Ketogeeninen ruokavalio, sydän- ja verisuonitaudit 3: ketoaineet ja energiametabolismi

Ketogeenisen ruokavalion (KD) vaikutusta sydämen energia-aineenvaihduntaan tutkitaan ja kuvataan yhä enemmän. Tämä johtuu ketoosista, jossa ketoaineiden (asetonin, asetoasetaatin ja β-hydroksibutyraatin) tuotanto lisääntyy. β-hydroksibutyraatti, vaikuttaa erityisesti sydänlihaksen ja aivojen aineenvaihduntaan ja toimintaan. Toisin kuin pitkäketjuiset rasvahapot, se läpäisee veri-aivoesteen.

Ketoaineet ja sydämen energiametabolia

Kaikista elimistä sydämellä ja aivoilla on suurin energiantarve. Tämä johtuu tarpeesta työskennellä jatkuvasti sikiöstä kuolemaan asti. Sydänlihaksen soluille (kardiomyosyyteille) on ominaista kehon korkeimmat mitokondrioiden pitoisuudet. Mitokondriot ovat solujen energiakeskuksia, sillä ne vastaavat energian tuotannosta adenosiinitrifosfaatin (ATP) muodossa [144,145].

ATP:n saamiseksi sydän voi käyttää asetyylikoentsyymi A:ta (asetyyli-CoA) glukoosista (glykolyysin kautta) tai lipideistä (β-oksidaation kautta).

Normaaliolosuhteissa rasvahapoista peräisin oleva asetyyli-CoA on ensisijainen substraatti ATP:n tuotannolle sydämessä. HFrEF-potilailla ketoaineiden hapettumisen osuus sydänlihaksen ATP-tuotannosta kasvaa 6,4 prosentista (kontrolliryhmässä) 16,4 prosenttiin [146]. Ketoaineet ovat hyvä ja monissa tapauksissa jopa glukoosia parempi energialähde ATP:n tuotannolle [97,147].

Sydänsairauden alkuvaiheessa sydän voi siirtää energiankäyttönsä rasvahapoista glukoosiin, mikä liittyy aineenvaihdunnan joustavuuden menetykseen [98,148].  Toisaalta ei tiedetä varmasti, johtuuko aineenvaihdunnan poikkeavuudet sydänsairauden puhkeamisesta vai onko sydänsairaus aineenvaihdunnan poikkeavuuksien seuraus [149].

Energiametabolian muutokset voivat lopulta aiheuttaa sydämen vajaatoimintaa, mikä johtaa sydämen aineenvaihdunnan uudelleenohjelmointiin kohti ketoaineiden ottoa ja käyttöä energianlähteenä. Se, että tämä voi olla adaptiivinen vaste, tarjoaa vakuuttavan argumentin ketoaineiden merkityksestä sydämen aineenvaihdunnalle. Tätä tukevat useat julkaisut, jotka osoittavat ketoaineiden suurempia pitoisuuksia ja suurempaa ottoa muun muassa sydämen vajaatoiminnan yhteydessä [150,151,152,153,154].

Sydän suosii ketoaineita glukoosiin verrattuna olosuhteissa, joissa molemmat substraatit ovat saatavilla. Tämä osoitettiin Gormsenin ym. tutkimuksessa, jossa ketoaineiden pitoisuuden nostaminen 3,8 mM:iin johti sydänlihaksen glukoosinottoon 50 %:n vähenemiseen. Tämä tapahtui maksimaalisesta insuliinistimulaatiosta ja riittävästä glukoosipitoisuudesta huolimatta [155].

Näyttää siltä, ​​että ketoaineiden lisääntynyt hapettuminen on erityisen hyödyllistä sydämelle (ja aivoille), koska hyperketonemia ei vaikuta glukoosin ja rasvahappojen ottokykyyn muissa elimissä [156,157].

Sydämen energiankulutuksen lisääntymisen ja kahden ketoaineen, BHB:n ja asetonin, pitoisuuksien välillä on havaittu positiivinen yhteys [158]. Horton ym. osoitti ketoaineiden sydämen kannalta merkityksellisyyden käyttämällä esimerkkinä Cre-lox BDH1-KO -hiirten sydämiä, joilta puuttui D-β-hydroksibutyraattidehydrogenaasi (BDH1), ketoaineiden hapetuksesta vastaava mitokondrioentsyymi (se katalysoi 3-hydroksibutyraatin (3OHB) hapettumisen ensimmäistä vaihetta) [150].

Hiirillä, joilla ei ollut BDH1:tä, sydämen vajaatoiminta paheni paaston tai paineen aiheuttaman ylikuormituksen/iskemian seurauksena verrattuna hiiriin, joilla oli BDH1. Samalla lisääntynyt hydroksibutyraatin anto paransi patologista sydämen uudelleenmuodostusta ja toimintahäiriöitä sekä eristettyjen mitokondrioiden bioenergeettistä termodynamiikkaa rasvahappojen käytön vähenemisen aikana.

Sydän lisää ketoaineiden käyttöä metabolisen stressin seurauksena. On arveltu, että ketoaineiden anto voi olla tärkeä osa sydämen vajaatoiminnan hoitoa. Toinen tutkimus osoitti, että kaikkien ketoaineiden pitoisuus oli lähes kaksi kertaa korkeampi sydämen vajaatoimintaa sairastavilla koirilla verrattuna kontrollikoiriin. Lisäksi folistatiini 1:n kaltaisen sydäntä suojaavan proteiinin (FSTL1) antaminen vähensi ketoaineiden ottoa [159].

Vaikka suurin osa tutkimuksesta keskittyy eksogeenisten ketonien vaikutukseen sydämen energia-aineenvaihduntaan, on myös julkaisuja, jotka tarkastelevat itse ketogeenisen ruokavalion suoraa vaikutusta. Guo et al. raportoivat kiinnostavia havaintoja vuoden 2022 tutkimuksessa. Tutkimus osoitti, että joka toinen päivä noudatettu ketogeeninen ruokavalio suojasi sydämen vajaatoiminnalta aiheuttamalla vahvan sydäntä suojaavan vaikutuksen.

8 viikon jatkuvan ketogeenisen ruokavalion aikana ei osoitettu sydämen vajaatoiminnalta suojaavia vaikutuksia. Kirjoittajat päättelivät, että vaikka ketogeenisen ruokavalion jatkuva käyttö heikensi maksan ketogeneesikapasiteettia, joka toinen päivä toteutettuna maksan ketogeneesi ei hidastunut [160].

Vuonna 2017 tehdyssä 3,2 vuotta kestäneessä väestöpohjaisessa tutkimuksessa havaittiin yhteys kohonneiden BHB-tasojen ja sydän- ja verisuonitapahtumien riskin lisääntymiseen 405 hemodialyysihoitoa saavalla iäkkäällä potilaalla. Kirjoittajat ilmoittivat, että kohonneet BHB-tasot liittyivät itsenäisesti sydän- ja verisuonitapahtumiin ja mistä tahansa syystä johtuvaan kuolemaan tutkitussa potilasryhmässä [161].

Vaikka sukupuolten välillä ei havaittu eroja tuloksissa, toinen, suurempi väestöpohjainen tutkimus osoitti eroja. Flores-Guerrero ym. osoittivat, että korkeat plasman BHB-tasot liittyivät lisääntyneeseen sydämen vajaatoiminnan riskiin ja pienentyneeseen ejektiofraktioon (HFrEF), erityisesti naisilla [162].

Molemmissa tutkimuksissa saadut tulokset antavat alustavan kuvan syy-yhteydestä. Samaan aikaan, kuten aiemmissa julkaisuissa on osoitettu, sydämen vajaatoiminnassa (ja muissa sydänvaurioissa) ketoaineiden pitoisuus kasvaa, ja tätä tulisi pitää pikemminkin ”pelastuspolttoaineena”. Tulokset/havainnot siis vahvistavat, että ketoaineet ovat tärkeitä sairaan sydämen toiminnalle. Tätä tukee vuoden 2023 julkaisu [163].

Kashiwagin ym. tutkimus osoitti, että B-tyypin natriureettinen peptidi (BNP) voi indusoida kohonneita ketoaineiden pitoisuuksia, joita voidaan käyttää tärkeänä vaihtoehtoisena polttoaineena vajaatoimintaisessa sydämessä. Kirjoittajat osoittivat, että BNP stimuloi korkeampia ketoaineiden pitoisuuksia voimakkaammin kuin hemodynamiikan heikkeneminen. Tämä johtui havainnosta, että ketoaineiden ja BNP-pitoisuuksien välillä oli positiivinen korrelaatio, mutta ei ketoaineiden ja vasemman kammion loppudiastolisen paineen (LVEDP), vasemman kammion loppusystolisen tilavuusindeksin (LVESVI) ja vasemman kammion loppudiastolisen tilavuusindeksin (LVEDVI) välillä [164].

Sydämen vajaatoimintaa sairastavilla potilailla havaittujen korkeampien β-hydroksibutyraattipitoisuuksien lisäksi tämä ilmeni myös asetonin (yksi ketoaineista) lisääntyneenä määränä näiden henkilöiden uloshengitysilmassa.

Yhdessä tutkimuksessa havaittiin, että HFrEF-potilailla oli kohonneet asetonipitoisuudet, ja mikä tärkeintä, nämä olivat kääntäen verrannollisia sydämen toimintaan.

Kirjoittajat totesivat, että korkeat uloshengitysilman asetonipitoisuudet voivat liittyä huonoon ennusteeseen HFrEF-potilailla [165]. EMPA-RESPONSE-AHF-tutkimukseen osallistuneen 79 akuuttia sydämen vajaatoimintaa sairastavan potilaan post hoc -analyysissä osoitettiin, että ketoaineiden, erityisesti asetonin, pitoisuudet olivat merkittävästi koholla akuutin dekompensoidun sydämen vajaatoiminnan aikana verrattuna tilan vakauttamiseen [166].

Satunnaistetussa kontrolloidussa tutkimuksessa Nielsen ym. osoittivat, että 3-hydroksibutyraatin (3-OHB) anto sydämen vajaatoimintaa sairastaville potilaille lisäsi sydämen minuuttitilavuutta 2,0 ± 0,2 l/min. Iskutilavuus kasvoi 20 ± 2 ml ja syke 7 ± 2 lyöntiä minuutissa (BPM). Lisäksi vasemman kammion ejektiofraktio nousi 8 ± 1 %. Kirjoittajat päättelivät, että seerumin BHB-pitoisuuden nousulla fysiologisella tasolla oli hyödyllisiä hemodynaamisia vaikutuksia potilailla, joilla oli HFrEF ilman heikentynyttä sydänlihaksen ulkoista tehokkuutta (MEE) [167]. Nasser ym. osoittivat mainittujen tutkimusten [151,152,168,169,170] perusteella, että ketoaineet (jotka ovat peräisin ketogeenisestä ruokavaliosta) voivat parantaa sydänlihaksen toimintaa ja edistää sydän- ja verisuonitautien toimintahäiriöistä kärsivien potilaiden tehokkaampaa hoitoa [97].

On myös useita muita todisteita ketoaineiden huomattavasta merkityksestä sydämen toiminnalle, kuten muun muassa Abdul ym. ovat kuvanneet [147]. Toisen julkaisun johtopäätökset viittaavat siihen, että ketogeeninen ruokavalio on kiehtova ei-farmakologinen vaihtoehto sydän- ja verisuonisairauksien, erityisesti sydämen vajaatoiminnan, hoitoon ja ehkäisyyn [171].

Vuoden 2023 julkaisu osoittaa, että todisteet tukevat ketoaineiden aineenvaihdunnan adaptiivista roolia sydämen vajaatoiminnassa sydänelinten normaalin toiminnan edistämisessä ja taudin etenemisen lieventämisessä [172].

Keskipitkäketjuiset rasvahapot (MCT) ovat tärkeässä roolissa ketogeenisissä ruokavalioissa [173]. Tämä johtuu siitä, että ne ovat ketogeenisimpiä rasvahappoja. Ne sulavat helposti ja johtavat ketonien nopeampaan tuotantoon verrattuna pitkäketjuisiin rasvahappoihin.

MCT:t edustavat ”nopeaa energiaa”, koska toisin kuin pitkäketjuiset rasvahapot, ne eivät vaadi haiman entsyymejä sulatukseen ja ohittavat tavanomaisen reitin ruoansulatuskanavan läpi, kulkeutuvat porttilaskimon kautta maksaan ja tarjoavat nopean energialähteen tai muuntuvat ketoaineiksi [19].

MCT-rasvojen korkean ketogeenisyyden vuoksi ne voivat olla hyödyllinen osa sydämen metabolista terveyttä erityisesti yhdistettynä ketogeeniseen ruokavalioon.

Tämä on entistäkin tärkeämpää, koska MCT-rasvojen on osoitettu lisäävän mitokondrioiden biosynteesiä ja aineenvaihduntaa (jota esiintyy pääasiassa sydänlihassoluissa), mikä parantaa suorituskykyä liikunnan aikana [174].

Lisäksi havaittiin, että sepelvaltimotautia sairastavilla potilailla kookosöljyn (joka on MCT-rasvojen lähde) sisällyttäminen lisäsi HDL-kolesterolin osuutta ja pienensi vyötärön ympärysmittaa [175]. MCT-rasvojen monitahoisten hyödyllisten vaikutusten vuoksi niiden lisääminen ruokavalioon on perusteltua.

Lyhytketjuisilla rasvahapoilla (MCT) on erityinen vaikutus aivojen ja sydämen energiantuotantoon, koska ne imeytyvät ja metaboloituvat nopeammin kuin tavalliset pitkäketjuiset rasvahapot. Erityisesti aivojen osalta, kun glukoosin hyödyntäminen heikkenee (esim. ikääntyessä tai tiettyjen sairauksien yhteydessä), MCT-rasvahapot tarjoavat vaihtoehtoisen energianlähteen tuottamalla ketoaineita maksassa. Nämä ketoaineet voivat ylittää veri-aivoesteen ja toimia aivosolujen polttoaineena.

Vaikutukset aivoihin

MCT-rasvahapot, erityisesti MCT-öljyn muodossa, ovat tunnettuja siitä, että ne tarjoavat nopeaa energiaa aivoille. Aivot käyttävät yleensä glukoosia pääasiallisena energianlähteenä, mutta tietyissä tilanteissa, kuten ketogeenisellä ruokavaliolla tai aineenvaihdunnan häiriöissä, ketoaineet voivat toimia tehokkaana korvaavana polttoaineena. Esimerkiksi Alzheimerin taudissa aivojen glukoosiaineenvaihdunta heikkenee, ja MCT-öljyn on tutkittu tuovan apua tarjoamalla aivoille vaihtoehtoisen energialähteen.

Vaikutukset sydämeen

Vaikka MCT-rasvahapot muistuttavat kemiallisesti pitkäketjuisia rasvahappoja, niiden metabolia eroaa merkittävästi. Sydämen energiantuotannon kannalta on havaittu, että MCT-rasvahapot voivat parantaa sydämen toimintaa tietyissä tilanteissa, kuten rasvahappojen hapettumishäiriöistä kärsivillä potilailla. Sydämen terveydestä yleisesti puhuttaessa tutkimustulokset ovat kuitenkin ristiriitaisia.

Joissain tutkimuksissa MCT-rasvahapoilla on havaittu olevan positiivisia, tulehdusta vähentäviä vaikutuksia, kun taas toisissa tutkimuksissa on havaittu, että ne voivat huonontaa kolesteroliarvoja (esim. LDL- ja HDL-kolesterolin suhdetta), mikä viittaa mahdolliseen lisääntyneeseen sydän- ja verisuonitautien riskiin. On tärkeää huomata, että lisätutkimuksia tarvitaan, jotta ymmärrettäisiin paremmin MCT-rasvahappojen kokonaisvaikutus sydämen terveyteen.

β-hydroksibutyraatti

β-hydroksibutyraatti (BHB) on yksi tärkeimmistä ketonirungoista (toiset ovat aseoasetaatti ja asetoni). Sitä syntyy maksassa rasvahapoista, kun hiilihydraattien saanti on vähäistä (paasto, ketogeeninen ruokavalio, raskas liikunta, nälkiintyminen). BHB ei ole pelkkä vaihtoehtoinen energialähde, vaan sillä on myös signaalimolekyylin rooleja.

Vaikutukset aivoihin

  1. Energia-aineenvaihdunta
    • Aivot eivät voi käyttää rasvahappoja suoraan, mutta BHB läpäisee veri–aivoesteen monokarboksylaattikuljettajien (MCT1/2) avulla.
    • BHB muuttuu takaisin asetoasetaatiksi ja sitten asetyyli-CoA:ksi → käytetään sitruunahappokierrossa ATP:n tuottamiseen.
    • Pitkittyneessä ketoosissa BHB voi kattaa jopa 60–70 % aivojen energiantarpeesta.
  2. Hermoston suojaus
    • BHB vähentää oksidatiivista stressiä tehostamalla mitokondrioiden toimintaa.
    • Lisää GABA:n (rauhottava välittäjäaine) ja vähentää glutamaatin (kiihottava välittäjäaine) vaikutusta → voi selittää ketogeenisen ruokavalion epilepsialle edullisia vaikutuksia.
    • Toimii HDAC-estäjänä (histoni-deasetylaasi-inhibitio) → vaikuttaa geenien säätelyyn, mm. antioksidanttien ja neurotrofisten tekijöiden (BDNF) lisäämiseen.
    • Saattaa suojata Alzheimerin ja Parkinsonin taudeissa energiapuutteen ja tulehduksen yhteydessä.
  3. Kognitio ja mieliala
    • Monet kokevat selkeämpää ajattelua ja tarkkaavaisuuden paranemista ketoosissa. Mekanismeina energiatehokkuus, vakaa verensokeri ja välittäjäaineiden muutokset.

Vaikutukset sydämeen

  1. Energianlähde
    • Sydänlihas käyttää normaalisti paljon rasvahappoja. Ketoosissa BHB:sta tulee merkittävä energiasubstraatti.
    • BHB on puhtaampi polttoaine kuin rasvahapot: tuottaa enemmän ATP:tä suhteessa kulutettuun happeen → parempi energiatehokkuus.
  2. Iskeemiasuoja
    • BHB vähentää oksidatiivista stressiä ja parantaa mitokondrioiden toimintaa hapenpuutteessa.
    • Eläin- ja kliinisissä tutkimuksissa ketonien lisääntyminen on liittynyt sydämen vajaatoiminnan oireiden lievenemiseen.
  3. Sydänsairauksissa
    • Uusissa tutkimuksissa sydämen vajaatoimintapotilailla mitattiin kohonneita ketonipitoisuuksia – joiden tulkitaan olevan sydämen kompensatorinen keino hankkia energiaa, kun rasvahappojen käyttö on rajoittunut.
    • BHB-infuusio voi parantaa sydämen pumppaustehoa joissakin tutkimuksissa.

Yhteenveto

  • Aivoissa: BHB toimii tärkeänä energiavaihtoehtona, vähentää hermoston yliärsytystä ja oksidatiivista stressiä, sekä vaikuttaa suotuisasti geenien säätelyyn ja kognitioon.
  • Sydämessä: BHB parantaa energiatehokkuutta, vähentää oksidatiivista stressiä ja saattaa suojata vajaatoiminnassa tai iskemiatilanteissa.
Ominaisuus Aivot Sydän
Energianlähde Läpäisee veri–aivoesteen, kattaa ketoosissa jopa 60–70 % energiantarpeesta Korvaa osittain rasvahapot, tuottaa enemmän ATP:tä per käytetty happi (energiatehokkaampi)
Metabolinen hyöty Vähentää verensokerin vaihtelua, vakauttaa energiansaantia Tehostaa mitokondrioiden toimintaa, säästää happea
Hermoston / kudoksen suojaus Lisää antioksidanttien tuotantoa, vähentää oksidatiivista stressiä ja tulehdusta Vähentää oksidatiivista stressiä, suojaa iskemialta ja vajaatoiminnalta
Geenien säätely Toimii HDAC-estäjänä → lisää BDNF:ää ja muita suojaavia tekijöitä Voi muuttaa geenien ilmentymistä energiansaantia tehostavaan suuntaan
Välittäjäainevaikutukset Lisää GABA-aktiivisuutta, vähentää glutamaattia → epilepsian ja hermoston yliärsytyksen hillintä Ei suoraa vaikutusta välittäjäaineisiin, mutta parantaa pumppaustehoa vajaatoiminnassa
Kliininen merkitys Käytetään epilepsian hoidossa (ketogeeninen ruokavalio), tutkitaan Alzheimerin ja Parkinsonin taudeissa Sydämen vajaatoimintapotilailla kohonneet BHB-tasot liittyvät kompensaatioon; infuusio voi parantaa suorituskykyä

Kirjoittajat: Damian Dyńka , Katarzyna Kowalcze , Anna Charuta , Agnieszka Paziewska ,*
Alkuperäinen artikkeli: https://pmc.ncbi.nlm.nih.gov/articles/PMC10421332/
Käännös & editointi: Sami Raja-Halli

Lähdeviitteet

143.Liu S.H., Chen Y.X., Tzeng H.P., Chiang M.T. Fish Oil Enriched n-3 Polyunsaturated Fatty Acids Improve Ketogenic Low-Carbohydrate/High-Fat Diet-Caused Dyslipidemia, Excessive Fat Accumulation, and Weight Control in Rats. Nutrients. 2022;14:1796. doi: 10.3390/nu14091796. [DOI] [PMC free article] [PubMed] [Google Scholar]

144.Stoll S., Leimena C., Qiu H. Mitochondria and Heart Disease. InTech; London, UK: 2018. [DOI] [Google Scholar]

145.Brown D.A., Perry J.B., Allen M.E., Sabbah H.N., Stauffer B.L., Shaikh S.R., Cleland J.G.F., Colucci W.S., Butler J., Voors A.A., et al. Expert consensus document: Mitochondrial function as a therapeutictarget in heart failure. [(accessed on 24 April 2023)];Nat. Rev. Cardiol. 2017 14:238–250. doi: 10.1038/nrcardihttps://www.researchgate.net/publication/327299198_Mitochondria_and_Heart_Diseaseo.2016.203. Available online: . [DOI] [PMC free article] [PubMed] [Google Scholar]

146.Murashige D., Jang C., Neinast M., Edwards J.J., Cowan A., Hyman M.C., Rabinowitz J.D., Frankel D.S., Arany Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science. 2020;370:364–368. doi: 10.1126/science.abc8861. [DOI] [PMC free article] [PubMed] [Google Scholar]

147.Abdul Kadir A., Clarke K., Evans R.D. Cardiac ketone body metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165739. doi: 10.1016/j.bbadis.2020.165739. [DOI] [PubMed] [Google Scholar]

148.Sack M.N., Rader T.A., Park S., Bastin J., McCune S.A., Kelly D.P. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94:2837–2842. doi: 10.1161/01.cir.94.11.2837. [DOI] [PubMed] [Google Scholar]

149.Carley A.N., Taegtmeyer H., Lewandowski E.D. Matrix revisited: Mechanisms linking energy substrate metabolism to the function of the heart. Circ. Res. 2014;114:717–729. doi: 10.1161/CIRCRESAHA.114.301863. [DOI] [PMC free article] [PubMed] [Google Scholar]

150.Horton J.L., Davidson M.T., Kurishima C., Vega R.B., Powers J.C., Matsuura T.R., Petucci C., Lewandowski E.D., Crawford P.A., Muoio D.M., et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019;4:e124079. doi: 10.1172/jci.insight.124079. [DOI] [PMC free article] [PubMed] [Google Scholar]

151.Bedi K.C., Snyder N.W., Brandimarto J., Aziz M., Mesaros C., Worth A.J., Wang L.L., Javaheri A., Blair I.A., Margulies K.B., et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133:706–716. doi: 10.1161/CIRCULATIONAHA.115.017545. [DOI] [PMC free article] [PubMed] [Google Scholar]

152.Aubert G., Martin O.J., Horton J.L., Lai L., Vega R.B., Leone T.C., Koves T., Gardell S.J., Krüger M., Hoppel C.L., et al. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation. 2016;133:698–705. doi: 10.1161/CIRCULATIONAHA.115.017355. [DOI] [PMC free article] [PubMed] [Google Scholar]

153.Lommi M.D.J. Blood ketone bodies in congestive heart failure. J. Am. Coll. Cardiol. 1996;28:665–672. doi: 10.1016/0735-1097(96)00214-8. [DOI] [PubMed] [Google Scholar]

154.Voros G., Ector J., Garweg C., Droogne W., Van Cleemput J., Peersman N., Vermeersch P., Janssens S. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ. Heart Fail. 2018;11:e004953. doi: 10.1161/CIRCHEARTFAILURE.118.004953. [DOI] [PubMed] [Google Scholar]

155.Gormsen L.C., Svart M., Thomsen H.H., Sondergaard E., Vendelbo M.H., Chris-tensen N., Tolbod L.P., Harms H.J., Nielsen R., Wiggers H., et al. Ketone Body Infusion with 3-Hydroxybutyrate Reduces Myocardial Glucose Uptake and Increases Blood Flow in Humans: A Positron Emission Tomography Study. J. Am. Heart Assoc. 2017;6:e005066. doi: 10.1161/JAHA.116.005066. [DOI] [PMC free article] [PubMed] [Google Scholar]

156.Svart M., Gormsen L.C., Hansen J., Zeidler D., Gejl M., Vang K., Aanerud J., Moeller N. Regional cerebral effects of ketone body infusion with 3-hydroxybutyrate in humans: Reduced glucose uptake, unchanged oxygen consumption and increased blood flow by positron emission tomography. A randomized, controlled trial. PLoS ONE. 2018;13:e0190556. doi: 10.1371/journal.pone.0190556. [DOI] [PMC free article] [PubMed] [Google Scholar]

157.Lauritsen K.M., Søndergaard E., Luong T.V., Møller N., Gormsen L.C. Acute Hyperketonemia Does Not Affect Glucose or Palmitate Uptake in Abdominal Organs or Skeletal Muscle. J. Clin. Endocrinol. Metab. 2020;105:1785–1790. doi: 10.1210/clinem/dgaa122. [DOI] [PubMed] [Google Scholar]

158.Du Z., Shen A., Huang Y., Su L., Lai W., Wang P., Xie Z., Xie Z., Zeng Q., Ren H., et al. 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients. PLoS ONE. 2014;9:e88102. doi: 10.1371/journal.pone.0088102. [DOI] [PMC free article] [PubMed] [Google Scholar]

159.Seki M., Powers J.C., Maruyama S., Zuriaga M.A., Wu C.L., Kurishima C., Kim L., Johnson J., Poidomani A., Wang T., et al. Acute and chronic increases of circulating FSTL1 normalize energy substrate metabolism in pacing-induced heart failure. Circulation. 2018;11:e004486. doi: 10.1161/CIRCHEARTFAILURE.117.004486. [DOI] [PMC free article] [PubMed] [Google Scholar]

160.Guo Y., Liu X., Li T., Zhao J., Yang Y., Yao Y., Wang L., Yang B., Ren G., Tan Y., et al. Alternate-Day Ketogenic Diet Feeding Protects against Heart Failure through Preservation of Ketogenesis in the Liver. Oxid. Med. Cell. Longev. 2022;2022:4253651. doi: 10.1155/2022/4253651. [DOI] [PMC free article] [PubMed] [Google Scholar]

161.Obokata M., Negishi K., Sunaga H., Ishida H., Ito K., Ogawa T., Iso T., Ando Y., Kurabayashi M. Association between Circulating Ketone Bodies and Worse Outcomes in Hemodialysis Patients. J. Am. Heart Assoc. 2017;6:e006885. doi: 10.1161/JAHA.117.006885. [DOI] [PMC free article] [PubMed] [Google Scholar]

162.Flores-Guerrero J.L., Westenbrink B.D., Connelly M.A., Otvos J.D., Groothof D., Shalaurova I., Garcia E., Navis G., de Boer R.A., Bakker S.J.L., et al. Association of beta-hydroxybutyrate with development of heart failure: Sex differences in a Dutch population cohort. Eur. J. Clin. Investig. 2021;51:e13468. doi: 10.1111/eci.13468. [DOI] [PMC free article] [PubMed] [Google Scholar]

163.Manolis A.S., Manolis T.A., Manolis A.A. Ketone Bodies and Cardiovascular Disease: An Alternate Fuel Source to the Rescue. Int. J. Mol. Sci. 2023;24:3534. doi: 10.3390/ijms24043534. [DOI] [PMC free article] [PubMed] [Google Scholar]

164.Kashiwagi Y., Nagoshi T., Inoue Y., Tanaka Y., Takahashi H., Oi Y., Kimura H., Minai K., Yoshimura M. Close linkage between blood total ketone body levels and B-type natriuretic peptide levels in patients with cardiovascular disorders. Sci. Rep. 2021;11:6498. doi: 10.1038/s41598-021-86126-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

165.Marcondes-Braga F.G., Batista G.L., Gutz I.G.R., Saldiva P.H.N., Mangini S., Issa V.S., Ayub-Ferreira S.M., Bocchi E.A., Pereira A.C., Bacal F. Impact of exhaled breath acetone in the prognosis of patients with heart failure with reduced ejection fraction (HFrEF). One year of clinical follow-up. PLoS ONE. 2016;11:e0168790. doi: 10.1371/journal.pone.0168790. [DOI] [PMC free article] [PubMed] [Google Scholar]

166.Voorrips S.N., Boorsma E.M., Beusekamp J.C., DE-Boer R.A., Connelly M.A., Dullaart R.P.F., VAN-DER-Meer P., VAN-Veldhuisen D.J., Voors A.A., Damman K., et al. Longitudinal Changes in Circulating Ketone Body Levels in Patients with Acute Heart Failure: A Post Hoc Analysis of the EMPA-Response-AHF Trial. J. Card. Fail. 2023;29:33–41. doi: 10.1016/j.cardfail.2022.09.009. [DOI] [PubMed] [Google Scholar]

167.Nielsen R., Møller N., Gormsen L.C., Tolbod L.P., Hansson N.H., Sorensen J., Harms H.J., Frøkiær J., Eiskjaer H., Jespersen N.R., et al. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation. 2019;139:2129–2141. doi: 10.1161/CIRCULATIONAHA.118.036459. [DOI] [PMC free article] [PubMed] [Google Scholar]

168.Kashiwaya Y., Sato K., Tsuchiya N., Thomas S., Fell D.A., Veech R.L., Passonneau J.V. Control of glucose utilization in working perfused rat heart. J. Biol. Chem. 1994;269:25502–25514. doi: 10.1016/S0021-9258(18)47278-X. [DOI] [PubMed] [Google Scholar]

169.Sato K., Kashiwaya Y., Keon C.A., Tsuchiya N., King M.T., Radda G.K., Chance B., Clarke K., Veech R.L. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9:651–658. doi: 10.1096/fasebj.9.8.7768357. [DOI] [PubMed] [Google Scholar]

170.Schugar R.C., Moll A.R., André d’Avignon D., Weinheimer C.J., Kovacs A., Crawford P.A. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol. Metab. 2014;3:754–769. doi: 10.1016/j.molmet.2014.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]

171.Luong T.V., Abild C.B., Bangshaab M., Gormsen L.C., Søndergaard E. Ketogenic Diet and Cardiac Substrate Metabolism. Nutrients. 2022;14:1322. doi: 10.3390/nu14071322. [DOI] [PMC free article] [PubMed] [Google Scholar]

172.Matsuura T.R., Puchalska P., Crawford P.A., Kelly D.P. Ketones and the Heart: Meta-bolic Principles and Therapeutic Implications. Circ Res. 2023;132:882–898. doi: 10.1161/CIRCRESAHA.123.321872. [DOI] [PMC free article] [PubMed] [Google Scholar]

173.Likhodii S.S., Musa K., Mendonca A., Dell C., Burnham W.M., Cunnane S.C. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia. 2000;41:1400–1410. doi: 10.1111/j.1528-1157.2000.tb00115.x. [DOI] [PubMed] [Google Scholar]

174.Wang Y., Liu Z., Han Y., Xu J., Huang W., Li Z. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoS ONE. 2018;13:e0191182. doi: 10.1371/journal.pone.0191182. [DOI] [PMC free article] [PubMed] [Google Scholar]

175.Cardoso D.A., Moreira A.S., de Oliveira G.M., Raggio Luiz R., Rosa G. A Coconut Extra Virgin Oil-Rich Diet Increases Hdl Cholesterol and Decreases Waist Circumference and Body Mass in Coronary Artery Disease Patients. Nutr. Hosp. 2015;32:2144–2152. doi: 10.3305/nh.2015.32.5.9642. [DOI] [PubMed] [Google Scholar]




Ketogeeninen ruokavalio, sydän- ja verisuonitaudit 2: inflammaatio

Laajan tutkimuskatsauksen ensimmäisessä osassa tutustuin tukimuksiin, joiden mukaan ketogeeninen ruokavalio voi kohentaa veren lipidiprofiilia (kolesteroli- ja rasvaarvoja). Ketogeeninen ruokavalio on tutkimusten valossa mainettaan terveellisempi. Voit lukea ketogeenisen ruokavalion vaikutuksesta veren lipideihin tästä.

Kirjoittajat: Damian Dyńka , Katarzyna Kowalcze , Anna Charuta , Agnieszka Paziewska ,*
Alkuperäinen artikkeli: https://pmc.ncbi.nlm.nih.gov/articles/PMC10421332/
Käännös & editointi: Sami Raja-Halli

3. Ketogeenisen ruokavalion tulehdusta estävä potentiaali sydän- ja verisuonisairauksissa

Tulehdustekijät vaikuttavat usein sydän- ja verisuonitautien kehittymiseen [65,66,67,68,69,70]. Tulehdus käynnistää ateroskleroottisen prosessin varhaisvaiheet. Lisäksi tulehdusta edistävien sytokiinien lisääntyessä sydän- ja verisuonitautien kehittymisen riski kasvaa.

Synnynnäisellä immuniteetilla (luontainen vastustuskyky/innate immune system) on tässä keskeinen ennaltaehkäisevä rooli [65,71]. Tulehdus voi aiheuttaa endoteelin toimintahäiriön, joka lisää mm. lipoproteiinien läpäisevyyttä; tällä on kauaskantoisia seurauksia mm. ateroskleroosin kehittymiseen [72].

Myös stressi voi käynnistää tulehdusreaktion, mikä osaltaan lisää sydän- ja verisuonitautien riskiä. Tämä välittyy sympaattisen hermoston aktiivisuuden lisääntymisen kautta muun muassa tiettyjen aivoalueiden aineenvaihdunnan aktiivisuuden lisääntymisestä. Stressiä aiheuttaa hermoston aktiivisuutta lisäävä kortisoli. Kortisolin vaikutuksia hillitsee glutamaatista muodostuva gamma-aminovoihappo, eli GABA [73,74,75,76,77].

Havaintoa tukee se, että pelkästään näiden aivoalueiden lisääntynyt aineenvaihdunta-aktiivisuus mahdollistaa sepelvaltimotaudin kehittymisen ennustamisen riippumatta taudin tavanomaisista riskitekijöistä [78]. Ikääntymisprosessiin liittyy lievää tulehdusta, mikä ​​lisää ateroskleroottisen prosessin kehittymisen riskiä [72].

Kun huomioidaan ketogeenisen ruokavalion tulehdusta estävät vaikutukset, sen hyödylliset vaikutukset sydän- ja verisuonitautien ehkäisyyn tai hoitoon vaikuttavat uskottavilta.

Ketogeeninen ruokavalio hillitsee tulehdustekijöitä monien aineenvaihduntamekanismien välityksellä. Neljä päätekijää voidaan tunnistaa. Ensinnäkin ketogeeninen ruokavalio asettaa kehon ravitsemukselliseen ketoosiin (johon puolestaan ​​liittyy useita erilaisia ​​biokemiallisia ja fysiologisia mekanismeja). Ketoositilan aikana tapahtuvilla prosesseilla on systeeminen tulehdusta estävä vaikutus, jolla puolestaan ​​on suora vaikutus sydän- ja verisuonitauteihin.

Toiseksi tärkein tekijä on tulehdusta edistävien yksinkertaisten sokereiden poistaminen ruokavaliosta. Tämä heijastuu suoraan sydän- ja verisuonisairauksiin. Molempia tekijöitä kuvataan yksityiskohtaisesti kohdissa 3.1 ja 3.2. Itse asiassa hiilihydraattien kokonaismäärän rajoittaminen ruokavaliossa voi osoittaa erityisiä tulehdusta estäviä hyötyjä kardiometabolisen terveyden yhteydessä, kuten osiossa 3.3 on osoitettu.

Runsasrasvainen ja hyvin koostettu ketogeeninen ruokavalio sisältää runsaasti omega-3-rasvahappoja, ja niiden tulehdusta estävät ja sydäntä suojaavat vaikutukset ovat hyvin tunnettuja, kuten luvussa 3.4 on kuvattu. Tärkeimmät tekijät on havainnollistettu myös kuvassa 1.

Kuva1. Avaa uuteen ikkunaan.

3.1. Tulehdusta estävä, sydäntä suojaava potentiaali ketoositilassa (ketoaineet)

Ketogeeninen ruokavalio lisää ketoaineiden, eli β-hydroksibutyraatin, asetonin ja asetoasetaatin tuotantoa kehossa. Keho siirtyy hiilihydraattirajoituksen seurauksena ravitsemukselliseen ketoosiin. Ravitsemuksellisessa ketoosissa elimistö käyttää glukoosin sijasta ketoaineita tärkeimpänä energianlähteenä elintärkeissä prosesseissa [79].

Ketoosilla ja ketoaineilla on tunnistettuja systeemisiä tulehdusta estäviä vaikutuksia. Monitahoinen tulehdusta estävä vaikutus on on osoitettu mm. seuraavien tautien lääketieteellisen terapian tehoa lisäävänä:

  • neurologiset sairaudet [80]
  • syöpä [81]
  • diabetes [82]
  • tulehduksellinen suolistosairaus [83]
  • kroonisen kivun lievitys [84]
  • lihavuuteen liittyvien kroonisten tulehdussairauksien vaikeusasteen lievittäminen [85]
  • sydän- ja verisuonisairaudet [86].

β-hydroksibutyraatilla (BHB) on useita tulehdusta hillitseviä ominaisuuksia, ml paastotilan imitoiminen. Sillä on myös muita laaja-alaisia vaikutuksia, kuten geenien ilmentymiseen vaikuttaminen, tulehduksen vähentäminen ja mitokondrioiden toiminnan parantaminen.

β-hydroksibutyraatti: Aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden modulointi ketogeenisellä ruokavaliolla

Sydän- ja verisuonisairauksien eräs keskeinen riskitekijä on inflammaatio. BHB:n ensisijainen tulehdusta estävä vaikutus on sen estävä vaikutus NLRP3-inflammasomiin, joka on eräänlainen tulehdusta edistävien sytokiinien komentokeskus. Se on herkkä tasapainoa häiritseville tekijöille. NLRP3-inflaammasomin aktivoituminen johtaa tulehdusmerkkiaineiden lisääntymiseen [19].

NLRP3-inflammasomilla on myös tärkeä rooli sydänterveydelle, koska sen aktivaatio edistää sydänlihaksen toiminnan heikkenemistä ja sydän- ja verisuonisairauksien patologista kehittymistä [87,88,89].

NLRP3-inflammasomi on monimutkainen proteiinikompleksi, jolla on tärkeä rooli elimistön tulehdusreaktioissa. Sen epänormaali aktivoituminen voi vaikuttaa haitallisesti sydänterveyteen ja olla yhteydessä useisiin sydän- ja verisuonitauteihin.

Tutkimusten mukaan NLRP3-inflammasomin aktivaatio edistää tulehdusta, joka on monien sydänsairauksien, kuten ateroskleroosin (valtimonkovettumatauti) ja sydämen vajaatoiminnan taustalla.

NLRP3-inflammasomin mekanismi ja sen yhteys sydänsairauksiin

NLRP3-inflammasomi aktivoituu, kun se havaitsee vaurioihin tai infektioihin liittyviä signaaleja. Aktivaatio johtaa tulehdusta edistävien sytokiinien, kuten interleukiini-1β (IL-1β) ja IL-18, vapautumiseen. Nämä sytokiinit ovat keskeisiä tulehdusprosessin käynnistäjiä.

  • Ateroskleroosi:NLRP3-inflammasomin aktivaatio verisuonten endoteelisoluissa ja immuunisoluissa edistää tulehdusta ja kolesterolin kertymistä, mikä johtaa ateroskleroottisen plakin muodostumiseen ja kasvuun.
  • Sydäninfarkti ja iskeeminen vaurio:Sydäninfarktin aikana NLRP3 aktivoituu sydänlihassoluissa (kardiomyosyyteissä) ja muissa sydämen soluissa. Tämä johtaa tulehdukseen ja solukuolemaan, mikä voi lisätä vaurioalueen kokoa ja heikentää sydämen toimintaa.
  • Sydämen vajaatoiminta:Jatkuva NLRP3:n aktivaatio edistää kroonista tulehdusta, sydämen fibroosia (sidekudoksen liikakasvua) ja solukuolemaa, mikä voi pahentaa sydämen vajaatoimintaa.

Poffin ym. tutkimus osoitti, että ketoaineiden anto vähensi tehokkaasti useita tulehdusta edistäviä sytokiineja, mukaan lukien IL-1β, IL-6, IFN-γ, MCP-1 ja RANTES. Tämä osoittaa, että ketoaineilla on merkittäviä tulehdusta estäviä vaikutuksia [90].

Youmin ym. tutkimus vahvistaa, että β-hydroksibutyraatti (BHB) on potentiaalia lievittää NLRP3-inflammasomin välittämiä tulehdussairauksia. Se estää NLRP3-inflammasomin aktivoitumista vasteena uraattikiteille, ATP:lle ja lipotoksisille rasvahapoille. Tämä tapahtuu ilman hapettumista TCA-syklissä (trikarboksyylihappokierto /sitruunahappokierto) ja riippumatta irrotusproteiini-2:sta (UCP2), sirtuiini-2:sta (SIRT2), G-proteiinikytkentäisestä reseptorista GPR109A tai hydrokarboksyylihapporeseptorista 2 (HCAR2). Edellä mainitun tutkimuksen kirjoittajat osoittivat edelleen, että β-hydroksibutyraatti vähensi interleukiini (IL)-1β:n ja IL-18:n tuotantoa NLRP3-inflammasomin kautta ihmisen monosyyteissä [91].

β-hydroksibutyraatti voi edistää normaalin sydänterveyttä estämällä NLRP3-inflammasomia. Hydroksikarboksyylihapporeseptori 2 (HCAR2) voi myös olla tärkeä terapeuttinen kohde tulehdussairauksien hoidossa. Tämä johtuu siitä, että se välittää tulehdusta estäviä vaikutuksia eri kudoksissa. Näyttää siltä, ​​että BHB:llä on kyky estää tulehdusvasteita ja immuunisolujen toimintaa sitoutumalla HCAR2:een ja aktivoimalla sitä tai säätelemällä tiettyjä solunsisäisiä signalointireittejä suoraan [92,93,94].

Shimazu et al.:n tutkimus osoitti, että β-hydroksibutyraatti suojasi merkittävästi oksidatiiviselta stressiltä, ​​joka liittyi lisääntyneeseen FOXO3A- ja MT2-aktiivisuuteen. BHB on luokan I histonideasetylaasin (HDAC) spesifinen estäjä. Kirjoittajat osoittivat, että BHB:n aiheuttama HDAC:n esto korreloi globaalien transkriptionaalisten muutosten kanssa, mukaan lukien geenit, jotka koodaavat oksidatiivisen stressin resistenssitekijöitä (FOXO3A ja MT2). ​​BHB:n havaittiin lisäävän histoniasetylaatiota Foxo3a- ja Mt2-promoottoreissa, ja molemmat geenit aktivoituivat HDAC1:n ja HDAC2:n selektiivisellä vähenemisellä [95].

Toinen tutkimus osoitti myös, että BHB esti ER-stressiin liittyvien markkeriproteiinien ja inflammasomin kasvua. Lisäksi havaittiin, että BHB lisäsi mangaanin superoksididismutaasin ja katalaasin ilmentymistä AMP-aktivoidun proteiinikinaasin transkriptiotekijä O3α-reitin kautta. Tämä oli sovellettavissa sekä in vivo että in vitro [96].

Ravitsemuksellisen ketoosin pitoisuuksina ketoaineet (toisin kuin ketoasidoosin pitoisuuksina) vaikuttavat myös suoraan verisuonten endoteelimodulaatioon, ja niillä on muun muassa endoteelin tulehdusta estäviä vaikutuksia [97].

Yurista ym. totesivat julkaisussaan nimenomaisesti, että on olemassa runsaasti näyttöä siitä, että ketoaineet voivat suoraan estää tulehdusta hyödyllisellä tavalla sydän- ja verisuonisairauksien yhteydessä [98].

3.2. Yksinkertaisten sokereiden eliminoinnin tulehdusta estävät ja sydäntä suojaavat vaikutukset

Ketogeeninen ruokavalio rajoittaa hiilihydraattien kokonaismäärää, useimmiten 20-50 grammaan päivässä. Tämän vuoksi yksinkertaiset sokerit jäävät syrjään ja ne voidaan usein jopa katsoa poistetuiksi kokonaan. Tämä on tärkeää seerumin glukoosi- ja insuliinipitoisuuksien nousun minimoimiseksi, koska ne estävät halutun ketoositilan saavuttamisen [19,99].

On hyvin tunnettua, että yksinkertaiset sokerit ovat yksi tärkeimmistä tulehdusta edistävistä ravintotekijöistä [100,101,102]. Huoli yksinkertaisten sokereiden kielteisistä vaikutuksista sydän- ja verisuonitautiin juontaa juurensa 1960-luvulle [103].

Samaan aikaan kuitenkin edistettiin vähärasvaisia ​​ruokavalioita sydän- ja verisuonitautien ehkäisemiseksi. Hiilihydraattien (mukaan lukien yksinkertaisten sokerien) osuuden lisääminen ruokavaliossa johti sydän- ja verisuoniterveyteen liittyvien parametrien heikkenemiseen. Vasta vuosikymmeniä myöhemmin todistettiin, ettei tämä ollut hyödyllinen lähestymistapa sydänsairauksien lisääntymisen torjunnassa [104,105,106,107,108,109].

Lisätyn sokerin suuri määrä ruokavaliossa voi olla yksi suurimmista uhkista sydän- ja verisuoniterveydelle. Se pahentaa kroonista tulehdusta ja lisää sydän- ja verisuonitautien kehittymisen riskiä [110].

Yksinkertaisten sokereiden kielteinen vaikutus osoitettiin myös vuonna 2022 tehdyn laajan meta-analyysin tekijöiden toimesta. He havaitsivat, että lisätyn sokerin määrä (prosentteina päivittäisestä energiansaannista) ≥15,0 %:lla korreloi positiivisesti sydän- ja verisuonitautien kokonaismäärään (HR = 1,08 [1,01; 1,15]) ja iskeemiseen sydänsairauteen (CHD) (HR = 1,20 [1,09; 1,32]) [111].

Vuoden 2023 tutkimuksen kirjoittajat osoittivat myös, että lisätyn sokerin saanti liittyi positiivisesti sydän- ja verisuonitautien kokonaismäärään (HR; 95 %:n luottamusväli 5 %:a energiasta kohden, 1,07; 1,03–1,10), iskeemiseen sydänsairauteen (1,06; 1,02–1,10) ja aivohalvaukseen (1,10; 1,04–1,17).

Yksinkertaisten sokereiden lähteellä on usein tärkeä rooli. Vapaat sokerit ovat tulehdusta edistävimpiä (mukaan lukien fruktoosilla makeutettujen juomien muodossa, mutta ei välttämättä hedelmistä). Kelly ym. osoittivat, että 5 %:n vapaiden sokereiden energian korvaaminen ei-vapailla sokereilla liittyi pienempään sydän- ja verisuonitautien kokonaismäärän (0,95; 0,92–0,98; p-trendi = 0,001) ja aivohalvauksen kokonaismäärän (0,91; 0,86–0,97; p-trendi = 0,005) riskiin [112].

Tutkimukset osoittavat, että hedelmien sisältämillä yksinkertaisilla sokereilla ei todennäköisesti ole tulehdusta edistävää vaikutusta. Hedelmiä ja vihanneksia sisältävä ruokavalio voi jopa auttaa vähentämään tulehdusta, koska ne ovat tärkeä antioksidanttien ja muiden bioaktiivisten aineiden lähde [113].

Tiedetään, että liiallinen fruktoosi on tulehdusta edistävä ja lisää metabolisen oireyhtymän ja kihdin riskiä. Kohonneet fruktoosimetaboliittien (mukaan lukien virtsahappo ja laktaatti) pitoisuudet liittyvät läheisesti oksidatiiviseen stressiin ja paikallisiin tulehdusreaktioihin kudoksissa ja elimissä [114,115]. Vaikka tämä koskee pääasiassa lisättyä fruktoosia (esim. glukoosin tai fruktoosisiirapin muodossa) eikä kokonaisia ​​hedelmiä, on näyttöä hedelmämehujen samankaltaisesta vaikutuksesta, erityisesti kihtiriskin lisäämisen yhteydessä [116,117].

Ketogeeninen ruokavalio syrjäyttää kaikki yksinkertaisten sokerien muodot (koska ne voidaan ”potkaista ulos” ketoositilasta erityisen helposti). Tältä osin tulehdusta hillitsevä vaikutus on KD:llä selvempi kuin sellaisilla ravitsemusmalleilla, jotka ohjeiden mukaan sallivat esimerkiksi 5 % vapaita sokereita ruokavaliossa [118].

Glykoitunut hemoglobiini (HbA1c), joka heijastaa seerumin keskimääräistä glukoosipitoisuutta viimeisen 3 kuukauden ajalta, on yksi tärkeimmistä sydän- ja verisuonitautien riskitekijöistä [119].
Korkeat HbA1c-tasot liittyvät vahvasti sydän- ja verisuonitautien riskiin sekä diabeetikoilla että ei-diabetesta sairastavilla [120,121].

HbA1c:n on osoitettu korreloivan positiivisesti sydän- ja verisuonitautien, kuten kaulavaltimon ja sepelvaltimoiden ateroskleroosin, iskeemisen sydänsairauden, iskeemisen aivohalvauksen ja verenpainetaudin, kanssa. Julkaisun kirjoittaja huomauttaa myös, että HbA1c aiheuttaa dyslipidemiaa, hyperhomokysteinemiaa ja verenpainetautia. Lisäksi se lisää C-reaktiivisen proteiinin (CRP) tasoja, oksidatiivista stressiä ja veren viskositeettia. Kaikki nämä voivat lopulta johtaa sydän- ja verisuonitautien kehittymiseen [122].

Näyttää siltä, ​​että HbA1c on itsenäinen riskitekijä sydän- ja verisuonitautien kehittymiselle ja näihin sairauksiin kuolemiselle, myös ihmisillä, joilla ei ole diabetesta.

Tämä osoittaa tämän markkerin huomattavan merkityksen väestölle yleensä [121]. Ketogeenisellä ruokavaliolla on osoitettu olevan HbA1c-tasoa alentavia ominaisuuksia, joiden kautta se voi hyödyttää myös sydän- ja verisuonitautien ehkäisyä ja hoitoa. KD:n tehokkuutta HbA1c-tason alentamisessa tukevat useat meta-analyysit ja muut julkaisut. Vuoden 2022 julkaisun kirjoittajat osoittivat HbA1c-arvon laskeneen keskimäärin 1,45 % ketogeenistä ruokavaliota noudattavilla potilailla (verrattuna kontrolliruokavaliota noudattaviin) [123].

Toinen vuoden 2022 meta-analyysi osoitti myös ketogeenisen ruokavalion merkittävän hyödyn HbA1c-tason alentamisessa.

Ketogeenistä ruokavaliota noudattavien potilaiden HbA1c-tasot olivat laskeneet kolmen ja kuuden kuukauden kuluttua (keskimäärin 6,7 mmol/l ja 6,3 mmol/l) verrattuna tavanomaisia ​​suositeltuja ruokavalioita noudattaviin. Merkittävää on, että ketogeenisellä ruokavaliolla havaittiin etu tavanomaisiin ruokavalioihin verrattuna jopa triglyseridien alentamisessa ja HDL-kolesterolin lisäämisessä [56].

2022 tehty meta-analyysi vahvisti ketogeenisen ruokavalion vaikutuksen HbA1c-arvon (keskimäärin 0,38 % HbA1c) ja triglyseridien (keskimäärin 0,36 mmol/l) alentamiseen sekä HDL-kolesterolin (keskimäärin 0,28 mmol/l) lisäämiseen [124].

Choi ym. osoittivat myös meta-analyysissään ketogeenisen ruokavalion hyötyjä verrattuna vähärasvaisiin ruokavalioihin, muun muassa HbA1c-pitoisuuden alenemisena (SMD -0,62), HDL-pitoisuuden nousuna (SMD 0,31) ja triglyseridipitoisuuden laskuna (SMD -0,45) [125].

Ketogeenisen ruokavalion hyödyllinen vaikutus glykoituneeseen hemoglobiiniin, triglyserideihin ja HDL-kolesteroliarvoihin kuvattiin myös toisessa meta-analyysissä vuodelta 2022 [126]. Edellä esitetyn perusteella voidaan päätellä, että tämä on toinen tekijä, jolla ketogeenisellä ruokavaliolla on tulehdusta estävä vaikutus, koska se poistaa tulehdusta edistäviä yksinkertaisia ​​sokereita.

3.3. Hiilihydraattien rajoittamisen tulehdusta estävät ja sydäntä suojaavat vaikutukset

Ketogeenisten ruokavalioiden edellä mainitut hyödylliset vaikutukset tulehdusmerkkiaineiden ja sydän- ja verisuonitautien riskitekijöiden arvoihin voivat johtua myös hiilihydraattien kokonaismäärän vähenemisestä, ei pelkästään yksinkertaisten sokereiden poistamisesta. Tätä saattaa tukea laaja vuonna 2022 tehty meta-analyysi, jossa ei tarkasteltu pelkästään ketogeenistä ruokavaliota, vaan nimenomaan hiilihydraattien osuuden vähentämisen vaikutusta ruokavaliossa.

Siinä tarkasteltiin hiilihydraattien energiaosuuden vähentämisen vaikutusta 55–65 prosentista 10 prosenttiin tyypin 2 diabetesta (T2DM) sairastavien kardiometabolisiin riskitekijöihin. Osoitettiin, että jokainen 10 prosentin vähennys hiilihydraattien energiaprosentissa alensi HbA1c-pitoisuutta (keskimäärin 0,20 HbA1c), paastoverensokeria (keskimäärin 0,34 mmol/l), triglyseridipitoisuutta (keskimäärin 0,12 mmol), painoa (keskimäärin 1,44 kg) ja jopa systolista verenpainetta (keskimäärin 1,79 mmHg). Nämä arvot laskivat lineaarisesti hiilihydraattien saannin laskiessa 55–65 prosentista 10 prosenttiin.

Nämä tulokset heijastivat 6 kuukauden ajanjaksoa. Kun indeksit tarkistettiin uudelleen 12 kuukautta lähtötason jälkeen, HbA1c-arvot jatkoivat lineaarista laskuaan (keskimäärin 0,11 HbA1c-prosenttia), samoin kuin triglyseriditasot (keskimäärin 0,12 mmol lasku) [127].

Samaan aikaan havaittiin U-muotoinen vaikutus 6 kuukauden seurannassa kokonais- ja LDL-kolesterolissa, jossa suurimmat hyödyt ilmenivät, kun hiilihydraattien määrä vähennettiin 40 prosenttiin energiasta, ja painossa 12 kuukauden seurannassa (suurimmat hyödyt, kun hiilihydraattien osuus kokonaisenergiasta oli 35 prosenttia).

Kirjoittajat osoittivat, että hiilihydraattien rajoittamisen vaikutus 12 kuukauden aikavälillä rajoittui HbA1c:hen, painoon, LDL-kolesteroliin ja triglyserideihin, ja vaikutuksen koko oli selvästi alle minimaalisen kliinisesti merkittävän eron (MCID) kynnysarvojen. Todisteita pelkästään hiilihydraattien rajoittamisen kardiometabolisista hyödyistä löytyy Waldmanin ym. tutkimuksesta. Kirjoittajat tutkivat neljän viikon hiilihydraatittoman ruokavalion vaikutuksia tulehduksen ja oksidatiivisen stressin markkereihin palomiehillä. Ruokavaliossa hiilihydraatit oli rajoitettu 25 prosenttiin energiasisällöstä.

Tutkimus osoitti, että ketogeeninen ruokavalio johti parannuksiin aineenvaihduntamarkkereissa kehittyneiden oksidatiivisten proteiinituotteiden (AOPP) (51,3 ± 27,3 vs. 32,9 ± 7,9 ng-ml−1), malondialdehydin (MDA) (1,6 ± 0,6 vs. 1,1 ± 0,5 µmol-L−1) ja triglyseridien (84,4 ± 34,4 vs. 64,2 ± 14,4 mg-dL−1) vähenemisen muodossa [128].

Karimi ym. osoittivat, että tutkitussa naisryhmässä hiilihydraattien kokonaismäärä ruokavaliosta liittyi lisääntyneeseen tulehdusriskiin, kun taas rasvan kokonaismäärä ei liittynyt korkeampaan tulehdukseen [129]. Myös Tavakoli ym. havaitsivat tulehdusmarkkereiden vähenemisen vähän hiilihydraatteja sisältävän ruokavalion seurauksena. [130]. ​​

Forsythe ym. vertasivat satunnaistetussa kontrolloidussa tutkimuksessa vähähiilihydraattisen ja vähärasvaisen ruokavalion vaikutuksia tulehdusmarkkereihin ja veren rasvahappokoostumukseen 12 viikon ajan. Kirjoittajat päättelivät, että vähähiilihydraattinen ruokavalio aiheutti merkittäviä muutoksia rasvahappokoostumuksessa ja vähensi tulehdusta verrattuna vähärasvaiseen ruokavalioon [131].

Toisessa tutkimuksessa kirjoittajat tarkastelivat myös hiilihydraattirajoitetun ruokavalion vaikutusta sydän- ja verisuonitautien markkereihin 12 viikon ajan. He havaitsivat, että 12 viikon jälkeen muun muassa CRP (−8,1 %) ja TNF-α (−9,3 %) laskivat painonpudotuksesta riippumatta.

Paino laski (−7,5 ± 2,5 kg); lisäksi havaittiin plasman Lp(a):n lasku (−11,3 %). Kirjoittajat päättelivät, että hiilihydraattien rajoitus johti spontaaniin kalorien vähenemiseen ja sitä kautta sydän- ja verisuonitautimarkkereiden paranemiseen ylipainoisilla tai lihavilla miehillä [132]. Hiilihydraattien rajoituksen hyödyllistä vaikutusta suoriin sydän- ja verisuonitautien riskitekijöihin tuki myös laaja meta-analyysi vuodelta 2020 [133].

On otettava huomioon, että hiilihydraattien lähde itsessään on erittäin tärkeä. Jotkut tutkimukset eivät ota lähdettä huomioon, vaikka tämä varmasti vaikuttaa tutkimuksen myöhempiin tuloksiin. On selvää, että puhdistettuihin hiilihydraatteihin perustuva ruokavalio on huomattavasti huonompi kuin käsittelemättömiin, täysjyväviljahiilihydraattilähteisiin perustuva ruokavalio. Näiden yhteyksien vuoksi ketogeeninen ruokavalio voi ketoosin saavuttamisen ja yksinkertaisten sokereiden poistamisen lisäksi osoittaa myös hyödyllistä tulehdusta estävää sydäntä suojaavaa potentiaalia hiilihydraattien kokonaissaannin rajoittamisen seurauksena, erityisesti jos prosessoituihin hiilihydraatteihin sovelletaan tätä rajoitusta.

3.4. Omega-3-rasvahappojen tulehdusta estävät ja sydäntä suojaavat vaikutukset

Oikein koostettu ketogeeninen ruokavalio sisältää runsaasti tulehdusta estäviä omega-3-ryhmän rasvahappoja. Tässä suhteessa sillä voi olla etulyöntiasema muihin ruokavalioihin, erityisesti vähärasvaisiin ruokavalioihin verrattuna. Tämä johtuu siitä, että rasvahappojen oikean määrän saaminen on paljon helpompaa, koska yksi tärkeimmistä elintarvikkeista on rasvainen kala (joka on omega-3:n tärkein lähde).

Ketogeeninen ruokavalio on runsasrasvainen ruokavalio, joten rasvojen energiaosuuden ylittämisestä on paljon vähemmän huolta kuin muissa ruokavalioissa. Omega-3-rasvahapoilla on systeemisiä tulehdusta estäviä vaikutuksia ja ne ovat erityisen tärkeitä sydän- ja verisuoniterveyden yhteydessä.

On osoitettu, että omega-3-monitoimirasvahapot kilpailevat omega-6-monitoimirasvahappojen kanssa ja syrjäyttävät arakidonihappoa kalvofosfolipideissä ja niillä on tulehdusta estäviä ominaisuuksia vähentämällä tulehdusta edistävien eikosanoidien tuotantoa. Tässä tärkeää on omega-3- ja omega-6-rasvojen saannin välinen suhde. Immuunijärjestelmä tarvitsee omegakutosia. Simonetto ym. osoittivat , että omega-3-monitoimirasvahappojen lisäravinteet voivat vähentää erilaisten ateroskleroosin ja sydän- ja verisuonitautien fenotyyppien riskiä [134].

Vuoden 2023 systemaattinen katsaus vahvisti, että omega-3-rasvahapot parantavat myös veren lipidiprofiilia [135]. Omega-3-rasvahappojen sydäntä suojaava vaikutus on siis vankasti vahvistettu kirjallisuudessa ja useissa viimeaikaisissa julkaisuissa, mukaan lukien meta-analyysit [136,137,138,139,140].

Tutkimukset ovat osoittaneet, että omega-3-rasvahapoilla rikastetulla ketogeenisellä ruokavaliolla on parannettu terveyttä edistävä vaikutus. De Louisin ym. satunnaistettu tutkimus osoitti, että erittäin vähäkalorisella ketogeenisellä ruokavaliolla, johon oli lisätty dokosaheksaeenihappoa (DHA:ta) (ja siten omega-3:a), oli merkittävästi parempi tulehdusta estävä vaikutus [141].

Vuonna 2022 tehty tutkimus tuki havaintoa, että ketogeenisen ruokavalion ja omega-3-rasvahappojen yhdistäminen osoitti parantuneita aineenvaihduntaprofiileja, parannuksia nälkää ja kylläisyyttä säätelevissä hormoneissa, huomattavaa kehon rasvan menetystä ja, mikä tärkeintä, ei vaikutusta vähärasvaiseen kehon lihasmassaan. Tutkimuksessa havaittiin muun muassa CRP:n, kokonaiskolesterolin, triglyseridien, insuliinin ja HOMA-IR-indeksin laskua [142].

Liu et al. julkaisivat toisen tutkimuksen vuonna 2022, joka vahvisti omega-3-rasvahappolisän lisähyötyjä. Se osoitti, että vähähiilihydraattisen ja runsasrasvaisen ruokavalion yhdistelmä lisäomega-3-rasvahappoihin paransi lipidiaineenvaihduntaa ja auttoi painonhallinnassa [143].

Tämä on tärkeää, koska N-3-rikastetlla KD:llä on paremmat tulehdusta estävät vaikutukset kuin pelkällä KD:llä [52], koska muun muassa rasvainen kala (joka on omega-3:n tärkein lähde) on yksi ketogeenisessä ruokavaliossa suositelluista elintarvikkeista. Se sisältää runsaasti omega-3-rasvahappoja. Tämän vuoksi se edustaa toista tulehdusta estävää, sydäntä suojaavaa tekijää, joka voi johtua ketogeenisestä ruokavaliosta.

Lähdeviitteet

65.Sorriento D., Iaccarino G. Inflammation and Cardiovascular Diseases: The Most Recent Findings. Int. J. Mol. Sci. 2019;20:3879. doi: 10.3390/ijms20163879. [DOI] [PMC free article] [PubMed] [Google Scholar]

66.Fiordelisi A., Iaccarino G., Morisco C., Coscioni E., Sorriento D. NFkappaB is a Key Player in the Crosstalk between Inflammation Cardiovascular Diseases. Int. J. Mol. Sci. 2019;20:1599. doi: 10.3390/ijms20071599. [DOI] [PMC free article] [PubMed] [Google Scholar]

67.Liccardo D., Cannavo A., Spagnuolo G., Ferrara N., Cittadini A., Rengo C., Rengo G. Periodontal Disease: A Risk Factor for Diabetes and Cardiovascular Disease. Int. J. Mol. Sci. 2019;20:1414. doi: 10.3390/ijms20061414. [DOI] [PMC free article] [PubMed] [Google Scholar]

68.Mercurio V., Lobasso A., Barbieri L., Parrella P., Ciervo D., Liccardo B., Bonaduce D., Tocchetti C.G., De Paulis A., Rossi F.W. Inflammatory, Serological and Vascular Determinants of Cardiovascular Disease in Systemic Lupus Erythematosus Patients. Int. J. Mol. Sci. 2019;20:2154. doi: 10.3390/ijms20092154. [DOI] [PMC free article] [PubMed] [Google Scholar]

69.Varricchi G., Loffredo S., Borriello F., Pecoraro A., Rivellese F., Genovese A., Spadaro G., Marone G. Superantigenic Activation of Human Cardiac Mast Cells. Int. J. Mol. Sci. 2019;20:1828. doi: 10.3390/ijms20081828. [DOI] [PMC free article] [PubMed] [Google Scholar]

70.Brigant B., Metzinger-Le Meuth V., Rochette J., Metzinger L. TRIMming down to TRIM37: Relevance to Inflammation, Cardiovascular Disorders, and Cancer in MULIBREY Nanism. Int. J. Mol. Sci. 2018;20:67. doi: 10.3390/ijms20010067. [DOI] [PMC free article] [PubMed] [Google Scholar]

71.Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914. [DOI] [PubMed] [Google Scholar]

72.Henein M.Y., Vancheri S., Longo G., Vancheri F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022;23:12906. doi: 10.3390/ijms232112906. [DOI] [PMC free article] [PubMed] [Google Scholar]

73.Sklerov M., Dayan E., Browner N. Functional neuroimaging of the central autonomic network: Recent developments and clinical implications. Clin. Auton. Res. 2019;29:555–566. doi: 10.1007/s10286-018-0577-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

74.Kraynak T.E., Marsland A.L., Gianaros P.J. Neural Mechanisms Linking Emotion with Cardiovascular Disease. Curr. Cardiol. Rep. 2018;20:128. doi: 10.1007/s11886-018-1071-y. [DOI] [PMC free article] [PubMed] [Google Scholar]

75.Muscatell K.A., Dedovic K., Slavich G.M., Jarcho M.R., Breen E.C., Bower J.E., Irwin M.R., Eisenberger N.I. Greater amygdala activity and dorsomedial prefrontal–amygdala coupling are associated with enhanced inflammatory responses to stress. Brain Behav. Immun. 2015;43:46–53. doi: 10.1016/j.bbi.2014.06.201. [DOI] [PMC free article] [PubMed] [Google Scholar]

76.Tracey K.J. The inflammatory reflex. Nature. 2002;420:853–859. doi: 10.1038/nature01321. [DOI] [PubMed] [Google Scholar]

77.Shah S.M., Meadows J.L., Burg M.M., Pfau S., Soufer R. Effects of Psychological Stress on Vascular Physiology: Beyond the Current Imaging Signal. Curr. Cardiol. Rep. 2020;22:156. doi: 10.1007/s11886-020-01406-x. [DOI] [PubMed] [Google Scholar]

78.Tawakol A., Ishai A., Takx R.A.P., Figueroa A.L., Ali A., Kaiser Y., Truong Q.A., Solomon C.J.E., Calcagno C., Mani V., et al. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study. Lancet. 2017;389:834–845. doi: 10.1016/S0140-6736(16)31714-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

79.Pondel N., Liśkiewicz D., Liśkiewicz A. Dieta ketogeniczna–mechanizm działania i perspektywy zastosowania w terapii: Dane z badań klinicznych. Postępy Biochem. 2020;66:270–286. doi: 10.18388/pb.2020_342. [DOI] [PubMed] [Google Scholar]

80.Dyńka D., Kowalcze K., Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients. 2022;14:5003. doi: 10.3390/nu14235003. [DOI] [PMC free article] [PubMed] [Google Scholar]

81.Hwang C.Y., Choe W., Yoon K.-S., Ha J., Kim S.S., Yeo E.-J., Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients. 2022;14:4932. doi: 10.3390/nu14224932. [DOI] [PMC free article] [PubMed] [Google Scholar]

82.Dyńka D., Kowalcze K., Ambrozkiewicz F., Paziewska A. Effect of the Ketogenic Diet on the Prophylaxis and Treatment of Diabetes Mellitus: A Review of the Meta-Analyses and Clinical Trials. Nutrients. 2023;15:500. doi: 10.3390/nu15030500. [DOI] [PMC free article] [PubMed] [Google Scholar]

83.Kong C., Yan X., Liu Y., Huang L., Zhu Y., He J., Gao R., Kalady M.F., Goel A., Qin H., et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 2021;6:154. doi: 10.1038/s41392-021-00549-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

84.Field R., Pourkazemi F., Rooney K. Effects of a Low-Carbohydrate Ketogenic Diet on Reported Pain, Blood Biomarkers and Quality of Life in Patients with Chronic Pain: A Pilot Randomized Clinical Trial. Pain Med. 2022;23:326–338. doi: 10.1093/pm/pnab278. [DOI] [PubMed] [Google Scholar]

85.Alkhorayef N., Almutery F.T., Rasheed Z., Althwab S.A., Aljohani A.S.M., Alhawday Y.A.N., Salem T., Alharbi A.M., Wahaq A.A.A.B., Alharbi F.S., et al. Regulatory effects of ketogenic diet on the inflammatory response in obese Saudi women. J. Taibah Univ. Med. Sci. 2023;18:1101–1107. doi: 10.1016/j.jtumed.2023.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]

86.Mohammadifard N., Haghighatdoost F., Rahimlou M., Rodrigues A.P.S., Gaskarei M.K., Okhovat P., de Oliveira C., Silveira E.A., Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients. 2022;14:3499. doi: 10.3390/nu14173499. [DOI] [PMC free article] [PubMed] [Google Scholar]

87.Mezzaroma E., Toldo S., Farkas D., Seropian I.M., Van Tassell B.W., Salloum F.N., Kannan H.R., Menna A.C., Voelkel N.F., Abbate A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA. 2011;108:19725–19730. doi: 10.1073/pnas.1108586108. [DOI] [PMC free article] [PubMed] [Google Scholar]

88.Tong Y., Wang Z., Cai L., Lin L., Liu J., Cheng J. NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2020;2020:4293206. doi: 10.1155/2020/4293206. [DOI] [PMC free article] [PubMed] [Google Scholar]

89.Zheng Y., Xu L., Dong N., Li F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front. Cardiovasc. Med. 2022;9:927061. doi: 10.3389/fcvm.2022.927061. [DOI] [PMC free article] [PubMed] [Google Scholar]

90.Poff A., Kesl S., Koutnik A., Ward N., Ari C., Deblasi J., D’Agostino D. Characterizing the metabolic effects of exogenous ketone supplementation—An alternative or adjuvant to the ketogenic diet. FASEB J. 2017;31:970.7. doi: 10.1096/fasebj.31.1_supplement.970.7. [DOI] [Google Scholar]

91.Youm Y.H., Nguyen K.Y., Grant R.W., Goldberg E.L., Bodogai M., Kim D., D’Agostino D., Planavsky N., Lupfer C., Kanneganti T.D., et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 2015;21:263–269. doi: 10.1038/nm.3804. [DOI] [PMC free article] [PubMed] [Google Scholar]

92.Graff E.C., Fang H., Wanders D., Judd R.L. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. 2016;65:102–113. doi: 10.1016/j.metabol.2015.10.001. [DOI] [PubMed] [Google Scholar]

93.Offermanns S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu. Rev. Pharm. Toxicol. 2014;54:407–434. doi: 10.1146/annurev-pharmtox-011613-135945. [DOI] [PubMed] [Google Scholar]

94.Qi J., Gan L., Fang J., Zhang J., Yu X., Guo H., Cai D., Cui H., Gou L., Deng J., et al. Beta-Hydroxybutyrate: A Dual Function Molecular and Immunological Barrier Function Regulator. Front. Immunol. 2022;13:805881. doi: 10.3389/fimmu.2022.805881. [DOI] [PMC free article] [PubMed] [Google Scholar]

95.Shimazu T., Hirschey M.D., Newman J., He W., Shirakawa K., Le Moan N., Grueter C.A., Lim H., Saunders L.R., Stevens R.D., et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–214. doi: 10.1126/science.1227166. [DOI] [PMC free article] [PubMed] [Google Scholar]

96.Bae H.R., Kim D.H., Park M.H., Lee B., Kim M.J., Lee E.K., Chung K.W., Kim S.M., Im D.S., Chung H.Y. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget. 2016;7:66444–66454. doi: 10.18632/oncotarget.12119. [DOI] [PMC free article] [PubMed] [Google Scholar]

97.Nasser S., Vialichka V., Biesiekierska M., Balcerczyk A., Pirola L. Effects of ketogenic diet and ketone bodies on the cardiovascular system: Concentration matters. World J. Diabetes. 2020;11:584–595. doi: 10.4239/wjd.v11.i12.584. [DOI] [PMC free article] [PubMed] [Google Scholar]

98.Yurista S.R., Chong C.R., Badimon J.J., Kelly D.P., de Boer R.A., Westenbrink B.D. Therapeutic Potential of Ketone Bodies for Patients with Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021;77:1660–1669. doi: 10.1016/j.jacc.2020.12.065. [DOI] [PubMed] [Google Scholar]

99.Westman E.C., Feinman R.D., Mavropoulos J.C., Vernon M.C., Volek J.S., Wortman J.A., Yancy W.S., Phinney S.D. Lowcarbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007;86:276–284. doi: 10.1093/ajcn/86.2.276. [DOI] [PubMed] [Google Scholar]

100.Ma X., Nan F., Liang H., Shu P., Fan X., Song X., Hou Y., Zhang D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022;13:988481. doi: 10.3389/fimmu.2022.988481. [DOI] [PMC free article] [PubMed] [Google Scholar]

101.Della Corte K.W., Perrar I., Penczynski K.J., Schwingshackl L., Herder C., Buyken A.E. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients. 2018;10:606. doi: 10.3390/nu10050606. [DOI] [PMC free article] [PubMed] [Google Scholar]

102.O’Connor L., Imamura F., Brage S., Griffin S.J., Wareham N.J., Forouhi N.G. Intakes and sources of dietary sugars and their association with metabolic and inflammatory markers. Clin. Nutr. 2018;37:1313–1322. doi: 10.1016/j.clnu.2017.05.030. [DOI] [PMC free article] [PubMed] [Google Scholar]

103.McGandy R.B., Hegsted D.M., Stare F.J. Dietary fats, carbohydratesand atherosclerotic vascular disease. N. Engl. J. Med. 1967;277:186–192. doi: 10.1056/NEJM196707272770405. [DOI] [PubMed] [Google Scholar]

104.Carbone S., Billingsley H.E., Lavie C.J. The Effects of Dietary Sugars on Cardiovascular Disease and Cardiovascular Disease-Related Mortality: Finding the Sweet Spot. Mayo Clin. Proc. 2019;94:2375–2377. doi: 10.1016/j.mayocp.2019.10.017. [DOI] [PubMed] [Google Scholar]

105.Howard B.V., Van Horn L., Hsia J., Manson J.E., Stefanick M.L., Wassertheil-Smoller S., Kuller L.H., LaCroix A.Z., Langer L.D., Lasser N.L., et al. Low-fat dietary patternand risk of cardiovascular disease: The Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295:655–666. doi: 10.1001/jama.295.6.655. [DOI] [PubMed] [Google Scholar]

106.Billingsley H.E., Carbone S., Lavie C.J. Dietary fats and chronicnoncommunicable diseases. Nutrients. 2018;10:1385. doi: 10.3390/nu10101385. [DOI] [PMC free article] [PubMed] [Google Scholar]

107.Huang C., Huang J., Tian Y., Yang X., Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: A metaanalysis of prospective studies. Atherosclerosis. 2014;234:11–16. doi: 10.1016/j.atherosclerosis.2014.01.037. [DOI] [PubMed] [Google Scholar]

108.Li Y., Hruby A., Bernstein A.M., Ley S.H., Wang D.D., Chiuve S.E., Sampson L., Rexrode K.M., Rimm E.B., Willett W.C., et al. Saturated fats comparedwith unsaturated fats and sources of carbohydrates in relationto risk of coronary heart disease: A prospective cohort study. J. Am. Coll. Cardiol. 2015;66:1538–1548. doi: 10.1016/j.jacc.2015.07.055. [DOI] [PMC free article] [PubMed] [Google Scholar]

109.Yang Q., Zhang Z., Gregg E.W., Flanders W.D., Merritt R., Hu F.B. Added sugar intake and cardiovascular diseases mortalityamong US adults. JAMA Intern. Med. 2014;174:516–524. doi: 10.1001/jamainternmed.2013.13563. [DOI] [PMC free article] [PubMed] [Google Scholar]

110. [(accessed on 23 July 2023)]. Available online: https://www.health.harvard.edu/heart-health/the-sweet-danger-of-sugar.

111.Yang B., Glenn A.J., Liu Q., Madsen T., Allison M.A., Shikany J.M., Manson J.E., Chan K.H.K., Wu W.C., Li J., et al. Added Sugar, Sugar-Sweetened Beverages, and Artificially Sweetened Beverages and Risk of Cardiovascular Disease: Findings from the Women’s Health Initiative and a Network Meta-Analysis of Prospective Studies. Nutrients. 2022;14:4226. doi: 10.3390/nu14204226. [DOI] [PMC free article] [PubMed] [Google Scholar]

112.Kelly R.K., Tong T.Y.N., Watling C.Z., Reynolds A., Piernas C., Schmidt J.A., Papier K., Carter J.L., Key T.J., Perez-Cornago A. Associations between types and sources of dietary carbohydrates and cardiovascular disease risk: A prospective cohort study of UK Biobank participants. BMC Med. 2023;21:34. doi: 10.1186/s12916-022-02712-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

113.Hosseini B., Berthon B.S., Saedisomeolia A., Starkey M.R., Collison A., Wark P.A.B., Wood L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018;108:136–155. doi: 10.1093/ajcn/nqy082. [DOI] [PubMed] [Google Scholar]

114.Cheng H., Zhou J., Sun Y., Zhan Q., Zhang D. High fructose diet: A risk factor for immune system dysregulation. Hum. Immunol. 2022;83:538–546. doi: 10.1016/j.humimm.2022.03.007. [DOI] [PubMed] [Google Scholar]

115.Lubawy M., Formanowicz D. High-Fructose Diet–Induced Hyperuricemia Accompanying Metabolic Syndrome–Mechanisms and Dietary Therapy Proposals. Int. J. Environ. Res. Public Health. 2023;20:3596. doi: 10.3390/ijerph20043596. [DOI] [PMC free article] [PubMed] [Google Scholar]

116.Choi H.K., Willett W., Curhan G. Fructose-Rich Beverages and the Risk of Gout in Women. JAMA J. Am. Med. Assoc. 2010;304:2270–2278. doi: 10.1001/jama.2010.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]

117.Kanbay M., Guler B., Ertuglu L.A., Dagel T., Afsar B., Incir S., Baygul A., Covic A., Andres-Hernando A., Sánchez-Lozada L.G., et al. The Speed of Ingestion of a Sugary Beverage Has an Effect on the Acute Metabolic Response to Fructose. Nutrients. 2021;13:1916. doi: 10.3390/nu13061916. [DOI] [PMC free article] [PubMed] [Google Scholar]

118.Public Health England Why 5%? An Explanation of SACN’s Recommendations about Sugars and Health. PHE Publications Gateway Number 2015193. [(accessed on 23 July 2023)];2015 Available online: https://www.gov.uk/government/publications/sacns-sugars-and-health-recommendations-why-5.

119.Rawal G., Yadav S., Kumar R., Singh A. Glycosylated hemoglobin (HbA1C): A brief overview for clinicians. IP Indian J. Immunol. Respir. Med. 2016;1:33–36. [Google Scholar]

120.Goto A., Noda M., Matsushita Y., Goto M., Kato M., Isogawa A., Takahashi Y., Kurotani K., Oba S., Nanri A., et al. JPHC Study Group. Hemoglobin a1c levels and the risk of cardiovascular disease in people without known diabetes: A population-based cohort study in Japan. Medicine. 2015;94:e785. doi: 10.1097/MD.0000000000000785. [DOI] [PMC free article] [PubMed] [Google Scholar]

121.Sinning C., Makarova N., Völzke H., Schnabel R.B., Ojeda F., Dörr M., Felix S.B., Koenig W., Peters A., Rathmann W., et al. Association of glycated hemoglobin A1c levels with cardiovascular outcomes in the general population: Results from the BiomarCaRE (Biomarker for Cardiovascular Risk Assessment in Europe) consortium. Cardiovasc. Diabetol. 2021;20:223. doi: 10.1186/s12933-021-01413-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

122.Prasad K. Does HbA1cc Play a Role in the Development of Cardiovascular Diseases? Curr. Pharm. Des. 2018;24:2876–2882. doi: 10.2174/1381612824666180903121957. [DOI] [PubMed] [Google Scholar]

123.Zaki H.A., Iftikhar H., Bashir K., Gad H., Fahmy A.S., Elmoheen A. A Comparative Study Evaluating the Effectiveness Between Ketogenic and Low-Carbohydrate Diets on Glycemic and Weight Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cureus. 2022;14:e25528. doi: 10.7759/cureus.25528. [DOI] [PMC free article] [PubMed] [Google Scholar]

124.Zhou C., Wang M., Liang J., He G., Chen N. Ketogenic Diet Benefits to Weight Loss, Glycemic Control, and Lipid Profiles in Overweight Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trails. Int. J. Environ. Res. Public Health. 2022;19:10429. doi: 10.3390/ijerph191610429. [DOI] [PMC free article] [PubMed] [Google Scholar]

125.Choi Y.J., Jeon S.M., Shin S. Impact of a Ketogenic Diet on Metabolic Parameters in Patients with Obesity or Overweight and with or without Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2020;12:2005. doi: 10.3390/nu12072005. [DOI] [PMC free article] [PubMed] [Google Scholar]

126.Parry-Strong A., Wright-McNaughton M., Weatherall M., Hall R.M., Coppell K.J., Barthow C., Krebs J.D. Very low carbohydrate (ketogenic) diets in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2022;24:2431–2442. doi: 10.1111/dom.14837. [DOI] [PMC free article] [PubMed] [Google Scholar]

127.Jayedi A., Zeraattalab-Motlagh S., Jabbarzadeh B., Hosseini Y., Jibril A.T., Shahinfar H., Mirrafiei A., Hosseini F., Bidar S.S. Dose-dependent effect of carbohydrate restriction for type 2 diabetes management: A systematic review and dose-response meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2022;116:40–56. doi: 10.1093/ajcn/nqac066. [DOI] [PubMed] [Google Scholar]

128.Waldman H.S., Smith J.W., Lamberth J., Fountain B.J., Bloomer R.J., Butawan M.B., McAllister M.J. A 28-Day Carbohydrate-Restricted Diet Improves Markers of Cardiovascular Disease in Professional Firefighters. J. Strength Cond. Res. 2020;34:2785–2792. doi: 10.1519/JSC.0000000000003749. [DOI] [PubMed] [Google Scholar]

129.Karimi E., Yarizadeh H., Setayesh L., Sajjadi S.F., Ghodoosi N., Khorraminezhad L., Mirzaei K. High carbohydrate intakes may predict more inflammatory status than high fat intakes in pre-menopause women with overweight or obesity: A cross-sectional study. BMC Res. Notes. 2021;14:279. doi: 10.1186/s13104-021-05699-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

130.Tavakoli A., Mirzababaei A., Sajadi F., Mirzaei K. Circulating inflammatory markers may mediate the relationship between low carbohydrate diet and circadian rhythm in overweight and obese women. BMC Women’s Health. 2021;21:87. doi: 10.1186/s12905-021-01240-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

131.Forsythe C.E., Phinney S.D., Fernandez M.L., Quann E.E., Wood R.J., Bibus D.M., Kraemer W.J., Feinman R.D., Volek J.S. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008;43:65–77. doi: 10.1007/s11745-007-3132-7. [DOI] [PubMed] [Google Scholar]

132.Wood R.J., Volek J.S., Davis S.R., Dell’Ova C., Fernandez M.L. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr. Metab. 2006;3:19. doi: 10.1186/1743-7075-3-19. [DOI] [PMC free article] [PubMed] [Google Scholar]

133.Dong T., Guo M., Zhang P., Sun G., Chen B. The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis. PLoS ONE. 2020;15:e0225348. doi: 10.1371/journal.pone.0225348. [DOI] [PMC free article] [PubMed] [Google Scholar]

134.Simonetto M., Infante M., Sacco R.L., Rundek T., Della-Morte D. A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia. Nutrients. 2019;11:2279. doi: 10.3390/nu11102279. [DOI] [PMC free article] [PubMed] [Google Scholar]

135.Liu Y.-X., Yu J.-H., Sun J.-H., Ma W.-Q., Wang J.-J., Sun G.-J. Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods. 2023;12:725. doi: 10.3390/foods12040725. [DOI] [PMC free article] [PubMed] [Google Scholar]

136.Rodriguez D., Lavie C.J., Elagizi A., Milani R.V. Update on Omega-3 Polyunsaturated Fatty Acids on Cardiovascular Health. Nutrients. 2022;14:5146. doi: 10.3390/nu14235146. [DOI] [PMC free article] [PubMed] [Google Scholar]

137.Fatahi S., Sohouli M.H., da Silva Magalhães E.I., da Cruz Silveira V.N., Zanghelini F., Rahmani P., Kord-Varkaneh H., Sharifi-Zahabi E., Shidfar F. Comparing the effects of docosahexaenoic and eicosapentaenoic acids on cardiovascular risk factors: Pairwise and network meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2023;33:11–21. doi: 10.1016/j.numecd.2022.09.013. [DOI] [PubMed] [Google Scholar]

138.Yang B., Tseng P.T., Hu X., Zeng B.Y., Chang J.P., Liu Y., Chu W.J., Zhang S.S., Zhou Z.L., Chu C.S., et al. Comparative efficacy of omega-3 polyunsaturated fatty acids on major cardiovascular events: A network meta-analysis of randomized controlled trials. Prog. Lipid Res. 2022;88:101196. doi: 10.1016/j.plipres.2022.101196. Erratum in Prog. Lipid Res. 2022, 101206. [DOI] [PubMed] [Google Scholar]

139.Yokoyama Y., Kuno T., Morita S.X., Slipczuk L., Takagi H., Briasoulis A., Latib A., Bangalore S., Heffron S.P. Eicosapentaenoic Acid for Cardiovascular Events Reduction- Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. J. Cardiol. 2022;80:416–422. doi: 10.1016/j.jjcc.2022.07.008. [DOI] [PubMed] [Google Scholar]

140.Jiang H., Wang L., Wang D., Yan N., Li C., Wu M., Wang F., Mi B., Chen F., Jia W., et al. Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes, cardiovascular disease, cancer, and mortality. Clin. Nutr. 2022;41:1798–1807. doi: 10.1016/j.clnu.2022.06.034. [DOI] [PubMed] [Google Scholar]

141.de Luis D., Domingo J.C., Izaola O., Casanueva F.F., Bellido D., Sajoux I. Effect of DHA supplementation in a very low-calorie ketogenic diet in the treatment of obesity: A randomized clinical trial. Endocrine. 2016;54:111–122. doi: 10.1007/s12020-016-0964-z. [DOI] [PubMed] [Google Scholar]

142.Rondanelli M., Perna S., Ilyas Z., Peroni G., Bazire P., Sajuox I., Maugeri R., Nichetti M., Gasparri C. Effect of very low-calorie ketogenic diet in combination with omega-3 on inflammation, satiety hormones, body composition, and metabolic markers. A pilot study in class I obese subjects. Endocrine. 2022;75:129–136. doi: 10.1007/s12020-021-02860-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

143.Liu S.H., Chen Y.X., Tzeng H.P., Chiang M.T. Fish Oil Enriched n-3 Polyunsaturated Fatty Acids Improve Ketogenic Low-Carbohydrate/High-Fat Diet-Caused Dyslipidemia, Excessive Fat Accumulation, and Weight Control in Rats. Nutrients. 2022;14:1796. doi: 10.3390/nu14091796. [DOI] [PMC free article] [PubMed] [Google Scholar]

144.Stoll S., Leimena C., Qiu H. Mitochondria and Heart Disease. InTech; London, UK: 2018. [DOI] [Google Scholar]




Ketogeeninen ruokavalio ja epilepsia

Ketogeenisen ruokavalion neuroprotektiiviset ominaisuudet on tunnettu pitkään. Jo vuosisadan ajan lasten lääkeresistenttia epilepsiaa on hoidettu ketogeenisellä ruokavaliolla. Kuva ketogeenisen ruokavalion neuroprotektiivisista vaikutuksista tarkentuu jatkuvasti.

Ketogeenisen ruokavalion (KD) hyöty epilepsian ja eräiden muiden neurologisten häiriöiden terapiana hyväksytään laajalti, mutta sen kaikkia toimintamekanismeja ei täysin tunneta.

KD:n noudattaminen johtaa merkittäviin metabolisiin muutoksiin. Eräs tärkeimmistä metabolisista muutoksista on ketoosi. Toisaalta ketogeeninen ruokavalio lisää myös monityydyttämättömien rasvahappojen pitoisuutta ja laukaisee solujen puhdistusjärjestelmän, eli autofagian, joka hidastaa solujen ikääntymistä ja siivoaa soluista erilaisia kuona-aineita.

Nämä ”primaariset” vaikutukset johtavat ”toissijaisiin”, osittain adaptiivisiin vaikutuksiin, esimerkiksi muutoksiin mitokondrioiden tiheydessä ja geeniekspressiossa. Kliinisesti ruokavalion vaikutuksia pidetään epileptisiä kouristuksia estävinä ja neuroprotektiivisina.

Ketogeenisen ruokavalion aineenvaihduntamekanismien mahdollisiä kliinisiä, neuroprotektiivisia ja kognitiivisia vaikutuksia tutkitaan laajasti NASA:a ja Yhdysvaltojen puolustusministeriötä myöten.

1. Ketogeenisen ruokavalion metabolia

Ketogeenisen ruokavalion (KD) arvo epilepsian hoidossa tunnustetaan, vaikka tarkat mekanismit, joilla se vaikuttaa, ovat edelleen osin selvittämättä [1]. Ketogeenisen ruokavalion tuottamat metaboliset muutokset ovat kuitenkin erilaisia kuin epilepsialääkkeiden (AED) [2] vaikutusmekanismit. Näiden mekanismien selvittäminen voi johtaa ketogeenisen ruokavalion hyödyntämiseen myös muiden neurologisten sairauksien terapiana [3].

KD koostuu neljästä elementistä, joista minkä tahansa muutokset voivat selittää sen kouristuksia ehkäiseviä eli antikonvulsantteja vaikutuksia:

  1. lisääntynyt rasvan määrä, yleensä suhteessa 3-4 grammaa rasvaa kutakin proteiini- ja hiilihydraattigrammaa kohti
  2. mahdollisimman pieni glukoosin kulutus
  3. kalorirajoitus
  4. nesterajoitus

[1] Vaikka viimeisestä elementistä (4) on esitetty jonkin verran kritiikkiä, kliininen käytäntö on osoittanut, että nesteen rajoittamisen lopettaminen voi johtaa kohtausten uusiutumiseen hyvin samalla tavalla kuin lopetettaessa glukoosirajoitus.

KD: n noudattaminen johtaa krooniseen ketoosiin [5]. Ruokavalion noudattamisen tärkein tulos on vapaiden rasvahappojen (FFA) pitoisuuden lisääntyminen veressä. Vapaat rasvahapot (FFA) kuljetetaan mitokondrioihin, jossa ne päätyvät β -oksidatiiviseen prosessiin. Tämä β-oksidaatio, jossa vapaat rasvahapot hajotetaan ketoneiksi, edellyttää karnitiinia.

Kuva: Ketogeenisen ruokavalion metaboliset muutokset

Ketoaineisiin kuuluvat β-hydroksibutyraatti, asetoasetaatti ja asetoni [5]

1.1. Ketoaineiden merkitys

Ketoneiden (asetonin, asetoasetaatin ja beta-hydroksibutyraatin) lisääntynyt pitoisuus veressä voi olla ketogeenisen ruokavalion merkittävin epileptisiä kohtauksia hillitsevistä metabolisista vaikutuksista.

Ketoaineiden hajoaminen toimittaa asetyyli-CoA:n suoraan trikarboksyylihapposykliin, mikä tehostaa energia-aineenvaihduntaa. Samalla tämä aineenvaihduntakanava kiertää glykolyysissä syntyvän asetyylikoentsyymi-A:n tarpeen ATP:n tuotannossa.

Toisin kuin glukoosi, joka vaatii kuljettajan läpäistäkseen veri-aivoesteen, ketoaineet läpäisevät veri-aivoesteen helposti. Kun kuljetusmolekyyleistä, kuten glut 1, on puutetta, KD on suositeltava epilepsiaterapia, koska sen avulla on mahdollista kiertää solujen glukoosin tarve [1]. Lapset, joilla pyruvaatin muuntuminen asetyyli-CoA:ksi on estynyt esimerkiksi pyruvaattidehydrogenaasin (PDH) puutteessa, hyötyvät glukoosin aineenvaihduntareitin ohittamisesta [3].

β-hydroksibutyraatti on veressä mitattavista ketoneista hallitseva ketoaine, ja sitä käytetään ketoosin asteen seuraamiseen terapian aikana. Beta-hydroksibutyraatin hajoaminen johtaa lisääntyneeseen asetonin tuotantoon [6].

Asetoni on yksi ketoaineista, joilla on kouristuksia hillitsevä, eli antikonvulsanttinen vaikutus erilaisissa hiirien kliinisissä kohtausmalleissa [7]. Tämän vaikutusmekanismia ei tunneta, vaikka vaikutusta K2p-kanaviin pidetään mahdollisena [5]. TCA-syklin (sitruunahappokierron) avulla asetyyli-CoA lisää hermovälittäjäaineiden glutamaatin ja gamma-aminovoihapon (GABA) ja vastaavasti tärkeimpien aivojen eksitatoristen ja estävien välittäjäaineiden määrää aivoissa.

Gamma-aminovoihappo eli GABA on tärkein aivojen ja muun keskushermoston hermosolujen toimintaa jarruttava välittäjäaine. GABA:n välittämä viesti on luonteeltaan inhibitorinen eli vaimentava tai lamaava: GABA välittää hermosolulle käskyn vähentää toimintaa tai lopettaa toimintansa. Noin 40 % aivosoluista reagoi gamma-aminovoihapon inhibitoriseen vaikutukseen. Yksittäisissä neuroneissa GABAn vaikutus voi olla myös eksitoiva eli kiihdyttävä. Elimistön tärkein kiihottava välittäjäaine, GABA:n vastavaikuttaja, on glutamaatti.
GABA:n nauttiminen lisää kasvuhormonin ja prolaktiinin synteesiä. GABA voi auttaa nukahtamisvaikeuksista kärsiviä ja parantaa unen laatua.
GABA- eli gamma-aminovoihapporeseptoreita on kahta päätyyppiä; GABAA ionikanavareseptori ja GABAB G-proteiinikytkentäinen reseptori. GABAC tunnetaan nykyään GABAA-rho reseptorina. Myös reseptorien alatyyppejä tunnetaan.
Monet rauhoittavat lääkeaineet kuten bentsodiatsepiinit ja barbituraatit lisäävät hermoston GABA-aktiivisuutta aiheuttaen hermoratojen toiminnan epäspesifiä, yleistynyttä hidastumista. Bentsodiatsepiiniryhmään kuuluvat lääkeaineet sitoutuvat bentsodiatsepiinireseptoreihin, GABAA-reseptorin alatyyppiin aiheuttaen positiivisen allosteerisen modulaation johtaen kloridikavanan avautumistaajuuden kiihtymiseen. Barbituraattien vaikutusmekanismi on hieman erilainen, ne pidentävät suoraan kloridikanavan aukioloaikaa sitoutumalla GABAA β-aliyksikköön. Tässä on syy barbituraattien myrkyllisyyteen bentsodiatsepiineihin verrattuna yliannostustapauksissa. Näitä reseptoreita on sekä aivoissa että sisäelimissä.
Myös monet epilepsialääkkeet (esimerkiksi valproaatti, vigabatriini, gabapentiini ja topiramaatti) tehostavat elimistön oman GABA:n vaikutusta.
Baklofeeni (Baclon, Baclopar, Lioresal) on GABAB-agonisti eli se jäljittelee GABA:n vaikutusta elimistössä ja sitoutuu GABAB-reseptoreihin. Baklofeenia käytetään yleisimmin keskushermoston toiminnan aiheuttaman liiallisen lihasjänteyden ja spasmien hoidossa. Sairauksia, joissa baklofeenia yleisesti käytetään, ovat muun muassa MS-tauti ja selkäydinvammat. Baklofeenista voi olla apua dystoniaan.
GABA:n puute voi aiheuttaa ahdistuneisuutta, masentuneisuutta ja epileptisiä kohtauksia.
GABA transaminaasi entsyymi katalysoi gamma-aminovoihapon ja 2-oksoglutaraatin muuntumista sukkiinisemialdehydiksi ja glutamaatiksi. Sukkiinisemialdehydin taas hapettaa sukkiinihapoksi sukkiinisemialdehydi dehydrogenaasientsyymi, ja sen jälkeen se on käypä energianlähde sitruunahappokierrossa. – Wikipedia

GABAn lisääntynyt vaikutus keskushermostossa voi selittää ketogeenisen ruokavalion kouristuksia hillitsevää vaikutusta[5].

1.2. Monityydyttymättömien rasvahappojen (PUFA) merkitys

Vapaiden rasvahappojen lisääntymisen seurauksena on monityydyttymättömien rasvahappojen (PUFA) pitoisuuden kasvu.

PUFA:n potentiaalinen kyky estää kohtauksia aivoissa saattaa liittyä melko monimutkaisiin mekanismeihin, kuten:

  1. sähköisen jännitteen rajoittamien natrium- ja kalsiumkanavien estäminen
  2. lipidille herkän kaliumkanavan aktivointi
  3. hermosolujen stimulaatiota rajoittavan natriumpumpun aktiivisuuden tehostaminen
  4. peroksisomiproliferaattorilla aktivoituvan reseptori-a:n (PPARa) aktivoiminen
  5. PUFA indusoi aivospesifisten irrotusproteiinien ilmentymistä ja aktiivisuutta mitokondrioissa, vaikuttaen siten neuroprotektiivisesti

[5]. Tämä viimeinen vaikutus toimii rajoittamalla reaktiivisten happiradikaalien (ROS) syntymistä.

1.3. Bioenergetiikka ja neuroprotektiivinen

Ketogeenistä ruokavaliota on ensisijaisesti pidetty epileptisia kouristuksia ehkäisevänä. KD-ruokavalion tutkimukset viittaavat paljon laajempiin ja monimutkaisempiin nuroprotektiivisiin vaikutuksiin.

Neuroprotektiivisuus voi vaikuttaa antikonvulsanttisesti (kouristuksia ehkäisevästi), mutta sillä on myös muita merkittäviä metabolisia vaikutuksia [3]. Kaiken kaikkiaan KD:n noudattaminen lisää ja tehostaa energian tuotantoa aivoissa. Appleton ja De vivo [8] kertoivat, että KD lisäsi bioenergeettisten substraattien (adenosiinitrifosfaatti (ATP)) kokonaismäärää ja nosti energian varausta rottien aivoissa.

Asetoasetaatti, beta-hydroksibutyraatin dehydraustuote, muutetaan asetyylikoentsyymi-A:ksi, joka kulkeutuu trikarboksyylihapposykliin (TCA), eli sitruunahappokiertoon.

Asetyylikoentsyymi-A eli aktiivinen etikkahappo on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa. Asetyylikoentsyymi-A:ta saadaan monosakkarideista, triglyserideistä sekä aminohapoista erilaisten reaktiovaiheiden kautta.Asetyylikoentsyymi-A:n asetyyliryhmän hiilet (C) hapettuvat hiilidioksidiksi TCA-syklissä ja vedyt (H) siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Solujen energialähteinä toimivat ensi sijassa hiilihydraatit ja rasvahapot, mutta muitakin molekyylejä esimerkiksi aminohappoja voidaan käyttää. Aminohappojen käyttö energialähteenä on tosin normaalitilanteissa vähäistä.

Glukoosi hajoaa glykolyysissä kahdeksi pyruvaatiksi, joista edelleen molemmista saadaan oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos taas happea (O) ja mitokondrioita ei ole tarpeeksi saatavilla, pyruvaatti pelkistyy edelleen maitohapon anioniksi laktaatiksi. Rasvahapot hajoavat pääasiassa hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

TCA-syklin lisääntynyt energiatuotanto tuottaa protoneja ja elektroneja, jotka kanavoituvat elektronien siirtoketjuun. Tämä puolestaan lisää ATP:n muodostumista adenosiinidifosfaatista (ADP) ATP-syntaasin avulla.

ATP voidaan joko muuttaa fosfokreatiiniksi energian varastointia varten tai hajottaa adenosiiniksi. Lisääntyneet ATP-tasot tarjoavat energiavaroja hermosolun toiminnan ylläpitämiseksi myös silloin, kun solun glukoosinotto on häiriintynyt. Lisääntynyt solunulkoinen adenosiini toimii eräänlaisena neuroprotektiivisena puskurina laskemalla jännitettä ja estämällä siten paikallisia kohtauksia [6].

On myös arveltu, että KD vaikuttaa energiametaboliaentsyymejä koodaavien transkriptiotekijöiden säätelyyn (ylösregulointiin) ja mitokondrioiden tiheyden lisääntymiseen hermosoluissa, mikä johtaa kasvaneisiin energiavarastoihin.

Energian saannin helpottuminen voi tukea kohtausten ehkäisemistä esimerkiksi tukemalla GABAergistä estoa [9].

Wikipedia:Aivojen välittäjäaineet ovat kemiallisia välittäjämolekyylejä, jotka välittävät (eksitoivat, inhiboivat tai moduloivat) signaaleja aivojen hermosolujen eli neuronien välillä. Eksitoiva välittäjäaine kiihdyttää, inhiboiva välittäjäaine jarruttaa aivotoimintaa. Välittäjäaineet eli neurotransmitterit siirtyvät neuronien välillä synapseissa.Keskushermoston eli aivojen ja selkäytimen tärkeimpiä neurotransmittereita ovat aminohapot. Noin 80–90 prosentissa keskushermoston synapseista välittäjäaineena toimii aminohappo, 5–10 prosentissa amiini ja 1–2 prosentissa peptidi.

Aivoissa tärkeitä aminohappotransmittereita ovat muun muassa glutamaatti ja glysiini, joista edellinen saattaa olla aivojen tärkein kiihdyttävä välittäjäaine. Glutamaatilla on kolmentyyppisiä reseptoreita. Ne on nimetty niille suhteellisen spesifien agonistien mukaan N-metyylidekstroaspartaatti (NMDA)-, kainaatti- ja 1-amino-3-hydroksi-5-metyyli-iso-oksatsoli-4-propionaatti (AMPA)-reseptoreiksi; mahdollisesti on olemassa muunkin tyyppisiä reseptoreita.

Gamma-aminovoihappo eli γ-aminovoihappo eli GABA on tärkein aivojen toimintaa jarruttava välittäjäaine. Jopa yli kolmasosa aivojen synapseista on GABAergisiä. GABA:lla on monia reseptoreita, esimerkiksi GABAA ja GABAB. Glutamaatti ja GABA muodostavat ikään kuin eksitoiva/inhiboiva välittäjäaineparin aivoissa.

Aminohapoista yksinkertaisin eli glysiini toimii inhibitorisena välittäjäaineena keskushermostossa. Sen reseptoreita löytyy etupäässä selkäytimestä. Glysiinin välittäjäaineparina etupäässä selkäytimen alueella toimii eksitoiva aminohappo aspartaatti. Asetyylikoliinin vaikutus aivokuorella ja hippokampuksessa on pääosin eksitoiva; myös inhibitiota saattaa esiintyä, mutta se on liitetty viereisten inhiboivien GABAergisten solujen aktivaatioon.

Alzheimerin taudissa asetyylikoliiniradat isoaivokuorelle ja hippokampukseen vaurioituvat, mikä aiheuttaa dementian. Noradrenaliinia on runsaasti aivorungon pienissä locus coeruleus -tumakkeissa, joista lähtevät aksonit haarautuvat eri tahoille, muun muassa hypotalamukseen, pikkuaivoihin ja isoaivokuorelle. Noradrenaliini osallistuu muun muassa vireystilan säätelyyn.

Dopamiinia sisältäviä neuroneja on runsaasti erityisesti keskiaivoissa substantia nigran ja tegmentumin tienoilla. Näiden aksonit haarautuvat laajalle alueelle. Aivoissa on neljä dopaminergista päärataa: mesokortikaalinen, mesolimbinen, nigrostriataalinen ja tuberoinfundibulaarinen. Nigrostriataalisen radan tuhoutuessa ilmentyy Parkinsonin tauti.

Skitsofrenian ajatellaan johtuvan mesokortikaalisen ja mesolimbisen radan dopamiinin D2-reseptorien ylistimuloitumisesta. Serotoniinia eli 5-hydroksitryptamiinia sisältävien hermosolujen soomaosista suurin osa sijaitsee ydinjatkoksen keskiviivalla olevassa raphe-tumakkeessa. Näiden neuronien aksonit ulottuvat aivojen kaikkiin osiin. Serotoniini osallistuu muun muassa tunne-elämän, muistin, syömiskäyttäytymisen ja ruumiinlämmön säätelyyn.

Histamiinia on ennen muuta hypotalamuksen corpora mamillare -alueella olevissa neuroneissa, jotka projisoituvat useimpiin aivojen osiin. Keskushermostossa histamiini osallistuu muun muassa neuroendokriiniseen säätelyyn, uni-valverytmin, vireystilan ja ruokahalun säätelyyn. Edellä mainittujen välittäjäaineiden lisäksi aivoissa vaikuttaa muun muassa suuri määrä erilaisia neuropeptidejä.

Merkittävimmät

Muut

On esitetty hypoteesi, jonka mukaan metaboliset sopeutumisprosessit ruokavalion aiheuttamiin muutoksiin aiheuttaa muutoksia geeniekspressiossa, mikä puolestaan johtaa joihinkin edellä mainituista muutoksista. Muu neuroprotektiivinen polku moduloidaan vähentämällä reaktiivisten happiradikaalien muodostumista, jonka katsotaan liittyvän monityydyttämättömien rasvahappojen vaikutukseen solujen irrotettavissa proteiineissa [5].

1.4. Ketogeenisen ruokavalion muita kliinisiä etuja

Ketogeenistä ruokavaliota pidetään todistetusti toimivana terapiamuotona, jolla on hyvin vähän haitallisia vaikutuksia. Laaja KD-terapiaa tukeva kliininen näyttö erityisesti lapsilla esiintyvän epilepsian hoitona on johtanut viimeaikaisiin laajempiin tutkimuksiin ketogeenisen ruokavalion metabolisista hyödyistä esimerkiksi neurodegeneratiivisten sairauksien hoidossa[3].

Eräs mielenkiintoisimmista ja aktiivisimmista tutkimusalueista on runsaasti rasvaa sisältävän kaloripitoisen ruokavalion vaikutus aivokasvainsolujen selviytymiseen. Aivosyöpäsoluilla on rajoitettu metabolinen joustavuus. Ne ovat hyvin riippuvaisia glukoosimetaboliasta.

Mitokondrioiden poikkeavuudet heikentävät aivokasvainten kykyä tuottaa energiaa ketoaineista. Toisin kuin normaaleissa soluissa, pahanlaatuisilla kasvainsoluilla on heikentynyt geneettinen sopeutumiskyky muuttuviin energiasubstraatteihin. Niiden energiansaanti rajoittuu lähinnä glukoosiin, minkä vuoksi paasto, niukkaenerginen ruoka ja ketogeeninen ruokavalio heikentävät syöpäsoluja. Näitä samoja aivokasvainten kehittymiseen liittyviä geneettisiä vikoja voidaan hyödyntää pahanlaatuisten solujen tuhoamisessa [3, 10, 11].

Vuonna 1995 Nebeling et al. [12] raportoi kahdesta nuoresta tytöstä, joilla oli pitkälle edennyt aivokasvain. Tyttöjen syövät reagoivat heikosti sädehoitoon ja kemoterapiaan. Lopulta tyttöjä päätettiin hoitaa ketogeenisella ruokavaliolla. Heidän vasteensa KD-hoidolle oli merkittävä sekä kliinisesti että positroniemissiotomografian seurantatutkimusten mukaan.

Zuccoli et al. [13] kuvasi potilasta, jolla oli erittäin pahanlaatuinen multippeli glioblastoma ( kasvain), joka parani ketogeenisella ruokavaliolla. Hullua kyllä, hoidon houkuttelevasta tehokkuudesta ja hyvistä alustavista tuloksista huolimatta aivokasvainten hoitoa ketogeenisellä ruokavaliolla ei ole sittemmin kliinisesti tutkittu ihmisillä. Miksi?

Useat hiiri- ja rotamalleilla tehdyt laboratoriotutkimukset ovat äskettäin vahvistaneet, että aivokasvaimen kasvun estyminen liittyy suoraan alentuneisiin glukoosipitoisuuksiin ja kohonneisiin ketoaineiden pitoisuuksiin. Lisäksi KD:n osoitettiin vähentävän aivojen reaktiivisia happiradikaaleja (ROS) [5].

Syöpäsolut tarvitsevat korkeita ROS-tasoja angiogeneesin indusoimiseksi ja kasvainten kasvutekijöiden tuottamiseksi [11], joten tämä mekanismi selittää KD:n vaikutusta.

Esimerkki:

12-vuotiaalla tytöllä todettiin keskushermostoon vaikuttava neurokutaaninen melanoosi Kasvain oli erittäin pahanlaatuinen ja eteni nopeasti. Kliiniset oireet olivat pääasiassa vaikeita kohtauksia, jotka edellyttivät toistuvaa pääsyä tehohoitoyksikköön sekä kohtausten lisäksi vakavia kognitiivisia ja valppauteen liittyviä oireita. Kun onkologit päättivät, että kasvainten vastainen hoito olisi tehotonta, tyttöä ryhdyttiin hoitamaan ketogeenisella ruokavaliolla. Neljän viikon kokeilun jälkeen KD:llä ei ollut mitään vaikutusta kasvaimen etenemiseen. Kohtausten taajuus ja vakavuus parani, mutta häntä hoidettiin samanaikaisesti AED:n kanssa. Ketogeenisellä ruokavaliolla oli kuitenkin huomattava parantava vaikutus tytön kognitioon, valppauteen ja mielialaan sairauden vakavuudesta ja etenemisestä huolimatta.

KD:n myönteinen vaikutus kognitioon, valppauteen ja mielialaan tunnetaan hyvin [1]. Tämä voi olla erityisen tärkeää nuorten vakavien kasvainten etenevissä vaiheissa. KD:n mahdollinen neuroprotektiivinen vaikutus motivoi tutkimuksia sen potentiaalista hoitovaihtoehtona muissa neurologisissa häiriöissä [3].

Yhä useammat eläintutkimukset osoittavat, että paastolla ja ketogeenisellä ruokavaliolla saavutetulla ketoosilla on selkä ja johdonmukainen neuroprotektiivinen vaikutus erilaisisten aivovaurioiden jälkeen.

Yksi ihmisillä toteutettu pienimuotoinen pilottitutkimus ja useat eläinmallitutkimukset ovat osoittaneet autististen käyttäytymisparametrien parantuneen KD-hoidolla. Vielä on selvitettävä, liittyykö tämä vähentyneeseen epileptiseen aktiivisuuteen, jota havaitaan jopa 30%: lla näistä potilaista, vai KD:n ensisijaiseen vaikutukseen [3]. Tämä tekijä, joka voi olla ratkaiseva KD:n soveltamiselle muiden neurologisten häiriöiden hoitoon, kuin kuin vaikeasti hoidettava epilepsia [14].

Yhteenvetona voidaan todeta, että ketogeenisen ruokavalion pääasiallinen metabolinen vaikutus on aivojen energiansaannin turvaaminen vapailla rasvahapoilla. Niiden hajoaminen ketoaineiksi yhdessä PUFA-yhdisteiden lisääntymisen kanssa johtaa merkittäviin muutoksiin aineenvaihdunnan, bioenergian, mitokondrioiden ja jopa geenien toiminnassa. Näillä primaarisilla ja sekundaarisillä muutoksilla on kouristuksia estäviä ja neuroprotektiivisia vaikutuksia. KD on merkittävä osa lasten epileptologien terapiavaihtoehtoja. Onko ketogeeninen ruokavalio yhtä tehokas hoitoväline myös neurodegeneratiivisten tautien, kuten Parkinsonin ja Alzheimerin taudin hoidossa ja muissa patologioissa, kuten pahanlaatuisten kasvainten hoidossa? Tätä tutktitaan. Tulokset tämän artikkelin julkaisun (2011) jälkeen ovat olleet hyvin lupaavia.

Viitteet

  1. A. L. Hartman and E. P. G. Vining, “Clinical aspects of the ketogenic diet,” Epilepsia, vol. 48, no. 1, pp. 31–42, 2007. View at: Publisher Site | Google Scholar
  2. A. L. Hartman and J. M. Freeman, “Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?” Epilepsia, vol. 49, supplement 8, pp. 53–56, 2008. View at: Publisher Site | Google Scholar
  3. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  4. E. C. Wirrell, “Ketogenic ratio, calories, and fluids: do they matter?” Epilepsia, vol. 49, supplement 8, pp. 17–19, 2008. View at: Publisher Site | Google Scholar
  5. K. J. Bough and J. M. Rho, “Anticonvulsant mechanisms of the ketogenic diet,” Epilepsia, vol. 48, no. 1, pp. 43–58, 2007. View at: Publisher Site | Google Scholar
  6. S. A. Masino, M. Kawamura, C. A. Wasser, L. T. Pomeroy, and D. N. Ruskin, “Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity,” Current Neuropharmacology, vol. 7, no. 3, pp. 257–268, 2009. View at: Publisher Site | Google Scholar
  7. N. Hasebe, K. Abe, E. Sugiyama, R. Hosoi, and O. Inoue, “Anticonvulsant effects of methyl ethyl ketone and diethyl ketone in several types of mouse seizure models,” European Journal of Pharmacology, vol. 642, pp. 66–71, 2010. View at: Publisher Site | Google Scholar
  8. D. B. Appleton and D. C. De Vivo, “An experimental animal model for the effect of ketogenic diet on epilepsy,” Proceedings of the Australian Association of Neurologists, vol. 10, pp. 75–80, 1973. View at: Google Scholar
  9. K. Bough, “Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet,” Epilepsia, vol. 49, supplement 8, pp. 91–93, 2008. View at: Publisher Site | Google Scholar
  10. B. T. Seyfried, M. Kiebish, J. Marsh, and P. Mukherjee, “Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet,” Journal of Cancer Research and Therapeutics, vol. 5, supplement 1, pp. S7–15, 2009. View at: Google Scholar
  11. P. Stafford, M. G. Abdelwahab, D. Y. Kim, M. C. Preul, J. M. Rho, and A. C. Scheck, “The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma,” Nutrition and Metabolism, vol. 7, article 74, 2010. View at: Publisher Site | Google Scholar
  12. L. C. Nebeling, F. Miraldi, S. B. Shurin, and E. Lerner, “Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports,” Journal of the American College of Nutrition, vol. 14, no. 2, pp. 202–208, 1995. View at: Google Scholar
  13. G. Zuccoli, N. Marcello, A. Pisanello et al., “Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report,” Nutrition & Metabolism, p. 33, 2010. View at: Publisher Site | Google Scholar
  14. J. H. Cross, A. Mclellan, E. G. Neal, S. Philip, E. Williams, and R. E. Williams, “The ketogenic diet in childhood epilepsy: where are we now?” Archives of Disease in Childhood, vol. 95, no. 7, pp. 550–553, 2010. View at: Publisher Site | Google Scholar

Keren Politi, Lilach Shemer-Meiri, Avinoam Shuper, and S. Aharoni, Department of Pediatric and Adolescent Neurology, Schneider Children’s Medical Center of Israel, Faculty of Medicine, Tel Aviv University, Tel Aviv, IsraelCopyright © 2011 Keren Politi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.hindawi.com/journals/ert/2011/963637/