto-oligosakkaridi eli fruktaani

*GOS = galakto-oligosakkaridi eli galaktaani

*DP = degree of polymerization eli sakkaridimolekyylien määrä

Polyolit eli sokerialkoholit ovat

  • isomalt
  • ksylitoli
  • laktitoli
  • maltitoli
  • sorbitoli

Oligosakkarideja, joissa on fruktoosi-fruktoosi-sidoksia, kutsutaan fruktaaneiksi (frukto-oligosakkarideiksi). Fruktaaneja saa viljoista ja sipulista. Galakto-oligosakkarideja eli galaktaaneja esiintyy mm. sienissä ja palkokasveissa. Raffinoosi on trisakkaridi, joka muodostuu glukoosista, galaktoosista ja fruktoosista. Raffinoosia on erityisesti kaaleissa, soijassa, pavuissa, kokojyväviljoissa ja parsassa. Inuliini on pitkäketjuinen fruktaani, jota on lisäty viime vuosina terveysvaikutteisiin jogurtteihin ja ravintolisiin prebioottisten ominaisuuksien vuoksi.

Sokerialkoholit eli polyolit (ksylitoli, laktitoli, sorbitoli, maltitoli, mannitoli ja isomalt) ovat hiilihydraatteja, joissa hydroksiryhmä (-OH) esiintyy molekyylissä

Inuliini, fruktaanit ja galaktaani ovat prebiootteja, jotka ravitsevat suolen hyvälaatuisia mikrobeja ja lisäävät lyhytketjuisten rasvahappojen syntyä.

Lähde: Pronutritionist

Glukagoni ja glykogeeni

Kasveissa sokeri varastoituu tärkkelyksenä. Eläimillä ja ihmisillä sokeri varastoituu glykogeeninä lihaksiin ja maksaan, josta sitä vapautuu glukagonin vaikutuksesta vereen ja lihassoluihin. Glukagoni, jota erittyy haiman Langerhansin saarekkeiden alfasoluista, säätelee sokeriaineenvaihduntaa ja se toimii haiman Langerhansin saarekkeiden beetasoluista erittyvän insuliinin vastavaikuttajana. Kun verensokeri on alhaalla, glukagoni lisää glukoosia vereen. Se stimuloi edelleen insuliinin eritystä yhdessä ruoansulatuskanavan entsyymien (GIP) kanssa.

Glukagoni vapauttaa adrenaliinin avulla glukoosia maksan glykogeenivarastoista ja käynnistää myös glukoneogeneesin jo ennen glykogeenivarastojen ehtymistä. Tämä aineenvaihduntamekanismi tuottaa solujen tarvitsemaa sokeria myös silloin, kun ravinto ei sisällä hiilihydraatteja.

Tarvitseeko elimistö sokerista saatavaa energiaa?

Ravinto ei ole vain energiaa. Keho tarvitsee energian lisäksi elimistöä ja aineenvaihduntaa ylläpitäviä suojaravinteita sekä solujen uusiutumisen tarvitsemia ravintoaineita.

Solut uusiutuvat jatkuvasti noin 200 gramman päivävauhtia. Keho tarvitsee välttämättömiä ravintoaineita ylläpitämään solujen uusiutumista, aineenvaihduntaa ja immuunijärjestelmää.

”Ihmisen tarvitsema kalorimäärä on melko vakio. Mitä suurempi määrä kaloreista tulee sokereista, sitä vähemmän ihminen syö sellaista ruokaa, jonka tiedetään edistävän terveyttä. Terveysongelmat eivät siis välttämättä aiheudu suoraan sokerista vaan siitä, että muiden ruokien terveysvaikutukset jäävät saamatta, kun niiden sijaan syödään sokeria”, Huttunen sanoo.” HS

Nälkä ei siis tarkoita vain energiavajetta, vaan se kertoo yleisemmin siitä, että elimistö tarvitsee ravintoaineita ylläpitämään kehon uusiutumista ja homeostaasia. Lienee melko yleistä, että päivittäisestä energiasta 10-20 % saadaan lisätyistä sokereista. Tämä ei kuitenkaan tyydytä elimistön ravinteiden tarvetta, vaan ravinteet on välttämättä saatava jostakin.

Paljonko lisättyä sokeria voi syödä?

“We have solid evidence that keeping intake of free sugars to less than 10% of total energy intake reduces the risk of overweight, obesity and tooth decay.” Dr Francesco Branca, Director of WHO’s Department of Nutrition for Health and Development.

Helsingin yliopiston ravitsemustieteen professori Mikael Fogelholm sanoo, ettei sokerinsaanti linkity tutkimuksissa lihomisen riskiin: ”Sakkaroosin lähteitä on niin monia, ja monet eri lähteet ovat eri tavoin yhteydessä lihavuuteen. Sama koskee hiilihydraatteja, rasvaa ja proteiinia. Näillä ei ravintoaineina näytä olevan yhteyksiä painonmuutoksiin.” Mikael Fogelholm / Iltalehti / Keventäjät / MTV3 2015

Kaksi erilaista näkemystä sokereista. Maailman terveysjärjestön (WHO:n) suositus lisätylle sokerille on enintään 5-10 % päivittäisestä energiansaannista. Helsingin yliopiston ravitsemustieteen professorin mielestä 10 % päivittäisestä energiasta voi tulla lisätystä sokerista.

Suomessa puhtaan sokerin kulutus on ravitsemussuositusten mukaisesti keskimäärin 10 % päivittäisestä kokonaisenergian saannista, eli karkeasti 50 g/päivä/hlö. Osa väestöstä kuluttaa lisättyä sokeria selvästi suosituksia enemmän ja osa selvästi vähemmän kuin suositellaan.  Sokerinkulutuksen keskiarvo kertookin vain väestön keskimääräisen kulutuksen.Ilmiöstä tekee huolestuttavan se, että eräs sokeria liikaa käyttävistä väestöryhmistä ovat kasvuikäiset lapset. Sokeria on lisätty jogurtteihin, mehuihin, kiisseleihin ja muroihin puhumattakaan virvoitus- ja energiajuomista tai makeisista. On oikeastaan vaikeaa löytää elintarvikkeita, joihin ei olisi lisätty sokeria tai jotakin muuta makeutusainetta.

Ovatko sokerit terveydelle haitallisia?

”Researchers find strongest link yet between high sugar consumption and obesity. 22,000 cancer cases a year avoidable if we were all healthy weight. People who eat more sugar are much more likely to be obese than those who eat less, according to a landmark finding by University of Reading scientists.” https://www.reading.ac.uk/news-and-events/releases/PR626778.aspx

Readingin yliopiston tutkijat havaitsivat, että runsas sokerin (sakkaroosin) saanti korreloi lihomisen kanssa. Tutkijat Readingin, Cambridgen ja Arizonan yliopistoista vertasivat 1700 Norfolkissa asuvan henkilön sokerin kulutusta ja painoa kolme vuotta kestäneessä seurantatutkimuksessa.

Tutkimukseen osallistuvia pyydettiin raportoimaan omasta sokerin kulutuksestaan ja raportteja verrattiin tutkimukseen osallistuneiden virtsanäytteistä saatuihin tuloksiin. Kolmivuotisen tutkimuksen lopuksi mitattiin osallistuneiden painoindeksi.

Virtsanäytteiden mukaan eniten sokeria kuluttaneet olivat 54 % todennäköisemmin ylipainoisia kuin ne, jotka käyttivät virtsanäytteiden perusteella vähiten sokeria. Tutkimus osoitti myös, että ylipainoiset aliarvioivat oman sokerin kulutuksensa (oma raportointi vs. virtsanäyte). Ne, jotka raportoivat käyttävänsä paljon sokeria, olivat 44 % todennäköisyydellä laihempia, kuin ne, jotka kertoivat syövänsä vain vähän sokeria. Tämä on mielenkiintoista, sillä tutkimus kyseenalaistaa aikaisempien seurantatutkimusten osallistuneiden omaan raportointiin ja kyselyihin perustuvien tulosten luotettavuuden.  Kaikki valehtelevat, sanoisi Dr. House.

Tohtori Giota Mitrou (Head of Research Funding and Science Activities at WCRF) huomautti tutkimusta kommentoidessaan, että on yhdeksän syöpätyyppiä, jotka ovat selvästi yhteydessä lihavuuteen ja että siksi on tärkeää tutkia, onko lihavuuden ja lisätyn sokerin välillä kausaalisuhde.

Dr Gunter Kuhnle, nutritional scientist at the University of Reading, said: ”There have been heated discussions about the role of sugar in the war against obesity, with some claims that sugar doesn’t have anything to do with putting on weight. These claims were based on research which showed that people who consume high amounts of sugar are not heavier than those who don’t.

”However, these studies relied on the information about sugar consumption given by the participants. This turns out to be a big problem, as our study shows that people with a higher BMI tend to underreport the amount of sugar they consume.

Association between sucrose intake and risk of overweight and obesity in a prospective sub-cohort of the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) – Gunter GC Kuhnle, Natasha Tasevska, Marleen AH Lentjes, Julian L Griffin, Matthew A Sims, Larissa Richardson, Sue M Aspinall, Angela A Mulligan, Robert N Luben and Kay-Tee Khaw / Public Health Nutrition / Volume 18 / Issue 15 / October 2015,

Tutkimuksen rahoittivat World Cancer Research Fund (WCRF), Medical Research Council (MRC) ja Cancer Research UK ja tutkimuksessa seurattiin vuosina 1993 ja 1995 pitkäkestoiseen ravinnon ja syövän suhteita kartoittavaan EPIC -seurantatutkimukseen värvättyjä1700 henkilöä. EPIC tutkimushankkeessa on mukana yli 25 000 tutkittavaa ja tutkimusten tuloksiin voi tutustua oheisen linkin kautta: EPIC – European Prospective Invesigation into Cancer and Nutrition.

Muita tutkimuksia

Monien tutkimusten mukaan sokeri ja erityisesti fruktoosi saattavat altistaa lihomiselle, metaboliselle oireyhtymälle ja diabetekselle. Seuraavassa eräitä sokereiden terveysvaikutuksia selvittäviä tutkimuksia.

Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 DiabetesA meta-analysis

Vasanti S. Malik, SCD, Barry M. Popkin, PHD, George A. Bray, MD3, Jean-Pierre Després, PHD, Walter C. Willett, MD, DRPH and Frank B. Hu, MD, PHD

RESULTS Based on data from these studies, including 310,819 participants and 15,043 cases of type 2 diabetes, individuals in the highest quantile of SSB (sugar sweetened beverages) intake (most often 1–2 servings/day) had a 26% greater risk of developing type 2 diabetes than those in the lowest quantile (none or <1 serving/month) (relative risk [RR] 1.26 [95% CI 1.12–1.41]). Among studies evaluating metabolic syndrome, including 19,431 participants and 5,803 cases, the pooled RR was 1.20 [1.02–1.42].

CONCLUSIONS In addition to weight gain, higher consumption of SSBs is associated with development of metabolic syndrome and type 2 diabetes. These data provide empirical evidence that intake of SSBs should be limited to reduce obesity-related risk of chronic metabolic diseases.

Sugar-Sweetened Beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Agede Women,

Matthias B. Schulze, DrPH; JoAnn E. Manson, MD; David S. Ludwig, MD; et al

Results Those with stable consumption patterns had no difference in weight gain, but weight gain over a 4-year period was highest among women who increased their sugar-sweetened soft drink consumption from 1 or fewer drinks per week to 1 or more drinks per day (multivariate-adjusted means, 4.69 kg for 1991 to 1995 and 4.20 kg for 1995 to 1999) and was smallest among women who decreased their intake (1.34 and 0.15 kg for the 2 periods, respectively) after adjusting for lifestyle and dietary confounders. Increased consumption of fruit punch was also associated with greater weight gain compared with decreased consumption. After adjustment for potential confounders, women consuming 1 or more sugar-sweetened soft drinks per day had a relative risk [RR] of type 2 diabetes of 1.83 (95% confidence interval [CI], 1.42-2.36; P<.001 for trend) compared with those who consumed less than 1 of these beverages per month. Similarly, consumption of fruit punch was associated with increased diabetes risk (RR for ≥1 drink per day compared with <1 drink per month, 2.00; 95% CI, 1.33-3.03; P = .001).

Conclusion Higher consumption of sugar-sweetened beverages is associated with a greater magnitude of weight gain and an increased risk for development of type 2 diabetes in women, possibly by providing excessive calories and large amounts of rapidly absorbable sugars.

A Prospective Study of Sugar Intake and Risk of Type 2 Diabetes in Women

Sok-Ja Janket, DMD, MPH, JoAnn E. Manson, MD, DRPH, Howard Sesso, SCD, Julie E. Buring, SCD and Simin Liu, MD, SCD

RESULTS—Compared with the lowest quintile of sugar intake, the RRs and 95% CIs for the highest quintiles were 0.84 (0.67–1.04) for sucrose, 0.96 (0.78–1.19) for fructose, 1.04 (0.85–1.28) for glucose, and 0.99 (0.80–1.22) for lactose, after adjustment for known risk factors for type 2 diabetes. Similar findings of no association were obtained in subgroup analyses stratified by BMI.

CONCLUSIONS—Intake of sugars does not appear to play a deleterious role in primary prevention of type 2 diabetes. These prospective data support the recent American Diabetes Association’s guideline that a moderate amount of sugar can be incorporated in a healthy diet.

Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease

Richard J Johnson, Mark S Segal, Yuri Sautin, Takahiko Nakagawa, Daniel I Feig, Duk-Hee Kang, Michael S Gersch, Steven Benner, and Laura G Sánchez-Lozada

Currently, we are experiencing an epidemic of cardiorenal disease characterized by increasing rates of obesity, hypertension, the metabolic syndrome, type 2 diabetes, and kidney disease. Whereas excessive caloric intake and physical inactivity are likely important factors driving the obesity epidemic, it is important to consider additional mechanisms. We revisit an old hypothesis that sugar, particularly excessive fructose intake, has a critical role in the epidemic of cardiorenal disease. We also present evidence that the unique ability of fructose to induce an increase in uric acid may be a major mechanism by which fructose can cause cardiorenal disease. Finally, we suggest that high intakes of fructose in African Americans may explain their greater predisposition to develop cardiorenal disease, and we provide a list of testable predictions to evaluate this hypothesis.

Sugar consumption, metabolic disease and obesity: The state of the controversy

KL Stanhope – 2016

The impact of sugar consumption on health continues to be a controversial topic. The objective of this review is to discuss the evidence and lack of evidence that allows the controversy to continue, and why resolution of the controversy is important. There are plausible mechanisms and research evidence that supports the suggestion that consumption of excess sugar promotes the development of cardiovascular disease (CVD) and type 2 diabetes (T2DM) both directly and indirectly. The direct pathway involves the unregulated hepatic uptake and metabolism of fructose, leading to liver lipid accumulation, dyslipidemia, decreased insulin sensitivity and increased uric acid levels. The epidemiological data suggest that these direct effects of fructose are pertinent to the consumption of the fructose-containing sugars, sucrose and high fructose corn syrup (HFCS), which are the predominant added sugars. Consumption of added sugar is associated with development and/or prevalence of fatty liver, dyslipidemia, insulin resistance, hyperuricemia, CVD and T2DM, often independent of body weight gain or total energy intake. There are diet intervention studies in which human subjects exhibited increased circulating lipids and decreased insulin sensitivity when consuming high sugar compared with control diets. Most recently, our group has reported that supplementing the ad libitum diets of young adults with beverages containing 0%, 10%, 17.5% or 25% of daily energy requirement (Ereq) as HFCS increased lipid/lipoprotein risk factors for CVD and uric acid in a dose-response manner. However, un-confounded studies conducted in healthy humans under a controlled, energy-balanced diet protocol that enables determination of the effects of sugar with diets that do not allow for body weight gain are lacking. Furthermore, recent reports conclude that there are no adverse effects of consuming beverages containing up to 30% Ereq sucrose or HFCS, and the conclusions from several meta-analyses suggest that fructose has no specific adverse effects relative to any other carbohydrate. Consumption of excess sugar may also promote the development of CVD and T2DM indirectly by causing increased body weight and fat gain, but this is also a topic of controversy. Mechanistically, it is plausible that fructose consumption causes increased energy intake and reduced energy expenditure due to its failure to stimulate leptin production. Functional magnetic resonance imaging (fMRI) of the brain demonstrates that the brain responds differently to fructose or fructose-containing sugars compared with glucose or aspartame. Some epidemiological studies show that sugar consumption is associated with body weight gain, and there are intervention studies in which consumption of ad libitum high-sugar diets promoted increased body weight gain compared with consumption of ad libitum low- sugar diets. However, there are no studies in which energy intake and weight gain were compared in subjects consuming high or low sugar, blinded, ad libitum diets formulated to ensure both groups consumed a comparable macronutrient distribution and the same amounts of fiber. There is also little data to determine whether the form in which added sugar is consumed, as beverage or as solid food, affects its potential to promote weight gain. It will be very challenging to obtain the funding to conduct the clinical diet studies needed to address these evidence gaps, especially at the levels of added sugar that are commonly consumed. Yet, filling these evidence gaps may be necessary for supporting the policy changes that will help to turn the food environment into one that does not promote the development of obesity and metabolic disease.

Sugar and Cardiovascular Disease

A Statement for Healthcare Professionals From the Committee on Nutrition of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association
Barbara V. Howard, Judith Wylie-Roset

As with most other dietary constituents, long-term trial data relating sugar consumption to the development of CVD events are unavailable. Longitudinal cohort studies relating sugar consumption to CVD are equivocal because of the many potential confounders that cannot be adequately controlled in the analyses. Shorter-term studies show consistent adverse effects of sugar consumption on HDL and triglyceride levels, which could accelerate atherosclerosis. High sugar consumption may worsen diabetes control, and the combination of sugar with protein and fats promotes formation of dietary AGEs, which may be especially detrimental to those with diabetes. Although increasing the amount of sugar in an isocaloric diet does not directly lead to changes in energy expenditure or weight gain in controlled feeding studies, high-sugar foods, which are sweet and calorie dense, may increase calorie consumption and lead to weight gain. Furthermore, replacement of whole foods with high-sugar foods compromises attainment of adequate dietary vitamin and mineral intake from whole food sources.

In the absence of definitive evidence, recommendations must rely on professional judgment. No data suggest that sugar intake per se is advantageous, and some data suggest it may be detrimental. The studies above, taken in total, indicate that high sugar intake should be avoided. Sugar has no nutritional value other than to provide calories. To improve the overall nutrient density of the diet and to help reduce the intake of excess calories, individuals should be sure foods high in added sugar are not displacing foods with essential nutrients or increasing calorie intake.

Miksi sokerit lihottavat?

Lipogeneesi eli rasvahapposynteesi on aineenvaihduntaprosessi, jossa hiilihydraatit muuttuvat triglyserideiksi. Käytännössä veren ylimääräinen glukoosi muutetaan varastorasvaksi. Tämä rasvahapposynteesi on aktiivista erityisesti maksan, rasvakudoksen ja toimivan maitorauhasen soluissa.

Lipogeneesin käynnistää insuliini, joka säätelee veren glukoositasoa. Rasvahapposynteesissä yhdestä glukoosimolekyylistä muodostuu ensin kaksi glyserolimolekyyliä, joihin liittyy edelleen glukoosin auenneesta renkaasta muodostunut pelkistynyt rasvahappoketju.

On esitetty arvio, että 45 % syödyistä hiilihydraateista menee suoraan elimistön ravinnoksi ja noin 55 % osallistuu lipogeneesiin.

Rasva-aineenvaihdunta sisältää vielä yhden yllätyksen: osa rasvoista muutetaan glukoneogeneesissä edelleen glukoosiksi ja osa varastoidaan rasvasoluihin.

Insuliini, insuliiniresistenssi ja IGF-1 (Insulin-like Growth Factor-1)

Insuliini on sokeriaineenvaihduntaa säätelevä hormoni, jota tuottaa haiman Langerhansin saarekkeissa sijaitsevat beetasolut. Sen vastavaikuttajia ovat glukagoni ja adrenaliini.

Insuliini ohjaa insuliinireseptoreiden säätelemää glukoosin kulkua rasva- ja lihassolujen solukalvon läpi soluihin, joissa glukoosista vapautetaan soluhengityksen reaktioiden avulla energiaa.

Haima alkaa erittää insuliinia heti aterian jälkeen. Se kuljettaa glukoosia elimistön kaikkiin soluihin. Terveet insuliinireseptorit reagoivat insuliiniin herkästi ja ruokailua seurannut kohonnut verensokeri laskee insuliinin avulla normaaliksi. Reseptoreiden insuliiniherkkyyden heikentymisen seurauksena glukoosi ei pääse soluihin ja verensokeripitoisuus pysyy korkeana.

Insuliiniresistenssi

Insuliiniresistenssi johtaa solujen mitokondrioiden vaurioitumiseen ja lisää mm. metabolisen oireyhtymän, aikuistyypin diabeteksen ja Alzheimerin taudin riskiä. Nykytiedon mukaan insuliiniresistenssi johtuu endoteelin toimintahäiriöstä ääreisvaltimoiden arerioli- ja kalpillaaritasolla. Endoteelin toimintahäiriö on varhaisin tapahtuma valtimonkovettumataudissa, mutta sitä voidaan ehkäistä ja hoitaa ortoglykeemisellä eli vähähiilihydraattisella ruokavaliolla.

Terveyden suurin vihollinen ei ole kolesteroli eikä ravintorasva, vaan lihavuus. Siinä vallitsee aina hiljainen krooninen tulehdustila, inflammaatio. Rasva ei yksin lihota, vaan myös liika hiilihydrattiien syönti. Lihomisen pääsyitä ovat tietyt geenivirheet sekä ihmisen itsensä erittämät hormonit: insuliini, kortisoli, leptiini, greliini ja oreksiinit – sekä adiponektiinin puute. Ne voidaan saada tasapainoon liikunnan ja oikean – ortoglykeemisen – ruokavalion avulla. Se stimuloi kylläisyyshormonia, kolekystokiniiniä. Lähde: tritolonen

Insuliiniresistenssissä haiman tuottaman insuliinin teho on heikentynyt ja lihaksisto sekä muut elimet ottavat glukoosia vastaan huonosti. Samaan aikaan verenkiertoon vapautuu liikaa glukoosia, jolloin verensokeripitoisuus kasvaa. Elimistö on siis tullut resistentiksi eli vastustuskykyiseksi insuliinille.  Insuliiniresistenssin on osoitettu kasvattavan Alzheimerin taudin riskiä 65%.

Insuliiniresistenssi johtaa suurella todennäköisyydellä glukoosi-intoleranssiin (heikentyneeseen sokerinsietokykyyn). Koholla olevat triglyseridit, insuliiniresistenssi, glukoosi-intoleranssi, matala HDL-kolesteroli, venepainetauti ja tulehdussytokiinit kasvattavat sydän- ja verisuonitautien riskiä.

Ruoansulatus: hiilihydraatteja pilkkovat entsyymit

Suolisto on osa ruoansulatuselimistöä. Se alkaa mahalaukusta ja päättyy peräaukkoon. Suolistoon kuuluvat ohutsuoli, paksusuoli ja peräsuoli. Sen tehtävä on pilkkoa ravintoaineita ja imeä nautitusta ravinnosta kaikki hyödyllinen: energiaravinteet kuten hiilihydraatit, joista imeytyy glukoosia energiaa tuottavan soluhengityksen lähtöaineeksi, suojaravinteet, eli vitamiinit ja hivenaineet sekä kasvulle ja solujen uusiutumiselle välttämättömät rasvat ja proteiinit.

Suoliston ja suolistoflooran terveys on terveyden ja hyvinvoinnin lähtökohta. Kun suolisto voi huonosti, myös ihminen voi huonosti. Se ei ole ihme, sillä suoliston limakalvo on pinta-alaltaan 200-300 neliömetriä ja se joutuu tekemisiin päivittäin 1-2 kg ruokamäärän kanssa. Ihmisen elinaikana suoliston läpi kulkee keskimäärin 60 tonnia ravintoa.

Joka minuutti suolistossa uusiutuu noin 55 miljoonaa solua ja joka päivä uusiutuu 200 grammaa soluja. Kaikki solut uusiutuvat 3-4 päivän välein. Uusia soluja muodostuu limakalvon pohjaosissa, joista ne työntyvät pintaa kohti korvatakseen vanhat solut, jotka irtoavat ja tuhoutuvat.

Suolistofloora muodostuu 100 000 miljardista mikro-organismista, jotka edustavat 400-500 mikrobilajia. Aikuisilla mikrobimassa painaa n. 1-2 kiloa. Ihmisessä elää mikrobeja noin 10 kertaa enemmän kuin ihmisessä on soluja.

Mikrobit osallistuvat ravintomassan jäännösten sulattamiseen ja tuottavat siinä yhteydessä aineenvaihduntatuotteita, jotka vaikuttavat positiivisesti elimistön ja immuunijärjestelmän toimintaan. Ruoansulatuskanavan hyödylliset bakteerit auttavat pilkkomaan ravinteita ja muodostamaan vitamiineja.

Suoliston terveys ja suolistoflooran mikrobit ovat yhteydessä lukemattomiin sairauksiin, allergioihin ja autoimmuunitauteihin kuten keliakiaan, Crohnin tautiin ja diabetekseen. Vääränlainen ja yksipuolinen ravinto, antibiootit, reseptilääkkeet, ympäristömyrkyt ja runsas alkoholinkäyttö vaikuttavat suolistoflooraan tuhoavasti.

Hiilihydraatteja pilkkovat entsyymit

Hiilihydraatteja pilkkovia entsyymejä on ruoansulatuskanavassa useita. Tärkkelyksen hydrolyysin aloittaa jo suussa amylaasi ja pilkkominen maltoosiksi jatkuu pohjukaissuolessa. Maltoosi pilkotaan kahdeksi glukoosimolekyyliksi maltaasin avulla. Laktaasi pilkkoo laktoosin eli maitosokerin glukoosiksi ja galaktoosiksi. Sakkaraasi pilkkoo sakkaroosin glukoosiksi ja fruktoosiksi. Glugagoni pilkkoo glykogeenin maksassa ja adrenaliini lihaksissa. Hydrolyysin sijaan glykogeeni pilkkoutuu fosforolyyttisesti, eli glukoosiyksiköiden väliin sitoutuu vesimolekyylin sijasta fosforihappo, jolloin saadaan glukoosi- 1-fosfaattia, jota voidaan käyttää glykolyysissä. Poly- ja oligosakkarideja elimistö ei pysty pilkkomaan hyödynnettävään muotoon, mutta ainakin osa niistä on suolistoflooran hyvinvointia parantavia prebiootteja.

Ohutsuoli ja ravinnon imeytyminen

Ohutsuoli on keskimäärin seitsemän metriä pitkä, mutkitteleva ja onteloinen suoliston osa, joka ulottuu mahalaukun mahaportista paksusuoleen. Sen pinnalla on nukkalisäkkeitä, joiden pinnalla on edelleen hermoja, imusuonia ja verisuonia. Ohutsuolen kolme osaa ovat: pohjukaissuoli, tyhjäsuoli ja sykkyräsuoli. Pohjukaissuoli koostuu edelleen neljästä osasta, joista yläosan alkupäässä on happamalta mahanesteeltä suojaavaa limaa erittäviä pohjukaissuolirauhasia. Tyhjäsuoli ja sykkyräsuoli muodostavat ohutsuolen loppuosan. Tyhjäsuolen limakalvo on poimuttuneempi ja siellä ravintoaineita imeytyy aktiivisesti.

Ohutsuolessa entsyymit pilkkovat ravintoa, eli hiilihydraatteja, proteiineja sekä rasvoja imeytyvään muotoon kemiallisesti ns. kemiallisessa pilkkoutumisessa. Pilkkoutuneet ravintoaineet imeytyvät ohutsuolen seinämän läpi verenkiertoon ja kulkeutuvat sitä kautta kaikkiin elimistön soluihin. Ravintoaineiden kuljettaminen tapahtuu verisuoniston ja imuteiden välityksellä. Ravintoaineet, joita ohutsuoli ei voi hyödyntää, kuten kuidut, kulkeutuvat paksusuoleen, jossa ne fermentoituvat ja tuottavat lyhytketjuisia rasvahappoja, joilla on terveydelle suotuisia ominaisuuksia.

Ohutsuolen seinämässä on monta kerrosta. Uloin kerros koostuu lihassyistä. Niiden sisäpuolella on hermoja, verisuonia, rasvaa ja löyhää sidekudosta sisältävä kerros. Sisempänä on ohut limakalvon lihaskerros ja loput limakalvot. Limakalvo on poimuttunut, mikä lisää suolen sisäpinta-alaa. Se on tarpeen, jotta mahdollisimman paljon suolen läpi kulkevista ravintoaineista voidaan hyödyntää. Limakalvoissa on miljoonia pieniä ulokkeita, eli nukkalisäkkeitä (villus). Nukkalisäkkeiden kautta ravintoaineet imeytyvät elimistöön. Ohutsuolen epiteelisolujen pinnassa on mikrovilluksia, joiden korkeus on 1µm. Solua kohden niitä on 1000-2000. Rengaspoimut laajentavat suolen imeytymispinnan kolminkertaiseksi, villukset kymmenkertaiseksi ja mikrovillukset 20-30 kertaiseksi, joten ohutsuolen koko imeytymispinta-ala on 200-300 neliömetriä.

Suolen limakalvossa on runsaasti imukudosta, joka poistaa suolesta bakteereita ja muita haitallisia aineita. Imukudosta on erityisen paljon sykkyräsuolen loppupäässä. Limakalvossa on myös muita soluja, jotka erittävät limaa, hormoneja ja muita suolen toimintaan vaikuttavia aineita.

Ruoka on ohutsuoleen tullessaan käynyt läpi mekaanisen muokkauksen ja alkanut mahalaukussa pilkkoutua pienempiin osiin. Ohutsuolessa entsyymit jatkavat ravintoaineiden pilkkomista pienemmiksi, imeytyviksi osiksi. Entsyymeitä syntyy ruoansulatuselimissä, kuten haimassa, josta ne kulkeutuvat ohutsuoleen tiehyitä pitkin. Myös ohutsuolen limakalvossa syntyy useita eri entsyymejä.

Melkein kaikki pilkkoutuneet aineet imeytyvät limakalvon nukkalisäkkeisiin. Monet aineet kulkeutuvat nukkalisäkkeiden solujen solukalvon läpi itsestään. Jotkut aineet tarvitsevat imeytymisprosessiin natriumia. Soluista kulkeutuu solukalvon läpi niitä ympäröivään kudosnesteeseen natriumioneja, jolloin soluihin syntyy natriumvajaus. Kun natriumionit palaavat soluihin, niiden mukana kulkeutuu tärkeitä ravintoaineita. Nukkalisäkkeeseen imeytyvät rasvat kulkeutuvat imusuoniston mukana lopulta verenkiertoon. Suuri osa ravintoaineista kulkeutuu maksaan. Sykkyräsuolessa imeytyy suuri osa sapesta ja B12 vitamiinista.

Sulamaton massa kulkeutuu edelleen paksusuoleen, jossa se liikkuu suolenseinämän lihasten supistellessa. Ohutsuoli pystyy käsittelemään noin 10 litraa ruokaa päivässä. Tavallisesti ruoka kulkee ohutsuolen läpi kuudessa tunnissa.

Ohutsuolen tyypillisiä sairauksia ovat pohjukaissuolen haavaumat sekä tulehdukselliset suoistosairaudet kuten ärtyvän suolen oireyhtymä, keliakia ja Crohnin tauti.

 Paksusuoli

Paksusuoli on ohutsuolen jatke, joka alkaa vatsaontelossa oikealta alhaalta. Sen alkuosa on säkin muotoinen ja sitä kutsutaan umpisuoleksi. Umpisuolen kärjessä on ohut lisäke – umpilisäke, siis se osa joka poistetaan umpilisäkkeen leikkauksessa. Heti umpisuolen yläpuolella ohutsuoli liittyy paksusuoleen. Ohutsuolen ja paksusuolen liittymäkohdassa on läppä, joka estää takaisinvirtauksen eräänlaisen venttiilin avulla. Paksusuolen ulkopintaa verhoaa vatsakalvo. Sen sisäpuolella on sidekudosta ja lihaksia. Näitä seuraa kudos, joka tukee koko suolta ja sisimpänä on poimuttunut suolen limakalvo.

Paksusuoli on 1-2 metrin mittainen ja viiden sentin paksuinen suoliston osa, jossa elävät mikrobit myös huolehtivat suoleen tulevan materiaalin käsittelystä yhdessä suolen mekaanisten toimien kanssa. Paksusuolen eräs tärkeimmistä tehtävistä on ottaa suolessa olevasta ravinnosta nestettä ja suoloja. Ruokaa työstetään suussa, mahalaukussa ja ohutsuolessa, joissa imeytyvät tärkeimmät ravintoaineet. Kun työstetty ravintomassa tulee paksusuoleen, siinä on runsaasti vettä, joka poistuu kehosta ulosteen mukana. Paksusuoli imee osan nesteestä.

Paksusuoli voi bakteerien avulla muuttaa tietyt ruoassa olevat aineet siten, että elimistö voi käyttää niitä hyväkseen. Paksusuolessa elää bakteereita, jotka muodostavat suuren osan ulosteen määrästä ja kiinteydestä. Vesi suolat ja mikrobien valmistamat vitamiinit, K-vitamiini ja jotkut B-vitamiinit, imeytyvät paksusuolessa verenkiertoon. Myös selluloosaa (kuitua) pilkkoutuu paksusuolessa jonkin verran. Massa, jota suolisto ei voi hyödyntää, kulkeutuu peräsuoleen, josta se poistuu ulosteena.

Paksusuolella on suuri pinta-ala, jotta se voi ottaa talteen nestettä. Suolen sisäpinnan limakalvo on poimuttunut ja nestettä läpäisevien solujen peittämä. Näiden solujen kautta neste, rasva ja ravintoaineet kulkeutuvat elimistön käyttöön.

Paksusuolella on myös imusuonijärjestelmä, joka kerää solujen ulkopuolista nestettä ja kuljettaa sen takaisin kehon eri osiin. Imusuonissa kuljetetaan suuri osa ravinnosta saatavista rasvoista ja niillä on vasta-aineen muodostuksessa tärkeä rooli.

Soluhengitys ja energia

Hiilihydraatit pilkotaan ruoansulatuskanavassa ensin mekaanisesti ja sitten kemiallisesti entsyymien avulla ohutsuolessa imeytyvään muotoon sokereiksi, vitamiineiksi, kivennäisaineiksi, aminohapoiksi ja rasvoiksi, joilla kullakin on omat tarkoituksensa aineenvaihdunnassa.

Hiilihydraateista saatava glukoosi kulkeutuu veri- ja imusuonien välityksellä ja insuliinin ohjaamana soluihin, jossa se yhdessä hapen kanssa vapauttaa soluhengityksessä energiaa. Soluhengityksen tärkeimmät vaiheet ovat:

Glykolyysi:

Yksinkertaisesti soluhengityksen lähtöaineina ovat glukoosi ja happi ja lopputuotteena syntyy hiilidioksidia ja vettä. Reaktiossa vapautuu energiaa ATP-molekyylien sidoksien purkautuessa. Glykolyysi on solulimassa tapahtuva reaktioiden sarja, jossa glukoosi hajotetaan pyruvaatiksi: reaktiosta saadaan kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä. Pyruvaateista saadaan mitokondrioissa tiettyjen entsyymien avulla edelleen oksidatiivisessa dekarboksylaatiossa asetyylikoentsyymi-A:ta, jos happea on riittävästi. Punasoluissa pyruvaatti pelkistyy mitokondrion ja hapen puutteen seurauksena maitohapoksi. Maitohappoon päättyvää glykolyysiä kutsutaan anaerobiseksi glykolyysiksi ja asetyylikoentsyymi-A:han päättyvää glykolyysiä aerobiseksi glykolyysiksi.

Sitruunahappokierto:

– eli Krebsin sykli (TCA-kierto): on solujen mitokondrioissa tapahtuva monivaiheinen prosessi, jossa ravintoaineista saadut hiiliatomit hapettuvat hiilidioksidiksi ja samojen molekyylien sisältämät vedyt siirtyvät elektroninsiirtäjäkoentsyymeille. Prosessissa vapautuu energiaa ja se on solujen pääasiallinen energianlähde. Ennen kuin hiilihydraatit ja rasvat päätyvät sitruunahappokiertoon, solussa tapahtuvien muiden prosessien on muutettava ne sopivaan muotoon – asetyyliryhmäksi, joka sitoutuu koentsyymi-A:n kanssa aktiiviseksi etikkahapoksi eli asetyylikoentsyymi-A:ksi. Kierron eri vaiheissa sitoutuu vesimolekyylejä ja siinä vapautuu hiilidioksidia sekä vetyioneja ja elektroneja. Nämä siirtyvät hapetus-pelkistysreaktioissa elektroninsiirtäjäkoentsyymeille, joita ovat NAD+ ja FAD. Koentsyymeiltä vedyt siirtyvät edelleen elektroninsiirtoketjuun, jonka päätteeksi ne yhtyvät hengitysilmasta tulleen hapen kanssa vesimolekyyleiksi. Syklisessä reaktiossa sitoutuu myös yksi fosforihappomolekyyli, jolloin muodostuu yksi korkeanenerginen ATP-molekyyli GTP-välivaiheen kautta, ja neljä pelkistynyttä elektroninsiirtäjäkoentsyymiä (kolme NADH:ta ja yksi FADH2) kutakin pilkkoutunutta ja hapettunutta asetyylikoentsyymi-A:ta kohti. Sitruunahappokierto tapahtuu pääasiassa mitokondrion matriksissa, kun elektroninsiirtoketju tapahtuu puolestaan mitokondrion sisäkalvolla. Kiertoon kuuluu kymmenen vaihetta, joista jokaisessa jokinkrboksyylihappo joko sitoo jonkin molekyylin tai siitä irtoaa jotain niin, että se muuttuu toiseksi karboksyylihapoksi.

Elektroninsiirtoketju:

– on mitokondrion sisäkalvolla tai solukalvon kalvoproteiineissa tapahtuva energiaa tuottava reaktiosarja, jossa sitruunahappokierrossa ja sitä edeltäneissä reaktioissa koentsyymeille NADH ja FADH2 siirtyneitä elektroneja siirrellään elektroninsiirtoketjun entsyymiltä toiselle, jolloin elektronin menettävät potentiaalienergiaansa vähitellen vapauttaen samalla energiaa. Vapautuvan energian avulla mitokondrion matriksista pumpataan protoneja mitokondrion kalvojen välitilaan, mikä aiheuttaa elektrokemiallisen gradientin eli potentiaali- ja protonikonsentraatioeron matriksin ja välitilan välille. Muodostunut gradientti purkautuu ATP-syntaasientsyymin kautta, jolloin muodostuu suurenergiaista fosfaattiyhdistettä, ATP:tä. Tätä reaktiota kutsutaan oksidatiiviseksi fosforylaatioksi. Pelkistys elektroninsiirtoketjussa päättyy, kun vety siirtyy molekulaariselle hapelle, joka pelkistyy vedeksi. Hapen pelkistymistä vedeksi katalysoi elektroninsiirtoketjun viimeinen entsyymi – sytokromi-c-oksidaasi.

ATP, eli adenosiinitrifosfaatti on runsasenerginen yhdiste, jota mitokondriot tuottavat soluhengityksellä solulimassa tapahtuvassa glykolyysissä. ATP:ta käytetään energian siirtoon ja lyhytaikaiseen varastointiin. Elimistön solujen tarvitessa ATP-molekyyleihin sitoutunutta energiaa ATPaasi-niminen entsyymi pilkkoo runsasenergiaisia sidoksia fosfaattiryhmien väliltä. ATP muodostuu adeniinista, riboosista ja kolmesta fosfaattiosasta. Kun ATP:stä irtoaa yksi fosfaattiosa, siitä tulee adenosiinidifosfaattia (ADP) ja kahden osan irrotessa adenosiinimonofosfaattia (AMP).

Ihminen käyttää arviolta painonsa verran ATP-molekyylejä vuorokaudessa; ts. yksi ATP-molekyyli kierrätetään vuorokaudessa  1000-1500 kertaa. ATP on lihassoluissa lihassupistuksen ainoa energianlähde.

Ketogeneesi ja glukoneogeneesi

Veren insuliinipitoisuuden laskiessa ja glukagonipitoisuuden noustessa elimistö siirtyy ravintoaineiden varastoinnista varastojen purkuun. Käynnistyy glukoneogeneesi, jossa elimistö alkaa muodostaa glukoosia vapaista aminohapoista sekä rasvojen glyserolista että maitohaposta.

Glukoneogeneesin rinnalla käynnistyy tarvittaessa ketogeneesi, joka vähentää glukoosin valmistustarvetta ja näin ollen säästää aminohappoja, mikä on erityisen tärkeää pitkittyneessä ravinnottomuudessa. Pääasiassa maksa (mutta vähäisessä määrin myös muut kudokset kuten munuaisen kuorikerros) alkaa muodostaa vapaista rasvahapoista ketoaineita, joita mm. aivot ja sydänlihas sekä muu lihaksisto kykenevät käyttämään energianlähteenä palauttaen ketoaineet (asetoasetaatti, beeta-hydroksibutyraatti) asetyylikoentsyymi-A:ksi, joka on suoraan käytettävissä oksidatiiviseen energiantuotantoon Krebsin syklin kautta mitokondrioissa aivan samalla tavalla kuin tapahtuu glukoosinpoltonkin aerobinen osuus.

Aivojen koko glukoosintarvetta ei voi kuitenkaan korvata ketoaineilla, ja maksa tuottaakin sekä ravinnon että omien varastorasvojensa glyserolista sekä ravinnon aminohapoista glukoosia glukoneogeneesillä. Maksan glukoneogeneesin tuotantokyky riittää kaikkiin elämälle välttämättömiin aina pakollisiin glukoosin tarpeisiin. Mm. punasolut tarvitsevat aina yksinomaan glukoosia energiantarpeisiinsa, koska punasoluissa ei ole mitokondrioita. Glukoosista ne käyttävät yksinomaan anaerobisen osuuden ja palauttavat jäljelle jääneen osan maitohappona edelleen muualla käytettäväksi. Aivot tarvitsevat aina täydellisen ketoaineadaptaationkin jälkeen yleensä vähintään 20–30 % energiantarpeestaan glukoosina. Niillä on yleensä aina valmius käyttää ketoaineita noin 30–40 % energiantarpeestaan. Wikipedia

 

Katso sokeria käsitteleviä videoita

Fed Up

The Truth About Sugar

 

Sugar: The Kiss of Death


 




Painavaa asiaa lihavuudesta

Syöpä koskettaa tavalla tai toisella jokaista suomalaista jossakin elämänvaiheessa. Ylipaino ja lihavuus heikentävät lähes joka kolmannen ihmisen elämänlaatua maailmassa. Lihavuus voi ennakoida syöpää, sillä se on oire jostakin aineenvaihdunnan ja elämäntapojen häiriötilasta sekä elimistöä kalvavasta tulehduksesta.

Syöpään sairastumiselle altistaa kolme seikkaa: elämäntavat (ravinto, tupakka ja alkoholi), geneettinen alttius sairastua (laukaisijoina ympäristötekijät ja elämäntavat) sekä ”huono tsägä”. Viimeisimmässä tapauksessa tutkijat eivät ole löytäneet selvää kausaalista syytä solujen poikkeukselliselle jakautumiselle ja syövän kehittymiselle.

Vuosittain todettavista syöpätapauksista noin puoli miljoonaa (maailmanlaajuisesti) selittyy ylipainolla sekä niillä ruoka- ja aineenvaihduntatekijöillä, joiden oire myös ylipaino on. Keskityn tässä ensisijaisesti lihavuuteen, koska se on johtava elämäntapamuutoksilla ehkäistävissä oleva tappaja maailmassa yhdessä tupakoinnin kanssa, sekä toissijaisesti lihavuuteen liittyviin terveysriskeihin, joita vähäisilläkin elämäntapamuutoksilla voi huomattavasti pienentää.

Jos ylipainoon liittyvät terveysriskit ja painonhallinta askarruttavat, toivon, että tämä artikkeli antaa vastauksia aihepiiriä sivuaviin kysymyksiin, ylipainoon liittyviin terveysriskeihin sekä menetelmiä painon- ja terveysriskien hallintaan. Ehkä tämä motivoi terveitä elinvuosia lisäävään elämäntaparemonttiin.

Why We Get Fat – Gary Taubes

Lihavuuden ja ylipainon määritteleminen

Lihavuus voidaan määritellä monin tavoin, mutta yleisimmän standardin mukaan ihminen on lihava, kun painoindeksi (BMI, Body Mass Index) on yli 30. BMI arvioi ihmisen pituuden ja painon suhdetta ja se lasketaan jakamalla paino pituuden neliöllä (esim. 70 kg / (1,75 m * 1, 75 m) = 22,85..=> 23). Painoindeksi ei kuitenkaan aina ole täsmällinen tapa mitata lihavuutta, sillä lihakset painavat enemmän kuin elimistön rasva ja siksi indeksin keskivaiheilla tulokset liioittelevat lihavuutta lihaksikkailla ja vähättelevät lihavuutta vähemmän lihaksikkailla.

Vaikea alipaino < 16.0
Merkittävä alipaino 16.0 – 16.99
Lievä alipaino 17.0 – 18.49
Normaali paino 18.5 – 24.99
Lievä lihavuus 25.0 – 29.99
Merkittävä lihavuus 30.0 – 34.99
Vaikea lihavuus 35.0 – 39.99
Sairaalloinen lihavuus 40.0 >=
Lähde: WHO

Lihavuuteen liittyviä terveysongelmia

Lihavuus lisää sairastumisen riskiä mm. sydän- ja verisuonitauteihin, moniin syöpiin, aikuistyypin diabetekseen, uniapneaan jne. Mielestäni on tosin osoitettu, että lihavuus ei ole varsinainen syy sairastumiseen, kuten aikuistyypin diabetekseen (tällainen väärinkäsitys on varsin yleinen), vaan yksi oire niistä aineenvaihdunnan häiriöistä, jotka lopulta johtavat sairastumiseen. ”Lihavuus altistaa sairastumiselle” pitäisi tulkita siten, että ne aineenvaihdunnan ja elämäntapojen tekijät, jotka aiheuttavat lihavuutta lisäävät myös yleistä sairastumisen riskiä.

Aikuistyypin diabetes

Aikuistyypin diabetes ei ole vain lihavuuden aiheuttama sairaus, vaan liiallisen sokerikuorman aiheuttaman insuliinierityksen ja insuliinivasteen häiriön, eli insuliiniresistenssin aiheuttama aineenvaihduntasairaus. Siinä insuliinin eritys haiman endokriinisesta osasta on heikentynyt pitkittyneen insuliinin ylituotannon seurauksena ja sen lisäksi insuliinin vaikutus soluihin on heikentynyt. Vähentyneen insuliinin seurauksena veren glukoosipitoisuus kasvaa, mikä altistaa myös verisuonet kovemmalle rasitukselle ja vaurioitumiselle.

Insuliiniresistenssi vaikuttaa myös GIP-hormonin toimintaan rasvakudoksessa ja lipoproteiini lipaasi entsyymin kykyyn pilkkoa kolmesta glyserolimolekyyliin esteröityneestä rasvahappoketjusta muodostuvia triglyseridejä hydrolyysissä vapaiksi rasvahapoiksi ja monoglyseroleiksi.

Yksipuolinen hiilihydraatti- eli sokeripainotteinen ravinto, liikkumattomuus, geneettinen alttius ja muut ”huonot” elämäntavat sairastuttavat myös normaalivartaloisia ja laihoja aikuistyypin diabetekseen. Yhteys lihavuuden ja aikuistyypin diabeteksen välillä on se, että samat huonot ravitsemustottumukset aiheuttavat molempia sairauksia – sanalla sanoen: diabesitya.

Aikuistyypin diabetes on valtava sosioekonominen ja terveydellinen tragedia, ja se on elintaso- ja elintapasairaus. Vielä 1900-luvun ensimmäisellä puoliskolla aikuistyypin ”sokeritauti” oli äärimmäisen harvinainen sairaus. Nykyisin todetuista diabetes-tapuksista 90 % – 95 % kuuluu aikuistyypin eli tyypin-2 diabetekseen.

Yksistään USA:ssa diagnosoituja on 29,1 miljoonaa ja sen lisäksi arvellaan, että 8,1 miljoonaa sairastaa aikuistyypin diabetesta ilman diagnoosia. Sairastuneiden määrä kasvaa kohisten ja vuonna 2012 Yhdysvalloissa diagnosoitiin 1,7 miljoonaa uutta aikuistyypin diabeetikkoa. Kaksi viidestä amerikkalaisesta sairastuu aikuistyypin diabetekseen elämänsä aikana (The Lancet Diabetes & Endocrinology). Maailmanlaajuisesti sairastuneita on 382 miljoonaa, eli n. 90 % kaikista diabeetikoista (WHO). Aikuistyypin diabetes oli nimensä mukaisesti aikuisiässä kehittyvä sairaus, mutta ei ole enää; yhä useampi lapsi ja nuori sairastuu tyypin-2 diabetekseen.1980-luvulla lihavuudelle ja tyypin-2 diabetekselle annettiin oma nimi: Diabesity.

Aikuistyypin diabetes altistaa sydän- ja verisuonitaudeille sekä syövälle. Monikansallisen tutkimuksen mukaan 50 % diabetesta sairastavista kuolee sydän- ja verisuonitautien aiheuttamaan sydänkohtaukseen. Sairaus heikentää ääreisverenkiertoa, sillä jatkuvasti koholla oleva glukoosi (hyperglykemia) ja insuliini tuhoavat verisuonia; tämän seurauksena potilailta joudutaan usein amputoimaan, varpaita, sormia ja jopa jalkoja. Diabeettinen retinopatia on merkittävä sokeuttava tauti, jonka syntyy kun verkkokalvon pienet verisuonet tuhoutuvat diabeteksen seurauksena. Diabetes johtaa usein myös munuaisten vaurioitumiseen ja niiden toiminnan häiriintymiseen. Diabeetikoiden riski kuolla ennenaikaisesti on kaksinkertainen ei-diabetesta sairastaviin verrattuna.

http://www.healthline.com/health/type-2-diabetes/statistics#2

http://www.diabetes.org/diabetes-basics/statistics/

Syöpä ja aikuistyypin diabetes eivät ole ainoita sairaalloiseen lihavuuteen ja ylipainoon liittyviä sairauksia. Ylipainoisen riski sairastua johonkin seuraavista taudeista on huomattavasti korkeampi, kuin normaalipainoisella. Ylipaino lisää näiden tautien riskiä, mutta ei ole näiden tautien syy. Lihavuus kertoo, että aineenvaihdunnassa ja/tai elämäntavoissa on jotakin pielessä. Yleensä metaboliset ongelmat ovat seurausta insuliiniresistenssistä, jonka aiheuttaa jatkuvasti koholla oleva verensokeri.

Type 2 diabetes Gout Depression
Sleep disorders (including sleep apnea) Cancer (especially breast, endometrial, colon, gallbladder, prostate, and kidney8) Gallbladder disease
Polycystic ovarian syndrome Pulmonary embolism Heart disease and enlarged heart
Hernia Gastro-esophageal reflux disease Hypertension
Urinary incontinence Erectile dysfunction Non-alcoholic fatty liver disease (NAFLD)
Cellulitis Chronic renal failure Dementia
Pickwickian syndrome Stroke Lymph edema
Lipid problems Osteoarthritis Asthma

Kaikkiaan ylipaino ja sairaalloinen lihavuus on yhdistetty 5.4 prosenttiin kaikista naisten syöpätapauksista (koko maailma / 2012) ja 1.9 prosenttiin miesten syöpätapauksista. Ero länsimaiden ja kehittyvien maiden syöpätilastoissa on dramaattinen ja se tukee käsitystä elämäntapojen ja ruokavalion vaikutuksesta riskiin sairastua. Monet syövät ovat elintaso- ja elämäntapasairauksia.

Kahdeksan prosenttia kaikista länsimaissa todetuista naisten syövistä liittyy ylipainoon. Kehittyvissä maissa ylipaino on osallisena 1.5 prosenttia naisten syövistä. Miesten kohdalla luvut ovat pienempiä: länsimaissa lihavuus on osallisena 3 prosentissa kaikista miesten syövistä sekä 0.3 % kaikista miesten syövistä kehittyvissä maissa.

Naisten korkeampaa riskiä sairastua ylipanon aiheuttamiin suolistosyöpiin selittää ainakin liiallinen estrogeenien tuotanto. Näitä naishormoneja muodostuu maksassa, munasarjoissa, lisämunuaisissa sekä rasvakudoksessa.

 

Ylipainon hinta: raskaita tilastoja (Dr. Mercola & WHO)

Ylipainon kanssa korreloivien terveydellisten ongelmien arvioidaan maksavan maailmanlaajuisesti $ 2 biljoonaa (2 000 000 000 000 dollaria) vuodessa, tupakoinnin aiheuttamien terveyskulujen hinta on hieman korkeampi, $ 2,1 biljoonaa ja väkivallan, sotien ja terrorismin kokonaishinnaksi maailmalaajuisesti on laskettu myös $ 2,1 biljoonaa.

Elämäntapojen merkitys taloudelle on siis huomattava. Yhdysvalloissa lihavuuteen liittyvien terveysongelmien suorat ja epäsuorat menot ovat $75-$125 miljardia joka vuosi (National Institute of Health). Kirjassaan ”Fast Food Nation” Eric Schlosser arvioi vuotuisten ylipainoon liittyvien terveydenhoitomenojen lähentelevän jo $240 miljardia.

Ylipaino ja lihavuus terveysongelmineen lisääntyvät etenkin lapsilla. Yhdysvalloissa lihavien lasten määrä on kolminkertaistunut vuoden 1980 jälkeen ja nykyisin jo yksi viidestä lapsesta on ylipainoinen kuusivuotiaana. 17 % lapsista ja nuorista on lihavia (BMI yli 30). 42 miljoonaa alle 5-vuotiasta oli lihavia vuonna 2013. Lasten ja nuorten lihavuus on nopeasti kasvava ongelma etenkin urbaaneissa pienituloisissa sosioekonomisissa ryhmissä ja kehittyvissä maissa. Nykyistä tilannetta voi pitää jonkinlaisena sosiaalisena ja terveydellisenä kriisinä, mutta jos lasten ja nuorten lisääntyvään ylipainoisuuteen ei puututa ajoissa, on edessä myös kasvava taloudellinen ongelma.

Maailmanlaajuisesti ylipainoisten määrä on kaksinkertaistunut vuoden 1980 jälkeen. Yli 20 -vuotiaista 35 % oli ylipainoisia ja 11 % lihavia vuonna 2008. 65 % maailman väestöstä asuu maissa, joissa lihavuus tappaa enemmän ihmisiä kuin aliravitsemus. Joka vuosi n. 3,4 miljoonaa aikuista menehtyy lihavuuteen liittyviin sairauksiin ja lihavuus tappaa nykyisin enemmän ihmisiä kuin aliravitsemus. 44 % diabetesta sairastavista, 23 % iskeemistä sydäntautia sairastavista ja 7-41% syöpää sairastavista on ylipainoisia tai lihavia. Tilastot: WHO.

Britanniassa lihavia oli miehistä 13 % ja naisista 16 % vuonna 1993 ja 24 % miehistä ja 25 % naisista vuonna 2012. Ylipainoisia miehiä oli 42 % ja naisia 32 % vuonna 2012 (patient.co.uk). Ylipainoon liittyvien terveysongelmien kustannukset olivat 5,1 miljardia puntaa vuosina 2006-2007, kun samaan aikaan tupakoinnin aiheuttamien terveysmenojen laskettiin olevan n. 3,3 miljardia puntaa. Britanniassa ennustetaan, että vuonna 2050 lihavuuteen liittyvien sairauksien hoito maksaa yhteiskunnalle jo 50 miljardia puntaa.

Ravinto ja liikunta vs. lihavuus

Ensimmäinen askel diabetes- ja ylipainoepidemian hoitoon on elämäntaparemontti, johon sisältyy ravinnerikas, monipuolinen ja pienen glykeemisen indeksin ravinto. Pakkomielteisen kaloreiden laskemisen sijaan kannattaa kiinnittää huomiota ruoan laatuun ja siihen mitä syö. Mitään maagista laihduttavaa ruokavaliota ei ole olemassa, koska jokaisen ihmisen metabolia toimii yksilöllisesti (osa ihmisistä voi syödä tuplamäärän kaloreita ja pysyä edelleen hoikkina), mutta monet trendikkäät ruokavaliot (5-2, paleo, LCHF jne.) tukevat laihtumista, koska ne perustuvat ihmisen biologiaan ja aineenvaihduntaan.

Tärkeintä ravinnossa on se, että saa välttämättömät ravintoaineet, eli ne ravinteet, jotka pitävät elimistön koneiston toiminnassa ja se, että välttää liiallista sokerikuormaa (etenkin maissi- eli fruktoosisiirappia), transrasvoja ja voimakkaasti prosessoituja ravintoaineita, keinotekoisia makeutusaineita ja GMO-tuotteita (joiden pitkäaikaisista terveysvaikutuksista ei ole tutkittua tietoa). Valmiselintarvikkeet kannattaa korvata tuoreilla tuotteilla ja lihat käyttää ilman marinadeja. Valkoiset vehnäjauhot eivät ole laihduttajan tai kenenkään muunkaan terveysruokaa, mutta itseleivottu leipä on varmasti terveyden kannalta edullisempi vaihtoehto kuin valmiit säilöntäaineita, transrasvoja, sokereita ja/tai fruktoosisiirappia sisältävät leivät.

23 tutkimusta, jotka osoittavat sokerikuorman, siis hiilihydraattien vähentämisen, tehostavan merkittävästi laihtumista. http://authoritynutrition.com/23-studies-on-low-carb-and-low-fat-diets/

Laihduttaminen on järkevintä aloittaa ruokavaliomuutoksella, sillä perusaineenvaihdunta kuluttaa 66 % ja liikunta 33 % terveen ihmisen elimistön tarvitsemasta energiasta. Liikunnan merkitystä terveydelle ei voi väheksyä, mutta se yksin ei ole tehokas tapa laihtua. Jotta laihtuminen lähtee käyntiin, elimistön on opittava muuttamaan kertynyttä rasvaa energiaksi. Tämä tehostuu, kun elimistön tärkeimmän energianlähteen, eli hiilihydraattien määrää vähentää vaikka 50 %.

Glukoneogeneesi alkaa heti, kun glykogeeneihin varastoitu glukoosi on käytetty. Jo pelkästään jauhoista ja sokerista (sekä muilla makeutusaineilla makeutetuista herkuista) luopuminen laihduttaa tehokkaasti. Paras tapa laihtua on yhdistää terveellinen ruokavalio ja liikunta pysyväksi elämäntapamuutokseksi. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406229/

”We hear a lot that a little exercise is the key to weight loss – that taking the stairs instead of the elevator will make a difference, for instance. But in fact it’s much more efficient to cut calories, says Samuel Klein, MD at Washington University’s School of Medicine. “Decreasing food intake is much more effective than increasing physical activity to achieve weight loss. If you want to achieve a 300 kcal energy deficit you can run in the park for 3 miles or not eat 2 ounces of potato chips… ”

Laihduttaminen liikuntaa lisäämällä on toki järkevämpää, kuin olla liikkumatta, Tunnin nopea kävely kuluttaa 400 kcal, mutta jos ei kiinnitä ravinnon laatuun huomiota, liikuntasuorituksen herättämään nälkään syö huomaamatta enemmän kuin on kävelysuorituksessa kuluttanut. Se ei edistä laihtumista. Liikunnan merkitys piileekin energiankulutuksen sijaan toisaalla: ”liikunta korjaa häiriintynyttä aineenvaihduntaa” (James Hill, PhD, University of Colorado). Perusaineenvaihdunta kuluttaa terveillä ja normaalipainoisilla 66 % elimistön saamasta energiasta. Entä ylipainoisilla tai diabeetikoilla, joilla aineenvaihdunta on häiriintynyt?

7023728907_4bd076e643_o_d

Rasvat vs. sokerit

Tyydyttyneet eläinrasvat sekä kolesteroli kuuluvat ihmisen luontaiseen ravintoon; elimistö on siis evoluution myötä sopeutunut hyödyntämään rasvoja sekä ravinto- että rakenneaineina. Rasvat eli lipidit kuuluvat välttämättömiin ravintoaineisiin. Sen sijaan elimistö ei osaa hyödyntää voimakkaasti raffinoituja teollisia rasvoja (margariinit, rypsi-, maissi- ja auringonkukkaöljyt), joissa prosessointi on rikkonut rasvahappoketjuja, ja jotka ilmestyivät ruokapöytään vasta 1950-luvulla.

Kolesterolia ihminen saa ravinnosta, mutta valtaosan tuottaa maksa, sillä lipoproteiinit ovat tärkeitä aivoille, ruoansulatukselle, hormonien tuotannolle ja solujen väliselle viestinnälle – etenkin aivoissa, joissa elimistön kolesterolista on peräti 25 %. Liian alhaiset kolesterolitasot aiheuttavat dementiaa ja Alzheimerin tautia sekä monia muita terveysongelmia.

Yksinkertaistaen kolesterolin tuotantoprosessi on seuraava: ihon skvaleeni muuttuu auringon UVB-säteilyssä kolekalsiferoliksi (D3-vitamiini) ja edelleen kalsidioliksi (D-vitamiinin varastomuoto) ja kalsitrioliksi (D-vitamiinin aktiivinen hormoninkaltainen muoto, sekosteroidi). Skvaleeni on kaikkien steroidien, myös kolesterolin ja kalsitriolin, eli D-vitamiinin aktiivisen sekosteroidimuodon esiaste. Kun auringon UVB-säteily on riittämätön D-vitamiinin synteesiin, muodostaa maksa elimistön skvaleenista mm. kolesterolia. Skvaleeni on ristiriitainen hiiliyhdiste, sillä sen tiedetään alentavan syöpiä eläinkokeissa ja sitä saa mm. terveellisestä oliiviöljystä; kuitenkin skvaleenin käyttäminen rokotteiden adjuvanttina voi joidenkin arvioiden mukaan lisätä erilaisia neurologisia ongelmia; tästä ei toisaalta ole varsinaisia tutkimusnäyttöjä. Skvaleeni on välttämätön aine kasvien biosynteesissä sekä eläinten steroidien tuotannossa. Jopa ihmisten sormista erittyvässä rasvassa on skvaleenia.

Rasvasota

Rasvasota puhkesi Yhdysvalloissa 1970-1980, jolloin Ancel Keysin rasva-kolesteroliteoria (lipid theory) lobattiin FDA:n ravitsemussuosituksiin. Se johti ensinnäkin eläinperäisten tyydyttyneiden rasvojen demonisoimiseen, sillä teorian mukaan tyydyttynyt rasva ja kolesteroli olivat syypäitä ateroskleroosiin ja sydäntautikuolemiin. Eläinperäisten rasvojen käyttöä suositeltiin vähentämään ja suosimaan ”terveellisiä” kevyttyotteita, kasviöljyjä ja margariineja. Yhdysvalloista suositukset levisivät Eurooppaan ja myös Suomeen, jossa yhä noudatetaan Keysin hypoteesia kiveenkirjoitettuna jumalaisena totuutena.

Ancel Keysin teoriat on sittemmin osoitettu virheellisiksi ja tutkimusten metodologiaa pidetään vähintäänkin arveluttavana. Mitä näiden suositusten jälkeen tapahtui? Suositukset toimivat ja ihmisten tyydyttyneistä rasvoista saama energia laski tasaisesti. Laskiko sydänkuolleisuus? Jonkin verran, mutta nykyään syynä pidetään tupakoinnin vähentymistä, muuten terveellisempiä elämäntapoja sekä terveydenhoidon kehittymistä jne. Samaan aikaan, kun kovien tyydyttyneiden ja pahojen eläinrasvojen kulutus väheni, aikuistyypin diabetes ja lihavuus lisääntyivät räjähdysmäisesti. Kuinka se oli mahdollista? Rasvahan aiheutti lihavuutta – vai aiheuttivatko!

Lihavuutta ja diabetesta perustellaan yhä sillä, että ihmiset eivät noudata ravintosuosituksia.

Tyydyttyneiden rasvojen kulutus väheni ja lihavuus sekä aikuistyypin diabetes lisääntyivät. Sama ilmiö on toistunut jokaisessa rasva-kolesterolihuijaukseen sortuneessa maassa – Suomi mukaan lukien. 1980 Suomessa oli n. 80 000 diabetesta sairastavaa, nyt puoli miljoonaa. Yhdysvalloissa ylipainoisten määrä kolminkertaistui ja diabetesta sairastavien määrä seitsenkertaistui. Hieno kansanterveyttä parantava ohjelma kaikenkaikkiaan – ainakin lääketeollisuuden näkövinkkelistä! Rasvasota jatkuu yhä. Monet suomalaiset viranomaiset pitävät yhä yllä myyttiä tyydyttyneiden rasvojen ja kolesterolin haitallisuudesta.

Sokerit ja makeutusaineet

Syy vähärasvaisen ruokavalion aiheuttamaan terveyskatastrofiin on oikeastaan aika selvä: rasvat korvattiin sokereilla (ja nykyään yhä useammin fruktoosi-maissisiirapilla, joka on aineenvaihdunnalle ja maksalle myrkkyä) ja alkuvaiheessa huonoilla teollisilla transrasvoilla.

Transrasvoja ei nykyisin Euroopassa lisätä levitteisiin, mutta niitä saa mm. leivistä, snackseistä ja makeisista, joihin niitä syntyy tuotantoprosessissa. Transrasvat altistavat syöville. Raffinoitujen rasvahappojen ketjut myös tuhoutuvat tuotantoprosessissa niin, ettei elimistö pysty niitä juurikaan hyödyntämään. Huonot rasvat ja jatkuvasti koholla olevat insuliinitasot ja verensokeri (hyperglykemia) johtaa nopeasti aineenvaihdunnan häiriöihin ja erilaisiin tulehduksiin; tulehdukset puolestaan lisäävät lihomisen riskiä.

1980-luvulta ravinnon sokerikuorma on kasvanut valtavasti, eikä elimistö ole näin lyhyessä ajassa oppinut prosessoimaan kasvanutta sokerikuormaa. Monet kuvittelevat, että sokeria on vain makeisissa, virvoitusjuomissa, kekseissä ja leivonnaisissa, mutta kaikki hiilihydraatit ovat pilkotaan sokereiksi. Viljat, perunat, pasta, riisi jne. pilkotaan ruoansulatuskanavassa sokereiksi, jotka imeytyvät verenkiertoon glukoosina ja fruktoosina ihan niin kuin pöytäsokerikin.

Terveellisen ruisleivän glykeeminen indeksi on korkeampi kuin pöytäsokerilla, eli se kohottaa verensokerin nopeammin kuin pöytäsokeri. Sokerit aiheuttavat lihavuutta, koska sokereiden toinen varastomuoto, lipogeneesin muodostama varastorasva, joka kertyy rasvasoluihin vatsan alueelle, elimiin ja elinten ympärille aiheuttaen mm. alkoholista riippumatonta rasvamaksaa.

Jatkuvasti koholla oleva insuliini kasvattaa rasvakudoksen määrää ja ohjaa veren triglyseridejä varastorasvaksi. Mitä enemmän elimistössä on rasvakudosta, sitä enemmän rasvakudos erittää kylläisyyshormoni leptiiniä, joka kertoo aivoille, että energiavarastot ovat täysiä ja syömisen voi lopettaa. Kun leptiiniä on verenkierrossa runsaasti, aivot tulevat immuuneiksi sen välittämälle viestille, eli tieto kylläisyydestä ei saavuta aivoja.

weight-loss-graph-low-carb-vs-low-fat

Leptiini

Leptiiniä syntyy ihmisen ja nisäkkäiden rasvasoluissa ja se välittää aivojen hypothalamukselle tietoa elimistön rasvavarastojen määrästä. Se säätelee mm. talviunta nukkuvien eläinten aineenvaihduntaa, energiankulutusta ja rasvakerroksen määrää. Leptiini lisää kudoksissa olevien rasvahappojen hapettumista (härskiintymistä), joka puolestaan tuottaa vapaita radikaaleja ja aiheuttaa sekä pitää yllä tulehdustilaa elimistössä.

Leptiini osallistuu aivoissa hermosignaalien kulkuun ja se on välttämätöntä myös oppimisessa ja tiedonkäsittelyssä sekä muistin toiminnassa. Rasvasolut tuottavat leptiiniä unen aikana. Vuorotyötä tekevät lihovat herkemmin, koska leptiinintuotanto on epäsäännöllistä. Leptiiniä siis tarvitaan, mutta jos rasvasolut tuottavat sitä liikaa, se aiheuttaa tulehdustilan ja sen vaikutus ”kylläisyyshormonina” lakkaa. (Lähde: Tohtori Tolonen)

Välttämättömät ravintoaineet ja nälkä

Ihminen tarvitsee välttämättä eräitä ravintoaineita. Näihin kuuluvat rasvat (omega-3 ja omega-6 mielellään lähes samassa suhteessa), proteiinit (aminohapot) ja suojaravinteet, eli vitamiinit ja mineraalit sekä vesi. Näitä ravinteita tarvitaan solujen uusiutumiseen, hormonien lähtöaineiksi, solukalvoihin, luuston ja lihaksiston sekä kudosten ja elinten rakennusaineiksi, immuunijärjestelmän ylläpitämiseen, solusignaalien kuljettamiseen jne. Hiilihydraatit ovat elimistön tärkein energianlähde, mutta ei välttämätön ravintoaine, sillä maksa psytyy tuottamaan lihasten, elinten ja aivojen tarvitseman glukoosin muista ravintoaineista glukoneogeneesissä.

Yhdenkin välttämättömän ravintoaineen pitkäaikainen puutos sairastuttaa ja voi johtaa kuolemaan. Elimistömme on kuitenkin kehittynyt hyvin älykkääksi ravinteiden suhteen: se pystyy syntetisoimaan monia tarvitsemiaan aineita muista aineista ja osaa vaatia sellaisia, joita se ei pysty itse valmistamaan: sitä kutsutaan näläksi. Toki näläntunteen päällimmäinen syy on energiantarve, mutta myös rasvasolujen erittämään ”kylläisyyshormoni” leptiiniin kehittyvä resistenssi voi pitää jatkuvaa näläntunnetta yllä. Kun elimstön rasvasolujen määrä on suuri, erittyy leptiiniä liikaa.

Energialtaan rikas, mutta ravintoköyhä ruoka täyttää kyllä vatsan, energiantarpeen ja glykogeenit hetkeksi, mutta ei tarjoa elimistön solujen uusiutumisen ja aineenvaihdunnan vaatimia ravinteita. Kun ravinto koostuu voimakkaasti prosessoiduista raaka-aineista ja sisältää lähinnä hiilihydraatteja, se ei täytä elimistön ravintovaatimuksia, vaan lisää veren sokeri- ja insuliinikuormaa, joka rasittaa haimaa, maksaa, verisuonia, sydäntä ja soluja. Hiilihydraatit pilkotaan ruoansulatuskanavassa glukoosiksi, fruktoosiksi ja ravintokuiduiksi.

Viljojen ravintokuidut ovat sulamatonta ja imeytymätöntä selluloosaa. Glukoosi imeytyy ohutsuolesta verenkiertoon ja haiman erittämä insuliini sitoutuu solujen insuliinireseptoreihin, jolloin veren glukoosi pääsee kulkeutumaan soluihin. Fruktoosi ohjautuu suoraan maksaan, jossa osa fruktoosista muutetaan glukoosiksi ja osa muuttuu triglyserideiksi, jotka jatkavat verenkiertoon tai varastoituvat maksaan sekä elinten ympärille keskivartalolihavuutena.

Myös glykogeeneihin mahtumaton glukoosi muuttuu lipgeneesissä triglyserideiksi, eli läskiksi. Itse rasva ei yleensä varastoidu rasvana, vaan elimistö käyttää sitä uusiutumiseen, hormonien tuotantoon sekä lämmön- ja energian tuottamiseen; yleensä ylimääräinen rasva poistuu luonnollista tietä. Veren koholla oleva insuliini voi täyttää myös rasvasoluja veren triglyserideillä.

Insuliini ja glukagoni

Insuliini on vahva anabolinen hormoni, jota jotkut urheilijat piikittävät palautumisen nopeuttamiseksi ja lihasvoiman kasvattamiseksi. Insuliini myös lihottaa rakentamalla rasvakudosta (tämä on tuttua monille diabetespotilaille). Insuliinilla on huomattava merkitys lihomisessa; se rakentaa rasvakudosta ja ohjaa hiilihydraateista muodostuneita triglyseridejä rasvasoluihin varastoenergiaksi. Ikävä kyllä, rasva, joka ei yleensä varastoidu rasvana, varastoituu läskiksi, kun veren insuliinitaso on riittävän korkea; insuliini, jolla on tärkeä tehtävä energian ohjaamisessa lihassoluihin, ohjaa myös rasvaa rasvasoluihin.

Vähentämällä elimistön ravinnosta saamaa sokerikuormaa, voi vähentää myös verenkiertoon erittyvän insuliinin määrää ja siten ehkäistä rasvakudoksen muodostumista ja veren triglyseridien varastoitumista rasvasoluihin. Kuullostaako tämä järkevältä? Minusta kuullostaa.

Tämän lisäksi tiedetään, että runsas glukoosi aktivoi pohjukaissuolen erittämään GIP-hormonia vereen (Gastric inhibitor polypeptide, joka tunnetaan nykyään nimellä glucose-dependent insulinotropic peptide): GIP-hormoni stimuloi haiman Langerhansin beeta-soluissa sijaitsevia reseptoreja erittämään enemmän insuliinia.

GIP vaikuttaa myös rasva-aineenvaihduntaan stimuloimalla lipoproteiini lipaasia, entsyymiä, joka katalysoi lipoproteiinin hydrolyysiä, eli kemiallista reaktiota, jossa vesimolekyylin osat (-H ja –OH) liittyvät pilkkoutumisosiin. Lipoproteiini lipaasi on vesiliukoinen entsyymi, joka hydrolysoi lipoproteiinien triglyseridejä kahdeksi vapaaksi rasvahapoksi ja yhdeksi monoglyseroli-molekyyliksi. Insuliiniresistenssi vaikuttaa rasvakudoksessa lipoproteiini lipaasin sääntelyyn, mikä voi vaikuttaa siihen, että rasvahapot jäävät elimistöön varastomuodossa, eli triglyserideinä.

Haiman Langerhansin saarekkeiden alfasolut erittävät toista sokeriaineenvaihduntaa säätelevää hormonia, glukagonia. Glukagoni on insuliinin vastavaikuttaja. Siinä missä insuliini johtaa energiavarastojen rakentamista maksaan, lihaksiin, elinten ympärille ja keskivartaloon, glukagoni purkaa näitä rakennelmia. Glukagoni on kuitenkin täysin aseeton, jos veren insuliini pysyy korkeana. Kun verensokeri on alhaalla, glukagoni vapauttaa adrenaliinin avustamana glykogeenivarastoista glukoosia vereen ja stimuloi insuliinin eritystä yhdessä pohjukkaissuolesta erittyvän GIP-hormonin kanssa. Glukagoni myös käynnistää glukoneogeneesin jo ennen glykogeenivarastojen ehtymistä, jolloin elimistön varastorasvoista muodostuu vereen glukoosia; tämä takaa lihasten, elinten ja aivojen toiminnan silloinkin kun ravinnosta ei saa lainkaan hiilihydraatteja.