Immuunijärjestelmä: luonnolliset tappajasolut

Luonnolliset tappajasolut voivat tuhota SARS-CoV-2-viruksen infektoimia soluja, mutta vakavaa COVID-19-infektiota sairastavilla NK-solujen antama immuunivaste toimii puutteellisesti.

Writkowski et.al havaitsi, että vaikeaa COVID-19-tautia sairastavien verenkierrossa on normaalia korkeampi pitoisuus anti-inflammatorisia molekyylejä, jotka vaikuttavat kasvutekijä-β1:een (TGF-β1). Tämä vaikutus liittyy NK-solujen heikentyneeseen antiviraaliseen immuunivasteeseen, mikä heikentää immuunijärjestelmän puolustusta SARS-CoV-2-virusta vastaan.

RNA-sekvensointianalyysissä NK-solut osoittivat erityispiirteitä COVID-19-potilailla terveisiin verrattuna. Proinflammatoriset sytokiinivälitteiset signalointireitit vahvistuivat merkittävästi. Epätavallinen CD56dimCD16neg NK-solupopulaatio laajeni COVID-19-potilaiden PBMC-soluissa taudin vakavuudesta riippumatta, ja siihen liittyi NK-solujen sytotoksisuuden heikkeneminen. NK-solupopulaatio kuitenkin normalisoitui nopeasti samalla kun epätavanomaiset CD56dimCD16neg NK-solut katosivat ja NK-solujen sytotoksisuus palautui potilailla, joilla oli lievä COVID-19, mutta NK-solujen sytotoksisuus palautui hitaasti potilailla, joilla oli vakava COVID-19.

Luonnollisten tappajasolujen sytotoksisuuden heikkeneminen altistaa vakavammalle COVID-19-infektiolle, mutta mitä nämä luonnolliset tappajasolut, eli NK-solut ovat?

Johdanto

Luonnolliset tappajasolut (Natural Killer Cells) ovat T -ja B -solujen perheeseen kuuluvia yhteisestä kantasolusta kehittyviä lymfosyyttejä. Luontaisen immuunijärjestelmän soluina NK-solut luokitellaan ryhmän I synnynnäisiksi lymfosyyteiksi (ILC).

Luonnolliset tappajasolut reagoivat nopeasti patologisiin uhkiin. NK-solut tunnetaan erityisesti virustartunnan saaneiden solujen tuhoamisesta sekä syövän varhaisten merkkien havaitsemisesta ja kontrolloimisesta.

Erikoistuneita NK-soluja on myös istukassa ja niillä on tärkeä rooli hedelmöittymisessä ja raskauden aikana. NK-solut havaittiin niiden kyvystä tappaa pahanlaatuisia soluja ilman erillistä aktivointia. Sytotoksisista T-soluista poiketen NK-solut eivät tarvitse aktivointia antigeeniä esittäviltä soluilta.

NK-solut erittävät sytokiinejä: interferoni-gamma[IFNy] ja tuumorinekroositekijä-alfa[TNFa], jotka vaikuttavat immuunivastetta tehostaviin immuunisoluihin, kuten makrofageihin ja dendriittisoluihin.

NK-solut ovat jatkuvasti yhteydessä muihin soluihin. Luonnollisen tappajasolun immuunivasteen käynnistymiseen vaikuttaa aktivoivien ja estävien reseptorien signaalien tasapaino NK-solun pinnalla.

Aktivoivat reseptorit tunnistavat molekyylejä, jotka ilmentyvät pahanlaatuisten syöpäsolujen ja sairastuneiden solujen pinnalla käynnistäen NK -solun sytotoksisen immuunivasteen. Estävät (inhibitoivat) reseptorit toimivat NK -solujen varmistusmekanismina, joka estää NK-soluja tuhoamasta terveitä soluja.

Useimmat terveet solut ilmentävät pinnallaan MHC I-reseptoreita. Nämä toimivat tunnisteina, joiden avulla immuunijärjestelmä erottaa omat solut vieraista taudinaiheuttajista. NK -solun pinnalla olevat estävät reseptorit tunnistavat MHC I:n. Tämä ”sammuttaa” NK -solun immuunivasteen estäen terveen solun tappamisen.

Syöpäsolut ja viruksen infektoimat solut menettävät usein MHC I-reseptorit, jolloin ne altistuvat NK-solujen sytotoksiselle immuunivasteelle. Havaitessaan infektoituneen solun NK-solu vapauttaa perforiinia ja grantsyymejä sisältäviä sytotoksisia rakeita, mikä johtaa kohdesolun hajoamiseen.

MHC I:n ja NK-soluja estävien reseptorien geenit vaihtelevat ihmisten välillä. Näiden geenien alleelit assosioituvat mm. joidenkin autoimmuunisairauksien riskiin. NK-solut muuttuvat iän myötä, ja niihin vaikuttavat krooniset virusinfektiot, kuten sytomegalovirus (CMV). Koska

NK-solut kykenevät tappamaan kasvainsoluja, ne ovat syöpähotoihin kohdistuvan immuuniterapian kannalta kiinnostava tutkimuskohde. Jotkut terapeuttiset monoklonaaliset vasta -aineet perustuvat NK-solujen hyödyntämiseen. Tutkijat kehittävät myös hoitoja NK -solujen aktivoimiseksi käyttämällä sytokiinejä ja testaavat geneettisesti muunnettuja eläviä NK-soluja immuuniterapiana.

Luonnolliset tappajasolut ja immuunijärjestelmä

Luontaisen (innate) immuunijärjestelmän luonnollisia tappajasoluja ei tule sekoittaa hankinnaisen (adaptive) immuunijärjestelmn luonnollisiin tappaja T-soluihin (Natural killer T cell).

Luonnolliset tappajasolut, jotka tunnetaan myös nimellä NK-solut tai suuret granulaariset lymfosyytit (LGL) ovat synnynnäiseen/luontaiseen (innate) immuunijärjestelmään kuuluvia sytotoksisia (eli infektoituneita soluja tappavia) lymfosyyttejä. NK-solut kuuluvat kasvavaan synnynnäisten lymfoidisolujen (ILC) perheeseen, jotka muodostavat 5–20 prosenttia kaikista elimistön lymfosyyteistä [1].

NK-solujen rooli on verrannollinen hankinnaisen (adaptive) immuunivasteen sytotoksisten T-solujen roolin kanssa.

Luontaisen immuniteetin järjestelmät torjuvat nopeasti ja tehokkaasti mikrobeja ja muita elimistöön päässeitä tai kertyneitä vieraita aineksia tilanteissa, joissa antigeenejä spesifisesti tunnistavia vasta-aineita ja sytotoksisia T-soluja ei ole ehtinyt muodostua, sekä tilanteissa, joissa adaptiivinen immuniteetti tarvitsee tehostemekanismeja tunnistamiensa vieraiden rakenteiden siivoamiseen. NK-solut aktivoituvat nopeasti (noin kolmessa vuorokaudessa) viruksen tai jonkin muun patogeenin aiheuttamaan infektioon.

MHC (Major Histocompatibility Complex)

Tavallisesti immuunisolut havaitsevat MHC*-glykoproteiinien muutokset infektion saaneiden solujen pinnoilla. MHC-proteiineja kutsutaan usein myös HLA*-antigeeneiksi. MHC-molekyylejä on kahta tyyppiä: luokan I MHC- ja luokan II MHC-molekyylit.

Luokan I MHC-proteiineja ilmennetään lähes kaikissa selkärankaisen solutyypeissä. Ne esittelevät antigeenejä sytotoksisille T-soluille. Luokan II MHC-proteiineja ilmennetään pääasiassa soluissa, jotka ovat vuorovaikutuksessa auttaja-T-solujen (T helper-cell) kanssa, kuten dendriittisoluissa, makrofageissa ja B-lymfosyyteissä.

MHC-proteiineja esiintyy sairastuneiden solujen solupinnoilla, mikä laukaisee sytokiinien erittymisen. Tämä johtaa infektoidun solun lyyttiseen hajoamiseen (lysis) tai apoptoosiin (ohjattu solukuolema).

NK-soluja kutsutaan ”luonnollisiksi tappajiksi”, koska niiden immuunivaste ei edellytä erityistä aktivointia ja solun infektioon viittaava MHC I-markkeria [2]. Tämän vuoksi NK-solujen immuunireaktio on nopea. Muut immuunisolut, kuten T-solut, eivät havaitse ja tuhoa haitallisia soluja, joista puuttuu nämä MHC I -markkerit.

MHC-proteiinit toimivat immunologisessa puolustuksessa sitoen antigeeninä toimivan proteiinin pilkkoutumisen seurauksena syntyneitä peptidifragmentteja ja kuljettaen niitä antigeeniä esittelevän solun (dendriittisolu naiivien T-solujen tapauksessa) pinnalle, jossa ne esitellään yhdessä muiden stimulatoristen signaalien kanssa T-soluille.

Tämän seurauksena aktivoituneet efektori-T-solut tunnistavat saman peptidi-MHC-kompleksin kohdesolunsa pinnalla, mikä voi sytotoksisten T-solujen tapauksessa olla mikä tahansa infektoitunut elimistön solu, auttaja-T-solujen tapauksessa B-solu, sytotoksinen T-solu, infektoitunut makrofagi tai dendriittisolu itse.

* major histocompatibility complex
* human leucocyte-associated antigens

schematic diagram indicating the complementary activies of cytotoxic T cells and NK cells

NK-solut tehostavat synnynnäisen immuunijärjestelmän toimintaa

Luonnolliset tappajasolut kuuluvat synnynnäisten imusolujen ryhmään. Ne ovat yksi kolmesta solutyypistä, jotka ovat eriytyneet tavallisista imukudoksen kantasoluista. Ryhmän kaksi muuta imusolutyyppiä ovat B- ja T -solut. NK-solut erottaa muista lymfosyyteistä CD56:n ilmentyminen ja CD3:n puuttuminen (CD56+, CD3−) [3, 4].

NK -solut erilaistuvat ja kypsyvät luuytimessä, imusolmukkeissa, pernassa, risoissa ja kateenkorvassa [5]. Luonnolliset tappajasolut eroavat luonnollisista tappaja-T-soluista (NKT) fenotyypin, alkuperän ja efektoritoimintojen perusteella. Usein NKT-soluaktiivisuus edistää NK-solujen toimintaa erittämällä gamma-interferonia.

NK-solut eivät ilmennä T-soluantigeenireseptoreita (TCR), pan-T-merkkiaineita (CD3), tai pinta-immunoglobuliinien (Ig) B-solureseptoreita, mutta yleensä ne ilmentävät pintamarkkereita, kuten CD16 ja CD57. NKp46 -solun pintamarkkeri on NK -solumarkkeri, joka ilmentyy ihmisisen solujen lisäksi monien eläinten soluissa [6] [7].

Luonnolliset tappajasolut tehostavat luontaisen immunijärjestelmän toimintaa. Aktivoivilla ja inhiboivilla NK -solureseptoreilla on tärkeitä toiminnallisia tehtäviä immunologisen toleranssin (self tolerance) ja NK -solujen aktiivisuuden ylläpitämisessä.

NK-solut osallistuvat myös adaptiiviseen immuunivasteeseen [8]. Kokeet ovat osoittaneet NK-solujen kyvyn mukautua välittömään ympäristöön ja muodostaa antigeenispesifistä immunologista muistia, joka on olennainen sekundaarisiin infektioihin vastaamisessa samalla antigeenillä [9].

NK -solujen rooli immuunivasteissa on tärkeä tutkimuslinja tutkimuksessa, jossa käytetään NK -solujen aktiivisuutta mahdollisena syöpähoitona.

* MeSH = Medical Subject Headings
* FMA = The Foundational Model of Anatomy Ontology

NK-solujen historia

Varhaisissa syöpäpotilaiden tutkimuksissa soluvälitteisestä sytotoksisuudesta kasvainkohdesoluja vastaan havaittiin johdonmukaisesti niin sanottua ”luonnollista” reaktiivisuutta. Jotkin lymfosyytti-populaatiot hajottivat poikkeuksellisesti kasvainsoluja ilman, että niitä oli aikaisemmin herkistetty kasvainsoluille.

Tohtori Henry Smith (Leedsin yliopiston lääketieteellinen korkeakoulu) julkaisi havainnosta tutkimuksen (1966), jossa vahvistettiin, että käsittelemättömät lymfoidisolut pystyivät antamaan luonnollisen immuniteetin kasvaimille [10]. Monet tutkijat olivat tehneet vastaavia havaintoja, mutta koska löydöt olivat ristiriidassa tuolloin vakiintuneen mallin kanssa, monet pitivät näitä havaintoja artefakteina*.[11]

* Artefakti (lääketiede):
1. keinotekoinen tuote; rakenne tai piirre, joka ei ole luonnollinen, vaan johtuu manipulaatiosta.
2. kuvan vääristymä tai sumeus, joka johtuu käsittelystä tai varastoinnista.


Vuoteen 1973 mennessä ”luonnollinen tappava” reaktiivisuus vahvistettiin useilla lajeilla. Havaintojen seurauksena postuloitiin oletus erillisen solulinjan olemassaolosta, jolla on tämä kyky. Havainnon, että ainutlaatuinen lymfosyyttityyppi oli vastuussa spontaanista sytotoksisuudesta, teki 1970-luvun alussa Rolf Kiessling ja Hugh Pross hiirillä [12] sekä Hugh Pross ja Mikael Jondal ihmisillä [13][14]. Hiiri- ja ihmistutkimukset toteutettiin Tukholman Karoliinisen instituutin professorien Eva Kleinin ja Hans Wigzellin ohjauksessa.

Kiesslingin tutkimus koski T-lymfosyyttien hyvin karakterisoitua kykyä hajottaa kasvainsoluja, joita vastaan ne oli aiemmin immunisoitu. Pross ja Jondal tutkivat soluvälitteistä sytotoksisuutta ihmisen veressä ja erilaisten reseptoria sisältävien solujen poistamisen vaikutusta tähän sytotoksisuuteen. Myöhemmin samana vuonna Ronald Herberman julkaisi samanlaisia havaintoja hiiren efektorisolun ainutlaatuisesta luonteesta [15]. Ihmisillä tehtyjen tutkimusten tiedot vahvisti suurimmaksi osaksi West et al.[16] käyttäen samanlaisia tekniikoita ja samaa erytroleukeemista kohdesolulinjaa, K562. K562 on herkkä ihmisen NK-solujen hajoamiselle. Sittemmin K562 51-kromin vapautumismäärityksestä on tullut yleisimmin käytetty määritys ihmisen NK-toiminnallisen aktiivisuuden havaitsemiseksi [17].

Menetelmän yleinen käyttö on johtanut siihen, että laboratoriot ympäri maailmaa voivat helposti vertailla kokeellisia tietoja. Käyttämällä epäjatkuvaa tiheyssentrifugointia ja monoklonaalisia vasta-aineita, luonnollinen tappamiskyky kartoitettiin suurten, granulaaristen lymfosyyttien alaryhmään (LGL), jotka tunnetaan nykyään NK-soluina.

Timonen ja Saksela osoittivat vuonna 1980, että tiheysgradientilla eristetyt suuret granulaariset lymfosyytit olivat vastuussa ihmisen NK-aktiivisuudesta [18]. Tämä oli ensimmäinen kerta, kun NK-solut visualisoitiin mikroskooppisesti, ja se oli suuri läpimurto alalla.

NK-solujen alaryhmät

NK-solut luokitellaan:

  • CD56bright -soluiksi ja
  • CD56dim – soluiksi [19][20][3]

CD56bright NK-solut erittävät sytokiineja ja ovat toiminnaltaan samankaltaisia kuin T-auttajasolut [20]. CD56bright NK-solut muodostavat valtaosan luuytimen, toissijaisista imukudoselimistä, maksan ja iho NK-soluista [3].

Imukudosta on myös imukeräsissä. Imukeräsiä löytyy risakudoksista, Peyerin levyistä suolistossa, umpilisäkkeestä ja hengitysteiden limakalvolta. Näistä imukudoksista käytetään nimitystä MALT-järjestelmä (mucosa-associated lymphoid tissue). Imukudoselimet voidaan jakaa ensisijaisiin imukudoselimiin, joita ovat luuydin ja kateenkorva sekä toissijaisiin imukudoselimiin, joita ovat perna, risat, imusuonisto imusolmukkeineen, erilliset imukeräset ja imukerässikermät.

CD56dim NK-soluja löydetään pääasiassa perifeerisestä verestä*, [3]. Näitä NK-soluja luonnehtii ”kyky tappaa” sairastuneita soluja [20]. CD56dim NK-solut ovat aina CD16-positiivisia (CD16 on vasta-aine-riippuvaisen soluvälitteinen sytotoksisuus (ADCC – Antibody-dependent cellular cytotoxicity)) välittäjä [20]. CD56bright NK-solut voivat muuttua CD56dim -soluiksi CD16 välityksellä [3]. Luonnolliset tappajasolut tuhoavat viruksen infektoimia soluja CD16-välitteisesti vasta-aine-riippuvaisessa soluvälitteisessä sytotoksisuudessa (ADCC)[21].

Kaikilla COVID-19-potilailla CD56bright NK-solujen toiminta on heikentynyt, mutta CD56dim on heikentynyt vain vakavaa COVID-19-infektiota sairastavilla [21].

* Perifeerinen veri kulkee sydämen, valtimoiden, kapillaarien ja verisuonien läpi. Sen tärkein tehtävä on kuljettaa happea ja ravintoaineita elimistön soluihin ja kudoksiin sekä poistaa hiilidioksidia ja muita kuona-aineita elimistöstä.

NK-solujen reseptorit

NK-solureseptorit voidaan erottaa toiminnan perusteella. Luonnolliset sytotoksisuusreseptorit indusoivat suoraan apoptoosin (solukuoleman) Fas-ligandiin sitoutumisen jälkeen, mikä osoittaa suoraan solun tartunnan.

MHC-riippumattomat reseptorit käyttävät vaihtoehtoista reittiä apoptoosin indusoimiseksi infektoiduissa soluissa. Luonnollinen tappajasoluaktivaatio määräytyy estävän ja aktivoivan reseptoristimulaation tasapainon perusteella. Esimerkiksi, jos inhiboiva reseptorin signalointi on näkyvämpää, NK-soluaktiivisuus estyy; samoin, jos aktivoiva signaali on hallitseva, seurauksena on NK-solujen aktivaatio [22]. NK-solureseptorityypit (joissa on inhiboivia ja joitain aktivoivia jäseniä) erotetaan rakenteesta. Seuraavassa on muutama esimerkki:

Aktivoivat reseptorit

  • Ly49 (homodimeeri, eli kahdesta rakenneyksiköstä koostuva rakenne, jonka molemmat yksiköt ovat samanlaisia). Ihmisellä on yksi pseudogeeninen Ly49-reseptori, joka kuuluu vanhoihin C-tyypin lektiiniperheen reseptoreihin. Ly49 on klassisten (polymorfisten) MHC I -molekyylien reseptori.
  • NCR (luonnolliset sytotoksisuusreseptorit), immunoglobuliinien superperheen tyypin 1 transmembraaniproteiinit välittävät stimulaatiossa NK:n tappamista ja IFNy:n vapautumista. Ne sitovat virusligandeja, kuten hemagglutiniinit ja hemagglutiniinineuraminidaasit, joitain bakteeriligandeja ja soluligandeja, jotka liittyvät kasvaimen kasvuun, kuten PCNA.
  • CD16 (FcγIIIA) CD16 on erilaistumismolekyylien ryhmä, joka löytyy luonnollisten tappajasolujen, neutrofiilien, monosyyttien ja makrofagien pinnasta. Se osallistuu vasta-aineriippuvaiseen soluvälitteiseen sytotoksisuuteen.CD16 on immunoglobuliinien superperheen (IgSF) molekyyli, joka osallistuu vasta-aineriippuvaiseen solusytotoksisuuteen (ADCC). Sitä voidaan käyttää spesifisten immuunisolujen populaatioiden eristämiseen fluoresenssiaktivoidun solulajittelun (FACS) tai magneettisesti aktivoidun solulajittelun avulla käyttämällä CD16:ta vastaan suunnattuja vasta-aineita.CD16 on tyypin III Fcy-reseptori. Ihmisillä sitä esiintyy kahdessa eri muodossa: FcyRIIIa (CD16a) ja FcyRIIIb (CD16b), joiden sekvenssien samankaltaisuus on 96 % solunulkoisilla immunoglobuliinia sitovilla alueilla. Kun FcyRIIIa ekspressoituu syöttösoluissa, makrofageissa ja luonnollisissa tappajasoluissa transmembraanisena reseptorina, FcyRIIIb ekspressoituu vain neutrofiileissä.

    FcyRIIIb on ainoa Fc-reseptori, joka on ankkuroitu solukalvoon glykosyylifosfatidyyli-inositoli (GPI) -linkkerillä, ja sillä on myös merkittävä rooli kalsiumin mobilisaation ja neutrofiilien degranulaation käynnistämisessä. FcγRIIIa ja FcγRIIIb pystyvät yhdessä aktivoimaan degranulaation, fagosytoosin ja oksidatiivisen purskeen, mikä mahdollistaa neutrofiilien puhdistamisen opsonisoituneista patogeeneista.

Inhiboivat (estävät) reseptorit

  • Tappajasolun immunoglobuliininkaltaiset reseptorit (KIRs) kuuluvat Ig:n kaltaisten solun ulkoisten domeenien reseptorien multigeeniseen perheeseen. Ne ovat klassisen MHC I:n (HLA-A, HLA-B, HLA-C) sekä ei-klassisen Mamu-G:n (HLA-G) pääreseptoreita kädellisillä. Jotkut KIR:t ovat spesifisiä tietyille HLA-alatyypeille. Useimmat KIR:t ovat estäviä ja hallitsevia. Tavalliset solut ilmentävät MHC-luokkaa I, joten KIR-reseptorit tunnistavat ne ja NK-solujen sytotoksinen reaktio estyy.
  • CD94/NKG2 (heterodimeeri, eli kahdesta rakenneyksiköstä koostuva rakenne, jonka molemmat yksiköt ovat rakenteeltaan erilaisia) on C-tyypin lektiiniperheen reseptori, joka on konservoitunut (säilynyt samanlaisena) sekä jyrsijöillä että kädellisillä ja identifioi ei-klassisia (myös ei-polymorfisia) MHC I -molekyylejä, kuten HLA-E. HLA-E:n ilmentyminen solun pinnalla riippuu klassisten MHC-luokan I molekyylien signaalisekvenssistä peräisin olevan nonameeripeptidiepitoopin läsnäolosta, joka muodostuu signaalipeptidipeptidaasin ja proteasomin peräkkäisestä toiminnasta.
  • ILT tai LIR (immunoglobuliininkaltainen reseptori) kuuluu äskettäin tunnistettuun Ig-reseptoreiden perheeseen.
  • Ly49:llä on sekä aktivoivia että estäviä isoformeja. Ne ovat erittäin polymorfisia populaatiotasolla; vaikka ne eivät ole rakenteellisesti sukua KIR:eille, ne ovat KIR:ien toiminnallisia homologeja hiirillä. Ly49:t ovat klassisten (polymorfisten) MHC I -molekyylien reseptoreita.

Funktio

Sytolyyttinen granulaatiovälitteinen soluapoptoosi

NK-solut ovat sytotoksisia (solulle myrkyllisiä).Pienet granulat sytoplasmassa sisältävät proteiineja, kuten perforiinia ja proteaaseja, eli grantsyymeja. Vapautuessaan tapettavaksi tarkoitetun solun välittömään läheisyyteen perforiini muodostaa huokosia kohdesolun solukalvoon, luoden näin vesipitoisen kanavan, jonka kautta grantsyymit ja niihin liittyvät molekyylit pääsevät soluun, mikä indusoi joko apoptoosin tai lyyttiseen solun hajoamisen.

Ero apoptoosin ja solun hajoamisen välillä on tärkeä immunologiassa: viruksen saastuttaman solun hajottaminen voi mahdollisesti vapauttaa virioneja, kun taas apoptoosi johtaa viruksen tuhoutumiseen. NK-solut erittävät myös α-defensiinejä, antimikrobisia molekyylejä, ja ne tappavat bakteereja suoraan hajottamalla niiden soluseiniä neutrofiilien kanssa analogisella tavalla.[5]

Vasta-aineriippuvainen soluvälitteinen sytotoksisuus (ADCC)

Infektoituneet solut opsonoidaan rutiininomaisesti vasta-aineilla immuunisolujen havaitsemiseksi. NK-soluissa ilmentyvät FcyRIII (CD16) -reseptorit voivat tunnistaa antigeeneihin sitoutuvat vasta-aineet, mikä johtaa NK-aktivaatioon, sytolyyttisten rakeiden vapautumiseen ja siitä johtuvaan soluapoptoosiin. Tämä on joidenkin monoklonaalisten vasta-aineiden, kuten rituksimabin (Rituxan), ofatumumabin (Azera) ja muiden, tärkeä toimintamekanismi. Vasta-aineriippuvaisen soluvälitteisen sytotoksisuuden vaikutus kasvainsolujen tappamiseen voidaan mitata spesifisellä testillä, joka käyttää NK-92:ta, kuolematonta NK-kaltaisten solujen linjaa, joka on lisensoitu NantKwest, Inc:lle: NK-92-solujen vaste, joka on transfektoitu korkean affiniteetin Fc-reseptorilla verrataan ”villin tyypin” NK-92:een, joka ei ilmennä Fc-reseptoria.[23]

Sytokiinien indusoima NK-solujen ja sytotoksisten T-lymfosyyttien (CTL) aktivaatio

Sytokiineilla on ratkaiseva rooli NK-solujen aktivoinnissa. Koska nämä ovat stressimolekyylejä, joita solut vapauttavat virusinfektion seurauksena, ne toimivat signaalina NK-soluille viruspatogeenien esiintymisestä sairastuneella alueella.

NK-aktivaatioon osallistuvia sytokiinejä ovat IL-12, IL-15, IL-18, IL-2 ja CCL5. NK-solut aktivoituvat vasteena interferoneille tai makrofageista peräisin oleville sytokiineille. Ne toimivat virusinfektioiden hillitsemisessä, kun taas adaptiivinen immuunivaste tuottaa antigeenispesifisiä sytotoksisia T-soluja, jotka voivat poistaa infektion.

NK-solut hallitsevat virusinfektioita erittämällä IFNy:aa ja TNFa:aa. IFNy aktivoi makrofageja fagosytoosia ja hajoamista varten, ja TNFa toimii edistäen suoraa NK-kasvainsolujen tappamista. Potilaat, joilta puuttuu NK-soluja, ovat erittäin alttiita herpesvirusinfektion varhaisille vaiheille.

Puuttuva itsensä tunnistamisen -hypoteesi

Jotta NK-solut voisivat puolustaa kehoa viruksia ja muita taudinaiheuttajia vastaan, ne tarvitsevat mekanismeja, joilla ne tunnistavat onko solu infektoitunut vai ei. Tarkat mekanismit ovat edelleen tutkimuksen kohteena, mutta ”muuttuneen minän” tilan tunnistamisen uskotaan liittyvän asiaan.

Sytotoksisen aktiivisuutensa hallitsemiseksi NK-soluilla on kahden tyyppisiä pintareseptoreita: aktivoivat reseptorit ja estävät reseptorit sekä tappajasolujen immunoglobuliinin kaltaiset reseptorit. Useimmat näistä reseptoreista eivät ole ainutlaatuisia NK-soluille, ja niitä voi esiintyä myös joissakin T-solujen alaryhmissä.

Estävät reseptorit tunnistavat MHC-luokan I alleelit, mikä selittää, miksi NK-solut ensisijaisesti tappavat soluja, joissa on vähän MHC-luokan I molekyylejä. Tämä NK-solukohteen vuorovaikutusmuoto tunnetaan nimellä ”puuttuva itsensä tunnistaminen”. Klas Kärre kollegoineen nimesi hypoteesin 90-luvun lopulla.

MHC-luokan I molekyylit ovat päämekanismi, jolla solut näyttävät virus- tai kasvainantigeenejä sytotoksisille T-soluille. Sekä solunsisäisissä mikrobeissa että kasvaimissa on havaittavissa yleinen evoluutionaalinen sopeutuminen: MHC I -molekyylien krooninen vaimeneminen, mikä tekee sairastuneista soluista näkymättömiä T-soluille, jolloin ne voivat välttää T-soluvälitteisen immuunivasteen. NK-solut ilmeisesti kehittyivät evoluutioreaktiona tähän sopeutumiseen (MHC:n menetys eliminoi CD4/CD8-toiminnan, joten toinen immuunisolu kehittyi täyttämään tehtävän)[24].

Kasvainsolujen seuranta

Luonnollisista tappajasoluista puuttuu usein antigeenispesifisiä solupintareseptoreita, joten ne ovat osa synnynnäistä (luontaista) immuunijärjestelmää, eli ne pystyvät reagoimaan välittömästi ilman aiempaa altistusta taudinaiheuttajalle.

Sekä hiirillä että ihmisillä NK-soluilla voidaan nähdä rooli kasvaimen immuunivalvonnassa indusoimalla suoraan kasvainsolujen kuolemaa (NK:t toimivat sytolyyttisinä efektorilymfosyytteinä), jopa ilman pintaadheesiomolekyylejä ja antigeenisiä peptidejä. Tämä NK-solujen rooli on tärkeä immuunijärjestelmän toiminnalle erityisesti siksi, että T-solut eivät pysty tunnistamaan patogeenejä pinta-antigeenien puuttuessa [2].

Kasvainsolujen havaitseminen johtaa NK-solujen aktivoitumiseen ja siitä johtuvaan sytokiinien tuotantoon ja erittymiseen. Jos kasvainsolut eivät aiheuta tulehdusta, niitä pidetään myös itsenä, eivätkä ne aiheuta T-soluvastetta.

NK:t tuottavat useita sytokiinejä, mukaan lukien tuumorinekroositekijä a (TNFa), IFNy ja interleukiini (IL-10). TNFa ja IL-10 toimivat proinflammatorisina ja vastaavasti immunosuppressoreina.

NK-solujen aktivaatio ja sitä seuraava sytolyyttisten efektorisolujen tuotanto vaikuttaa makrofageihin, dendriittisoluihin ja neutrofiileihin, mikä mahdollistaa sen jälkeen antigeenispesifiset T- ja B-soluvasteet. Sen sijaan, että se vaikuttaisi antigeenispesifisten reseptorien kautta, NK-solujen aiheuttamaa kasvainsolujen hajoamista välittävät vaihtoehtoiset reseptorit, mukaan lukien NKG2D, NKp44, NKp46, NKp30 ja DNAM [22]. NKG2D on disulfidisidottu homodimeeri, joka tunnistaa useita ligandeja, mukaan lukien ULBP ja MICA, jotka tyypillisesti ilmentyvät kasvainsoluissa. Dendriittisolujen ja NK-solujen välisen rajapinnan roolia immunobiologiassa on tutkittu ja määritelty kriittiseksi monimutkaisen immuunijärjestelmän ymmärtämiselle.

NK-solut, makrofagit ja eräät muut solutyypit, ilmentävät Fc-reseptori-molekyyliä (FcR) – (FC-gamma-RIII = CD16). Se on aktivoiva biokemiallinen reseptori, joka sitoo IgG-luokan vasta-aineiden Fc-osan. Tämä sallii NK-solujen kohdistaa aktivaationsa soluihin ja hajottaa soluja vasta-aineriippuvaisen soluvälitteisen sytotoksisuuden (ADCC) kautta.

Immuunivaste riippuu NK-soluissa ilmennetyn Fc-reseptorin affiniteetista, jolla voi olla korkea, keskitasoinen ja alhainen affiniteetti vasta-aineen Fc-osaan. Tämän affiniteetin määrää proteiinin asemassa 158 oleva aminohappo, joka voi olla fenyylialaniini (F-alleeli) tai valiini (V-alleeli). Potilaat, joilla on korkea affiniteetti FcRgammRIII (158 V/V alleeli), reagoivat paremmin vasta-ainehoitoon. Tämä on osoitettu lymfoomapotilailla, jotka ovat saaneet Rituxan-vasta-ainetta.
Potilailla, jotka ilmentävät 158 V/V alleelia, oli parempi antituumorivaste. Vain 15–25 % väestöstä ilmentää 158 V/V alleelia. Monoklonaalisten vasta-aineiden ADCC-osuuden määrittämiseksi NK-92-solut (”puhdas” NK-solulinja) on transfektoitu korkean affiniteetin FcR:n geenillä.

Vanhenevien solujen poistaminen

Luonnollisilla tappajasoluilla ja makrofageilla on tärkeä tehtävä vanhenevien solujen poistamisessa [25]. Luonnolliset tappajasolut tappavat vanhenevia soluja ja erittävät makrofageja aktivoivia sytokiinejä, jotka aktivoivat makrofagit poistamaan vanhenevia soluja [25].

Luonnolliset tappajasolut voivat käyttää NKG2D-reseptoreita havaitsemaan vanhenevia soluja ja tappamaan nämä solut käyttämällä perforiinihuokosia muodostavaa sytolyyttistä proteiinia.[26] CD8+ sytotoksiset T-lymfosyytit käyttävät myös NKG2D-reseptoreita havaitsemaan vanhenevia soluja ja edistämään NK-solujen tapaan vanhenevien solujen tappamista.[26]

NK-solujen adaptiiviset ominaisuudet – ”muistin kaltaiset”, ”mukautuvat” ja muisti-NK-solut

Adaptive NK cells

Kyky synnyttää muistisoluja primaarisen infektion jälkeen sekä siitä seuraava nopea immuunivaste saman antigeenin aiheuttamiin myöhempiin infektioihin on keskeinen osa T- ja B-solujen tehtäviä adaptiivisessa immuunivasteessa.

NK-soluja on pidetty osana luontaista immuunijärjestelmää. Viime aikoina lisääntynyt näyttö kuitenkin viittaa siihen, että NK-soluilla voi olla useita ominaisuuksia, jotka yleensä johtuvat adaptiivisista immuunisoluista (esim. T-soluvasteista), kuten alaryhmien dynaaminen laajeneminen ja supistuminen, lisääntynyt pitkäikäisyys ja immunologisen muistin muoto, jolle on ominaista tehokkaampi vaste saman antigeenin toissijaiseen altistukseen [27][28].

Hiirien MCMV-mallissa havaittiin MCMV-indusoitujen NK-solujen suojaavia muistitoimintoja [29] ja MCMV-ligandin m157 suora tunnistaminen Ly49-reseptorin toimesta osoittautui tärkeäksi adaptiivisten NK-soluvasteiden synnyttämisessä.[29]

Ihmisillä useimmat tutkimukset ovat keskittyneet aktivoivaa reseptoria NKG2C (KLRC2) kantavan NK-solujen alajoukon laajentamiseen. Tällaista laajenemista havaittiin ensisijaisesti vasteena ihmisen sytomegalovirukselle (HCMV) [30], mutta myös muissa infektioissa, mukaan lukien hantavirus, Chikungunya-virus, HIV ja virushepatiitti.

Laukaisevatko virusinfektiot adaptiivisten NKG2C+ NK-solujen laajentumisen vai johtavatko muut infektiot piilevän HCMV:n uudelleen aktivoitumiseen (kuten hepatiitista on arveltu [31]), on vielä ratkaisematta. Viimeaikaiset tutkimukset viittaavat siihen, että adaptiiviset NK-solut voivat käyttää aktivoivaa reseptoria NKG2C (KLRC2) sitoutuakseen suoraan sytomegaloviruksesta peräisin oleviin peptidiantigeeneihin ja reagoida peptidien tunnistamiseen aktivoimalla, laajentamalla ja erilaistumalla [32]. Tämä mekanismi, joka reagoi viruksen infektoimiin soluihin tunnettiin aiemmin vain adaptiivisen immuunijärjestelmän T-solujen immuunivasteesta.

NK-solujen toiminta raskausaikana

Koska siittiöiden mukana naisen munasoluun päätyy vieraita geenejä, onnistunut hedelmöittyminen edellyttää äidin immuunijärjestelmän tukahduttamista. NK-soluilla uskotaan olevan keskeinen merkitys tässä prosessissa [33]. Kohdun NK-solut (uNK-solut) eroavat perifeerisistä NK-soluista.

Kohdun NK-solut kuuluvat CD56bright NK -solujen alaryhmään. Ne erittävät sytokiineja, mutta niillä on alhainen sytotoksinen kyky. Ne ovat verrattain samankaltaisia perifeeristen CD56bright NK-solujen kanssa, mutta niillä on hieman erilainen reseptoriprofiili.[33]

uNK-solut ovat runsaimpia leukosyyttejä kohdussa raskauden alkuvaiheessa. Niiden osuus on noin 70 % kohdun leukosyyteistä, mutta niiden alkuperästä ei ole varmuutta [34]. Kohdun NK-solut tuottavat solusytotoksisuutta in vitro, mutta vähemmän kuin perifeeriset NK-solut, vaikka ne sisältävät perforiinia [35].

Sytotoksisuuden puute in vivo voi johtua kohdun NK-solujen estoreseptoreiden ligandeista. Trofoblastisolut vähentävät HLA-A:n ja HLA-B:n säätelyä suojautuakseen sytotokselta T-soluvälitteiseltä kuolemalta. Tämä aktivoisi normaalisti NK-solut puuttuvalla itsetunnistuksella; nämä solut kuitenkin säilyvät. Trofoblastin HLA-E:n (joka on ligandi NK-soluja inhiboivalle reseptorille NKG2A) ja HLA-G:n (joka on ligandi NK-soluja estävälle reseptorille KIR2DL4) selektiivisen retention uskotaan puolustavan sitä NK-soluvälitteistä kuolemaa vastaan. [33]
Perifeeristen NK-solujen korkeampia prosenttiosuuksia esiintyy naisilla, joilla on ollut toistuvia keskenmenoja [36].

NK-solut ovat vuorovaikutuksessa HLA-C:n kanssa tuottaen sytokiinejä, jotka ovat välttämättömiä trofoblastiselle proliferaatiolle. Joitakin tärkeitä sytokiineja, joita ne erittävät, ovat TNF-α, IL-10, IFN-y, GM-CSF ja TGF-β [33]. Esimerkiksi IFN-y laajentaa ja ohentaa äidin kierrevaltimoiden seinämiä parantaakseen verenkiertoa implantaatiokohtaan [37].

Syöpäsolut ja NK-solut

Tuumorisolut voivat välttää immuunivasteet poistamalla NKG2D:n liukoisia ligandeja. Nämä liukoiset NKG2D-ligandit sitoutuvat NK-solujen NKG2D-reseptoreihin aktivoiden väärän NK-vasteen ja siten luoden kilpailua reseptoripaikasta [2]. Tätä kiertotapaa esiintyy eturauhassyövässä. Lisäksi eturauhassyövän kasvaimet voivat välttää CD8-solujen tunnistamisen, koska ne pystyvät vaimentamaan MHC-luokan I molekyylien ilmentymistä. Tämä esimerkki immuunijärjestelmän väistämisestä korostaa itse asiassa NK-solujen merkitystä kasvaimen seurannassa ja vasteessa, koska CD8-solut voivat näin ollen vaikuttaa vain kasvainsoluihin vasteena NK:n käynnistämään sytokiinien tuotantoon (adaptiivinen immuunivaste) [38].

NK-solujen korkea pitoisuus

Kokeelliset hoidot NK-soluilla ovat johtaneet liialliseen sytokiinituotantoon ja jopa septiseen sokkiin. Tulehduksellisen sytokiini gamma-interferonin ehtyminen käänsi vaikutuksen.

Sovellukset

Syöpäterapiat

Koska NK-solut tunnistavat kohdesolut, kun ne ilmentävät ei-omia HLA-antigeenejä (mutta eivät itseään), autologiset (potilaiden omat) NK-soluinfuusiot eivät ole osoittaneet kasvainten vastaisia vaikutuksia.

Sen sijaan tutkijat työskentelevät perifeerisen veren allogeenisten solujen käyttämiseksi, mikä edellyttää, että kaikki T-solut poistetaan ennen infuusiota, jotta voidaan poistaa käänteishyljintäsairauden riski, joka voi olla kohtalokas.

Tämä voidaan saavuttaa käyttämällä immunomagneettista kolonnia (CliniMACS). Lisäksi, koska veressä on rajoitettu määrä NK-soluja (vain 10 % lymfosyyteistä on NK-soluja), niiden määrää on lisättävä viljelmässä. Tämä voi kestää muutaman viikon ja tuotto riippuu luovuttajasta.

Yksinkertaisempi tapa saada suuria määriä puhtaita NK-soluja on laajentaa NK-92-soluja, joiden solut kasvavat jatkuvasti viljelmässä ja jotka voidaan laajentaa kliinisen asteen määrään pusseissa tai bioreaktoreissa [39]. Kliiniset tutkimukset ovat osoittaneet sen olevan hyvin siedetty, ja joitakin kasvaimia estäviä vasteita on havaittu potilailla, joilla on keuhkosyöpä, melanooma ja lymfooma [40][41].

NK-92-immunoterapiaan liittyy kuitenkin merkittäviä rajoituksia, koska solulinja on peräisin potilaalta, jolla on non-Hodgkin-lymfooma, ja siksi se on säteilytettävä ennen infuusiota, mikä rajoittaa pysyvyyttä in vivo. Lisäksi NK-92-soluista puuttuu CD-16, minkä vuoksi ne eivät pysty suorittamaan ADCC:tä, mikä estää tämän hoidon käyttämisen yhdessä monoklonaalisten vasta-ainehoitojen kanssa [42]. Ne voidaan kuitenkin suunnitella sisältämään CD16, mikä mahdollistaa ADCC-toiminnan ja laajentaa niiden mahdollista terapeuttista käyttökelpoisuutta.

T-solujen infuusiot, jotka on suunniteltu ilmentämään kimeeristä antigeenireseptoria (CAR), joka tunnistaa antigeenimolekyylin leukemiasoluissa, voivat saada aikaan remissioita potilailla, joilla on pitkälle edennyt leukemia. T-solujen laajenemiseen liittyy logistisia haasteita, ja tutkijat työskentelevät soveltaakseen samaa tekniikkaa ääreisveren NK-soluihin ja NK-92:een. NK-92-soluja voidaan muokata sisältämään sekä CD16- että CAR-soluja, jotta ne voivat suorittaa sekä ADCC-välitteisen tappamisen IgG1-vasta-aineiden kautta että CAR-välitteisen tappamisen samasta solusta. Yksi tällainen NK-92:sta johdettu solulinja, nimeltään t-haNK, on muokattu sekä CD16:n että anti-PD-L1 CAR:n kanssa, ja se on parhaillaan kliinisessä kehityksessä onkologisiin indikaatioihin. NK-92.

Bostonin lastensairaalassa tehdyssä tutkimuksessa, yhteistyössä Dana-Farber Cancer Instituten kanssa, jossa immuunipuutteiset hiiret olivat saaneet lymfoomia EBV-infektiosta, NK-aktivoiva reseptori NKG2D, fuusioitiin EBV-vasta-aineen stimuloivan Fc-osan kanssa. NKG2D-Fc-fuusio vähensi kasvaimen kasvua ja pidensi vastaanottajien elinaikaa. LMP1-käyttöisten lymfoomien siirtomallissa NKG2D-Fc-fuusio vähensi kasvaimen kasvua ja pidensi vastaanottajien elinaikaa. Hodgkin-lymfoomassa, jossa pahanlaatuiset Hodgkin Reed-Sternberg -solut ovat tyypillisesti HLA-luokan I puutteellisia, immuunijärjestelmän väistäminen välittyy osittain vinoutumisesta kohti uupunutta PD-1hi NK -solufenotyyppiä, ja näiden NK-solujen uudelleenaktivoituminen näyttää olevan yksi tarkistuspisteen estämisen aiheuttama vaikutusmekanismi.[43]

Uudet havainnot

Luontainen resistenssi HIV:lle

Tuoreet tutkimukset viittaavat siihen, että spesifiset KIR-MHC luokan I geenivuorovaikutukset voivat hallita synnynnäistä geneettistä vastustuskykyä tietyille virusinfektioille, mukaan lukien HIV [5]. Tiettyjen HLA-allotyyppien on havaittu määrittävän HIV:n etenemisen AIDSiksi; esimerkkinä ovat HLA-B57- ja HLA-B27-alleelit, joiden on havaittu hidastavan etenemistä HIV:stä AIDSiin. Tämä on ilmeistä, koska potilailla, jotka ilmentävät näitä HLA-alleeleja, on havaittu olevan pienempi viruskuorma ja CD4+ T-solujen lukumäärän asteittainen lasku.

Huolimatta huomattavasta HLA-alleelien ja KIR-allotyyppien geneettistä korrelaatiota mittaavasta tutkimuksesta ja kerätyistä tiedoista, varmaa johtopäätöstä siitä, mikä yhdistelmä vähentää HIV- ja AIDS-alttiutta, ei ole vielä tehty. NK-solut voivat aiheuttaa immuunipaineen HIV:lle, mikä on aiemmin kuvattu vain T-soluilla ja vasta-aineilla [44]. HIV mutatoituu välttääkseen NK-solujen havaitsemisen [44].

Kudosten NK-solut

Suurin osa nykyisestä tiedostamme on peräisin hiiren pernan ja ihmisen perifeerisen veren NK-solujen tutkimuksista.

Viime vuosina on kuvattu kudoksissa eläviä NK-solupopulaatioita [45][46]. Nämä kudoksessa elävät NK-solut jakavat transkription samankaltaisuuden kuin aiemmin kuvatut kudoksessa asuvat muisti-T-solut. Kuitenkaan kudoksissa asuvat NK-solut eivät välttämättä ole muistifenotyyppiä, ja itse asiassa suurin osa kudoksessa olevista NK-soluista on toiminnallisesti epäkypsiä[47].

Näillä erikoistuneilla NK-solujen alajoukoilla voi olla rooli elinten homeostaasissa. Esimerkiksi NK-solut rikastuvat ihmisen maksassa tietyllä fenotyypillä ja osallistuvat maksafibroosin hallintaan [48][49]. Kudoksissa eläviä NK-soluja on myös tunnistettu sellaisista kohdista kuin luuytimessä, pernassa ja viime aikoina keuhkoissa, suolistossa ja imusolmukkeissa. Näissä paikoissa kudoksissa asuvat NK-solut voivat toimia säiliönä kypsymättömien NK-solujen ylläpitämiselle ihmisissä läpi elämän.[47]

Lähde: Wikipedia, Imperial College London

Lähdeluettelo

  1. Perera Molligoda Arachchige, Arosh Shavinda (2021-03-24). ”Human NK cells: From development to effector functions”. Innate Immunity. 27 (3): 212–229. doi:10.1177/17534259211001512. ISSN 1753-4259. PMC 8054151. PMID 33761782.
  2. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (January 2011). ”Innate or adaptive immunity? The example of natural killer cells”. Science. 331 (6013): 44–9. Bibcode:2011Sci…331…44V. doi:10.1126/science.1198687. PMC 3089969. PMID 21212348.
  3. Pfefferle A, Jacobs B, Sohlberg E, Malmberg K (2020). ”Deciphering Natural Killer Cell Homeostasis”. Frontiers in Immunology. 11: 812. doi:10.3389/fimmu.2020.00812. PMC 7235169. PMID 32477340.
  4. Roitt I, Brostoff J, Male D (2001). Immunology (6th ed.), 480p. St. Louis: Mosby, ISBN 0-7234-3189-2.
  5. Iannello A, Debbeche O, Samarani S, Ahmad A (July 2008). ”Antiviral NK cell responses in HIV infection: I. NK cell receptor genes as determinants of HIV resistance and progression to AIDS”. Journal of Leukocyte Biology. 84 (1): 1–26. CiteSeerX 10.1.1.619.9639. doi:10.1189/jlb.0907650. PMID 18388298. S2CID 26975415.
  6. Walzer T, Bléry M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, André P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagné F, Vivier E (February 2007). ”Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46”. Proceedings of the National Academy of Sciences of the United States of America. 104 (9): 3384–9. Bibcode:2007PNAS..104.3384W. doi:10.1073/pnas.0609692104. PMC 1805551. PMID 17360655.
  7. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (October 1997). ”p46, a novel natural killer cell-specific surface molecule that mediates cell activation”. The Journal of Experimental Medicine. 186 (7): 1129–36. doi:10.1084/jem.186.7.1129. PMC 2211712. PMID 9314561.
  8. Arina A, Murillo O, Dubrot J, Azpilikueta A, Alfaro C, Pérez-Gracia JL, Bendandi M, Palencia B, Hervás-Stubbs S, Melero I (May 2007). ”Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer”. Expert Opinion on Biological Therapy. 7 (5): 599–615. doi:10.1517/14712598.7.5.599. PMID 17477799. S2CID 43003664.
  9. Watzl C (2014). How to trigger a killer: modulation of natural killer cell reactivity on many levels. Advances in Immunology. 124. pp. 137–70. doi:10.1016/B978-0-12-800147-9.00005-4. ISBN 9780128001479. PMID 25175775.
  10. Smith HJ (December 1966). ”Antigenicity of carcinogen-induced and spontaneous tumours in inbred mice”. British Journal of Cancer. 20 (4): 831–7. doi:10.1038/bjc.1966.95. PMC 2008147. PMID 5964614.
  11. Oldham RK (1983). ”Natural killer cells: artifact to reality: an odyssey in biology”. Cancer and Metastasis Reviews. 2 (4): 323–36. doi:10.1007/BF00048565. PMID 6375859. S2CID 11301147.
  12. Kiessling R, Klein E, Pross H, Wigzell H (February 1975). ””Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell”. European Journal of Immunology. 5 (2): 117–21. doi:10.1002/eji.1830050209. PMID 1086218. S2CID 2389610.
  13. Pross HF, Jondal M (August 1975). ”Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes”. Clinical and Experimental Immunology. 21 (2): 226–35. PMC 1538269. PMID 810282.
  14. Jondal M, Pross H (April 1975). ”Surface markers on human b and t lymphocytes. VI. Cytotoxicity against cell lines as a functional marker for lymphocyte subpopulations”. International Journal of Cancer. 15 (4): 596–605. doi:10.1002/ijc.2910150409. PMID 806545. S2CID 30612835.
  15. Herberman RB, Nunn ME, Holden HT, Lavrin DH (August 1975). ”Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells”. International Journal of Cancer. 16 (2): 230–9. doi:10.1002/ijc.2910160205. PMID 1080480. S2CID 24410880.
  16. West WH, Cannon GB, Kay HD, Bonnard GD, Herberman RB (January 1977). ”Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: characterization of effector cells”. Journal of Immunology. 118 (1): 355–61. PMID 299761.
  17. Pross HF, Baines MG, Rubin P, Shragge P, Patterson MS (January 1981). ”Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity”. Journal of Clinical Immunology. 1 (1): 51–63. doi:10.1007/BF00915477. PMID 7334070. S2CID 24437710.
  18. Timonen T, Saksela E (1980). ”Isolation of human NK cells by density gradient centrifugation”. Journal of Immunological Methods. 36 (3–4): 285–91. doi:10.1016/0022-1759(80)90133-7. PMID 7430655.
  19. Hashemi E, Malarkannan S (2020). ”Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance”. Cancers. 12 (6): 1553. doi:10.3390/cancers12061553. PMC 7352973. PMID 32545516.
  20. Wu S, Fu T, Jiang Y, Shao Z (2020). ”Natural killer cells in cancer biology and therapy”. Molecular Cancer. 19 (1): 120. doi:10.1186/s12943-020-01238-x. PMC 7409673. PMID 32762681.
  21. Market M, Angka L, Martel AB, Auer RC (2020). ”Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies”. Frontiers in Immunology. 11: 1512. doi:10.3389/fimmu.2020.01512. PMC 7324763. PMID 32655581.
  22. Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N (2008). ”Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections”. International Reviews of Immunology. 27 (3): 93–110. doi:10.1080/08830180801911743. PMID 18437601. S2CID 27557213.
  23. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (November 2002). ”New aspects of natural-killer-cell surveillance and therapy of cancer”. Nature Reviews. Cancer. 2 (11): 850–61. doi:10.1038/nrc928. PMID 12415255. S2CID 1430364.
  24. Lodoen MB, Lanier LL (2005). ”Viral modulation of NK cell immunity”. Nature Reviews Microbiology. 3 (1): 59–69. doi:10.1038/nrmicro1066. PMID 15608700. S2CID 16655783.
  25. Antonangeli F, Zingoni A, Soriani A, Santoni A (2019). ”Senescent cells: Living or dying is a matter of NK cells”. Journal of Leukocyte Biology. 105 (6): 1275–1283. doi:10.1002/JLB.MR0718-299R. PMID 30811627. S2CID 73469394.
  26. Prata LG, Ovsyannikova IG, Tchkonia T, Kirkland JL (2018). ”Senescent cell clearance by the immune system: Emerging therapeutic opportunities”. Seminars in Immunology. 40: 101275. doi:10.1016/j.smim.2019.04.003. PMC 7061456. PMID 31088710.
  27. Rölle A, Pollmann J, Cerwenka A (September 2013). ”Memory of infections: an emerging role for natural killer cells”. PLOS Pathogens. 9 (9): e1003548. doi:10.1371/journal.ppat.1003548. PMC 3784484. PMID 24086127.
  28. Pyzik M, Vidal SM (2009). ”Natural killer cells: NK cells stroll down the memory lane”. Immunology and Cell Biology. 87 (4): 261–3. doi:10.1038/icb.2009.10. PMID 19290015. S2CID 42943696.
  29. Sun JC, Beilke JN, Lanier LL (January 2009). ”Adaptive immune features of natural killer cells”. Nature. 457 (7229): 557–61. Bibcode:2009Natur.457..557S. doi:10.1038/nature07665. PMC 2674434. PMID 19136945.
  30. Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M (December 2004). ”Imprint of human cytomegalovirus infection on the NK cell receptor repertoire”. Blood. 104 (12): 3664–71. doi:10.1182/blood-2004-05-2058. PMID 15304389.
  31. Malone DF, Lunemann S, Hengst J, Ljunggren HG, Manns MP, Sandberg JK, Cornberg M, Wedemeyer H, Björkström NK (2017). ”Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections”. Frontiers in Immunology. 8 (8): 525. doi:10.3389/fimmu.2017.00525. PMC 5421146. PMID 28533779.
  32. Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A, Durek P, Heinrich F, Gasparoni G, Babic M, Tomic A, Pietra G, Nienen M, Blau IW, Hofmann J, Na IK, Prinz I, Koenecke C, Hemmati P, Babel N, Arnold R, Walter J, Thurley K, Mashreghi MF, Messerle M, Romagnani C (May 2018). ”Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells”. Nature Immunology. 19 (5): 453–463. doi:10.1038/s41590-018-0082-6. PMID 29632329. S2CID 4718187.
  33. Lash GE, Robson SC, Bulmer JN (March 2010). ”Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua”. Placenta. 31 Suppl (S): S87–92. doi:10.1016/j.placenta.2009.12.022. PMID 20061017.
  34. Bulmer JN, Williams PJ, Lash GE (2010). ”Immune cells in the placental bed”. The International Journal of Developmental Biology. 54 (2–3): 281–94. doi:10.1387/ijdb.082763jb. PMID 19876837.
  35. Kopcow HD, Allan DS, Chen X, Rybalov B, Andzelm MM, Ge B, Strominger JL (October 2005). ”Human decidual NK cells form immature activating synapses and are not cytotoxic”. Proceedings of the National Academy of Sciences of the United States of America. 102 (43): 15563–8. Bibcode:2005PNAS..10215563K. doi:10.1073/pnas.0507835102. PMC 1266146. PMID 16230631.
  36. Seshadri S, Sunkara SK (2013). ”Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis”. Human Reproduction Update. 20 (3): 429–38. doi:10.1093/humupd/dmt056. PMID 24285824.
  37. Ashkar AA, Di Santo JP, Croy BA (July 2000). ”Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy”. The Journal of Experimental Medicine. 192 (2): 259–70. doi:10.1084/jem.192.2.259. PMC 2193246. PMID 10899912.
  38. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (May 2006). ”T cell- and B cell-independent adaptive immunity mediated by natural killer cells”. Nature Immunology. 7 (5): 507–16. doi:10.1038/ni1332. PMID 16617337. S2CID 1459858.
  39. Gong JH, Maki G, Klingemann HG (April 1994). ”Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells”. Leukemia. 8 (4): 652–8. PMID 8152260.
  40. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H (2008). ”Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial”. Cytotherapy. 10 (6): 625–32. doi:10.1080/14653240802301872. PMID 18836917.
  41. Tonn T, Becker S, Esser R, Schwabe D, Seifried E (August 2001). ”Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92”. Journal of Hematotherapy & Stem Cell Research. 10 (4): 535–44. doi:10.1089/15258160152509145. PMID 11522236.
  42. Matosevic, S (2018). ”Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies”. J Immunol Res. 2018: 4054815. doi:10.1155/2018/4054815. PMC 6166361. PMID 30306093.
  43. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, Cui Q, Han E, Tobin J, Bird R, Cross D, Hernandez A, Gould C, Birch S, Gandhi MK (April 2018). ”Immune Evasion via PD-1/PD-L1 on NK Cells and Monocyte/Macrophages Is More Prominent in Hodgkin Lymphoma Than DLBCL”. Blood. 131 (16): 1809–1819. doi:10.1182/blood-2017-07-796342. PMC 5922274. PMID 29449276.
  44. Alter G, Heckerman D, Schneidewind A, Fadda L, Kadie CM, Carlson JM, Oniangue-Ndza C, Martin M, Li B, Khakoo SI, Carrington M, Allen TM, Altfeld M (August 2011). ”HIV-1 adaptation to NK-cell-mediated immune pressure”. Nature. 476 (7358): 96–100. doi:10.1038/nature10237. PMC 3194000. PMID 21814282.
  45. Yokoyama WM, Sojka DK, Peng H, Tian Z (2013-01-01). ”Tissue-resident natural killer cells”. Cold Spring Harbor Symposia on Quantitative Biology. 78: 149–56. doi:10.1101/sqb.2013.78.020354. PMID 24584057.
  46. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM (January 2014). ”Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells”. eLife. 3: e01659. doi:10.7554/elife.01659. PMC 3975579. PMID 24714492.
  47. Dogra P, Rancan C, Ma W, Toth M, Senda T, Carpenter DJ, Kubota M, Matsumoto R, Thapa P, Szabo PA, Li Poon MM, Li J, Arakawa-Hoyt J, Shen Y, Fong L, Lanier LL, Farber DL (February 2020). ”Tissue Determinants of Human NK Cell Development, Function, and Residence”. Cell. 180 (4): 749–763. e13. doi:10.1016/j.cell.2020.01.022. PMC 7194029. PMID 32059780.
  48. Hudspeth K, Donadon M, Cimino M, Pontarini E, Tentorio P, Preti M, Hong M, Bertoletti A, Bicciato S, Invernizzi P, Lugli E, Torzilli G, Gershwin ME, Mavilio D (January 2016). ”Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways”. Journal of Autoimmunity. 66: 40–50. doi:10.1016/j.jaut.2015.08.011. PMC 4718768. PMID 26330348.
  49. Fasbender F, Widera A, Hengstler JG, Watzl C (2016). ”Natural Killer Cells and Liver Fibrosis”. Frontiers in Immunology. 7: 19. doi:10.3389/fimmu.2016.00019. PMC 4731511. PMID 26858722.

Luettavaa:

  • Perera Molligoda Arachchige A. S. (2021). Human NK cells: From development to effector functions. Innate immunity, 17534259211001512. Advance online publication. https://doi.org/10.1177%2F17534259211001512
  • Cellular and Molecular Immunology by Abul K. Abbas & Andrew Lichtman Saunders Copyright 2003
  • How the Immune System Works, 2nd edition, by Lauren Sompayrac, PhD Blackwell Publishing 2003
  • Immunobiology: The Immune System In Health And Disease by Janeway, Travers, Walport & Shlomchik Churchchill Livingstone Copyright 2005
  • Kuby Immunology, 6th edition, by Thomas J. Kindt, Richard A. Goldsby, and Barbara A. Osborne, W.H. Freeman and Company, New York




Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin ja siihen assosioituvien oireiden taustalla.

Mitä eroa on infektiolla ja inflammaatiolla?

Autoimmuunitaudin voi laukaista jokin infektio, kuten Epstein-Barr- tai herpesvirus. Inflammaatio altistaa sairastumiselle ja pahentaa immuunivälitteisten tulehduksellisten sairauksien oireita. Eräät ravintoaineet aiheuttavat oksidatiivista stressiä, joka ylläpitää ja pahentaa inflammaatiota.    

Infektio ja inflammaatio menevät helposti sekaisin, koska molemmat kertovat tulehduksesta. Ne eivät kuitenkaan tarkoita samaa asiaa.

Infektion aiheuttama lyhytaikainen tulehdus (tartuntatulehdus) auttaa elimistöön tunkeutuneen sairastuttavan mikrobin tuhoamisessa. Jatkuva matala-asteinen tulehdus (inflammaatio) on kudoksia ärsyttävä tila, joka voi kehittyä mm. vamman, ravinnon (postbrandiaalinen tulehdus), tupakoinnin, alkoholin ja eräiden toksiinien sekä joidenkin tuntemattomien syiden seurauksena, kuten eräät autoimmuunitulehdukset (esimerkiksi reuma).

Matala-asteinen tulehdus ei tavallisesti näy ulospäin tai oireile kipuna. Tutkimukset viittaavat siihen, että matala-asteinen tulehdus on kuitenkin lähes kaikkien kroonisten tautien osatekijä.

”Ne ruoka-aineet, jotka vähentävät tulehdusta tuntuvat edistävän ihmisen terveyttä muutoinkin. Ruokavalio, joka vähentää voimallisesti tulehdusta, vähentää myös kolesterolia, verenpainetta, aterian jälkeistä hapetusstressiä, LDL-kolesterolin hapettumista ja verensokeria aterian jälkeen ja paastossa sekä estää lihomista.” – Pronutritionist

Infektio siis puolustaa elimistöä mikrobeja vastaan. Pitkään jatkuva matala-asteinen inflammaatio on elimistölle haitallinen tila, koska se voi aiheuttaa kudosvaurioita. Wikipedian mukaan autoimmuunitulehdus vahingoittaa elimistöä immuunipuolustuksen hyökätessä elimistön omia soluja vastaan.

C-reaktiivinen proteiini eli CRP

Elimistön tulehduksista kertoo verinäytteestä mitattava CRP eli C-reaktiivinen proteiini. CRP on maksan syntetisoima akuutin infektion proteiini, joka sitoutuu solun erilaisiin ainesosiin, kuten polysakkarideihin, lipideihin, nukleiinihappoihin, nukleotideihin sekä kationeihin kuten hepariiniin, protamiiniin ja histoineihin.

CRP on komplementtijärjestelmän aktivoija, joka edistää vierasaineiden opsonisaatiota ja fagosytoosia. CRP osallistuu luontaiseen immuniteettiin ja vierasaineiden eliminointiin. Opsonisaatio on prosessi, jossa infektoivan patogeenin pintaan tarttuu siihen erikoistunut vasta-ainemolekyyli eli opsoniini, jonka avulla syöjäsolut (fagosyytit) tunnistavat ja tuhoavat patogeenit.

CRP:n pitoisuus veressä nousee bakteeri-infektioiden ja muiden tulehdustilojen sekä kudosvaurion yhteydessä nopeasti. CRP:n normaali viitealue on alle 10 mg/l, mutta infektion aikana CRP:n määrä voi kasvaa jopa 1000-kertaiseksi viitealueeseen verrattuna.

Ruokavalio, laihtuminen ja CRP

Lihavuus on matala-asteisen inflammaation yksi tärkeä syy. Laihtuminen voi laskea inflammaatiota mittaavaa CRP-arvoa jopa 80 %. Myös ruokavalio vaikuttaa tulehdusta mittaavaan CRP-arvoon. Terveellinen ruoka, kuten kasvikset, marjat, hedelmät ja kala voivat laskea tulehdusarvoja jopa kolmanneksella.

Wikipedia kertoo, että jo muutaman päivän vesipaasto vahvistaa kehon immuunijärjestelmää taistelussa tulehduksia vastaan. Vastaavia tuloksia on saatu kerran tai kahdesti kuussa toteutettavilla nelipäiväisillä niukan ravinnon jaksoilla.

Elimistö näyttäisi pääsevän paaston ja niukan dieetin avulla eroon immuunijärjestelmän vahingoittuneista ja vanhentuneista osista, joka johtaa immuunijärjestelmän uusiutumiseen (Kari Tyllilä: Yllättävä löytö voi tuoda apua syöpähoitoihin: Paasto uudistaa immuunijärjestelmää).

Tulehdus ja sytokiinit

Sytokiinit ovat immuunijärjestelmän säätelijöitä. Ne ohjaavat immuunijärjestelmän kaikkien solujen erilaistumista, kasvua ja toiminnallista säätelyä. Sytokiini on yleisnimitys yli sadalle pienimolekyyliselle proteiinirakenteiselle välittäjäaineelle.

Valkosolut tuottavat sytokiineihin lukeutuvia interferoneja virusinfektion aikana. Interferonien tarkoituksena on estää virusten lisääntyminen infektion alkuvaiheessa. Proinflammatoristen eli inflammaatiota lisäävien interferonien (sekä happiradikaalien) ensisijaisena tehtävänä on tappaa elimistöön päässeitä viruksia, bakteereita ja ja sieniä.

Jos immuunivasteeseen osallistuvia sytokiineja tai happiradikaaleja muodostuu elimistössä liikaa, ne vaurioittavat kudoksia ja altistavat sairastumiselle.

Beetainterferoneja käytetään MS-taudin oireita hillitsevänä lääkkeenä. Toisaalta gammainterferoni, jota naisilla muodostuu luonnostaan miehiä enemmän, assosioituu suurina pitoisuuksina MS-taudin puhkeamiseen ja pahenemiseen.

Tärkeät sytokiinit

Kuva sytokiinien merkityksestä ja hierarkkisista säätelyverkoista tarkentuu koko ajan. Sytokiineja on tunnistettu yli sata. Pelkästään interleukiiniperheeseen kuuluvia sytokiineja tunnetaan 29. Sytokiinien tutkimus tarjoaa uusia lähestymistapoja myös autoimmuunitautien ja syöpien hoitoon.

Immuunijärjestelmän kannalta keskeisiä sytokiinejä ovat interleukiinit (IL), interferonit (IFN), tuumorinekroositekijä alfa (TNF-α), ja solutyyppispesifiset kasvutekijät, kuten granulosyyttikasvutekijä (G-CSF) ja erytropoietiini (EPO).

Sytokiinien eritys lisääntyy infektion aikana, mikä vahvistaa elimistön puolustautumista taudinaiheuttajia vastaan. Immuunivasteeseen ja infektion torjuntaan osallistuvat ainakin proinflammatoriset sytokiinit, kuten IL-1, IL-6, TNF- α.

IL-17 on nopeasti kasvava sytokiiniperhe, jonka jäsenet eroavat rakenteellisesti muista sytokiineista. IL-17 on keskeinen sytokiini MS-taudin patogenesissä (Gold & Lühder, Interleukin-17 – Extended Features of a Key Player in Multiple Sclerosis).

Monet sytokiinit aiheuttavat ja ylläpitävät elimistön matala-asteista tulehdusta. Toisaalta sytokiinit voivat olla myös inflammaatiota vähentäviä eli anti-inflammatorisia, kuten mm. IL-4, IL-10 ja TGF- β.

Sytokiinien säätelyverkot

Sytokiinit muodostavat toiminnalllisia verkostoja. Yksittäinen sytokiini vaikuttaa tavallisesti useisiin solutyyppeihin, mutta sen aikaansaamat vasteet eri soluissa voivat olla täysin erilaiset.

Monissa immuunivälitteisissä tulehduksellisissa sairauksissa aktivoituu osin samanlainen sytokiiniverkosto, mutta yksittäisen sytokiinin merkitys eri sairauksien patogeneesissa voi vaihdella paljonkin. Yhtenä esimerkkinä tuumorinekroositekijä (TNF-α), joka vaikuttaa mm. nivelreuman, selkärankareuman, tulehduksellisten suolistotautien ja psoriaasin patogeneesissa.

Sytokiinit toimivat ajallisesti ja paikallisesti tarkan säätelyn alaisina hierarkkisina säätelyverkostoina. Jos säätely jostakin syystä pettää, sytokiinien ylituotanto voi toimia laukaisevana mekanismina monissa sairauksissa, kuten autoimmuunitaudeissa.

Sytokiinireseptoreiden signalointi

Sytokiinien biologiset vaikutukset välittyvät solun pinnalla sijaitsevien erityisten reseptoreiden kautta. Interferonien, useimpien interleukiinien ja solutyyppispesifisten kasvutekijöiden (EPO, TPO, GM-CSF, G-CSF) reseptorit välittävät vaikutuksensa hematopoieettiseen sytokiinireseptoriperheeseen kuuluvien reseptoreiden kautta.

Kaikkien reseptroreiden aktivaatiomekanismi on samankaltainen: sytokiinin sitoutuminen reseptorin solunulkoiseen osaan saa aikaan ketjuen pariutumisen ja johtaa reseptoriin kiinnittyneiden JAK-tyrosiinikinaasien (JAK1-3 ja TYK2) aktivaatioon ja signaalinvälitykseen erikoistuneiden proteiinien fosforylaatioon sekä muutoksiin mm. DNA-synteesissä ja transkriptiossa (Levy ja Darnell 2002, O’Shea ym. 2002).

Luettavaa sytokiineista

Kuinka elimistö reagoi tulehdukseen?

Elimistö reagoi tulehdukseen tavallisesti verisuonimuutoksilla sekä kudosnesteen ja tulehdussolujen kertymisellä tulehdusalueelle. Verisuonimuutosten seurauksena hiussuonten seinämät muuttuvat läpäisevimmiksi ja tulehdusalueelle kertyy proteiineja ja nestettä.

Tulehdusreaktio houkuttelee paikalle myös valkosoluja, kuten syöjäsoluja, joiden tehtävänä on puolustaa elimistöä ulkoisilta taudinaiheuttajilta ja siivota tulehdusaluetta vaurioituneista soluista. Tulehduksien aiheuttama ”märkä” muodostuu tulehdussoluista, taudinaiheuttajista, osin tuhoutuneesta kudoksesta ja kudosnesteestä.

Tulehduksen oireet ovat rubor, tumor, calor, dolor ja functio laesa eli punoitus, turvotus, kuumotus, kipu ja toimintakyvyn heikkeneminen.

Ravinto ja inflammaatio

Pitkään jatkuva matala-asteinen tulehdus kasvattaa sairastumisen riskiä. Tutkimusten mukaan inflammaatio on useimpien kroonisten sairauksien taustatekijä. Inflammaatio altistaa mm. autoimmuunitaudeille, sydän- ja verisuonitaudeille, syöville, tyypin 2 diabetekselle, lihavuudelle ja Alzheimerin taudille.

Rasvakudos erittää runsaasti erilaisia tulehdussytokiineja, joten lihavuus ylläpitää ja lisää inflammaatiota. Laihduttaminen voi merkittävästi vähentää elimistöä rasittavaa matala-asteista tulehdusta.

Aterianjälkeinen (postbrandiaalinen) verensokerin nousu kasvattaa oksidatiivista stressiä muodostamalla happiradikaaleja. Oksidatiivinen stressi pahentaa inflammaatiota. Mitä korkeammaksi verensokeri nousee, sitä enemmän muodostuu happiradikaaleja.

Ravinto vaikuttaa inflammaatioon monin tavoin.

Ravinto voidaan jakaa karkeasti tulehduksia aiheuttaviin, neutraaleihin ja tulehduksia hillitseviin ravintoaineisiin. Ravintoaineiden aiheuttamaan tulehdusvasteeseen vaikuttavat mm. ravinnon määrä ja muut samaan aikaan nautitut ravintoaineet.

Rasvat ovat tavallisilla annoksilla tulehduksen kannalta yleensä neutraaleja. Värikkäiden marjojen, hedelmien ja kasvisten syöminen lievittää tulehdusta. Imeytymättömät proteiinit voivat lisätä suoliston tulehduksia, mutta lihan, kanan ja äyriäisten tulehdusvaikutuksista on hyvin vähän tutkittua tietoa.

Tulehduksia vähentäviä (anti-inflammatorisia) ruokia ovat mm.

  • Rasvainen kala
  • Neitsytoliiviöljy
  • Kala
  • Mantelit ja pähkinät
  • Marjat ja hedelmät
  • Monet kasvikset
  • Appelsiinimehu
  • Granaattiomena
  • Kaakao
  • Punaviini

Inflammaation kannalta neutraaleja ruokia ovat mm.

  • Rypsiöljy
  • Margariini
  • Voi
  • Soija ja palkokasvit
  • Meijerituotteet
  • Kananmunat
  • Eräät täysjyvätuotteet
  • Monet kasvikset
  • Tumma pasta
  • Peruna
  • Leipä
  • Vihreä tee
  • Kahvi
  • Valkoviini
  • Maito ja piimä

Tulehduksia lisääviä ruokia ovat mm.

  • Kerma suurina annoksina
  • Makkarat ja lihajalosteet
  • Runsas sokeri
  • Runsas fruktoosi (fruktoosisiirappi?)

Lue lisää:

Pronutritionist: Anti-inflammatorinen eli tulehdusta vähentävä ruokavalio


Inflammaation vaikutus RRMS- ja PPMS-tautien oireisiin

Tulehdustekijät ovat havaittavissa aaltoilevasti etenevän RRMS-taudin patologiassa ja assosioituvat selkeästi taudin oireisiin. RRMS-tautimuodossa keskushermostossa ilmenevät tulehduspesäkkeet (leesiot) ovat yhteydessä taudinkuvaan liittyviin kliinisiin pahenemisvaiheisiin. Inflammaation helpottuminen ilmenee remissiona, jolloin taudin oireet paranevat joko osittain tai lähes täysin etenkin taudin varhaisvaiheessa.

Progressiivinen MS-tauti

Ensisijaisesti etenevä MS-tauti (primaarisprogressiivinen, PPMS) on MS-taudin alatyyppi, jossa oireet ja invaliditeetti lisääntyy sairauden alusta alkaen tasaisesti ilman selviä inflammaatioon assosioituvia pahenemisvaiheita, RRMS etenee toissijaisesti eteneväksi (SPMS) taudiksi yleensä noin parin vuosikymmenen aikana. SPMS ja PPMS muistuttavat hyvin läheisesti toisiaan.

”PPMS-potilailla yleisimmät taudin alkuoireet olivat motoriset-, pikkuaivo- ja tuntohäiriöt. Motorisen toiminnan häiriöt olivat yleisimmät löydökset kliinisessä neurologisessa tutkimuksessa. Kaikilla PPMS-potilailla oli virtsaustoiminnan häiriöitä, joista tihentynyt virtsaamistarve ja siihen liittyvä virtsan karkailu olivat yleisimmät oireet. Urodynaamisen tutkimuksen yleisimmät löydökset olivat virtsarakon seinämälihaksen yliaktiivisuus (detrusor hyperrefleksia) sekä seinämälihaksen ja virtsaputken sulkijalihaksen koordinoimaton supistelu (detrusor sphinkterin dyssynergia, DSD).” – Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva

Tulehduksen vaikutusta ei ole poissuljettu myöskään etenevässä MS-taudissa. Inflamaation voi aiheuttaa autoimmuunitulehdus tai solujen (oligodendrosyyttien) rappeutumisen eli sytodegeneraation aiheuttama neurologinen tulehdus.

”Adheesiomolekyylien ja joidenkin sytokiinien ilmentymisen lisääntyminen viittaa siihen, että tulehduksellista aktiviteettia esiintyy pidemmälle edenneessä PPMS-taudissakin.” – Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva

Tutkimukselliset löydöt

Etenevissä MS-taudeissa on havaittavissa runsaasti molekyyli- ja solutason muutoksia, jotka selittävät taudinkuvaan liittyvää neurologista rappeutumista (neurodegeneraatiota).  Tällaisia neurologiseen rappeutumiseen assosioituvia muutoksia ovat mm.

  • keskushermoston syöjäsoluina toimivien mikrogliasolujen aktivoituminen
  • kroonisen hapettumisreaktion aiheuttamat vauriot keskushermoston soluissa
  • mitokondrioihin kumuloituvat vauriot keskushermoston viejähaarakkeissa
  • ikään liittyvä atrofia
  • viejähaarakkeiden signaalinvälityksen havaittava heikkeneminen.

Tällaiset patologiset muutokset voivat johtua autoimmuunitulehduksen aiheuttamista viejähaarakkeiden eristekalvojen vaurioista (demyelinaatio), mutta syynä voi olla myös tautiin liittyvä keskushermoston solujen (neuronien ja oligodendrosyyttien) primaari rappeutuminen.

Mahdollisesti moolemmat, sekä inflammaatio että keskushermoston solujen rappeutuminen (sytodegeneraatio) vaikuttavat etenevien MS-tautimuotojen patogeneesiin.

Patologiset mekanismit, jotka ylläpitävät neurodegeneraatiota ja aiheuttavat PPMS-ja SPMS-potilaille kudosvaurioita, tunnetaan huonosti. Nämä tekijät liittyvät ilmeisesti perifeerisen immunologisen toleranssin virheelliseen toimintaan.

Taudin aiheuttamasta neurodegeneraatiosta on esitetty (ainakin) kaksi hypoteessia: inside-out-hypoteesi ja outside-in-hypoteesi.

Inside-out hypoteesin mukaan taudin alusta alkaen etenevä keskushermoston solujen rappeutuminen on kaikkien tautiin liittyvien prosessien selittävä tekijä.

Outside-in hypoteesi olettaa, että taudin varhaisvaiheessa ilmenevät inflammaatioon assosioituvat demyelinoivat prosessit laukaisevat joukon keskushermostoa rappeuttavia tapahtumaketjuja.

Osallistuuko suoliston mikrobiomi autoimmuunitaudin patogeneesiin?

Viime aikoina on saatu viitteitä siitä, että suoliston mikrobiomin hyvinvoinnilla on tärkeämpi rooli etenevän MS-taudin taudinkuvassa kuin on aiemmin oletettu.

Tieto mikrobiomista ja sen merkityksestä isäntäorganismille täsmentyy koko ajan. Vagus-hermo välittää tietoa ruoansulatuselimistön tapahtumista aivoille. Se toimii suorana välittäjänä mikrobiomin ja keskushermoston välillä.

Mikrobiomi vaikuttaa keskushermostoon muokkaamalla signaalireittejä aivo-suolisto-akselilla. Tämä kaksisuuntainen kommunikaatioverkko hermoston ja suoliston välillä aktivoi hermoston makrofageja ja vaikuttaa neurologisiin tapahtumiin säätelemällä hermoston immuuniaktiivisuutta.

Mikrobiomin merkitys

BBC kirjoittaa, että kehon solujen kokonaismäärästä 43 % on ihmisen omia soluja. Suurin osa kehossamme elävistä soluista kuuluu kuitenkin mikrobiomin bakteereille, arkeille, viruksille ja sienille.

Ihmisen DNA:ssa on noin 23 000 proteiineja koodaavaa geeniä. Geenit säätelevät solujemme, kudostemme ja elimistömme rakennetta. Geenien väliset alueet ohjaavat geenien toimintaa. Oman genomin lisäksi kehossamme on mikrobiomin geneettistä materiaalia, joka koostuu 2-20 miljoonasta geenistä.

DNA, mutaatiot ja yhden emäksen variaatiot

Ihmisen DNA on noin 3 miljardia emästä pitkä kaksoisjuoste. DNA:n rakenteessa toistuu neljä emästä, joita kuvataan kirjaimilla A (adeniini), T (tymiini, C (sytosiini) ja G (guaniini). A ja T sekä C ja G muodostavat DNA:n kaksoisjuosteessa emäspareja.

Geenit eli perintötekijät muodostuvat eri mittaisista DNA-jaksoista

Solun jakautuminen edellyttää DNA:n kahdentumista. Prosessi on hyvin täsmällinen, mutta aika ajoin siinä tapahtuu virheitä ja DNA-juosteen alkuperäinen emäsjärjestys muuttuu. Tällaiset virheet aiheuttavat geenimutaatioita.

Geenimuutosten kolme lähdettä ovat vanhemmilta saatu perimä, elintapojen ja ympäristön tuoma altistus (myrkyt, patogeenit, ravinto jne.) sekä sattumanvaraiset DNA:n kopioitumisvirheet. Kopioitumisvirheitä tapahtuu jatkuvasti. Aina, kun solu jakaantuu, aiheutuu DNA:han keskimäärin kolme virhettä. Tällaiset geenimutaatiot voivat käynnistää syövän.

Pistemutaatiot eli yhden emäksen variaatiot (Single Nucleotide Polymorphism), joissa esimerkiksi DNA:n emäsjuosteen jonkin geenin emäsparissa adeniini muuttuu sytosiiniksi, ovat hyvin yleisiä. Yleensä nämä ovat neutraaleja, mutta jotkin yhden nukleotidin polymorfismit assosioituvat lisääntyneeseen sairastumisriskiin.

Toinen genomi

Professori Sarkis Mazmanian (Caltech) kertoi BBC:lle, että periaatteessa meillä on kaksi toisiinsa vuorovaikuttavaa genomia. Ne ”kommunikoivat” keskenään kemiallisten signaalien välityksellä. Tällaisia mikrobiomin tuottamia hermostoon vaikuttavia välittäjäaineita ova esimerkiksi eräät mikrobien aineenvaihduntatuotteet, kuten dopamiini, serotoniini ja GABA.

Mikrobiomin tuottamat kemialliset signaalit voivat vaikuttaa myös epigeneettisesti ihmisen omaan genomiin. Tämä tapahtuu esimerkiksi siten, että johonkin geenin emäksistä kiinnittyy ympäristötekijöiden säätelemänä geenin transkriptioon vaikuttava metyyliryhmä.

Mikrobiomiin vaikuttavat ympäristötekijät voivat olla viruksia, bakteereita, sieniä, tietyn kemiallisen koostumuksen omaavia ravintoaineita sekä toksisia tai inflammatorisia kemikaaleja. Nämä voivat heikentää immuunijärjestelmän säätelyä ja edesauttaa epigeneettisten muutosten, pistemutaatioiden ja geenimutaatioiden kehittymistä DNA:han.

Yhden nukleotidin polymorfismit (single nucletide polymorphism, SNP) assosioituvat moniin sairauksiin, kuten syöpiinn ja autoimmuunitauteihin. Esimerkiksi tyypin 1 diabeteksessa ja MS-taudissa tällaisia tautiin assosioituvia yhden nukleotidin polymorfismeja on tunnistettu muun muassa geenin CYP27B1 eri lokuksissa.

Geenit eivät ole täysin muuttumattomia. Ympäristötekijät vaikuttavat geenien toimintaan.

Myös epigeneettinen muutos, jossa geenin yhden tai useamman emäksen päälle on kiinnittynyt metyyliryhmä vaikuttaa geenin ekspressioon ja transkriptioon.

Kuinka mikrobiomi vaikuttaa elimistöön?

Suoliston mikro-organismit estävät vieraiden ja mahdollisesti haitallisten mikrobien pesiytymisen suolistoon ja pääsyn suoliston kautta verenkiertoon.

Mikrobiomi vaikuttaa myös ruoansulatukseen, aineenvaihduntaan, immuunijärjestelmän säätelyyn sekä eräiden vitamiinien ja muiden tärkeiden yhdisteiden, kuten dobamiinin, GABAn ja serotoniinin synteesiin ja edelleen keskushermoston toimintaan mm. vagus-hermon välityksellä.

Onko antibiooteilla ja rokotuksilla vaikutuksia mikrobiomiin?

Antibiootit ja rokotukset ovat pelastaneet kymmeniä tai satoja miljoonia ihmishenkiä viimeisen vuosisadan aikana, mutta joidenkin tutkijoiden mukaan mikrobiomin lajikirjo on pienentynyt infektioilta suojaavan taistelun seurauksena ja tämä on heikentänyt mikrobiomin vaikutusta immuunijärjestelmän säätelyyn.

Hypoteesin mukaan mikrobiomin lajikirjon pienentyminen vaikuttaa immuunijärjestelmän säätelyn kautta sairastumissalttiuden lisääntymiseen. Erityisesti sairastumisalttiuden lisääntyminen vaikuttaa allergioihin ja autoimmuunitauteihin.

Professori Ruth Ley (Max Planck Institute) totesi BBC:lle, että vaikka olemmme taistelleet menestyksekkäästi infektioita vastaan, autoimmuunitautien ja allergioiden määrä on kääntynyt selvään kasvuun.

Tulkitsen tämän niin, että koska mikrobiomi yleensä periytyy äidiltä lapselle, voivat pienet mikrobiomin lajikirjon muutokset kumuloitua sukupolvien aikana ja heikentää pitkällä aikajänteellä immuunijärjestelmän säätelyä. Se voisi selittää väestötasolla eräiden tautien yleistymisen.

Rokotukset ja antibiootit eivät kausaalisesti aiheuta autoimmuunitauteja, mutta ovat voineet useiden sukupolvien aikana vaikuttaa autoimmuunitautien kehittymisen kannalta otollisemman immunologisen ympäristön rakentumiseen. Tällainen spekulaatio kuulostaa ihan järkeenkäyvältä.

Näkökulma: Rokotteiden sisältämät viruksen proteiinit toimivat autoimmuunitaudin laukaisijoina minimaalisen pienellä todennäköisyydellä, mutta näin kävi surullisessa narkolepsiaepidemiassa. Yleisesti ottaen rokotteet ovat hyvin turvallisia. Virus, jolta rokote suojaa voi laukaista autoimuunitaudin myös rokottamattomilla.

Rokottaminen voi laukaista vakavan allergisen reaktion tai sairauden, mutta todennäköisyys sellaiselle on häviävän pieni. Myös rokotteen sisältämien tehoste- ja säilöntäaineiden pelko on aiheeton; hengittämällä elimistöön kulkeutuu taajama-alueilla jo yhdessä päivässä rokotteisiin verrattuna moninkertainen määrä teollisuudesta ja liikenteestä peräisin olevia haitallisia mikropartikkeleita. Hengitysilman pienhiukkaset kulkeutuvat keuhkoista verenkiertoon ja vaikuttavat siten terveyteen.

Maailmanlaajuisesti ilmansaasteet tappavat vuosittain miljoonia ihmisiä. Suurin ongelma on Aasiassa ja Afrikassa. Tämä on rokotteita todellisempi ja akuutimpi uhkakuva myös Euroopassa.

Teollinen ruoka yksipuolisti mikrobiomia

Mikrobiomin heikentymiseen on vaikuttanut myös viime vuosisadalla alkanut ravinnon teollistuminen. Teollisesti valmistetut vähemmän ravinteita ja enemmän energiaa sisältävät ruoat ja rasvat sekä runsas sokereiden käyttö ovat syrjäyttäneet luonnnollisemmat ravinnonlähteet.

Lihan ja sokereiden määrä ravinnossa on lisääntynyt samaan aikaan, kun hapatettujen ruokien ja kasvisten saanti on vähentynyt. Punainen liha, lihajalosteet, transrasvat ja sokerit assosioituvat tutkimuksissa heikentyneen suolistoterveyden ja suoliston tulehdusten kanssa; nämä heikentävät immuunijärjestelmää ja sen säätelyä.

Punainen liha ja suoliston terveys

Runsaan proteiinien saannin kohdalla ongelmia aiheuttaa se, että vaikka proteiinit pilkotaan tärkeiksi aminohapoiksi ja peptideiksi ohutsuolessa, osa proteiineista ei imeydy ohutsuolesta elimistön hyödynnettäväksi, vaan päätyy paksusuoleen, jossa ne ravitsevat mikrobiomin huonoja bakteereita.

Imeytymättömän proteiinin vaikutuksesta paksusuoleen syntyy imeytymätöntä rautaa, ammoniakkia, amiineja, sulfideja ja haaraketjuisia rasvahappoja (BCFA).

Erityisesti lihan paistamisen yhteydessä Mailard-reaktiossa (ruskistumisessa) syntyy sokeroituneita proteiineja, jotka eivät imeydy ohutsuolessa, vaan kulkeutuvat paksusuolen bakteerien fermentoitavaksi (Tuohy et al. 2006). Lähde: Pronutritionist

Ravitsemuksessa tapahtunut muutos ei tietenkään ole yksiselitteisesti huono asia. Ravintoa on enemmän ja monipuolisemmin tarjolla kuin koskaan aiemmin historiassa. Samaan aikaan pikaruoka- ja herkuttelukulttuurilla on kuitenkin hintansa: immuunijärjestelmän toiminnan säätelyyn osallistuvan mikrobiomin heikentyminen on ehkä mahdollistanut aiemmin harvinaisten tautien ja oireyhtymien yleistymisen.

Autoimmuunitautien, allergioiden ja autismin lisääntyminen voisi siis selittyä väestötasolla tapahtuneilla mikrobiomin pitkän aikavälin muutoksilla. Tämä on mielenkiintoinen ajatus.

Ymäristömuuttujat ja terveys

Evoluutio on tehnyt meistä ympäristön muutoksiin hyvin sopeutuvan lajin. Ympäristön muuttuminen mm. ravinnon ja erilaisten kemikaalien osalta on nykyään kuitenkin niin nopeaa, ettei ihmisen aineenvaihdunta ja immuunijärjestelmä ehdi sopeutua muutoksiin.

Kun ihmiset aiemmin sairastuivat ja kuolivat infektioihin, nyt infektioita suurempia uhkia ainakin kehittyneissä maissa ovat elintapoihin assosioituvat kardiometaboliset oireyhtymät, sydän- ja verisuonitaudit, diabetes, syövät jne.

Ravintoaineiden puutokset ja ympäristön myrkyt altistavat sairastumiselle

Välttämättömien ravintoaineiden puutos ei välittömsti johda sairastumiseen, sillä keho varastoi jonkin verran välttämättömiä vitamiineja ja mineraaleja. Elimistössä on simerkiksi B12-vitamiinia yleensä riittävästi kattamaan muutaman vuoden tarpeen, vaikka sitä ei ravinnosta saisikaan. Vakavien puutosoireiden kehittyminen edellyttää pidempiaikaista vitamiinien tai mineraalien puutosta.

Elimistöllä on myös monia aineenvaihduntamekanismeja elintoimintoja ylläpitävien elinten energiansaannin turvaamiseksi. Solut saavat energiaa hiilihydraateista, rasvoista ja proteiineista.

Kun ravintoa ei ole saatavilla, elimistö muuttaa varastorasvoja ketoaineiksi ja glukoneogeneesissä ketoaineita edelleen glukoosiksi tai soluissa energiaksi. Kun elimistön glykogeenit ja rasvavarastot loppuvat, elimistö alkaa tuottaa ketoaineita vapaista proteiineista ja rasvahapoista. Ravinnon jatkuva puutos saa aineenvaihdunnan pilkkomaan lihaksia aminohapoiksi, joita voi käyttää ketoaineina. Näiden selviytymismekanismien ansiosta terve ihminen voi elää jopa kuukauden pelkällä vedellä.

Toksisten aineiden kumuloituminen elimistöön ja välttämättömien ravinteiden puutokset altistavat kuitenkin pitkään jatkuessaan sairastumiselle.

Ravinto ja suolisto

Yksipuolinen ravinto, liiallinen hygienia, runsas alkoholi, tupakointi sekä eräät lääkkeet voivat heikentää suoliston mikrobiomia. Tälla on vaikutuksia terveyteen, koska suoliston mikribiomia tarvitaan mm. suojaamaan suolistoa ulkoisilta taudinaiheuttajilta, vähentämään suolistotulehdusten vaaraa, ehkäisemään suolistosyöpää ja pilkkomaan ravinnon sulamattomia kuituja.

Monista hedelmistä, kasveista, marjoista, tummasta suklaasta ja kahvista saatavilla polyfenoleilla on suoliston mikrobiomille ja painonhallinnalle ilmeisen myönteisiä vaikutuksia. Ne tukevat suoliston terveyttä ylläpitävien bifidobakteerien kasvua. Punaisesta lihasta saatava hemirauta voi pahentaa suoliston tulehduksia, mutta samaan aikaan saatava resistentti tärkkelys vähentää inflammaatiota.

RRSM ja PPMS

MS-taudin kaksi yleisintä mutoa ovat taudinkuvaltaan ja patologisilta mekanismeiltaan hyvin erilaisia tauteja. On ehkä aiheellista harkita sellaista vaihtoehtoa, että RRMS ja PPMS ovat kaksi erillistä sairautta tai monitekijäistä oireyhtymää.

Ne muistuttavat monin tavoin toisiaan, mutta näiden kahden MS-taudin patogeneesi poikkeaa toisistaan merkittävällä tavalla. RRMS on tulehduksellinen autoimmuunitauti, jossa keskushermoston tulehdukset laukaisevat MS-tudille ominaisen demyelinoivan autoimmuunireaktion. PPMS on sairauden alusta alkaen neurodegeneratiivinen, hermoston soluja rappeuttava sairaus, jossa oligodendrosyyttien tuhoutumista ja atrofiaa tapahtuu tasaisesti ilman inflmaatioon assosioituvia pahenemisvaiheita.

Tällaista hypoteesia tukee kliinisten löydösten ohella myös se, että anti-inflammatoriset ja immunosupressiiviset lääkkeet eivät toimi toivotulla tavalla etenevissä MS-taudeissa, vaikka nillä saadaan hyviä hoitotuloksia aaltoilevaa tautimuotoa sairastavilla.

Myöskään kantasoluhoidosta ei löydy apua etenevään MS-tautiin. Kantasoluhoidossa potilaalta kerätään kantasoluja, joita kasvatetaan petri-maljoissa. Kantasolujen keräämisen jälkeen potilaan virheellisesti toimiva immuunijärjestelmä tuhotaan voimakkaalla kemoterapialla. Viimeisessä vaiheessa kantasoluista istutetaan potilaalle uusi immuunijärjestelmä.

Kaiken kaikkiaan kantasoluhoito kestää noin kuukauden ja sillä on saatu hyviä hoitotuloksia RRMS-potilailla. PPMS- ja SPMS-potilaille kantasoluhoito ei ainakaan nykyisellään sovellu.

Immuunijärjestelmää hillitsevillä lääkkeillä ja kantasoluhoidolla ei ole toivottua vaikutusta etenevässä MS-taudissa, koska immuunijärjestelmän virheellinen toiminta ei ole oireiden ensisijainen syy. Etenevä MS-tauti ei myöskään ole ensisijaisesti tulehduksellinen sairaus, koska tulehduksia vähnetävillä lääkkeillä ei saada toivottua vastetta.

Tästä hypoteesista ei vallitse tietellistä konsensusta, mutta etenevien MS-tautien tutkimus on lisääntynyt ja viime aikoina on saatu selkeitä viitteitä siitä, että PPMS on osin virheellisesti ymmärretty sairaus; sen sekoittaminen relapsoivaan-remittoivaan MS-tautiin vain pahentaa tilannetta ja hidastaa tutkimustyötä.

Niin tai näin, molemmissa MS-taudin muodoissa ravinto ja elintavat vaikuttavat taudin etenemiseen, mutta erilaisten patologisten prosessien ja aineenvaihduntakanavien kautta.   

Ehkäpä MS-taudin yksilölliset oireet ja taudinkulku eri potilailla selittyy sillä, että kahteen yleisimpään MS-taudin muotoon vaikuttavat erilaiset geenivariaatiot, geenien alleelit, yhden nukleotidin polymorfismit ja epigeneettiset muutokset.

MS-tautiin assosioituvia geenejä on tunnistettu noin 200, mutta yksikään potilaista ei varmasti kanna kaikkia mahdollisia MS-tautiin liittyviä geenimuutoksia. Tämä monimuotoisuus selittää sen, miksi MS-tautiin on äärimmäisen vaikeaa löytä parantavaa ja kaikille potilaille soveltuvaa hoitoa.

Oksidatiiviseen ainnenvaihduntaan vaikuttavia tekijöitä: PPAR, sirtuiinit ja AMPK

Palataan hapetusreaktioihin, sillä ne vaikuttavat solujen aineenvaihduntaan mm. ravintoaineiden kautta. Oksidatiivinen stressi ja matala-asteinen tulehdus heikentävät elimistön terveyttä ja altistavat kroonisille sairauksille. Immuunivälitteisissä tulehduksellisissa sairauksissa oksidatiivinen stressi ja inflammaatio ylläpitävät ja pahentavat taudin oireita.

Happiradikaalit kaappaavat elektroneja muilta molekyyleiltä

Oksidatiivisella stressillä tarkoitetaan solujen ja laajemmin koko elimistön hapetus-pelkistystilan epätasapainoa. Kun hapettavia tekijöitä on liikaa suhteessa pelkistäviin tekijöihin, oksidatiivinen stressi välittyy reaktiivisten happi- ja typpiradikaalien kautta muihin molekyyleihin.

Reaktiivinen happiradikaali (ROS) on hapesta muodostunut yhdiste, joka sisältää parittoman elektronin. Se pyrkii parilliseen elektronimäärään reagoimalla läheisyydessään olevien muiden yhdisteiden kanssa. Tämä johtaa eräänlaiseen dominoefektiin, jossa happiradikaali vaurioittaa kohtaamansa molekyylin rakennetta ja/tai toimintaa.

Oksidatiivisen metabolismin vaikutusta tehostaa kaksi entsyymiä ja tumareseptori. Entsyymit ovat AMP-aktivoidut proteiinikinaasit: AMPK (Steinberg and Kemp, 2009) sekä sirtuiinit (SIRT), jotka ovat joukko NAD+ -vaikutuksesta aktivoituvia histonideasetylaaseja (Zhang et al., 2011; Rice et al., 2012). Vaikuttava tumareseptori on PPAR-isotyyppi (peroxisome proliferator-activated receptors) Desvergne and Wahli, 1999; Burns and VandenHeuvel, 2007).

Rasvojen energiantuotanto

Keho säilyttää energiaa rasvahappoina, koska rasvahapoissa on hiilihydraatteihin nähden yli kaksinkertainen määrä energiaa painoyksikköä kohden. Rasvahappoja muutetaan energiaksi mitokondrioissa tapahtuvassa beeta-oksidaatiossa:

  • Aluksi rasvat hajotetaan rasvahapoiksi ja glyseroliksi. Esimerkiksi triglyseridissä on kolme rasvahappoketjua, jotka ovat kiinnittyneenä glyseroliosaan.
  • Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi, joka voidaan käyttää energiantuotantoon (n. 5 % triglyserideistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä. Glukoneogeneesi käyttää glukoosimolekyylin tuottamiseen enemmän energiaa kuin syntyvästä glukoosimolekyylistä vapautuu glykolyysissä ja soluhengityksessä.
  • Rasvahapot hapetetaan mitokondrioissa tapahtuvassa beeta-oksidaatiossa (β–oksidaatiossa).
    Rasvahapot aktivoidaan edelleen mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Soluliman asyyli-KoA:lla ja mitokondrion asyyli KoA:lla on eri tehtävät: solulimassa ”rakentava” anabolia ja mitokondriossa ”hajottava” katabolia.
  • Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA).
  • Asetyyli KoA (asetyylikoentsyymi A) hapetetaan edelleen sitruunahappokierrossa.
  • Elimistön energiantuotannon lopputuotteena syntyy vettä ja hiilidioksidia, jotka poistuvat kehosta mm. hengityksen ja hikoilun kautta.

Mitokondrioissa ja peroksisomeissa tapahtuvaa rasvahappojen beetaoksidaatiota tehostavat PPAR-isotyypit. Beetaoksidaatiossa ravinnon tai kehon varastoimia rasvahappoja käytetään energianlähteenä.  PPAR-isotyypit säätelevät beetaoksidaatioon liittyvien geenien transkriptiota ja muodostavat AMPK-sirtuiinipolkuja.

Vähäenerginen ravinto ja liikunta aktivoi AMPK-sirtuiini-PPAR-polun aineenvaihduntaa

AMPK-sirtuiini-PPAR-polku aktivoituu vähäenergisen ravinnon ja fyysisen harjoittelun seurauksena. Aktivaatiota tehostavat kasvisten ja hedelmien sisältämät polyfenolit ja pitkäketjuiset monityydyttämättömät rasvahapot (omega-3). Ligandin aktivoimat PPAR-isotyypit muodostavat kahdesta erilaisesta osasta koostuvia (heterodimeerisiä) komplekseja RXR-reseptorin kanssa.

Käytännössä: Vähäenerginen, omega-3-rasvahappoja ja polyfenoleita sisältävä ravinto tehostaa aineenvaihduntaprosessia, jossa rasvahappoja muutetaan energiaksi beeta-oksidaatiossa.

Vastaavasti runsasenerginen ravinto tehostaa anabolista aineenvaihduntaa ja lipogeneesiä, jossa verenkierrossa olevia sokereita muutetaan varastorasvoiksi. Energiatiheät ravintoaineet edistävät solujen kasvua aktivoimalla SREBP-1c ja SREBP-2 proteiineja (sterol regulatory element-binding proteins), Xu et al., 2013, ja ChREBP (carbohydrate responsive element-binding protein), Xu et al., 2013.

LXR tumareseptorit kontrolloivat SREBP-1c ja SREBP-2-proteiineja, Mitro et al., 2007; Nelissen et al., 2012. Oksysterolit ja glukoosi puolestaan aktivoivat SREBP-1c- ja SREBP-2-proteiineja, jotka osallistuvat lipidien, triglyseridien ja kolesterolin synteesiin.

MS ja inflammaatio: NF-kB ja AP-1)

Ravinnon, inflammaation ja MS-taudin yhteyden kannalta merkityksellisiä ovat kaksi transkriptiotekijää, jotka osallistuvat inflammaatioon ja autoimmuunireaktioihin. Nämä ovat tuman transkriptiotekijä-kB (NF-kB) ja aktivaattoriproteiini (AP-1; Yan and Greer, 2008).

MS-taudissa sekä NF-kB ja AP-1 aktivoituvat vaikuttaen useiden proinflammatoristen geenien ekspressioon ja proinflammatoristen molekyylien tuotantoon. Aktivoitumisen mekanismia ei täysin tunneta, mutta on todennäköistä, että aktivaatioon vaikuttaa virusten, sytokiinien ja oksidatiivisen stressin lisäksi eräät ravintoaineet, kuten tyydyttyneet rasvat, transrasvat.

Tumareseptoreiden aktivaatio

Kaikkien tumareseptoreiden (PPAR, LXR ja VDR) on aktivoiduttava erityisten ligandien avulla. Nämä ligandit voivat olla spesifejä ravintotekijöitä, mikä osoittaa, kuinka solut reagoivat ravintoaineisiin ja säätelevät energian homeostaasia. Samalla tämä mekanismi on kuin molekylaarinen avain, joka auttaa ymmärtämään kuinka ravintoaineet vaikuttavat tulehduksellisten sairauksien etenemiseen (Heneka et al., 2007; Zhang-Gandhi and Drew, 2007; Krishnan and Feldman, 2010; Cui et al., 2011; Schnegg and Robbins, 2011; Gray et al., 2012).

”Therefore, each of the three nuclear receptors—PPAR, LXR, and VDR—competes for the binding to RA-RXR and forms hetero-complexes that can inhibit NF-kB and exert a tight control over the expression of inflammatory genes, thus integrating metabolic and inflammatory signaling. It is clear that there is competition between the three receptors PPAR, LXR, and VDR-D, for the binding with RA-RXR, but this competition should have an influence only on metabolism and not on inflammation, because it is not yet known which of the three heterodimers is more effective in inhibiting NF-kB.”

Proinflammatoristen molekyylien tuotanto MS-taudin pahenemisvaiheen aikana on biosynteettinen prosessi, jota ylläpitää ja pahentaa runsasenerginen ruokavalio. Toisaalta inflammaatioon assosioituvan relapsin oireita ja kestoa voi helpottaa vähäenergisellä ruokavaliolla.

”In principle, what favors anabolism will promote the inflammatory processes, while what favors catabolism will contrast them.”

Kuvan lähde:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342365/figure/fig4-1759091414568185/

Tästä artikkelisarjasta on tullut sellainen iisakin kirkko, joka ei näytä koskaan valmistuvan. Aihe on älyttömän kiinnostava.




Immuunijärjestelmän toimintamekanismit

Immuunipuolustus rakentuu kahden toisiaan täydentävän immuunijärjestelmän varaan. Nämä ovat adaptiivinen eli hankittu immuunijärjestelmä ja luontainen (synnynnäinen) immuunijärjestelmä.

Hankittu immuunijärjestelmä

Adaptiivisen immuunijärjestelmän toiminta perustuu immunologiseen muistiin ja imusoluihin eli lymfosyytteihin. Imusolut ovat valkosoluihin (leukosyytteihin) kuuluvia soluja, jotka osallistuvat elimistön immuunivasteeseen ja pitävät yllä immuunijärjestelmän toimintaa. Imusolut erikoistuvat luuytimen kantasoluista ja niillä on kaksi pääluokkaa: B- ja T-lymfosyytit. Sekä B-, että T-soluilla on huomattava merkitys adaptiivisessa immuunijärjestelmässä ja autoimmuunitautien patogeneesissä.

Adaptiivinen eli hankittu immuunijärjestelmä kehittää immunologisen muistin kohtaamistaan taudinaiheuttajista eli patogeeneistä. Näin hankittu immuunijärjestelmä mukautuu ja kehittyy ensimmäisistä elinvuosista alkaen lähes koko elämän ajan.

Adaptiivisen immuunijärjestelmän vahvuus on siinä, että se tallentaa kohtaamiensa taudinaiheuttajien spesifin rakenteen immunologiseen ”solumuistiin”, jolloin se tunnistaa taudinaiheuttajan herkemmin, toimii nopeammin ja aggressiivisemmin, kun solumuistissa oleva tunnistettu taudinaiheuttaja uhkaa seuraavan kerran elimistöä. Tämä mekanismi mahdollistaa immuniteetin kehittämisen eri taudinaiheuttajia vastaan.

Rokotuksissa hyödynnetään adaptiivista immuunijärjestelmää

Rokotuksissa hyödynnetään tätä adaptiivisen immunijärjestelmän mekanismia siten, että taudinaiheuttamiskyvyltään keikennetyt virukset, bakteerit tai niiden rakenne esitellään adaptiiviselle immuunijärjestelmälle, joka tuottaa vereen sellaisia lymfosyyttejä, jotka ”muistavat” niille esitellyn taudinaiheuttajan. Näin immuunijärjestelmä oppii aktivoitumaan taudinaiheuttajaan ja ihminen saa immuniteetin kyseistä taudinaiheuttajaa vastaan.

Antigeenin esittely dendriittisolujen kautta voi tulevaisuudessa vahvistaa rokotteiden tehoa. Tavalliset rokotteet tarjoavat tehokkaan suojan useita taudinaiheuttajia vastaan. Tämä suoja perustuu siihen, että rokotteet stimuloivat hyvin B-lymfosyyttejä ja indusoivat siten tehokkaasti vasta-ainetuotantoa. Kroonisen infektion, kuten HIV-infektion, aikana suojaavan immuunivasteen muodostuminen edellyttää todennäköisesti myös sytotoksisten T-solujen aktivaatiota. Liittämällä rokotteisiin adjuvantiksi esimerkiksi dendriittisolujen kasvutekijää (GM-CSF) tai stimuloivaa sytokiinia (esim. IL-12) voidaan lisätä sytotoksista T-soluvastetta rokotteeseen. Elävän (heikennetyn) viruksen käyttö rokotteena on toinen strategia, jolla rokoteantigeenit voidaan kohdentaa sytotoksisia T-soluja stimuloiviksi. Kolmas vaihtoehto on käyttää rokotteena puhdistettua DNA:ta, joka proteiinisynteesin kautta aikaansaa ohimenevän antigeenin esittelyn dendriittisolussa.

Terveillä koehenkilöillä on saatu aikaan tehokkaat rokotevasteet käsittelemällä heistä eristettyjä dendriittisoluja eri antigeeneillä ja injektoimalla ne takaisin elimistöön. Erityisen kiinnostavia ovat olleet syövän immunologinen hoito ja syöpärokotteet. Immuunivasteen herättäminen syöpäkudosta vastaan edellyttää tuumorispesifisten antigeenien olemassaoloa. Tuumoriantigeenejä tunnetaan runsaasti eri syövissä, ja niiden tiedetään syntyvän mutaatioiden, sikiöaikaisen proteiinien aberrantin ilmenemisen tai tiettyihin syöpiin liittyvien virusinfektioiden seurauksena.

Menetelmän peruskaava on yksinkertainen: Sairastuneen dendriittisoluja viljellään yhdessä tuumoriantigeenin kanssa ja ruiskutetaan takaisin syöpää sairastavan elimistöön. Näiden menetelmien eläinkokeet ovat antaneet lupaavia tuloksia. Syövän immunologinen hoito dendriittisolupohjaisten syöpärokotteiden avulla vaatii toisaalta vielä runsaasti lisätutkimuksia.

Luontainen immuunijärjestelmä

Hankitun immuunijärjestelmän rinnalla toimii synnynnäinen eli luontainen immuunijärjestelmä. Luontaisen immuunijärjestelmän aktivaatio ei edellytä aiempaa kontaktia mahdollisen patogeenin kanssa, vaan se reagoi patogeeneihin yleisellä tasolla, eli se tunnistaa tietyt mikrobiryhmät tunnusomaisten yleisten rakenteiden perusteella.

Luontainen immuunijärjestelmä ei ylläpidä pitkäkestoista immuniteettia spesifeille taudinaiheuttajille, kuten hankittu immuunijärjestelmä.

Ennen hankitun immuunijärjestelmän kehittymistä, lapsen puolustautuminen taudinaiheuttajia vastaan tapahtuu luontaisen immunijärjestelmän avulla sekä mm. äidinmaidosta saatavien vasta-aineiden välityksellä. Ihmisen luontaista immuunijärjestelmää tukevat myös mm. seuraavat epäspesifiset puolustuskeinot:

  • Terve iho ja ihon alhainen pH ehkäisevät mikrobien kasvua.
  • Liman tuotto ja värekarvat (ruoansulatuskanavassa, hengitysteissä ja sukuelinten alueella); lima pysäyttää mikrobien ja muiden partikkelien liikkumisen ja suojaa näin elimistöä taudinaiheuttajilta.
  • Aivastus- ja yskärefleksi poistaa liman mukana myös elimistöä uhkaavia mikrobeja.
  • Mahan hapan pH suojaa elimistöä ravinnon mukana tulevilta mikrobeilta tappaen lähes kaikki patogeenit. Ruoansulatuskanavassa on ravintoaineita pilkkovia entsyymejä, jotka tuhoavat myös mikrobeja.
  • Nestevirtaus elimistön eri osissa rajoittaa mikrobien kasvua; esim. kyynelneste pitää silmän pinnan puhtaana myös mikrobeista. Syljessä ja kyynelnesteessä on bakteereja hajottavaa lysotsyymia ja muita vastaavia proteiineja.
  • Normaalimikrobisto: Iholla ja suolistossa elää normaaliflooraksi kutsuttu mikrobilajisto, jonka lajit eivät aiheuta ihmisellä sairauksia, vaan estävät muiden hyödyllisten ominaisuuksiensa ohella tautia aiheuttavien bakteerien pääsyä elimistöön.

Fagosyytit ja fagosytoosi

Luonnollisen immuniteetin puolustusmekanismeihin kuuluu soluja (fagosyytteja), jotka kykenevät fagosytoimaan eli nielemään elimistöön pyrkiviä taudinaiheuttajia.

Fagosyytit jaetaan kahteen pääluokkaan rakenteensa perusteella. Nämä ovat

  • Monosyytit
  • Granulosyytit (basofiiliset, neutrofiiliset ja eosinofiiliset)

Monosyytit ja granulosyytit ovat sellaisia veren valkosoluja, joilla on kyky siirtyä verenkierrosta verisuonen seinämän läpi kudosnesteeseen. Tämä tapahtuu tulehduspaikalta leviävien, valkosoluja houkuttelevien aineiden eli kemokiinien avulla.

Sekä monosyytit (kudoksissa kypsyviä monosyyttejä kutsutaan makrofageiksi) että granulosyytit tunnistavat taudinaiheuttajan tai sen erittämän tuotteen mikrobien pinnassa olevien yleisten rakenteiden perusteella. Esimerkiksi bakteerien soluseinä eroaa rakenteeltaan ihmisen omien solujen solukalvoista; näin fagosytoivat solut osaavat erottaa taudinaiheuttajat elimistön omista rakenteista.

Fagosyytit eivät tunnista yksittäisiä mikrobilajeja, eikä niillä ole immunologista muistia, kuten adaptiivisella immuunijärjestelmällä. Fagosyytit reagoivat taudinaiheuttajiin seuraavalla tavalla:

  1. fagosyytti tunnistaa taudinaiheuttajan pinnallaan olevien reseptoriproteiinien avulla
  2. fagosyytin pintaan muodostuu kuoppa, johon fagosytoiva (tuhottava) mikrobi painuu
  3. fagosyytti sulkee mikrobin kokonaan sisäänsä ja tuhoaa mikrobin pumppaamalla sitä ympäröivän kalvon sisälle pH:ta laskevia vetyioneita
  4. kalvon sisäpuolen pH:n laskun seurauksena eräät entsyymit aktivoituvat ja alkavat hajottaa mikrobin proteiineja, nukleiinihappoja ja muita rakenteita.

Makrofagi

Makrofagit, eli ”suursyömärit” ovat elimistön syöjäsoluja, jotka syövät vieraiksi tunnistettuja mikrobeja ja vierasaineita. Makrofagin solulimassa on atsurofiilisia jyväsiä. Nämä sisältävät fagosytoosin toiminnan kannalta tärkeitä lysomaalisia entsyymejä ja myeloperoksidaaseja. Kun makrofagi syö patogeenin, se joutuu fagosomin sisälle, joka sitten fuusioituu lysosomin kanssa. Fagolysosomin sisällä entsyymit ja toksiset peroksidit sulattavat patogeenin.

Makrofagit voivat sulattaa yli 100 bakteeria ennen kuolemistaan hajoamistuotteisiin. Makrofagit kehittyvät veressä kiertävistä monosyyteistä ja asettuvat kudoksiin ja niitä on erityisen runsaasti lymfaattisissa kudoksissa, kuten imusolmukkeissa. Makrofagit tuhoavat tehokkaasti solunsisäisiä mikrobeja, mutta niillä on tärkeä tehtävä myös soluvälitteisessä immuunipuolustuksessa, jossa ne toimivat antigeenia esittelevinä soluina (APC).

Makrofagi syömässä patogeenia: a. Syöjäsolu nielaisee patogeenin fagosytoosilla. Fagosytoottinen vesikkeli eli fagosomi muodostuu. b. Lysosomit fuusioituvat fagosomin kanssa muodostaen fagolysosomin; patogeeni pilkotaan entsyymeillä. c. Jätteet poistuvat tai assimiloidaan (ei kuvassa). Osat: 1. Patogeenit 2. Fagosomi 3. Lysosomit 4. Jätteet 5. Sytoplasma 6. Solukalvo

Makrofagi syömässä patogeenia:
a. Syöjäsolu nielaisee patogeenin fagosytoosilla. Fagosytoottinen vesikkeli eli fagosomi muodostuu.
b. Lysosomit fuusioituvat fagosomin kanssa muodostaen fagolysosomin; patogeeni pilkotaan entsyymeillä.
c. Jätteet poistuvat tai assimiloidaan (ei kuvassa).
Osat:
1. Patogeenit
2. Fagosomi
3. Lysosomit
4. Jätteet
5. Sytoplasma
6. Solukalvo

Antigeeni

Antigeeni on mikä tahansa molekyyli, joka aiheuttaa elimistössä immuunivasteen. Antigeenit ovat usein proteiineja tai polysakkarideja, joita esiintyy esimerkiksi bakteerien tai virusten pintarakenteissa. Imusoluilla on antigeenireseptori, jonka avulla ne tunnistavat tietyn antigeenin. Antigeenien avulla elimistö tunnistaa sen, onko solu oma tai elimistölle vieras.  Vasta-aineet tarttuvat antigeeniin. Antigeeni aiheuttaa elimistössä vasta-ainevälitteisen tai soluvälitteisen immuunireaktion. Jos elimistön muistisoluissa on tieto taudinaiheuttajasta, käynnistyvää vastetta kutsutaan sekundaarivasteeksi (adaptiivinen immuniteetti), jossa vaste on nopeampi ja tarkempi. Jos antigeeni on tuntematon, elimistö käyttää muita menetelmiä tunkeutujan tuhoamiseen (primaarivaste, luonnollinen immuniteetti). Primaarivasteen jälkeen immuunipuolustuksen käyttöön jää muistisoluja, jotka muistavat kyseisen antigeenin, joten sen tuhoaminen seuraavalla kerralla on nopeampaa. Elimistön omat solut tunnistetaan samalla menetelmällä.

Komplementti

Komplementti on luontaisen immuunijärjestelmän osa, joka koostuu joukosta veressä ja kudosnesteissä esiintyviä taudinaiheuttajia tunnistavia ja tuhoavia proteiineja. Komplementin proteiinit toimivat tavallaan ketjureaktiona, jossa ensimmäisen proteiinin aktivointi johtaa seuraavan aktivoitumiseen, joka edelleen aktivoi kolmannen proteiinin jne. Kun tämä ketjureaktio käynnistyy, sitä on vaikea pysäyttää. Se myös kasvaa edetessään tehokkaammaksi, sillä jokainen aktivoituneista proteiineista kykenee aktivoimaan useita seuraavan vaiheen proteiineja.

Klassinen aktivaatio

Bakteerin pinnalla on tunnistettu antigeeni, johon immunoglobuliini on kiinnittynyt. Immunoglobuliinin FC-osaan kiinnittyy C1q-entsyymi, johon taas kiinnittyy C1r- ja C1s- entsyymit. Komplementin ensimmäinen entsyymi C1 muodostuu siis osista C1q, C1r:t ja C1s:t. Osat aktivoivat toisiaan ja syntyy C1. Tämän rakenteen säilyttämiseksi tarvitaan Ca2+-ioni.

C1 pilkkoo C4→ C4a ja C4b. C4b kiinnittyy bakteerin pinnalle Mg2+-ionin avulla. C1 pilkkoo myös C2-→ C2a ja C2b. C2b kiinnittyy C4a:n. Näin muodostuu C3-ja C5-konvertaasi eli aktiivinen entsyymi, joka pilkkoo C3 ja C5.

C4a/C2b-entsyymi siis pilkkoo C3→ C3a ja C3b. C3b sitoutuu bakteerin pinnalle ja siihen liittyy C5. C4a/C2b-entsyymi pilkkoo liittyneen C5-→ C5a ja C5b.

C5b kiinnittyy bakteerin pinnalle ja houkuttelee sinne C6, C7, C8 ja C9:t. Nämä muodostavat MACin (engl. Membrane Attack Complex) eli reiän bakteerin solukalvoon. Tästä seuraa lyysis eli bakteerin tuhoutuminen.

Komplementin klassisen reitin aktivoivat siis immunoglobuliinit, joista voimakkaimpia ovat IgG1, IgG3 ja IgM. Myös immunokompleksit, DNA-histonikompleksit ja C-reaktiivinen proteiini (CRP) aktivoivat reittiä.

Lähde: Wikipedia

 

Hankittu immuunijärjestelmä ja sen toiminta

Hankitun immuunijärjestelmän spesifinen tunnistuskyky perustuu siihen, että lymfosyyttien solukalvolla olevat reseptorit ovat patogeenejä tunnistavilta osiltaan hyvin monimuotoisia. Tietyn antigeenin ilmaannuttua elimistöön, vain ne lymfosyytit aktivoituvat, joiden solukalvolla oleva reseptori tunnistaa kyseisen antigeenin.

Hankittu immuniteetti tunnistaa mikrobit yksittäisinä spesifeinä lajeina niissä olevien yksityiskohtaisten ja yksilöllisten rakenteiden perusteella. Hankittu immuniteetti on immuunivasteen kannalta täsmällisempi kuin luontainen immuunijärjestelmä, mutta molemmat immuunijärjestelmät tukevat ja täydentävät toisiaan.

Immunologinen muisti

Immuunipuolustuksen toimivuuden kannalta tärkeää on tehokas puolustautuminen toistuvasti elimistöön pyrkiviä taudinaiheuttajia vastaan. Käytännössä tämä tapahtuu immunologisen muistin avulla: immuunijärjestelmä muistaa elimistöön aiemmin tunkeutuneet patogeenit ja mikäli sama mikrobi kohdataan uudelleen, immunologinen reaktio käynnistyy nopeasti ja on paljon tehokkaampi kuin ensimmäisellä kerralla.

Kun patogeeni pääsee elimistöön ensimmäistä kertaa, muodostuvaa immunologista reaktiota kutsutaan primaarivasteeksi. Saman patogeenin tunkeuduttua elimistöön uudelleen primaarivasteen jälkeen, immunologinen reaktio on sekundaarivaste, jolloin immuunivaste käynnistyy nopeammin ja poikkeaa primaarivasteesta myös mm. erittyvien vasta-aineiden tyypin osalta. Sekundaarivasteen taustalla on muistisoluiksi kutsutun solutyypin kehittyminen.

Kun humoraalisen immuunivasteen käynnistyessä B-lymfosyyteistä kypsyy plasmasoluja, osa niistä muuntuu samanaikaisesti muistisoluiksi. Muistisoluilla on pinnallaan saman antigeenin tunnistava reseptori, mutta sen sijaan, että ne poistuisivat imusolmukkeista verenkiertoon ja edelleen tulehduspaikalle, ne jäävät imukudokseen. Muistisolut ovat pidemmälle kypsyneitä kuin naiivit B-solut, ja tämän vuoksi ne pystyvät käynnistämään sekundaarivasteen tehokkaasti siinä tapauksessa, että sama antigeeni ilmestyy uudestaan imusolmukkeeseen APC-solujen mukana.

T- ja B-lymfosyyttien toiminnan erot

B-lymfosyytit (B-solut) tunnistavat solunulkoisessa tilassa vapaina (liukoisina) olevia antigeenejä B-solun ulkokalvoon kiinnittyneen B-solureseptorina toimivan immunoglobuliinimolekyylin avulla. B-solut osallistuvat vasta-ainevälitteiseen immuniteettiin.

T-lymfosyytit tunnistavat vain sellaisia antigeenejä, jotka ovat kiinnittyneet johonkin elimistön omaan proteiiniin. Näitä T-solujen toiminnan kannalta välttämättömiä elimistön omia proteiineja kutsutaan MHC-molekyyleiksi, ja ne jaetaan kahteen pääluokkaan: MHC I ja MHC II.

T-solujen tyypit määräytyvät sen mukaan, kumpaan MHC-tyyppiin sitoutuneita antigeenejä ne osaavat tunnistaa.

  • Sytoksiset T-solut tunnistavat antigeenin osana MHC I-kompleksia. Sytoksiset T-solut voidaan tunnistaa solun pinnalla olevan CD8-proteiinin avulla (CD8+).
  • Auttaja T-solut tunnistavat MHC II-molekyyliin kiinnittyneen antigeenin. Auttaja-T-solut eroavat sytoksisista T-soluista, sillä niiden pinnalla on CD4-proteiinia (CD4+).

T-solut (eli T-lymfosyytit)

T-lymfosyytti on valkosolun eli leukosyytin alatyyppi; T-lymfosyytti on imusolu, jolla on keskeinen merkitys soluvälitteisessä immuunipuolustuksessa.

T-solut erotetaan muista lymfosyyteistä, kuten B-soluista ja luonnollisista tappajasoluista (NK cells) T-solun pinnalla olevan T-solureseptorin (TCR) avulla. Nimitys T-solu tulee kateenkorvaa tarkoittavasta sanasta: thymus. Suurin osa T-soluista kehittyy kateenkorvassa.

T-solureseptorit (TCR)

T-lymfosyyttien pinnalla on tunnusomainen T-solureseptori, jonka tehtävä on tunnistaa antigeenin pilkkoutunut peptidifragmentti MHC-molekyylien antigeeniä-esittelevän-solun (APC) pinnalla.

T-solureseptorit sisältävät sekä muuttumattomia, että muuttuvia alueita. Kaikki T-solureseptorit sisältävät TCR-CD3-kompleksin, mutta T-solureseptorin muuttuva alue määrittelee sen, mihin antigeeniin erityinen T-solu voi reagoida.

CD4+ auttaja-T-solujen pinnalla on T-solureseptori, joka on herkkä luokan II MHC-proteiineille. Näitä luokan II MHC-proteiineja esiintyy yleensä vain spesifien antigeeniä-esittelevien-solujen (APC) pinnalta.

CD8+ sytoksisten-T-solujen pinnalla on reseptori, joka osaa tunnistaa luokan I MHC-proteiineihin kiinnittyneitä antigeenejä.

Antigeeniä-esittelevät-solut (APC) ovat pääsääntöisesti dendriittisoluja, makrofageja tai B-soluja. Dendriittisolut ovat ainoa soluryhmä, joka esittelee aina luokan II MHC-proteiineja.

T-solureseptorin rakenne

T-solujen solureseptorit muodostuvat kahdesta erillisestä glykoproteiiniketjusta. T-solujen reseptoreista n. 95 % muodostuu TRA:n ja TRB:n koodaamista alfa- ja beetaketjuista ja n. 5 % T-solureseptoreista muodostuu gamma- ja deltaketjuista, joita koodaa TRG ja TRD.

Kaikilla T-solujen alaryhmillä on oma tehtävänsä osana toimivaa immuunijärjestelmää. Suurin osa ihmisen T-soluista on T-solureseptorien alfa- ja beeta-proteiiniketjurakenteen mukaan nimetty alfa-beeta-T-soluiksi (αβ T cells), eli niiden solureseptorit muodostuvat yhdestä alfa- ja yhdestä beeta-ketjusta. Alfa-beeta-T-solut toimivat osana adaptiivista immuunijärjestelmää.

Erikoistuneiden gamma-delta-T-solujen T-solureseptorit muodostuvat yhdestä gamma- ja yhdestä deltaketjusta. Gamma-delta-T-soluja on lähinnä suoliston limakalvojen lymfosyyteissä, eli ne ovat tavallisesti osa intraepiteelilymfosyyttejä (IEL).

Gamma-delta-T-solujen reseptorit ovat muuttumattomia, mutta ne voivat tehokkaasti esitellä antigeenejä muille T-soluille. Niitä pidetään osana luontaista immuunijärjestelmää (innate immune system).

T-solujen tyypit

Efektori-T-solut

Efektori-T-solujen kategoria ovat laaja, sillä se sisältää useita T-solutyyppejä, kuten auttaja-, tappaja- ja säätelijä T-solut.

T-auttaja-solut

T-auttaja-solut (Th) auttavat muita valkosoluja immunologisissa prosesseissa, kuten B-solujen erikoistumisessa plasmasoluiksi ja muisti B-soluiksi sekä sytotoksisten T-solujen ja makrofagien kehityksessä ja aktivaatiossa.

Th-solut aktivoivat muita T-soluja erittämällä solujen välisen viestinnän mahdollistavia sytokiinejä ja näin Th-solut säätelevät tai vaimentavat immuunivastetta.

Täysin kehittyneet T-auttaja-solut tunnetaan myös (positiivisina) CD4+ T-soluina, koska niiden pinnalla on CD4-proteiinia.

CD4+ T-solujen reseptoreilla on herkkyys luokan II MHC-proteiineille. CD4-proteiineja on mukana T-solujen kateenkorvassa tapahtuvassa kehityksessä (maturaatio), ja niiden avulla CD4+ T-solujen herkkyys määräytyy luokan II MHC-proteiineille.

T-auttaja-solujen aktivaatio tapahtuu luokan II MHC-molekyylien antigeenejä-esittelevien solujen (APC [antigen-precenting-cell]) pinnalla esittelemien antigeenipeptidien avulla.

Sytokiinit

Kun T-auttaja-solut aktivoituvat, ne jakautuvat nopeasti ja erittävät sytokiinejä, jotka säätelevät ja auttavat aktiivista immuunivastetta. Immuunijärjestelmää ohjaavat sytokiinit ovat proteiinirakenteisia solujen välisen viestinnän välittäjäaineita, jotka voidaan edelleen jakaa toimintansa perusteella viiteen pääryhmään:

  • tuumorinekroositekijät
  • interferonit
  • interleukiinit
  • hematopoieettiset kasvutekijät
  • muut kasvutekijät

T-auttaja-solujen merkitys käytännössä

T-auttaja-solujen merkitystä voidaan havainnollistaa HIV:lla, joka infektoi ensisijaisesti CD4+ auttaja-T-soluja. HIV:n myöhemmissä vaiheissa toimivien CD4+ T-solujen puutoksen seurauksena on AIDS (Acquired ImmunoDeficiency Syndrome).

MHC (major histocompatibility complex)

MHC on yksi eniten tutkituista genomin alueista, koska sen lokus-variantit assosioituvat vahvasti autoimmuunitauteihin, infektioihin sekä moniin tulehduksellisiin sairauksiin. Lue aihetta sivuava tutkimus tästä >>

MHC-proteiinit ovat MHC-geeniperheen koodaamia solujen solupinnan glykoproteiineja, jotka toimivat immunologisessa puolustuksessa sitoen antigeeninä toimivan proteiinin pilkkoutumisen seurauksena syntyneitä peptidifragmentteja ja kuljettaen niitä antigeeniä esittelevän solun (APC) pinnalle, jossa ne esitellään T-soluille yhdessä muiden stimulatoristen signaalien kanssa.

Tämän seurauksena aktivoituneet efektori-T-solut tunnistavat saman peptidi-MHC-kompleksin kohdesolunsa pinnalla, mikä voi sytoksisten T-solujen tapauksessa olla mikä tahansa infektoitunut elimistön solu, auttaja-T-solujen tapauksessa B-solu, sytoksinen T-solu, infektoitunut makrofagi tai dendriittisolu itse. (Lähde: Solunetti)

MHC-proteiineihin sitoutuvat antigeenit ovat aina lyhyitä peptidejä. Luokan I MHC-proteiineihin kiinnittyvät peptidit voivat olla 8-10 aminohapon mittaisia, kun taas luokan II MHC-peptideissä on jopa 25 aminohapon mittaisia peptidejä.

  • Peptidit ovat proteiineja pienempiä, tavallisesti alle viidestäkymmenestä aminohaposta koostuvia aminohappoketjuja
  • Proteiinit ovat isoja molekyylejä, jotka tavallisesti koostuvat vähintään viidestäkymmenestä aminohappotähteestä, mutta ne voivat koostua jopa yli tuhannesta aminohappotähteestä
  • Aminohapot ovat proteiinien rakenteen perusosia
  • Proteiineissa aminohapot sitoutuvat toisiinsa kovalenttisin amidi- eli peptidisidoksin
  • Entsyymit ovat proteiineja, jotka katalysoivat kemiallisia reaktioita

 

Dendriittisolu (DC) on tärkein antigeeniä esittelevä solu

Dendriittisolut ovat yleiseen immuunijärjestelmään kuuluvia soluja, jotka ilmentävät pinnallaan monia reseptoreja (mm. TLR ja NOD-proteiineja), joiden avulla ne tunnistavat ja fagosytoivat kohtaamiaan patogeenejä. Eri kudoksista on löydetty lukuisia erilaisia dendriittisoluja. Useimmat niistä ilmentävät pinnallaan joko myeloidisten tai lymfaattisten solujen tyyppirakenteita.

Ei ole täysin selvää, mistä kantasoluista ja miten eri kudosten monet dendriittisolutyypit kehittyvät. Myöskään jaottelu myeloidisiin ja lymfaattisiin dendriittisoluihin ei ole täysin yksiselitteistä. Tyypillistä dendriittisolun kehityksessä on luuytimessä muodostuneen ja sieltä verenkiertoon vapautuneen esiasteen muuntuminen myöhemmin kudoksessa tai imusolmukkeessa ns. epäkypsäksi dendriittisoluksi, joka on normaalitilassa dendriittisolun tavallisin olomuoto. Dendriittisolun kypsymisestä (aktivaatiosta) huolehtivat lähinnä patogeenit ja tulehduksen välittäjäaineet.

Ulkoisesti ja toiminnallisesti muuntautumiskykyiset dendriittisolut ohjaavat etenkin T-lymfosyyttien ja osittain myös B-lymfosyyttien toimintaa. Immuunijärjestelmän toiminnan säätelyyn osallistuvat dendriittisolut muodostuvat luutytimen myeloidisista ja lymfaattisista kantasoluista, esiintyvät veressä usein epäkypsinä esiasteina ja siirtyvät verestä kudoksiin. Kudosten dendriittisolut tunnistavat patogeeneille ominaisia rakenteita, muokkaavat niistä antigeenejä ja kypsyttyään vaeltavat imusolmukkeisiin, jossa ne aktivoivat niihin kertyneitä lymfosyyttejä.

Dendriittisolujen muuntautumiskyky ja tieto siitä, kuinka dendriittisolut tunnistavat pintareseptoreiden avulla taudinaiheuttajia sekä toimivat sillanrakentajina luontaisen ja adaptiivisen immuunivasteen välillä on keskeinen kiinnostuksen kohde, kun pohditaan ratkaisua moniin immuunijärjestelmämme toimintaa koskeviin kliinisiin ongelmiin, kuten rokotusvasteiden parantamiseen, elinsiirteiden hyljintäreaktioiden hoitoon, autoimmuunitautien patogeneesiin ja syöpätautien immuuniterapia.

Dendriittisoluilla on keskeinen rooli adaptiivisen immuunivasteen alkutahtien antajana ja tästä vasteesta huolehtivien T- ja B-lymfosyyttien toiminnan ohjeistajina, mutta dendriittisolut toimivat myös lähetin ja tunnustelijan roolissa, sillä ne hankkivat ensimmäisinä hematopoieettisen järjestelmän soluina ihon ja limakalvojen epiteelissä ja niitä syvemmissä kudoksissa kosketuksen elimistöömme tunkeutuviin taudinaiheuttajiin ja kuljettavat tiedon niistä imusolmukkeisiin.

Kateenkorvassa dendriittisolut ohjaavat T-lymfosyyttien esiasteita. Edelleen dendriittisolut ohjaavat imusolmukkeissa aktivoimiaan T-lymfosyyttejä auttaja-T-soluiksi, tappaja-T-soluiksi tai regulatorisiksi T-soluiksi.

Eri dendriittisoluilla on toiminnallisia eroja, jotka ovat immuunijärjestelmän kannalta merkityksellisiä. Imusolmukkeissa T-lymfosyyttialueella sijaitsevat ns. interdigitoivat dendriittisolut ovat erilaistuneet T-soluaktivaatioon, kun taas B-solufollikkekeissa sijaitsevat follikulaariset dendriittisolut ovat välttämättömiä suuriaffiinisten vasta-aineiden muodostukselle.

Eri patogeenit voivat aktivoida eri dendriittisoluja. Myeloidiset ja lymfaattiset dendiittisolut eroavat toisistaan jossain määrin myös stimuloimansa T-soluvasteen osalta. Myeloidiset dendiittisolut ohjaavat Th1-auttajasolujen kautta immuunivastetta varsinkin sytotoksisten T-solujen suuntaan ja lymfaattiset Th2-auttajasolujen kautta varsinkin vasta-ainevälitteisen immuniteetin suuntaan, joskin tähän vaikuttavat oleellisesti liukoiset välittäjäaineet.

Myös epäkypsän ja kypsän dendriittisolun toiminnassa on eroja: antigeeninesittely kypsästä dendiittisolusta aikaansaa todennäköisemmin kunnollisen immuunivasteen, kuin esittely epäkypsästä dendriittisolusta, mikä johtaa telpommin immunologiseen toleranssiin kyseistä antigeeniä kohtaan.

Dendriittisolujen pintareseptorit tunnistavat patogeenejä

Dendiittisolut toimivat siltana synnynnäisen ja adaptiivisen immuunijärjestelmän välillä. Synnynnäisellä immuunijärjestelmällä tarkoitetaan fagosytoivia soluja (monosyytit, makrofagit, granulosyytit), luonnollisia tappajasoluja (NK-solut) ja komplementtijärjestelmää. Mös dendriittisolut ovat osa synnynnäistä immuunijärjestelmää.

Epäkypsille dendriittisoluille on ominaista vilkas endosytoosi, ja ne kykenevät fagosytoimaan patogeenejä mm. mannoosireseptoriensa avulla. Dendriittisolujen pinnalla on TL-reseptoreja (toll-like receptors, TLR 1-10). Näiden reseptorien avulla dendriittisolut kykenevät endosytoimaan muiden fagosytoivien solujen tapaan mikrobeja ja tappamaan niitä lysosomeissa.

Dendriittisolut pilkkovat fagosytoimiensa patogeenien proteiineja peptidifragmenteiksi, jotka sitoutuvat solun MHC-proteiineihin, ja siirtyvät solun pinnalle. Kun tällaisia patogeeniperäisiä peptidifragmentteja esittelevät dendriittisolut siirtyvät paikallisiin imusolmukkeisiin, ne aktivoivat siellä olevia adaptiivisen immuunijärjestelmän T-soluja. Aktivoituneet dendriittisolut erittävät myös sytokiinejä, jotka vaikuttavat muodostuvan immuunireaktion luonteeseen.

Aktivoitunut dendriittisolu pyrkii luomaan kontaktin antigeenispesifisyydeltään sopivan T-lymfosyytin kanssa sekä varmistamaan tämän aktivaation. Tätä kutsutaan antigeenin esittelyksi. Sopiva T-lymfosyytti löytyy, kun sen T-solureseptorit tunnistavat dendriittisolun esittelemän antigeenin riittävällä affiniteetilla. Tämän jälkeen T-lymfosyytti herää toimintaan: se jakaantuu monistaen itsestään yhtenäisen T-solukloonin, joka vähitellen kypsyy vasta-aine- tai soluvälitteisen immuniteetin auttaja- tai toteuttajasoluiksi dendriittisolun ohjeistamana. Aina ei käy näin: Dendriittisolu voi myös lamata antigeenin tunnistaneen T-lymfosyytin. Joskus dendriittisolun aktivoima T-lymfosyytti saattaa ohjelmoitua kuolemaan tai lamaantua toiminnallisesti (anergia). Antigeenin esittely voi myös käynnistää T-lymfosyytin erilaistumisen immuunivastetta aktiivisesti hillitseväksi regulatoriseksi T-soluksi. Kaikkia niitä tekijöitä, jotka määräävät antigeenin esittelyn aikaansaaman T-soluvasteen luonteen, ei täysin tunneta.

Patogeenin aktivoima dendriittisolu voi aktivoida T-lymfosyytin

Osa dendriittisolujen aktivoimista T-soluista siirtyy infektiopaikalle tuhoamaan mikrobeja, osa jää lymfaattisiin elimiin mm. aktivoimaan uusia T-soluja sekä avustamaan vasta-aineita tuottavien B-solujen aktivaatiossa.

Fagosytoituaan jonkin patogeenin epäkypsä dendriittisolu aktivoituu ja alkaa tuottaa sytokiinejä (välittäjäaineita, joihin kuuluvat mm. IL-1, IL-6, IL-12, IFN-α/β, IFN-γ), jotka puolestaan aktivoivat muita lähialueen soluja, mm. makrofageja ja verisuonten endoteelisoluja. Tällä on suuri merkitys tulehdusreaktion käynnistymisessä. Dendriittisolu pilkkoo patogeenistä antigeenejä, joiden esittelyn jälkeen dendriittisolu on valmis aktivoimaan T-lymfosyytin. Tässä voidaan havaita silta luontaisen ja adaptiivisen immuunijärjestelmän välillä.

Päästäkseen naiivien T-solujen luo dendriittisolut ovat kehittäneet kyvyn aistia ympäröivän soluvälinesteen kemotaktisia signaaleja ja liikkua kasvavaa pitoisuusgradienttia kohti. Muun muassa CCL19- ja CCL21-kemokiinien vaikutuksesta dendiittisolut osaavat kemokiinireseptorien välityksellä muuttaa solutukirankaansa siten, että koko solu liikkuu kohti imusolmukkeita, joissa on T-soluja.

Dendriittisolujen mahdolliset terapeuttiset sovellukset ovat kasvavan mielenkiinnon kohteina, sillä perustutkimuksen tasolla on saatu lupaavia tuloksia dendriittisolumanipulaatioiden tehosta infektiotautien, kuten hepatiitin ja HIV-infektion ja toisaalta syöpätautien ja hyljintäreaktoiden hallinnassa, sekä osin myös autoimmuunitautien hoidossa.

Dendriittisolut ja autoimmuunitaudit

Dendriittisolut pystyvät indusoimaan voimakkaita immuunivasteita ja myös säätelemään niitä, mistä syystä ne ovat tärkeitä immunologisen toleranssin ylläpidossa. Omia kudoksia tuhoavan haitallisen immuunivasteen hillitseminen voisi periaatteessa olla mahdollista kohdeantigeenin esittelyllä dendriittisoluista, joiden olomuoto on toleranssia suosiva.

Eläinkokeissa tähän päästään esimerkiksi liittämällä kohdeantigeeni sellaisen endosytoosi-reseptorin ligandiin, jota vain epäkypsät dendriittisolut ilmentävät (Mellman ja Steinman 2001). Kypsymistä ja siten simulaatiokykyä estäviä välittäjäaineita (esim. IL-10, TGF-β) voidaan hyödyntää pyrittäessä kohdeantigeeniin kohdistuvan immuunivasteen hillitsemiseen (Hackstein ym. 2001). Samoin lymfosyyttien solukuolemaa aiheuttavien reseptorien, kuten Fas-reseptorin ligaatiota voidaan hyödyntää immuunivasteen hillitsemisessä (Matsue y. 1999). Solukuolemareseptorien ligandien ja regulatoristen sytokiinien (IL-10, TGF-β) hyödyntäminen geneettiseen manipulaatioon kn vilkkaan tutkimuksen kohteena dendriittisolujen muovaamisessa toleranssia suosiviksi (Lobell ym. 1999) ja siten haitallisia immuunireaktioita hillitseviksi.

Dendriittisolujen toiminnan ja sen säätelyn ymmärtäminen on avaamassa uudenlaisia mahdollisuuksia adaptiivisen immuunivasteen tehostamiseksi ja hillitsemiseksi.

Dendriittisolujen tärkeimmät ominaisuudet ja toiminnot

Ominaisuus Toiminto
Kyky enosytoida patogeenejä ja hajottaa niitä lysosomeissa Osa synnynnäistä luonnollista immuunijärjestelmää
Kyky siirtyä kudoksesta imusolmukkeeseen patogeenin enosytoinnin jälkeen Kudokseen tunkeutuneen patogeenin tuominen adaptiivisen immuunijärjestelmän ulottuville
Kyky stimuloida naiiveja T-soluja imusolmukkeissa Tärkeä rooli uuden immuunivasteen käynnistämisessä ja sillanrakentajana synnynnäisen ja adaptiivisen immuunijärjestelmän välillä
Kyky lamata T-soluaktivaatiota imusolmukkeissa ja kyky ”valikoida” kateenkorvassa kypsyvistä T-soluista soveltuvimmat Tärkeä rooli immunologisen toleranssin muodostamisessa ja ylläpidossa

Lähteet: Solunetti, Dendriittisolu – immuunivasteen kapellimestari >>

 

Immunologisen reaktion eteneminen

Tavallisesti adaptiivinen immuunivaste käynnistyy vasta luontaisen immuniteetin aktivaation jälkeen sen tulehduspaikalla sekä ympäröivän alueen imusuonissa aikaansaamien muutosten seurauksena.

Hankitun immuunijärjestelmän vaste käynnistyy aina auttaja-T-solujen välityksellä. Immuunivasteen etenemiseen vaikuttaa se, onko kyseessä solunulkoinen patogeeni, jolloin immuunivaste etenee humoraalisena, vai solunsisäinen patogeeni, jolloin käynnistyy soluvälitteinen immuunipuolustus.

Primaari- ja sekundaarivaste

Primaarivaste käynnistyy, kun tuntematon taudinaiheuttaja pääsee elimistöön ensimmäistä kertaa. Primaarivasteen aikana immuunijärjestelmä ”tutustuu” antigeeniin ja kehittää antigeenille vasta-aineita. Osa B-soluista”tallentaa” elimistöä uhkaavan antigeenin yksilöllisen rakenteen. Nämä muisti-B-solut jäävät imukudokseen, jossa ne toimivat immunologisena muistina jopa koko ihmisen eliniän.

Sekundaarivaste käynnistyy, kun muistisolu, jolla on primaarivasteessa kohtaamalleen antigeenille herkistynyt reseptori, kohtaa primaarivasteen jälkeen imusolmukkeessa antigeeniä-esittelevien-solun (APC) esittelemän haitallisen antigeenin. Tunnistettuaan taudinaiheuttajan, muistisolu käynnistää nopeasti aggressiivisen sekundaarivasteen haitallista antigeenia vastaan. Sekundaarivasteessa immuunijärjestelmä ryhtyy valmistamaan antigeenin vasta-aineita hyvin nopeasti.

Primaari- ja sekundaarivasteen yleiset erot

Primaarivaste Sekundaarivaste
Elimistön ensimmäinen kontakti antigeeniin. Toinen ja sitä seuraavat kontaktit antigeeniin.
Antigeeniin reagoivat naiivi B-solut ja T-solut. Antigeeniin reagoivat muistisolut.
Immuunireaktion viive on pitkä (4-7 päivää), joskus viikkoja tai kuukausia. Immuunireaktio käynnistyy nopeammin (1-4 päivässä) muistisolujen ansiosta.
Vasta-aineiden määrä korkeimmillaan 7-10 päivää infektion alettua. Vasta-aineiden määrä korkeimmillaan 3-5 päivää infektion alettua.
Immuniteetin kehittyminen vie kauemmin. Immuniteetti kehittyy nopeammin.
Ensimmäinen vasta-aine on IgM. Vähäisiä määriä IgG:tä. Tärkein vasta-aine on IgG. Vähäisiä määriä IgM. Myös muita vasta-aineita, kuten IgA ja IgE esiintyy.
Tuotetun vasta-aineen määrä riippuu antigeenistä. Yleensä vasta-aineita on vähän. Vasta-aineita kehittyy 100-1000 kertainen määrä primaarivasteeseen verrattuna.
Vasta-aineiden määrä laskee nopeasti. Vasta-aineiden määrä pysyy korkeana pidempään.
Vasta-aineen affiniteetti antigeeniin on vähäisempi. Vasta-aineilla suurempi affiniteetti antigeeneihin.
Primaarivaste on selkein imusolmukkeissa ja pernassa. Sekundaarivaste on selkeintä luuytimessä, pernassa ja imusolmukkeissa.
http://www.microbiologynotes.com/differences-between-primary-and-secondary-immune-response/

 

Hankitun immuunivasteen käynnistyminen

Adaptiivisen immuniteetin käynnistymisen olennaisin tapahtuma on antigeenejä esittelevien solujen (APC) ja auttaja-T-lymfosyyttien välinen reaktio. APC-solut ovat erikoistuneita luontaiseen immuniteettiin kuuluvia syöjäsoluja; useimmiten dendriittisoluja, mutta myös muut solutyypit voivat toimia antigeeniä esittelevinä soluina.

Syöjäsolujen tapaan APC-solut fagosytoivat kudoksissa kohtaamansa mikrobit, ja pilkkoessaan mikrobia säsällään ne kiinnittävät osia siitä itse tuottamaansa proteiiniin, MHC II-molekyyliin. Tämä antigeenin (mikrobista irrotettu osa) ja solun oman proteiinin muodostama kompleksi kuljetetaan APC-solun ulkokalvolle, josta muut solut voivat sen havaita.

APC-solu kohtaa mikrobin yleensä elimistön siinä kudoksessa, mihin mikrobi on tunkeutunut. Aktivoituessaan APC-solu siirtyy lymfan eli imunesteen mukana imusolmukkeisiin, jossa varsinainen hankitun immuniteetin käynnistyminen tapahtuu. Imusolmukkeessa on naiiveja (kypsyneitä, mutta aktivoitumattomia) lymfosyyttejä odottamassa aktivoitumiseen johtavaa signaalia, ja APC-solun saapuminen tuottaa tällaisen signaalin. Auttaja T-lymfosyytit omaavat muiden imusolujen tapaan pinnallaan reseptorin, jonka avulla ne tunnistavat spesifisiä antigeenejä, ja juuri auttaja-T-solujen reseptorille on tunnusomaista, että ne tunnistavat antigeenin vain silloin, kun se on liitetty osaksi MHC-II-molekyyliä. APC-solut aktivoivat imusolmukkeessa ne auttaja-T-solut, joiden pintareseptori tunnistaa juuri kyseisen antigeenin. Auttaja-T-solujen aktivoituessa ne kypsyvät lopulliseen muotoonsa ja alkavat tuottaa muita immuunijärjestelmän soluja stimuloivia sytokiinejä eli solunulkoiseen tilaan vapautuvia pienikokoisia proteiineja.

Humoraalinen eli vasta-ainevälitteinen immuunivaste

Humoraalinen eli vasta-ainevälitteinen immuunivaste on adaptiivisen immuniteetin osa, joka tuhoaa taudinaiheuttajia, kuten bakteereita ja näiden erittämiä toksiineja solunulkoisessa tilassa.

Jos APC-solun pinnalla oleva antigeeni on peräisin bakteerista tai muusta solunulkoisessa tilassa vapaana olevasta taudinaiheuttajasta, imukodoksessa aktivoituvat auttaja-T-solut kuuluvat alaluokkaan 2 (Th2), ja niiden tuottamat sytokiinit saavat ensisijaisesti aikaan B-lymfosyyttien kypsymisen.

Tärkein Th2-solujen tuottama sytokiini on interleukiini 4, mutta reaktioon osallistuu useita muitakin sytokiineja. Th2-solujen tuottamien sytokiinien aiheuttama stimulus kypsyttää naiivit B-lymfosyytit lopulliseen muotoonsa, jolloin niistä tulee plasmasoluja.

Plasmasolut poistuvat imusolmukkeesta lymfakierron kautta verenkiertoon, jonka mukana ne kulkeutuvat tulehduspaikalle. Kypsä plasmasolu tuottaa vasta-aineita eli liukoisessa muodossa olevia immunoglobuliineja, joiden antigeenin tunnistava osa on samanlainen kuin A-solun pintareseptorina toimivan immunoglobuliinin: vasta-aineet siis tunnistavat saman antigeenin, joka on alun perin aikaansaanut immuunivasteen käynnistymisen.

Vasta-aineen sitoutuessa taudinaiheuttajan pintaan patogeenin kyky tarttua elimistön rakenteisiin ja aikaansaada sille ominaiset vaikutukset estyvät. Näin vasta-ainevälitteinen immuniteetti neutraloi taudinaiheuttajan.

Patogeenin ja vasta-aineen muodostamaa kokonaisuutta kutsutaan immunokompleksiksi, ja syöjäsoluista erityisesti eosinofiiliset granulosyytit ovat erikoistuneet niiden lopulliseen tuhoamiseen fagosytoosin avulla.

Soluvälitteinen immuniteetti

Soluvälitteinen immuniteetti on kehittynyt torjumaan sellaisten taudinaiheuttajien hyökkäyksiä, jotka lisääntyvät elimistön omien solujen sisällä käyttäen niitä isäntinään ja hyödyntäen niiden molekyylejä sekä ulkokalvon tarjoamaa suojaa immuunijärjestelmää vastaan. Tällaisia solunsisäisiä loisia ovat tyypillisesti kaikki virukset, mutta myös eräät bakteerit (esim. tuberkuloosia aiheuttava Mycobacterium tuberculensis ja klamydiaa aiheuttavat bakteerit), sekä alkueläimet, kuten malariaa aiheuttavat Plasmodium-suvun loiset, jotka lisääntyvät solujen sisällä.

Jos antigeeniä esittelevän solun mukana imukudokseen esiteltäväksi tuotava antigeeni on peräisin tällaisesta patogeenistä, aktivoituvat tyypin 1 auttaja-T-solut (Th19), jotka tunnistavat kyseisen antigeenin. Tärkein tämän auttaja-T-solutyypin tuottama sytokiini on TNF-α (tuumorinekroositekijä alfa), ja tämäntyyppisten sytokiinien erittymisen seurauksena kypsyvät kyseisen antigeenin tunnistavat sytoksiset T-lymfosyytit eli tappaja-T-solut.

Myös tappaja-T-solujen lopulliseen kypsymiseen liittyy niiden monistuminen, muutokset proteiinintuotannoissa ja siirtyminen imukudoksesta lymfakierron ja verenkierron välityksellä tulehduspaikalle. Solunsisäisten taudinaiheuttajien ongelma immuunijärjestelmälle on se, että taudinaiheuttaja viettää suurimman osan elinkierrostaan elimistön omien solujen sisällä, ja siksi puolustusjärjestelmän on tuhottava koko infektoitunut solu päästäkseen patogeenistä eroon.

Elimistön kaikissa omissa soluissa muodostetaan luokan I MHC-molekyylejä (MHC I), ja solun infektoituessa sen pinnalle kulkeutuu vähitellen patogeenin osia MHC I-molekyyliin kiinnittyneenä samaan tapaan kuin MHC II:een antigeenia esittelevien solujen tapauksessa.

T-solut kehittyvät kateenkorvassa, josta naiivit T-solut levittäytyvät kaikkialle elimistöön ja imusolmuihin. Naiivilla tarkoitetaan sitä, että nämä T-solut eivät vielä ole altistuneet antigeeneille, joihin ne on ohjelmoitu reagoimaan. Tappaja-T-solut tunnistavat saastuneet solut näiden pintamolekyylien perusteella, ja tuhoavat ne erittämällä niiden sisälle ja läheisyyteen erilaisia myrkyllisiä yhdisteitä.

Pysy terveenä talvellakin – Varmista vitamiinien saanti Monivitamiinin avulla

Suomen Terveysravinnon monivitamiini on korkealaatuinen pohjoismainen ravintolisä, jonka ainesosista voidaan käyttää yhteensä jopa yli 100 EU:n virallisesti hyväksymää terveysväittämää. Monivitamiinilla on positiivisia vaikutuksia mm. lihaksistoon, immuunijärjestelmään, ihoon, hiuksiin sekä kynsiin, painonhallintaan ja psykologisiin toimintoihin.

Tilaa 10kk annos (300 kapselia) Monivitamiinia vain 35,70€ + Terveyopas-lehti kaupanpäälle. Yksi kapseli sisältää jopa 19 eri vitamiinia sekä hivenainetta. Tilaa nyt!




Psoriasista voidaan ehkä helpottaa vaniliinilla, kertoo Medical News Today

Psoriasista voidaan ehkä helpottaa vaniliinilla, kertoo Medical News Today 2.12.2017. Synteettinen vanilja eli vanilliini voi hiirikokeissa saatujen tulosten perusteella auttaa hillitsemään psoriasista ja sen oireita.Psoriasis on krooninen iholla ja nivelissä esiintyvä tulehduksellinen autoimmuunitauti, jossa ihosolujen häiriintynyt lisääntyminen aiheuttaa paksuuntuneita, hilseileviä ja kutiavia läiskiä eri puolille kehoa.Nivelpsoriasis on reumaa muistuttava niveltulehdus, johon voi myös liittyä ihopsoriasikselle tyypillisiä iho-oireita. Keinotekoista vanilliinia käytetään vaniljan korvikkeena mm. kosmetiikassa ja elintarviketeollisuudessa.

Psoriasis

Psoriasista, eli psoriaasia, hilsetystautia tai tuttavallisemmin psoria sairastavia on Psoriasisliiton arvioiden mukaan Suomessa noin 150 000. Psoriasis on monitekijäisesti periytyvä sairaus, jossa sairaudelle altistavia alttiusgeenipaikkoja tunnetaan kymmeniä.

Kaikki geneettisen alttiuden omaavat eivät sairastu tautiin, vaan sairastuminen edellyttää myös yhden tai useamman laukaisevan ympäristötekijän toteutumista. Vain noin 10 prosentille alttiusgeenin kantajista kehittyy psoriasis.

Alttiusgeeneistä tunnetuin on PSORS1, joka sijaitsee kromosomissa 6p21.

Psoriasiksessa T-solujen ja ihon keratinosyyttisolujen säätely on häiriintynyt

Psoriasiksessa immuunijärjestelmän T-lymfosyyttien ja ihon keratinosyyttisolujen keskinäisen toiminnan säätely on häiriintynyt, jolloin ihon pintasolukon keratinosyytit jakautuvat nopeammin kuin terveessä ihossa ja kerääntyvät ihon pinnalle muodostaen taudinkuvalle tyypillisiä, paksuja ja hilseileviä läiskiä.

Immuunijärjestelmän virheellinen toiminta aiheuttaa sen, että dermaaliset CD4+ TH1 solut ja CD8+ T-solut akkumuloituvat ihon pintakerrokseen eli orvasketeen (epidermis) erittäen ympäristöönsä sytokiineja ja kasvutekijöitä, jotka käynnistävät keratinosyyttien hyperproliferaation. Tämän seurauksena on psoriasikselle tyypilliset hilseilevät ja kutiavat ihomuutokset.

Ihomuutokset voivat kehittyä myös paikallisen ihovaurion seurauksena (ns. Koebnerin ilmiö), jolloin ihovaurio aiheuttaa ihossa tulehduksellisen muutoksen, joka johtaa keratinosyyttien hyperprofileraatioon.

Psoriasiksen hoito

Hoidossa käytettävät lääkkeet toimivat kolmella tavalla:

  • suppressoimalla T-solujen aktivaatiota ja proliferaatiota
  • vähentämällä T-solujen liikkumista ja interaktiota keratinosyyttien kanssa
  • inhiboimalla T-soluja sitouttamalla tuumorinekroositekijän omaan reseptoriinsa

Psoriasikseen ei tunneta parantavaa hoitoa. Oireita hillitsevinä hoitoina voidaan käyttää valohoitoa, sillä ultraviolettisäteilyn tiedetään lieventävän taudin oireita tulehdusta parantavan vaikutuksensa vuoksi.

Ihon oireiden hoitoon käytetään tavallisesti perusvoiteita ja lääkevoiteita, joista yleisimmät ovat kortisonivoiteet ja kalsipotriolit (D-vitamiinijohdannaiset). Taudin vaikeampia muotoja hoidetaan usein sisäisesti käytettävillä immuunijärjestelmän toimintaa hillitsevillä lääkkeillä sekä biologisilla hoidoilla, jotka myöskin vaikuttavat immuunijärjestelmän toimintaan.

Myös erilaisia ruokavaliohoitoja suositaan psoriasiksen hoitomenetelmänä, mutta niiden hoitovaikutuksista on hyvin vähän tieteellistä tutkimustietoa.

Nivelpsoriasiksen lievemmissä jänteen kiinnityskohdan tulehduksissa voidaan käyttää hoitona tulehduskipulääkkeitä. Vaikeammissa tapauksissa käytetään usein perinteisiä reumalääkkeitä, kuten metotreksaattia, sulfasatsiinia ja syklosporiinia.

Psoriasispotilaan ihossa ja tulehtuneessa nivelkalvossa on runsaasti tuumorinekroositekijä- α-nimistä tulehduksen välittäjäainetta. Vaikeissa nivelpsoriasistapauksissa käytetään tehokkaita yhdistelmähoitoja ja biologisia reumalääkityksiä. Kliinisissä tutkimuksissa on saatu hyviä hoitovasteita sekä iho- että nivelpsoriasiksen hoidossa tuumorinekroositekijä-α:n vaikutuksen estoon perustuvilla lääkkeillä, kuten adalimumabilla, etanerseptilla ja infliksimabila.

Taudille altistavat periytyvät geenimuutokset sekä ympäristötekijät

Psoriasis aloittaa oireilun yleisimmin 16-22 vuotiailla. Oireet voivat kuitenkin puhjeta aiemmin tai paljon myöhemmin. Perinnöllisen alttiuden ohella taudin puhkeaminen edellyttää yhden tai useamman laukaisevan ympäristötekijän toteutumista. Tällaisia ovat esimerkiksi stressi, tulehdussairaudet, tupakointi, ylipaino, beetasalpaajien käyttö, huono suuhygienia, runsas alkoholin kulutus sekä elimistön alhaiset D-vitamiinitasot.

Psoriasiksen oireet pahenevat useimmilla psoriaatikoilla talvisin. Joillain sairastuneilla psoriasis voi rauhoittua täysin oireettomaksi ja uusiutua vuosien oireettoman remission jälkeen.

Psoriasiksen aiheuttama krooninen tulehdus heikentää insuliinin vaikutusta

Psoriasista sairastavat lihovat ja sairastuvat muita herkemmin diabetekseen, koska psoriasiksen aiheuttama krooninen tulehdus heikentää insuliinin vaikutusta. USA:ssa tehdyn tutkimuksen mukaan psoriasista sairastavissa on lähes kaksi kertaa enemmän ylipainoisia ja lihavia kuin väestössä keskimäärin.

Vaikeaan ja keskivaikeaan psoriasikseen voi liittyä metabolinen oireyhtymä, tyypin 2 diabetes, verenpainetauti ja kohonneet rasva-arvot.

Uusi tutkimus osoittaa, että synteettinen vanilja eli vanilliini voi ehkäistä ja lievittää psoriasiksen oireita

Tutkijat osoittivat hiirikokeissa, että korkea-annoksinen vanilliini vähentää merkittävästi ihon tulehdusta jo viikossa. Vanilliinilla hoidettujen psoriasista sairastavien hiirien ihon tulehdus väheni merkittävästi verrattuna niihin hiiriin, joille vanilliinia ei annettu.

Tutkimukseen osallistunut Chien-Yun Hsiang (China Medical University Hospital in Taichung, Taiwan) kollegoineen raportoi havainnoistaan Journal of Agricultural and Food Chemistry -lehdessä.

American Academy of Dermatologyn mukaan Yhdysvalloissa psoriasista sairastaa noin 7,5 miljoonaa ihmistä. 20 prosentilla sairastuneista on keskivaikea tai vaikea psoriasis, jossa psoriasiksen oireet kattavat yli 5 % ihosta.

Paikalliset hoidot, kuten lääkevoiteet, voivat auttaa ihotulehduksissa potilaita, jotka sairastavat lievää tai keskivaikeaa psoriasista. Vaikeammissa tapauksissa psoriasis edellyttää laajempaa hoitokirjoa iholle levitettävistä lääkevoiteista suun kautta syötäviin immunosupressiivisiin lääkkeisiin ja valohoitoihin.

Hsiangin tutkimusryhmän koehiirillä saamat tulokset viittaavat siihen, että vanilliini voi helpottaa psoriasiksen oireita ja jopa estää ne kokonaan vaikuttamalla oireita laukaiseviin tulehdusproteiineihin.

Vanilliinikokeet psoriasista sairastavilla hiirillä

Vanilliini on keinotekoinen vaniljaa muistuttava yhdiste, jota käytetään vaniljan korvikkeena elintarvikkeissa, kuten leivonnaisissa.

Aiemmissa tutkimuksissa on havaittu, että vanilliini voi vähentää immuunijärjestelmän välittäjäaineiden – sytokiinien, kuten tulehdusreaktiota välittävien interleukiinien ilmenemistä. Sytokiinit ovat proteiinirakenteisia solujen välisen viestinnän välittäjäaineita, joita pääasiassa lymfosyytit tuottavat immuunijärjestelmän toiminnan ohjaamiseen.

Sytokiinit jaetaan tavallisesti viiteen pääryhmään:

  • Tuumorinekroositekijöihin (TNF), jotka ovat ensisijaisia aktivoivia välittäjäaineita immuunivasteen käynnistymisessä.
  • Interferoneihin, joita virustartunnan uhriksi joutuneet solut ja jotkut lymfosyytit levittävät ympärilleen. Interferoni sitoutuu terveisiin soluihin ja käynnistää niissä puolustusreaktioita, joiden ansiosta virukset eivät pääse tunkeutumaan ko. soluihin.
  • Interleukiineihin, jotka auttavat valkosoluja kommunikoimaan. Interleukiineja tuottavat pääasiassa auttaja-T-solut, monosyytit, makrofagit ja endoteelisolut. Ne edistävät T- ja B-solujen lisääntymistä. Interleukiinit myös edistävät tulehdusreaktiota ja aiheuttavat suurina määrinä kuumeen.
  • Hematopoieettisiin kasvutekijöihin, jotka ohjailevat immuunijärjestelmän solujen erilaistumista ja tuotantoa luuytimessä ja muissa verisoluja muodostavissa kudoksissa.
  • Muihin kasvutekijöihin, jotka stimuloivat ja säätelevät solujen kasvua ja erilaistumista.

Tutkimus

Hsiang painottaa, että interleukiini-17 (IL-17) ja interleukiini-23 (IL-23) ovat keskeisiä vaikuttajia psoriasiksessa. Tutkimusryhmä halusi selvittää voiko vanilliinin tulehduksia hillitsevän vaikutuksen kohdistaa näihin sytokiineihin ja siten vähentää ihon tulehdusreaktiota.

Tutkimusryhmä sairastutti koehiiret psoriasista vastaavaan ihotulehdukseen levittämällä hiirien iholle IMQ-yhdistettä (imiquimod), joka aiheutti hiirillä ihotulehduksen ja kasvatti IL-17 ja IL-23 sytokiinien määrää.

Seuraavassa vaiheessa tutkimusryhmä levitti hiirien tulehtuneille ihoalueille vanilliinia erilaisilla annosmäärillä kerran päivässä seitsemän päivän ajan. Vanilliinia levitettiin 1, 5, 10, 50 tai 100 milligrammaa painokiloa kohden (mg/kg).

Vanilliini lievensi ihon tulehdusta

Vanilliinin vaikutuksia ihon tulehdusreaktioon verrattiin hiirillä, joiden ihoa ei hoidettu vanilliinilla. Tulokset osoittivat, että vanilliinilla hoidettujen hiirien tulehdus lieveni suhteessa niihin, joita vanilliinilla ei hoidettu. 50 mg/kg ja 100 mg/kg annostuksella annettu vanilliini vähensi ihon tulehdusta merkittävästi verrattuna hiiriin, joita hoidettiin pienemmällä annoksella tai joita ei hoidettu ollenkaan vanilliinilla.

Kaikkien vanilliinilla hoidettujen hiirien IL-17 ja IL-23 tasot laskivat.

”Vanillin significantly decreased both the amounts of IL-17A and IL-23 and the infiltration of immune cells in the skin tissues of IMQ-treated mice. In conclusion, our findings suggested that vanillin was an effective bioactive compound against psoriatic skin inflammation.”

Lähteet: Medical News Today, Wikipedia