Sokeriteollisuuden tutkimus syövän ja sokerin yhteydestä paljastui

Jacqueline Howard raportoi 21.11.2017 CNN:llä sokeriteollisuuden rahoittamasta vuosikymmeniä salassa pysyneestä tutkimusprojektista. Löytyneestä tutkimuksesta selvisi, että sokeriteollisuus oli tietoinen sokerin terveyshaitoista jo 1960-luvulla. Myös Helsingin Sanomien Niko Kettunen kirjoitti aiheesta 23.11 julkaistussa uutisessa.

Ravintoa käsitteleviä tutkimuksia pitäisi aina tarkastella kriittisesti. Usein tutkimustulokset esitetään tutkimuksen rahoittajan kannalta suotuisina. Howardin artikkeli kuvaa hyvin sitä, kuinka erilaisten eturyhmien, kuten tässä tapauksessa sokeriteollisuuden, toteuttamia tutkimuksia on manipuloitu ja vääristelty oman eturyhmän taloudellisten etujen turvaamiseksi.

Eläinrasvat vastaan sokerit

Sokerin ja eläinrasvojen välillä käydään yhä 1970-luvulla alkanutta ”rasvasotaa”, jossa vastakkain ovat Keysin ja Yudkinin tieteelliset näkemykset eri ravintoaineiden vaikutuksista terveyteen.

Se, että sokerin terveyshaittoja vähäteltiin ja rasvojen haittoja liioiteltiin vuosikymmeniä, on suurella todennäköisyydellä vaikuttanut nykyisiin lihavuus- ja diabetesepidemioihin, kertoo Sanjay Basu Stanfordin yliopistosta. Lihavuus ja diabetes yleistyivät vähärasvaisten ja rasvattomien tuotteiden kulutuksen seurauksena.

Lyhyesti: selittävänä syynä on se, että vähärasvaisissa ja rasvattomissa elintarvikkeissa rasvat on korvattu sokereilla, mikä kasvattaa huomaamattomasti sokereiden saantia. Elimistössä ylimääräinen sokeri muutetaan lipogeneesissä rasvaksi, joita korkean verensokerin houkuttama insuliini varastoi rasvasoluihin.

Vanha tutkimus avaa sokeriteollisuuden tarkoin varjeltuja salaisuuksia

Sokeriteollisuus rahoitti1960-luvulla tutkimuksen, joka viittasi siihen, että runsaasti sokeria sisältävä ruokavalio lisää koe-eläinten kolesterolitasoja ja syöpiä. Tämä tutkimus jätettiin julkaisematta ja se unohdettiin vuosikymmeniksi, kirjoitti PLOS Biology.

Californian yliopiston lääketieteen professori Stanton Glantz, yksi PLOS Biologyn julkaiseman artikkelin kirjoittajista, ihmettelee tutkimuksen kohtaloa:

All we know is that the plug got pulled and nothing got published. Whether the investigator didn’t bother to try or whether he tried and failed, we don’t know. Or whether there was some kind of clause in his agreement with the sugar people that precluded him from publishing, we don’t know.”

Sokeriteollisuuden hautaama ”nollatutkimus” tuo esille kiinnostavia todisteita sakkaroosin terveyshaitoista. Tutkimuksen julkaisematta jättäminen viittaa siihen, että sokeriteollisuuden rahoittama tutkimusryhmä (Sugar Research Foundation) saattoi tarkoitushakuisesti manipuloida tieteellisiä tutkimuksia sokeriteollisuuden taloudellisten etujen ja maineen turvaamiseksi.

Sokeriteollisuuden rahoittamien tutkimusten tutkimusetiikka – tai sen puute on herättänyt epäilyjä aiemminkin. Vaikuttaa siltä, että Sugar Associationin alaisuudessa toimivat tutkijat noudattivat sokerin terveysvaikutuksia käsittelevissä tutkimuksissaan moraalisesti yhtä kyseenalaisia toimintatapoja kuin tupakkateollisuus omissa tupakoinnin haittoja käsittelevissä tutkimuksissaan.

Tutkijat, jotka löysivät tämän arkistojen kätköihin pölyttymään jääneen tutkimuksen, julkaisivat viime vuonna analyysin sokeriteollisuuden historiaan liittyvistä asiakirjoista ja tutkimuksista.

JAMA Internal Medicine-tiedelehdessä julkaistu analyysi todisti, että Sugar Research Foundation rahoitti tutkimusohjelmaa, jonka tehtävänä oli peitellä runsaasti sokeria sisältävän ruokavalion terveyshaittoja, ja kohdistaa huomio sokereiden terveyshaitoista rasvojen ja erityisesti eläinrasvojen terveyshaittoihin.

Strategia onnistui hyvin, sillä vasta viime vuosina on saatu merkittävää tutkimusnäyttöä, joka kyseenalaistaa ja korjaa eräitä eläinrasvojen ja sokereiden käyttöön liitettyjä tarkoituksella vääristeltyjä väitteitä ja tutkimustuloksia.

The kind of science manipulation that the tobacco industry engaged in is exactly the same kind of behavior that we’ve documented in these papers from the sugar industry,” totesi Glantz, joka on myös tutkinut tupakkateollisuutta.

Kuinka arkistoihin haudattu tutkimus löydettiin?

Sokeriteollisuuden kattojärjestö Sugar Association, esitti vastineensa uutisesta kritisoimalla viime vuonna JAMA Internal Medicinen julkaisemaa analyysia sekä PLOS Biologyn julkaisemaa artikkelia todeten, että kyseiset julkaisut ovat vain sokerivastaisen ryhmän rahoittamia näkökulmia, spekulaatioita ja oletuksia tapahtumista, jotka tapahtuivat vuosikymmeniä sitten, ja joista kirjoittavat sokeriteollisuuteen kriittisesti suhtautuvien tutkijoiden ryhmä.

Sugar Association painottaa, että PLOS Biologyn käsittelemä tutkimus jätettiin julkaisematta, koska se myöhästyi ja ylitti tutkimukselle asetetun budjetin.

We don’t know what would have happened had this study come out differently and showed no effect of sugar,” Glantz sanoi. ”I would bet that it would have been published, and they would be thumping the drums about it.

Cristin E. Kearns (assistant professor at the UCSF School of Dentistry), yksi PLOS Biologyn julkaiseman artikkelin kirjoittajista, kertoi, että hän löysi arkistoissa pölyttyvän kadonneen tutkimuksen analysoidessaan Sugar Research Foundationin johtajien ja tutkijoiden välistä kirjeenvaihtoa vuosilta 1959-1971. Tutkimus mainittiin myös eräässä Sugar Research Foundationin julkaisemassa kirjassa.

Tämä kirja listasi ”kadonneen tutkimuksen” ohella Sugar Research Foundationin kaikki tutkimusprojektit vuosilta 1943-1972. Merkillepantavaa oli Christin E. Kearns’in mukaan se, että tätä kyseistä tutkimusta ei koskaan julkaistu missään. Tämä herätti hänen uteliaisuutensa.

Arkistoihin hautautuneesta tutkimuksesta käytettiin nimeä Projekti 259 (Project 259).

Sugar Research Foundation oli myöntänyt löydetyn aineiston mukaan tälle projektille alustavasti 15 kuukauden rahoituksen vuoden 1968 kesäkuusta vuoden 1969 syyskuuhun, mutta tutkimuslöytöjen luonteen vuoksi rahoitus lakkautettiin ja tutkimus lakaistiin maton alle.

Tutustuessaan tähän tutkimusprojektiin, Kearns huomasi, että tutkimukseen liittyvissä rottakokeissa oli tehty kaksi havaintoa, joiden esille tulo olisi voinut vahingoittaa sokeriteollisuuden mainetta ja kaupallisia intressejä.

Sokeriteollisuuden tutkimus syövän ja sokerin yhteydestä paljastui!

Ensinnäkin tutkimus osoitti, että runsaasti sokeria saaneiden rottien virtsassa oli verrokkeja enemmän erästä virtsarakon syöpään vahvasti assosioituvaa entsyymiä (beta-glucuronidase).

”That was of some policy relevance at the time, because there was something called the Delaney clause, which said the FDA was supposed to keep carcinogens out of the food supply even if they were animal carcinogens,” Glantz kertoi CNN:lle.

Kongressi hyväksyi Delaneyn pykälän 1958. Sen tarkoituksena oli estää sellaisten lisäaineiden käyttö ruoka-aineissa, joiden tiedettiin altistavan syövälle.

Projekti 259 osoitti mielenkiintoisen ja tilastollisesti merkittävän laskun veren triglyseriditasoissa niillä rotilla, jotka olivat saaneet runsaasti sokeria sisältävää ravintoa ja joiden suoliston mikrobikantaa oli heikennetty verrattuna niihin rottiin, jotka olivat saaneet ravinnokseen tärkkelystä ja joiden suoliston mikrobikanta oli normaali.

Käytännössä rottien veren triglyseridipitoisuudet kasvavat runsaasti sokeria sisältävällä ravinnolla, mutta tutkimuksessa havaittiin, että jos suoliston bakteerikantaa heikennettiin, veren triglyseridien määrä saatiin laskemaan.

”So without the bacteria, you didn’t get the high triglyceride response, and so this proved to them at the time that the gut microbiome had a role in this elevated triglyceride response to eating sugar. I thought this is a fascinating study that they were even considering the role of the gut microbiome back as far as the 1960s,” Kearns totesi.  

Viime vuosina suoliston mikrobikanta ja sen vaikutukset terveyteen ovat olleet kasvavan mielenkiinon kohteina.

Sokeriteollisuuden vastaus

Kirjallisessa vastineessaan CNN:lle, Sugar Association korosti, etteivät PLOS Biologyn artikkelin kirjoittaneet tutkijat pyytäneet Sugar Associationin vahvistusta väitteilleen.

We reviewed our research archives and found documentation that the study in question ended for three reasons, none of which involved potential research findings: the study was significantly delayed; it was consequently over budget; and the delay overlapped with an organizational restructuring with the Sugar Research Foundation becoming a new entity, the International Sugar Research Foundation. There were plans to continue the study with funding from the British Nutrition Foundation, but, for reasons unbeknown to us, this did not occur,” vastineessa todettiin.

Sugar Associationin kirjallisessa vastineessa korostettiin lisäksi, että kohtuullisesti käytettynä sokeri voi olla osa tasapainoista ruokavaliota, ja että Sugar Association tukee jatkossakin tutkimuksia, joissa tutkitaan sokerin terveydellisiä vaikutuksia.

Christin E. Kearns vastasi Sugar Associationin kritiikkiin toteamalla, että väite tutkimuksen keskeyttämisestä organisaation uudelleenjärjestelyyn vaikuttaa epäilyttävältä selitykseltä, koska muut tutkimukset jatkuivat organisaation uudelleenjärjestelystä huolimatta.

Mitä opimme tästä?

Kaiken kaikkiaan tällaisen julkaisemattoman tutkimuksen löytyminen ajalta, jolloin laadittiin laajoja ja kattavia ravintosuosituksia, on hätkähdyttävää ja eettisesti huolestuttavaa, huomauttaa Stanfordin yliopistossa työskentelevä Sanjay Basu, joka ei osallistunut PLOS Biologyn julkaiseman artikkelin työryhmään.

The context for this historically is that during the time at which these studies were taking place, a lot of dietary recommendations were being formulated that emphasized reducing high-fat foods in particular, and in many cases low-fat foods were replaced by high-sugar foods to be more palatable,” kommentoi Basu, joka on myös tehnyt tutkimusta lisätyn sokerin terveysvaikutuksia.

The fact that sugar was not being considered an additionally concerning substance unfortunately led to a lot of changes in the American diet that correspond to a rise in obesity and type 2 diabetes. So the suppression of this type of study is partly greatly concerning because of the time in which it took place,” he said. ”Although we’re not sure what a safe amount of added sugar is, it’s pretty clear and increasingly apparent that we’re well above what might be considered reasonable in terms of our added sugar consumption as a country,” Basu kommentoi.

Ruokasotaan käännetty ja muokattu uutinen on julkaistu CNN:llä 21.11.2017




Ovatko sokerit epäterveellisiä?

Ovatko sokerit epäterveellisiä? Keskustelu sokerin terveyshaitoista on saanut viime vuosina kiitettävästi näkyvyyttä myös suomalaisissa medioissa. Miksi lisätyn sokerin määrää ja laatua tulisi tarkkailla?

Eräs syy sokerin haitallisuudelle on se, että sokeri on sataprosenttista energiaa, josta puuttuvat kaikki elimistön tarvitsemat välttämättömät ravintoaineet. Sakkaroosi eli pöytäsokeri koostuu ”tyhjistä kaloreista”, jotka lihottavat.

Emeritusprofessori ja sisätautien erikoislääkäri Jussi Huttunen on kirjoittanut Duodecimiin valaisevan artikkelin sokereista. Artikkelissaan Jussi Huttunen kirjoittaa mm:

”Sakkaroosin sisältämä hedelmäsokeri näyttää olevan terveydelle erityisen haitallista. Vapaaehtoisille koehenkilöille tehdyssä kokeessa hedelmäsokeri aiheutti epäedullisia muutoksia rasva-aineenvaihdunnassa, lisäsi maksan rasvoittumista ja suurensi veren glukoosi- ja insuliinipitoisuutta. Havainnot sopivat siihen, että sakkaroosi ja sen sisältämä hedelmäsokeri voivat olla vyötärölihavuuden (”pömppövatsa”) ja siihen liittyvän metabolisen oireyhtymän tärkeä syy. Metabolinen oireyhtymä ja vyötärölihavuus diabeteksen tavoin ovat nopeasti yleistyneet teollistuneissa yhteiskunnissa, mahdollisesti juuri nopeasti kasvaneen sokerin kulutuksen seurauksena.

Sokeri on nousemassa myös tärkeäksi sepelvaltimotaudin syyksi. Äsken julkaistussa tutkimuksessa sokerilimuja säännöllisesti juoneiden sepelvaltimotautivaara oli viidenneksen suurempi kuin niiden, jotka nauttivat vain keinotekoisilla makeutusaineilla makeutettuja juomia. Osa mutta vain osa muutoksesta näytti johtuvan lihomisesta ja sen seurauksista. Aivan uusi havainto oli sokerijuomien yhteys tulehdusmittareihin (mm. CRP). Sokerijuomat voivat tavalla tai toisella lisäävän ihmisten tulehdusalttiutta ja mahdollisesti sitä kautta myös sydänoireita.” Lue koko artikkeli tästä >>

Mitä hiilihydraatit ja sokerit ovat?

Hiilihydraatteihin luetaan sokerit, tärkkelys ja ravintokuitu (selluloosa). Hiilihydraateista saatava glukoosi on solujen tärkein polttoaine. Glukoosi muutetaan energiaksi ensin glykolyysissä ja glykolyysin jälkeen hapen kanssa soluhengityksessä. Glykolyysi ja soluhengitys tuottavat energiaa ATP-molekyyleinä.

Hiilihydraatit eivät ole elimistölle välttämättömiä ravintoaineita vaikka aivot tarvitsevat glukoosista saatavaa energiaa. Elimistö on evoluution aikana kehittänyt mekanismeja, joilla se tuottaa glukoosia myös silloin, kun sitä ei ole ravinnosta saatavilla. Elimistö on oppinut turvaamaan solujen energiansaannin ketogeneesillä ja glukoneogeneesillä. Ketogeneesissä syntyy ketoaineita, joita elimistö voi käyttää energianlähteinä. Glukoneogeneesi syntetisoi glukoosia muista ravintoaineista ja vedestä.

Näiden evoluution aikana kehittyneiden aineenvaihduntamekanismien ja veden avulla terve normaalipainoinen ihminen selviää ilman ravintoa ainakin kuukauden. Esimerkiksi Gandhi paastosi vielä 74-vuotiaana 21 päivää pelkällä vedellä.

Ensimmäiset ihmiset saivat pääosan sokeristaan hunajasta, hedelmistä, kasviksista, juurista ja marjoista, mutta näistä saatavan sokerin määrä oli murto-osa siitä, mitä nykyihmiset kuluttavat. Sokerinlähteitä ei myöskään aina ollut saatavilla, joten elimistön piti syntetisoida solujen tarvitsemia sokereita mm. varastorasvasta ja proteiineista. Yhdysvalloissa sokerin kulutus on 40-kertaistunut 250 vuodessa.

Sokereiden kulutuksen merkittävin kasvupiikki alkoi 1970-luvulla. Diabeteksen ja lihavuuden kasvukäyrät noudattavat melko täsmällisesti sokereiden kulutuskäyrää, mutta onko sairastuvuuden ja sokerin kulutuksen välillä kausaalisuhdetta?

Hiilihydraatit ja sokerit

Hiilihydraatteihin lukeutuvat viljat ja perunat sisältävät runsaasti tärkkelystä ja pieniä määriä kivennäisaineita, proteiineja, rasvoja sekä vitamiineja. Tärkkelys muodostuu kymmenistä tai sadoista glukoosimolekyyleistä.  Ruoansulatuksessa tärkkelys pilkotaan glukoosimolekyyleiksi.

Hiilihydraattimolekyylit muodostuvat hiilestä, vedystä ja hapesta eli ne ovat hiilen hydraatteja. Yksinkertaiset hiilihydraatit tuottavat 3.87 kcal energiaa/g. Monimutkaisemmat hiilihydraatit tuottavat energiaa 3.57-4.12 kcal/g.

Hiilihydraatit ryhmitellään edelleen sokeriyksiköiden lukumäärän mukaan monosakkarideihin, joita ovat,

  • glukoosi
  • fruktoosi
  • galaktoosi
  • sekä riboosi ja deoksiriboosi, jotka ovat RNA:n ja DNA:n rakennusaineita

disakkarideihin, joita ovat,

  • sakkaroosi
  • maltoosi
  • laktoosi
  • trehaloosi

sekä oligosakkarideihin ja polysakkarideihin.

Tutuimmat monosakkaridit ovat glukoosi (rypälesokeri) ja fruktoosi (hedelmäsokeri). Disakkarideista tutuimmat ovat on glukoosista ja fruktoosista muodostuva sakkaroosi eli pöytäsokeri ja maitosokeri laktoosi.

Laktoosi

Vauvat saavat äidinmaidosta kaikki tarvitsemansa ravinteet, mutta joka kuudennen suomalaisen ohutsuoli ei enää varhaislapsuuden jälkeen tuota laktoosin pilkkomiseen tarvittavaa entsyymiä – laktaasia, minkä vuoksi maitosokeri aiheuttaa erilaisia vatsavaivoja. Laktoosin sietäminen aikuisena on epigeneettinen muutos, jota esiintyy lähinnä eurooppalaistaustaisilla ihmisillä. Suurin osa maailman väestöstä ei juo maitoa varhaislapsuuden jälkeen. Laktoosi-intoleranssi on käytännössä vallitseva ominaisuus Aasiassa ja Afrikassa toisin kuin Pohjoismaissa.

Uppsalan yliopiston ja Karoliinisen instituutin tekemän laajan seurantatutkimuksen mukaan runsas maidonjuonti voi ylläpitää kehon matala-asteista tulehdusta ja johtaa ennenaikaiseen kuolemaan. Lue tästä >>

Suomalaiset asiantuntijat kiirehtivät heti tyynnyttelemään ihmisiä toteamalla, että useimmat tutkimukset osoittavat, että maito on matala-asteisen tulehduksen suhteen neutraali vaikuttaja.

Maidossa ongelmia voi laktoosin ohella aiheuttaa kuitenkin maitoproteiinit, kuten A1 ja A2 beetakaseiinit. A1-beetakaseiini on ilmeisesti haitallista terveydelle.

” Research shows a strong association between the consumption of A1 casein and various health problems. Numerous studies, including data from the World Health Organization (WHO), have linked A1 with increased risk of heart disease, high cholesterol, type 1 diabetes, sudden infant death syndrome, and neurological disorders, such as autism and schizophrenia, and possibly allergies. But these health issues are not associated with consumption of A2 casein.” Tutkimuksia aiheesta löydät täältä >>

Sakkaroosi eli sukroosi (tavallinen sokeri)

Sokerilla tarkoitetaan puhekielessä yleensä sakkaroosia (pöytäsokeri), jota valmistetaan teollisesti sokeriruo’osta ja sokerijuurikkaasta. Sakkaroosi muodostuu yhtäläisestä määrästä tiukasti sitoutuneita glukoosi- ja fruktoosimolekyylejä (ts. sakkaroosia muodostuu, kun α-D-glukoosin 1-hiilen hydroksyyliryhmä sitoutuu β-D-fruktoosin 2-hiileen glykosidisidoksella).

Sakkaroosia esiintyy yleisesti kasveissa. Erityisen paljon sitä on sokeriruo’ossa, sokerijuurikkaassa, ananaksessa, maississa ja porkkanassa. Sokeria tuotetaan vuosittain noin 130 miljoonaa tonnia.

Polysakkaridit

Tavallisia polysakkarideja ovat kasveissa sokereiden varastomuoto tärkkelys ja selluloosa. Ne ovat useista yhteen liittyneistä monosakkarideista muodostuvia hyvin suuria molekyylejä, joissa on tyypillisesti yli 20 monosakkaridiyksikköä – joskus jopa satoja tai tuhansia.

Polysakkaridit eroavat useimmista sokereista siinä, että ne eivät maistu makealta tai liukene veteen. Selluloosa eli kuitu muodostuu jopa miljoonista glukoosimolekyyleistä. Ihmisen suolistossa ei ole selluloosaa pilkkovaa entsyymiä. Kuitu on kuitenkin suoliston hyvinvoinnille tärkeä ravinne, sillä sulamaton kuitu ja resistentti tärkkelys ravitsevat suoliston hyvää mikrobikantaa, joka puolestaan osallistuu kemiallisesti geenien säätelyyn, immuunijärjestelmän ylläpitoon ja eräiden vitamiinien tuotantoon.

Harvinaisempia sokereita ihmisen suolisto ei pysty pilkkomaan, vaan suoliston bakteerit käyttävät niitä ravintona. Esimerkiksi herneissä ja pavuissa on tällaisia oligosakkarideja, joissa sakkarideihin on sitoutunut myös aminohappoja.

Glukoosi eli rypälesokeri

Glukoosi (C6H12O6) on kasvien yhteyttämisen tärkein lopputuote ja useimpien eliöiden soluhengityksen lähtöaine yhdessä hapen kanssa. Glukoosi on ihmiselle elintärkeä sokeri, josta solut vapauttavat soluhengityksessä energiaa elimistön käyttöön.

Glukoosia on monissa muissa sokereissa, kuten sakkaroosissa ja laktoosissa sekä varasto- ja rakennepolysakkarideissa (glukaanit) kuten tärkkelys, glykogeeni ja selluloosa.

Glukoosi ja sen fosfaatit toimivat soluhengityksen lähtöaineina: glukoosi metaboloituu glykolyysin ja sitruunahappokierron seurauksena vedeksi ja hiilidioksidiksi ja tuottaa reaktiossa adenosiinitrifosfaattia eli ATP:ta. Yhdestä glukoosimolekyylistä vapautuu energiaa 26-38 ATP-molekyylin verran.

Hiilihydraatit pilkotaan ruoansulatuskanavassa ja ne imeytyvät ohutsuolesta verenkiertoon. Glukoosi nostaa verenkiertoon imeydyttyään verensokeria, mikä saa haiman erittämään insuliinia. Insuliinia tarvitaan, että glukoosi pääsee kulkemaan rasva- ja lihassolujen solukalvon läpi. Insuliinimolekyylit kiinnittyvät solukalvojen insuliinireseptoreihin.

Insuliinireseptorit säätelevät glukoosin varastoitumista glykogeeniksi ja rasvahapoiksi sekä mahdollistavat glukoosista syntyvien aineenvaihduntatuotteiden käytön sitruunahappokierrossa ja elektroninsiirtoketjussa. Haiman insuliinin eritystä lisää pääasiassa pohjukaissuolen seinämästä verenkiertoon erittyvä GIP-hormoni, parasympaattinen hermosto sekä glukoosin määrä veressä. Insuliinin vastavaikuttajia ovat glukagoni ja adrenaliini.

Insuliinireseptorit säätelevät glukoosin varastoitumista glykogeeniksi ja rasvahapoiksi.

Ylimääräinen glukoosi varastoidaan glykogeeninä maksaan ja lihaksiin, josta glukagoni vapauttaa sitä nopeasti elimistön ja lihasten energiaksi. Kun glykogeenivarastot ovat täynnä, maksa ja rasvakudos ryhtyvät muuttamaan glukoosia lipogeneesissä triglyserideiksi eli rasvahapoiksi, joka varastoidaan rasvasoluihin.

Fruktoosi eli hedelmäsokeri

Fruktoosi eli hedelmäsokeri (C6H12O6) on sokeri, jota esiintyy marjoissa, hedelmissä ja hunajassa. Fruktoosi on maultaan noin kaksi kertaa makeampaa kuin glukoosi ja siksi sitä käytetään paljon makeutusaineena. Fruktoosi ei ravitse solujen energiantarvetta, sillä elimistö voi metaboloida fruktoosia ainoastaan maksassa. Tavallinen fruktoosi imeytyy osalla ihmisistä epätäydellisesti suolistossa ja se voi aiheuttaa runsaasti oireita ärtyvän suolen oireyhtymästä (IBS) kärsiville. HS-artikkeli fruktoosista >>

Fruktoosia on pidetty terveellisenä sokerina, koska sen glykeeminen indeksi eli vaikutus verensokeriin, on matalampi kuin glukoosilla. Fruktoosia on tästä syystä suositeltu erityisesti diabeetikoille.

Viimeisimpien tutkimusten perusteella fruktoosi on glukoosia haitallisempi sokeri.

Suolistosta fruktoosi kulkeutuu maksaan, jossa se metaboloidaan. Osa maksaan kulkeutuneesta fruktoosista muutetaan glukoosiksi ja osa syntetisoidaan rasvahapposynteesissä eli lipogeneesissä triglyserideiksi, jotka lisäävät viskeraalisen rasvan kerääntymistä elimiin ja niiden ympärille. Viskeraalinen rasva altistaa erilaisille sydän- ja verisuonitaudeille. Tutkimuksia aiheesta llöydät täältä >>

Mitä viskeraalinen rasva on?

”Suuri vyötärönympärys kertoo sisäelinten ympärille kertyneestä rasvasta, joka on terveyden kannalta erityisen haitallista. Viskeraalinen, eli sisäelinten ympärille kertyvä rasva lisää huomattavasti enemmän terveysriskejä kuin esimerkiksi ihon alle reisiin, takamukseen tai käsivarsiin kerääntyvä rasva. Tutkimusten mukaan etenkin kakkostyypin diabeteksen vaara suurenee huomattavasti, jos henkilöllä on paljon viskeraalista rasvaa.

Jos rasva kerääntyy vatsaontelon sisään, se asettuu myös sisäelinten, kuten maksan, munuaisten, haiman ja sydämen seutuun. Kun nämä aineenvaihdunnalle ja elämälle tärkeät elimet rasvoittuvat, terveys on uhattuna. Sokeriaineenvaihdunta häiriintyy ja seurauksena on nopeasti tyypin 2 diabetes. Myös verisuonet rasvoittuvat ja kalkkeutuvat. Sydänkohtaukset ja aivohalvaukset ovat vatsakkailla huomattavasti yleisempiä kuin hoikkavatsaisilla.” Lue tästä >>

Triglyseridit varastoituvat mm. maksaan ja altistavat alkoholista riippumattomalle rasvamaksan kehittymiselle, metaboliselle oireyhtymälle ja aikuistyypin diabetekselle. Fruktoosi lihottaa ensinnäkin rasvahapposynteesin kautta, mutta myös siksi, että se ei lisää kylläisyyden tunnetta toisin kuin glukoosi. On myös viitteitä siitä, että runsas fruktoosinsaanti hidastaa oppimiskykyä ja heikentää muistia.

Erityisen haitallisena pidetään fruktoosisiirappia (HFCS, maissisiirappi), joka on glukoosisiirapista teollisten entsyymien avulla fruktoosisiirapiksi muutettu teollisesti prosessoitu makeutusaine. Siinä fruktoosimolekyylit ovat suolesta verenkiertoon nopeasti imeytyvässä muodossa. Fruktoosimolekyylien energiapitoisuus on sama kuin glukoosilla (n. 4 kcal/g), mutta fruktoosisiirapin energia ei ravitse kehon ”energian nälkää”, vaan se varastoidaan läskinä.

Hedelmät ja marjat ovat terveellisiä ja niiden syömistä suositellaan. Hedelmissä fruktoosia on yleensä alle puolet hedelmän sokereista ja sekin esiintyy monimutkaisina muita sokereita, flavonoideja, ravintokuitua, mineraaleja ja vitamiineja sisältävinä komplekseina. Lisäksi hedelmän kuidut hidastavat fruktoosimolekyylien imeytymistä. Mutta edes tuorepuristettuja mehuja ei kaikissa lähteissä suositella, koska ne sisältävät monen hedelmän sokerimäärän yhdessä lasillisessa.

Sakkaroosi on fruktoosia parempi vaihtoehto, koska se on disakkaridi, jossa glukoosi- ja fruktoosimolekyylejä sitoo vahva sidos. Se siis pilkkoutuu ja imeytyy fruktoosimolekyylejä hitaammin suolistossa.

Resistentti tärkkelys

Elimistön hyvää mikrobikantaa ravitsee resistentti tärkkelys. Se on siis suoliston hyvinvointia parantava prebiootti, joka ei imeydy suolistosta, vaan fermentoituu paksusuolessa mikrobien vaikutuksesta. Resistenttiä tärkkelystä saa

  • kokojyväviljoista
  • hieman raaoista banaaneista
  • ruskeasta riisistä
  • pavuista ja muista palkokasveista
  • maissista
  • siemenistä
  • raaoista perunoista
  • keitetyistä ja jäähdytetyistä perunoista sekä riisistä

Pronutritionist Reijo Laatikaisen mukaan resistentti tärkkelys saattaa muiden huonosti ohutsuolesta imeytyvien hiilihydraattien tapaan auttaa painonhallinnassa, suolistoterveyden ylläpidossa, estää sydän- ja verisuonisairauksia sekä infektioita. Pronutritionist >>

FODMAP-hiilihydraatit (Fermentable Oligo-, Di-, and Mono-saccharides And Polyols)

Harvemmin käsiteltyjä sokereita ovat paksusuolessa fermentoituvat lyhytketjuiset FODMAP-hiilihydraatit, jotka voivat aiheuttaa kipu- ja turvotusoireita ärtyvän suolen oireyhtymää sairastavilla. Terveillä FODMAP-hiilihydraatit aiheuttavat lähinnä ilmavaivoja. Fermentoituvat hiilihydraatit tuottavat lyhytketjuisia rasvahappoja, joilla on nykytietämyksen valossa terveyttä edistäviä vaikutuksia.

  • Oligosakkaridit à
  • Fruktaanit à FOS*(DP<10), Inuliini (DP>10), GOS (DP<10)
  • Galaktaanit
  • Raffinoosi

*FOS = frukto-oligosakkaridi eli fruktaani

*GOS = galakto-oligosakkaridi eli galaktaani

*DP = degree of polymerization eli sakkaridimolekyylien määrä

Polyolit eli sokerialkoholit ovat

  • isomalt
  • ksylitoli
  • laktitoli
  • maltitoli
  • sorbitoli

Oligosakkarideja, joissa on fruktoosi-fruktoosi-sidoksia, kutsutaan fruktaaneiksi (frukto-oligosakkarideiksi). Fruktaaneja saa viljoista ja sipulista. Galakto-oligosakkarideja eli galaktaaneja esiintyy mm. sienissä ja palkokasveissa. Raffinoosi on trisakkaridi, joka muodostuu glukoosista, galaktoosista ja fruktoosista. Raffinoosia on erityisesti kaaleissa, soijassa, pavuissa, kokojyväviljoissa ja parsassa. Inuliini on pitkäketjuinen fruktaani, jota on lisäty viime vuosina terveysvaikutteisiin jogurtteihin ja ravintolisiin prebioottisten ominaisuuksien vuoksi.

Sokerialkoholit eli polyolit (ksylitoli, laktitoli, sorbitoli, maltitoli, mannitoli ja isomalt) ovat hiilihydraatteja, joissa hydroksiryhmä (-OH) esiintyy molekyylissä

Inuliini, fruktaanit ja galaktaani ovat prebiootteja, jotka ravitsevat suolen hyvälaatuisia mikrobeja ja lisäävät lyhytketjuisten rasvahappojen syntyä.

Lähde: Pronutritionist

Glukagoni ja glykogeeni

Kasveissa sokeri varastoituu tärkkelyksenä. Eläimillä ja ihmisillä sokeri varastoituu glykogeeninä lihaksiin ja maksaan, josta sitä vapautuu glukagonin vaikutuksesta vereen ja lihassoluihin. Glukagoni, jota erittyy haiman Langerhansin saarekkeiden alfasoluista, säätelee sokeriaineenvaihduntaa ja se toimii haiman Langerhansin saarekkeiden beetasoluista erittyvän insuliinin vastavaikuttajana. Kun verensokeri on alhaalla, glukagoni lisää glukoosia vereen. Se stimuloi edelleen insuliinin eritystä yhdessä ruoansulatuskanavan entsyymien (GIP) kanssa.

Glukagoni vapauttaa adrenaliinin avulla glukoosia maksan glykogeenivarastoista ja käynnistää myös glukoneogeneesin jo ennen glykogeenivarastojen ehtymistä. Tämä aineenvaihduntamekanismi tuottaa solujen tarvitsemaa sokeria myös silloin, kun ravinto ei sisällä hiilihydraatteja.

Tarvitseeko elimistö sokerista saatavaa energiaa?

Ravinto ei ole vain energiaa. Keho tarvitsee energian lisäksi elimistöä ja aineenvaihduntaa ylläpitäviä suojaravinteita sekä solujen uusiutumisen tarvitsemia ravintoaineita.

Solut uusiutuvat jatkuvasti noin 200 gramman päivävauhtia. Keho tarvitsee välttämättömiä ravintoaineita ylläpitämään solujen uusiutumista, aineenvaihduntaa ja immuunijärjestelmää.

”Ihmisen tarvitsema kalorimäärä on melko vakio. Mitä suurempi määrä kaloreista tulee sokereista, sitä vähemmän ihminen syö sellaista ruokaa, jonka tiedetään edistävän terveyttä. Terveysongelmat eivät siis välttämättä aiheudu suoraan sokerista vaan siitä, että muiden ruokien terveysvaikutukset jäävät saamatta, kun niiden sijaan syödään sokeria”, Huttunen sanoo.” HS

Nälkä ei siis tarkoita vain energiavajetta, vaan se kertoo yleisemmin siitä, että elimistö tarvitsee ravintoaineita ylläpitämään kehon uusiutumista ja homeostaasia. Lienee melko yleistä, että päivittäisestä energiasta 10-20 % saadaan lisätyistä sokereista. Tämä ei kuitenkaan tyydytä elimistön ravinteiden tarvetta, vaan ravinteet on välttämättä saatava jostakin.

Paljonko lisättyä sokeria voi syödä?

“We have solid evidence that keeping intake of free sugars to less than 10% of total energy intake reduces the risk of overweight, obesity and tooth decay.” Dr Francesco Branca, Director of WHO’s Department of Nutrition for Health and Development.

Helsingin yliopiston ravitsemustieteen professori Mikael Fogelholm sanoo, ettei sokerinsaanti linkity tutkimuksissa lihomisen riskiin: ”Sakkaroosin lähteitä on niin monia, ja monet eri lähteet ovat eri tavoin yhteydessä lihavuuteen. Sama koskee hiilihydraatteja, rasvaa ja proteiinia. Näillä ei ravintoaineina näytä olevan yhteyksiä painonmuutoksiin.” Mikael Fogelholm / Iltalehti / Keventäjät / MTV3 2015

Kaksi erilaista näkemystä sokereista. Maailman terveysjärjestön (WHO:n) suositus lisätylle sokerille on enintään 5-10 % päivittäisestä energiansaannista. Helsingin yliopiston ravitsemustieteen professorin mielestä 10 % päivittäisestä energiasta voi tulla lisätystä sokerista.

Suomessa puhtaan sokerin kulutus on ravitsemussuositusten mukaisesti keskimäärin 10 % päivittäisestä kokonaisenergian saannista, eli karkeasti 50 g/päivä/hlö. Osa väestöstä kuluttaa lisättyä sokeria selvästi suosituksia enemmän ja osa selvästi vähemmän kuin suositellaan.  Sokerinkulutuksen keskiarvo kertookin vain väestön keskimääräisen kulutuksen.Ilmiöstä tekee huolestuttavan se, että eräs sokeria liikaa käyttävistä väestöryhmistä ovat kasvuikäiset lapset. Sokeria on lisätty jogurtteihin, mehuihin, kiisseleihin ja muroihin puhumattakaan virvoitus- ja energiajuomista tai makeisista. On oikeastaan vaikeaa löytää elintarvikkeita, joihin ei olisi lisätty sokeria tai jotakin muuta makeutusainetta.

Ovatko sokerit terveydelle haitallisia?

”Researchers find strongest link yet between high sugar consumption and obesity. 22,000 cancer cases a year avoidable if we were all healthy weight. People who eat more sugar are much more likely to be obese than those who eat less, according to a landmark finding by University of Reading scientists.” https://www.reading.ac.uk/news-and-events/releases/PR626778.aspx

Readingin yliopiston tutkijat havaitsivat, että runsas sokerin (sakkaroosin) saanti korreloi lihomisen kanssa. Tutkijat Readingin, Cambridgen ja Arizonan yliopistoista vertasivat 1700 Norfolkissa asuvan henkilön sokerin kulutusta ja painoa kolme vuotta kestäneessä seurantatutkimuksessa.

Tutkimukseen osallistuvia pyydettiin raportoimaan omasta sokerin kulutuksestaan ja raportteja verrattiin tutkimukseen osallistuneiden virtsanäytteistä saatuihin tuloksiin. Kolmivuotisen tutkimuksen lopuksi mitattiin osallistuneiden painoindeksi.

Virtsanäytteiden mukaan eniten sokeria kuluttaneet olivat 54 % todennäköisemmin ylipainoisia kuin ne, jotka käyttivät virtsanäytteiden perusteella vähiten sokeria. Tutkimus osoitti myös, että ylipainoiset aliarvioivat oman sokerin kulutuksensa (oma raportointi vs. virtsanäyte). Ne, jotka raportoivat käyttävänsä paljon sokeria, olivat 44 % todennäköisyydellä laihempia, kuin ne, jotka kertoivat syövänsä vain vähän sokeria. Tämä on mielenkiintoista, sillä tutkimus kyseenalaistaa aikaisempien seurantatutkimusten osallistuneiden omaan raportointiin ja kyselyihin perustuvien tulosten luotettavuuden.  Kaikki valehtelevat, sanoisi Dr. House.

Tohtori Giota Mitrou (Head of Research Funding and Science Activities at WCRF) huomautti tutkimusta kommentoidessaan, että on yhdeksän syöpätyyppiä, jotka ovat selvästi yhteydessä lihavuuteen ja että siksi on tärkeää tutkia, onko lihavuuden ja lisätyn sokerin välillä kausaalisuhde.

Dr Gunter Kuhnle, nutritional scientist at the University of Reading, said: ”There have been heated discussions about the role of sugar in the war against obesity, with some claims that sugar doesn’t have anything to do with putting on weight. These claims were based on research which showed that people who consume high amounts of sugar are not heavier than those who don’t.

”However, these studies relied on the information about sugar consumption given by the participants. This turns out to be a big problem, as our study shows that people with a higher BMI tend to underreport the amount of sugar they consume.

Association between sucrose intake and risk of overweight and obesity in a prospective sub-cohort of the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) – Gunter GC Kuhnle, Natasha Tasevska, Marleen AH Lentjes, Julian L Griffin, Matthew A Sims, Larissa Richardson, Sue M Aspinall, Angela A Mulligan, Robert N Luben and Kay-Tee Khaw / Public Health Nutrition / Volume 18 / Issue 15 / October 2015,

Tutkimuksen rahoittivat World Cancer Research Fund (WCRF), Medical Research Council (MRC) ja Cancer Research UK ja tutkimuksessa seurattiin vuosina 1993 ja 1995 pitkäkestoiseen ravinnon ja syövän suhteita kartoittavaan EPIC -seurantatutkimukseen värvättyjä1700 henkilöä. EPIC tutkimushankkeessa on mukana yli 25 000 tutkittavaa ja tutkimusten tuloksiin voi tutustua oheisen linkin kautta: EPIC – European Prospective Invesigation into Cancer and Nutrition.

Muita tutkimuksia

Monien tutkimusten mukaan sokeri ja erityisesti fruktoosi saattavat altistaa lihomiselle, metaboliselle oireyhtymälle ja diabetekselle. Seuraavassa eräitä sokereiden terveysvaikutuksia selvittäviä tutkimuksia.

Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 DiabetesA meta-analysis

Vasanti S. Malik, SCD, Barry M. Popkin, PHD, George A. Bray, MD3, Jean-Pierre Després, PHD, Walter C. Willett, MD, DRPH and Frank B. Hu, MD, PHD

RESULTS Based on data from these studies, including 310,819 participants and 15,043 cases of type 2 diabetes, individuals in the highest quantile of SSB (sugar sweetened beverages) intake (most often 1–2 servings/day) had a 26% greater risk of developing type 2 diabetes than those in the lowest quantile (none or <1 serving/month) (relative risk [RR] 1.26 [95% CI 1.12–1.41]). Among studies evaluating metabolic syndrome, including 19,431 participants and 5,803 cases, the pooled RR was 1.20 [1.02–1.42].

CONCLUSIONS In addition to weight gain, higher consumption of SSBs is associated with development of metabolic syndrome and type 2 diabetes. These data provide empirical evidence that intake of SSBs should be limited to reduce obesity-related risk of chronic metabolic diseases.

Sugar-Sweetened Beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Agede Women,

Matthias B. Schulze, DrPH; JoAnn E. Manson, MD; David S. Ludwig, MD; et al

Results Those with stable consumption patterns had no difference in weight gain, but weight gain over a 4-year period was highest among women who increased their sugar-sweetened soft drink consumption from 1 or fewer drinks per week to 1 or more drinks per day (multivariate-adjusted means, 4.69 kg for 1991 to 1995 and 4.20 kg for 1995 to 1999) and was smallest among women who decreased their intake (1.34 and 0.15 kg for the 2 periods, respectively) after adjusting for lifestyle and dietary confounders. Increased consumption of fruit punch was also associated with greater weight gain compared with decreased consumption. After adjustment for potential confounders, women consuming 1 or more sugar-sweetened soft drinks per day had a relative risk [RR] of type 2 diabetes of 1.83 (95% confidence interval [CI], 1.42-2.36; P<.001 for trend) compared with those who consumed less than 1 of these beverages per month. Similarly, consumption of fruit punch was associated with increased diabetes risk (RR for ≥1 drink per day compared with <1 drink per month, 2.00; 95% CI, 1.33-3.03; P = .001).

Conclusion Higher consumption of sugar-sweetened beverages is associated with a greater magnitude of weight gain and an increased risk for development of type 2 diabetes in women, possibly by providing excessive calories and large amounts of rapidly absorbable sugars.

A Prospective Study of Sugar Intake and Risk of Type 2 Diabetes in Women

Sok-Ja Janket, DMD, MPH, JoAnn E. Manson, MD, DRPH, Howard Sesso, SCD, Julie E. Buring, SCD and Simin Liu, MD, SCD

RESULTS—Compared with the lowest quintile of sugar intake, the RRs and 95% CIs for the highest quintiles were 0.84 (0.67–1.04) for sucrose, 0.96 (0.78–1.19) for fructose, 1.04 (0.85–1.28) for glucose, and 0.99 (0.80–1.22) for lactose, after adjustment for known risk factors for type 2 diabetes. Similar findings of no association were obtained in subgroup analyses stratified by BMI.

CONCLUSIONS—Intake of sugars does not appear to play a deleterious role in primary prevention of type 2 diabetes. These prospective data support the recent American Diabetes Association’s guideline that a moderate amount of sugar can be incorporated in a healthy diet.

Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease

Richard J Johnson, Mark S Segal, Yuri Sautin, Takahiko Nakagawa, Daniel I Feig, Duk-Hee Kang, Michael S Gersch, Steven Benner, and Laura G Sánchez-Lozada

Currently, we are experiencing an epidemic of cardiorenal disease characterized by increasing rates of obesity, hypertension, the metabolic syndrome, type 2 diabetes, and kidney disease. Whereas excessive caloric intake and physical inactivity are likely important factors driving the obesity epidemic, it is important to consider additional mechanisms. We revisit an old hypothesis that sugar, particularly excessive fructose intake, has a critical role in the epidemic of cardiorenal disease. We also present evidence that the unique ability of fructose to induce an increase in uric acid may be a major mechanism by which fructose can cause cardiorenal disease. Finally, we suggest that high intakes of fructose in African Americans may explain their greater predisposition to develop cardiorenal disease, and we provide a list of testable predictions to evaluate this hypothesis.

Sugar consumption, metabolic disease and obesity: The state of the controversy

KL Stanhope – 2016

The impact of sugar consumption on health continues to be a controversial topic. The objective of this review is to discuss the evidence and lack of evidence that allows the controversy to continue, and why resolution of the controversy is important. There are plausible mechanisms and research evidence that supports the suggestion that consumption of excess sugar promotes the development of cardiovascular disease (CVD) and type 2 diabetes (T2DM) both directly and indirectly. The direct pathway involves the unregulated hepatic uptake and metabolism of fructose, leading to liver lipid accumulation, dyslipidemia, decreased insulin sensitivity and increased uric acid levels. The epidemiological data suggest that these direct effects of fructose are pertinent to the consumption of the fructose-containing sugars, sucrose and high fructose corn syrup (HFCS), which are the predominant added sugars. Consumption of added sugar is associated with development and/or prevalence of fatty liver, dyslipidemia, insulin resistance, hyperuricemia, CVD and T2DM, often independent of body weight gain or total energy intake. There are diet intervention studies in which human subjects exhibited increased circulating lipids and decreased insulin sensitivity when consuming high sugar compared with control diets. Most recently, our group has reported that supplementing the ad libitum diets of young adults with beverages containing 0%, 10%, 17.5% or 25% of daily energy requirement (Ereq) as HFCS increased lipid/lipoprotein risk factors for CVD and uric acid in a dose-response manner. However, un-confounded studies conducted in healthy humans under a controlled, energy-balanced diet protocol that enables determination of the effects of sugar with diets that do not allow for body weight gain are lacking. Furthermore, recent reports conclude that there are no adverse effects of consuming beverages containing up to 30% Ereq sucrose or HFCS, and the conclusions from several meta-analyses suggest that fructose has no specific adverse effects relative to any other carbohydrate. Consumption of excess sugar may also promote the development of CVD and T2DM indirectly by causing increased body weight and fat gain, but this is also a topic of controversy. Mechanistically, it is plausible that fructose consumption causes increased energy intake and reduced energy expenditure due to its failure to stimulate leptin production. Functional magnetic resonance imaging (fMRI) of the brain demonstrates that the brain responds differently to fructose or fructose-containing sugars compared with glucose or aspartame. Some epidemiological studies show that sugar consumption is associated with body weight gain, and there are intervention studies in which consumption of ad libitum high-sugar diets promoted increased body weight gain compared with consumption of ad libitum low- sugar diets. However, there are no studies in which energy intake and weight gain were compared in subjects consuming high or low sugar, blinded, ad libitum diets formulated to ensure both groups consumed a comparable macronutrient distribution and the same amounts of fiber. There is also little data to determine whether the form in which added sugar is consumed, as beverage or as solid food, affects its potential to promote weight gain. It will be very challenging to obtain the funding to conduct the clinical diet studies needed to address these evidence gaps, especially at the levels of added sugar that are commonly consumed. Yet, filling these evidence gaps may be necessary for supporting the policy changes that will help to turn the food environment into one that does not promote the development of obesity and metabolic disease.

Sugar and Cardiovascular Disease

A Statement for Healthcare Professionals From the Committee on Nutrition of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association
Barbara V. Howard, Judith Wylie-Roset

As with most other dietary constituents, long-term trial data relating sugar consumption to the development of CVD events are unavailable. Longitudinal cohort studies relating sugar consumption to CVD are equivocal because of the many potential confounders that cannot be adequately controlled in the analyses. Shorter-term studies show consistent adverse effects of sugar consumption on HDL and triglyceride levels, which could accelerate atherosclerosis. High sugar consumption may worsen diabetes control, and the combination of sugar with protein and fats promotes formation of dietary AGEs, which may be especially detrimental to those with diabetes. Although increasing the amount of sugar in an isocaloric diet does not directly lead to changes in energy expenditure or weight gain in controlled feeding studies, high-sugar foods, which are sweet and calorie dense, may increase calorie consumption and lead to weight gain. Furthermore, replacement of whole foods with high-sugar foods compromises attainment of adequate dietary vitamin and mineral intake from whole food sources.

In the absence of definitive evidence, recommendations must rely on professional judgment. No data suggest that sugar intake per se is advantageous, and some data suggest it may be detrimental. The studies above, taken in total, indicate that high sugar intake should be avoided. Sugar has no nutritional value other than to provide calories. To improve the overall nutrient density of the diet and to help reduce the intake of excess calories, individuals should be sure foods high in added sugar are not displacing foods with essential nutrients or increasing calorie intake.

Miksi sokerit lihottavat?

Lipogeneesi eli rasvahapposynteesi on aineenvaihduntaprosessi, jossa hiilihydraatit muuttuvat triglyserideiksi. Käytännössä veren ylimääräinen glukoosi muutetaan varastorasvaksi. Tämä rasvahapposynteesi on aktiivista erityisesti maksan, rasvakudoksen ja toimivan maitorauhasen soluissa.

Lipogeneesin käynnistää insuliini, joka säätelee veren glukoositasoa. Rasvahapposynteesissä yhdestä glukoosimolekyylistä muodostuu ensin kaksi glyserolimolekyyliä, joihin liittyy edelleen glukoosin auenneesta renkaasta muodostunut pelkistynyt rasvahappoketju.

On esitetty arvio, että 45 % syödyistä hiilihydraateista menee suoraan elimistön ravinnoksi ja noin 55 % osallistuu lipogeneesiin.

Rasva-aineenvaihdunta sisältää vielä yhden yllätyksen: osa rasvoista muutetaan glukoneogeneesissä edelleen glukoosiksi ja osa varastoidaan rasvasoluihin.

Insuliini, insuliiniresistenssi ja IGF-1 (Insulin-like Growth Factor-1)

Insuliini on sokeriaineenvaihduntaa säätelevä hormoni, jota tuottaa haiman Langerhansin saarekkeissa sijaitsevat beetasolut. Sen vastavaikuttajia ovat glukagoni ja adrenaliini.

Insuliini ohjaa insuliinireseptoreiden säätelemää glukoosin kulkua rasva- ja lihassolujen solukalvon läpi soluihin, joissa glukoosista vapautetaan soluhengityksen reaktioiden avulla energiaa.

Haima alkaa erittää insuliinia heti aterian jälkeen. Se kuljettaa glukoosia elimistön kaikkiin soluihin. Terveet insuliinireseptorit reagoivat insuliiniin herkästi ja ruokailua seurannut kohonnut verensokeri laskee insuliinin avulla normaaliksi. Reseptoreiden insuliiniherkkyyden heikentymisen seurauksena glukoosi ei pääse soluihin ja verensokeripitoisuus pysyy korkeana.

Insuliiniresistenssi

Insuliiniresistenssi johtaa solujen mitokondrioiden vaurioitumiseen ja lisää mm. metabolisen oireyhtymän, aikuistyypin diabeteksen ja Alzheimerin taudin riskiä. Nykytiedon mukaan insuliiniresistenssi johtuu endoteelin toimintahäiriöstä ääreisvaltimoiden arerioli- ja kalpillaaritasolla. Endoteelin toimintahäiriö on varhaisin tapahtuma valtimonkovettumataudissa, mutta sitä voidaan ehkäistä ja hoitaa ortoglykeemisellä eli vähähiilihydraattisella ruokavaliolla.

Terveyden suurin vihollinen ei ole kolesteroli eikä ravintorasva, vaan lihavuus. Siinä vallitsee aina hiljainen krooninen tulehdustila, inflammaatio. Rasva ei yksin lihota, vaan myös liika hiilihydrattiien syönti. Lihomisen pääsyitä ovat tietyt geenivirheet sekä ihmisen itsensä erittämät hormonit: insuliini, kortisoli, leptiini, greliini ja oreksiinit – sekä adiponektiinin puute. Ne voidaan saada tasapainoon liikunnan ja oikean – ortoglykeemisen – ruokavalion avulla. Se stimuloi kylläisyyshormonia, kolekystokiniiniä. Lähde: tritolonen

Insuliiniresistenssissä haiman tuottaman insuliinin teho on heikentynyt ja lihaksisto sekä muut elimet ottavat glukoosia vastaan huonosti. Samaan aikaan verenkiertoon vapautuu liikaa glukoosia, jolloin verensokeripitoisuus kasvaa. Elimistö on siis tullut resistentiksi eli vastustuskykyiseksi insuliinille.  Insuliiniresistenssin on osoitettu kasvattavan Alzheimerin taudin riskiä 65%.

Insuliiniresistenssi johtaa suurella todennäköisyydellä glukoosi-intoleranssiin (heikentyneeseen sokerinsietokykyyn). Koholla olevat triglyseridit, insuliiniresistenssi, glukoosi-intoleranssi, matala HDL-kolesteroli, venepainetauti ja tulehdussytokiinit kasvattavat sydän- ja verisuonitautien riskiä.

Ruoansulatus: hiilihydraatteja pilkkovat entsyymit

Suolisto on osa ruoansulatuselimistöä. Se alkaa mahalaukusta ja päättyy peräaukkoon. Suolistoon kuuluvat ohutsuoli, paksusuoli ja peräsuoli. Sen tehtävä on pilkkoa ravintoaineita ja imeä nautitusta ravinnosta kaikki hyödyllinen: energiaravinteet kuten hiilihydraatit, joista imeytyy glukoosia energiaa tuottavan soluhengityksen lähtöaineeksi, suojaravinteet, eli vitamiinit ja hivenaineet sekä kasvulle ja solujen uusiutumiselle välttämättömät rasvat ja proteiinit.

Suoliston ja suolistoflooran terveys on terveyden ja hyvinvoinnin lähtökohta. Kun suolisto voi huonosti, myös ihminen voi huonosti. Se ei ole ihme, sillä suoliston limakalvo on pinta-alaltaan 200-300 neliömetriä ja se joutuu tekemisiin päivittäin 1-2 kg ruokamäärän kanssa. Ihmisen elinaikana suoliston läpi kulkee keskimäärin 60 tonnia ravintoa.

Joka minuutti suolistossa uusiutuu noin 55 miljoonaa solua ja joka päivä uusiutuu 200 grammaa soluja. Kaikki solut uusiutuvat 3-4 päivän välein. Uusia soluja muodostuu limakalvon pohjaosissa, joista ne työntyvät pintaa kohti korvatakseen vanhat solut, jotka irtoavat ja tuhoutuvat.

Suolistofloora muodostuu 100 000 miljardista mikro-organismista, jotka edustavat 400-500 mikrobilajia. Aikuisilla mikrobimassa painaa n. 1-2 kiloa. Ihmisessä elää mikrobeja noin 10 kertaa enemmän kuin ihmisessä on soluja.

Mikrobit osallistuvat ravintomassan jäännösten sulattamiseen ja tuottavat siinä yhteydessä aineenvaihduntatuotteita, jotka vaikuttavat positiivisesti elimistön ja immuunijärjestelmän toimintaan. Ruoansulatuskanavan hyödylliset bakteerit auttavat pilkkomaan ravinteita ja muodostamaan vitamiineja.

Suoliston terveys ja suolistoflooran mikrobit ovat yhteydessä lukemattomiin sairauksiin, allergioihin ja autoimmuunitauteihin kuten keliakiaan, Crohnin tautiin ja diabetekseen. Vääränlainen ja yksipuolinen ravinto, antibiootit, reseptilääkkeet, ympäristömyrkyt ja runsas alkoholinkäyttö vaikuttavat suolistoflooraan tuhoavasti.

Hiilihydraatteja pilkkovat entsyymit

Hiilihydraatteja pilkkovia entsyymejä on ruoansulatuskanavassa useita. Tärkkelyksen hydrolyysin aloittaa jo suussa amylaasi ja pilkkominen maltoosiksi jatkuu pohjukaissuolessa. Maltoosi pilkotaan kahdeksi glukoosimolekyyliksi maltaasin avulla. Laktaasi pilkkoo laktoosin eli maitosokerin glukoosiksi ja galaktoosiksi. Sakkaraasi pilkkoo sakkaroosin glukoosiksi ja fruktoosiksi. Glugagoni pilkkoo glykogeenin maksassa ja adrenaliini lihaksissa. Hydrolyysin sijaan glykogeeni pilkkoutuu fosforolyyttisesti, eli glukoosiyksiköiden väliin sitoutuu vesimolekyylin sijasta fosforihappo, jolloin saadaan glukoosi- 1-fosfaattia, jota voidaan käyttää glykolyysissä. Poly- ja oligosakkarideja elimistö ei pysty pilkkomaan hyödynnettävään muotoon, mutta ainakin osa niistä on suolistoflooran hyvinvointia parantavia prebiootteja.

Ohutsuoli ja ravinnon imeytyminen

Ohutsuoli on keskimäärin seitsemän metriä pitkä, mutkitteleva ja onteloinen suoliston osa, joka ulottuu mahalaukun mahaportista paksusuoleen. Sen pinnalla on nukkalisäkkeitä, joiden pinnalla on edelleen hermoja, imusuonia ja verisuonia. Ohutsuolen kolme osaa ovat: pohjukaissuoli, tyhjäsuoli ja sykkyräsuoli. Pohjukaissuoli koostuu edelleen neljästä osasta, joista yläosan alkupäässä on happamalta mahanesteeltä suojaavaa limaa erittäviä pohjukaissuolirauhasia. Tyhjäsuoli ja sykkyräsuoli muodostavat ohutsuolen loppuosan. Tyhjäsuolen limakalvo on poimuttuneempi ja siellä ravintoaineita imeytyy aktiivisesti.

Ohutsuolessa entsyymit pilkkovat ravintoa, eli hiilihydraatteja, proteiineja sekä rasvoja imeytyvään muotoon kemiallisesti ns. kemiallisessa pilkkoutumisessa. Pilkkoutuneet ravintoaineet imeytyvät ohutsuolen seinämän läpi verenkiertoon ja kulkeutuvat sitä kautta kaikkiin elimistön soluihin. Ravintoaineiden kuljettaminen tapahtuu verisuoniston ja imuteiden välityksellä. Ravintoaineet, joita ohutsuoli ei voi hyödyntää, kuten kuidut, kulkeutuvat paksusuoleen, jossa ne fermentoituvat ja tuottavat lyhytketjuisia rasvahappoja, joilla on terveydelle suotuisia ominaisuuksia.

Ohutsuolen seinämässä on monta kerrosta. Uloin kerros koostuu lihassyistä. Niiden sisäpuolella on hermoja, verisuonia, rasvaa ja löyhää sidekudosta sisältävä kerros. Sisempänä on ohut limakalvon lihaskerros ja loput limakalvot. Limakalvo on poimuttunut, mikä lisää suolen sisäpinta-alaa. Se on tarpeen, jotta mahdollisimman paljon suolen läpi kulkevista ravintoaineista voidaan hyödyntää. Limakalvoissa on miljoonia pieniä ulokkeita, eli nukkalisäkkeitä (villus). Nukkalisäkkeiden kautta ravintoaineet imeytyvät elimistöön. Ohutsuolen epiteelisolujen pinnassa on mikrovilluksia, joiden korkeus on 1µm. Solua kohden niitä on 1000-2000. Rengaspoimut laajentavat suolen imeytymispinnan kolminkertaiseksi, villukset kymmenkertaiseksi ja mikrovillukset 20-30 kertaiseksi, joten ohutsuolen koko imeytymispinta-ala on 200-300 neliömetriä.

Suolen limakalvossa on runsaasti imukudosta, joka poistaa suolesta bakteereita ja muita haitallisia aineita. Imukudosta on erityisen paljon sykkyräsuolen loppupäässä. Limakalvossa on myös muita soluja, jotka erittävät limaa, hormoneja ja muita suolen toimintaan vaikuttavia aineita.

Ruoka on ohutsuoleen tullessaan käynyt läpi mekaanisen muokkauksen ja alkanut mahalaukussa pilkkoutua pienempiin osiin. Ohutsuolessa entsyymit jatkavat ravintoaineiden pilkkomista pienemmiksi, imeytyviksi osiksi. Entsyymeitä syntyy ruoansulatuselimissä, kuten haimassa, josta ne kulkeutuvat ohutsuoleen tiehyitä pitkin. Myös ohutsuolen limakalvossa syntyy useita eri entsyymejä.

Melkein kaikki pilkkoutuneet aineet imeytyvät limakalvon nukkalisäkkeisiin. Monet aineet kulkeutuvat nukkalisäkkeiden solujen solukalvon läpi itsestään. Jotkut aineet tarvitsevat imeytymisprosessiin natriumia. Soluista kulkeutuu solukalvon läpi niitä ympäröivään kudosnesteeseen natriumioneja, jolloin soluihin syntyy natriumvajaus. Kun natriumionit palaavat soluihin, niiden mukana kulkeutuu tärkeitä ravintoaineita. Nukkalisäkkeeseen imeytyvät rasvat kulkeutuvat imusuoniston mukana lopulta verenkiertoon. Suuri osa ravintoaineista kulkeutuu maksaan. Sykkyräsuolessa imeytyy suuri osa sapesta ja B12 vitamiinista.

Sulamaton massa kulkeutuu edelleen paksusuoleen, jossa se liikkuu suolenseinämän lihasten supistellessa. Ohutsuoli pystyy käsittelemään noin 10 litraa ruokaa päivässä. Tavallisesti ruoka kulkee ohutsuolen läpi kuudessa tunnissa.

Ohutsuolen tyypillisiä sairauksia ovat pohjukaissuolen haavaumat sekä tulehdukselliset suoistosairaudet kuten ärtyvän suolen oireyhtymä, keliakia ja Crohnin tauti.

 Paksusuoli

Paksusuoli on ohutsuolen jatke, joka alkaa vatsaontelossa oikealta alhaalta. Sen alkuosa on säkin muotoinen ja sitä kutsutaan umpisuoleksi. Umpisuolen kärjessä on ohut lisäke – umpilisäke, siis se osa joka poistetaan umpilisäkkeen leikkauksessa. Heti umpisuolen yläpuolella ohutsuoli liittyy paksusuoleen. Ohutsuolen ja paksusuolen liittymäkohdassa on läppä, joka estää takaisinvirtauksen eräänlaisen venttiilin avulla. Paksusuolen ulkopintaa verhoaa vatsakalvo. Sen sisäpuolella on sidekudosta ja lihaksia. Näitä seuraa kudos, joka tukee koko suolta ja sisimpänä on poimuttunut suolen limakalvo.

Paksusuoli on 1-2 metrin mittainen ja viiden sentin paksuinen suoliston osa, jossa elävät mikrobit myös huolehtivat suoleen tulevan materiaalin käsittelystä yhdessä suolen mekaanisten toimien kanssa. Paksusuolen eräs tärkeimmistä tehtävistä on ottaa suolessa olevasta ravinnosta nestettä ja suoloja. Ruokaa työstetään suussa, mahalaukussa ja ohutsuolessa, joissa imeytyvät tärkeimmät ravintoaineet. Kun työstetty ravintomassa tulee paksusuoleen, siinä on runsaasti vettä, joka poistuu kehosta ulosteen mukana. Paksusuoli imee osan nesteestä.

Paksusuoli voi bakteerien avulla muuttaa tietyt ruoassa olevat aineet siten, että elimistö voi käyttää niitä hyväkseen. Paksusuolessa elää bakteereita, jotka muodostavat suuren osan ulosteen määrästä ja kiinteydestä. Vesi suolat ja mikrobien valmistamat vitamiinit, K-vitamiini ja jotkut B-vitamiinit, imeytyvät paksusuolessa verenkiertoon. Myös selluloosaa (kuitua) pilkkoutuu paksusuolessa jonkin verran. Massa, jota suolisto ei voi hyödyntää, kulkeutuu peräsuoleen, josta se poistuu ulosteena.

Paksusuolella on suuri pinta-ala, jotta se voi ottaa talteen nestettä. Suolen sisäpinnan limakalvo on poimuttunut ja nestettä läpäisevien solujen peittämä. Näiden solujen kautta neste, rasva ja ravintoaineet kulkeutuvat elimistön käyttöön.

Paksusuolella on myös imusuonijärjestelmä, joka kerää solujen ulkopuolista nestettä ja kuljettaa sen takaisin kehon eri osiin. Imusuonissa kuljetetaan suuri osa ravinnosta saatavista rasvoista ja niillä on vasta-aineen muodostuksessa tärkeä rooli.

Soluhengitys ja energia

Hiilihydraatit pilkotaan ruoansulatuskanavassa ensin mekaanisesti ja sitten kemiallisesti entsyymien avulla ohutsuolessa imeytyvään muotoon sokereiksi, vitamiineiksi, kivennäisaineiksi, aminohapoiksi ja rasvoiksi, joilla kullakin on omat tarkoituksensa aineenvaihdunnassa.

Hiilihydraateista saatava glukoosi kulkeutuu veri- ja imusuonien välityksellä ja insuliinin ohjaamana soluihin, jossa se yhdessä hapen kanssa vapauttaa soluhengityksessä energiaa. Soluhengityksen tärkeimmät vaiheet ovat:

Glykolyysi:

Yksinkertaisesti soluhengityksen lähtöaineina ovat glukoosi ja happi ja lopputuotteena syntyy hiilidioksidia ja vettä. Reaktiossa vapautuu energiaa ATP-molekyylien sidoksien purkautuessa. Glykolyysi on solulimassa tapahtuva reaktioiden sarja, jossa glukoosi hajotetaan pyruvaatiksi: reaktiosta saadaan kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä. Pyruvaateista saadaan mitokondrioissa tiettyjen entsyymien avulla edelleen oksidatiivisessa dekarboksylaatiossa asetyylikoentsyymi-A:ta, jos happea on riittävästi. Punasoluissa pyruvaatti pelkistyy mitokondrion ja hapen puutteen seurauksena maitohapoksi. Maitohappoon päättyvää glykolyysiä kutsutaan anaerobiseksi glykolyysiksi ja asetyylikoentsyymi-A:han päättyvää glykolyysiä aerobiseksi glykolyysiksi.

Sitruunahappokierto:

– eli Krebsin sykli (TCA-kierto): on solujen mitokondrioissa tapahtuva monivaiheinen prosessi, jossa ravintoaineista saadut hiiliatomit hapettuvat hiilidioksidiksi ja samojen molekyylien sisältämät vedyt siirtyvät elektroninsiirtäjäkoentsyymeille. Prosessissa vapautuu energiaa ja se on solujen pääasiallinen energianlähde. Ennen kuin hiilihydraatit ja rasvat päätyvät sitruunahappokiertoon, solussa tapahtuvien muiden prosessien on muutettava ne sopivaan muotoon – asetyyliryhmäksi, joka sitoutuu koentsyymi-A:n kanssa aktiiviseksi etikkahapoksi eli asetyylikoentsyymi-A:ksi. Kierron eri vaiheissa sitoutuu vesimolekyylejä ja siinä vapautuu hiilidioksidia sekä vetyioneja ja elektroneja. Nämä siirtyvät hapetus-pelkistysreaktioissa elektroninsiirtäjäkoentsyymeille, joita ovat NAD+ ja FAD. Koentsyymeiltä vedyt siirtyvät edelleen elektroninsiirtoketjuun, jonka päätteeksi ne yhtyvät hengitysilmasta tulleen hapen kanssa vesimolekyyleiksi. Syklisessä reaktiossa sitoutuu myös yksi fosforihappomolekyyli, jolloin muodostuu yksi korkeanenerginen ATP-molekyyli GTP-välivaiheen kautta, ja neljä pelkistynyttä elektroninsiirtäjäkoentsyymiä (kolme NADH:ta ja yksi FADH2) kutakin pilkkoutunutta ja hapettunutta asetyylikoentsyymi-A:ta kohti. Sitruunahappokierto tapahtuu pääasiassa mitokondrion matriksissa, kun elektroninsiirtoketju tapahtuu puolestaan mitokondrion sisäkalvolla. Kiertoon kuuluu kymmenen vaihetta, joista jokaisessa jokinkrboksyylihappo joko sitoo jonkin molekyylin tai siitä irtoaa jotain niin, että se muuttuu toiseksi karboksyylihapoksi.

Elektroninsiirtoketju:

– on mitokondrion sisäkalvolla tai solukalvon kalvoproteiineissa tapahtuva energiaa tuottava reaktiosarja, jossa sitruunahappokierrossa ja sitä edeltäneissä reaktioissa koentsyymeille NADH ja FADH2 siirtyneitä elektroneja siirrellään elektroninsiirtoketjun entsyymiltä toiselle, jolloin elektronin menettävät potentiaalienergiaansa vähitellen vapauttaen samalla energiaa. Vapautuvan energian avulla mitokondrion matriksista pumpataan protoneja mitokondrion kalvojen välitilaan, mikä aiheuttaa elektrokemiallisen gradientin eli potentiaali- ja protonikonsentraatioeron matriksin ja välitilan välille. Muodostunut gradientti purkautuu ATP-syntaasientsyymin kautta, jolloin muodostuu suurenergiaista fosfaattiyhdistettä, ATP:tä. Tätä reaktiota kutsutaan oksidatiiviseksi fosforylaatioksi. Pelkistys elektroninsiirtoketjussa päättyy, kun vety siirtyy molekulaariselle hapelle, joka pelkistyy vedeksi. Hapen pelkistymistä vedeksi katalysoi elektroninsiirtoketjun viimeinen entsyymi – sytokromi-c-oksidaasi.

ATP, eli adenosiinitrifosfaatti on runsasenerginen yhdiste, jota mitokondriot tuottavat soluhengityksellä solulimassa tapahtuvassa glykolyysissä. ATP:ta käytetään energian siirtoon ja lyhytaikaiseen varastointiin. Elimistön solujen tarvitessa ATP-molekyyleihin sitoutunutta energiaa ATPaasi-niminen entsyymi pilkkoo runsasenergiaisia sidoksia fosfaattiryhmien väliltä. ATP muodostuu adeniinista, riboosista ja kolmesta fosfaattiosasta. Kun ATP:stä irtoaa yksi fosfaattiosa, siitä tulee adenosiinidifosfaattia (ADP) ja kahden osan irrotessa adenosiinimonofosfaattia (AMP).

Ihminen käyttää arviolta painonsa verran ATP-molekyylejä vuorokaudessa; ts. yksi ATP-molekyyli kierrätetään vuorokaudessa  1000-1500 kertaa. ATP on lihassoluissa lihassupistuksen ainoa energianlähde.

Ketogeneesi ja glukoneogeneesi

Veren insuliinipitoisuuden laskiessa ja glukagonipitoisuuden noustessa elimistö siirtyy ravintoaineiden varastoinnista varastojen purkuun. Käynnistyy glukoneogeneesi, jossa elimistö alkaa muodostaa glukoosia vapaista aminohapoista sekä rasvojen glyserolista että maitohaposta.

Glukoneogeneesin rinnalla käynnistyy tarvittaessa ketogeneesi, joka vähentää glukoosin valmistustarvetta ja näin ollen säästää aminohappoja, mikä on erityisen tärkeää pitkittyneessä ravinnottomuudessa. Pääasiassa maksa (mutta vähäisessä määrin myös muut kudokset kuten munuaisen kuorikerros) alkaa muodostaa vapaista rasvahapoista ketoaineita, joita mm. aivot ja sydänlihas sekä muu lihaksisto kykenevät käyttämään energianlähteenä palauttaen ketoaineet (asetoasetaatti, beeta-hydroksibutyraatti) asetyylikoentsyymi-A:ksi, joka on suoraan käytettävissä oksidatiiviseen energiantuotantoon Krebsin syklin kautta mitokondrioissa aivan samalla tavalla kuin tapahtuu glukoosinpoltonkin aerobinen osuus.

Aivojen koko glukoosintarvetta ei voi kuitenkaan korvata ketoaineilla, ja maksa tuottaakin sekä ravinnon että omien varastorasvojensa glyserolista sekä ravinnon aminohapoista glukoosia glukoneogeneesillä. Maksan glukoneogeneesin tuotantokyky riittää kaikkiin elämälle välttämättömiin aina pakollisiin glukoosin tarpeisiin. Mm. punasolut tarvitsevat aina yksinomaan glukoosia energiantarpeisiinsa, koska punasoluissa ei ole mitokondrioita. Glukoosista ne käyttävät yksinomaan anaerobisen osuuden ja palauttavat jäljelle jääneen osan maitohappona edelleen muualla käytettäväksi. Aivot tarvitsevat aina täydellisen ketoaineadaptaationkin jälkeen yleensä vähintään 20–30 % energiantarpeestaan glukoosina. Niillä on yleensä aina valmius käyttää ketoaineita noin 30–40 % energiantarpeestaan. Wikipedia

 

Katso sokeria käsitteleviä videoita

Fed Up

The Truth About Sugar

 

Sugar: The Kiss of Death