Site icon Ruokasota

Kirjallisuuskatsaus: ketogeenisen ruokavalion terveysvaikutukset: osa 2 – epigenom

Kathryn Dowis, Simran Banga
Editor: Marcellino Monda;
Käännös ja editointi: Sami Raja-Hallihttps://pmc.ncbi.nlm.nih.gov/articles/PMC8153354/ 

Johdanto

Ketogeenisen ruokavalion (KD) vaikutuksista terveyteen ei ole tehty kattavaa tutkimuskatsausta. Yleinen käsitys on, että ketogeeninen ruokavalio on sydän- ja verisuoniterveydelle haitallinen. Onko näin?

Tämä kirjallisuuskatsaus kokoaa yhteen tutkimuksia ketogeenisen ruokavalion vaikutuksista epigenomiin. jatkuvasti lisääntyvän tutkimusnäytön perusteella ketogeeninen ruokavalio (KD) on oikein noudatettuna mainettaan parempi ja jopa terveyttä edistävä ruokavalio.

3. Ketogeenisen ruokavalion vaikutus epigenomiin

Epigenomi sisältää geneettisen koodin kirjanmerkit. Sananmukaisesti epigeneettinen tarkoittaa geenin päällä olevaa. Nämä geenien päällä olevat markkerit kertovat soluille, mitä geenejä DNA:n translaatiossa luetaan.

Epigenomin kemialliset markkerit vaikuttavat siihen, mitkä geenit aktivoidaan ja mitkä geenit vaimennetaan. Elämäntavat voivat aktivoida tai vaimentaa geenejä. Epigenetiikka tutkii näitä geenien ilmentymistä sääteleviä mekanismeja.

Epigenomi toimii erilaisten kemiallisten markkereiden avulla. Ne kiinnittyvät DNA:han tai sen proteiinirakenteisiin. Epigeneettiset markkerit voivat:

Epigenomi on tärkeä, koska se:

Epigeneettinen periytyminen

Epigenomi voi periytyä (epigeneettinen periytyminen). Tutkimukset viittaavat siihen, että epigeneettisiä muutoksia voidaan korjata elämäntapoja, kuten ruokavaliota muuttamalla ja liikuntaa lisäämällä. [20]

Epigeneettinen periytyminen tarkoittaa perinnöllisen tiedon siirtoa solun tai eliön jälkeläiselle ilman, että perinnöllinen tieto on koodattuna DNA:n tai RNA:n sekvenssiin. Epigeneettisen periytymisen vuoksi saman geneettisen informaation sisältävät solut voivat jakautumisten myötä erilaistua ja toimia eri tavoin.

Geenien löytymisen jälkeen hankittujen ominaisuuksien periytymiseen ei uskottu. Epigeneettinen tutkimus muutti tätä käsitystä. Epigeneettinen periytyminen ei kuitenkaan tarkoita minkä tahansa hankittujen ominaisuuksien periytymistä. Kyse ei oikeastaan ole hankittujen ominaisuuksien, vaan pikemminkin geenien hankittujen toimintatilojen periytymisestä.

Ympäristön aiheuttamat muutokset geenien toiminnassa voivat periytyä sukupolvelta toiselle sukusolujen välityksellä ja vaikuttaa näin jälkikasvun fenotyyppiin, ilman että DNA:n emäsjärjestyksessä tapahtuu muutoksia. Tällaisten havaintojen myötä evoluution ja geneettisen periytymisen mekanismeja on jouduttu tarkastelemaan uudelleen, sillä aikaisemmin on ajateltu, etteivät hankitut geenien toiminnalliset tilat periydy vaan että periytyvien fenotyyppien taustalla ovat joko mutaatioista johtuvat genomin rakenteelliset muutokset tai perinnöllisen materiaalin uudelleen järjestäytyminen. Tapahtumasarjaa, jossa tieto hankituista ominaisuuksista siirtyy yksilösukupolvelta toiselle sukusolulinjan epigeneettisten muutosten välityksellä kutsutaan epigeneettiseksi periytymiseksi. Kokeelliset tutkimukset ovat todistaneet ilmiön eläimillä. Ihmisillä sitä ei ole vielä vahvistettu, mutta ylisukupolvisissa väestötutkimuksissa on nähty yhteyksiä, jotka voisivat selittyä epigeneettisen periytymisen kautta. Duodecim

Genomin muutoksiin kuuluu DNA-metylaatiota, kromatiinin rakenteen muutoksia, histonimuunnoksia ja ei-koodaavia RNA-molekyylejä. Kiinnostavimpia ovat histonimuutokset. Esimerkiksi histonihäntöjen N-terminaali voidaan asetyloida, metyloida, fosforyloida ja ubikinoida.

Histonimuutokset

Geenitutkimus on totunnaisesti keskittynyt DNA:han. Kuitenkin perimän perusyksikkö kromosomi koostuu DNA:n lisäksi histoneista ja muista proteiineista, jotka muodostavat kromosomien tukirangan. Tukiranka ei ole kuitenkaan passiivinen rakenne, vaan se vaikuttaa jatkuvasti DNA:n pakkautumiseen ja geenien toimintaan epigeneettisesti eli DNA:n emäsjärjestyksestä riippumatta. – Duodecim

Histonien asetylaatio liittyy tavallisesti geenien aktivoimiseen. Histonideasetylaasit (HDAC), ovat puolestaan entsyymejä, jotka voivat poistaa asetayyliryhmiä ja tiivistää kromatiinia.

Deasetylaasit poistavat asetyyliryhmiä, vähentävät geenien ilmentymistä ja ovat vuorovaikutuksessa sekvenssispesifisten repressorien, DNA-metyylitransferaasien ja metyyli-DNA:ta sitovien proteiinien kanssa. Sirtuiinit (SITR, kuten sirtuiini 1) kykenevät deasetyloimaan histonit.

Sirtuiini 1 (SIRT1)-entsyymi kuuluu histonideasetylaasi-entsyymien (HDAC) ryhmään, jotka toimivat asetyyliryhmän poistajina. Ihmisen histonideasetylaaseja kutsutaan myös sirtuiineiksi. Sirtuiiineja tunnetaan seitsemän alatyyppiä. Sirtuiini 2 (Sirt2) vaikuttaa mm. solun jakautumisen säätelyyn. SIRT1 (Silent Information Regulator 1) säätelee useita keskeisiä metabolisia prosesseja ja sillä on suuri merkitys ihmisten energia-aineenvaihdunnan säätelyssä. SIRT1 säätelee muun muassa mitokondrioiden biogeneesiä ja energiametaboliaa ja vaikuttaa sitäkautta mm. diabetekseen ja liikalihavuuteen. SIRT1 säätelee myös rasvametaboliaa ja oksidatiivisen stressin vaikutuksia. Sitoutumalla NF-κB:en se ilmeisesti säätelee tulehdusvasteita ja kudosten atrofioitumista. – Wikipedia

Ns. histonikoodihypoteesin mukaan histonimodifikaatioiden yhdistelmät määräävät kromatiinin rakenteen ja toiminnallisen tilan (Jenuwein ja Allis 2001).

Ruokavalio ja epigeneettiset muutokset

Histoni-lysiini-metylaatio voi joko aktivoida tai vaimentaa geenin toiminnan. Toiminta perustuu histonihännän metyyliryhien eksaktiin sijaintiin ja määrään. Tutkimukset ovat havainneet, että suurin osa epigeneettisistä muutoksista tapahtuu alkionkehityksen varhaisvaiheessa, mutta genomi voi saada muutoksia myöhemmin elämässä. Eräät epigeneettisistä muutoksista johtuvat ruokavaliosta. [32]

Ketogeeniset ruoat, jotka säätelevät positiivisesti epigeneettistä aktiivisuutta, ovat ristikukkaisia vihanneksia (mm. kaalit, rypsi, nauris, lanttu ja retiisi), ravintokuituja, pitkäketjuisia rasvahappoja ja marjoja, kuten vadelmat [20].

Osalla mainituista ravinnonlähteistä on useita myönteisiä vaikutuksia: mm. mustavadelmat vaikuttavat positiivisesti metylaatiomalleihin WNT-signalointireitillä. Ne parantavat myös mikrobiomin koostumusta (lisäten Laktobacilluksen, Basteroidaceaen ja anti-inflammatoristen bakteerilajien osuutta mikrobiomissa). Mustavadelmat lisäävät myös fermentaation kautta syntyvää butyraattia suolistossa. Tiettyjä ravintoelementtejä sisältävät ruokavaliot muuttavat suotuisasti geenien ilmentymistä ja parantavat soluterveyttä [20].

Ketogeenisen ruokavalion epigeneettiset vaikutukset voivat auttaa ehkäisemään kroonisten ja degeneratiivisten sairauksien puhkeamista.

Miller et al. hvaitsi kirjallisuuskatsauksessaan, että ketoosi vaikuttaa positiivisesti mitokondrioiden toimintaan ja vähentää oksidatiivisen stressiä. Ketoaineet ylös-säätelevät (up regulate) energiaproteiineja, jotka vaikuttavat antioksidanttien määrään [23].

Boisonin mukaan ketoaineet, kuten β-hydroksibutyraatti (BHB) sekä ketoaineiden johdannaiset ovat saaneet eniten huomiota ketogeenisen ruokavalion kohtauksia ehkäisevien (anti-seizure), neuroprotektiivisisten ja anti-inflammatoristen vaikutusten välittäjina [34,35,3636].

Ketogeenisen ruokavalion vaikutusmekanismi voi johtua lisääntyneestä adenosiinitasoista, joka estää DNA-metylaation ja siten aiheuttaa epigeneettisen muutoksen. KD-terapian kohteena olevilla epileptisillä rotilla tehdyssä tutkimuksessa havaittiin, että amelioroitu DNA-metyylinvälitys muuttui geenien ilmentyessä lisäämällä adenosiinia, joka estää DNA-metylaation.

Mekanismia tutkitaan myös sen roolista ikääntymisprosessissa, koska se liittyy epigeneettisten muutoksiin, kuten tuman arkkitehtuurin, telomeerin lyhentymiseen, DNA-metylaatioon ja kromatiinin rakenteeseen. [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

Betahydroksibutyraatti ja aivojen terveys

Ketogeenisen ruokavalion vaikutus aivojen terveyteen on vahvasti osoitettu. Se johtuu erityisesti BHB:n, eli betahydroksibutyraatin tuotannosta [23].

Beetahydroksibutyraatti (BHB) on elimistön tuottama ketoniyhdiste, jolla on useita potentiaalisia hyötyjä aivojen terveydelle. BHB:tä muodostuu erityisesti paaston, vähähiilihydraattisen ruokavalion (kuten ketogeenisen ruokavalion) tai intensiivisen liikunnan aikana, kun elimistö siirtyy käyttämään rasvoja glukoosin sijasta energianlähteenä.

BHB:n mahdolliset hyödyt aivoille:

Miten lisätä BHB-tasoja:

Tutkijat ovat havainneet, että BHB on enemmän kuin pelkkä energiaravinne. Sillä on tärkeä rooli solusignalointissa. BHB:n signalointitoiminnot yhdistävät ympäristötekijöiden vaikutukset epigeneettisiin säätely- ja soluprosesseihin, koska se on endogeeninen luokan 1 HDAC-estäjä [45].

Ketogeeninen ruokavalio lisää histoni-asetylaatiota, ja aivan erityisesti suojaavien geenien, kuten Foxo3a ilmentymistä. [46]

Havainnot viittaavat siihen, että BHB:llä voi olla suora epigeneettinen vaikutus uuden H3K9-histonimuunnoksen β-hydroksibutyrlaatioon, mikä johtaa parantuneeseen geenisäätelyyn hypotalamuksessa ja yleiseen ikääntymiseen. [47]

Energian kantajamolekyyli, nikotiiniamidiadeniinidinukleotidi (NAD) on tärkeää oksidatiivissa hengityksessä. Oksidatiivitilassaan (NAD+) NAD toimii myös sirtuiinientsyymien ja poly-ADP-riboosin polymeraasin (PARP) kofaktorina. Sirtuinilla ja PARPilla on roolit geenien ilmentymisessä, DNA-vaurioiden korjaamisessa ja rasvahappojen aineenvaihdunnassa. [46]

Solun käytettävissä olevaa energiatasoa mitataan NAD+/NADH-suhteella. Suhdetta modifioidaan käyttämällä energianlähteenä glukoosia verrattuna BHB:hen. Ketoosin aikana solujen NAD ilmenee useammin oksidoituneessa NAD+ tilassa, minkä ansiosta sirtuiinit ja PARP ovat aktiivisempia. [48]

Asetyylikoentsyymi-A

BHB:n hajoaminen asetyyli-CoA:ksi nostaa asetyyli-CoA-tasoja. Asetyylikoentsyymi-A on kaikkien energiaravinteiden yhteinen välimuoto

Asetyylikoentsyymi A (asetyyli-CoA) on tärkeä yhdiste metaboliassa. Se toimii eräänlaisena ”liikenneympyränä”, johon eri aineenvaihduntareittien tuotteet saapuvat ja josta ne ohjataan eteenpäin.

  • Sitruunahappokierto (Krebsin sykli):
    • Asetyyli-CoA on sitruunahappokierron lähtöaine. Kierto on keskeinen osa soluhengitystä, jossa glukoosi, rasvahapot ja aminohapot hajotetaan hiilidioksidiksi ja energiaksi (ATP).
    • Sitruunahappokierrossa asetyyli-CoA:n asetyyliryhmä hapetetaan, ja vapautuva energia varastoidaan ATP-molekyyleihin.
  • Rasvahapposynteesi:
    • Asetyyli-CoA toimii rasvahappojen rakennusaineena. Kun elimistössä on liikaa energiaa, asetyyli-CoA:ta käytetään rasvahappojen valmistamiseen, jotka varastoidaan triglyserideinä rasvakudokseen.
  • Ketoninmuodostus (ketogeneesi):
    • Maksassa asetyyli-CoA:ta voidaan käyttää ketoaineiden, kuten beetahydroksibutyraatin (BHB), asetoasetaatin ja asetonin, valmistamiseen. Tämä tapahtuu erityisesti paaston, vähähiilihydraattisen ruokavalion (ketogeeninen ruokavalio) tai pitkäkestoisen liikunnan aikana, kun glukoosin saatavuus on rajoitettua.
  • Kolesterolisynteesi:
    • Asetyyli-CoA on myös kolesterolin, tärkeän solukalvojen ja steroidihormonien rakennusaineen, esiaste.
  • Asetylaatio:
    • Asetyyli-CoA osallistuu asetylointireaktioihin, joissa asetyyliryhmä siirretään toisiin molekyyleihin, kuten proteiineihin. Tämä voi vaikuttaa proteiinien toimintaan ja geenien ilmentymiseen.

Asetyyli-CoA:n muodostuminen:

Asetyyli-CoA:ta muodostuu useista eri aineenvaihduntareiteistä:

  • Glukoosin hajotus (glykolyysi):
    • Glukoosin hajotuksessa syntyvä pyruvaatti muunnetaan asetyyli-CoA:ksi mitokondriossa.
  • Rasvahappojen hajotus (beetaoksidaatio):
    • Rasvahapot hajotetaan asetyyli-CoA:ksi mitokondriossa.
  • Aminohappojen hajotus:
    • Tietyt aminohapot voidaan hajottaa asetyyli-CoA:ksi.

Asetyyli-CoA:n rooli on elintärkeä solujen toiminnalle. Se yhdistää eri aineenvaihduntareittejä ja mahdollistaa energian tuotannon ja varastoinnin sekä tärkeiden biomolekyylien synteesin.
Kahden asetyyli-CoA:n moolin tuottaminen käyttämällä BHB:tä prekursorina pelkistää vain yhden moolin NAD+:a NADH:ksi. Glukoosiaineenvaihdunnassa tuotetaa neljä moolia NAD+:a. Siten ketogeeninen ruokavalio luo ylimääräisen NAD+:n solulle ja vaikuttaa positiivisesti solun redox-tilaan. Tällä voi olla positiivisia vaikutuksia NAD+-riippuvaisten entsyymien, kuten sirtuiinien, aktiivisuuteen. Newman et al. havaitsivat, että lisääntynyt asetyyli-CoA suosii sekä entsymaattista että ei-entsymaattista proteiiniasetylaatiota, erityisesti mitokondrioissa, mikä tehostaa mitokondrioiden yleistä toimintaa.
[48, 49]

Ketogeenisen ruokavalion tuottama BHB voi myös lisätä ATP-tuotannon tehokkuutta mitokondriossa ja vähentää vapaiden radikaalien määrää.

BHB:n positiivisten vaikutusten seurauksena havaittiin, että BHB:n esiastemolekyylit paransivat hiiren kognitiota Alzheimerin taudin hiirimallissa. Alzheimeria sairastavan potilaan tapaustutkimuksessa BHB kohensi potilaan kognitiota [50, 51].

D-β-hydroksibutyraatti suojaa hermosoluja oksidatiivisilta vaurioilta vähentämällä sytosolista NAD+/NADPH-suhdetta, mikä johtaa pelkistyneenä glutationina tunnetun antioksidanttiaineen lisääntymiseen. BHB estää NF-kB:n ilmentymistä. Sen tiedetään säätelevän tulehduksia edistäviä geenejä. Tämä johtaa vähentyneeseen proinflammatoriseen vasteeseen[52].

BHB-prekursori, 1,3-butaanidioli, moduloi tulehduksen ilmentymistä histonin β-hydroksibutyrlaation kautta. Siten se vähentää kaspaasi-1:n, IL-1B:n ja IL-18:n ilmentymistä, jotka ovat tulehdusmarkkereita.
C. Elegansin tutkimuksessa havaittiin, että BHB voi pidentää niiden elinikää. Siten ketogeenisen ruokavalion tuottaman BHB:n endogeeniset vaikutukset voivat parantaa terveyttä ja jopa lisätä elinaikaa. [3, 53]

Viitteet

20.Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170359. doi: 10.1098/rstb.2017.0359. [DOI] [PMC free article] [PubMed] [Google Scholar]

21.Gong L., Cao W., Chi H., Wang J., Zhang H., Liu J., Sun B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res. Int. 2018;103:84–102. doi: 10.1016/j.foodres.2017.10.025. [DOI] [PubMed] [Google Scholar]

22.Kennedy E.T., A Bowman S., Spence J.T., Freedman M., King J. Popular Diets. J. Am. Diet. Assoc. 2001;101:411–420. doi: 10.1016/S0002-8223(01)00108-0. [DOI] [PubMed] [Google Scholar]

23.Miller V.J., Villamena F.A., Volek J.S. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J. Nutr. Metab. 2018;2018:5157645. doi: 10.1155/2018/5157645. [DOI] [PMC free article] [PubMed] [Google Scholar]

24.Xie G., Zhou Q., Qiu C.-Z., Dai W.-K., Wang H.-P., Li Y.-H., Liao J.-X., Lu X.-G., Lin S.-F., Ye J.-H., et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017;23:6164–6171. doi: 10.3748/wjg.v23.i33.6164. [DOI] [PMC free article] [PubMed] [Google Scholar]

25.Zhang Y., Zhou S., Zhou Y., Yu L., Zhang L., Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–168. doi: 10.1016/j.eplepsyres.2018.06.015. [DOI] [PubMed] [Google Scholar]

26.Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a. [DOI] [PubMed] [Google Scholar]

27.Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Cell Biol. 2006;444:1027–1031. doi: 10.1038/nature05414. [DOI] [PubMed] [Google Scholar]

28.Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102. [DOI] [PMC free article] [PubMed] [Google Scholar]

29.Schwiertz A., Taras D., Schaefer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167. [DOI] [PubMed] [Google Scholar]

30.Basciani S., Camajani E., Contini S., Persichetti A., Risi R., Bertoldi L., Strigari L., Prossomariti G., Watanabe M., Mariani S., et al. Very-Low-Calorie Ketogenic Diets with Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020;105:2939–2949. doi: 10.1210/clinem/dgaa336. [DOI] [PubMed] [Google Scholar]

31.Nagpal R., Neth B.J., Wang S., Craft S., Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529–542. doi: 10.1016/j.ebiom.2019.08.032. [DOI] [PMC free article] [PubMed] [Google Scholar]

32.Bishop K.S., Ferguson L.R. The Interaction between Epigenetics, Nutrition and the Development of Cancer. Nutrients. 2015;7:922–947. doi: 10.3390/nu7020922. [DOI] [PMC free article] [PubMed] [Google Scholar]

33.Boison D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017;30:187–192. doi: 10.1097/WCO.0000000000000432. [DOI] [PMC free article] [PubMed] [Google Scholar]

34.Freeman J.M., Kossoff E.H. Ketosis and the Ketogenic Diet, 2010: Advances in Treating Epilepsy and Other Disorders. Adv. Pediatr. 2010;57:315–329. doi: 10.1016/j.yapd.2010.08.003. [DOI] [PubMed] [Google Scholar]

35.Youm Y.-H., Nguyen K.Y., Grant R.W., Goldberg E.L., Bodogai M., Kim D., D’Agostino D., Planavsky N.J., Lupfer C., Kanneganti T.D., et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med. 2015;21:263–269. doi: 10.1038/nm.3804. [DOI] [PMC free article] [PubMed] [Google Scholar]

36.Rahman M., Muhammad S., Khan M.A., Chen H., Ridder D.A., Müller-Fielitz H., Pokorná B., Vollbrandt T., Stölting I., Nadrowitz R., et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 2014;5:3944. doi: 10.1038/ncomms4944. [DOI] [PubMed] [Google Scholar]

37.Lusardi T.A., Akula K.K., Coffman S.Q., Ruskin D.N., Masino S.A., Boison D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology. 2015;99:500–509. doi: 10.1016/j.neuropharm.2015.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]

38.Masino S.A., Li T., Theofilas P., Sandau U.S., Ruskin D.N., Fredholm B.B., Geiger J.D., Aronica E., Boison D. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J. Clin. Investig. 2011;121:2679–2683. doi: 10.1172/JCI57813. [DOI] [PMC free article] [PubMed] [Google Scholar]

39.Kobow K., Kaspi A., Harikrishnan K.N., Kiese K., Ziemann M., Khurana I., Fritzsche I., Hauke J., Hahnen E., Coras R., et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol. 2013;126:741–756. doi: 10.1007/s00401-013-1168-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

40.Williams-Karnesky R.L., Sandau U.S., Lusardi T.A., Lytle N.K., Farrell J.M., Pritchard E.M., Kaplan D.L., Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013;123:3552–3563. doi: 10.1172/JCI65636. [DOI] [PMC free article] [PubMed] [Google Scholar]

41.Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D.K., Solimando L., Goldman R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22:832–853. doi: 10.1101/gad.1652708. [DOI] [PMC free article] [PubMed] [Google Scholar]

42.Armanios M., Alder J.K., Parry E.M., Karim B., Strong M.A., Greider C.W. Short Telomeres are Sufficient to Cause the Degenerative Defects Associated with Aging. Am. J. Hum. Genet. 2009;85:823–832. doi: 10.1016/j.ajhg.2009.10.028. [DOI] [PMC free article] [PubMed] [Google Scholar]

43.Hewitt G.M., Jurk D., Marques F.D., Correia-Melo C., Hardy T.L.D., Gackowska A., Anderson R., Taschuk M.T., Mann J., Passos J.F. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 2012;3:708. doi: 10.1038/ncomms1708. [DOI] [PMC free article] [PubMed] [Google Scholar]

44.Sun D., Yi S.V. Impacts of Chromatin States and Long-Range Genomic Segments on Aging and DNA Methylation. PLoS ONE. 2015;10:e0128517. doi: 10.1371/journal.pone.0128517. [DOI] [PMC free article] [PubMed] [Google Scholar]

45.Shimazu T., Hirschey M.D., Newman J., He W., Shirakawa K., Le Moan N., Grueter C.A., Lim H., Saunders L.R., Stevens R.D., et al. Suppression of Oxidative Stress by -Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science. 2013;339:211–214. doi: 10.1126/science.1227166. [DOI] [PMC free article] [PubMed] [Google Scholar]

46.Moreno C.L., Mobbs C.V. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol. Cell. Endocrinol. 2017;455:33–40. doi: 10.1016/j.mce.2016.11.013. [DOI] [PubMed] [Google Scholar]

47.Xie Z., Zhang D., Chung D., Tang Z., Huang H., Dai L., Qi S., Li J., Colak G., Chen Y., et al. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Mol. Cell. 2016;62:194–206. doi: 10.1016/j.molcel.2016.03.036. [DOI] [PMC free article] [PubMed] [Google Scholar]

48.Dąbek A., Wojtala M., Pirola L., Balcerczyk A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. 2020;12:788. doi: 10.3390/nu12030788. [DOI] [PMC free article] [PubMed] [Google Scholar]

49.Newman J.C., Verdin E. β-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017;37:51–76. doi: 10.1146/annurev-nutr-071816-064916. [DOI] [PMC free article] [PubMed] [Google Scholar]

50.Kashiwaya Y., Bergman C., Lee J.-H., Wan R., King M.T., Mughal M.R., Okun E., Clarke K., Mattson M.P., Veech R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2013;34:1530–1539. doi: 10.1016/j.neurobiolaging.2012.11.023. [DOI] [PMC free article] [PubMed] [Google Scholar]

51.Newport M.T., VanItallie T.B., Kashiwaya Y., King M.T., Veech R.L. A new way to produce hyperketonemia: Use of ketone ester in a case of Alzheimer’s disease. Alzheimer Dement. 2015;11:99–103. doi: 10.1016/j.jalz.2014.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]

52.Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K., Veech R.L. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2000;97:5440–5444. doi: 10.1073/pnas.97.10.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]

53.Chakraborty S., Galla S., Cheng X., Yeo J.-Y., Mell B., Singh V., Yeoh B., Saha P., Mathew A.V., Vijay-Kumar M., et al. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep. 2018;25:677–689. doi: 10.1016/j.celrep.2018.09.058.

Exit mobile version