1

Ketogeeninen ruokavalio ja epilepsia

Ketogeenisen ruokavalion neuroprotektiiviset ominaisuudet on tunnettu pitkään. Jo vuosisadan ajan lasten lääkeresistenttia epilepsiaa on hoidettu ketogeenisellä ruokavaliolla. Kuva ketogeenisen ruokavalion neuroprotektiivisista vaikutuksista tarkentuu jatkuvasti.

Ketogeenisen ruokavalion (KD) hyöty epilepsian ja eräiden muiden neurologisten häiriöiden terapiana hyväksytään laajalti, mutta sen kaikkia toimintamekanismeja ei täysin tunneta.

KD:n noudattaminen johtaa merkittäviin metabolisiin muutoksiin. Eräs tärkeimmistä metabolisista muutoksista on ketoosi. Toisaalta ketogeeninen ruokavalio lisää myös monityydyttämättömien rasvahappojen pitoisuutta ja laukaisee solujen puhdistusjärjestelmän, eli autofagian, joka hidastaa solujen ikääntymistä ja siivoaa soluista erilaisia kuona-aineita.

Nämä ”primaariset” vaikutukset johtavat ”toissijaisiin”, osittain adaptiivisiin vaikutuksiin, esimerkiksi muutoksiin mitokondrioiden tiheydessä ja geeniekspressiossa. Kliinisesti ruokavalion vaikutuksia pidetään epileptisiä kouristuksia estävinä ja neuroprotektiivisina.

Ketogeenisen ruokavalion aineenvaihduntamekanismien mahdollisiä kliinisiä, neuroprotektiivisia ja kognitiivisia vaikutuksia tutkitaan laajasti NASA:a ja Yhdysvaltojen puolustusministeriötä myöten.

1. Ketogeenisen ruokavalion metabolia

Ketogeenisen ruokavalion (KD) arvo epilepsian hoidossa tunnustetaan, vaikka tarkat mekanismit, joilla se vaikuttaa, ovat edelleen osin selvittämättä [1]. Ketogeenisen ruokavalion tuottamat metaboliset muutokset ovat kuitenkin erilaisia kuin epilepsialääkkeiden (AED) [2] vaikutusmekanismit. Näiden mekanismien selvittäminen voi johtaa ketogeenisen ruokavalion hyödyntämiseen myös muiden neurologisten sairauksien terapiana [3].

KD koostuu neljästä elementistä, joista minkä tahansa muutokset voivat selittää sen kouristuksia ehkäiseviä eli antikonvulsantteja vaikutuksia:

  1. lisääntynyt rasvan määrä, yleensä suhteessa 3-4 grammaa rasvaa kutakin proteiini- ja hiilihydraattigrammaa kohti
  2. mahdollisimman pieni glukoosin kulutus
  3. kalorirajoitus
  4. nesterajoitus

[1] Vaikka viimeisestä elementistä (4) on esitetty jonkin verran kritiikkiä, kliininen käytäntö on osoittanut, että nesteen rajoittamisen lopettaminen voi johtaa kohtausten uusiutumiseen hyvin samalla tavalla kuin lopetettaessa glukoosirajoitus.

KD: n noudattaminen johtaa krooniseen ketoosiin [5]. Ruokavalion noudattamisen tärkein tulos on vapaiden rasvahappojen (FFA) pitoisuuden lisääntyminen veressä. Vapaat rasvahapot (FFA) kuljetetaan mitokondrioihin, jossa ne päätyvät β -oksidatiiviseen prosessiin. Tämä β-oksidaatio, jossa vapaat rasvahapot hajotetaan ketoneiksi, edellyttää karnitiinia.

Kuva: Ketogeenisen ruokavalion metaboliset muutokset

Ketoaineisiin kuuluvat β-hydroksibutyraatti, asetoasetaatti ja asetoni [5]

1.1. Ketoaineiden merkitys

Ketoneiden (asetonin, asetoasetaatin ja beta-hydroksibutyraatin) lisääntynyt pitoisuus veressä voi olla ketogeenisen ruokavalion merkittävin epileptisiä kohtauksia hillitsevistä metabolisista vaikutuksista.

Ketoaineiden hajoaminen toimittaa asetyyli-CoA:n suoraan trikarboksyylihapposykliin, mikä tehostaa energia-aineenvaihduntaa. Samalla tämä aineenvaihduntakanava kiertää glykolyysissä syntyvän asetyylikoentsyymi-A:n tarpeen ATP:n tuotannossa.

Toisin kuin glukoosi, joka vaatii kuljettajan läpäistäkseen veri-aivoesteen, ketoaineet läpäisevät veri-aivoesteen helposti. Kun kuljetusmolekyyleistä, kuten glut 1, on puutetta, KD on suositeltava epilepsiaterapia, koska sen avulla on mahdollista kiertää solujen glukoosin tarve [1]. Lapset, joilla pyruvaatin muuntuminen asetyyli-CoA:ksi on estynyt esimerkiksi pyruvaattidehydrogenaasin (PDH) puutteessa, hyötyvät glukoosin aineenvaihduntareitin ohittamisesta [3].

β-hydroksibutyraatti on veressä mitattavista ketoneista hallitseva ketoaine, ja sitä käytetään ketoosin asteen seuraamiseen terapian aikana. Beta-hydroksibutyraatin hajoaminen johtaa lisääntyneeseen asetonin tuotantoon [6].

Asetoni on yksi ketoaineista, joilla on kouristuksia hillitsevä, eli antikonvulsanttinen vaikutus erilaisissa hiirien kliinisissä kohtausmalleissa [7]. Tämän vaikutusmekanismia ei tunneta, vaikka vaikutusta K2p-kanaviin pidetään mahdollisena [5]. TCA-syklin (sitruunahappokierron) avulla asetyyli-CoA lisää hermovälittäjäaineiden glutamaatin ja gamma-aminovoihapon (GABA) ja vastaavasti tärkeimpien aivojen eksitatoristen ja estävien välittäjäaineiden määrää aivoissa.

Gamma-aminovoihappo eli GABA on tärkein aivojen ja muun keskushermoston hermosolujen toimintaa jarruttava välittäjäaine. GABA:n välittämä viesti on luonteeltaan inhibitorinen eli vaimentava tai lamaava: GABA välittää hermosolulle käskyn vähentää toimintaa tai lopettaa toimintansa. Noin 40 % aivosoluista reagoi gamma-aminovoihapon inhibitoriseen vaikutukseen. Yksittäisissä neuroneissa GABAn vaikutus voi olla myös eksitoiva eli kiihdyttävä. Elimistön tärkein kiihottava välittäjäaine, GABA:n vastavaikuttaja, on glutamaatti.
GABA:n nauttiminen lisää kasvuhormonin ja prolaktiinin synteesiä. GABA voi auttaa nukahtamisvaikeuksista kärsiviä ja parantaa unen laatua.
GABA- eli gamma-aminovoihapporeseptoreita on kahta päätyyppiä; GABAA ionikanavareseptori ja GABAB G-proteiinikytkentäinen reseptori. GABAC tunnetaan nykyään GABAA-rho reseptorina. Myös reseptorien alatyyppejä tunnetaan.
Monet rauhoittavat lääkeaineet kuten bentsodiatsepiinit ja barbituraatit lisäävät hermoston GABA-aktiivisuutta aiheuttaen hermoratojen toiminnan epäspesifiä, yleistynyttä hidastumista. Bentsodiatsepiiniryhmään kuuluvat lääkeaineet sitoutuvat bentsodiatsepiinireseptoreihin, GABAA-reseptorin alatyyppiin aiheuttaen positiivisen allosteerisen modulaation johtaen kloridikavanan avautumistaajuuden kiihtymiseen. Barbituraattien vaikutusmekanismi on hieman erilainen, ne pidentävät suoraan kloridikanavan aukioloaikaa sitoutumalla GABAA β-aliyksikköön. Tässä on syy barbituraattien myrkyllisyyteen bentsodiatsepiineihin verrattuna yliannostustapauksissa. Näitä reseptoreita on sekä aivoissa että sisäelimissä.
Myös monet epilepsialääkkeet (esimerkiksi valproaatti, vigabatriini, gabapentiini ja topiramaatti) tehostavat elimistön oman GABA:n vaikutusta.
Baklofeeni (Baclon, Baclopar, Lioresal) on GABAB-agonisti eli se jäljittelee GABA:n vaikutusta elimistössä ja sitoutuu GABAB-reseptoreihin. Baklofeenia käytetään yleisimmin keskushermoston toiminnan aiheuttaman liiallisen lihasjänteyden ja spasmien hoidossa. Sairauksia, joissa baklofeenia yleisesti käytetään, ovat muun muassa MS-tauti ja selkäydinvammat. Baklofeenista voi olla apua dystoniaan.
GABA:n puute voi aiheuttaa ahdistuneisuutta, masentuneisuutta ja epileptisiä kohtauksia.
GABA transaminaasi entsyymi katalysoi gamma-aminovoihapon ja 2-oksoglutaraatin muuntumista sukkiinisemialdehydiksi ja glutamaatiksi. Sukkiinisemialdehydin taas hapettaa sukkiinihapoksi sukkiinisemialdehydi dehydrogenaasientsyymi, ja sen jälkeen se on käypä energianlähde sitruunahappokierrossa. – Wikipedia

GABAn lisääntynyt vaikutus keskushermostossa voi selittää ketogeenisen ruokavalion kouristuksia hillitsevää vaikutusta[5].

1.2. Monityydyttymättömien rasvahappojen (PUFA) merkitys

Vapaiden rasvahappojen lisääntymisen seurauksena on monityydyttymättömien rasvahappojen (PUFA) pitoisuuden kasvu.

PUFA:n potentiaalinen kyky estää kohtauksia aivoissa saattaa liittyä melko monimutkaisiin mekanismeihin, kuten:

  1. sähköisen jännitteen rajoittamien natrium- ja kalsiumkanavien estäminen
  2. lipidille herkän kaliumkanavan aktivointi
  3. hermosolujen stimulaatiota rajoittavan natriumpumpun aktiivisuuden tehostaminen
  4. peroksisomiproliferaattorilla aktivoituvan reseptori-a:n (PPARa) aktivoiminen
  5. PUFA indusoi aivospesifisten irrotusproteiinien ilmentymistä ja aktiivisuutta mitokondrioissa, vaikuttaen siten neuroprotektiivisesti

[5]. Tämä viimeinen vaikutus toimii rajoittamalla reaktiivisten happiradikaalien (ROS) syntymistä.

1.3. Bioenergetiikka ja neuroprotektiivinen

Ketogeenistä ruokavaliota on ensisijaisesti pidetty epileptisia kouristuksia ehkäisevänä. KD-ruokavalion tutkimukset viittaavat paljon laajempiin ja monimutkaisempiin nuroprotektiivisiin vaikutuksiin.

Neuroprotektiivisuus voi vaikuttaa antikonvulsanttisesti (kouristuksia ehkäisevästi), mutta sillä on myös muita merkittäviä metabolisia vaikutuksia [3]. Kaiken kaikkiaan KD:n noudattaminen lisää ja tehostaa energian tuotantoa aivoissa. Appleton ja De vivo [8] kertoivat, että KD lisäsi bioenergeettisten substraattien (adenosiinitrifosfaatti (ATP)) kokonaismäärää ja nosti energian varausta rottien aivoissa.

Asetoasetaatti, beta-hydroksibutyraatin dehydraustuote, muutetaan asetyylikoentsyymi-A:ksi, joka kulkeutuu trikarboksyylihapposykliin (TCA), eli sitruunahappokiertoon.

Asetyylikoentsyymi-A eli aktiivinen etikkahappo on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa. Asetyylikoentsyymi-A:ta saadaan monosakkarideista, triglyserideistä sekä aminohapoista erilaisten reaktiovaiheiden kautta.

Asetyylikoentsyymi-A:n asetyyliryhmän hiilet (C) hapettuvat hiilidioksidiksi TCA-syklissä ja vedyt (H) siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Solujen energialähteinä toimivat ensi sijassa hiilihydraatit ja rasvahapot, mutta muitakin molekyylejä esimerkiksi aminohappoja voidaan käyttää. Aminohappojen käyttö energialähteenä on tosin normaalitilanteissa vähäistä.

Glukoosi hajoaa glykolyysissä kahdeksi pyruvaatiksi, joista edelleen molemmista saadaan oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos taas happea (O) ja mitokondrioita ei ole tarpeeksi saatavilla, pyruvaatti pelkistyy edelleen maitohapon anioniksi laktaatiksi. Rasvahapot hajoavat pääasiassa hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

TCA-syklin lisääntynyt energiatuotanto tuottaa protoneja ja elektroneja, jotka kanavoituvat elektronien siirtoketjuun. Tämä puolestaan lisää ATP:n muodostumista adenosiinidifosfaatista (ADP) ATP-syntaasin avulla.

ATP voidaan joko muuttaa fosfokreatiiniksi energian varastointia varten tai hajottaa adenosiiniksi. Lisääntyneet ATP-tasot tarjoavat energiavaroja hermosolun toiminnan ylläpitämiseksi myös silloin, kun solun glukoosinotto on häiriintynyt. Lisääntynyt solunulkoinen adenosiini toimii eräänlaisena neuroprotektiivisena puskurina laskemalla jännitettä ja estämällä siten paikallisia kohtauksia [6].

On myös arveltu, että KD vaikuttaa energiametaboliaentsyymejä koodaavien transkriptiotekijöiden säätelyyn (ylösregulointiin) ja mitokondrioiden tiheyden lisääntymiseen hermosoluissa, mikä johtaa kasvaneisiin energiavarastoihin.

Energian saannin helpottuminen voi tukea kohtausten ehkäisemistä esimerkiksi tukemalla GABAergistä estoa [9].

Wikipedia:Aivojen välittäjäaineet ovat kemiallisia välittäjämolekyylejä, jotka välittävät (eksitoivat, inhiboivat tai moduloivat) signaaleja aivojen hermosolujen eli neuronien välillä. Eksitoiva välittäjäaine kiihdyttää, inhiboiva välittäjäaine jarruttaa aivotoimintaa. Välittäjäaineet eli neurotransmitterit siirtyvät neuronien välillä synapseissa.

Keskushermoston eli aivojen ja selkäytimen tärkeimpiä neurotransmittereita ovat aminohapot. Noin 80–90 prosentissa keskushermoston synapseista välittäjäaineena toimii aminohappo, 5–10 prosentissa amiini ja 1–2 prosentissa peptidi.

Aivoissa tärkeitä aminohappotransmittereita ovat muun muassa glutamaatti ja glysiini, joista edellinen saattaa olla aivojen tärkein kiihdyttävä välittäjäaine. Glutamaatilla on kolmentyyppisiä reseptoreita. Ne on nimetty niille suhteellisen spesifien agonistien mukaan N-metyylidekstroaspartaatti (NMDA)-, kainaatti- ja 1-amino-3-hydroksi-5-metyyli-iso-oksatsoli-4-propionaatti (AMPA)-reseptoreiksi; mahdollisesti on olemassa muunkin tyyppisiä reseptoreita.

Gamma-aminovoihappo eli γ-aminovoihappo eli GABA on tärkein aivojen toimintaa jarruttava välittäjäaine. Jopa yli kolmasosa aivojen synapseista on GABAergisiä. GABA:lla on monia reseptoreita, esimerkiksi GABAA ja GABAB. Glutamaatti ja GABA muodostavat ikään kuin eksitoiva/inhiboiva välittäjäaineparin aivoissa.

Aminohapoista yksinkertaisin eli glysiini toimii inhibitorisena välittäjäaineena keskushermostossa. Sen reseptoreita löytyy etupäässä selkäytimestä. Glysiinin välittäjäaineparina etupäässä selkäytimen alueella toimii eksitoiva aminohappo aspartaatti. Asetyylikoliinin vaikutus aivokuorella ja hippokampuksessa on pääosin eksitoiva; myös inhibitiota saattaa esiintyä, mutta se on liitetty viereisten inhiboivien GABAergisten solujen aktivaatioon.

Alzheimerin taudissa asetyylikoliiniradat isoaivokuorelle ja hippokampukseen vaurioituvat, mikä aiheuttaa dementian. Noradrenaliinia on runsaasti aivorungon pienissä locus coeruleus -tumakkeissa, joista lähtevät aksonit haarautuvat eri tahoille, muun muassa hypotalamukseen, pikkuaivoihin ja isoaivokuorelle. Noradrenaliini osallistuu muun muassa vireystilan säätelyyn.

Dopamiinia sisältäviä neuroneja on runsaasti erityisesti keskiaivoissa substantia nigran ja tegmentumin tienoilla. Näiden aksonit haarautuvat laajalle alueelle. Aivoissa on neljä dopaminergista päärataa: mesokortikaalinen, mesolimbinen, nigrostriataalinen ja tuberoinfundibulaarinen. Nigrostriataalisen radan tuhoutuessa ilmentyy Parkinsonin tauti.

Skitsofrenian ajatellaan johtuvan mesokortikaalisen ja mesolimbisen radan dopamiinin D2-reseptorien ylistimuloitumisesta. Serotoniinia eli 5-hydroksitryptamiinia sisältävien hermosolujen soomaosista suurin osa sijaitsee ydinjatkoksen keskiviivalla olevassa raphe-tumakkeessa. Näiden neuronien aksonit ulottuvat aivojen kaikkiin osiin. Serotoniini osallistuu muun muassa tunne-elämän, muistin, syömiskäyttäytymisen ja ruumiinlämmön säätelyyn.

Histamiinia on ennen muuta hypotalamuksen corpora mamillare -alueella olevissa neuroneissa, jotka projisoituvat useimpiin aivojen osiin. Keskushermostossa histamiini osallistuu muun muassa neuroendokriiniseen säätelyyn, uni-valverytmin, vireystilan ja ruokahalun säätelyyn. Edellä mainittujen välittäjäaineiden lisäksi aivoissa vaikuttaa muun muassa suuri määrä erilaisia neuropeptidejä.

Merkittävimmät

Muut

On esitetty hypoteesi, jonka mukaan metaboliset sopeutumisprosessit ruokavalion aiheuttamiin muutoksiin aiheuttaa muutoksia geeniekspressiossa, mikä puolestaan johtaa joihinkin edellä mainituista muutoksista. Muu neuroprotektiivinen polku moduloidaan vähentämällä reaktiivisten happiradikaalien muodostumista, jonka katsotaan liittyvän monityydyttämättömien rasvahappojen vaikutukseen solujen irrotettavissa proteiineissa [5].

1.4. Ketogeenisen ruokavalion muita kliinisiä etuja

Ketogeenistä ruokavaliota pidetään todistetusti toimivana terapiamuotona, jolla on hyvin vähän haitallisia vaikutuksia. Laaja KD-terapiaa tukeva kliininen näyttö erityisesti lapsilla esiintyvän epilepsian hoitona on johtanut viimeaikaisiin laajempiin tutkimuksiin ketogeenisen ruokavalion metabolisista hyödyistä esimerkiksi neurodegeneratiivisten sairauksien hoidossa[3].

Eräs mielenkiintoisimmista ja aktiivisimmista tutkimusalueista on runsaasti rasvaa sisältävän kaloripitoisen ruokavalion vaikutus aivokasvainsolujen selviytymiseen. Aivosyöpäsoluilla on rajoitettu metabolinen joustavuus. Ne ovat hyvin riippuvaisia glukoosimetaboliasta.

Mitokondrioiden poikkeavuudet heikentävät aivokasvainten kykyä tuottaa energiaa ketoaineista. Toisin kuin normaaleissa soluissa, pahanlaatuisilla kasvainsoluilla on heikentynyt geneettinen sopeutumiskyky muuttuviin energiasubstraatteihin. Niiden energiansaanti rajoittuu lähinnä glukoosiin, minkä vuoksi paasto, niukkaenerginen ruoka ja ketogeeninen ruokavalio heikentävät syöpäsoluja. Näitä samoja aivokasvainten kehittymiseen liittyviä geneettisiä vikoja voidaan hyödyntää pahanlaatuisten solujen tuhoamisessa [3, 10, 11].

Vuonna 1995 Nebeling et al. [12] raportoi kahdesta nuoresta tytöstä, joilla oli pitkälle edennyt aivokasvain. Tyttöjen syövät reagoivat heikosti sädehoitoon ja kemoterapiaan. Lopulta tyttöjä päätettiin hoitaa ketogeenisella ruokavaliolla. Heidän vasteensa KD-hoidolle oli merkittävä sekä kliinisesti että positroniemissiotomografian seurantatutkimusten mukaan.

Zuccoli et al. [13] kuvasi potilasta, jolla oli erittäin pahanlaatuinen multippeli glioblastoma ( kasvain), joka parani ketogeenisella ruokavaliolla. Hullua kyllä, hoidon houkuttelevasta tehokkuudesta ja hyvistä alustavista tuloksista huolimatta aivokasvainten hoitoa ketogeenisellä ruokavaliolla ei ole sittemmin kliinisesti tutkittu ihmisillä. Miksi?

Useat hiiri- ja rotamalleilla tehdyt laboratoriotutkimukset ovat äskettäin vahvistaneet, että aivokasvaimen kasvun estyminen liittyy suoraan alentuneisiin glukoosipitoisuuksiin ja kohonneisiin ketoaineiden pitoisuuksiin. Lisäksi KD:n osoitettiin vähentävän aivojen reaktiivisia happiradikaaleja (ROS) [5].

Syöpäsolut tarvitsevat korkeita ROS-tasoja angiogeneesin indusoimiseksi ja kasvainten kasvutekijöiden tuottamiseksi [11], joten tämä mekanismi selittää KD:n vaikutusta.

Esimerkki:

12-vuotiaalla tytöllä todettiin keskushermostoon vaikuttava neurokutaaninen melanoosi Kasvain oli erittäin pahanlaatuinen ja eteni nopeasti. Kliiniset oireet olivat pääasiassa vaikeita kohtauksia, jotka edellyttivät toistuvaa pääsyä tehohoitoyksikköön sekä kohtausten lisäksi vakavia kognitiivisia ja valppauteen liittyviä oireita. Kun onkologit päättivät, että kasvainten vastainen hoito olisi tehotonta, tyttöä ryhdyttiin hoitamaan ketogeenisella ruokavaliolla. Neljän viikon kokeilun jälkeen KD:llä ei ollut mitään vaikutusta kasvaimen etenemiseen. Kohtausten taajuus ja vakavuus parani, mutta häntä hoidettiin samanaikaisesti AED:n kanssa. Ketogeenisellä ruokavaliolla oli kuitenkin huomattava parantava vaikutus tytön kognitioon, valppauteen ja mielialaan sairauden vakavuudesta ja etenemisestä huolimatta.

KD:n myönteinen vaikutus kognitioon, valppauteen ja mielialaan tunnetaan hyvin [1]. Tämä voi olla erityisen tärkeää nuorten vakavien kasvainten etenevissä vaiheissa. KD:n mahdollinen neuroprotektiivinen vaikutus motivoi tutkimuksia sen potentiaalista hoitovaihtoehtona muissa neurologisissa häiriöissä [3].

Yhä useammat eläintutkimukset osoittavat, että paastolla ja ketogeenisellä ruokavaliolla saavutetulla ketoosilla on selkä ja johdonmukainen neuroprotektiivinen vaikutus erilaisisten aivovaurioiden jälkeen.

Yksi ihmisillä toteutettu pienimuotoinen pilottitutkimus ja useat eläinmallitutkimukset ovat osoittaneet autististen käyttäytymisparametrien parantuneen KD-hoidolla. Vielä on selvitettävä, liittyykö tämä vähentyneeseen epileptiseen aktiivisuuteen, jota havaitaan jopa 30%: lla näistä potilaista, vai KD:n ensisijaiseen vaikutukseen [3]. Tämä tekijä, joka voi olla ratkaiseva KD:n soveltamiselle muiden neurologisten häiriöiden hoitoon, kuin kuin vaikeasti hoidettava epilepsia [14].

Yhteenvetona voidaan todeta, että ketogeenisen ruokavalion pääasiallinen metabolinen vaikutus on aivojen energiansaannin turvaaminen vapailla rasvahapoilla. Niiden hajoaminen ketoaineiksi yhdessä PUFA-yhdisteiden lisääntymisen kanssa johtaa merkittäviin muutoksiin aineenvaihdunnan, bioenergian, mitokondrioiden ja jopa geenien toiminnassa. Näillä primaarisilla ja sekundaarisillä muutoksilla on kouristuksia estäviä ja neuroprotektiivisia vaikutuksia. KD on merkittävä osa lasten epileptologien terapiavaihtoehtoja. Onko ketogeeninen ruokavalio yhtä tehokas hoitoväline myös neurodegeneratiivisten tautien, kuten Parkinsonin ja Alzheimerin taudin hoidossa ja muissa patologioissa, kuten pahanlaatuisten kasvainten hoidossa? Tätä tutktitaan. Tulokset tämän artikkelin julkaisun (2011) jälkeen ovat olleet hyvin lupaavia.

Viitteet

  1. A. L. Hartman and E. P. G. Vining, “Clinical aspects of the ketogenic diet,” Epilepsia, vol. 48, no. 1, pp. 31–42, 2007. View at: Publisher Site | Google Scholar
  2. A. L. Hartman and J. M. Freeman, “Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?” Epilepsia, vol. 49, supplement 8, pp. 53–56, 2008. View at: Publisher Site | Google Scholar
  3. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  4. E. C. Wirrell, “Ketogenic ratio, calories, and fluids: do they matter?” Epilepsia, vol. 49, supplement 8, pp. 17–19, 2008. View at: Publisher Site | Google Scholar
  5. K. J. Bough and J. M. Rho, “Anticonvulsant mechanisms of the ketogenic diet,” Epilepsia, vol. 48, no. 1, pp. 43–58, 2007. View at: Publisher Site | Google Scholar
  6. S. A. Masino, M. Kawamura, C. A. Wasser, L. T. Pomeroy, and D. N. Ruskin, “Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity,” Current Neuropharmacology, vol. 7, no. 3, pp. 257–268, 2009. View at: Publisher Site | Google Scholar
  7. N. Hasebe, K. Abe, E. Sugiyama, R. Hosoi, and O. Inoue, “Anticonvulsant effects of methyl ethyl ketone and diethyl ketone in several types of mouse seizure models,” European Journal of Pharmacology, vol. 642, pp. 66–71, 2010. View at: Publisher Site | Google Scholar
  8. D. B. Appleton and D. C. De Vivo, “An experimental animal model for the effect of ketogenic diet on epilepsy,” Proceedings of the Australian Association of Neurologists, vol. 10, pp. 75–80, 1973. View at: Google Scholar
  9. K. Bough, “Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet,” Epilepsia, vol. 49, supplement 8, pp. 91–93, 2008. View at: Publisher Site | Google Scholar
  10. B. T. Seyfried, M. Kiebish, J. Marsh, and P. Mukherjee, “Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet,” Journal of Cancer Research and Therapeutics, vol. 5, supplement 1, pp. S7–15, 2009. View at: Google Scholar
  11. P. Stafford, M. G. Abdelwahab, D. Y. Kim, M. C. Preul, J. M. Rho, and A. C. Scheck, “The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma,” Nutrition and Metabolism, vol. 7, article 74, 2010. View at: Publisher Site | Google Scholar
  12. L. C. Nebeling, F. Miraldi, S. B. Shurin, and E. Lerner, “Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports,” Journal of the American College of Nutrition, vol. 14, no. 2, pp. 202–208, 1995. View at: Google Scholar
  13. G. Zuccoli, N. Marcello, A. Pisanello et al., “Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report,” Nutrition & Metabolism, p. 33, 2010. View at: Publisher Site | Google Scholar
  14. J. H. Cross, A. Mclellan, E. G. Neal, S. Philip, E. Williams, and R. E. Williams, “The ketogenic diet in childhood epilepsy: where are we now?” Archives of Disease in Childhood, vol. 95, no. 7, pp. 550–553, 2010. View at: Publisher Site | Google Scholar

Keren Politi, Lilach Shemer-Meiri, Avinoam Shuper, and S. Aharoni, Department of Pediatric and Adolescent Neurology, Schneider Children’s Medical Center of Israel, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Copyright © 2011 Keren Politi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.hindawi.com/journals/ert/2011/963637/




β-hydroksibutyraatin oksidaatio edistää immunometaboliittien kertymistä aktivoituneisiin mikroglia-soluihin

Adrian Beniton, Nabil Hajjin, Kevin O’Neill’n, Hector C. Keunin, & Nelofer Syedin tutkimus on julkaistu elokuun 26. päivänä 2020: 10.3390/metabo10090346

Sairastan etenevää MS-tautia. Olen aiemmissa artikkeleissa useita kertoja viitannut ketogeeniseen ruokavalioon yhtenä MS-taudin progressiota hidastavana terapiavaihtoehtona. Lisääntyvä kliininen näyttö osoittaa, että solujen glukoosinoton troofinen häiriö vaikuttaa neurodegeneraatioon Parkinsonin ja Alzheimerin tautien lisäksi myös mm. progressiivisessa multippeliskleroosissa.

Tässä katsauksessa kummastellaan mihin ketogeenisen ruokavalion vaikutus hermosoluja suojaavana, eli neuroprotektiivisena terapiana perustuu. Lets go!

Laajennan ja yritän parhaani mukaan myös selventää Beniton, Haijin et. al. tutkimusta

Saatteeksi: Neurologi ja kirjailija: Dr. Sophie Christoph kirjoittaa ketogeenisesta ruokavaliosta MS-taudin terapiana:

Ketogeeninen ruokavalio voi muuttaa immuunivastetta ja siten vaikuttaa MS-taudin etenemiseen. Eläinkokeet vahvistavat tämän havainnon.

Lihavuus on MS-taudin oireita pahentava riskitekijä. Ketogeeninen ruokavalio voi hillitä taudin etenemistä ja siihen liittyviä tulehdustiloja laihtumisen seurauksena. Viimeaikaiset tutkimukset viittaavat ruokailutottumusten ja sairauden tai oireiden vakavuuden väliseen vahvaan korrelaatioon.

Suuressa poikkileikkaustutkimuksessa ruokavalion laatuun ja aktiiviseen elämäntapaan liittyi kohentunut vireys, alhaisempi väsymys, ahdistuksen ja masennuksen lieveneminen, kognitiivisten kykyjen paraneminen ja neurologisten särkyjen helpottuminen.

Ketogeeninen ruokavalio tarjoaa vaihtoehtoisen energialähteen hermosoluille. Koska solujen rappeutuminen on ainakin osittain seurausta solujen glukoosinoton heikkenemisestä, betahydroksibutyraatti energiasubstraattina turvaa solujen energiansaannin.

Ketogeeniset ruokavaliot imitoivat aineevaihdunnan tasolla paastotilaa. Aineenvaihdunta siirtyy pois glykolyysin tuottamasta energiantuotannosta ja kohti rasvahappojen beeta-oksidaatiota ensisijaisena energialähteenä.

Ketogeeninen ruokavalio voi olla hyödyllinen MS-potilaille, koska:

  • ROS:ia ja RNS:iä (reaktiivisia happi- ja typpiradikaaleja) muodostuu vähemmän
  • veri-aivoesteen läpi kulkeutuvat ketoaineet säätelevät antioksidanttien signalointireittejä
  • ketoaineet lisäävät energiantuotantoa aivokudoksessa
  • eläimillä ja ihmisillä tehdyt tutkimukset vahvistavat, että ketogeeniset ruokavaliot vähentävät tulehduksellisia biomarkkereita veressä ja aivo-selkäydinnesteessä
  • kokeellisen autoimmuunisen enkefaliitin (EAE) hiirimallissa ketogeeninen ruokavalio johti motorisen vamman korjaantumiseen, parempaan oppimiseen ja muistiin, suurempiin hippokampuksen tilavuuksiin ja periventrikulaaristen vaurioiden remyelinaatioon
  • tulehduksellisten sytokiinien tukahdutettuun tuotantoon
  • lisääntyneisiin hermosolujen korjausprosesseihin
  • ketogeeninen ruokavalio parantaa MS-potilaiden väsymystä, masennusta ja laskee painoa
  • ketogeeninen ruokavalio ehkäisee ja parantaa MS:n aiheuttamaa neurodegeneraatiota ja neuroinflammaatiota

Mitokondrioiden toimintahäiriöt näyttävät olevan keskeisiä MS-patogeneesin neurodegeneratiivisessa vaikutuksessa. Tämä johtaa ATP:n heikompaan saatavuuteen, mikä voi edistää aksonin atrofiaa ja rappeutumista.

In vitro– ja eläintutkimusten mukaan ketogeenisen ruokavalion on osoitettu parantavan mitokondrioiden toimintaa ja edistävän siten aksonien terveyttä edistämällä ATP-tuotantoa ja mitokondrioiden biogeneesiä, ohittamalla mitokondrioiden häiriintyneet prosessit, lisäämällä antioksidanttien määrää ja vähentämällä oksidatiivisia vaurioita.

Tutkimukset ovat raportoineet merkittäviä eroja suolistobakteerien pitoisuudessa, monimuotoisuudessa ja koostumuksessa MS-potilailla ja niiden vaikutuksessa immuunijärjestelmän säätelyyn. Noin 3 kuukauden ketogeenisen ruokavalion jälkeen tämä tila parani myös MS-potilailla.

Tietoa kertyy jatkuvasti. Tälläkin hetkellä on käynnissä useita tutkimuksia, joissa selvitetään ketoosin vaikutuksia aivojen rappeutumista aiheuttaviin neurodegeneratiivisiin tauteihin, kuten Parkinsonin tauti, Alzheimerin tauti ja primaaristi progressiivinen MS.

Immuunisolujen metabolinen säätely on keskeinen vaikuttaja immunologisissa tapahtumissa

Julkaisin Ruokasodassa hiljattin kaksi tätä aihetta syventävää pitkää tutkimuskatsausta (Neurodegeneraation ja aksonaalisten vaurioiden mekanismit progressiivisessa multippeliskleroosissa: 1 & 2). Ketogeenisen ruokavalion myönteisiä vaikutuksia primaaristi progressiivisessa multippeliskleroosissa on kuvattu tässä: Ketogeeninen ruokavalio ja PPMS.

Pidemmittä puheitta, mennään asiaan

Tieto leukosyyttien metabolisesta säätelystä on lisääntynyt valtavasti, mutta keskushermoston mikroglia-solujen metabolisesta säätelystä tiedetään yhä paljon vähemmän. Tässä tutkimuksessa osoitetaan, että muiden hermoston solujen tapaan, myös mikroglia-solut pystyvät hapettamaan betahydroksibutyraatista energiaa sitruunahappokierrossa.

Vaihtoehtoisten ravintoaineiden rooli hermosolujen energiasubstraattina tunnetaan huonosti. Vielä vuosituhannen alkupuolella lähtökohtainen oletus oli, että aivojen solut eivät toimi ilman glukoosia. Tämä käsitys kuitenkin kumottiin virheellisenä viimeistään 1960-luvulla. Tieto ei saavuttanut laajemmin lääketieteellistä yhteisöä ja tutkimus jäi pienen piirin kuriositeetiksi.

Ongelmana ovat pitkään olleet tutkimusmenetelmien rajoitukset. Aineenvaihdunnan määrittelyssä on pitänyt tuvautua kovien faktojen lisäksi arvauksiin ja valistuneisiin mielipiteisiin.

Uusilla kehittyneemmillä tutkimusmenetelmillä nähdään tarkemmin ja syvemmälle. Aineenvaihdunnan mekanismeja voidaan korjata siellä, missä on veikattu väärää hevosta. Tämä selittää sen, että tieto aineenvaihdunnan mekanismeista täsmentyy nopeasti.

Glukoosin uskottiin olevan välttämätöntä aivoille, vaikka glukoosin saantia rajoittavaa ketogeenista ruokavaliota on käytetty lääkeresistentin epilepsian kohtausten hillitsemiseen noin sadan vuoden ajan. Hiilihydraattien (glukoosin) rajoittamista sovellettiin menestyksellisesti diabeteksen hoitoon jo 1700 ja 1800 lukujen vaihteessa. Ketogeenisen ruokavalion hyödyt eivät ole uusi ilmiö. Ne tunnettiin vuosituhansia ennen, kuin hiilihydraattien rajoittamisen terveyshyödyt unohdettiin viime vuosisadan puolenvälin jälkeen.

Ketogeeninen ruokavalio, aivan kuten paasto, olisi käytännössä mahdotonta, jos elimistöllä ei olisi mekanismeja korvata glukoosin saantia aivosolujen energianlähteenä muilla energiasubstraateilla.

β-hydroksibutyraatin oksidaatio edistää immunometaboliittien kertymistä aktivoituneisiin mikroglia-soluihin

Tässä tutkimuksessa käytettiin stabiilien isotooppien (13C) jäljitysstrategioita ja metabolomiikkaa* hahmottamaan β-hydroksibutyraatin (BHB) oksidatiivista metaboliaa ihmisen (HMC3) ja hiiren (BV2) mikroglia-soluissa sekä β-hydroksibutyraatin vuorovaikutusta glukoosin kanssa lepo- ja LPS- elli lipopolysakkaridi-aktivoidussa BV2:ssa.

Lipopolysakkarideja esiintyy gramnegatiivisten bakteerien ulkokalvon pinnalla, jossa ne toimivat endotoksiineina ja aktivoivat elimistön immuunijärjestelmän.

*Metabolomiikka on uusi menetelmä, jolla tutkitaan pienimolekyylisten metaboliittien rakennetta, toimintaa ja yhteisvaikutuksia elimistön soluissa, kudoksissa, veressä ja eritteissä.

β-hydroksibutyraatti tuodaan ja hapetetaan TCA-syklissä eli sitruunahappokierrossa molemmissa solulinjoissa, minkä jälkeen sytosolinen NADH : NAD+ -suhde muuttuu.

Nikotiiniamidiadeniinidinukleotidi (NAD+)

NAD+ eli nikotiiniamidiadeniinidinukleotidi on kaikissa elävissä soluissa esiintyvä tärkeä koentsyymi. Rakenteeltaan se on dinukleotidi, jossa nikotiiniamidiemäksen sisältävä nukleotidi ja adeniininukleotidi ovat liittyneet toisiinsa fosfaattiryhmiensä välityksellä.

NAD+ ja sen pelkistynyt muoto NADH toimivat koentsyymeinä monissa tärkeissä biologisissa hapetus-pelkistysreaktioissa. NAD+ muistuttaa rakenteeltaan toista tärkeää koentsyymiä NADP+:a eli nikotiiniamidiadeniinidinukleotidifosfaattia, jossa lisäksi on adenosiiniin liittynyt fosfaattiryhmä.NAD+ osallistuu lähinnä katabolisiin reaktioihin, kun taas NADP+:lla on tärkeä rooli anabolisissa reaktioissa.

Eliöt tuottavat NAD+:a kahdella eri tavalla. Niin sanotussa de novo -synteesissä, jota säätelevät BNA-geenit, eliöt valmistavat aminohappo tryptofaanista kinoliinihappoa. Kinoliinihappo muutetaan nikotiinihappomononukleotidiksi, joka muutetaan nikotinaattinukleotidiadenylyylitransferaasientsyymin avulla desamino-NAD+:ksi. NAD+-syntaasientsyymi muuttaa desamino-NAD+:n NAD+:ksi.

Eliöt biosyntetisoivat NAD+:a myös sen hajoamisessa syntyvästä nikotiiniamidista. Nikotiiniamidi muutetaan nikotiiniamidaasientsyymin avulla nikotiinihapoksi. Nikotiinihaposta muodostetaan nikotiinihappomononukleotidia, joka muokataan NAD+:ksi kuten de novo -synteesissä.

NAD+ on bioreaktioissa hapetin ja NADH pelkistin. NAD+ kiinnittyy entsyymeihin, jotka katalysoivat dehydrausreaktioita. Tällaisia ovat esimerkiksi glykolyysin yhteydessä tapahtuva glyseraldehydi-3-fosfaatin muuttaminen 1,3-bisfosfoglyseraatiksi, alkoholien hapettaminen aldehydeiksi, jota katalysoi alkoholidehydrogenaasi sekä glutamaatin hajotus.

Muita entsyymejä, joille NAD+ toimii koentsyyminä, ovat muun muassa UDP-galaktoosiepimeraasi, adenosyylihomokysteinaasi, 3-dehydrokinaattisyntaasi, ornitiinisyklodeaminaasi ja urokanaasi.- Wikipedia

BV2-soluissa stimulaatio lipopolysakkaridilla sääteli glykolyyttistä virtausta, lisäsi sytosolista NADH : NAD+ -suhdetta ja edisti glykolyyttisen dihydroksiasetonifosfaatin (DHAP) välituotetta.

β-hydroksibutyraatin lisääminen lisäsi LPS:n aiheuttamaa DHAP:n kertymistä ja edisti glukoosista johdetun laktaatin vientiä.

β-hydroksibutyraatti (BHB) lisäsi myös synergistisesti sukkinaatin ja muiden keskeisten immunometaboliittien, kuten sitruunahappokierron tuottamien a-ketoglutaraatin ja fumaraatin, LPS:n aiheuttamaa kertymistä. Lopuksi BHB sääteli avaintulehdusta edistävän (M1-polarisaatio) markkerigeenin, NOS2:n, ilmentymistä LPS:llä aktivoiduissa BV2-soluissa.

Yhteenvetona: havaitsimme β-hydroksibutyraatin mahdollisesti immunomoduloivaksi metaboliseksi substraatiksi, joka säätelee metabolista uudelleenohjelmointia tulehdusta edistävän vasteen aikana.

Betahydroksibutyraatti, β-hydroksibutyraatti eli betahydroksivoihappo tai BHB

Rakkaalla lapsella on monta nimeä. β-hydroksibutyraatti eli β-hydroksivoihappo on energia–aineenvaihdunnassa syntyvä ketoniyhdiste eli ns. ketoaine. Muita elimistön ketoaineita ovat asetoni ja asetoasetaatti.

Ketoaineita muodostuu elimistön energiatilan mukaisesti joko vapaista eli esteröitymättömistä rasvahapoista (free fatty acids eli FFA/non-esterified fatty acids eli NEFA) tai haihtuvista rasva-hapoista (volatile fatty acids eli VFA).

Ketoaineet erittyvät vapaasti munuaisissa virtsaan, joten virtsasta voidaan havaita ketoaineita melko pian ketoottisen tilanteen alkamisen jälkeen. On kuitenkin hyvä muistaa, että virtsaliuskojen ketoainemääritys havaitsee vain asetoasetaatin (ja vähemmässä määrin asetonin), muttei β-hydroksibutyraattia. β-hydroksibutyraatti on se ketoaine, jota syntyy eniten ketoosissa.

Ihmisillä β-hydroksibutyraatti voidaan syntetisoida maksassa rasvahappojen (esim. Butyraatti), β-hydroksi-β-metyylibutyraatin ja ketogeenisten aminohappojen aineenvaihdunnan reaktioiden avulla. Aineenvaihdunta muuttaa nämä yhdisteet asetoasetaatiksi, joka on ensimmäinen ketoaine, joka tuotetaan paastotilassa.

β-hydroksibutyraatin biosynteesiä asetoasetaatista katalysoi β-hydroksibutyraattidehydrogenaasientsyymi. Butyraatti voidaan myös metaboloida β-hydroksibutyraatiksi toisen metaboliareitin kautta, joka ei sisällä asetoasetaattia metabolisena välituotteena.

Tämä metabolinen reitti on seuraava β-hydroksibutyraatin pitoisuus ihmisen veriplasmassa, kuten muissakin ketoelimissä, kasvaa ketoosin kautta. Tämä kohonnut β-hydroksibutyraattitaso on luonnollisesti odotettavissa, koska p-hydroksibutyraatti muodostuu asetoasetaatista.

Aivot voivat käyttää β-hydroksibutyraattia energialähteenä, kun verensokeri on alhainen.

Diabetesta sairastavien potilaiden ketonitasot voidaan mitata virtsan tai veren kautta diabeettisen ketoasidoosin (happomyrkytys) osoittamiseksi.

Ketogeneesi tapahtuu, kun maksasolujen oksaloasetaatti ehtyy, mikä johtuu vähentyneestä hiilihydraattien saannista (ruokavalion tai paaston seurauksena).

Koska oksaloasetaatti on ratkaisevan tärkeä tekijä asetyyli-CoA:n (asetyylikoentsyymi-A on kaikkien energiaravinteiden välimuoto sitruunahaoppokierrossa) pääsemiseksi TCA-sykliin (trikarboksyylihappokeirto) eli sitruunahappokiertoon, asetyyli-CoA:n nopea tuotanto rasvahappohapetuksesta runsaan oksaloasetaatin puuttuessa ylittää TCA-syklin heikentyneen kapasiteetin ja tuloksena oleva ylimäärä asetyyli-CoA siirtyy kohti ketoaineiden tuotantoa.

β-hydroksibutyraatti pystyy läpäisemään keskushermostoa suojaavan veri-aivoesteen

Näin se pääsee ravitsemaan keskushermoston soluja. β-hydroksibutyyrihappotaso kasvaa maksassa, sydämessä, luurankolihaksissa, aivoissa ja muissa kudoksissa liikunnan, kalorien rajoittamisen, paaston ja ketogeenisten ruokavalioiden seurauksena.

Yhdisteen on havaittu toimivan histonideasetylaasin (HDAC) estäjänä. Estämällä HDAC-luokan I isoentsyymien HDAC2 ja HDAC3, β-hydroksibutyraatin on havaittu lisäävän aivoperäisen neurotroofisen tekijän (BDNF) pitoisuutta ja TrkB-signalointia hippokampuksessa.

Jyrsijätutkimuksissa on havaittu, että pitkäaikainen liikunta lisää plasman β-hydroksibutyraattipitoisuuksia, mikä indusoi BDNF-geenin promoottoreita hippokampuksessa.

Näillä havainnoilla voi olla kliininen merkitys masennuksen, ahdistuneisuuden ja kognitiivisten vajaatoimintojen hoidossa. Ketogeenistä ruokavaliota käyttävillä epilepsiapotilailla veren β-hydroksibutyraattitasot korreloivat parhaiten kohtausten hallinnan asteen kanssa. Optimaalisen antikonvulsanttivaikutuksen kynnys näyttää olevan noin 4 mmol / l.

Tutkimus

Mikroglia-solut ovat keskushermoston (CNS) immuunisoluja. Arviolta 10% kaikista keskushermoston soluista on mikroglia-soluja.

Nämä solut ovat viime aikoina herättäneet runsaasti kiinnostusta, koska niillä on kriittinen rooli yleisimmissä aivosairauksissa, kuten dementia, aivohalvaus ja aivokasvaimet. Aivosairaudessa tai immuunialtistuksessa levossa oleva mikroglia hyväksyy ohjelmalliset muutokset, jotka liittyvät sytokiinien ja kemokiinien vapautumiseen.

Sytokiinit ja kemokiinit

Sytokiini on proteiinirakenteinen solujen välisen viestinnän välittäjäaine, joka on löydetty immunologisen tutkimustyön yhteydessä. Sytokiinin ja kasvutekijän, joka on toinen paikallisesti vaikuttava kudoshormonityyppi, välinen ero on lähinnä löytöhistoriasta, eikä toimintatavasta tai muista ominaisuuksista johtuva. Valkosolut tuottavat suurimman osan sytokiineista. Immuunijärjestelmän ohjaus on niiden keskeisin tehtävä.

Immuunijärjestelmää ohjailevat sytokiinit voidaan jakaa toimintansa pääasiallisen luonteen perusteella viiteen pääryhmään: tuumorinekroositekijät, interferonit, interleukiinit, hematopoieettiset kasvutekijät ja muut kasvutekijät. Sytokiineja voidaan luokitella myös tuottajasolujensa mukaan. Esimerkiksi lymfosyyttien tuottamia sytokiineja kutsutaan lymfokiineiksi ja monosyyttien monokiineiksi.

Tuumorinekroositekijät (TNF) ovat ehkä keskeisimpiä ensisijaisia aktivoivia välittäjäaineita immunovasteen käynnistyksessä. Tuumorinekroositekijän nimi juontuu sen löytöhistoriasta, kun joidenkin syöpäpotilaiden kasvainten havaittiin surkastuvan bakteeritulehduksen yhteydessä. Myöhemmin saatiin selville, että kasvainten tuhoutumiseen vaikuttaa keskeisesti eräiden valkosolujen, makrofagien ja T-lymfosyyttien, tuottama proteiini, joka ristittiin tuumorinekroositekijäksi.

Hematopoieettiset kasvutekijät ohjailevat ja stimuloivat immunojärjestelmän solujen erilaistumista ja tuotantoa luuytimessä ja muissa verisoluja muodostavissa kudoksissa. Immunojärjestelmän kannalta ehkä keskeisin hematopoieettinen kasvutekijä on granulosyytti-makrofagi-solulinjaa stimuloiva tekijä. – Wikipedia

Kemokiinit saavat aikaan kemotaksista eli solun liikkumista joko suurempaa kemokiinipitoisuutta kohti tai siitä poispäin. Kemokiinit ovat yli 40 tunnetun molekyylin joukko rakenteeltaan samankaltaisia, pienikokoisia polypeptidejä (8-14 kDa), jotka sitoutuessaan kemokiinireseptoreihin aktivoivat ne. Kemokiinit ja niiden reseptorit luokitellaan C, CC, CXC ja CXXXC perheisiin sen mukaan, miten kemokiinin N-terminaalinen kysteiini paikantuu.

Kemokiinireseptorit ovat luonteeltaan G-proteiineja, joiden aktivoituminen käynnistää sarjan biokemiallisia reaktioita, kuten fosfatidyyli-inositolitrifostaatin hydrolysoitumisen, proteiinikinaasi C:n aktivoitumisen, kalsium-ionien sisänvirtauksen, sekä rac- ja Rho-proteiinien aktivaation. Rac ja Rho osallistuvat solun migraatioon säädellen aktiiniverkoston rakentumista lamellipodeissa ja filopodeissa.

Kemokiinien on osoitettu säätelevän erilaisia immuunijärjestelmän vasteita siten, että T-solujen alalajit ilmentävät eri kemokiinireseptoreita. Tämä puolestaan vaikuttaa siihen, mihin kudoksiin kyseiset T-solut voivat vaeltaa.

Monosyyteissä ja lepäävissä T-soluissa esiintyvät kemokiinireseptorit CCR5 and CXCR4 osallistuvat tulehdusreaktioihin, ja samat reseptorit avustavat HIV-virusten tarttumisessa T-soluihin. – Solunetti


Nämä polarisoidut solut on perinteisesti luokiteltu joko tulehdusta edistäviksi (M1-tyyppi) tai anti-inflammatorisiksi (M2-tyyppi) muutaman molekyylimarkkerin ilmentymisen mukaan. Molekyylit, kuten lipopolysakkaridi (LPS) ja interferoni-y (IFN-y), ovat voimakkaita M1-polarisaation promoottoreita, kun taas IL-4 indusoi M2-polarisaatiota.

Todisteiden lisääntyminen on kuitenkin osoittanut M1 / M2-kehyksen rajoitukset. Mikroglian polarisaatio on edelleen intensiivisen tieteellisen tutkimuksen aiheena. Lisääntyvä tutkimusnäyttö antaa ratkaisevan merkityksen solujen aineenvaihdunnalle mikrogliumin toiminnan ja polarisaation säätelyssä.

Solunulkoinen metabolinen ympäristö ja metabolisten reaktioiden ohjaamat muutokset solunsisäisessä aineenvaihduntaympäristössä, moduloivat vasteen immunologisiin signaaleihin.

Perifeerisissä immuunisoluissa mekanismit, joilla tulehdus vaikuttaa energia-aineenvaihduntaan, tunnetaan jo hyvin. Mikroglia-alueen viimeaikaiset havainnot osoittavat, että tämä immuunisolutyyppi sitoutuu erilaisiin metaboliareitteihin stimulaatiomallista riippuen.

Paljon vähemmän tiedetään kuitenkin siitä, kuinka energia-aineenvaihdunta ja metabolinen mikroympäristö vaikuttavat immuunivasteisiin. Immunometabolian havainnot ovat osoittaneet, että perifeeriset immuunisolut voivat sopeutua vaihteleviin ympäristöhaasteisiin metaboloimalla muita vaihtoehtoisia ravintoaineita kuin glukoosia (asetaattia, aminohappoja ja rasvahappoja).

Mikrogliassa tämä ns. metabolisen joustavuuden ilmiö ja vaihtoehtoisten substraattien energia-aineenvaihdunta ymmärretään edelleen puutteellisesti. Vasta äskettäin raportoitiin, että mikroglia voi glukoosin puuttuessa siirtyä käyttämään glutamiinia vaihtoehtoisena polttoaineena mikrogliafunktion ylläpitämiseksi.

Metabolisen joustavuuden merkitys lisääntyy samalla, kun metabolisen mikroympäristön merkityksestä immuunitoiminnan säätelylle saadaan lisää todisteita

Äskettäin on keksitty termi immunometaboliitit tai sytokiinien kaltaiset metaboliitit kuvaamaan metaboliitteja sukkinaattia, itakononaattia, laktaattia, fumaraattia ja a-ketoglutaraattia. Nämä ovat metaboliitteja, joilla on tärkeä vaikutus leukosyyttien aktivaatiossa ja erilaistumisessa, ja jotka ovat riippumattomia niiden tavanomaisesta roolista biosynteesissä ja bioenergeettisissä aineissa.

Ruokavalio-interventiot ovat osoittaneet terapeuttista potentiaalia aineenvaihduntaympäristön ja immuunijärjestelmän säätelijöinä. Tällaisista ruokavalioista ketogeeniset ruokavaliot ovat olleet suosittuja erityisesti aivosairauksien, kuten epilepsian ja gliooman (aivokasvain) hoidossa.

Huomio: Multippeliskleroosi aiheuttaa todellista tuhoa keskushermoston valkeassa ja harmaassa aineessa.Arpeumat ja kuolleiden neuroneiden muodostamat ”mustat aukot” ovat yhtä todellisia kuin amputoitu sormi tai varvas, joka ei ihmeenomaisesti jotain eliksiiriä nauttimalla kasva takaisin.

Ruokavalio-interventio terapiana hidastaa ja ehkäisee uusien hermostovaurioiden syntyä. Olemassaolevat vauriot voivat ehkä jossain määrin korjautua vuosien tai vuosikymmenten aikana neurogeneesin, remyelinaation ja neuroplastisuuden avulla, mutta sellaisesta ei ole tieteellistä näyttöä.

Yhtä kaikki, ketogeeninen ruokavalio hidastaa ja ehkäisee uusien leesioiden syntyä. Sen parempaan nykylääketiede ei oikein MS-taudin kohdalla pysty. Tämä on masentavaa, mutta samalla rohkaisevaa. Se on se, mitä me multippelisklerootikot voimme itsellemme antaa. Kukaan ei osaa korjata jo syntyneitä valkean ja harmaan aineen vaurioita, mutta me voimme ehkäistä uusien vaurioiden syntymistä ja hidastaa invalidisoivaa prosessia.

Tähän ruokavalioon liittyvien monien terveysvaikutusten joukossa ketoaine β-hydroksibutyraatin (BHB) endogeenisen tuotannon lisääntyminen on yksi biologisesti merkittävimmistä vaikutuksista.

Todiste tämän metaboliitin merkityksellisyydestä on se, että β-hydroksibutyraatti yksinään annettuna tuottaa ketogeenisen ruokavalion hyödylliset vaikutukset äärimmäisissä olosuhteissa.

Tämä on ajankohtainen aihe. NASA rahoittaa β-hydroksibutyraatin ja ketoosin vaikutuksia selvittäviä tutkimuksia, koska tulevaisuuden Mars-lentojen astronauttien aineenvaihdunta ja kognitiiviset kyvyt äärioloissa halutaan maksimoida. USAn puolustusministeriö rahoittaa ketoaineiden ja ketoosin tutkimusta, koska ketoosin uskotaan parantavan taistelusukeltajien toimintakykyä äärioloissa.

Ketoosin neuroprotektiiviset ja kognitiota tehostavat vaikutukset todentuvat erityisen hyvin äärioloissa. Karppaus ei vittuilusta huolimatta ole enää pienen pöpiseurakunnan ruokauskonto, vaan faktisesti ihmisen aineenvaihduntaa ja immuunijärjestelmää tehostava ruokavalio.

β-hydroksibutyraatti on nelihiilinen molekyyli, joka syntyy maksan rasvahappojen hapettuessa, kun elimistö ei saa glukoosia. Se voi toimia signalointimolekyylinä sitoutumalla suoraan G-proteiiniin kytkettyyn reseptoriin GPR109A tai histonideasetylaasin (HDAC) estäjänä sekä epäsuorasti oksidatiivisen aineenvaihdunnan kautta, minkä jälkeen muodostuu asetyyli-CoA ja NADH, eli asetyylikoentsyymi-A ja nikotiiniamidiadeniinidinukleotidin pelkistynyt muoto.

Vaikka β-hydroksibutyraatin suoria signalointivaikutuksia aivoissa ja mikroglia-alueella on tutkittu laajasti eri järjestelmissä, sen metaboliaa mikrogliassa ei ole aiemmin kartoitettu.

Kun otetaan huomioon metabolisen signaloinnin ja uudelleenohjelmoinnin keskeinen rooli immuniteetissa, β-hydroksibutyraatin metabolisten vaikutusten ymmärtäminen mikrogliassa nousee perustavanlaatuiseksi kysymykseksi.

Tässä käytimme stabiilin isotoopin (13C) jäljitystä ja metabolomiikkaa β-hydroksibutyraatin oksidatiivisen aineenvaihdunnan ja glukoosimetabolian välisen vuorovaikutuksen lepo- ja LPS- eli lipopolysakkaridi-aktivoidun mikroglian vertailuun.

Arvioimme myös β-hydroksibutyraatin vaikutusta lipopolysakkaridiin kohdistuvaan tulehdusvasteeseen analysoimalla polarisaatiotuottajien ilmentymässä tapahtuvia muutoksia.

Lipopolysakkaridi (LPS)on suurikokoinen molekyyli, joka koostuu lipidistä ja polysakkaridista. Molekyylin rakenteessa on kolme kovalenttisin sidoksin yhdistynyttä osaa: O-polysakkaridi eli O-antigeeni, ydinoligosakkaridi ja lipidi A. Lipopolysakkarideja esiintyy gramnegatiivisten bakteerien ulkokalvon pinnalla, jossa ne toimivat endotoksiineina ja aktivoivat elimistön immuunijärjestelmän.

Tulokset


Mikroglia-solut hapettavat β-hydroksibutyraattia TCA-syklissä

Sitruunahappokierto eli Krebsin sykli eli trikarboksyylihappokierto (TCA-kierto) on solujen mitokondrioissa tapahtuva monivaiheinen kemiallinen prosessi, jossa ravintoaineista peräisin olevat hiiliatomit hapettuvat hiilidioksidiksi ja samojen molekyylien sisältämät vedyt siirtyvät elektroninsiirtäjäkoentsyymeille. Prosessissa vapautuu energiaa, ja se on solujen pääasiallinen energianlähde.

Ennen kuin ravintoaineet kuten hiilihydraatit ja rasvat voivat tulla mukaan sitruunahappokiertoon, solussa tapahtuvien muiden prosessien on muutettava ne sopivaan muotoon, etenkin asetyyliryhmäksi, joka sitoutuu koentsyymi-A:n kanssa aktiiviseksi etikkahapoksi eli asetyylikoentsyymi-A:ksi. Lisäksi kierron eri vaiheissa sitoutuu vesimolekyylejä, ja siinä vapautuu hiilidioksidia sekä vetyioneja ja elektroneja. Nämä vapautuneet vetyionit ja ylimääräiset elektronit siirtyvät hapetus-pelkistysreaktioissa elektroninsiirtäjäkoentsyymeille, joita ovat NAD+:a ja FAD. Koentsyymeiltä vedyt siirtyvät edelleen elektroninsiirtoketjuun, jonka päätteeksi ne yhtyvät hengitysilmasta tulleen hapen kanssa vesimolekyyleiksi.

Syklisessä reaktiossa sitoutuu myös yksi fosforihappomolekyyli, jolloin muodostuu yksi korkeaenergiainen ATP-molekyyli GTP-välivaiheen kautta, ja neljä pelkistynyttä elektroninsiirtäjäkoentsyymiä (kolme NADH:ta ja yksi FADH2) kutakin pilkkoutunutta ja hapettunutta asetyylikoentsyymi-A:ta kohti. Sitruunahappokierto tapahtuu pääosin mitokondrion matriksissa, kun taas elektroninsiirtoketju tapahtuu mitokondrion sisäkalvolla.

Yksi sitruunahappokierron entsyymi, sukkinaattidehydrogenaasi, on mitokondrion sisäkalvon entsyymi. Se voi syöttää saamansa elektronit suoraan mitokondrion sisäkalvolla tapahtuvaan elektroninsiirtoketjuun.


β-hydroksibutyraati
n metabolian tutkimuksessa mikroglia-solulinjat BV2 (hiiri) ja HMC3 (ihminen) valittiin mikroglia-solumalleiksi.

β-hydroksibutyraatin pitoisuus nousee olosuhteissa, joille on tunnusomaista rajoitettu glukoosin saatavuus. Vaikka β-hydroksibutyraatin hapettumisen on jo kauan tiedetty tapahtuvan hermosoluissa, astrosyyteissä ja oligodendrosyyteissä, todisteita β-hydroksibutyraatin hapettumisesta mikroglia-soluissa ei vielä ole.

Pyrimme ensin vahvistamaan, voiko mikroglia hapettaa β-hydroksibutyraattia, sekä ymmärtämään, miten glukoosin saatavuus muuttaa β-hydroksibutyraatin aineenvaihduntaa.

Näiden hypoteesien testaamiseksi teimme stabiilin isotooppien jäljityskokeen käyttäen 13C-leimattua β-hydroksibutyraattia. 13C-leimattujen substraattien käyttö mahdollistaa hiilen kulkeutumisen jäljittämisen eri aineenvaihduntareittien kautta ja liittymisen alavirran metaboliitteihin.

β-hydroksibutyraatti hapetetaan kolmivaiheisen ketoaineiden hapetusreitin kautta, minkä jälkeen tuotetaan NADH:ta ja asetyyli-CoA:ta, jotka voidaan siirtää sitruunahappokiertoon. (Kuva 1)

BV2- ja HMC3-viljelmiä täydennettiin tasaisesti 5 mmol/l 13C-leimatulla BHB:lla (13C4-BHB) viljelyolosuhteissa, jotka eivät sisältäneet lisättyä glukoosia, 1 tai 5 mmol/l leimaamatonta glukoosia (12C6-glukoosi).

Rinnakkaisanalyysi 13C-leimatulla glukoosilla (13C6-glukoosi) vahvisti glykolyyttisen virtauksen merkittävän vähenemisen glukoosia rajoittavassa ympäristössä (kuvio S1A, B). Tuloksemme osoittivat, että sekä BV2 että HMC3 voivat tuoda ja hapettaa β-hydroksibutyraattia, kuten TCA-syklin m +2 13C-rikastus osoittaa. Välituotteina sitraatti, a-ketoglutaraatti, glutamaatti, sukkinaatti, fumaraatti ja malaatti (kuva 1B).

Tuloksemme osoittivat myös, että glukoosin saatavuus muuttaa β-hydroksibutyraatin vaikutusta eri tavalla kussakin solulinjassa. BV2-soluissa β-hydroksibutyraatin hapettuminen lisääntyi vähitellen glukoosipitoisuuden laskiessa, mikä ilmeni m+2 13C-rikastumisen kasvuna kaikissa sitruunahappokierron välituotteissa (kuvio 1B, vasemmalla).

HMC3-soluilla ei ollut samaa vastemallia, ja β-hydroksibutyraatin hapettuminen pysyi vakiona riippumatta glukoosipitoisuudesta, mistä osoittaa tasainen m +2 13C-rikastumisen osuus TCA-syklin välituotteissa (kuvio 1B, oikea).

Mielenkiintoista on, että sekä BV2- että HMC3-soluissa havaittavissa oleva osa 13C4-BHB-johdetuista hiilistä transformoitiin laktaatiksi (kuvio S2A, B) ja pyruvaatiksi (kuvio S2C, D).

Havaitsimme erityisesti solunsisäisen m+2 13C2-laktaatin lisääntymisen glukoosista riippuvaisella tavalla, mikä viittaa vaihtoehtoiseen β-hydroksibutyraatin metaboliareittiin, joka paranee glukoosia rajoittavissa olosuhteissa.

On raportoitu, että mikroglia-soluilla on joustava aineenvaihdunta ja glukoosipuutteessa ne voivat nopeasti siirtyä käyttämään glutamiinia mitokondrioiden aineenvaihdunnan ja valvontatoimintojen ylläpitämiseen. Siksi testataksemme mahdollisuutta, että β-hydroksibutyraatti voisi aiheuttaa mikroglia-proliferaation (lisääntymisen) hyvin matalan glukoosin olosuhteissa, viljelimme BV2- ja HMC3-soluja 0,1 mmol/l glukoosissa, johon oli lisätty 5 tai 10 mmol/l leimaamatonta β-hydroksibutyraattia.

Tuloksemme osoittavat, että β-hydroksibutyraatti ei aiheuttanut mikroglian lisääntymistä missään solulinjassa (kuva S2E, F). Koska sekä glukoosi että β-hydroksibutyraatinn metaboliareitit ovat mukana NADH:n tuotannossa, olimme kiinnostuneita siitä, voisiko β-hydroksibutyraatti muuttaa bioenergeettistä aineenvaihduntaa ja redox-tilaa indusoimalla muutoksia NADH : NAD+ -suhteessa.

Tämän suhteen on äskettäin raportoitu hallitsevan synnynnäisiä tulehdusvasteita transkriptionaalisen repressorin CtBP:n kautta. Sytosolinen NADH : NAD+ -suhde voidaan arvioida epäsuorasti mittaamalla laktaatin ja pyruvaatin solunsisäisten tasojen suhde (kuvio 1C) . Kuten odotettiin, 5 mmol/l glukoosissa viljellyillä soluilla oli suurempi NADH : NAD+ -suhde kuin 1 mmol/ glukoosissa viljellyillä soluilla (kuvio 1D, E).

BV2-soluissa β-hydroksibutyraatin lisääminen lisäsi NADH : NAD+ -suhdetta, kun soluja viljeltiin 5 mmol/l glukoosissa, mutta ei 1 mmol/l glukoosissa (kuvio 1D). HMC3-soluissa β-hydroksibutyraatin lisäys nosti suhdetta sekä 1 että 5 mmol/l glukoosiolosuhteissa (kuvio 1E).

Tutkimme myös β-hydroksibutyraatin isäyksen vaikutusta metaboliittitasoihin useilla metaboliareiteillä soluissa, joita viljeltiin 1 ja 5 mmol/l glukoosissa. BV2-solujen aineenvaihdunta reagoi paremmin β-hydroksibutyraattiin kuin HMC3. 1 mmol/l glukoosissa BV2-solut, joihin oli lisätty β-hydroksibutyraattia, osoittivat laktaatin, glysiinin ja glutamaatin kertymistä, kun taas 5 mmol/l glukoosissa havaittiin laktaatin kertymistä ja glutamaatin konsentraation pienenemistä (kuvio S3A).

HMC3-soluissa β-hydroksibutyraatti edisti glutamaatin kerääntymistä matalassa glukoosissa viljellyissä soluissa (kuvio S3B). Nämä tiedot yhdessä vahvistavat, että β-hydroksibutyraatti hapetetaan sitruunahappokierrossa (TCA-syklissä) mikroglia-soluissa ja edistää NADH:n tuotantoa ja sytosolisen NADH : NAD+ -suhteen säätelyä.

β-hydroksibutyraatin (BHB) hapettuminen hiiren (BV2) ja ihmisen (HMC3) soluissa.

  1. (A) Kaavamainen esitys 13C4-BHB: stä johdetusta 13C-rikastuksesta.
  2. (B) TCA-syklin välituotteiden (Cit, sitraatti; αKG, α-ketoglutaraatti; Glu, glutamaatti; Suc, sukkinaatti; Fum, fumaraatti; Mal, malaatti) m + 2 13C-rikastus BV2- ja HMC3-soluissa viljelyolosuhteissa joko ilman lisättiin glukoosia tai 1 tai 5 mM 12C6-glukoosia ja 5 mM 13C4-BHB 24 tunnin ajan. Pylväät edustavat n = 3 biologisen replikaation keskiarvoa ± SD. Tiedot analysoitiin yksisuuntaisella ANOVA: lla metaboliittia kohti, mitä seurasi Tukey-testi.
  3. (C) Kaavioesitys sytosolisesta NADH : NAD+ -suhteesta tasapainossa laktaatti: pyruvaatti-suhteen kanssa.
  4. (D, E) Sytosolinen NADH : NAD+ -suhde arvioitu käyttämällä laktaatin ja pyruvaatin solunsisäisiä tasoja BV2: ssa (D) ja HMC3: ssa (E). Pylväät edustavat n = 2-3 (-BHB) ja n = 5-6 (+ BHB) biologisten kopioiden keskiarvoa ± SD. Tiedot analysoitiin kaksisuuntaisella ANOVA:lla, jota seurasi Sidakin testi (-BHB vs. + BHB glukoosiluokassa). Tilastollista merkitsevyyttä merkitään * p <0,05, ** p <0,01 ja **** p <0,0001.

β-Hydroxybutyraatti muuttaa LPS:n aiheuttaman glykolyyttisen vasteen

β-hydroksibutyraatin roolia mikrogliassa ja neuroinflammatiossa on aiemmin tutkittu erilaisissa sairausmalleissa. β-hydroksibutyraatin metabolisia vaikutuksia mikroglia-aktivaatioon ja taustalla olevaan metaboliseen uudelleenohjelmointiin ei kuitenkaan tunneta.

Tutkimusten mukaan yhä useampi todiste osoittaa, että metabolinen häiriö voi muuttaa mikroglia-vastetta immuunisignaaleihin. Siksi haluamme ymmärtää β-hydroksibutyraatin vaikutusta LPS-aktivoituun mikrogliaan liittyvään metaboliseen uudelleenohjelmointiin.

Koska BV2-solut reagoivat metabolisesti paremmin β-hydroksibutyraatin lisäykseen ja aiemmat tutkimukset olivat optimoineet LPS-stimulaation ja luonnehtineet osittain tämän solulinjan metabolista vastetta, BV2 valittiin malliksi tutkittaessa β-hydroksibutyraatin vaikutuksia LPS:n aiheuttamaan metaboliseen uudelleenohjelmointiin.

BV2-soluja viljeltiin 5 mmol/l 13C6-glukoosin läsnä ollessa ja käsiteltiin joko 5 mmol/l 12C4β-hydroksibutyraatilla, 100 ng / ml LPS:llä tai molemmilla 6 tuntia.Onnistuneen aktivaation vahvisti tulehdusmerkinnän NOS2 uudelleen säätely (kuvio S4A). Glykolyyttisen aineenvaihdunnan muutosten tutkimiseksi mitasimme 13C-rikastumisen ja keskeisten glykolyyttisten välituotteiden suhteellisen runsauden (kuvio 2A). Vaikka LPS-hoito ei muuttanut glukoosin ottonopeutta, havaitsimme korkeamman glukoosinottotrendin soluissa, joita hoidettiin yksin β-hydroksibutyraatilla tai yhdessä LPS:n kanssa, mikä ei saavuttanut tilastollista merkitsevyyttä (kuvio 2B).

LPS:n, mutta ei β-hydroksibutyraatin lisääminen lisäsi glykolyyttistä virtausta solunsisäisen m+3 13C-pyruvaatin (kuvio 2C) ja m+3 13C-laktaatin (kuvio 2D) nousun perusteella.

Johdonmukaisesti tämä glykolyyttisen vuon kasvu, kun soluja käsiteltiin LPS:llä, liittyi sytosolisen NADH : NAD+ -suhteen nousuun (kuvio 2E). Pelkkä β-hydroksibutyraatin täydentäminen ei muuttanut NADH : NAD+ -suhdetta, mutta LPS:n ja β-hydroksibutyraatin yhdistelmä vähensi tätä verrattuna yksin LPS:ään. Mielenkiintoista on, että LPS:n ja β-hydroksibutyraatin vaikutukset 13C-laktaatin vientiin seurasivat eri suuntausta kuin solunsisäisen 13C-pyruvaatin ja 13C-laktaatin tuotanto. Vaikka erilliset hoidot LPS:llä tai β-hydroksibutyraatilla yksinään eivät muuttaneet 13C-laktaatin vientinopeutta, yhdistelmähoito lisäsi dramaattisesti 13C-laktaatin vientiä väliaineeseen (kuvio 2F), mikä viittaa siihen, että β-hydroksibutyraatti voisi muuttaa glukoosista otetun hiilen kohtaloa sekä laktaattimetaboliaa ja vientiä.

Tutkimme myös muutoksia joidenkin glykolyyttisten välituotteiden suhteellisessa runsaudessa (otoksen koko). Havaitsimme suuren dihydroksiasetonifosfaatin (DHAP) (kuvio 2G, H) pitoisuuden nousun LPS:llä käsitellyissä soluissa, jotka lisääntyivät enemmän, kun soluja käsiteltiin samanaikaisesti LPS:llä ja β-hydroksibutyraatilla, mikä viittaa synergistiseen metaboliseen vasteeseen molemmille aineille.

Löysimme myös seriinin, glysiinin ja metioniinin merkittäviä kertymiä, kun soluja käsiteltiin LPS:llä ja β-hydroksibutyraatilla samanaikaisesti (kuvio 2G). Nämä tulokset osoittavat yhdessä, että LPS lisää glykolyyttistä virtausta ja sytosolista NADH : NAD+ -suhdetta ja että BHB muuttaa LPS:n aiheuttamaa glykolyyttistä fenotyyppiä edistämällä laktaatin vientiä ja glykolyyttisten välituotteiden kertymistä.

β-hydroksibutyraatti edistää mitokondrioiden aineenvaihduntaa ja TCA-syklin välituotteiden kertymistä

Kuten aikaisemmin on esitetty kuviossa 1B, mikroglia-solut hapettavat β-hydroksibutyraattia sitruunahappokierrossa (TCA-syklissä). Viime vuosina useiden TCA-syklin välituotteiden on raportoitu osallistuvan immuniteetin signalointiin ja säätelyyn, mutta on epäselvää vaikuttaako tämä aineenvaihdunnan säätely myös mikrogliassa.

Lipopolysakkaridi-stimulaatiolla mitattiin sitruunahappokierron välituotteiden 13C-rikastuminen ja suhteellinen runsaus BV2-soluissa samoissa koeolosuhteissa kuin kuvassa 2. Pelkästään LPS-käsittely kasvatti 13C-glukoosista johdettujen hiilien virtausta mitokondrioihin. M+2 13C-sitraatin lisääntymieen liittyen (kuvio 3A).


Vastaavasti kuviossa 1B esitettyjen tulosten kanssa yksin β-hydroksibutyraatin lisääminen vähensi 13C-rikastumista kaikissa sitruunahappokierron välituotteissa verrattuna soluihin, joita viljeltiin ilman β-hydroksibutyraattia 13C-leimauksen laimentamisen vuoksi.

Lipopolysakkaridin lisääminen yhdessä β-hydroksibutyraatin kanssa lisäsi merkittävästi m+2 13C-sitraatin ja muiden TCA-syklin välituotteiden, kuten:

13C-a-ketoglutaraatin 13C-glutamaatin

13C-sukkinaatin

13C-malaatin

13C-fumaraatin

osuutta verrattuna B β-hydroksibutyraattiin yksin (kuva 3A).

Tutkimme myös muutoksia sitruunahappokierron välituotteiden ja aminohappojen suhteellisessa esiintymisessä. Erillinen käsittely lipopolysakkaridilla, muttei betahydroksibutyraatilla, lisäsi käsiteltyjen solujen sukkinaatin tasoa merkittävästi käsittelemättömiin soluihin verrattuna (kuvio 3B, C). Vastaava ilmiö on aiemmin raportoitu makrofageissa.

Sukkinaattitasot nousivat edelleen soluissa, joita oli käsitelty LPS:llä ja BHB:llä. Tämä viittaa synergistiseen vaikutukseen yhtäläisellä altistuksella näille kahdelle metaboliitille.

Pelkkä BHB-hoito ei muuttanut merkittävästi minkään tutkitun metaboliitin tasoja, mutta hoito LPS:lla ja BHB:lla yhdessä lisäsi myös immunometaboliittien fumaraatin (kuva 3D) ja a-ketoglutaraatin (kuva 3E) tasoja. Lisäksi havaittiin sitraatin, glutamaatin, malaatin ja pyroglutamaatin lisääntymistä, kun soluja käsiteltiin LPS:llä ja BHB:llä samanaikaisesti (kuvio 3B).

Tuloksemme osoittavat, että β-hydroksibutyraatti edistää mitokondrioiden metaboliaa ja sitruunahappokierron immunometaboliittien kertymistä LPS-aktivoiduihin soluihin.

β-hydroksibutyraatti tehostaa lipopolysakkaridin aiheuttaman tulehdusta ehkäisevän markkerin NOS2 stimulaatiota

β-hydroksibutyraatinn vaikutuksen ymmärtämiseksi mikroglian aktivaatiossa ja polarisaatiossa BV2-soluja käsiteltiin pienellä (1 ng / ml) tai suurella (100 ng / ml) LPS-annoksella, 5 mmol/l β-hydroksibutyraatilla tai molempien yhdistelmällä. ja määritettiin M1 (NOS2 ja IL-1p) ja M2 (ARG1) polarisaatiomerkkien ilmentyminen (kuvio 4A, B).

Stimulaatio joko pienellä tai korkealla LPS-konsentraatiolla yksin johti NOS2- ja IL-1β-ilmentymisen voimakkaaseen säätelyyn. Ainoastaan suurella LPS-pitoisuudella käsitellyt solut vähensivät merkittävästi ARG1:n ilmentymistä.

Pelkästään β-hydroksibutyraatin lisääminen ei vaikuttanut minkään geenin ilmentymiseen, mutta mikä tärkeintä, solut, joita oli hoidettu pienen LPS- ja BHB-annoksen yhdistelmällä, osoittivat NOS2-ilmentymisen lisääntynyttä säätelyä verrattuna pelkästään LPS: llä käsitellyihin soluihin.

Millaisia ajatuksia tämä herätti?

Tässä käyttämällä stabiilin isotoopin jäljitystä 13C-BHB:n kanssa olemme osoittaneet, että mikroglia-solut voivat tuoda ja hapettaa betahydroksibutyraattia sitruunahappokierrossa, jolloin sytosolinen NADH : NAD+ -suhde kasvaa myöhemmin.

Käyttämällä 13C-glukoosia havaitsimme, että lipopolysakkaridi (LPS) säätelee glykolyyttistä virtausta, lisää NADH : NAD+ -suhdetta ja edistää DHAP: n kertymistä. β-hydroksibutyraatin lisääminen lisäsi LPS:n indusoimaa DHAP:n kertymistä ja edisti glukoosista johdetun laktaatin vientiä. β-hydroksibutyraatti lisäsi myös synergistisesti sukkinaatin ja muiden keskeisten immunometaboliittien, kuten TCA-syklin tuottamien a-ketoglutaraatin ja fumaraatin, lipopolysakkaridin aiheuttamaa kertymistä.

β-hydroksibutyraatti on tärkein ketoaine yhdessä asetoasetaatin ja asetonin kanssa. Ketoaineita syntetisoituu maksassa rasvakudoksista tai ravinnon rasvahapoista. β-hydroksibutyraatin peruskonsentraatio plasmassa terveillä koehenkilöillä on suhteellisen pieni, viitearvojen ilmoitettuina 0,04–0,08 mmol/l ja tyypillisesti <0,5 mmol/l, ja se nousee erityisolosuhteissa, kuten paaston aikana (5–6 mmol/l), ketogeenisellä ruokavaliolla (1 mmol/l) tai diabeettisessa ketoasidoosissa (> 10 mmol/l).

Glukoosi on aivoille edullinen energiasubstraatti. Toisin kuin useimmat muut kudokset, aivot eivät voi käyttää rasvahappoja energiaksi, kun verensokeritaso vaarantuu. Alhaisen saatavuuden aikoina sitä voidaan kuitenkin täydentää vaihtoehtoisten substraattien, kuten monokarboksylaattipyruvaatin, laktaatin, asetaatin ja ketoaineiden hapetuksella. Suurin osa tämänhetkisestä tiedosta vaihtoehtoisten ravintoaineiden käytöstä aivosoluissa on saatu hermosoluista ja astrosyyteistä tai kokoaivokokeissa joko in vivo tai aivokuoren viipaleina.

Tuloksemme osoittavat selvästi, että mikroglia-solut BV2 ja HMC3 voivat tuoda ja hapettaa ketoaine β-hydroksibutyraattia. Monokarboksylaattikuljettimet (MCT) kuljettavat β-hydroksibutyraattia aktiivisesti aivoihin.

β-hydroksibutyraatin hapettuminen asetyyli-CoA: ksi tapahtuu lineaarisen metabolisen reaktion sekvenssin kautta, jota katalysoivat entsyymit β-hydroksibutyraattidehydrogenaasi (BDH1 / 2), sukkinyyli-CoA: 3: oksohappo-CoA-transferaasi (SCOT) ja asetyyli-CoA-asetyylitransferaasi ( ACAT1 / 2), minkä jälkeen tuotetaan yksi NADH- ja sukkinaattimolekyyli ja kaksi asetyyli-CoA-molekyyliä. SCOT koodaa geeni OXCT1, ja sen katsotaan olevan nopeutta rajoittava vaihe ketoaineen hapetuksessa.

Tuloksemme osoittavat, että mikroglia, kuten neuronit, astrosyytit ja oligodendrosyytit, omaavat entsymaattisen aktiivisuuden ketoaineiden hapettamiselle. Useat tutkimukset ovat raportoineet ikään, lajeihin ja aivojen alueeseen liittyvistä eroista entsyymiaktiivisuudessa, joka liittyy ketoaineiden hapettumiseen. Ketoaineiden hapettumisen (ketolyysin) säätelystä tiedetään vähän.

Solutasolla ketogeneesiä ohjaa säätelyverkko, johon osallistuvat AMPK, mTOR ja PPARa.

Yhteenvetona voidaan todeta, että tutkimus antoi uusia tietoja, jotka selittävät betahydroksibutyraatin toimintaa mikroglia-solulinjoissa. Osoitamme myös, kuinka β-hydroksibutyraatti lisää tunnettujen immunomoduloivien (immuunijärjestelmää säätelevien) metaboliittien tasoa näissä malleissa. Synteettisissä gliooma-hiirimalleissa ketogeeninen ruokavalion ja sädehoidon yhdistelmä johti kasvaimen täydelliseen hävittämiseen, mikä viittaa siihen, että ketogeeninen ruokavalio ohjaa immuunijärjestelmän toimintaa.





Ketogeeninen ruokavalio & PPMS

Aivan viime aikoihin asti multippeliskleroosia on pidetty ensisijaisesti tulehduksellisena autoimmuunitautina. Lähes täysin huomiotta on jäänyt tautiin liittyvä neurodegeneratiivinen komponentti, joka vaikuttaa sairauden etenemiseen ja invaliditeettiin.

Löysin hyvin kiinnostavan tutkielman vuodelta 2015. Mithu Storonin ja Gordon T. Plantin kirjoittama The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis selvittää ketogeenisen ruokavalion terapeuttista vaikutusta ensisijaisesti etenevää multippeliskleroosia sairastavilla.

Perinteistä kuvaa MS-taudista haastavat kliiniset havainnot tulehduksen ja neurodegeneraation välisestä dissosiaatiosta, jossa neurodegeneratiivisella komponentilla saattaa olla tulehduksellisia tekijöitä merkittävämpi rooli taudin patogeneesissä.

Tässä katsauksessa tutkitaan mitokondrioiden toimintahäiriöiden ja hermoston rappeutumisen suhdetta multippeliskleroosissa. Tarkastelemme todisteita siitä, että ketogeeninen ruokavalio voi korjata mitokondrioiden toimintaa, ja pohdimme ketogeenisen ruokavalion terapeuttista potentiaalia etenevän multippeliskleroosin hoidossa.

Kaikkiin potentiaalisiin terapeuttisiin vaihtoehtoihin tutustuminen on perusteltua, koska etenevään MS-tautiin ei tällä hetkellä tunneta parantavaa tai edes taudin etenemistä hidastavaa hoitoa.

1. Survival of the sickest? Multippelisklerootikko ketoosissa


Näyttö ketogeenisen ruokavalion neurologisista hyödyistä kasvaa nopeasti. Lääkeresistenttiä epilepsiaa on hoidettu ketogeenisellä ruokavaliolla jo vuosisadan ajan. Tutkimuksissa ketogeenisen ruokavalion terapeuttisista hyödyistä Parkinsonin taudin ja Alzheimerin taudin hoidossa on saatu erittäin lupaavia tuloksia.

Löysin hiljattain useita tutkimuksia, jotka tukevat ketogeenisen ruokavalion terapeuttisia hyötyjä multippeliskleroosia sairastavilla. Tämä on uusi pohjaton kaninkolo, johon aion kompastua. Ehkäpä meidän kaikkein sairaimpienkin horisontissa voi nähdä sateenkaaren ja lupauksen paremmasta? Minä en lupaa mitään, mutta katsotaan millainen maailma peilin takana odottaa.

Jean-Martin Charcotin huolellinen kliininen ja patologinen kuvaus potilaasta, jolla oli demyelinoivia leesioita tai “sclérose en plques” vuonna 1868, antoi maailmalle ensimmäisen selkeän kuvauksen multippeliskleroosista (MS).

Puolitoista vuosisataa Charcotin havaintojen jälkeen, taudin patogeneesi on yhä suurelta osin mysteeri. Primaaristi progressivisen, eli ensisijaisesti etenevän multippeliskleroosin hoito ei ole oireenmukaisia hoitoja paitsi edistynyt käytännössä lainkaan.

Arviolta 85 prosentilla MS-potilaista esiintyy toistuvia yksittäisten neurologisten oireyhtymien jaksoja, jotka yleensä häviävät konservatiivisella hoidolla täysin tai lähes täysin. Tätä tautimuotoa kutsutaan relapsoivaksi remittoivaksi tai aaltoillen eteneväksi MS-taudiksi (RRMS).

Noin 15 prosentilla potilaista on asteittainen ja progressiivinen neurologisen toiminnan menetys, joka ei parane. Tätä tautimuotoa kutsutaan primaaristi progressiiviseksi MS-taudiksi (PPMS). Vaikka tautimuodoissa on yhtäläisyyksiä, ne eroavat toisistaan kuin yö ja päivä.

Vaikuttaa siltä, että RRMS on tulehduksellinen autoimmuunitauti ja PPMS neurodegeneratiivinen hermosoluja tuhoava sairaus. Minä olen invalidisoitunut tämän ilman pahenemis- ja paranemisvaiheita etenevän etenevän ms-taudin luomassa kuplassa vuodesta 2008.

Potilaista, joilla on RRMS, suurimmalle osalle kehittyy progressiivisia neurologisia oireita 1-3 vuosikymmentä ms-diagnoosin jälkeen. Tätä tautimuotoa nimitetään toissijaisesti eteneväksi MS-taudiksi (SPMS). Se muistuttaa ensisijaisesti etenevää MS-tautia.

Multippeliskleroosia on perinteisesti pidetty immuunivälitteisenä tulehdussairautena. Immuunivasteen uskotaan aiheuttavan spontaanisti remisoituvia relapseja RRMS:ssä.

Perinteisen näkemyksen mukaan immuunisolut kulkeutuvat vaurioituneen veri-aivoesteen läpi ja aiheuttavat RRMS:lle tyypillisen fokaalisen ja levinneen tulehduksen. Perinteinen näkemys multippeliskleroosista tulehdussairautena on johtanut siihen, että lähes kaikissa terapeuttisissa strategioissa käytetään immunomoduloivaa tai immunosuppressiivista lähestymistapaa. Lähestymistapa toimii aaltoilevaa ms-tautia sairastavilla, mutta siitä ei ole mitään apua etenevää ms-tautia sairastavien hoidossa.

Näkemys multippeliskleroosista tulehduksellisena sairautena on riittämätön, koska fokaalinen tulehdus voi puuttua etenevää tautimuotoa sairastavilta. Neurodegeneraatiolla voi olla keskeisempi rooli etenevän MS-taudin patogeneesissä.

Tulehduksen ja taudin etenemisen välisen dissosiaation todisteiden lisääntyminen ellyttää tarkistettua näkökulmaa neurodegeneraation roolista multippeliskleroosin patogeneesiin ja siten terapeuttisisten strategioiden uudelleenarviointia.

Tässä katsauksessa tutkimme todisteita hermoston rappeutumisesta ja muuttujista etenevän ms-taudin patogeneesissä. Samalla arvioidaan ketogeenisen ruokavalion toimivuutta etenevän multippeliskleroosin hoitomuotona.

Minä aloitin ketogeenisen ruokavalion joulukuun toisena päivänä torjuakseni alkavan diabeteksen. Huomasin pian oloni energisemmäksi ja aktiivisemmaksi. Söin vähemmän, mutta jaksoin enemmän. Painoni putosi muutamassa kuukaudessa 10 kg. Verensokeri laski esidiabeettiselta tasolta optimaaliselle tasolle. Aiemmin korkea verenpaineeni on nyt melko hyvä. Kaiken kaikkiaan minulle tämä ruokavalio on tehnyt hyvää.

2. Onko MS ensisijaisesti neurodegeneratiivinen sairaus?


Perinteinen MS-malli perustuu ”
ulkopuolelta-sisään” -tulkintaan. Tässä mallissa virheellisesti toimiva immuunijärjestelmä hyökkää keskushermostoa vastaan. Oletus on, että jokin tai jotkin ulkoiset tekijät laukaisevat tulehduksen, joka johtaa autoimmuunireaktioon ja taudille ominaisiin vaurioihin keskushermostossa.

Perifeeriset immuunisolut läpäisevät vaurioituneen veri-aivoesteen päästäkseen keskushermostoon, jossa ne aiheuttavat akuutteja multifokaalisia tulehduksellisia vaurioita Vauriot ovat joskus oireettomia, mutta yleensä ne liittyvät pahenemisvaiheeseen eli relapsiin aaltoilevasti etenevässä RRMS:sä. Pahenemisvaiheisiin liittyy erilaisia neurologisia oireita.

RRMS on yleisin multippeliskleroosin muoto, mutta suurimmalle osalle aaltoilevasti etenevää tautimuotoa sairastavista potilaista kehittyy multippeliskleroosin toissijaisesti progressiivinen muoto (SPMS) kolmen vuosikymmenen sisällä taudin puhkeamisen jälkeen.

Tulehduksellisten ja neurodegeneratiivisten komponenttien kaksinaisuuden tekee kiinnostavaksi havainto, että MS ”etenee” molemmissa tautimuodoissa osittain yhteneväisellä tavalla riippumatta siitä, sairastuiko potilas aluksi aaltolevasti etenevään tautimuotoon vai ensisijaisesti etenevään tautiin. Patofysiologisesti näiden kahden taudifenotyypin välillä ei löydy eroa.

2.1. Vaihtoehtoinen MS-malli


Todisteet taudin etenemisen ja tulehduksen erillisestä dissosiaatiosta ovat haastaneet perinteisen lähestymistavan. Eteneminen ilman autoimmuunikohtauksia on osoitus erillisestä ja/tai rinnakkaisesta patogeenisestä prosessista.

Jotkut tutkijat ovat ehdottaneet multippeliskleroosiin ”sisältä-ulospäin” -mallia, jossa primaarinen solujen rappeuma on käynnistävä tekijä, joka sitten laukaisee tulehduksen. Rappeuma vapauttaa antigeenisen soluaineen, joka sitten johtaa immuunivasteeseen.

2.2. Tulehduksen pysäyttäminen ei pysäytä taudin etenemistä


Vaikka toistaiseksi ei ole pitävää näyttöä siitä, että solujen rappeuma olisi tulehduksen laukaiseva ensimmäinen tapahtuma (ikivanha muna- vai kana-kysymys), kliiniset havainnot tukevat näiden kahden välistä dissosiaatiota, jossa rappeuma ei seuraa tulehdusta, vaan voi tapahtua tulehduksesta riippumatta.

Tulehduksiin vaikuttavalla immuunimoduloivalla hoidolla ei ole juurikaan merkitystä multippeliskleroosin etenemiseen hyvin pitkällä aikavälillä, vaikka aaltoilevasti etenevän tautimuodon pahenemisvaiheiden hoitona immuunimoduloiva lääkitys toimiikin hyvin.

Autologinen hematopoieettinen kantasolusiirtoihin perustuva hoito on erittäin tehokas tulehduksen vähentämisessä, mutta sekään ei pysäytä aksonien rappeutumista ja aivojen atrofiaa. MS-taudissa tapahtuu progressiivista hermoston rappeutumista ja aksonien atrofiaa tulehduksellisista tekijöistä riippumatta.

Atrofiatarkoittaa solun koon pienenemistä sen rakenneosien vähenemisen seurauksena. Atrofioituvassa solussa rakenneproteiinien hajotus on nopeampaa kuin niiden synteesi. Elimen tasolla atrofialla voidaan tarkoittaa myös kudoksen tai elimen surkastumista, joka saattaa johtua solujen pienenemisen ohella niiden määrän vähenemisestä. Atrofian vastakohta on hypertrofia.

Atrofian taustalla on solujen pyrkimys sopeutua muuttuneisiin ympäristöolosuhteisiin ja säilyä hengissä. Elimen atrofiaa voi aiheuttaa myös vanhenemiseen liittyvä lisääntynyt apoptoosi, eli ohjattu solukuolema.

Atrofian mahdollisia aiheuttajia ovat solun vähentynyt aktiivisuus, hermotuksen heikentyminen, verenkierron tai ravintoaineiden riittämättömyys, hormonitoiminnan muutos ja lisääntynyt paine kudoksessa.

2.3. Harding-oireyhtymä


Teorian tueksi on olemassa patologista näyttöä, joka osoittaa että neurodegeneraatio voi tapahtua ilman mitään edeltävään tulehdukseen viittaavia todisteita. Myeliinivaipan sisäkerroksista on tunnistettu pistemäisiä vaurioita, vaikka myeliinivaipan ulkokerrokset ovat ehjät.

Tämä haastaa T-soluvälitteisen ulkoisen mekanismin mahdollisuuden. Harding-oireyhtymässä on todisteita siitä, että neurodegeneraatio edeltää tulehdusreaktiota. Vastaava perinnöllinen mitokondrioiden toimintahäiriö voi aiheuttaa MS-taudissa havaitun atrofian ja neurodegeneraation.

Harding-oireyhtymässä solujen rappeuma, joka ilmenee mitokondrioiden viallisen toiminnan seurauksena, voi laukaista autoimmuunivasteen ihmisillä, joilla on immunologinen ja geneettinen alttius ko. Oireyhtymälle.

Vaikka Leberin perinnöllinen optinen neuropatia (LHON) on tavallisempi miehillä, naisilla on suurempi riski saada autoimmuunisairaus, ja tämä voi selittää, miksi naisilla esiintyy enemmän Harding-oireyhtymää multippeliskleroosin kaltaisen tulehduksen kanssa, vaikka kyseessä on sama mutaatio kuin LHON.

Leberin perinnöllinen optinen neuropatia (LHON) on mitokondriaalisesti perinnöllinen häiriö, jolle on ominaista kivuton näköhäiriö, joka voi johtaa vakavaan optisen atrofiaan. Se voi liittyä muihin sairauksiin, kuten multippeliskleroosiin (MS).

LHON:n liittymistä MS:n kaltaiseen sairauteen kutsutaan usein Hardingin taudiksi (tai Hardingin oireyhtymäksi).

3. Mitokondrioiden rooli multippeliskleroosissa


Kliininen näyttö, jonka mukaan MS-tudin neurologisiin vaurioihin vaikuttaa sekä neurodegeneraatio että inflammaatio kasvaa koko ajan riippumatta siitä, laukaiseeko neurodegeneraatio tulehduksen vai tulehdus neurodegeneraation. Sekin on mahdollista, että kyse on rinnakkaisista tautitapahtumista.

Mitokondrioiden toimintahäiriöillä uskotaan kuitenkin olevan keskeinen rooli neurodegeneratiivisessa tapahtumissa. Kasvava näyttö osoittaa, että mitokondrioiden toimintahäiriöillä voi olla myös huomattava merkitys MS-taudin patogeneesissä.

3.1. Mitokondrioiden virheellinen toiminta voi selittää aksonien kohtalon


Aksoni, eli viejähaarake (hermosyy) on hermosolun eli neuronin osa, joita on vain yksi neuronia kohti, kun taas tuojahaarakkeita eli dendriittejä on useita yhdessä neuronissa.

Aksoni haarautuu loppupäästään ja muodostaa näin useita hermopäätteitä, jotka puolestaan voivat muodostaa synapsin toisen hermosolun tai lihassolun kanssa. Aksoni voi olla joko myelinisoitunut tai myelinisoitumaton. Myelinisoituneessa aksonissa hermoimpulssi kulkee nopeammin kuin myelinisoitumattomassa, koska hermoimpulssi hyppii myeliiniin muodostuneiden Ranvierien kuroumien välillä. – Wikipedia

Aksonaalinen rappeutuminen on multippeliskleroosille tunnusomainen piirre ja sitä esiintyy jopa ilman paikallista demyelinaatiota. Eläinmallit viittaavat siihen, että mitokondrioiden vaurio voi olla aksonin rappeutumista edeltävä tautitapahtuma.

Reaktiivisten happiradikaalien (ROS) muodostuminen voi myötävaikuttaa aksonien mitokondriovaurioihin. Reaktiivisten happiradikaalien detoksifikaatio voi puolestaan pysäyttää aksonin rappeutumisen.

Rappeutuvien aksonien katsotaan sisältävän toimintahäiriöisiä mitokondrioita, kun taas demyelinaatiosta selviytyvät aksonit sisältävät toimivia mitokondrioita. Nämä havainnot vastaavat äskettäistä tutkimusta glaukomatoottisesta optisesta neuropatiasta, jossa havaittiin, että terveet mitokondriot voivat tarjota suojaa hermoston rappeutumiselta huolimatta korkean silmänsisäisen paineen läsnäolosta.

Demyelinaatiota seuraava aksonien rappeutuinen aiheutuu nykykäsityksen mukaan mitokondrioiden tuottaman energian vähyydestä. Mitokondrioiden toiminta näyttää säätelevän aksonien kohtaloa.

Demyelinaatio: Myeliinikato on MS-taudille tyypillinen myeliinivaurio (myeliini on nopeasti johtavia hermosyitä ympäröivän, eristävän hermotupen rasva-aine).


3.2. Mitokondrioiden toimintahäiriö havaitaan harmaassa aineessa


Harmaan aineen atrofia on multippeliskleroosille tunnusomainen kliininen havainto. Atrofia lisääntyy, kun RRMS-tautimuoto etenee SPMS-tautimuodoksi. Immunohistokemiallisilla värjäystekniikoilla ja mikroskopialla on osoitetettu, että hermosolujen atrofia lisääntyy demyelinaatiosta riippumatta myös aivojen alueilla, joilla on ”
terveeltä äyttävää harmaata ainetta”.

MS-taudissa aivokuoren neuronien mitokondrioiden toiminnan on osoitettu vahingoittuneen. Campbell et al. (2011) käytti kompleksista IV / kompleksi II histokemiaa, immunohistokemiaa, laserdisektiomikroskopiaa sekä PCR- ja DNA-sekvensointimenetelmiä osoittamaan silmiinpistävän kompleksien II ja IV aktiivisuuden vähenemisen oksidatiivisen fosforylaatioketjun aikana neuroneissa, jotka saatiin SPMS-tapausten ruumiinavauksista.

3.3. Progressiivinen mitokondrioiden vahingoittuminen voi korreloida relapsien vähentyneen toipumisen kanssa


Transkriptiokofaktorin PGC-1a tasoja, joilla on keskeinen rooli mitokondrioiden toimintaan liittyvien tumatranskriptiotekijöiden aktivaatiossa, voidaan vähentää aivokuoren neuroneissa progressiivisessa MS-taudissa.

Transkriptiokofaktori PGC-1a.n ilmentymisen havaittiin korreloivan hermosolujen tiheyden kanssa. Kun otetaan huomioon havainto, että aivojen atrofian nopeus kasvaa, kun RRMS etenee SPMS-tautimuodoksi, PGC-1a: n lasku voi viitata mitokondrioiden toiminnan samanaikaiseen heikkenemisseen.

Taudin tässä etenemisvaiheessa toipuminen relapseista muuttuu asteittain huonommaksi. Mitokondrioiden toiminnan asteittainen heikkeneminen ja siitä johtuva ATP-saatavuuden heikkeneminen voi aiheuttaa aksonin sietokyvyn heikkenemisen, mikä tekee jokaisesta relapsista toipumisesta yhä vaikeampaa.

PGC-1a-tasojen laskua on havaittu myös muissa neurodegeneratiivisissa taudeissa, kuten Alzheimerin taudissa

Mitokondriot ja neurodegeneraatio


Tutkijapiireissä pidetään todennäköisenä mallia, jossa mitokondrioiden toimintahäiriöt ovat keskeisiä neurodegeneraatiivisten tapahtumien patogeneesissä. Tässä mallissa mitokondrioiden toimintahäiriöt edeltävät synaptista toimintahäiriötä, atrofiaa ja hermosolujen tuhoa.

Multippeliskleroosin eläinmallissa (enkefalomyeliitissä, EAE), mitokondriovaurion on osoitettu edeltävän tulehdusta ja laukaisevan neurodegeneraation. Vaikka mitokondrioiden vaurioihin johtavat tarkat molekyylireitit ovat edelleen tuntemattomia, oksidatiiviset vauriot ovat yksi mahdollinen reitti.

Varhaiset tutkimukset antioksidanttihoidoista MS-eläinmalleissa ovat antaneet lupaavia tuloksia. Superoksididismutaasi 2:n on osoitettu korjaavan aksonihäviön EAE: hen liittyvässä näköhermotulehduksessa.

Superoksididismutaasi eli SOD on entsyymi, joka katalysoi superoksidi-ionien disproportioitumista vetyperoksidiksi ja hapeksi. Superoksididismutaasi on tärkeä antioksidantti useissa soluissa.

Synteettisen antioksidantin, Mito-Q:n, on osoitettu olevan neuroprotektiivinen ja hidastavan taudin etenemistä EAE:ssa, vaikka sillä ei ole vaikutusta tulehdustapahtumaan. Tämä vahvistaa edelleen dissosiaatiota kahden erillisen tautiprosessin välillä ja osoittaa, että neurodegeneraation hillitsemistä tulisi harkita mahdollisena terapian kohteena etenevässä multippeliskleroosissa.

Tähän mennessä eräs harvoista etenevän MS-taudin hoitoon käytettävissä olevista vaihtoehdoista, joilla saattaa olla myönteisiä terapeuttisia vaikutuksia, on dimetyylifumaraatti tai DMF.

DMF on ainoa nykyinen lääke, joka immunomoduloivan vaikutuksen lisäksi on toimii voimakkaana antioksidanttina. Sen uskotaan vähentävän oksidatiivista stressiä NRF-2-reitin kautta, ja sillä on siten neuroprotektiivinen vaikutus. Tämä neuroprotektiivinen vaikutus on ollut ilmeinen myös muissa neurodegeneratiivisissa taudeissa.

5. Mitokondriot progressiivisen MS-taudin terapeuttisena kohteena


Mitokondrioiden toimintahäiriöiden rooli neurodegeneraatiossa viittaa siihen, että terapian kohdistaminen mitokondrioiden toimintaan voi olla hyödyllinen terapeuttinen strategia etenevän MS-taudin hoidossa.

Mitokondrioiden toimintaan kohdistuvien lääkkeiden toimivuudesta MS-taudin hoitona on vähän tutkimustietoa, mutta niiden tulokset ovat olleet lupaavia.

Koentsyymi Q10:llä on antioksidanttisia ominaisuuksia ja se on osa elektronin siirtoketjua, joka on vuorovaikutuksessa kompleksin I kanssa.

12 viikon satunnaistettu lumekontrolloitu kaksoissokkoutettu koentsyymi Q10 -lisäravinnetutkimus potilailla, joilla oli relapsoiva remittoiva MS (RRMS), osoitti IL-6:n ja MMP-9:n vähenemistä. Saman ryhmän toisen samanlaisen tutkimuksen tulokset osoittivat Q10-lisäravinteen vähentävän MS-potilaiden masennusta ja väsymystä.

Mito-Q on ubikinonia sisältävä antioksidantti, jonka on osoitettu hidastavan taudin etenemistä ja vähentävän hermosolujen tuhoa multippeliskleroosin hiirimallissa; toisaalta yhdessä tutkimuksessa, jossa käytettiin koentsyymi Q10:n synteettistä analogia, taudin eteneminen ei hidastunut.

Glukoosin hypometabolia


Jotkut tutkimukset ovat viitanneet siihen, että hermosolujen aineenvaihdunnassa voi tapahtua solujen glukoosinoton vähenemiseen vaikuttava bioenerginen muutos ennen neurodegeneraation kliinisten oireiden ilmaantumista.

Tämä glukoosin hypometabolia voi heijastua mitokondrioiden toiminnan heikkenemisenä. Muutoksen on havaittu tapahtuvan kauan ennen neurodegeneraation kliinisten oireiden ilmaantumista, mikä viittaa mahdollisuuteen, että glukoosin hypometabolia voi olla alkuvaihe, joka johtaa aksonin atrofiaan ja hermosolujen menetykseen vähentämällä ATP:n saatavuutta. Bioenerginen muutos näyttää vaikuttavan erityisesti glukoosin metaboliaan. Tällaista muutosta ei havaita ketoosiin perustuvassa aineenvaihdunnassa.

6.1. Glukoosin hypometabolia MS: ssä


Progressiivisen MS-taudin taustalla oleva neurodegeneratiivinen prosessi voi myös johtaa glukoosin hypometaboliaan. Tämä viittaa potentiaaliseen terapeuttiseen etuun energian saannin tehostamisessa vaihtoehtoisella reitillä, kuten ketoosiin perustuvalla metabolialla.

Tutkimus, jossa verrattiin 47 MS-potilasta, joilla oli vaihteleva vireystaso ja 16 tervettä kontrollia, osoitti, että potilailla oli kontrolleihin verrattuna heikentynyt aivojen glukoosimetabolia useilla aivojen eri alueilla, mukaan lukien prefrontaaliset-, premotoriset- ja täydentävät motoriset alueet sekä tyvitumake.

Vireysasteen ja glukoosin metabolisen nopeuden välillä oli käänteinen korrelaatio. Toinen tutkimus, johon osallistui 8 MS-potilasta ja 8 potilaita vastaavaa tervettä vertailuhenkilöä, osoitti MS-potilaiden hermosolujen glukoosinoton heikentyneen 40% terveisiin verrokkiin verrattuna.

Ekstramitokondrioiden metabolia lisääntyy, kun glukoosin mitokondrioiden metabolia on heikentynyt. Pilottitutkimuksessa, jossa verrattiin 85 potilasta, joilla oli relapsoiva remittoiva MS, 54 potilasta, joilla oli sekundaarisesti progressiivinen MS ja 18 tervettä kontrollia, ekstramitokondrioiden glukoosimetabolia osoitti korrelaation taudin etenemisen kanssa, mikä viittaa siihen, että heikentyneellä glukoosin mitokondrioiden metabolialla voi olla merkittävä rooli progressiivisessa MS-taudin etenemisessä.

Vastaavia tuloksia on saatu myös muiden neurodegeneratiivisten tautien, kuten dementian, Alzheimerin taudin ja Parkinsonin taudin tutkimuksissa.

Muita merkittäviä molekyylitodisteita heikentyneestä glukoosimetaboliasta MS-taudissa, nähdään glukoosin (GLUT) ja monokarboksylaattikuljettajien (MCT) muuttuneessa jakautumisessa. MS-tautiin liittyvien kroonisten leesioiden sisällä aksonaalisen GLUT3- ja MCT2-kuljetusmolekyylien määrä on selvästi vähentynyt.

Nämä biokemialliset muutokset hermoston metaboliassa voivat selittää glukoosinoton heikkenemistä demyelinoiduissa aksoneissa. Hermosolut näyttävät muuttuvan eräällä tavalla ”glukoosiresistenteiksi”, koska solujen glukoosinoton tarvitsemien kuljetusmolekyylien määrä romahtaa. Solujen heikentynyt glukoosinotto heijastuu solujen energianpuutteena, hypoglykemiana ja lopulta solujen tuhoutumisena, eli atrofiana.

Jos hermosoluille tarjotaan glukoosin sijaan vaihtoehtoinen polttoaine, hermoston rappeutuminen voi hidastua tai pysähtyä.

Tämä on mielenkiintoinen terapeuttinen mahdollisuus, sillä vielä tämän vuosituhannen alussa oltiin aivan varmoja siitä, että hermosolut tarvitsevat välttämättä glukoosia. Viimeaikaiset tutkimukset ovat osoittaneet, että aivot toimivat jopa tehokkaammin ketoaineilla kuin glukoosilla.

Ketoaineiden vaikutus on osoitettu kliinisesti erilaisilla aivojen kuvantamiseen perustuvilla menetelmillä sekä tutkittavien kognitiivisia kykyjä mittaavilla testeillä. MRI-kuvat ovat osoittaneet, että aivojen aktiivisuus lisääntyy ketoainella. Myös kognitiiviset kyvyt, kuten muisti paranevat ketoaineita saaneilla Parkinsonin ja Alzheimerin tautia sairastavilla potilailla.

Vuonna 1967 Cahill et al. osoitti, että pitkittyneen paaston aikana keho tarjoaa aivoille vaihtoehtoisen polttoainelähteen ketoaineiden muodossa. Keskushermosto ei pysty käyttämään rasvaa suorana energialähteenä. Pitkittyneen hiilihydraattirajoituksen jälkeen rasva muuttuu ketoaineiksi prosessissa, jota kutsutaan ketogeneesiksi.

Ketogeneesi tapahtuu ensisijaisesti maksassa olevien mitokondrioiden matriisissa. Ketogeneesi johtaa ketoaineiden (beetahydroksibutyraatin, asetoasetaatin ja asetonin) tuotantoon. Ne korvaavat glukoosin aivojen tärkeimpinä polttoaineiden lähteinä.

Hans Krebs erotti normaalin ”fysiologisen” ketoosin, jossa ketonipitoisuus ei ylitä 8 mmol / l, ja diabeettisen ketoasidoosin, eli happomyrkytyksen, joka on diabeteksen komplikaatio, jossa ketoaineineiden määrä voi olla yli 20 mmol / kg L ja voi johtaa kuolemaan.

Ketoaineet voivat helposti läpäistä veri-aivoesteen. Aivojen ketoaineiden hyödyntäminen lisääntyy, kun ketoneiden määrä seerumissa nousee 12 mmol / l:n pitoisuuteen. Eläintutkimusten meta-analyysi on osoittanut, että glukoosin aivojen aineenvaihdunnan nopeus laskee 9% jokaisen plasman ketonien 1 mmol / l kasvun jälkeen.

Ketonit ohittavat glykolyyttisen reitin ja siirtyvät suoraan trikarboksyylihapposykliin (TCA) mitokondrioissa, mikä osaltaan edistää anapleroosia.

Anapleroosi on trikarboksyylihapposyklin välituotteiden muodostumisprosessi. Omenahappoentsyymillä (mtME), fosfenopyruvaattikarboksikinaasilla (PEPCK), propionyyli-CoA-karboksylaasilla, pyruvaattikarboksylaasilla ja proliinidehydrogenaasilla on tärkeä rooli anapleroosissa.

Ketogeeninen ruokavalio progressiivisen MS-taudinn neurodegeneraation estäjänä?


Ketogeenistä ruokavaliota on perinteisesti käytetty resistentin epilepsian hoitoon, mutta on yhä ilmeisempää, että sen edut voivat koskea laajempaa neurologisten sairauksien kirjoa.

Vaikka tutkimus sen käytöstä epilepsian ulkopuolella on vielä alkuvaiheessa, havainnot ovat lupaavia ja niillä on merkittävä potentiaali neurodegeneraation hoidossa, erityisesti mitokondrioiden toiminnan suhteen.

Ketogeenisellä ruokavaliolla on suotuisa vaikutus mitokondrioiden toimintaan. Se vähentää reaktiivisten happiradikaalien määrää ja lisää ATP:n saatavuutta. Ruokavalio voi suojata hermosoluja atrofialta ja vähentää inflammaatiota. Ketogeenisen ruokavalion aikana tuotettuja ketoneja voidaan käyttää vaihtoehtoisena polttoaineen lähteenä heikentyneen glukoosimetabolian yhteydessä.

9. Ketogeenisen ruokavalion vaikutus oksidatiiviseen stressiin


Ketogeenisen ruokavalion on osoitettu vähentävän reaktiivisten happiradikaalien muodostumista vaikuttamalla UCP-
irroittajaproteiineihin. Se lisää myös antioksidanttien, mukaan lukien katalaasi ja glutationi, tasoja inhiboivan vaikutuksensa kautta histonideasetylaaseihin ja aktivoimalla Nrf2-reittiä.

Irrooittajaproteiini (UCP) on mitokondrioiden sisäkalvoproteiini, joka on säännelty protonikanava tai kuljettaja. Irrotettava proteiini kykenee siten hajottamaan protonigradientin, joka syntyy NADH-moottorilla pumppaamalla protoneja mitokondrioiden matriisista mitokondrioiden kalvojen väliseen tilaan.

9.1. Ketogeeninen ruokavalio lisää mitokondrioiden UCP-proteiinitasoja


Oksidatiivinen fosforylaatio tuottaa reaktiivisia happiradikaaleja (ROS). Reaktiivisten happiradikaalien ylituotanto korreloi voimakkaasti mitokondriomembraanien potentiaalisten erojen välillä. Proteiinien irrottaminen (UCP) voi vähentää tätä potentiaalieroa sallimalla protonien pääsyn mitokondrioiden matriisiin.

Vaikka tämä irtikytkentä voi vähentää hapettuvan fosforylaation kautta syntyvää ATP:tä, sen kokonaisnettovaikutuksena on parantaa soluhengitystä ja ATP-tasoja vähentämällä reaktiivisten happilajien muodostumista ja suojata solua apoptoottisilta tapahtumilta.

Ketogeeninen ruokavalio näyttää edistävän UCP-aktiivisuutta, erityisesti UCP2:n, UCP4:n ja UCP5:n aktiivisuutta vastaavalla reaktiivisten happilajien vähenemisellä.

9.2. Ketonit estävät histonideasetylaaseja


Betahydroksibutyraatilla on suora, annoksesta riippuva estovaikutus luokan I histonideasetylaaseihin (HDAC), mukaan lukien HDAC1, HDAC3 ja HDAC4.

Asetoasetaatin on myös osoitettu estävän luokan I ja luokan IIa HDAC: ita. Betahydroksibutyraatin HDAC-esto edistää histoni H3-lysiini 9:n ja histoni H3-lysiini 14:n asetylointia ja lisää FOXO3A:n säätelemien geenien transkriptiota.

Näihin kuuluvat geenit, jotka johtavat mitokondrioiden antioksidanttientsyymien, kuten superoksididismutaasin (SOD) ja katalaasin ilmentymiseen.

9.3. Ketogeeninen ruokavalio johtaa Nrf2-reitin aktivoitumiseen


Ketogeeninen ruokavalio nostaa glutationitasoja rottien hipokampuksessa. Tämän uskotaan tapahtuvan Nrf2 (tumatekijä erythroid 2:een liittyvä tekijä) -reitin kautta. Kun ketogeeninen ruokavalio aloitetaan ensimmäisen kerran, oksidatiivinen stressi lisääntyy väliaikaisesti. Tämä voi aktivoida Nrf2:ta, koska viikko oksidatiivisen stressin väliaikaisen nousun jälkeen Nrf2: n ilmentyminen on lisääntynyt.

Kolme viikkoa ruokavalion aloittamisen jälkeen oksidatiivinen stressi laskee alle perustason ja Nrf2 pysyy koholla.

10. Ketogeenisen ruokavalion vaikutus ATP-tasoihin


Ketogeeninen ruokavalio parantaa ATP-tuotantoa. Betahydroksibutyraatin anto aivojen iskemian hiirimallissa säilyttää solujen ATP-tasot. Hiirien ruokinta ketogeenisellä ruokavaliolla kolmen viikon ajan johti lisääntyneeseen ATP-pitoisuuteen ja ATP / ADP-suhteeseen aivoissa.

ATP-tasojen paraneminen voidaan osittain selittää ketogeenisen ruokavalion kyvyllä vähentää oksidatiivista stressiä. Vaikka ruokavalio voi vähentää reaktiivisten happiradikaalien muodostumista lisäämällä UCP-aktiivisuutta, mikä tahansa UCP-aktiivisuuden aiheuttama oksidatiivisen fosforylaation väheneminen on suurempi kuin soluhengityksen tehostuminen ja siihen liittyvä ATP-tuotanto, joka tapahtuu vähentyneen oksidatiivisen stressin seurauksena.

Ketogeeninen ruokavalio näyttää myös säilyttävän ATP-tasot mitokondrioiden soluhengitysketjun toimintahäiriöiden yhteydessä, mahdollisesti täydentämällä TCA-syklin välituotteita.

Betahydroksibutyraatti vaimentaa elektroninsiirtoketjun kompleksin I vaurion aiheuttamaa ATP-tuotannon vähenemistä. Sen uskotaan lisäävän TCA-välisukkinaatin tasoja, joka ohittaa kompleksin I tullessaan TCA-sykliin. Tällä on huomattavia seurauksia MS-taudissa, koska elektronin siirtoketjun sisällä olevan kompleksin I vikoja on havaittu sekä valkoisen aineen vaurioissa että motorisen aivokuoren ”normaaleilla” alueilla.

Ketonit voivat myös säilyttää ATP-tasot, jos elektronin siirtoketjun kompleksi II estetään, mutta tähän liittyy jonkin verran alueellista spesifisyyttä.

11. Ketogeenisen ruokavalion vaikutus mitokondrioiden biogeneesiin


Ketogeeninen ruokavalio lisää mitokondrioiden biogeneesiä rotan hippokampuksessa ja pikkuaivojen vermissä (vermis). Vaikka tarkkaa reittiä tälle ei tunneta, sen uskotaan liittyvän PGC1a-perheen transkriptiokoaktivaattoreihin, jotka edistävät transkriptiotekijöitä, mukaan lukien NRF-1, NRF-2 ja ERRa.

12. Ketogeenisen ruokavalion vaikutus tulehdukseen


MS-taudin rotamallissa ketogeeninen ruokavalio tukahdutti tulehduksellisten sytokiinien ilmentymisen ja lisäsi CA1-hippokampuksen synaptista plastisuutta ja pitkäaikaista potentiointia, mikä johti parantuneeseen oppimiseen, muistiin ja motoriseen kykyyn.

Ketogeenisen ruokavalion tulehdusta ehkäisevä vaikutus voidaan osittain selittää estämällä NLRP3-tulehdusta betahydroksibutyraatilla tavalla, joka on riippumaton nälän aiheuttamista mekanismeista, kuten AMPK, autofagia tai glykolyyttinen esto.

NLRP3-tulehdus on vastuussa prokaspaasi-1:n pilkkomisesta kaspaasi-1: ksi ja sytokiinien IL-1β ja IL-18 aktivaatiosta. Sen esto estää IL-1β: n ja IL-18: n muodostumisen ja niiden alavirran vaikutukset.

13. Ketogeenisen ruokavalion neuroprotektiiviset ominaisuudet


Ketoaineilla on hermosoluja suojaava, eli neuroprotektiivinen rooli neurodegeneraation eläinmalleissa. Neuronien solupinnalla sijaitsevat ATP-herkät kaliumkanavat (K ATP-kanavat) stabiloivat hermosolujen herkkyyttä.

Ketonit edistävät näiden kanavien ”avointa tilaa” ja lisäävät hermosolujen vakautta. K ATP-kanavilla on myös rooli mitokondrioiden toiminnassa ja solukuolemassa. Sisemmällä mitokondriokalvolla sijaitsevien K ATP-kanavien ”avoin tila” estää mitokondrioiden läpäisevyyden siirtymähuokosten (MPTP) muodostumisen, jotka voivat johtaa mitokondrioiden turvotukseen ja solukuolemaan.

Asetoasetaatin ja beetahydroksibutyraatin on osoitettu nostavan kynnystä kalsiumin aiheuttaman MPTP: n muodostumiselle.

14. Ketonien vaikutuksen alueellinen vaihtelu hiiren pikkuaivoissa


Huolimatta näistä näennäisesti positiivisista vaikutuksista mitokondrioiden bioenergeettisiin aineisiin, ketogeenisen ruokavalion vaikutukset hiiren aivojen mitokondrioihin eivät ole homogeenisia ja jotkut tulokset näyttävät ristiriitaisilta.

Tutkimuksessa rotilla, jotka saivat ketogeenistä ruokavaliota 8 viikon ajan, antioksidanttitaso kohosi hippokampuksessa, mutta ei aivokuoressa, ja antioksidanttiaktiivisuuden havaittiin vähenevän pikkuaivossa.

15. Havainnot ihmisillä


Toistaiseksi ihmisillä tehtyjä tutkimuksia ketonien / ketogeenisen ruokavalion vaikutuksista neurodeneratiivisissa häiriöissä on hyvin vähän.

On kuitenkin ainakin yksi satunnaistettu kaksoissokkoutettu lumekontrolloitu tutkimus, jossa tarkasteltiin ketonien vaikutuksia neurodegeneratiiviseen fenotyyppiin 152 lievää tai kohtalaista Alzheimerin tautia sairastavalla. Osallistujilla havaittiin kognitiivisten kykyjen parantumista, kun ketogeenista yhdiste AC-1202:ta käytettiin 90 päivän ajan.

Tämä parannus oli suurempi potilailla, joilla ei ollut APOE4-polymorfismia. Pienemmät tutkimukset muissa neurodegeneratiivisissa olosuhteissa ovat tuottaneet yhtä positiivisia tuloksia.

On todisteita glukoosinkuljettajan toimintahäiriöistä aksoneissa, joihin on muodostunut MS-taudin aiheuttamia kroonisia vaurioita. Tutkimukset ketogeenistä ruokavaliota noudattaneista perinnöllisistä glukoosinkuljettajan toimintahäiriöitä sairastavilla ovat myös antneet positiivisia tuloksia.

16. Päätelmä


Ketogeenisellä ruokavaliolla on potentiaalia hoitaa progressiivisen MS:n neurodegeneratiivista komponenttia seuraavien in vitro ja in vivo -tutkimuksista saatujen havaintojen perusteella:

  1. Neurodegeneraation uskotaan perustavan progressiivisen MS: n patogeneesin.
  2. Mitokondrioiden toimintahäiriö voi johtaa ATP: n saatavuuden heikkenemiseen. Tämä voi edistää aksonin atrofiaa, mikä johtaa rappeutumiseen.On todisteita mitokondrioiden toimintahäiriöistä ”normaalilta näyttävässä” harmaassa aineessa ja mitokondrioiden toiminta näyttää korreloivan aksonien eloonjäämisen kanssa.
  3. In vitro- ja eläintutkimusten mukaan ketogeeninen ruokavalio lisää ATP-tuotantoa, edistää mitokondrioiden biogeneesiä ja ohittaa toimintahäiriöt sisällä mitokondrioiden bioenergeettinen prosessi lisää antioksidanttitasoja ja vähentää oksidatiivisia vaurioita.Koska ATP: n lisääntyminen ja mitokondrioiden toiminnan yleinen paraneminen korreloivat aksonien eloonjäämisen kanssa, ketogeeninen ruokavalio voi tarjota terapeuttista hyötyä MS-taudin neurodegeneratiiviselle komponentille.EAE-eläinmallit eivät edusta tarkasti MS: n taustalla olevaa patogeneesiä, koska neurodegeneraatiolla ei ole merkittävää roolia EAE:ssä.Mitokondrioita kohdentavat aineet, ketonit ja ketogeeninen ruokavalio ovat kuitenkin osoittaneet positiivisia tuloksia useissa hermoston rappeutumismalleissa, ja kun otetaan huomioon progressiivisen MS-tautiin käytettävissä olevan hoidon täydellinen puuttuminen, ketogeeninen ruokavalio on turvallinen vaihtoehto taudin etenemisen hidastamiseen.


Runsaasta rasvan määrästä huolimatta ketogeeninen ruokavalio on turvallinen ja jopa hyödyllinen kardiometabolisten riskitekijöiden suhteen (A. F. Cicero, M. Benelli, M. Brancaleoni, G. Dainelli, D. Merlini, and R. Negri, “Middle and long-term impact of a very low-carbohydrate ketogenic diet on cardiometabolic factors: a multi-center, cross-sectional, clinical study,” ).

Se on ollut jatkuvassa käytössä lähes vuosisadan ajan epilepsian hoidossa, ja se on ollut hyvin siedetty jopa lapsilla. Nykyisiin ketogeenisiin ruokavalioprotokolliin sisältyy useita vaihtoehtoja, mikä kannustaa kokeilemaan itselleen parhaiten sopivaa mallia.

MS-taudin nykyiset hoitovaihtoehdot vaikuttavat immuunijärjestelmän toimintaan ja uusiutumisasteeseen vaikuttaen vain vähän taudin etenemiseen. Niihin liittyy joskus merkittäviä sivuvaikutuksia, kuten lymfopenia ja multifokaalinen leukoenkefalopatia.

Tämän vuoksi joillekin potilaille voi olla edullisempaa noudattaa riskitöntä ruokavaliota, jolla on potentiaalia hidastaa taudin etenemistä vaikuttamatta immuunivasteeseen. Yhteenvetona voidaan todeta, että ketogeeninen ruokavalio ansaitsee lisätutkimuksia progressiivisen MS-taudin potentiaalisena terapiana.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.812.402&rep=rep1&type=pdf