Ruokavalio ja vanheneminen: molekyylibiologinen näkökulma

Samo Ribarič1

1Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia

Tiivistelmä

Ravitsemuksella on merkittäviä ja pitkäaikaisia terveysvaikutuksia, jotka eivät rajoitu vain yksilöön, vaan voivat siirtyä yksilöltä seuraavalle sukupolvelle. Se voi myötävaikuttaa kroonisten sairauksien kehittymiseen ja etenemiseen, mikä edelleen vaikuttaa odotettavissa olevaan elinikään.

Ruokavaliolla voi pidentää odotettavissa olevaa elinikää ja parantaa yleistä terveyttä. Tässä artikkelissa selitetään biokemialliset mekanismit, joihin tällainen rohkea väite perustuu. Artikkeli on hyvin haastava. Yleissääntönä on, että ravinnosta saadun energian rajoittaminen, paasto, pätkäpaasto ja paastoa aineenvaihdunnan tasolla imitoiva ketogeeninen ruokavalio aktivoivat kehossa solutason mekanismeja, jotka ylläpitävät solujen hyvinvointia ja pitkäikäisyyttä.

Kalorirajoitus (CR) voi pidentää keskimääräistä elinikää ja viivästyttää ikään liittyvien muutosten alkamista monissa organismeissa. Energian rajoittaminen saa aikaan koordinoituja adaptiivisia stressivasteita solujen ja koko organismin tasolla moduloimalla epigeneettisiä mekanismeja (esim. DNA:n metylaatio, transtrationaaliset histonimodifikaatiot), signaalireittejä, jotka säätelevät solujen kasvua ja ikääntymistä (esim. TOR, AMPK, p53 ja FOXO) ja solusta soluun signalointimolekyylejä (esim. adiponektiini).

Näiden mukautuvien stressivasteiden kokonaisvaikutuksena on lisääntynyt vastustuskyky stressille, mikä viivästyttää ikään liittyviä fysiologisia muutoksia ja edistää pitkäikäisyyttä. Kalorirajoitus voi hillitä monia ikääntymiseen liittyviä sairauksia, kuten syöpiä, diabetesta, ateroskleroosia, sydän- ja verisuonitauteja sekä hermostoa rappeuttavia sairauksia.

Vaihtoehtona kaloreiden rajoittamiselle on tutkittu useita kaloreita rajoittavia ruokavalioita eläimillä ja ihmisillä. Tällä hetkellä lupaavimmat vaihtoehdot kalorirajoituksen käytölle ihmisillä näyttävät olevan liikunnan lisääminen yksin tai yhdessä vähentyneen kalorien saannin kanssa.

Samo Ribarič’in laaja artikkeli tarkastelee ruokavalion merkitystä vanhenemiseen aineenvaihdunnan ja biokemian perspektiivistä. Monet tässä esiin nostetut asiat hyödyttävät kaikkia.

Tämä ei ole aivan helppolukuinen artikkeli.  Liitän tekstiin aihetta käsitteleviä videoita, jotka helpottavat erilaisten aineenvaihduntapolkujen, ylävirran tapahtumien ja alasreguloivien modulaattorien maailman kartoittamista.

Samo Ribaričin artikkeli julkaistiin 2012. Sen jälkeen tieto ketogeenisen ruokavalion, paaston ja pätkäpaaston hyödyistä on lisääntynyt. Vaikka artikkeli vain sivuaa ohimennen niitä, se sisältää erinomaisia selityksiä vanhenemiseen ja terveyteen vaikuttavista molekyylibiologian mekanismeista, jotka nykytietämyksen mukaan toteutuvat myös KD-ruokavaliossa, pätkäpaastossa ja paastossa.

1. Johdanto

Ravitsemuksella on merkittäviä pitkäaikaisia vaikutuksia terveyteen. Se on sellainen elämäntapaan liittyvä tekijä, joka voi edistää tai vähentää kroonisten sairauksien, kuten sydän- ja verisuonitautien, diabeteksen ja syövän riskiä [1].

Kroonisten sairauksien ehkäisyn ja hallinnan pitäisi olla globaali prioriteetti, koska krooniset sairaudet aiheuttavat yli puolet kaikista kuolemantapauksista [2]. Sairastuminen on potilaille ja potilaiden omaisille henkisesti raskas taakka. Kroonisten sairauksien hoitokulut rasittavat yhteiskunnan kantokykyä. Kuolemaa ei kukaan voi välttää, mutta terveisiin elinvuosiin jokainen voi vaikuttaa omilla elämäntapavalinnoillaan.

Ravitsemuksen vaikutukset terveyteen eivät rajoitu yksilöön, vaan ne voivat siirtyä yksilöltä seuraavalle sukupolvelle. Tämä havainto on vahvistettu epidemiologisilla tutkimuksilla ja eläinkokeilla.

Pienenä syntyvän vauvan riski sairastua myöhemmin sepelvaltimotautiin, tyypin 2 diabetekseen ja lihavuuteen on normaalipainoisina syntyviä lapsia selvästi korkeampi [3–7]. Eläinmallissa synnytystä edeltävä aliravitsemus laski jälkeläisten elinikää [8] tai johti nefronien puutteelliseen kehitykseen, mikä lisäsi kroonisen munuaissairauden riskiä myöhemmässä elämässä [9]. (Nefroni on munuaisen toiminnallinen yksikkö, joka suodattaa virtsaa verestä ja säätelee virtsan määrää sekä koostumusta.)

2. Ruokavaliotekijöiden epigeneettiset muutokset

Ravitsemuksen vaikutukset kehoon välittyvät epigeneettisillä mekanismeilla [1]. McKay’n ja Mathersin mukaaan kolme tunnettua läheisesti vuorovaikutuksessa olevaa mekanismia ovat DNA:n metylaatio, histonimodifikaatio ja koodaamattomat mikroRNA:t (miRNA:t) [1].

Artikkelin toinen luku sisältää melkoisesti molekyylibiologian jargonia. Hyppää kolmanteen lukuun suoraan, jos tämä vaikuttaa tylsältä.

Ravintotekijät voivat indusoida epigeneettisiä muutoksia kolmen reitin kautta: (a) suora vaikutus geenien ilmentymiseen, (b) tumareseptorien aktivaatio ligandien avulla ja (c) membraanireseptorien (solukalvoreseptorien) signalointikaskadien muokkaus [10].

Epigeneettiset mekanismit tarjoavat organismeille tehokkaan aikaan reagoivan järjestelmän geeniekspression mukauttamiseksi:

(a) kudostyyppispesifisesti

(b) organismin kehitystilaan sopivasti

(c) kehon ulkoisen ja sisäisen ympäristön signaalit huomioiden [1].

2.1. DNA-metylaatio ruokavaliolla

Folaatti ja B12-vitamiini edistävät laajaa DNA-metylaatiota, kun taas seleeni, vihreän teen polyfenolit ja bioflavonoidit vähentävät yleistä DNA-metylaatiota, Davis et al. [17].

DNA-metylaatio on kudosspesifinen ja sitä säätelee DNA-metyylitransferaasi (DNMT) -entsyymi, joka modifioi sytosiiniemäksen CpG-dinukleotiditähteessä metyyliryhmän kanssa muodostaen 5-metyylisytosiinin [11].

Esimerkkejä DNA-metyloinnilla kontrolloiduista prosesseista ovat X-kromosomien inaktivaatio, iturataspesifisten geenien leimaaminen ja hiljentäminen, karsinogeneesi ja pitkäaikaisen muistin muodostuminen [12].

Perinteisesti DNA-metylaatio on liitetty geeniekspression tukahduttamiseen. Siten DNA-metylaatio joko fyysisesti estää transkriptioproteiinien sitoutumista geeniin, tai metyloitu DNA sitoutuu proteiineihin, jotka tunnetaan metyyli-CpG:tä sitovina domeeniproteiineina. Ne rekrytoivat ylimääräisiä proteiineja lokukseen – kuten histonideasetylaasit – jotka muuttavat histoneja kompaktiksi inaktiiviseksi kromatiiniksi, kuten on osoitettu [13, 14].

Joillakin syöpäpotilailla esiintyy sekä laajaa DNA-hypometylaatiota että paikallista DNA-hypermetylaatiota [15, 16]. Ruokavalion ainesosia, joiden tiedetään moduloivan DNA-metylaatiota, ovat esimerkiksi folaatti, B12vitamiini, seleeni, vihreän teen polyfenolit (esim. epigallokatekiini-3-gallaatti (EGCG), epikatekiini, ganisteiini) ja bioflavonoidit (kvertsetiini, fisetiini ja myrisetiini).

Folaatti ja B12-vitamiini edistävät laajaa DNA-metylaatiota, kun taas seleeni, vihreän teen polyfenolit ja bioflavonoidit vähentävät yleistä DNA-metylaatiota, Davis et al. [17]. Näiden aineosien paikallinen vaikutus DNA-metylaatioon voi kuitenkin poiketa niiden laajasta vaikutuksesta. Esimerkiksi seleenin pitkäaikainen kulutus lisää p53-geenin eksonispesifistä DNA-metylaatiota rotan maksassa ja paksusuolen limakalvossa [18].

2.2. Histonien modifiointi ruokavaliolla

Aitotumallisten eukaryoottien solujen tumat sisältävät tiiviisti pakattuna emäksisiä proteiineja (johtuen positiivisesti varautuneesta N-päästä, jossa on monia lysiini- ja arginiinitähteitä), joita kutsutaan histoneiksi.

Histonit pakkaavat ja järjestävät DNA:n rakenneyksiköiksi, eli nukleosomeiksi.

Kromatiinin perusyksikön, nukleosomin ytimen muodostavat 2 kpl kutakin histonia H2A, H2B, H3 ja H4 eli yht. 8 molekyyliä (ns. oktameerirakenne). Histonimolekyylit muodostavat litteän kiekon tai kelan, jossa DNA muodostaa 2 kierrosta histonien ympäri ja näin täydentää tuman rakenteen.

Histonit toimivat keloina, joiden ympärillä DNA pyörii ja joilla on rooli geenien säätelyssä. Aktiiviset geenit ovat vähemmän sitoutuneita histoneihin; inaktiiviset geenit liittyvät voimakkaasti histoneihin [19].

Histonien N-terminaali (histonihäntä) tai sivuketjut pallomaisessa histonisydämessä ovat epigeneettisten modifikaatioiden kohdat [20]. Histonien translaation jälkeinen modifikaatio on merkittävästi monimuotoisempi kuin DNA:n metylaatio. Jotkut parhaiten ymmärretyistä histonimodifikaatioista ovat metylointi, asetylointi, fosforylaatio, ribosylointi, ubikitinointi, sumoylaatio tai biotinylointi [20].

Esimerkkejä histonien translaation jälkeiseen modifikaatioon osallistuvista entsyymeistä ovat histoniasetyylitransferaasit (HAT), metyylitransferaasit (HMT), deasetylaasit (HDAC) ja demetylaasit (HDM).

Ruokavalion vaikutuksia histonin translaation jälkeiseen modifikaatioon tarkastelivat hiljattain mm. Link et al. [21]. Esimerkiksi valkosipulin ja kanelin polyfenolit estävät HDAC:ia; vihreän teen polyfenolit ja kupari estävät HAT:ia; EGCG estää HMT:ia.

Histonin metylaatio voi moduloida DNA:n metylaatiokuvioita, ja DNA:n metylaatio voi toimia mallina joillekin histonimuutoksille DNA:n replikaation jälkeen [20, 22]. On arveltu, että nämä vuorovaikutukset voitaisiin toteuttaa suorilla vuorovaikutuksilla histonin ja DNA-metyylitransferaasien välillä [20, 22]. Tällaiset DNA-histoni-vuorovaikutukset voidaan moduloida myös ruokavalion avulla.

2.3. miRNA-modulointi ruokavaliolla

Kaikilla elävillä soluilla on kyky vastaanottaa ja käsitellä solukalvojen ulkopuolelta tulevia signaaleja.

Eukaryoottien eli aitotumallisten miRNA (mikro-RNA) on lyhyt, parin kymmenen nukleotidin pituinen, yksijuosteinen RNA-molekyyli, joka estää tietyn lähetti-RNA:n toiminnan kiinnittymällä siihen eli se hiljentää geenin. Monet mikro-RNA:ista ovat proteiinia koodaamattomilta DNA-alueilta.

MikroRNA (miRNA) on ei-koodaava RNA-molekyyli (joka sisältää 22 nukleotidia). miRNA toimii RNA:n hiljentämisessä ja geeniekspression jälkitranskriptiossa. Niitä löytyy kasveista, eläimistä ja joistakin viruksista.

miRNA:t toimivat emäspariliitoksen kautta mRNA-molekyylien komplementaaristen sekvenssien kanssa. Tämän seurauksena nämä mRNA-molekyylit hiljennetään yhdellä tai useammalla seuraavista menetelmistä: (1) mRNA-juosteen pilkkominen kahteen osaan, (2) mRNA:n destabilisointi lyhentämällä sen poly (A) häntää ja ( 3) Vähemmän tehokas mRNA:n translaatio proteiineiksi ribosomien avulla.

miRNA:t ovat transkriptionaalisia säätelijöitä ja sitoutuvat komplementaarisiin sekvensseihin kohde-lähetti-RNA-transkripteissa (mRNA:t), mikä johtaa transkriptionaalisten geenien hiljentymiseen mRNA-translaation repressoinnin tai lisääntyneen RNA-hajoamisen vuoksi.

miRNA:t voivat kuitenkin myös aiheuttaa histonimodifikaatiota ja promoottorikohtien DNA-metylaatiota, mikä säätelee kohdegeenien ilmentymistä vaihtoehtoisella reitillä. [23, 24]. Ihmisen genomi koodaa yli 1000 miRNA-nukleotidia, joiden kohteena on 50% nisäkäsgeeneistä monissa ihmisen solutyypeissä [25–30].

Siten miRNA:t vaikuttavat monien transkriptiotekijöiden, reseptorien ja kuljettajien ilmentymiseen [31]. Viimeaikaiset havainnot ihmis- ja eläinmalleissa tehdyistä kokeista viittaavat siihen, että ravitsemus (esim. rasvan, proteiinin, alkoholin tai E-vitamiinin kulutus) vaikuttaa monien miRNA-nukleotidien [32] ilmentymiseen.

miRNA:t muistuttavat RNA-interferenssi (RNAi) -reitin pieniä häiritseviä RNA:ita (siRNA:t), paitsi että miRNA:t ovat peräisin RNA-transkriptioiden alueista, kun taas siRNA:t ovat peräisin pitkistä kaksijuosteisen RNA:n alueista. Ihmisen genomi voi koodata yli 1900 miRNA:a, vaikka uudempi analyysi osoittaa, että luku on lähempänä 600: ta. Kiertävät miRNA:t vapautuvat kehon nesteisiin; vereen ja aivo-selkäydinnesteeseen. Ne toimivat biomarkkereina monissa sairauksissa.

Monet miRNA:t ovat evoluutiokonservoituneita, mikä tarkoittaa, että niillä on tärkeät biologiset toiminnot, joilla ei ole suuria lajienvälisiä eroja. Esimerkiksi 90 miRNA-perhettä on säilynyt ainakin nisäkkäiden ja kalojen yhteisestä esi-isästä lähtien, ja suurimmalla osalla näistä konservoiduista miRNA:ista on tärkeitä tehtäviä.

Polyfenolit (esim. antosyaniini, kurkumiini ja kvertsetiini) moduloivat maksan miRNA:n ilmentymistä in vivo hiirimalleissa [33]. miRNA:n ilmentymisen modulointi ruokavaliolla voi selittää genisteiinin, kurkumiinin, retinoiinihapon ja kalaöljyn syövältä suojaavia vaikutuksia.

Genisteiini (isoflavoni) estää uveaalisen melanoomasolun kasvua estämällä miRNA-27a:n ilmentymistä [34]. Kurkumiinihoito säätelee miRNA-22:n ja alasreguloidun miRNA-199a:n ilmentymistä haimasyöpäsolulinjassa [35] ja säätelee myös miRNA-15a:n ja miRNA-16:n ilmentymistä rintasyöpäsoluissa [36].

Akuuttia promyelosyyttistä leukemiaa sairastavilla potilailla, joita hoidettiin menestyksekkäästi kemoterapialla ja all-trans-retinoiinihapolla, miRNA-181b:n säätely alasreguloitui (downregulate), mutta monien muiden miRNA:iden säätely ylösreguloitiin (upregulate) [37]*.

Retinoiinihappohoidon indusoima miRNA-10a-säätely esti haimasyövän etäpesäkkeitä ksenotransplantaatiokokeissa seeprakalan alkioissa [38]. Kalaöljy vähensi erilaisten ekspressoitujen miRNA:iden määrää koe-eläimissä ja voi olla hyödyllistä paksusuolikarsinooman estämisessä [39]. Indol-3-karbinoli sääteli useiden miRNA:iden (ts. miRNA:iden -21, -31, -130a, -146b ja -377) ilmentymistä hiirissä, joille oli indusoitu hiiren keuhkokasvaimia [40].

Ravintoaineiden puutos voi myös moduloida miRNA:n ilmentymistä. Esimerkiksi folaatin puute liittyi miRNA-222:n merkittävään yli-ilmentymiseen [41]. Myös rotilla, joilla oli folaatti-metioniini-koliini-puutteellinen ruokavalio, kehittyi maksasolujen karsinooma, johon liittyi samanaikaisesti miRNA:iden yli-ilmentymistä -17 – -92, -21, -23, -130 ja -190 [42].

*Ylös- ja alasregulaatio

Alasregulaatio tarkoittaa prosessia, jossa jokin solun ulkoinen ärsyke vähentää RNA:n tai proteiinin määrää, kun taas ylösregulaatio tai sääntelyn lisääminen lisää näitä komponentteja solussa.

Esimerkki alasregulaatiosta on solun tietyn reseptorin ilmentymisen väheneminen vasteena molekyylin, kuten hormonin tai hermovälittäjäaineen aktivoitumiselle, mikä vähentää solun herkkyyttä ko. molekyylille. Tämä on esimerkki paikallisesti toimivasta ( negatiivisen palautteen) mekanismista.

Esimerkki ylisääntelystä: sellaisille ksenobiottisille molekyyleille kuin dioksiinille altistettujen maksasolujen vasteena solut lisäävät sytokromi P450 -entsyymien tuotantoa , mikä puolestaan lisää näiden molekyylien hajoamista.

Kaikilla elävillä soluilla on kyky vastaanottaa ja käsitellä solukalvojen ulkopuolelta tulevia signaaleja. Tämän he tekevät reseptoreiksi kutsuttujen proteiinien avulla. Reseptorit sijaitsevat solun pinnalla plasmamembraaniin upotettuna. Kun solunulkoiset signaalit ovat vuorovaikutuksessa reseptorin kanssa, ne ohjaavat solun tekemään jotain, kuten jakautumaan, kuolemaan, tuottamaan proteiineja tai pääsemään energiaravinteita soluun jne. Esimerkiksi insuliinimolekyylin kiinnittyminen insuliinireseptoriin päästää glukoosimolekyylin soluun.

Solun kyky reagoida kemialliseen viestiin riippuu kyseiselle viestille viritettyjen reseptorien läsnäolosta. Mitä enemmän reseptoreita solulla on viritetty ko. signaaliin, sitä vahvemmin solu reagoi siihen. Esimerkiksi insuliiniresistenssissä insuliinireseptorit eivät ole virittyneet, joten solu reagoi heikosti insuliiniin, mikä puolestaan vaikuttaa solun glukoosinottoon ja energian saantiin.

Reseptorit luodaan tai ekspressoidaan solun DNA:n ohjeista, ja niitä voidaan lisätä tai säätää ylöspäin (ylösreguloida), kun signaali on heikko, tai alasreguloida, jos signaali on voimakas.

Niiden tasoa voidaan säätää myös ylös tai alas moduloimalla järjestelmiä, jotka hajottavat reseptoreita, kun solu ei enää tarvitse niitä. Reseptoreiden alasregulointia voi tapahtua myös silloin, kun reseptorit on altistettu kroonisesti liialliselle määrälle ligandia joko endogeenisistä välittäjistä tai eksogeenisista lääkkeistä. Tämä johtaa ligandin aiheuttamaan herkistymiseen tai kyseisen reseptorin sisäistymiseen. Tämä näkyy tyypillisesti eläinhormonireseptoreissa. Reseptorien säätely toisaalta voi johtaa superherkistettyihin soluihin, varsinkin kun toistuva altistuminen antagonistiselle lääkkeelle tai pitkäaikainen ligandin puuttuminen.

2.4. TOR-signaalireitti ja ravitsemus

Elinten ja koko kehon tasolla TORC1 / S6 K1 -signaalireitti säätelee glukoosin homeostaasia, insuliiniherkkyyttä, rasvasolujen aineenvaihduntaa, kehon massa- ja energiatasapainoa, kudosten ja elinten kokoa, oppimista, muistinmuodostusta ja ikääntymistä [57].

TOR (
rapamysiinin* kohde) on proteiinikinaasi, joka toimii solujen kasvun ja ikääntymisen keskusohjaimena [43, 44]. TOR-signalointireitin inaktivointi edistää autofagiaa ja pidentää elinikää [45].

*Elimistön vanhenemista on koe-eläimillä pystytty hidastamaan rapamysiinilla. Rapamysiini vähentää elimistön solujen energiankulutusta. Tämä vaikuttaa samalla tavalla kuin ravinnon energiamäärän rajoittaminen. Jos energiaa on puutteellisesti tarjolla, elimistön solujen aineenvaihdunta hidastuu ja samalla niiden elinikä pitenee. Toisaalta rapamysiini heikentää immuunivastetta ja altistaa infektioille.

TOR havaittiin ensin hiivassa, mutta se tunnistettiin myös muissa eukaryooteissa, kuten nisäkkäillä ( TOR tai mTOR). In vivo mTOR esiintyy kahdessa multiproteiinikompleksissa, mTORC1 ja mTORC2.

mTORC1 toimii ravinteiden energia-redoksianturina* ja moduloi proteiinisynteesiä. Siksi alkupään tekijät, jotka stimuloivat tämän kompleksin aktiivisuutta, ovat insuliini ja muut kasvutekijät, aminohapot (esim. leusiini) ja stressi (lämpötilan muutos, kofeiini, oksidatiivinen stressi).

* redox; reduction-oxidation, redoksi; hapetus-pelkistys-reaktio

Kofeiini, hypoksia (happivaje) ja DNA-vauriot estävät mTORC1-aktiivisuutta. TORC1-aktiivisuuden ylävirran säätimet ovat AGC-kinaasiperhe (esim. PKA; PKG ja PKC), jotka aktivoituvat fosforylaatiolla [46]. Nisäkkäillä mTORC1-kohteet ovat S6 K1 ja eukaryoottinen aloituskerroin (4E-BP1) [47–52].

S6 K1:n mTORC1-välitteinen fosforylaatio edistää proteiinisynteesiä ja 4E-BP1-fosforylaatio edistää ribosomien lokalisoitumista mRNA:iden korkkirakenteeseen. MTORC1: n fosforyloivaa aktiivisuutta säätelee sen liittyminen RAPTOR-proteiiniin (mTOR:n säätelyyn liittyvä proteiini) [53, 54].

Korkeat energia- tai ATP-tasot aktivoivat mTORC1:n fosforyloimalla ja siten estäen TSC1-TSC2-kompleksin, kuten Loewith ja Hall ovat osoittaneet [43]. Tämä kompleksi on GTPaasia aktivoiva proteiini, joka modifioi toisen GTPaasi RHEB: n GTP:hen sitoutuneeksi tilaksi. RHEB sitoutuu ja aktivoi GTP:hen sitoutuneen tilan suoraan mTORC1: n ja antaa mTORC1: n fosforyloitua alavirran kohteisiin [55].

Alhainen soluenergia (korkeat AMP-tasot) tai alhaiset ravinnetasot aktivoivat yhdessä tuumorisuppressorikinaasin LBK1 kanssa AMPK:n. Aktivoitu AMPK fosforyloi sekä TSC2:n että RAPTORin ja estää siten mTORC1-aktiivisuuden kahdella reitillä [56].

Hiivassa TORC1 edistää proteiinisynteesiä, ribosomien biogeneesiä, säätelee solusyklin ja solukoon välistä suhdetta, edistää solukasvua estämällä stressivasteita, stimuloi autofagiaa ja säätelee mitokondrioiden toimintahäiriön signaalia ytimeen RTG1-riippuvan negatiivisen säätimen kautta [43, 44].

Elinten ja koko kehon tasolla TORC1 / S6 K1 -signaalireitti säätelee glukoosin homeostaasia, insuliiniherkkyyttä, rasvasolujen aineenvaihduntaa, kehon massa- ja energiatasapainoa, kudosten ja elinten kokoa, oppimista, muistinmuodostusta ja ikääntymistä [57].

Esimerkiksi S6 K1 moduloi mesenkymaalisten kantasolujen erilaistumista adiposyyteiksi. mTORC1 / S6 K1-signalointireitin liiallinen stimulointi liian suurilla määrillä leusiinia äidinmaidonkorvikkeissa voi olla syynä lisääntyneeseen adipogeneesiin ja varhaislapsuuden liikalihavuuteen [58].

mTORC2:n parhaiten ymmärretyt toiminnot ovat aktiinin solurangan solusyklistä riippuvan polarisaation hallinta, endosytoosi ja sfingolipidibiosynteesi [43, 59, 60]. mTORC2: n ylävirran säätimet ovat insuliini ja IGF1 [44, 61].

Ribosomin kypsytystekijä Nip7 vaaditaan mTORC2-kinaasiaktiivisuuteen hiiva- ja nisäkässoluissa [44, 61] ja mTORC2: n substraatit ovat AGC-kinaasiperhe mukaan lukien AKT, SGK1 ja PKC [44, 62]. Esimerkiksi mTORC2 edistää solujen eloonjäämistä AKT:n kautta [63, 64] ja säätelee myös maksan glukoosi- ja lipidimetaboliaa insuliinin indusoiman AKT-signaloinnin kautta [62]. Vaikka TORC1:n ja TORC2:n signalointireitit ovat jossain määrin erillisiä, niillä on yhteistyöfunktio koordinoida kasvua, mitoosia ja solukoon hallintaa.

Esimerkiksi TORC2 aktivoi TORC1:n AKT-signalointireitin kautta. TORC1-aktivaatio stimuloi anabolisia solureittejä ja TORC1-esto stimuloi katabolisia solupolkuja [65]. TORC1- ja TORC2-signalointireittien herkkyys voi yleensä olla paitsi solukudosspesifinen myös TORC-isoformista riippuvainen. Esimerkiksi mTORC2: n aktiivisuus riippuu nisäkkään stressiaktivoituneen proteiinikinaasia vuorovaikutuksessa olevan proteiinin (mSin1) isoformista, joka muodostaa tämän multiproteiinikompleksin [66].

3. Ravinto ja vanheneminen

Oletus, että nisäkkäiden elinikää voitaisiin pidentää merkittävästi ruokavalion muutoksilla, vahvistettiin jyrsijätutkimuksessa, jonka toteuttivat McCay ym. vuonna 1935 [67].

Rotat kasvavat koko ikänsä. Yksi tämän tutkimuksen tavoitteista oli määrittää kasvun hidastumisen vaikutus molempia sukupuolia olevien rottien eliniän pituuteen. Kasvu hidastui rajoittamalla ravinnosta saatavan energian määrää tasolle, joka on tarpeen rottien pitämiseksi vakailla ruumiinpainotasoilla vieroituksen aikana tai 2 viikkoa vieroituksen jälkeen.

Kokeessa huolehdittiin kaikkien muiden ruokavalion ainesosien riittävästä saannista. Ruokavalion energiamäärän rajoittaminen pidensi rottien elinikää. Ruokavalion rajoittamisen vaikutus elinaikaan oli kuitenkin selvempi uros. kuin naarasrotilla [67].

Yhteenvetona voidaan todeta, että tämä peruskokeilu viittaa siihen, että elinikää voidaan pidentää ruokavalion sisältämän energiamäärän rajoittamisella ilman aliravitsemusta. Aliravitsemuksella voi olla päinvastainen vaikutus [1].

Suositeltava ravintoprotokolla on energiansaannin rajoittaminen siten, että kalorirajoitus ei aiheuta välttämättömien ravintoaineiden puutostiloja tai aliravitsemusta. CR tarkoittaa kalorien saannin rajoittamista 10–30% verrattuna energian normaaliin saantiin. Energiansaannin hallitun rajoittamisen on osoitettu parantavan kaiken ikäisten terveyttä ja hidastavan myös ikääntymistä monilla tutkituilla eukaryooteilla [68].

Energian rajoittamisen elinikää pidentävien vaikutusten merkitystä kädellisille on tutkittu mm. reesusapinoilla. Eläinten lähtötason kaloreiden saantia laskettiin asteittain 10% kuukaudessa lopulliseen 30% energian rajoitukseen, joka säilyi kokeen ajan. CR:n vaikutus verrokkeihin arvioitiin vertaamalla kuolleisuuden viivästymistä ja joidenkin ihmisillä yleisimmin esiintyvien ikään liittyvien sairauksien (esim. diabetes, syöpä, sydän- ja verisuonitaudit ja aivojen atrofia) puhkeamista.

Tutkimuksen johtopäätökset olivat, että kaloreiden rajoittaminen alensi ikääntymiseen liittyvien kuolemien esiintyvyyttä (50% kontrolliruokituilla eläimillä verrattuna 20% CR-ruokituilla eläimillä) ja alensi myös diabeteksen, syövän, sydän- ja verisuonitautien sekä aivojen atrofian ilmaantuvuutta [68 ].

Tältä pohjalta voidaan kysyä: liittyykö okinawalaisten pitkäikäisyys niukkaan energiansaantiin?

4. Kaloreiden rajoittamisen vaikutukset ihmisillä

Perusoletus, jonka mukaan kalorirajoitus voi pidentää keskimääräistä ja enimmäisikää ja viivästyttää ikään liittyvien muutosten alkamista, on osoitettu monissa organismeissa hiivasta, matoihin ja kärpäsistä nisäkkäisiin [69–71].

Kehittyneemmillä nisäkkäillä kalorirajoitus viivästyttää monia ikääntymiseen liittyviä sairauksia, kuten syöpää, diabetesta, ateroskleroosia, sydän- ja verisuonitauteja sekä neurodegeneratiivisia sairauksia [68, 72–74]. Näiden sairauksien ilmaantuvuus kasvaa iän myötä ja ne vaikuttavat merkittävästi kuolleisuuteen. Energiansaannin rajoittaminen voi pidentää elinikää lisäämällä kehon yleistä terveydentilaa ja tarjoamalla epäspesifistä vastustuskykyä kroonisille sairauksille ja aineenvaihdunnan häiriöille [68, 72–74].

Lopullista kysymystä, miten kaloreiden rajoittaminen vaikuttaa ihmiskehoon, tutkittiin kuitenkin rajoitetulla määrällä kokeita [73–93]. Tutkimuksella CR-vaikutuksista ihmisen pitkäikäisyyteen liittyy eettisiä ja logistisia haasteita, koska kehittyneiden maiden väestön keskimääräinen elinikä on lähes 80 vuotta. Siksi ihmisen tutkimuksissa keskitytään mittaamaan kaloreiden rajoittamiseen liittyviä muutoksia, jotka voivat hidastaa ikääntymistä ja kroonisten sairauksien etenemistä, mikä pidentää elinikää.

Vakuuttavin näyttö siitä, että CR:llä voi olla positiivinen vaikutus ihmisiin, saatiin Fontanan ym. kokeilla ja kattavalla arvioinnilla kalorien saannin rajoittamisen pitkäaikaisista vaikutuksista (CALERIE Phase 1, josta puhutaa ensimmäisellä videoluennolla) ja saaduista tiedoista. Caloric Restriction Society (kuten jäljempänä keskustellaan). Fontana ym. arvioivat 6 vuoden pituisen CR-ruokavalion vaikutusta ateroskleroosin riskitekijöihin mies- ja naispuolisilla aikuisilla (ikä 35–82-vuotiaat) ja heitä verrattiin iältään vastaaviin terveisiin tyypillistä amerikkalaista ruokavaliota noudattaviin ihmisiin (kontrolliryhmä).

Seerumin kokonaiskolesterolitaso ja LDL-kolesterolitasot, kokonaiskolesterolin suhde suurtiheyksiseen lipoproteiinikolesteroliin (HDL), triglyseridit, paastoglukoosi, paastoinsuliini, C-reaktiivinen proteiini (CRP), verihiutaleista johdettu kasvutekijä AB sekä systolinen ja diastolinen verenpaine olivat kaikki selvästi pienempiä kaloreita rajoittavassa ryhmässä kuin kontrolliryhmässä.

HDL-kolesteroli oli korkeampi kaloreiden rajoittamisen jälkeen. CR-ryhmän henkilöiden lääketieteelliset tiedot osoittivat, että ennen kaloreiden rajoittamisen aloittamista heillä oli seerumin lipidi-lipoproteiini- ja verenpainetasot samalla tasolla kontrolliryhmän tyypillistä amerikkalaista ruokavaliota noudattavien henkilöiden kanssa ja samanlainen kuin vertailuryhmässä. Tutkimuksen johtopäätös oli, että pitkäaikainen kaloreiden rajoittaminen voi vähentää ateroskleroosin riskitekijöitä [74].

(a) Pitkäaikaisen 20%:n kalorirajoituksenn ja (b) 20%:n lisääntyneen energiankulutuksen (IEE) aiheuttaman rasvanpudotuksen vaikutusta sepelvaltimotaudin (CHD) riskitekijöihin arvioitiin yhden vuoden satunnaistetussa kontrolloidussa tutkimuksessa 48 ei-lihavalla mies- ja naishenkilöllä.

Kaloreiden rajoittamisen (a) ja liikunnan (b) vaikutus rasvakudoksen vähentymiseen olivat määrällisesti vastaavia. Kaloreiden rajoittaminen ja liikunta vaikuttivat yhtäläisesti myös CHD-riskitekijöiden, kuten plasman LDL-kolesterolin, kokonaiskolesteroli / HDL-suhteen ja CRP-pitoisuuden laskuun.

Tutkimuksen tekijät päättelivät, että saman suuruusluokan pitkäaikainen kaloreiden rajoitus tai liikunnan avulla saavutettava lisääntynyt energiankulutus (IEE) johtavat merkittävään ja yhtäläiseen sydänterveyden riskitekijöidenterveysmarkkereiden kohenemiseen normaalipainoisilla ja ylipainoisilla keski-ikäisillä aikuisilla [83].

Vuoden mittainen 20% kaloreita rajoittavan ruokavalion ja 20% liikunnan avulla energiankulutusta lisäävän IEE:n vaikutukset arvioitiin DNA:n ja RNA:n oksidatiivisten vaurioiden osalta valkosolu- ja virtsa-analyyseillä normaali- ja ylipainoisilla aikuisilla. Molemmat interventiot vähensivät merkittävästi sekä DNA:n että RNA:n oksidatiivisia vaurioita valkosoluissa verrattuna lähtötasoon.

Virtsasta tutkittujen DNA:n ja RNA:n oksidatiiviset vauriot eivät kuitenkaan eronneet lähtötasosta kummankaan interventio-ohjelman jälkeen. Tutkimuksen johtopäätös oli, että sekä kaloreiden rajoittaminen että IEE vähentävät systeemistä oksidatiivista stressiä, mikä heijastuu vähentyneinä DNA:n ja RNA:n hapettumisvaurioina [85].

CALERIE on kansallisen ikääntymislaitoksen käynnistämä tutkimusohjelma, johon osallistuu kolme tutkimuskeskusta. CALERIE-vaiheeseen sisältyi kolme pilottitutkimusta sen selvittämiseksi, voidaanko pitkäaikaisen (6–12 kuukautta) 20–25%:n kaloreiden rajoittamisen vaikutuksia tutkia normaalisti elävien ei-lihavien aikuisten osalta ja arvioida kaloreiden rajoittamisen adaptiivisia vasteita.

Tämän satunnaistetun kontrolloidun kliinisen tutkimuksen johtopäätökset olivat, että kaloreita rajoittavilla koehenkilöillä oli alempi ruumiinpaino, vähentynyt kehon ja sisäelinten rasvapitoisuus, pienempi aktiivisuusenergiankulutus, parantuneet paastoinsuliinipitoisuudet, parantuneet sydän- ja verisuonitautien riskiä ennustavat markkerit (LDL, HDL-suhde ja CRP), eikä muutoksia luun tiheydessä verrokkeihin verrattuna [76, 77, 83, 86, 92].

Käynnissä olevan CALERIE-tutkimuksen toisen vaiheen tavoitteena on testata, johtaako 2 vuoden vapaa 25% kaloreiden rajoittaminen samanlaisiin suotuisiin vaikutuksiin, kuin eläinkokeissa havaitut vaikutukset [91].

Caloric Restriction Societyn (CRS) jäsenet rajoittavat energian saantia olettaen, että tämä viivästyttää sekundaarisestä ikääntymisestä johtuvia sairausprosesseja ja hidastaa primaarista ikääntymistä.

Verrattuna saman ikäisiin tyypillistä amerikkalaista ruokavaliota noudattaviin amerikkalaisiin, CRS-jäsenillä (keski-ikä 50 ± 10 vuotta) oli alhaisempi painoindeksi, pienempi kehon rasvaprosentti, merkittävästi alemmat arvot seerumin kokonaiskolesterolille, LDL-kolesterolille, kokonaiskolesterolille / LDL:lle ja korkeampi HDL-kolesteroli. Myös plasman paastoinsuliinin ja glukoosin pitoisuudet olivat merkittävästi alhaisemmat kuin ikäryhmän verrokkiryhmässä.

Vasemman kammion diastolinen toiminta CRS-jäsenillä oli samanlainen kuin noin 16 vuotta nuoremmilla henkilöillä. Kaloreita rajoittava ruokavalio hiljensi kroonista tulehdusta ja tämä ilmeni plasman CRP:n ja tuumorinekroositekijän-alfan (TNFα) merkittävästi alhaisemmissa tasoissa [74, 78, 84].

Ikääntyminen liittyy sykevälivaihtelun (HRV) asteittaiseen heikkenemiseen. Tämä osoittaa sydämen autonomisen toiminnan heikkenemistä ja yleisesti heikentynyttä terveyttä.

Energian saannin rajoittaminen 30 %:lla vaikuttaa myönteisesti sydämen autonomiseen toimintaan. Kaloreita rajoittavassa ryhmässä oli alempi syke ja huomattavasti korkeammat HRV-arvot. Tutkijat arvelevat, että kaloreiden rajoittaminen palauttaa tasapainon sydämen taajuuden sympaattisen / parasympaattisen moduloinnin välillä parasympaattisen ajon eduksi, mikä lisää sykkeen vuorokausivaihtelua [93].

5. Kaloreiden rajoittamisen vaikutukset solutasolla

Suurin osa ikään liittyvistä muutoksista geeniekspressiossa on melko vähäisiä ja kudosspesifisiä [94]. Silti kudosspesifisistä eroista iän vaikutuksessa geenitranskriptioon ikääntymisnopeus kudoksissa vaikuttaa olevan koordinoitua, mikä viittaa systeemisten tekijöiden merkitykseen ikääntymisprosessin koordinoinnissa koko kehon tasolla [95].

Yleisimpiä ikään liittyviä muutoksia ovat lisääntynyt tulehdukseen ja immuunivasteisiin liittyvien geenien ilmentyminen ja mitokondrioiden (MTH) energia-aineenvaihdunnan heikkeneminen. Kaloreiden rajoittamiseen liittyvien geenien vähentynyt ilmentyminen estää suurimman osan näistä ikään liittyvistä muutoksista geeniekspressiossa [96, 97 ]. Kaloreiden rajoittamisen arvellaan vastaavan ikään liittyviä muutoksia moduloimalla mTOR-signalointireitti, IGF1 / insuliinisignalointi, adiponektiiniekspressio, DNA-metylaatio ja histoniasetylointi ja deasetylointi.

5.1. Kalorirajoituksen vaikutus adiponektiinien eritykseen

Johdonmukainen muutos energiaa rajoittavan ruokavalion aikana on kehon rasvan väheneminen (ts. valkoisen rasvakudoksen väheneminen). Valkoinen rasvakudos ei ole vain lipidien varastointipaikka, vaan sillä on tärkeä rooli verensokerin homeostaasissa, immuuni- ja tulehdusreaktioissa, jotka välittyvät adiposyytteistä peräisin olevista solusta soluun signaloivista molekyyleistä, adipokiineista (esim. adiponektiini) [98 , 99].

Siksi rasvakudos voi olla tärkeä tekijä ikääntymiseen ja kaloreiden rajoittamiseen (CR) liittyvissä aineenvaihdunnan muutoksissa. Adiponektiinin eritystä lisää vähentynyt kalorien saanti.

Adiponektiini vähentää sekä insuliinia että IGF1:tä, jotka vastaavasti vähentävät adiponektiinin synteesiä. Poikkileikkaustutkimukset osoittavat tasaisen käänteisen korrelaation plasman insuliini- ja adiponektiinipitoisuuksien välillä. Adiposyyttien (rasvasolujen) koon kasvu vähentää myös adiponektiinin eritystä [100]. Adiponektiini edistää rasvahappojen hapettumista rasvakudoksessa ja vähentää lipidien kertymistä muihin ääreiskudoksiin [101]. Kaloreiden rajoittaminen lisää veren adiponektiinipitoisuutta [102].

Ihmisillä tämä hormoni tukahduttaa aineenvaihdunnan häiriöt, jotka voivat johtaa tyypin 2 diabetekseen, lihavuuteen, ateroskleroosiin tai metaboliseen oireyhtymään [103–105]. Adiponektiini säätelee mitokondrioiden energiantuotantoa AMPK:n kautta.

AMPK:lla on monia toimintoja. Se säätelee ylöspäin (ylösreguloi) glukoosin imeytymistä soluun, rasvahappojen β-oksidaatiota, glukoosin kuljettaja 4:n (GLUT4) ilmentymistä ja mitokondrioiden energiantuotantoa.

AMPK-entsyymillä on ”energiaa tunnistava kyky”. Se se reagoi solunsisäisen AMP / ATP-suhteen vaihteluihin. Esimerkiksi ihmisen ”myo-putkien”* (myotube, en löytänyt suomennosta tälle sanalle) adiponektiinihoito johtaa AMPK:sta riippuvaan MTH-biogeneesin lisääntymiseen ja vähentää reaktiivisten happilajien (ROS) tuotantoa [106].

”Myotubes have rows of centrally located nuclei and peripheral masses of forming contractile myofilaments that soon become oriented into sarcomeres and myofibrils with restoration of cross-striations in the immature myofibers.”

AMPK säätelee MTH-energiantuotantoa aktivoimalla peroksisomiproliferaattorilla aktivoidun reseptori-gamma-koaktivaattori 1-alfan (PGC1-α) suoraan tai endoteelin typpioksidisyntaasin (eNOS) ja NAD-riippuvaisen deasetylaasi-sirtuiini1:n (eli SIRT1:n) kautta säännön 2 homologi 1) signalointireitillä.

AMPK: n lisääntyneellä aktiivisuudella kaloreita rajoittavan ruokavalion aikana on myös sydäntä suojaava kardioprotektiivinen vaikutus [102]. Lisääntynyt AMPK-aktiivisuus stimuloi myös eNOS-aktiivisuutta ja vähentää siten aivojen iskeemisen vaurion todennäköisyyttä [107]. Muita kardioprotektiivisia vaikutuksia, joita välittää lisääntynyt adiponektiinin eritys kaloreita rajoittavan ruokavalion aikana, ovat (a) TNF-α:n erittymisen estäminen ja (b) adheesiomolekyylien synteesin esto endoteelisoluissa. Jälkimmäinen estää monosyyttien kiinnittymisen endoteelisoluihin ja viivästyttää ateroskleroosin etenemistä.

Adiponektiinimoduloidut tulehdusvasteet johtuvat TNF-α :n (tuumorinekroositekijä-alfa on systokiini, joka liittyy systeemiseen tulehdukseen) erityksen estämisestä monosyytistä / makrofagista ja vaahtosolusta [108–110]; tämä voi selittää tulehdusproteiinin CRP:n pienentyneen plasmakonsentraation ihmisillä, jotka noudattavat niukasti energiaa sisältävää ruokavaliota.

5.2. Energian rajoittamisen vaikutus insuliini/IGF1-signalointiin

Insuliiniresistenssi on tunnettu ikään liittyvä aineenvaihdunnan häiriö, jonka niukkaenerginen ravinto, pätkäpaasto, paasto ja ketogeeninen ruokavalio voivat estää ja parantaa [94].

Kalorirajoituksen on raportoitu vähentävän IGF1:n pitoisuutta hiirillä, mutta ei ihmisillä [111, 112]. Insuliini ja IGF1 estävät FOXO-proteiineja* signalointireitillä, joka sisältää insuliinireseptorisubstraattiproteiineja (IRS), 3-fosfoinositidista riippuvaa proteiinikinaasia-1 (PDPK1) ja fosfatidyylinositoli-3-kinaasia ( PTDINS-3 K), siirtäen siten FOXO:t tumasta.

*FOX (forkhead box) -proteiinit ovat perhe transkriptiotekijöitä, joilla on tärkeä rooli solujen kasvuun, lisääntymiseen, erilaistumiseen ja pitkäikäisyyteen liittyvien geenien ilmentymisen säätelyssä. Monet FOX-proteiinit ovat tärkeitä alkion kehitykselle. FOX-proteiineilla on myös merkittävä transkriptiovaikutus, koska ne kykenevät sitomaan kondensoitunutta kromatiinia solujen erilaistumisprosessien aikana.

FOXO-transkriptiotekijät vaikuttavat ikääntymiseen vasteena ravinnolle ja sen energiapitoisuudelle. Tämän aineenvaihduntareitin puuttuminen nisäkkäillä liittyy lihavuuteen ja insuliiniresistenssiin [113].

Solutyyppispesifisellä tavalla nisäkkään FOXO-tekijät kontrolloivat erilaisia solutoimintoja, mukaan lukien apoptoosi (ohjattu solukuolema), solusykli, erilaistuminen ja DNA-korjaukseen ja oksidatiiviseen stressiresistenssiin liityvien geenien ilmentyminen.

Näiden toimintojen oletetaan olevan perusta FOXO-tekijöiden kyvylle hallita elinkaarta [114]. Mustan teen polyfenolit jäljittelevät insuliinin / IGF1-signalointireitin vaikutuksia FOXO1a-transkriptiotekijään [113] ja FOXO3a-geenin polymorfismit liittyivät ihmisten pitkäikäisyyteen [115].

Kaloreiden rajoittaminen stimuloi FOXO3a:n SIRT1-välitteistä deasetylaatiota, estäen tuman FOXO3a-aktiivisuuden ja estämällä Rho-assosioituneen proteiinikinaasi-1:n ilmentymisen aktivoimalla APP:n ei-amyloidogeenisen α-sekretaasin prosessoinnin ja alentamalla Aβ:n muodostumista. Tämä vähentynyt Aβ-sukupolvi liittyy Alzheimerin taudityyppisen amyloidineuropatologian ja spatiaalisen muistin heikkenemisen estämiseen hiirimallissa [114].
Niukan energiansaasnnin positiivinen vaikutus insuliini / IGF1-signalointireittiin liittyi myös ROS-tuotannon vähenemiseen MTH: ssa [116].

5.3. Energian rajoittamisen vaikutus mTOR-signalointiin

Elinkaaren säätelyä mTOR-signalointireitillä ei täysin ymmärretä. Viimeaikainen kokeellinen työ viittaa kuitenkin siihen, että sillä on keskeinen rooli solun ikääntymisprosessissa [44]. MTOR-signalointireitin estäminen rapamysiinillä pidentää maksimaalista ja mediaaniaikaa hiirillä. Tämä vaikutus havaittiin silloinkin, kun hoito aloitettiin myöhässä, mikä vastaa suunnilleen 60 vuoden ikää ihmisillä [44, 117]. Edellä mainittu, rapamysiinivälitteinen elinajan pidentyminen ei liittynyt muutoksiin sairausmalleissa tai kuolinsyissä, mikä viittaa siihen, että rapamysiini pidentää elinikää hidastamalla ikään liittyvää kudosten ja elinten rappeutumista [44, 117].

mTORC1-esto voi estää kudosten rappeutumisen ja pidentää elinikää parantamalla kantasolujen toimintaa. Esimerkiksi mTORC1-signaloinnin vähentäminen rapamysiinillä palauttaa hematopoieettisten kantasolujen itsensä uudistumisen ja hematopoieettisen toiminnan, parantaa immuniteettia ja pidentää hiirien elinikää [118].

S6 K1 ja 4E-BP1 arvellaan ikääntymisprosessia säätelevän mTORC1-signalointireitin efektoreiksi. Kuten Kapahi et al. on osoittanut, pienentynyt S6 K1 -aktiivisuus pidentää elinikää eri lajeilla, myös hiirillä [119], ja 4E-BP1:n yli-ilmentyminen pidentää elinikää rikkaissa ravinto-olosuhteissa parantamalla mitokondrioiden aktiivisuutta kärpäsillä [120].

mTORC1 voi myös vaikuttaa elinikään sellaisten mekanismien kautta, jotka eivät liity proteiinisynteesin modulointiin; esimerkiksi autofagian stimulaatio mTORC1-eston seurauksena voi edistää pitkäikäisyyttä stimuloimalla soluihin keräätyvien poikkeavien proteiinien ja vaurioituneiden organellien hajottamista ja kierrättämistä. Soluihin kerääntyy ajan myötä erilaisia solun toimintaa heikentäviä kuona-aineita [44].

Esimerkki siitä, kuinka mTORC1-aktiivisuuden säätely vaikuttaa elinikään, nähdään vanhojen hiirten maksan heikentyneenä paaston aiheuttama ketogeneesinä ja lisääntynyneenä mTORC1-aktiivisuutena [121]. Tämä heikentynyt ketogeneesi rajoittaa käytettävissä olevien energiasubstraattien määrää ääreiskudoksiin vähentäen siten organismin mahdollisuuksia selvitä ravinnon puutteen aikana. Kaloreiden rajoittaminen vähentä ikään liittyvää MTH-toiminnan heikkenemistä [69].

Kaloreiden rajoittamisen vaikutukset MTH:een voidaan välittää myös mTOR-signalointireitillä, koska mTOR on välttämätön mitokondrioiden oksidatiivisen toiminnan ylläpitämiselle [122]. Kahta S6 K1- ja 4E-BP1-riippumatonta mTOR / MTH-signalointireittiä on ehdotettu: TORC1-YY1-PGC-1α-kompleksia, [122] joka on osoitettu hiirimallissa ja TORC1-säännelty BCL-XL:n ja VDAC1:n kompleksi, joka sijaitsee mitokondrioiden ulkokalvolla [123].

5.4. DNA-metylaatio kaloreita rajoittavalla ruokavaliolla

Ikääntymisprosessiin liittyy vähitellen heikkenevä solujen homeostaasi ja geeniekspressioon muutokset [124]. Vanheneminen aiheuttaa merkittävän muutoksen 5-metyylisytosiinin (DNA-metylaation tuote) jakautumisessa genomiin ja yleisemmin vähenevä genomin DNA-metylaati [124–130].

Joidenkin spesifisten geenien promoottorialueilla on taipumus siirtyä metyloitumattomasta metyloituneeseen tilaan, mikä johtaa geenien hiljentämiseen (esim. tuumoripromoottorit tai ikääntymiseen liittyvät geenit, kuten RUNX3 ja TIG1 [129, 131]). Yhteenvetona voidaan todeta, että ikääntymisprosessi liittyy yleisesti vähentyneeseen, mutta paikallisesti lisääntyneeseen DNA-metylaatioon [132].

Kaloreiden rajoittamisen oletetaan viivästyttävän ikääntymisprosessia kääntämällä ikääntymiseen liittyvät DNA:n metylaatiomuutokset lisäämällä siten genomista vakautta [133, 134]. Kaloreiden rajoittaminen esimerkiksi nosti proto-onkogeenin RAS:n metylaatiotasoa rotamallissa verrattuna ad libitum -syötettyihin eläimiin [135].

Hypermetyloidun geenipromoottorin tunnistaa usein transkriptionaalisista repressorikomplekseista, mikä johtaa näiden onkogeenien ilmentymisen vaimentamiseen ja mikä edelleen osaltaan selittää kalorirajoituksen syöpiä ehkäisevää vaikutusta [132].

Niukkaenergisen ravinnon in vitro -solumallissa geenin promoottorissa (tuumorisuppressori ja ikääntymiseen liittyvä geeni) E2F-1:n sitoutumiskohta hypermetyloitiin. Tämä DNA:n hypermetylaatio esti E2F-1:n (aktiivisen transkriptiotekijän) pääsyn promoottoriin, mikä johti alasregulaatioon ja mikä osaltaan myötävaikuttaa kalorirajoituksen indusoimaan elinkaaren pidentymiseen [136].

Lihavuus on yleinen metabolinen häiriö. Se liittyy läheisesti kiihtyneen ikääntymisen ja lisää kuolleisuutta diabetekseen, hypertensioon, syöpiin ja sydän – ja verisuonitauteihin [137]. Siksi kaloreiden rajoittamisen ikääntymistä hidastavilla anti-aging vaikutuksilla on vaikutusta lihavuuden etenemiseen. Energiansaannin rajoittamista käytetään kliinisissä painonhallintatoimissa [138].

Lihavien ihmisten noudattaman kaloreiden rajoittamisen tutkimus osoitti, että vähäkaloriset ruokavaliot aiheuttavat DNA-metylaation muutoksia spesifisissä lokuksissa ATP10A, WT1 ja TNF-α, Näitä muutoksia voidaan käyttää kaloreiden rajoittamisen vasteen varhaisina indikaattoreina [139–141]. Lisätutkimukset ihmisillä ovat välttämättömiä niiden DNA-metylaatio-ohjattujen ehdokasgeenien joukon luonnehtimiseksi, jotka voivat olla läheisessä korrelaatiossa metabolisten reittien kanssa [132].

5.5. Histonien translaation jälkeinen muuntaminen kaloreita rajoittavalla dieetillä

5.5.1. Histoniasetylointi / deasetylointi

Histonimodifikaatiot liittyvät geeniaktivaatioon tai geenirepressioon. Histonipään sisällä olevien modifikaatioiden yhdistelmä muuttaa nukleosomien konfiguraatiota vaihtamalla kromatiinin joko tiivistetyksi (tiiviisti kiinni) tai rennoksi kokoonpanoksi (löysästi auki) [142].

Siksi histonimodifikaatiot määrittävät kromatiinin (tiukasti kiinni: löysästi auki) -suhteen ja siten geeniaktiivisuuden asteen tietyllä DNA-alueella. Esimerkiksi deasetyloidulla histonilysiinitähteellä on positiivinen varaus, joka houkuttelee negatiivisesti varautuneita DNA-säikeitä ja tuottaa kompaktin kromatiinitilan, joka liittyy transkriptiorepressioon. Vaihtoehtoisesti histoniasetylaatio poistaa positiivisen varauksen ja johtaa avoimeen kromatiinirakenteeseen, joka edistää geenitranskriptiota [132].

HDAC-aktiivisuus lisääntyy niukkaenergisen ruokavalion aikana, joten elimistön yleinen deasetylaatio voi olla sellainen suojamekanismi ravitsemusstressiä vastaan, joka voi vaikuttaa ikääntymisprosesseihin [136].

Kaloreita rajoittamalla esimerkiksi HDAC1:n lisääntynyt aktiivisuus ihmisen telomeraasikäänteiskopioijaentsyymin (hTERT) geenien promoottorialueilla, joista ensimmäinen on tuumorisuppressori monissa syövissä ja jälkimmäinen keskeinen ikääntymiseen vaikuttava telomeraasiaktiivisuuden säätelijä, johtaa näiden kahden geenin ilmentymiseen ja hyödyllisiin muutoksiin, jotka myötävaikuttavat pitkäikäisyyteen [136, 143, 144].

Useita HDAC-perheitä on tunnistettu. Näihin kuuluu mm. luokan III NAD+ -riippuvat HDAC:t, kuten Sirtuin1. Sirtuin1 (SIRT1 nisäkkäillä) ja sen ortologit muilla lajeilla (esim. Sirtuin2 hiivassa) ovat tärkeitä ikääntymisen säätelijöitä niukkaan energiansaantiin liittyvän eliniän pidentämisessä [145–149].

SIRT1:n entsymaattinen aktiivisuus riippuu NAD+ / NADH -suhteesta, joka on keskeinen indikaattori hapenkulutukselle. Tämä viittaa siten siihen, että tämä proteiini reagoi solujen metaboliseen tilaan. SIRT1:n roolia kaloreiden rajoittamisen ja eliniän pidentämisen yhtenä säätelijänä ja selittäjänä tukevat useat eläinmallit, ihmiskohteet ja in vitro solujärjestelmät [136, 145, 146, 148–154].

Kaloreiden rajoittaminen indusoi SIRT1-ekspression useissa hiirien tai rottien kudoksissa [146]. SIRT1:n oletetaan välittävän niukan energiansaannin aiheuttamia aineenvaihdunnan muutoksia ja ikääntymisen hidastumiseen liittyviä prosesseja:

(a) lisäämällä stressiresistenssiä p53:n ja FOXO:n negatiivisella säätelyllä [155–159]
(b) aloittamalla sarjan endokriinisiä vasteita, kuten adipogeneesin* vähentämisen ja insuliinin erityksen estämisen haiman β-soluista säätelemällä tärkeitä aineenvaihduntaan liittyviä geenejä, kuten peroksisomiproliferaattorilla aktivoituja G-reseptorin koaktivaattoria lα (PGC-1α) [160, 161].
* Adipogeneesi valmistaa adiposyyttejä (rasvasoluja) kantasoluista.

Vaikka SIRT1 on luokiteltu HDAC:ksi, se deasetyloi myös nonhistonisubstraatit [146, 152], kuten keskeiset transkriptiotekijät (esim. FOXO), säätelyproteiinit (esim. P53,) ja DNA:n korjausproteiinit (esim. Ku70), jotka vaikuttavat ikääntymisen hidastumiseen niukasti energiaa sisältävällä ruokavaliolla.

Esimerkiksi p53:n vähentäminen SIRT1-deasetylaatiolla voi vaikuttaa elinikään estämällä solujen apoptoosia (ohjattua kuolemaa) ja replikatiivisia vanhenemisprosesseja [155–157, 162–164]. FOXO-proteiini voidaan deasetyloida suoraan SIRT1:llä lysiinitähteissä ja sen ilmentyminen vähenee, mikä tukahduttaa FOXO-välitteisen apoptoosin [158,159].

DNA:n korjausproteiini, Ku70*, voi deasetyloida SIRT1:n, antaen sen inaktivoida proapoptoottinen tekijä BAX ja estäen siten apoptoosia [165, 166].

* Ku on dimeerinen proteiinikompleksi, joka sitoutuu DNA:n kaksoisjuosteiden päihin ja jota tarvitaan DNA:n ei-homologisen päätyliittymisreitin (NHEJ) korjaamisen. Ku on evolutiivisesti säilynyt bakteereista ihmisiin. Eukaryoottinen Ku on kahden polypeptidin, Ku70 (XRCC6) ja Ku80 (XRCC5), heterodimeeri. Kaksi Ku-alayksikköä muodostavat korin muotoisen rakenteen, joka kietoutuu DNA-kaksoisjuosteen-päähän. Monimutkaisemmissa eukaryooteissa Ku muodostaa kompleksin DNA-riippuvaisen proteiinikinaasikatalyyttisen alayksikön (DNA-PKcs) kanssa muodostaen täydellisen DNA-riippuvaisen proteiinikinaasin, DNA-PK: n. Ku:n uskotaan toimivan molekyylitelineenä, johon muut NHEJ:ssä mukana olevat proteiinit voivat sitoutua. Ku70- ja Ku80-proteiinit koostuvat kolmesta rakenteellisesta domeenista. N-terminaalinen domeeni on alfa / beeta-domeeni. Ku70:n ja Ku80:n keskeinen domeeni on DNA:ta sitova beeta-tynnyrialue.

Ku70 on sykliiniriippuvainen kinaasin estäjä, tärkeä kasvainsuppressoijaproteiini ja potentiaalisesti ikääntymisen biomarkkeri, koska sitä kertyy merkittävästi ikääntymisprosessien aikana [167–171]. Kalorirajoituksen aktivoima SIRT1 voi sitoutua suoraan promoottoriin ja vähentää sen ilmentymistä deasetylaatioefektin kautta, mikä osaltaan viivästyttää ikääntymisprosessia ja pidentää elinikää ihmissoluissa in vitro [153].

Kuten aiemmin todettiin, SIRT1 säätelee myös metaboliareiteissä mukana olevien geenien ilmentymistä. PGC-1α on keskeinen glukoneogeneesin ja rasvahappojen hapettumisen säätelijä [160, 161], ja sitä säätelevät niukan energiansaannin aikana SIRT1-välitteinen deasetylaatio, mikä lisää sen kykyä koaktivoida HNF4a:ta (transkriptiotekijä, joka edistää glukoneogeenisten geenien ilmentymistä ja tukahduttaa geenit mukana glykolyysissä) [147, 152]. Yhteenvetona voidaan todeta, että SIRT1:llä on keskeinen rooli epigeneettisten ja geneettisten reittien keskinäisessä viestinnässä [132].

5.5.2. Histonien metylaatio

Toisin kuin histoniasetylaatio, joka liittyy avoimeen kromatiinitilaan ja sen jälkeiseen geeniaktivaatioon, eri tavoin metyloiduilla histonimuodoilla on spesifit assosiaatiomallit spesifisten proteiinien kanssa. Ne tunnistavat nämä markkerit ja johtavat siten geenien hiljentämiseen tai aktivaatioon [132].

Histonilysiinitähteet voivat olla mono-, di- tai tri-metyloituja, mikä johtaa joko geenin aktivaatioon tai repressioon riippuen modifioidusta lysiinitähteestä [172, 173].

Niukka energiansaanti indusoi histonimetylaatiomodifikaatiot, kuten di- tai tri-metyloitu histoni H3 lysiinitähteissä 3 ja 4, säädellen keskeisten ikääntymiseen liittyvien geenien ja hTERT:n ilmentymistä ja myötävaikuttivat siten kalorirajoituksen aiheuttamaan ihmissolujen elinikän pidentymiseen [136, 153].

5.6. Kaloreiden rajoittamisen vaikutus miRNA-ekspressioon

miRNA-ilmentymismallit muuttuvat iän myötä. Jotkut miRNA:t ovat alasreguloituja ja toiset ylössäänteltyjä. Ihmisen veren perifeeristen mononukleaaristen solujen 800 miRNA:n ilmentymisprofiilianalyysi osoitti, että suurin osa miRNA:ista väheni määrällisesti, mukaan lukien syövän kehitykseen osallistuvat miRNA:t [174].

Koska ihmisen kasvaimiin liittyy usein miRNA:iden yleinen alasregulointi, raportoitu ikään liittyvä yleinen miRNA:n väheneminen voi lisätä solumuunnoksen ja kasvaimen syntymisen riskiä ja siten vähentää elinikää. Näiden jälkimmäisten miRNA:iden väheneminen iäkkäillä liittyi myös kohdeproteiinien fosfatidyylinositoli-3-kinaasin, kantasolutekijäreseptorin (c-KIT) ja histoni H2A:n lisääntyneeseen ilmentymiseen [174].

Eläintutkimukset tukevat myös miRNA:iden roolia ikääntymisessä. Esimerkiksi kontrolleihin verrattuna C. elegans -mutaatioissa, joissa on poistettu miRNA-239, elinkaari on huomattavasti pidentynyt, kun taas C. elegans -mutaatioissa, joissa on poistettu miRNA-71, miRNA-238 ja miRNA-246, tutkittavalla eläimellä havaitaan merkittävästi lyhyempi elinikä [ 175].

Ames-kääpiöhiiren pitkäikäisyys – johtuen lisääntyneestä insuliiniherkkyydestä, lisääntyneestä stressiresistenssistä ja vähentyneestä kasvaintiheydestä IGF-1-aktiivisuuden vähenemisen seurauksena – liittyi maksan miRNA-27a-suppression säätelyproteiineihin, ornitiinidekarboksylaasiin ja spermidiinisyntaasiin [176] .

Energiansaannin rajoittaminen muuttaa miRNA-ilmentymisprofiilia. Hiirillä, jotka saivat 70% normaalista energiasta 6 kuukauden ajan, kaloreiden rajoittaminen lisäsi miR-203:n ilmentymistä. Muutos kohdistuu kaveolin-1:n ja p63:n määriin, jotka vaikuttavat syöpäsolujen kasvuun ja invasiiviseen potentiaaliin [177]. Tutkijat päättelivät tästä, että kaloreiden rajoittaminen voi vähentää rintasyövän ilmaantuvuutta, etenemistä ja etäpesäkkeiden kehittymistä, mikä lisää odotettavissa olevia elinvuosia.

Kalorirajoitettujen hiirten aivot osoittivat miRNA-181a:n, miRNA-30e:n ja miRNA-34a:n vähentymistä, kun kaloreiden rajoittaminen oli jatkunut 8 kuukautta energiansaannin ollessa 60 % normaalista. Samalla BCL2-ilmentymisen havaittiin lisääntyvän ja BAX-ilmentymisen vähenevän, mikä vaikutti pienempiin kaspaasien 9 ja -3 aktiivisuuksiin. Kaspaasien 9 ja 3 aktiivisuuden heikkeneminen liittyy alentuneeseen apoptoosinopeuteen [178]. BAX- ja kaspaasi-3 -aktiivisuus lisääntyvät myös Alzheimerin ja Parkinsonin taudeissa [179-183].

6. Kalorirajoitusta jäljittelevät ruokavaliot

Koska pitkäaikainen kaloreiden saannin rajoittaminen on tarpeen koeolosuhteissa havaittujen myönteisten terveys- ja pitkäikäisyysvaikutusten aikaansaamiseksi, on etsitty vaihtoehtoja, jotka voisivat tuottaa kaloreiden rajoittamisen positiivisia vaikutuksia ilman ravinnon saantiin liittyviä rajoituksia.

Ihanteellisen ruokavalion tulisi:

(a) saada aikaan samanlaisia aineenvaihduta-, hormonaalisia ja fysiologisia vaikutuksia kuin kaloreiden rajoittaminen

(b) sen ei tulisi edellyttää merkittävää vähennystä pitkäaikaisessa ruoan saannissa

(c) sen pitäisi aktivoida energiansaannin rajoittamisen n kaltaiset stressivastereitit

(d) pidentää elinikää sekä vähentää tai viivästyttää ikään liittyvien sairauksien puhkeamista [184].

Tällaisen ruokavalion löytämiseksi kansallinen ikääntymisinstituutti perusti interventioiden testausohjelman testatakseen aineita, joiden ennustetaan pidentävän elinikää ja viivästyttävän sairauksia ja toimintahäiriöitä [185–189].

6.1. Kaloreiden rajoittaminen ja liikunta

Urosrottia suositaan eläinkokeissa joissa tutkitaan voiko liikunta yhdessä kaloreita rajoittavan ruokavalion kanssa toisintaa pelkästään kaloreita rajoittavan ruokavalion tuottamat edut. Kysymys on sikäli aiheellinen, etä tutkittavien rottien energiansaantia ei lisätä kompensoimaan lisääntyneen kulutuksen luomaa energiavajetta[ 180].

Eräissä tutkimuksissa on havaittu, että liikunnan ja kaloreiden rajoittamisen yhdistämisellä ei ole terveyttä edistäviä etuja, jotka ylittävät pelkällä kaloreiden rajoittamisella saavutetut edut [111, 190–192]. Näiden tutkimusten mukaan liikunta ei tuo lisäarvoa kaloreiden rajoittamista koituville fysiologisille hyödyille. Oksidatiivisen stressin tasoissa tai tulehdusta edistävien proteiinien pitoisuuksissa ei tapahtunut merkittävää muutosta liikkumaan päässeissä eläimissä, joiden energiansaantia oli laskettu 80% normaalista [191, 192]. Liikunnalla ei myöskään ollut vaikutusta eläimen maksimaaliseen elinaikaan [190].

Toisaalta, liikunnan ja vähäkalorisen ravinnon yhdistelmä pienensi hiljaista tulehdusta ilmentäviä CRP-tasoja enemmän kuin pelkkä kaloreiden rajoittaminen [193] ja pienensi sydänlihaksen nekroosin että sydänlihaksen iskemian kehittymisen riskiä [194, 195].

Useissa kaloreita rajoittavien ja liikuntaa lisäävien CE-tutkimusten ihmismalleissa on selvitetty 25 % kokonaiskaloripitoisuuden vähentämisen vaikutuksia terveyteen, kun 12,5% kaloreiden vähennyksestä tuli liikunnan lisäämästä energian kulutuksesta ja toinen 12,5% ravinnon pienemmästä energiapitoisuudesta.

Useimmissa tutkimuksissa paastoinsuliinin tasoissa, DNA-vaurioissa, lihasten mitokondrioiden geeniekspressioissa, triglyseriditasoissa ja maksan lipidipitoisuudessa ei havaittu merkittäviä eroja pelkän energian rajoittamisen ja energian rajoittamisen ja liikunnan yhdistämisen välillä [76, 196–198]. Poikkeuksena olivat kaksi tutkimusta, joissa raportoitiin sekä diastolisen verenpaineen että LDL-kolesterolin laskua edelleen, kun kaloreiden rajoittamisen yhdistämistä liikuntaan verrattiin pelkkään kaloreiden rajoittamiseen [198, 199].

Kaloreiden rajoittamisen ja liikunnan yhdistämisen on osoitettu lisäävän luun mineraalitiheyttä reisiluun kaulassa ja vähentävän tulehduksellista biomarkkeri sTNFR1:tä ylipainoisilla postmenopausaalisilla naisilla [200].

Suurin etu kaloreiden rajoittamisen yhdistämisestä liikuntaan verrattuna pelkästään kaloreiden rajoittamiseen on se, että ihmisen voi olla helpompaa noudattaa hoito-ohjelmaa, jossa kokonaisenergian lasku (ts. kalorien vähennys) jaetaan liikunnan lisäämän energian kulutuksen ja kalorien rajoitusten välillä [201].

6.2. Ruokavalion makroravinteiden rajoittaminen (DR)

Ruokavalion rajoittaminen (DR) viittaa proteiinin, rasvan ja hiilihydraattien välisten saantisuhteiden muuttamiseen joko vähentämällä tai vähentämättä kokonaiskalorien saantia. Hiilihydraattien ja rasvojen rajoituksista on saatu hyvin erilaisia tutkimustuloksia hyvin erilaisilla saantimäärillä. Tämän mukaan rasvan tai hiilihydraattien rajoittaminen ei vähennä reaktiivisten happilajien tuotantoa tai oksidaatioon perustuvia DNA-vaurioita [202–208].

Eläinmallissa proteiinin rajoittaminen näyttää olevan vaihtoehto kaloreiden rajoittamiselle. Proteiinin rajoittamisen raportoitiin lisäävän jyrsijöiden maksimaalista elinikää 20% [206]. DR-proteiinin elinikää pidentävät edut johtuivat metioniinirajoituksesta ruokavaliossa [209–215]. Esimerkiksi 40-prosenttisen metioniinirajoituksen on raportoitu vähentävän sekä mitokondrioiden reaktiivisten happilajien muodostumista että oksidatiivisia vaurioita mitokondrioiden DNA:ssa [216, 217].

Todisteet, jotka tukevat metioniinirajoituksen ja pidemmän eliniän välistä yhteyttä, sisältävät:

(a) käänteisen suhteen metioniinipitoisuuden ja nisäkkäiden maksimaalisen eliniän välillä [218]

(b) metioniini lisää LDL-kolesterolin hapettumista [219]

(c) lisääntynyt metioniinin saanti lisää plasman homokysteiinipitoisuuksia ja siten sydän- ja verisuonitautien ja kuolleisuuden riskiä [219].

On myös osoitettu, että kaikkien ravinnon aminohappojen rajoittaminen 40% metioniinia lukuun ottamatta ei vähennä reaktiivisten happilajien muodostumista tai oksidatiivisia vaurioita mitokondrioiden DNA:ssa [220]. Eräs ongelma voi siis olla liian runsas metioniinin saanti.

Yhteenvetona eläinkokeet viittaavat siihen, että noin puolet kaloreiden rajoittamisen eliniän pidentämisvaikutuksesta voidaan katsoa johtuvan metioniinirajoituksesta [206]. Siksi tutkimusten jatkaminen ihmisillä on perusteltua, koska metioniinin rajoittaminen on toteutettavissa ja hyvin siedetty [221].

6.3. Pätkäpaasto

Pätkäpaasto (ADF) vuorottelee 24 tunnin ad libitum -saannin jaksoja kalorien saannin osittaisella tai täydellisellä rajoittamisella. ADF ei välttämättä vähennä energian kokonaissaantia tai painoa, koska henkilöt voivat kompensoida alentuneen energiansaannin syömällä enemmän paasto-aikojen ulkopuolella [222, 223].

ADF pidensi koe-eläinten elinikää eläinkokeissa [223–225]. Jotkut tutkijat pitivät ADF:n vaikutusta elinajan pidentymiseen seurauksena aivoperäisen neurotrofisen tekijän samanaikaisen lisääntymisen kanssa [215].

ADF myös hillitsi tai esti ikään liittyvien sairausprosessien, kuten sydän- ja verisuonitautien, munuaissairauksien, syöpien ja diabeteksen kehittymistä [222, 223, 225–230].

Ihmiskokeissa on osoitettu, että pätkäpaasto on toteutettavissa, turvallinen ja hyvin siedetty ruokavalio myös ihmisillä [231]. ADF-ihmiskokeiden alustavia tuloksia [231–233] ei kuitenkaan voida verrata kaloreita rajoittaviin ihmiskokeisiin, koska ADF-kokeiden jaksot ovat olleet suhteellisen lyhyitä (muutamasta päivästä 20 viikkoon) verrattuna kalorirajoitus-kokeisiin (6 kuukaudesta 6 vuoteen) [74, 83, 85].

Kestoltaan jopa hyvin lyhyissä paastotutkimuksissa havaittiin joitain potentiaalisesti hyödyllisiä vaikutuksia, kuten: paastoinsuliinin lasku ilman eroja paastoglukoosissa [231] ja parantunut keuhkoputkien vaste lääkkeille [233].

On raportoitu, että normaalipainoisilla keski-ikäisillä koehenkilöillä, 2 kuukauden pituisen pätkäpaaston vaikutuksesta perifeerisen veren mononukleaariset solut tuottivat vähemmän tulehduksellisia sytokiineja [234].

Tämän katsauksen kirjoittamisen aikaan pätkäpaaston vaikutuksista veren lipideihin ja oksidatiiviselle stressille ominaisten biomarkkereiden tasoihin ei vielä ollut kovinkaan paljon tietoa.

6.4. Resveratroli

Resveratroli (RSV) on kasviperäinen mm. mustikoiden, karpaloiden, viinimarjojen ja punaviinin sisältämä polyfenoli, joka on eniten tutkittu kalorirajoitusta jäljittelevä aine.

Resveratrolin on osoitettu aktivoivan Sir2:n (SIRT1-homologi) [235] ja jäljittelemällä siten kaloreiden rajoittamisen etuja rajoittamatta kalorien saantia. Resveratroli on lisännyt hiivan, matojen, kärpästen ja kalojen elinikää [235–238].

Oletus, että Sir2:n aktivaatio suoralla sitoutumisella RSV:n kanssa vaikuttaisi elinajan pidentymiseen, on kuitenkin kyseenalaistettu useillaa organismeillaa tehdyissä kokeissa [239–248].

Resveratrolin tiedetään vaikuttavan laajasti nisäkässoluissa, kuten AMP-aktivoidun proteiinikinaasin (AMPK) aktivaatiossa. AMPK on mukana samoissa aineenvaihduntareiteissä kuin SIRT1, joka fosforyloi suoraan PGC-1α:n. [249, 250].

SIRT1 voi aktivoida kinaasin ylävirtaan AMPK:sta, mutta tämä reitti ei näytä olevan tarpeen resveratrolin AMPK-stimulaatiossa [251]. Äskettäin raportoitiin, että SIRT1 on välttämätön kohtuullisille resveratroliannoksille AMPK:n stimuloimiseksi ja mitokondrioiden toiminnan parantamiseksi in vitro ja in vivo [252]. Vaikka resveratroli-välitteisten kalorirajoituksen kaltaisten vaikutusten mekanismia ei täysin ymmärretä, näyttää siltä, että resveratroli tuottaa samanlaisen transkriptiovasteen kuin kaloreiden rajoittaminen [253]. Resveratrolia sisältävä ruunsaasti rasvaa sisältävän ruokavalio on tuottanut terveys- että pitkäikäisyyshyötyjä hiirikokeissa [249].

Resveratrolin käytön myönteiset vaikutukset lihavilla hiirillä olivat lisääntynyt insuliiniherkkyys, parantunut motorinen koordinaatio ja harmaakaihin esiintyvyyden väheneminen [253, 254]. Aikuisten hiirten elinajanodote ei noussut merkittävästi, kun resveratrolia lisättiin normaaliin ruokavalioon [254, 255]. Tämä havainto tarkoittaa, että resveratroli ei yksin tuota samoja hyötyjä kuin kaloreiden rajoittaminen [256]. Vuoden resveratroli-hoito lisäsi lepoaineenvaihdunnan nopeutta ja päivittäistä kokonaisenergiankulutusta. Resveratrolin pitkäaikainen käyttö on tehokasta ja turvallista [257, 258]. Kaloreiden rajoittaminen samassa eläinmallissa ja koeprotokollassa, vähensi päivittäistä kokonaisenergiankulutusta, mutta ei muuttanut lepoaineenvaihdunnan nopeutta [258].

Resveratrolin vaikutuksista ihmisiin on tehty vain muutama tutkimus, mutta tulokset ovat rohkaisevia. 0,1 mmol/l resveratrolin käyttö ihmisen mesenkymaalisten kantasolujen viljelmissä edistää solujen uudistumista estämällä solujen vanhenemista; suuremmilla pitoisuuksilla (5 mmol/l tai enemmän) resveratroli estää solujen uudistumista lisäämällä ikääntymisnopeutta, solujen kaksinkertaistumisaikaa ja S-vaiheen solusyklin pysäyttämistä [259].

Ihmisen peritoneaalisissa mesoteliaalisoluissa resveratroli viivästyttää replikatiivista vanhenemista mobilisoimalla antioksidatiivisia ja DNA-korjausmekanismeja solun tuma-antigeenin ilmentymisen lisääntymisellä, solujen lisääntyneellä fraktiolla solusyklin S-vaiheessa, lisääntyneellä solunjakautumisten määrällä, ikääntymiseen liittyvän β-galaktosidaasin vähentyneellä ilmentymisellä ja aktiivisuudella, mitokondrioiden säädellyn biogeneesin, superoksididismutaasin lisääntyneen aktiivisuuden ja vähentyneiden DNA-vaurioiden perusteella [260].

Resveratroli ja sen metaboliitit kertyvät ihmissoluihin in vivo kudosspesifisellä ja annosriippuvalla tavalla [261]. Kuuden viikon täydennysohjelma resveratrolilla tukahdutti tumatekijä kappa B:n (NF-kB) sitoutumisen, vähensi vapaiden happiradikaalien (ROS) muodostumista ja laski TNFα :n ja interleukiini-6:n (IL-6) tasoja yksitumaisissa soluissa. TNFα :n ja CRP: n pitoisuudet plasmassa laskivat myös merkittävästi. Resveratroli ei kuitenkaan vaikuttanut merkittävästi paasto-kolesterolin (kokonais-, LDL- ja HDL-pitoisuuksien), triglyseridien tai leptiinin pitoisuuksiin verrattuna terveiden plaseboa saaneiden henkilöiden kontrolliryhmään [262].

Runsasrasvainen ja hiilihydraattipitoinen ruokavalio aiheuttavat ja ylläpitävät tulehdusta ja oksidatiivista stressiä [263]. Terveillä ihmisillä, joiden ravinto sisältää runsaasti rasvaa ja hiilihydraatteja, resveratrolia ja muita rypäleiden sisältämien polyfenoleja sisältävä lisäaine lisäsi merkittävästi mRNA:n ilmentymistä NAD (P) H-dehydrogenaasi [kinoni] 1:n ja glutationin S-transferaasi-p1-geeneissä – mikä viittaa vahvaan antioksidanttivaikutukseen. Resveratroli lisäravinteena hillitsi aterian jälkeistä plasman endotoksiinia ja lipoproteiinia sitovan proteiinin pitoisuuden kasvua ja heikensi TLR-4:n, CD14:n, SOCS-3:n, IL-1β:n ja KEAP-1:n ilmentymistä [264].

Tutkimusten perusteella resveratroli vähentää runsaasti rasvaa ja runsaasti hiilihydraatteja sisältävän ravinnon aiheuttamia oksidatiivisia ja tulehduksellisia reaktioita, ja se voi vähentää ateroskleroosin ja diabeteksen riskiä [261].

Alustavien tulosten mukaan resveratroli parantaa myös glukoositoleranssia ja insuliiniherkkyyttä [265]. Parantunut insuliiniherkkyys johtui vähentyneestä oksidatiivisesta stressistä [265]. Syy-yhteys punaviinin ja rypälemehun kulutuksen ja sydän- ja verisuonitautien riskitekijöiden (verenkierron heikkeneminen, lisääntynyt oksidatiivinen stressi ja tulehdus) välillä on hyvin tunnettu [266–269].

Resveratroli säätelee eNOS:ta, mikä edistää typpioksidivälitteistä vasodilataatiota ja lisääntynyttä verenkiertoa [270–272]. Tämä vaikuttaa esimerkiksi erektioon. Resveratroli vaimentaa ihmisen verihiutaleiden hemostaasiin liittyvää aktivaatiota [273]. Lisääntynyt valtimoverenkierto mitattiin yhden resveratroli-boluksen jälkeen aivoissa ja käsivarressa [274, 275].

Lisääntynyt aivoverenkierto resveratroli-hoidon jälkeen ei kuitenkaan liittynyt lisääntyneeseen kognitiiviseen toimintaan [274]. Parantunut insuliiniresistenssi, valtimoverenkierto ja vähentynyt oksidatiivinen stressi ja tulehdus liittyvät resveratrolin lyhytaikaiseen käyttöön, mutta pitkäin aikavälin vaikutuksista ihmisiin ei ole tietoja [261]. Yhteenvetona voidaan todeta, että lisätutkimuksia tarvitaan resvetroli-välitteisten vaikutusten biokemiallisten reittien selventämiseksi ja sen pitkäaikaisten vaikutusten selvittämiseksi ihmisillä [276].

6.5. Rapamysiini

Rapamysiini (RAP) on antibiootti ja TOR:n (rapamysiinikohde) signaloinnin estäjä soluissa, joilla on tunnettuja immunosuppressiivisia ja antiproliferatiivisia vaikutuksia [277].

TOR on solujen ravinteiden signaloinnin välittäjä, ja sen uskotaan vaikuttavan ikääntymiseen ja kalorirajoitus-vasteeseen (ks. Kohta 6.3). Kun rapamysiiniä annettiin hiirille noin 20 kuukauden iässä, uros- ja naaraspuolisten hiirten keskimääräinen elinaika lisääntyi merkittävästi, noin 10%.

Rapamysiinin vaikutuksen voidaa ainakin osittain välittää kalorirajoitus-vasteesta riippumattomilla biokemiallisilla reiteillä [117]. Useiden rapamysiini-aktivoitujen ikääntymistä hidastavien biokemiallisten reittien olemassaolo on havaittu myös kärpäsissä.

Mekanismi tälle rapamysiinien elinaikaa lisäävien vaikutusten taustalla johtuu TOR-reitin TORC1-haarasta, autofagian ja translaation muutoksilla. Rapamysiini voi kuitenkin vaikuttaa suotuisasti elinaikaan kaloreiden rajoittamisesta riippumatta, mikä viittaa lisämekanismeihin eliniän pidentämiseksi [278].

Rapamysiini esti eläintutkimuksissa ikään liittyvää painonnousua, laski ikääntymisnopeutta, pidensi elinikää ja viivästytti spontaania syöpää [279]. Rapamysiinillä hoidetut aikuiset hiiret suoriutuivat huomattavasti paremmin spatiaalista oppimista ja muistia mittaavista tehtävistä, kuin saman ikäiset verrokit. Rapamysiini ei kuitenkaan parantanut kognitiota aikuisilla hiirillä, joilla oli ennestään, iästä riippuva oppimis. ja muistivaje. Rapamysiinivälitteinen oppimisen ja muistin paraneminen liittyi IL-1β-tasojen laskuun ja NMDA-signaloinnin lisääntymiseen. [280]. Koska rapamysiiniä käytetään immunosuppressiivisena aineena, sen merkitystä ihmisten pitkäikäisyydelle ei ole vielä vahvistettu [117].

7. Ruokavalio ja ikääntyvä väestö

Tärkeä väestörakenteen kehityssuuntaus kehittyneissä maissa on yli 65-vuotiaiden väestön prosentuaalisen osuuden asteittainen kasvu ja työikäisen väestön samanaikainen väheneminen.

Tämän demografisen suuntauksen terveysvaikutukset ovat siirtyminen akuuteista kroonisiin ja ikään liittyviin sairauksiin (esim. Alzheimerin tauti, osteoporoosi, sydän- ja verisuonitaudit ja syöpä), lisääntyvät terveyskustannukset ja kasvava taloudellinen taakka yhteiskunnalle ja yksilölle [281– 283].

Siksi kaikilla toimenpiteillä, jotka voivat viivästyttää kroonisten ja ikään liittyvien sairauksien etenemistä, voi olla merkittävä vaikutus paitsi yksilön elämänlaatuun myös yhteiskunnan kykyyn selviytyä ikääntymisen terveydellisistä ja taloudellisista seurauksista.

On olemassa jatkuvasti lisääntyvää tutkimusnäyttöä, jonka mukaan ravinnon energiapitoisuuden vähentäminen, pätkäpaasto ja ketogeeninen ruokavalio parantavat useimpia terveysmarkkereita verenpaineesta tulehdustekijöihin ja verensokerista insuliinipitoisuuteen ja lipiditasoihin.

Tutkimukset viittaavat siihen, että kaloreiden rajoittaminen voi vähentää merkittävästi ikään liittyvien muutosten määrää ihmisillä [73–93]. Poikkeuksellisen pitkäikäisillä ihmisillä tehdyt tutkimukset viittaavat siihen, että pitkäikäisyys ja ikään liittyvien sairauksien vähäinen esiintyvyys suvussa mahdollistavat huomattavasti pidemmän eliniän jopa silloin, kun tutkittavat olivat lihavia, tupakoivia tai eivät harrasta säännöllistä liikuntaa. Ihmisten poikkeuksellinen pitkäikäisyys voi olla enemmän riippuvainen genetiikasta kuin elämäntavasta [284–286].

8. Päätelmä

Kalorirajoitus tai kalorirajoitusta jäljittelevät ruokailutottumukset aiheuttavat koordinoituja adaptiivisia stressivasteita solujen ja koko organismin tasolla moduloimalla adiponektiinin, insuliini / IGF1, AMPK, mTOR, FOXO, p53 ja sirtuiinien signalointireittejä [287].

Sirtuiineilla voi olla tärkeä rooli epigeneettisten ja geneettisten reittien välisessä vuorovaikutuksessa [132]. Näiden adaptiivisten stressivasteiden aktivaatio voi estää apoptoosin alkamisen sisäisellä reitillä [288]. Lisäksi se voi stimuloida autofagiaa tarjoamaan substraatteja energiantuotannolle ja anabolisille prosesseille, jotka liittyvät solujen uudistumiseen ja antioksidanttien ja lämpöshokkiproteiinien synteesiin [287].

Suuri joukko kokeellisia todisteita osoittaa, että näiden mukautuvien stressivasteiden kokonaisvaikutuksena on lisääntynyt vastustuskyky stressille, mikä viivästyttää ikään liittyviä muutoksia ja edistää pitkäikäisyyttä.

Tämä on pitkä artikkeli. Pyydän anteeksi kirjoitus- ja käännösvirheitä. Artikkeli on vertaisarvioitu ja tieteellisessä julkaisussa julkaistu, joten molekyylibiologiset mekanismit ovat uskoakseni käännösvirheitä paitsi oikein. Ruokavalioiden suhteen juttu ei ole täysin ajan tasalla. Tieto ketogeenisen ruokavalion, paaston ja pätkäpaaston vastaavista molekyylibiologisista hyödyistä on lisääntynyt kuluneiden 10 vuoden aikana.

Lyhenteet

4E-BP1: Eukaryotic translation initiation factor 4E binding protein 1
ADF: Alternate day fasting
AGC: Acronym of the protein kinase A, G, and C families
AKT: Serine-threonine-specific proteinkinase also known as protein kinase B (PKB)
AMP: Adenosine monophosphate
AMPK: 5′ adenosine monophosphate-activated protein kinase
ATP: Adenosine-5′-triphosphate
ATP10A: Probable phospholipid-transporting ATPase VA also known as ATPase class V type 10A or aminophospholipid translocase VA gene
Aβ: Amyloid beta
B12 vitamin: Cobalamin
BAX: Bcl-2 associated X protein
BCL-XL: B-cell lymphoma-extra large, a transmembrane mitochondrial protein
CALERIE: Comprehensive Assessment of Long-Term Effects of Reducing Calorie Intake
CD14: Cluster of differentiation 14 protein also known as CD14 protein
CE: Exercise in combination with CR
CHD: Coronary heart disease
CpG dinucleotide: Cytosine-phosphate-guanine dinucleotide
CR: Caloric restriction or calorie restriction diet
CRM: Calorie restriction mimetic
CRP: C-reactive protein
CRS: Caloric Restriction Society
DNA: Deoxyribonucleic acid
DNMT: DNA methyltransferase
DR: Dietary restriction
E2F-1: Transcription factor E2F1 protein
EGCG: Epigallocatechin-3-gallate
eNOS: Endothelial nitric oxide synthase
FOXO: O subclass of the forkhead family of transcription factors; known FOXO family members are FOXO1, FOXO3, FOXO4 and FOXO6
GLUT4: Glucose transporter 4
GTP: Guanosine-5′-triphosphate
GTPase: Enzyme that hydrolyses GTP
HAT(s): Histone acetlytransferase(s)
HDAC(s): Histone deacetylase(s)
HDAC(s)s: Histone deacetylase(s)
HDL: High-density lipoprotein
HDM(s): Histone demethylase(s)
hmdC: 5-hyd0072oxymethyl-2′-deoxycytidine
HNF4α: Hepatocyte nuclear factor 4 α also known as nuclear receptor subfamily 2, group A, member 1
HMT(s): Histone methyltransferase(s)
HNF4α: Hepatocyte nuclear factor 4α
HRV: Heart-rate-variability
: Gene encoding human telomerase reverse transcriptase a catalytic subunit of the enzymetelomerase
IEE: Increased energy expenditure
IGF1: Insulin-like growth factor 1 also known as somatomedin C
IL-1β: Human interleukin 1β
c-KIT: Proto-oncogene c-Kit also known as mast/stem cell growth factor receptor, also known as tyrosine-protein kinase Kit or CD117
IRS: Insulin receptor substrate
KEAP-1: Kelch-like ECH-associated protein 1
Ku70: Protein encoded in humans by the gene
LBK1: Tumor suppressor kinase enzyme that activates AMPK
LDL: Low-density lipoprotein
miRNA(s): microRNA(s)
mRNA: Messenger RNA
mSin1: Mammalian stress-activated protein kinase-interacting protein
MTH: Mitochondrion, mitochondrial
mTOR: Mammalian target of rapamycin
mTORC1: Mammalian target of rapamycin complex 1
mTORC2: Mammalian target of rapamycin complex 2
Nicotinamide adenine dinucleotide
NADH: NADH dehydrogenase
NF-
B: nuclear factor kappa B
NIP7: 60S ribosome subunit biogenesis protein NIP7 homolog
NMDA: N-Methyl-D-aspartic acid or N-Methyl-D-aspartate
: Gene encoding the tumor suppressor protein cyclin-dependent kinase inhibitor 2A or CDKN2A or multiple tumor suppressor 1 (MTS-1)
PDPK1: 3-phosphoinositide-dependent protein kinase-1
PGC1-α: Peroxisome proliferator-activated receptor G co-activator 1α
p53: Tumor suppressor protein p53 also known as tumor protein 53
p47phox: Subunit of NADPH oxidase, that has to be phosphorilated for the activation of NADPH oxidase
PKA: Protein kinase A
PKC: Protein kinase C
PKG: Protein kinase G, or cGMP-dependent protein kinase
PtdIns-3K: Phosphatidylinositol 3-kinase
RAP: Rapamycin
RAPTOR: Regulatory-associated protein of mTOR
RHEB: RAS homolog enriched in brain protein, binds GTP
RNA: Ribonucleic acid
ROS: Reactive oxygen species
RSV: Resveratrol
RAS: Protein superfamily of small GTPases
RTG1: Retrograde regulation protein 1
RUNX3: Gene encoding runt-related transcription factor 3
S6 K1: Ribosomal protein S6 kinase
-1
SGK1: Serum-and glucocorticoid-regulated kinase; a serine/threonine protein kinase
SIRT1: NAD-dependent-deacetylase sirtuin1 also known as silent mating type information regulation 2 homolog 1
SOCS-3: Suppressor of cytokine signaling 3
sTNRF1: Soluble tumor necrosis factor receptor 1
TLR-4: Toll-like receptor 4
TNFα: Tumor necrosis factor α
TOR: Target of rapamycin
TSC1: Tuberous sclerosis protein 1 also known as hamartin
TSC2: Tuberous sclerosis protein 2 also known as tuberin
VDAC1: Voltage-dependent anion-selective channel protein 1
TIG1: Tazarotene-induced gene-1
WT1: Gene encoding Wilms tumor protein
YY1: Transcriptional repressor protein YY1.


References

  1. J. A. Mckay and J. C. Mathers, “Diet induced epigenetic changes and their implications for health,” Acta Physiologica, vol. 202, no. 2, pp. 103–118, 2011. View at: Publisher Site | Google Scholar
  2. “Diet, nutrition and the prevention of chronic diseases,” World Health Organization Technical Report Series, vol. 916, no. 1–8, pp. 1–149, 2003. View at: Google Scholar
  3. D. J. P. Barker and C. Osmond, “Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales,” The Lancet, vol. 1, no. 8489, pp. 1077–1081, 1986. View at: Google Scholar
  4. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” The American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at: Google Scholar
  5. C. Osmond, D. J. P. Barker, P. D. Winter, C. H. D. Fall, and S. J. Simmonds, “Early growth and death from cardiovascular disease in women,” British Medical Journal, vol. 307, no. 6918, pp. 1519–1524, 1993. View at: Google Scholar
  6. C. N. Hales and D. J. P. Barker, “Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis,” Diabetologia, vol. 35, no. 7, pp. 595–601, 1992. View at: Publisher Site | Google Scholar
  7. C. Cooper, C. Fall, P. Egger, R. Hobbs, R. Eastell, and D. Barker, “Growth in infancy and bone mass in later life,” Annals of the Rheumatic Diseases, vol. 56, no. 1, pp. 17–21, 1997. View at: Google Scholar
  8. S. E. Ozanne and C. N. Hales, “Lifespan: catch-up growth and obesity in male mice,” Nature, vol. 427, no. 6973, pp. 411–412, 2004. View at: Google Scholar
  9. V. M. Vehaskari, “Prenatal programming of kidney disease,” Current Opinion in Pediatrics, vol. 22, no. 2, pp. 176–182, 2010. View at: Publisher Site | Google Scholar
  10. A. Gabory, L. Attig, and C. Junien, “Sexual dimorphism in environmental epigenetic programming,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 8–18, 2009. View at: Publisher Site | Google Scholar
  11. A. Bird, “DNA methylation patterns and epigenetic memory,” Genes & Development, vol. 16, no. 1, pp. 6–21, 2002. View at: Publisher Site | Google Scholar
  12. H. Wu, J. Tao, and Y. E. Sun, “Regulation and function of mammalian DNA methylation patterns: a genomic perspective,” Briefings in Functional Genomics, vol. 11, no. 3, pp. 240–250, 2012. View at: Google Scholar
  13. X. Zou, W. Ma, I. A. Solov’yov, C. Chipot, and K. Schulten, “Recognition of methylated DNA through methyl-CpG binding domain proteins,” Nucleic Acids Research, vol. 40, no. 6, pp. 2747–2758, 2012. View at: Google Scholar
  14. K. S. Crider, T. P. Yang, R. J. Berry, and L. B. Bailey, “Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role,” Advances in Nutrition, vol. 3, no. 1, pp. 21–38, 2012. View at: Google Scholar
  15. T. A. Rauch, X. Zhong, X. Wu et al., “High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 252–257, 2008. View at: Publisher Site | Google Scholar
  16. M. Ehrlich, “DNA hypomethylation in cancer cells,” Epigenomics, vol. 1, pp. 239–259, 2009. View at: Google Scholar
  17. C. D. Davis, E. O. Uthus, and J. W. Finley, “Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon,” The Journal of Nutrition, vol. 130, no. 12, pp. 2903–2909, 2000. View at: Google Scholar
  18. H. Zeng, L. Yan, W. H. Cheng, and E. O. Uthus, “Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa,” The Journal of Nutrition, vol. 141, no. 8, pp. 1464–1468, 2011. View at: Publisher Site | Google Scholar
  19. E. M. E. Van Straten, V. W. Bloks, N. C. A. Huijkman et al., “The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction,” American Journal of Physiology, vol. 298, no. 2, pp. R275–R282, 2010. View at: Publisher Site | Google Scholar
  20. A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,” Cell Research, vol. 21, no. 3, pp. 381–395, 2011. View at: Publisher Site | Google Scholar
  21. A. Link, F. Balaguer, and A. Goel, “Cancer chemoprevention by dietary polyphenols: promising role for epigenetics,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1771–1792, 2010. View at: Publisher Site | Google Scholar
  22. X. Cheng and R. M. Blumenthal, “Coordinated chromatin control: structural and functional linkage of DNA and histone methylation,” Biochemistry, vol. 49, no. 14, pp. 2999–3008, 2010. View at: Publisher Site | Google Scholar
  23. Y. Tan, B. Zhang, T. Wu et al., “Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells,” BMC Molecular Biology, vol. 10, article 12, 2009. View at: Publisher Site | Google Scholar
  24. P. G. Hawkins and K. V. Morris, “RNA and transcriptional modulation of gene expression,” Cell Cycle, vol. 7, no. 5, pp. 602–607, 2008. View at: Google Scholar
  25. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at: Publisher Site | Google Scholar
  26. B. Kusenda, M. Mraz, J. Mayer, and S. Pospisilova, “MicroRNA biogenesis, functionality and cancer relevance,” Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, vol. 150, no. 2, pp. 205–215, 2006. View at: Google Scholar
  27. I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at: Publisher Site | Google Scholar
  28. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at: Publisher Site | Google Scholar
  29. R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at: Publisher Site | Google Scholar
  30. L. P. Lim, N. C. Lau, E. G. Weinstein et al., “The microRNAs of Caenorhabditis elegans,” Genes & Development, vol. 17, no. 8, pp. 991–1008, 2003. View at: Publisher Site | Google Scholar
  31. A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006. View at: Publisher Site | Google Scholar
  32. J. C. Mathers, G. Strathdee, and C. L. Relton, “Induction of epigenetic alterations by dietary and other environmental factors,” Advances in Genetics, vol. 71, pp. 4–39, 2010. View at: Publisher Site | Google Scholar
  33. D. Milenkovic, C. Deval, E. Gouranton et al., “Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols,” PLoS One, vol. 7, no. 1, Article ID e29837, 2012. View at: Google Scholar
  34. Q. Sun, R. Cong, H. Yan et al., “Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression,” Oncology Reports, vol. 22, no. 3, pp. 563–567, 2009. View at: Publisher Site | Google Scholar
  35. M. Sun, Z. Estrov, Y. Ji, K. R. Coombes, D. H. Harris, and R. Kurzrock, “Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells,” Molecular Cancer Therapeutics, vol. 7, no. 3, pp. 464–473, 2008. View at: Publisher Site | Google Scholar
  36. J. Yang, Y. Cao, J. Sun, and Y. Zhang, “Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells,” Medical Oncology, vol. 27, no. 4, pp. 1114–1118, 2010. View at: Publisher Site | Google Scholar
  37. S. Careccia, S. Mainardi, A. Pelosi et al., “A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes,” Oncogene, vol. 28, no. 45, pp. 4034–4040, 2009. View at: Publisher Site | Google Scholar
  38. F. U. Weiss, I. J. Marques, J. M. Woltering et al., “Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer,” Gastroenterology, vol. 137, no. 6, pp. 2136–2145, 2009. View at: Publisher Site | Google Scholar
  39. L. A. Davidson, N. Wang, M. S. Shah, J. R. Lupton, I. Ivanov, and R. S. Chapkin, “n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon,” Carcinogenesis, vol. 30, no. 12, pp. 2077–2084, 2009. View at: Publisher Site | Google Scholar
  40. T. Melkamu, X. Zhang, J. Tan, Y. Zeng, and F. Kassie, “Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol,” Carcinogenesis, vol. 31, no. 2, Article ID bgp208, pp. 252–258, 2010. View at: Publisher Site | Google Scholar
  41. C. J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843–10848, 2006. View at: Publisher Site | Google Scholar
  42. H. Kutay, S. Bai, J. Datta et al., “Downregulation of miR-122 in the rodent and human hepatocellular carcinomas,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 671–678, 2006. View at: Publisher Site | Google Scholar
  43. R. Loewith and M. N. Hall, “Target of rapamycin (TOR) in nutrient signaling and growth control,” Genetics, vol. 189, no. 4, pp. 1177–1201, 2011. View at: Google Scholar
  44. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at: Google Scholar
  45. W. L. Yen and D. J. Klionsky, “How to live long and prosper: autophagy, mitochondria, and aging,” Physiology, vol. 23, no. 5, pp. 248–262, 2008. View at: Publisher Site | Google Scholar
  46. L. R. Pearce, D. Komander, and D. R. Alessi, “The nuts and bolts of AGC protein kinases,” Nature Reviews, vol. 11, no. 1, pp. 9–22, 2010. View at: Publisher Site | Google Scholar
  47. Y. Sancak, C. C. Thoreen, T. R. Peterson et al., “PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase,” Molecular Cell, vol. 25, no. 6, pp. 903–915, 2007. View at: Publisher Site | Google Scholar
  48. C. A. Easley IV, A. Ben-Yehudah, C. J. Redinger et al., “MTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells,” Cellular Reprogramming, vol. 12, no. 3, pp. 263–273, 2010. View at: Publisher Site | Google Scholar
  49. L. A. Julien, A. Carriere, J. Moreau, and P. P. Roux, “mTORC1-activated S6K1 phosphorylates rictor on threonine 1135 and regulates mTORC2 signaling,” Molecular and Cellular Biology, vol. 30, no. 4, pp. 908–921, 2010. View at: Publisher Site | Google Scholar
  50. A. Y. Choo, S. O. Yoon, S. G. Kim, P. P. Roux, and J. Blenis, “Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 45, pp. 17414–17419, 2008. View at: Publisher Site | Google Scholar
  51. D. Zhang, R. Contu, M. V. G. Latronico et al., “MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice,” The Journal of Clinical Investigation, vol. 120, no. 8, pp. 2805–2816, 2010. View at: Publisher Site | Google Scholar
  52. R. J. O. Dowling, I. Topisirovic, T. Alain et al., “mTORCI-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs,” Science, vol. 328, no. 5982, pp. 1172–1176, 2010. View at: Publisher Site | Google Scholar
  53. K. G. Foster, H. A. Acosta-Jaquez, Y. Romeo et al., “Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation,” The Journal of Biological Chemistry, vol. 285, no. 1, pp. 80–94, 2010. View at: Publisher Site | Google Scholar
  54. D. Kwak, S. Choi, H. Jeong et al., “Osmotic stress regulates mammalian target of rapamycin(mTOR) complex 1 via c-Jun N-terminal Kinase (JNK)-mediated Raptor protein phosphorylation,” The Journal of Biological Chemistry, vol. 287, no. 22, pp. 18398–18407, 2012. View at: Google Scholar
  55. T. Sato, A. Nakashima, L. Guo, and F. Tamanoi, “Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein,” The Journal of Biological Chemistry, vol. 284, no. 19, pp. 12783–12791, 2009. View at: Publisher Site | Google Scholar
  56. D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., “AMPK phosphorylation of raptor mediates a metabolic checkpoint,” Molecular Cell, vol. 30, no. 2, pp. 214–226, 2008. View at: Publisher Site | Google Scholar
  57. B. Magnuson, B. Ekim, and D. C. Fingar, “Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks,” The Biochemical Journal, vol. 441, no. 1, pp. 1–21, 2012. View at: Google Scholar
  58. B. C. Melnik, “Excessive Leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity,” Journal of Obesity, vol. 2012, Article ID 197653, 2012. View at: Google Scholar
  59. A. K. A. DeHart, J. D. Schnell, D. A. Allen, J. Y. Tsai, and L. Hicke, “Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway,” Molecular Biology of the Cell, vol. 14, no. 11, pp. 4676–4684, 2003. View at: Publisher Site | Google Scholar
  60. T. Powers, S. Aronova, and B. Niles, “TORC2 and sphingolipid biosynthesis and signaling. lessons from budding yeast,” The Enzymes, vol. 27, pp. 177–197, 2010. View at: Publisher Site | Google Scholar
  61. V. Zinzalla, D. Stracka, W. Oppliger, and M. N. Hall, “Activation of mTORC2 by association with the ribosome,” Cell, vol. 144, no. 5, pp. 757–768, 2011. View at: Publisher Site | Google Scholar
  62. A. Hagiwara, M. Cornu, N. Cybulski et al., “Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c,” Cell Metabolism, vol. 15, no. 5, pp. 725–738, 2012. View at: Google Scholar
  63. N. Cybulski and M. N. Hall, “TOR complex 2: a signaling pathway of its own,” Trends in Biochemical Sciences, vol. 34, no. 12, pp. 620–627, 2009. View at: Publisher Site | Google Scholar
  64. C. A. Sparks and D. A. Guertin, “Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy,” Oncogene, vol. 29, no. 26, pp. 3733–3744, 2010. View at: Publisher Site | Google Scholar
  65. N. Ikai, N. Nakazawa, T. Hayashi, and M. Yanagida, “The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe,” Open Biology, vol. 1, 2011. View at: Publisher Site | Google Scholar
  66. M. A. Frias, C. C. Thoreen, J. D. Jaffe et al., “mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s,” Current Biology, vol. 16, no. 18, pp. 1865–1870, 2006. View at: Publisher Site | Google Scholar
  67. C. M. McCay, M. F. Crowell, and L. A. Maynard, “The effect of retarded growth upon the Length of life span and upon the ultimate body size,” The Journal of Nutrition, vol. 10, no. 1, pp. 63–79, 1935. View at: Google Scholar
  68. R. J. Colman, R. M. Anderson, S. C. Johnson et al., “Caloric restriction delays disease onset and mortality in rhesus monkeys,” Science, vol. 325, no. 5937, pp. 201–204, 2009. View at: Publisher Site | Google Scholar
  69. R. Anderson and R. Weindruch, “Metabolic reprogramming in dietary restriction,” Interdisciplinary Topics in Gerontology, vol. 35, pp. 18–38, 2007. View at: Publisher Site | Google Scholar
  70. B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, “Ruminations on dietary restriction and aging,” Cellular and Molecular Life Sciences, vol. 64, no. 11, pp. 1323–1328, 2007. View at: Publisher Site | Google Scholar
  71. M. D. W. Piper and A. Bartke, “Diet and aging,” Cell Metabolism, vol. 8, no. 2, pp. 99–104, 2008. View at: Publisher Site | Google Scholar
  72. G. S. Roth, D. K. Ingram, and M. A. Lane, “Caloric restriction in primates and relevance to humans,” Annals of the New York Academy of Sciences, vol. 928, pp. 305–315, 2001. View at: Google Scholar
  73. R. L. Walford, D. Mock, R. Verdery, and T. MacCallum, “Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period,” The Journals of Gerontology A, vol. 57, no. 6, pp. B211–B224, 2002. View at: Google Scholar
  74. L. Fontana, T. E. Meyer, S. Klein, and J. O. Holloszy, “Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6659–6663, 2004. View at: Publisher Site | Google Scholar
  75. V. Tsagareli, M. Noakes, and R. J. Norman, “Effect of a very-low-calorie diet on in vitro fertilization outcomes,” Fertility and Sterility, vol. 86, no. 1, pp. 227–229, 2006. View at: Publisher Site | Google Scholar
  76. L. K. Heilbronn, L. De Jonge, M. I. Frisard et al., “Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1539–1548, 2006. View at: Publisher Site | Google Scholar
  77. S. B. Racette, E. P. Weiss, D. T. Villareal et al., “One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue,” The Journals of Gerontology A, vol. 61, no. 9, pp. 943–950, 2006. View at: Google Scholar
  78. T. E. Meyer, S. J. Kovács, A. A. Ehsani, S. Klein, J. O. Holloszy, and L. Fontana, “Long-term caloric restriction ameliorates the decline in diastolic function in humans,” Journal of the American College of Cardiology, vol. 47, no. 2, pp. 398–402, 2006. View at: Publisher Site | Google Scholar
  79. L. Fontana, S. Klein, J. O. Holloszy, and B. N. Premachandra, “Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 8, pp. 3232–3235, 2006. View at: Publisher Site | Google Scholar
  80. L. Fontana and S. Klein, “Aging, adiposity, and calorie restriction,” Journal of the American Medical Association, vol. 297, no. 9, pp. 986–994, 2007. View at: Publisher Site | Google Scholar
  81. J. O. Holloszy and L. Fontana, “Caloric restriction in humans,” Experimental Gerontology, vol. 42, no. 8, pp. 709–712, 2007. View at: Publisher Site | Google Scholar
  82. B. J. Willcox, D. C. Willcox, H. Todoriki et al., “Caloric restriction, the traditional okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span,” Annals of the New York Academy of Sciences, vol. 1114, pp. 434–455, 2007. View at: Publisher Site | Google Scholar
  83. L. Fontana, D. T. Villareal, E. P. Weiss et al., “Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial,” American Journal of Physiology, vol. 293, no. 1, pp. E197–E202, 2007. View at: Publisher Site | Google Scholar
  84. J. O. Holloszy and L. Fontana, “Caloric restriction in humans,” Experimental Gerontology, vol. 42, no. 8, pp. 709–712, 2007. View at: Publisher Site | Google Scholar
  85. T. Hofer, L. Fontana, S. D. Anton et al., “Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans,” Rejuvenation Research, vol. 11, no. 4, pp. 793–799, 2008. View at: Publisher Site | Google Scholar
  86. L. M. Redman, J. Rood, S. D. Anton, C. Champagne, S. R. Smith, and E. Ravussin, “Calorie restriction and bone health in young, overweight individuals,” Archives of Internal Medicine, vol. 168, no. 17, pp. 1859–1866, 2008. View at: Publisher Site | Google Scholar
  87. C. Cruzen and R. J. Colman, “Effects of caloric restriction on cardiovascular aging in non-human primates and humans,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 733–743, 2009. View at: Publisher Site | Google Scholar
  88. R. Cangemi, A. J. Friedmann, J. O. Holloszy, and L. Fontana, “Long-term effects of calorie restriction on serum sex-hormone concentrations in men,” Aging Cell, vol. 9, no. 2, pp. 236–242, 2010. View at: Publisher Site | Google Scholar
  89. J. F. Trepanowski and R. J. Bloomer, “The impact of religious fasting on human health,” Nutrition Journal, vol. 9, no. 1, article 57, 2010. View at: Publisher Site | Google Scholar
  90. A. Soare, R. Cangemi, D. Omodei, J. O. Holloszy, and L. Fontana, “Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans,” Aging, vol. 3, no. 4, pp. 374–379, 2011. View at: Google Scholar
  91. J. Rochon, C. W. Bales, E. Ravussin et al., “Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy,” The Journals of Gerontology A, vol. 66, no. 1, pp. 97–108, 2011. View at: Publisher Site | Google Scholar
  92. C. K. Martin, S. K. Das, L. Lindblad et al., “Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials,” Journal of Applied Physiology, vol. 110, no. 4, pp. 956–963, 2011. View at: Publisher Site | Google Scholar
  93. K. Stein, A. Soare, T. E. Meyer, R. Cangemi, J. O. Holloszy, and L. Fontana, “Caloric restriction may reverse age-related autonomic decline in humans,” Aging Cell, vol. 11, no. 4, pp. 644–650, 2012. View at: Google Scholar
  94. R. M. Anderson and R. Weindruch, “Metabolic reprogramming, caloric restriction and aging,” Trends in Endocrinology and Metabolism, vol. 21, no. 3, pp. 134–141, 2010. View at: Publisher Site | Google Scholar
  95. J. M. Zahn, S. Poosala, A. B. Owen et al., “AGEMAP: a gene expression database for aging in mice,” PLoS Genetics, vol. 3, no. 11, p. e201, 2007. View at: Publisher Site | Google Scholar
  96. J. P. de Magalhães, J. Curado, and G. M. Church, “Meta-analysis of age-related gene expression profiles identifies common signatures of aging,” Bioinformatics, vol. 25, no. 7, pp. 875–881, 2009. View at: Publisher Site | Google Scholar
  97. S. K. Park and T. A. Prolla, “Lessons learned from gene expression profile studies of aging and caloric restriction,” Ageing Research Reviews, vol. 4, no. 1, pp. 55–65, 2005. View at: Publisher Site | Google Scholar
  98. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at: Publisher Site | Google Scholar
  99. F. Lago, C. Dieguez, J. Gómez-Reino, and O. Gualillo, “The emerging role of adipokines as mediators of inflammation and immune responses,” Cytokine & Growth Factor Reviews, vol. 18, no. 3-4, pp. 313–325, 2007. View at: Publisher Site | Google Scholar
  100. U. Meier and A. M. Gressner, “Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin,” Clinical Chemistry, vol. 50, no. 9, pp. 1511–1525, 2004. View at: Publisher Site | Google Scholar
  101. M. Zhu, G. D. Lee, L. Ding et al., “Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction,” Experimental Gerontology, vol. 42, no. 8, pp. 733–744, 2007. View at: Publisher Site | Google Scholar
  102. K. Shinmura, K. Tamaki, K. Saito, Y. Nakano, T. Tobe, and R. Bolli, “Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase,” Circulation, vol. 116, no. 24, pp. 2809–2817, 2007. View at: Publisher Site | Google Scholar
  103. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at: Publisher Site | Google Scholar
  104. O. Ukkola and M. Santaniemi, “Adiponectin: a link between excess adiposity and associated comorbidities?” Journal of Molecular Medicine, vol. 80, no. 11, pp. 696–702, 2002. View at: Publisher Site | Google Scholar
  105. O. Renaldi, B. Pramono, H. Sinorita, L. B. Purnomo, R. H. Asdie, and A. H. Asdie, “Hypoadiponectinemia: a risk factor for metabolic syndrome,” Acta medica Indonesiana, vol. 41, no. 1, pp. 20–24, 2009. View at: Google Scholar
  106. A. E. Civitarese, B. Ukropcova, S. Carling et al., “Role of adiponectin in human skeletal muscle bioenergetics,” Cell Metabolism, vol. 4, no. 1, pp. 75–87, 2006. View at: Publisher Site | Google Scholar
  107. M. Nishimura, Y. Izumiya, A. Higuchi et al., “Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase-dependent mechanisms,” Circulation, vol. 117, no. 2, pp. 216–223, 2008. View at: Publisher Site | Google Scholar
  108. J. M. Fernández-Real, A. López-Bermejo, R. Casamitjana, and W. Ricart, “Novel interactions of adiponectin with the endocrine system and inflammatory parameters,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 6, pp. 2714–2718, 2003. View at: Google Scholar
  109. W. Aldhahi and O. Hamdy, “Adipokines, inflammation, and the endothelium in diabetes,” Current Diabetes Reports, vol. 3, no. 4, pp. 293–298, 2003. View at: Google Scholar
  110. N. Ouchi, S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh, “Obesity, adiponectin and vascular inflammatory disease,” Current Opinion in Lipidology, vol. 14, no. 6, pp. 561–566, 2003. View at: Publisher Site | Google Scholar
  111. D. M. Huffman, D. R. Moellering, W. E. Grizzle, C. R. Stockard, M. S. Johnson, and T. R. Nagy, “Effect of exercise and calorie restriction on biomarkers of aging in mice,” American Journal of Physiology, vol. 294, no. 5, pp. R1618–R1627, 2008. View at: Publisher Site | Google Scholar
  112. L. Fontana, E. P. Weiss, D. T. Villareal, S. Klein, and J. O. Holloszy, “Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans,” Aging Cell, vol. 7, no. 5, pp. 681–687, 2008. View at: Publisher Site | Google Scholar
  113. A. R. Cameron, S. Anton, L. Melville et al., “Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a,” Aging Cell, vol. 7, no. 1, pp. 69–77, 2008. View at: Publisher Site | Google Scholar
  114. W. Qin, W. Zhao, L. Ho et al., “Regulation of forkhead transcription factor FOXO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 335–347, 2008. View at: Publisher Site | Google Scholar
  115. F. Flachsbart, A. Caliebe, R. Kleindorp et al., “Association of FOX03A variation with human longevity confirmed in German centenarians,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2700–2705, 2009. View at: Publisher Site | Google Scholar
  116. E. J. Anderson, M. E. Lustig, K. E. Boyle et al., “Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 573–581, 2009. View at: Publisher Site | Google Scholar
  117. D. E. Harrison, R. Strong, Z. D. Sharp et al., “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392–395, 2009. View at: Publisher Site | Google Scholar
  118. C. Chen, Y. Liu, Y. Liu, and P. Zheng, “mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells,” Science Signaling, vol. 2, no. 98, p. ra75, 2009. View at: Publisher Site | Google Scholar
  119. P. Kapahi, D. Chen, A. N. Rogers et al., “With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging,” Cell Metabolism, vol. 11, no. 6, pp. 453–465, 2010. View at: Publisher Site | Google Scholar
  120. B. M. Zid, A. N. Rogers, S. D. Katewa et al., “4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila,” Cell, vol. 139, no. 1, pp. 149–160, 2009. View at: Publisher Site | Google Scholar
  121. S. Sengupta, T. R. Peterson, M. Laplante, S. Oh, and D. M. Sabatini, “mTORC1 controls fasting-induced ketogenesis and its modulation by ageing,” Nature, vol. 468, no. 7327, pp. 1100–1106, 2010. View at: Publisher Site | Google Scholar
  122. J. T. Cunningham, J. T. Rodgers, D. H. Arlow, F. Vazquez, V. K. Mootha, and P. Puigserver, “mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex,” Nature, vol. 450, no. 7170, pp. 736–740, 2007. View at: Publisher Site | Google Scholar
  123. A. Ramanathan and S. L. Schreiber, “Direct control of mitochondrial function by mTOR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 52, pp. 22229–22232, 2009. View at: Publisher Site | Google Scholar
  124. J. Knapowski, K. Wieczorowska-Tobis, and J. Witowski, “Pathophysiology of ageing,” Journal of Physiology and Pharmacology, vol. 53, no. 2, pp. 135–146, 2002. View at: Google Scholar
  125. J. P. J. Issa, N. Ahuja, M. Toyota, M. P. Bronner, and T. A. Brentnall, “Accelerated age-related CpG island methylation in ulcerative colitis,” Cancer Research, vol. 61, no. 9, pp. 3573–3577, 2001. View at: Google Scholar
  126. J. P. J. Issa, Y. L. Ottaviano, P. Celano, S. R. Hamilton, N. E. Davidson, and S. B. Baylin, “Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon,” Nature Genetics, vol. 7, no. 4, pp. 536–540, 1994. View at: Publisher Site | Google Scholar
  127. J. P. J. Issa, P. M. Vertino, C. D. Boehm, I. F. Newsham, and S. B. Baylin, “Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11757–11762, 1996. View at: Publisher Site | Google Scholar
  128. R. P. Singhal, L. L. Mays-Hoopes, and G. L. Eichhorn, “DNA methylation in aging of mice,” Mechanisms of Ageing and Development, vol. 41, no. 3, pp. 199–210, 1987. View at: Google Scholar
  129. T. Waki, G. Tamura, M. Sato, and T. Motoyama, “Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples,” Oncogene, vol. 22, no. 26, pp. 4128–4133, 2003. View at: Publisher Site | Google Scholar
  130. V. L. Wilson, R. A. Smith, S. Ma, and R. G. Cutler, “Genomic 5-methyldeoxycytidine decreases with age,” The Journal of Biological Chemistry, vol. 262, no. 21, pp. 9948–9951, 1987. View at: Google Scholar
  131. T. Y. Kim, H. J. Lee, K. S. Hwang et al., “Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma,” Laboratory Investigation, vol. 84, no. 4, pp. 479–484, 2004. View at: Publisher Site | Google Scholar
  132. Y. Li, M. Daniel, and T. O. Tollefsbol, “Epigenetic regulation of caloric restriction in aging,” BMC Medicine, vol. 9, article 98, 2011. View at: Google Scholar
  133. A. Vaquero and D. Reinberg, “Calorie restriction and the exercise of chromatin,” Genes & Development, vol. 23, no. 16, pp. 1849–1869, 2009. View at: Publisher Site | Google Scholar
  134. U. Muñoz-Najar and J. M. Sedivy, “Epigenetic control of aging,” Antioxidants & Redox Signaling, vol. 14, no. 2, pp. 241–259, 2011. View at: Publisher Site | Google Scholar
  135. B. S. Hass, R. W. Hart, M. H. Lu, and B. D. Lyn-Cook, “Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro,” Mutation Research, vol. 295, no. 4–6, pp. 281–289, 1993. View at: Google Scholar
  136. Y. Li, L. Liu, and T. O. Tollefsbol, “Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression,” The FASEB Journal, vol. 24, no. 5, pp. 1442–1453, 2010. View at: Publisher Site | Google Scholar
  137. R. S. Ahima, “Connecting obesity, aging and diabetes,” Nature Medicine, vol. 15, no. 9, pp. 996–997, 2009. View at: Publisher Site | Google Scholar
  138. T. M. Larsen, S. Dalskov, M. Van Baak et al., “The diet, obesity and genes (diogenes) dietary study in eight European countries—a comprehensive design for long-term intervention,” Obesity Reviews, vol. 11, no. 1, pp. 76–91, 2010. View at: Publisher Site | Google Scholar
  139. F. I. Milagro, J. Campión, P. Cordero et al., “A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss,” The FASEB Journal, vol. 25, no. 4, pp. 1378–1389, 2011. View at: Publisher Site | Google Scholar
  140. L. Bouchard, R. Rabasa-Lhoret, M. Faraj et al., “Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction,” The American Journal of Clinical Nutrition, vol. 91, no. 2, pp. 309–320, 2010. View at: Publisher Site | Google Scholar
  141. J. Campión, F. I. Milagro, E. Goyenechea, and J. A. Martínez, “TNF-α promoter methylation as a predictive biomarker for weight-loss response,” Obesity, vol. 17, no. 6, pp. 1293–1297, 2009. View at: Publisher Site | Google Scholar
  142. A. L. Clayton, C. A. Hazzalin, and L. C. Mahadevan, “Enhanced histone acetylation and transcription: a dynamic perspective,” Molecular Cell, vol. 23, no. 3, pp. 289–296, 2006. View at: Publisher Site | Google Scholar
  143. M. Meyerson, C. M. Counter, E. N. Eaton et al., “hEST2, the putative human telomerase catalytic subunit gene, is up- regulated in tumor cells and during immortalization,” Cell, vol. 90, no. 4, pp. 785–795, 1997. View at: Publisher Site | Google Scholar
  144. T. Kanaya, S. Kyo, M. Takakura, H. Ito, M. Namiki, and M. Inoue, “hTERT is a critical determinant of telomerase activity in renal-cell carcinoma,” International Journal of Cancer, vol. 78, no. 5, pp. 539–543, 1998. View at: Google Scholar
  145. S. J. Lin, P. A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae,” Science, vol. 289, no. 5487, pp. 2126–2128, 2000. View at: Publisher Site | Google Scholar
  146. L. Guarente and F. Picard, “Calorie restriction—the SIR2 connection,” Cell, vol. 120, no. 4, pp. 473–482, 2005. View at: Publisher Site | Google Scholar
  147. I. B. Leibiger and P. O. Berggren, “Sirt1: a metabolic master switch that modulates lifespan,” Nature Medicine, vol. 12, no. 1, pp. 34–36, 2006. View at: Publisher Site | Google Scholar
  148. L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007. View at: Publisher Site | Google Scholar
  149. H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004. View at: Publisher Site | Google Scholar
  150. Y. Kanfi, V. Peshti, Y. M. Gozlan, M. Rathaus, R. Gil, and H. Y. Cohen, “Regulation of SIRT1 protein levels by nutrient availability,” FEBS Letters, vol. 582, no. 16, pp. 2417–2423, 2008. View at: Publisher Site | Google Scholar
  151. A. B. Crujeiras, D. Parra, E. Goyenechea, and J. A. Martínez, “Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction,” European Journal of Clinical Investigation, vol. 38, no. 9, pp. 672–678, 2008. View at: Publisher Site | Google Scholar
  152. L. A. Wakeling, L. J. Ions, and D. Ford, “Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?” Age, vol. 31, no. 4, pp. 327–341, 2009. View at: Publisher Site | Google Scholar
  153. Y. Li and T. O. Tollefsbol, “P16INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms,” PLoS ONE, vol. 6, no. 2, Article ID e17421, 2011. View at: Publisher Site | Google Scholar
  154. M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes & Development, vol. 20, no. 21, pp. 2913–2921, 2006. View at: Publisher Site | Google Scholar
  155. J. Luo, A. Y. Nikolaev, S. I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001. View at: Publisher Site | Google Scholar
  156. E. Langley, M. Pearson, M. Faretta et al., “Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence,” The EMBO Journal, vol. 21, no. 10, pp. 2383–2396, 2002. View at: Publisher Site | Google Scholar
  157. H. Vaziri, S. K. Dessain, E. N. Eaton et al., “hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159, 2001. View at: Publisher Site | Google Scholar
  158. A. Brunet, L. B. Sweeney, J. F. Sturgill et al., “Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase,” Science, vol. 303, no. 5666, pp. 2011–2015, 2004. View at: Publisher Site | Google Scholar
  159. M. C. Motta, N. Divecha, M. Lemieux et al., “Mammalian SIRT1 represses forkhead transcription factors,” Cell, vol. 116, no. 4, pp. 551–563, 2004. View at: Publisher Site | Google Scholar
  160. M. M. Schilling, J. K. Oeser, J. N. Boustead, B. P. Flemming, and R. M. O’Brien, “Gluconeogenesis: re-evaluating the FOXO1-PGC-1α connection,” Nature, vol. 443, no. 7111, pp. E10–E11, 2006. View at: Publisher Site | Google Scholar
  161. R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000. View at: Publisher Site | Google Scholar
  162. J. Koubova and L. Guarente, “How does calorie restriction work?” Genes & Development, vol. 17, no. 3, pp. 313–321, 2003. View at: Publisher Site | Google Scholar
  163. R. S. Sohal and R. Weindruch, “Oxidative stress, caloric restriction, and aging,” Science, vol. 273, no. 5271, pp. 59–63, 1996. View at: Google Scholar
  164. B. J. Merry, “Molecular mechanisms linking calorie restriction and longevity,” The International Journal of Biochemistry & Cell Biology, vol. 34, no. 11, pp. 1340–1354, 2002. View at: Publisher Site | Google Scholar
  165. J. Jeong, K. Juhn, H. Lee et al., “SIRT1 promotes DNA repair activity and deacetylation of Ku70,” Experimental & Molecular Medicine, vol. 39, no. 1, pp. 8–13, 2007. View at: Google Scholar
  166. H. Y. Cohen, S. Lavu, K. J. Bitterman et al., “Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis,” Molecular Cell, vol. 13, no. 5, pp. 627–638, 2004. View at: Publisher Site | Google Scholar
  167. H. Wong and K. Riabowol, “Differential CDK-inhibitor gene expression in aging human diploid fibroblasts,” Experimental Gerontology, vol. 31, no. 1-2, pp. 311–325, 1996. View at: Publisher Site | Google Scholar
  168. J. Gil and G. Peters, “Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all,” Nature Reviews, vol. 7, no. 9, pp. 667–677, 2006. View at: Publisher Site | Google Scholar
  169. J. Krishnamurthy, C. Torrice, M. R. Ramsey et al., “Ink4a/Arf expression is a biomarker of aging,” The Journal of Clinical Investigation, vol. 114, no. 9, pp. 1299–1307, 2004. View at: Publisher Site | Google Scholar
  170. D. A. Alcorta, Y. Xiong, D. Phelps, G. Hannon, D. Beach, and J. C. Barrett, “Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13742–13747, 1996. View at: Publisher Site | Google Scholar
  171. A. Melk, B. M. W. Schmidt, O. Takeuchi, B. Sawitzki, D. C. Rayner, and P. F. Halloran, “Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney,” Kidney International, vol. 65, no. 2, pp. 510–520, 2004. View at: Publisher Site | Google Scholar
  172. W. Fischle, Y. Wang, and C. D. Allis, “Histone and chromatin cross-talk,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 172–183, 2003. View at: Publisher Site | Google Scholar
  173. T. Kouzarides, “Histone methylation in transcriptional control,” Current Opinion in Genetics & Development, vol. 12, no. 2, pp. 198–209, 2002. View at: Publisher Site | Google Scholar
  174. N. Noren Hooten, K. Abdelmohsen, M. Gorospe, N. Ejiogu, A. B. Zonderman, and M. K. Evans, “microRNA expression patterns reveal differential expression of target genes with age,” PloS One, vol. 5, no. 5, Article ID e10724, 2010. View at: Publisher Site | Google Scholar
  175. A. De Lencastre, Z. Pincus, K. Zhou, M. Kato, S. S. Lee, and F. J. Slack, “MicroRNAs both promote and antagonize longevity in C. elegans,” Current Biology, vol. 20, no. 24, pp. 2159–2168, 2010. View at: Publisher Site | Google Scholar
  176. D. J. Bates, N. Li, R. Liang et al., “MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging,” Aging Cell, vol. 9, no. 1, pp. 1–18, 2010. View at: Publisher Site | Google Scholar
  177. U. A. Ørom, M. K. Lim, J. E. Savage et al., “MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction,” Cell Cycle, vol. 11, no. 7, pp. 1291–1295, 2012. View at: Google Scholar
  178. A. Khanna, S. Muthusamy, R. Liang, H. Sarojini, and E. Wang, “Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice,” Aging, vol. 3, no. 3, pp. 223–236, 2011. View at: Google Scholar
  179. E. Paradis, H. Douillard, M. Koutroumanis, C. Goodyer, and A. LeBlanc, “Amyloid β peptide of Alzheimer’s disease downregulates bcl-2 and upregulates bax expression in human neurons,” Journal of Neuroscience, vol. 16, no. 23, pp. 7533–7539, 1996. View at: Google Scholar
  180. C. Perier, J. Bové, D. C. Wu et al., “Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8161–8166, 2007. View at: Publisher Site | Google Scholar
  181. N. Louneva, J. W. Cohen, L. Y. Han et al., “Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease,” The American Journal of Pathology, vol. 173, no. 5, pp. 1488–1495, 2008. View at: Publisher Site | Google Scholar
  182. M. Yamada, K. Kida, W. Amutuhaire, F. Ichinose, and M. Kaneki, “Gene disruption of caspase-3 prevents MPTP-induced Parkinson’s disease in mice,” Biochemical and Biophysical Research Communications, vol. 402, no. 2, pp. 312–318, 2010. View at: Publisher Site | Google Scholar
  183. W. Kudo, H. P. Lee, M. A. Smith, X. Zhu, S. Matsuyama, and H. G. Lee, “Inhibition of Bax protects neuronal cells from oligomeric Aβ neurotoxicity,” Cell Death & Disease, vol. 3, Article ID e309, 2012. View at: Publisher Site | Google Scholar
  184. D. K. Ingram, M. Zhu, J. Mamczarz et al., “Calorie restriction mimetics: an emerging research field,” Aging Cell, vol. 5, no. 2, pp. 97–108, 2006. View at: Publisher Site | Google Scholar
  185. H. R. Warner, D. Ingram, R. A. Miller, N. L. Nadon, and A. G. Richardson, “Program for testing biological interventions to promote healthy aging,” Mechanisms of Ageing and Development, vol. 115, no. 3, pp. 199–207, 2000. View at: Publisher Site | Google Scholar
  186. N. L. Nadon, R. Strong, R. A. Miller et al., “Design of aging intervention studies: the NIA interventions testing program,” Age, vol. 30, no. 4, pp. 187–199, 2008. View at: Publisher Site | Google Scholar
  187. R. A. Miller, D. E. Harrison, C. M. Astle et al., “An aging interventions testing program: study design and interim report,” Aging Cell, vol. 6, no. 4, pp. 565–575, 2007. View at: Publisher Site | Google Scholar
  188. R. Strong, R. A. Miller, C. M. Astle et al., “Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice,” Aging Cell, vol. 7, no. 5, pp. 641–650, 2008. View at: Publisher Site | Google Scholar
  189. N. L. Nadon, “Exploiting the rodent model for studies on the pharmacology of lifespan extension,” Aging Cell, vol. 5, no. 1, pp. 9–15, 2006. View at: Publisher Site | Google Scholar
  190. J. O. Holloszy, “Mortality rate and longevity of food-restricted exercising male rats: a reevaluation,” Journal of Applied Physiology, vol. 82, no. 2, pp. 399–403, 1997. View at: Google Scholar
  191. K. C. Deruisseau, A. N. Kavazis, S. Judge et al., “Moderate caloric restriction increases diaphragmatic antioxidant enzyme mRNA, but not when combined with lifelong exercise,” Antioxidants & Redox Signaling, vol. 8, no. 3-4, pp. 539–547, 2006. View at: Publisher Site | Google Scholar
  192. A. Y. Seo, T. Hofer, B. Sung, S. Judge, H. Y. Chung, and C. Leeuwenburgh, “Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise,” Antioxidants & Redox Signaling, vol. 8, no. 3-4, pp. 529–538, 2006. View at: Publisher Site | Google Scholar
  193. R. Kalani, S. Judge, C. Carter, M. Pahor, and C. Leeuwenburgh, “Effects of caloric restriction and exercise on age-related, chronic inflammation assessed by C-reactive protein and interleukin-6,” The Journals of Gerontology A, vol. 61, no. 3, pp. 211–217, 2006. View at: Google Scholar
  194. P. Abete, G. Testa, G. Galizia et al., “Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart,” Experimental Gerontology, vol. 40, no. 1-2, pp. 43–50, 2005. View at: Publisher Site | Google Scholar
  195. D. L. Crandall, R. P. Feirer, D. R. Griffith, and D. C. Beitz, “Relative role of caloric restriction and exercise training upon susceptibility to isoproterenol-induced myocardial infarction in male rats,” The American Journal of Clinical Nutrition, vol. 34, no. 5, pp. 841–847, 1981. View at: Google Scholar
  196. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, no. 3, article e76, 2007. View at: Publisher Site | Google Scholar
  197. D. E. Larson-Meyer, B. R. Newcomer, L. K. Heilbronn et al., “Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function,” Obesity, vol. 16, no. 6, pp. 1355–1362, 2008. View at: Publisher Site | Google Scholar
  198. M. Lefevre, L. M. Redman, L. K. Heilbronn et al., “Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals,” Atherosclerosis, vol. 203, no. 1, pp. 206–213, 2009. View at: Publisher Site | Google Scholar
  199. D. E. Larson-Meyer, L. Redman, L. K. Heilbronn, C. K. Martin, and E. Ravussin, “Caloric restriction with or without exercise: the fitness versus fatness debate,” Medicine and Science in Sports and Exercise, vol. 42, no. 1, pp. 152–159, 2010. View at: Publisher Site | Google Scholar
  200. N. E. Silverman, B. J. Nicklas, and A. S. Ryan, “Addition of aerobic exercise to a weight loss program increases BMD, with an associated reduction in inflammation in overweight postmenopausal women,” Calcified Tissue International, vol. 84, no. 4, pp. 257–265, 2009. View at: Publisher Site | Google Scholar
  201. J. F. Trepanowski, R. E. Canale, K. E. Marshall, M. M. Kabir, and R. J. Bloomer, “Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings,” Nutrition Journal, vol. 10, article 107, 2011. View at: Google Scholar
  202. K. Iwasaki, C. A. Gleiser, E. J. Masoro, C. A. McMahan, E. Seo, and B. P. Yu, “The influence of dietary protein source on longevity and age-related disease processes of Fischer rats,” Journals of Gerontology, vol. 43, no. 1, pp. B5–B12, 1988. View at: Google Scholar
  203. I. Shimokawa, Y. Higami, B. P. Yu, E. J. Masoro, and T. Ikeda, “Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats,” Aging, vol. 8, no. 4, pp. 254–262, 1996. View at: Google Scholar
  204. M. Khorakova, Z. Deil, D. Khausman, and K. Matsek, “Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats,” Fiziologicheskii Zhurnal, vol. 36, no. 5, pp. 16–21, 1990. View at: Google Scholar
  205. C. Kubo, B. C. Johnson, A. Gajjar, and R. A. Good, “Crucial dietary factors in maximizing life span and longevity in autoimmune-prone mice,” The Journal of Nutrition, vol. 117, no. 6, pp. 1129–1135, 1987. View at: Google Scholar
  206. R. Pamplona and G. Barja, “Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 496–508, 2006. View at: Publisher Site | Google Scholar
  207. A. Sanz, P. Caro, J. G. Sanchez, and G. Barja, “Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 200–209, 2006. View at: Publisher Site | Google Scholar
  208. A. Sanz, J. Gómez, P. Caro, and G. Barja, “Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage,” Journal of Bioenergetics and Biomembranes, vol. 38, no. 5-6, pp. 327–333, 2006. View at: Publisher Site | Google Scholar
  209. P. E. Segall and P. S. Timiras, “Pathophysiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging,” Mechanisms of Ageing and Development, vol. 5, no. 2, pp. 109–124, 1976. View at: Google Scholar
  210. H. Ooka, P. E. Segall, and P. S. Timiras, “Histology and survival in age-delayed low-tryptophan-fed rats,” Mechanisms of Ageing and Development, vol. 43, no. 1, pp. 79–98, 1988. View at: Google Scholar
  211. R. A. Miller, G. Buehner, Y. Chang, J. M. Harper, R. Sigler, and M. Smith-Wheelock, “Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance,” Aging Cell, vol. 4, no. 3, pp. 119–125, 2005. View at: Publisher Site | Google Scholar
  212. N. Orentreich, J. R. Matias, A. DeFelice, and J. A. Zimmerman, “Low methionine ingestion by rats extends life span,” The Journal of Nutrition, vol. 123, no. 2, pp. 269–274, 1993. View at: Google Scholar
  213. J. P. Richie Jr., Y. Leutzinger, S. Parthasarathy, V. Malloy, N. Orentreich, and J. A. Zimmerman, “Methionine restriction increases blood glutathione and longevity in F344 rats,” The FASEB Journal, vol. 8, no. 15, pp. 1302–1307, 1994. View at: Google Scholar
  214. J. P. Richie Jr., D. Komninou, Y. Leutzinger et al., “Tissue glutathione and cysteine levels in methionine-restricted rats,” Nutrition, vol. 20, no. 9, pp. 800–805, 2004. View at: Publisher Site | Google Scholar
  215. J. A. Zimmerman, V. Malloy, R. Krajcik, and N. Orentreich, “Nutritional control of aging,” Experimental Gerontology, vol. 38, no. 1-2, pp. 47–52, 2003. View at: Publisher Site | Google Scholar
  216. A. Sanz, P. Caro, V. Ayala, M. Portero-Otin, R. Pamplona, and G. Barja, “Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins,” The FASEB Journal, vol. 20, no. 8, pp. 1064–1073, 2006. View at: Publisher Site | Google Scholar
  217. P. Caro, J. Gómez, M. López-Torres et al., “Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver,” Biogerontology, vol. 9, no. 3, pp. 183–196, 2008. View at: Publisher Site | Google Scholar
  218. M. C. Ruiz, V. Ayala, M. Portero-Otín, J. R. Requena, G. Barja, and R. Pamplona, “Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals,” Mechanisms of Ageing and Development, vol. 126, no. 10, pp. 1106–1114, 2005. View at: Publisher Site | Google Scholar
  219. N. Hidiroglou, G. S. Gilani, L. Long et al., “The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil,” The Journal of Nutritional Biochemistry, vol. 15, no. 12, pp. 730–740, 2004. View at: Publisher Site | Google Scholar
  220. P. Caro, J. Gomez, I. Sanchez et al., “Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver,” Biogerontology, vol. 10, no. 5, pp. 579–592, 2009. View at: Publisher Site | Google Scholar
  221. M. F. McCarty, J. Barroso-Aranda, and F. Contreras, “The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy,” Medical Hypotheses, vol. 72, no. 2, pp. 125–128, 2009. View at: Publisher Site | Google Scholar
  222. K. A. Varady and M. K. Hellerstein, “Alternate-day fasting and chronic disease prevention: a review of human and animal trials,” The American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 7–13, 2007. View at: Google Scholar
  223. R. M. Anson, Z. Guo, R. de Cabo et al., “Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6216–6220, 2003. View at: Publisher Site | Google Scholar
  224. O. Descamps, J. Riondel, V. Ducros, and A. M. Roussel, “Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting,” Mechanisms of Ageing and Development, vol. 126, no. 11, pp. 1185–1191, 2005. View at: Publisher Site | Google Scholar
  225. W. Duan, Z. Guo, H. Jiang, M. Ware, and M. P. Mattson, “Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor,” Endocrinology, vol. 144, no. 6, pp. 2446–2453, 2003. View at: Publisher Site | Google Scholar
  226. I. Ahmet, R. Wan, M. P. Mattson, E. G. Lakatta, and M. Talan, “Cardioprotection by intermittent fasting in rats,” Circulation, vol. 112, no. 20, pp. 3115–3121, 2005. View at: Publisher Site | Google Scholar
  227. D. E. Mager, R. Wan, M. Brown et al., “Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats,” The FASEB Journal, vol. 20, no. 6, pp. 631–637, 2006. View at: Publisher Site | Google Scholar
  228. C. R. Pedersen, I. Hagemann, T. Bock, and K. Buschard, “Intermittent feeding and fasting reduces diabetes incidence in BB rats,” Autoimmunity, vol. 30, no. 4, pp. 243–250, 1999. View at: Google Scholar
  229. K. Tikoo, D. N. Tripathi, D. G. Kabra, V. Sharma, and A. B. Gaikwad, “Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53,” FEBS Letters, vol. 581, no. 5, pp. 1071–1078, 2007. View at: Publisher Site | Google Scholar
  230. R. Wan, S. Camandola, and M. P. Mattson, “Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats,” The FASEB Journal, vol. 17, no. 9, pp. 1133–1134, 2003. View at: Google Scholar
  231. L. K. Heilbronn, S. R. Smith, C. K. Martin, S. D. Anton, and E. Ravussin, “Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism,” The American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 69–73, 2005. View at: Google Scholar
  232. N. Halberg, M. Henriksen, N. Söderhamn et al., “Effect of intermittent fasting and refeeding on insulin action in healthy men,” Journal of Applied Physiology, vol. 99, no. 6, pp. 2128–2136, 2005. View at: Publisher Site | Google Scholar
  233. J. B. Johnson, W. Summer, R. G. Cutler et al., “Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma,” Free Radical Biology and Medicine, vol. 42, no. 5, pp. 665–674, 2007. View at: Publisher Site | Google Scholar
  234. V. D. Dixit, H. Yang, K. S. Sayeed et al., “Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production,” Journal of Inflammation, vol. 8, article 6, 2011. View at: Publisher Site | Google Scholar
  235. K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003. View at: Publisher Site | Google Scholar
  236. J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004. View at: Google Scholar
  237. H. Yang, J. A. Baur, A. Chen, C. Miller, and D. A. Sinclair, “Design and synthesis of compounds that extend yeast replicative lifespan,” Aging Cell, vol. 6, no. 1, pp. 35–43, 2007. View at: Publisher Site | Google Scholar
  238. D. R. Valenzano, E. Terzibasi, T. Genade, A. Cattaneo, L. Domenici, and A. Cellerino, “Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate,” Current Biology, vol. 16, no. 3, pp. 296–300, 2006. View at: Publisher Site | Google Scholar
  239. M. Kaeberlein, T. McDonagh, B. Heltweg et al., “Substrate-specific activation of sirtuins by resveratrol,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 17038–17045, 2005. View at: Publisher Site | Google Scholar
  240. M. Kaeberlein and R. W. Powers III, “Sir2 and calorie restriction in yeast: a skeptical perspective,” Ageing Research Reviews, vol. 6, no. 2, pp. 128–140, 2007. View at: Publisher Site | Google Scholar
  241. M. Kaeberlein and B. K. Kennedy, “Does resveratrol activate yeast Sir2 in vivo?” Aging Cell, vol. 6, no. 4, pp. 415–416, 2007. View at: Publisher Site | Google Scholar
  242. D. L. Smith Jr., C. Li, M. Matecic, N. Maqani, M. Bryk, and J. S. Smith, “Calorie restriction effects on silencing and recombination at the yeast rDNA,” Aging Cell, vol. 8, no. 6, pp. 633–642, 2009. View at: Publisher Site | Google Scholar
  243. T. M. Bass, D. Weinkove, K. Houthoofd, D. Gems, and L. Partridge, “Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 128, no. 10, pp. 546–552, 2007. View at: Publisher Site | Google Scholar
  244. E. L. Greer and A. Brunet, “Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans,” Aging Cell, vol. 8, no. 2, pp. 113–127, 2009. View at: Publisher Site | Google Scholar
  245. T. L. Kaeberlein, E. D. Smith, M. Tsuchiya et al., “Lifespan extension in Caenorhabditis elegans by complete removal of food,” Aging Cell, vol. 5, no. 6, pp. 487–494, 2006. View at: Publisher Site | Google Scholar
  246. S. Zou, J. R. Carey, P. Liedo et al., “The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly,” Experimental Gerontology, vol. 44, no. 6-7, pp. 472–476, 2009. View at: Publisher Site | Google Scholar
  247. M. Riesen and A. Morgan, “Calorie restriction reduces rDNA recombination independently of rDNA silencing,” Aging Cell, vol. 8, no. 6, pp. 624–632, 2009. View at: Publisher Site | Google Scholar
  248. M. Pacholec, J. E. Bleasdale, B. Chrunyk et al., “SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1,” The Journal of Biological Chemistry, vol. 285, no. 11, pp. 8340–8351, 2010. View at: Publisher Site | Google Scholar
  249. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at: Publisher Site | Google Scholar
  250. M. Zang, S. Xu, K. A. Maitland-Toolan et al., “Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice,” Diabetes, vol. 55, no. 8, pp. 2180–2191, 2006. View at: Publisher Site | Google Scholar
  251. B. Dasgupta and J. Milbrandt, “Resveratrol stimulates AMP kinase activity in neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7217–7222, 2007. View at: Publisher Site | Google Scholar
  252. N. L. Price, A. P. Gomes, A. J. Ling et al., “SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function,” Cell Metabolism, vol. 15, no. 5, pp. 675–690, 2012. View at: Google Scholar
  253. J. L. Barger, T. Kayo, J. M. Vann et al., “A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice,” PLoS ONE, vol. 3, no. 6, Article ID e2264, 2008. View at: Publisher Site | Google Scholar
  254. K. J. Pearson, J. A. Baur, K. N. Lewis et al., “Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span,” Cell Metabolism, vol. 8, no. 2, pp. 157–168, 2008. View at: Publisher Site | Google Scholar
  255. R. A. Miller, D. E. Harrison, C. M. Astle et al., “Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice,” The Journals of Gerontology A, vol. 66, no. 2, pp. 191–201, 2011. View at: Publisher Site | Google Scholar
  256. D. L. Smith Jr., T. R. Nagy, and D. B. Allison, “Calorie restriction: what recent results suggest for the future of ageing research,” European Journal of Clinical Investigation, vol. 40, no. 5, pp. 440–450, 2010. View at: Publisher Site | Google Scholar
  257. A. Dal-Pan, S. Blanc, and F. Aujard, “Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity,” BMC Physiology, vol. 10, no. 1, article 11, 2010. View at: Publisher Site | Google Scholar
  258. A. Dal-Pan, J. Terrien, F. Pifferi et al., “Caloric restriction or resveratrol supplementation and ageing in a non-human primate: first-year outcome of the RESTRIKAL study in Microcebus murinus,” Age, vol. 33, no. 1, pp. 15–31, 2011. View at: Publisher Site | Google Scholar
  259. L. Peltz, J. Gomez, M. Marquez et al., “Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development,” PLoS One, vol. 7, no. 5, Article ID e37162, 2012. View at: Google Scholar
  260. J. Mikuła-Pietrasik, A. Kuczmarska, B. Rubiś et al., “Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms,” Free Radical Biology & Medicine, vol. 52, pp. 2234–2245, 2012. View at: Google Scholar
  261. J. M. Smoliga, J. A. Baur, and H. A. Hausenblas, “Resveratrol and health—a comprehensive review of human clinical trials,” Molecular Nutrition & Food Research, vol. 55, no. 8, pp. 1129–1141, 2011. View at: Publisher Site | Google Scholar
  262. H. Ghanim, C. L. Sia, S. Abuaysheh et al., “An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 9, pp. E1–E8, 2010. View at: Publisher Site | Google Scholar
  263. H. Ghanim, S. Abuaysheh, C. L. Sia et al., “Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance,” Diabetes Care, vol. 32, no. 12, pp. 2281–2287, 2009. View at: Publisher Site | Google Scholar
  264. H. Ghanim, C. L. Sia, K. Korzeniewski et al., “A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 5, pp. 1409–1414, 2011. View at: Publisher Site | Google Scholar
  265. P. Brasnyó, G. A. Molnár, M. Mohás et al., “Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients,” The British Journal of Nutrition, vol. 106, no. 3, pp. 383–389, 2011. View at: Google Scholar
  266. L. M. Vislocky and M. L. Fernandez, “Biomedical effects of grape products,” Nutrition Reviews, vol. 68, no. 11, pp. 656–670, 2010. View at: Publisher Site | Google Scholar
  267. A. A. A. Bertelli and D. K. Das, “Grapes, wines, resveratrol, and heart health,” Journal of Cardiovascular Pharmacology, vol. 54, no. 6, pp. 468–476, 2009. View at: Publisher Site | Google Scholar
  268. M. M. Dohadwala and J. A. Vita, “Grapes and cardiovascular disease,” The Journal of Nutrition, vol. 139, no. 9, pp. 17885–17935, 2009. View at: Publisher Site | Google Scholar
  269. W. R. Leifert and M. Y. Abeywardena, “Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity,” Nutrition Research, vol. 28, no. 11, pp. 729–737, 2008. View at: Publisher Site | Google Scholar
  270. T. Wallerath, G. Deckert, T. Ternes et al., “Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase,” Circulation, vol. 106, no. 13, pp. 1652–1658, 2002. View at: Publisher Site | Google Scholar
  271. T. Wallerath, H. Li, U. Gödtel-Ambrust, P. M. Schwarz, and U. Förstermann, “A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase,” Nitric Oxide, vol. 12, no. 2, pp. 97–104, 2005. View at: Publisher Site | Google Scholar
  272. J. F. Leikert, T. R. Räthel, P. Wohlfart, V. Cheynier, A. M. Vollmar, and V. M. Dirsch, “Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells,” Circulation, vol. 106, no. 13, pp. 1614–1617, 2002. View at: Publisher Site | Google Scholar
  273. P. Gresele, P. Pignatelli, G. Guglielmini et al., “Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production,” The Journal of Nutrition, vol. 138, no. 9, pp. 1602–1608, 2008. View at: Google Scholar
  274. D. O. Kennedy, E. L. Wightman, J. L. Reay et al., “Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation,” The American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1590–1597, 2010. View at: Publisher Site | Google Scholar
  275. R. H. X. Wong, P. R. C. Howe, J. D. Buckley, A. M. Coates, I. Kunz, and N. M. Berry, “Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 11, pp. 851–856, 2011. View at: Publisher Site | Google Scholar
  276. B. Agarwal and J. A. Baur, “Resveratrol and life extension,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 138–143, 2011. View at: Publisher Site | Google Scholar
  277. J. L. Crespo and M. N. Hall, “Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 66, no. 4, pp. 579–591, 2002. View at: Publisher Site | Google Scholar
  278. I. Bjedov, J. M. Toivonen, F. Kerr et al., “Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster,” Cell Metabolism, vol. 11, no. 1, pp. 35–46, 2010. View at: Publisher Site | Google Scholar
  279. N. Anisimov, M. A. Zabezhinski, I. G. Popovich et al., “Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice,” Cell Cycle, vol. 10, no. 24, pp. 4230–4236, 2011. View at: Publisher Site | Google Scholar
  280. S. Majumder, A. Caccamo, D. X. Medina et al., “Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling,” Aging Cell, vol. 11, no. 2, pp. 326–335, 2012. View at: Publisher Site | Google Scholar
  281. G. Payne, A. Laporte, R. Deber, and P. C. Coyte, “Counting backward to health care’s future: using time-to-death modeling to identify changes in end-of-life morbidity and the impact of aging on health care expenditures,” The Milbank Quarterly, vol. 85, no. 2, pp. 213–257, 2007. View at: Publisher Site | Google Scholar
  282. A. Yazdanyar and A. B. Newman, “The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 563–577, 2009. View at: Publisher Site | Google Scholar
  283. J. Mesterton, A. Wimo, Å. By, S. Langworth, B. Winblad, and L. Jönsson, “Cross sectional observational study on the societal costs of Alzheimer’s disease,” Current Alzheimer Research, vol. 7, no. 4, pp. 358–367, 2010. View at: Publisher Site | Google Scholar
  284. G. Atzmon, C. Schechter, W. Greiner, D. Davidson, G. Rennert, and N. Barzilai, “Clinical phenotype of families with longevity,” Journal of the American Geriatrics Society, vol. 52, no. 2, pp. 274–277, 2004. View at: Publisher Site | Google Scholar
  285. G. Atzmon, M. Rincon, P. Rabizadeh, and N. Barzilai, “Biological evidence for inheritance of exceptional longevity,” Mechanisms of Ageing and Development, vol. 126, no. 2, pp. 341–345, 2005. View at: Publisher Site | Google Scholar
  286. N. Barzilai and I. Gabriely, “Genetic studies reveal the role of the endocrine and metabolic systems in aging,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 10, pp. 4493–4500, 2010. View at: Publisher Site | Google Scholar
  287. M. C. Haigis and B. A. Yankner, “The aging stress response,” Molecular Cell, vol. 40, no. 2, pp. 333–344, 2010. View at: Publisher Site | Google Scholar
  288. D. Nipič, A. Pirc, B. Banič, D. Šuput, and I. Milisav, “Preapoptotic cell stress response of primary hepatocytes,” Hepatology, vol. 51, no. 6, pp. 2140–2151, 2010. View at: Publisher Site | Google Scholar

Copyright

Copyright © 2012 Samo Ribarič. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.




Ketogeeninen ruokavalio: neuromuskulaarisiset ja neurodegeneratiiviset taudit

Neuromuskulaariset sairaudet ovat joukko sairauksia, jotka vaikuttavat lihaksia sääteleviin hermoihin tai heikentävät itse lihaksia. Esimerkiksi ALS.

Neurodegeneratiivinen sairaus on yleistermi useille sairauksille, jotka rappeuttavat aivojen ja keskushermoston soluja, kuten neuroneja. Neuronit eivät yleensä uusiudu tai korjaa itseään, joten jos ne surkastuvat ja kuolevat, elimistö ei voi korvata niitä. Neurodegeneratiivisia sairauksista ovat mm. Parkinsonin tauti, Alzheimerin tauti ja Huntingtonin tauti.

Johdanto

Päivä päivältä useammat tutkimukset osoittavat ketogeenisten ruokavalioiden kiistattomat hyödyt metabolisten sairauksien, kuten lihavuuden, metabolisen oireyhtymän ja aikuistyypin diabeteksen hoidossa.

Olen ketoillut puolivallattomasti joulukuun alusta alkaen. Joulukuun 2. päivän ja tämän päivän väliin mahtuu useita horjahduksia olut-, makeis- ja burgeriseikkailuineen. Paino on laskenut ~13 kiloa. Verensokeri pysyy KD:llä optimaalisena ja verenpaine hyvällä tasolla. Oloni on hyvin motivoitunut ja aktiivinen. Arkista huuhailua ei haittaa nälkä tai aivosumu.

Neurologisten häiriöiden osalta ketogeeninen ruokavalio hyväksytään tehokkaaksi terapiaksi farmakoresistentin epilepsian hoidossa, mutta uudet tutkimukset viittaavat siihen, että ketogeeninen ruokavalio voi olla hyödyllinen myös amyotrofisen lateraaliskleroosin (ALS), Alzheimerin- ja Parkinsonin taudin sekä eräiden mitokondriopatioiden yhteydessä.

Esittelin Ruokasodassa aimmin tutkimuskatsauksen, jonka mukaan ketogeeninen ruokavalio voi hidastaa myös multippeliskleroosin etenemistä.

Vaikka näillä sairauksilla on erilaiset patogeneesit, on olemassa eräitä yleisiä mekanismeja, jotka voivat selittää ketogeenisten ruokavalioiden hyötyjä:

  1. ketogeenisen ruokavalion metaboliset mekanismit tarjoavat tehokkaan energianlähteen sellaisten neurodegeneratiivisten sairauksien hoidossa, joille on tunnusomaista fokaalinen aivojen hypometabolia, eli solujen energiansaannin heikkeneminen
  2. ketogeeninen ruokavalio vähentää erityyppisiin metabolisiin stresseihin liittyviä oksidatiivisia vaurioita ja inflammaatiota
  3. ketogeeninen ruokavalio lisää mitokondrioiden biogeneesireittejä
  4. ketonit ohittavat joihinkin neurologisiin sairauksiin liittyvän kompleksin I aktiivisuuteen liittyvän vian

Tässä katsauksessa tutustutaan ketogeenisen ruokavalion neuroprotektiivisiin aineenvaihduntamekanismeihin

Yksittäisillä ravintoaineilla voi olla positiivisia vaikutuksia luurankolihasten terveyteen. Lisäksi ravintoaineiden yhdistelmät voivat vaimentaa joidenkin hermo-lihassairauksien oireita. Toisaalta tiedetään myös, että laihduttamisen vaikutukset terveyteen liittyvät eri makro- ja hivenravinteiden keskinäiseen saantisuhteeseen, eikä niinkään yksittäisin ravintoaineeseen.

Ketogeeninen ruokavalio (KD) on viime vuosina herättänyt suurta kiinnostusta. 1900-luvun kolmannelta vuosikymmeneltä lähtien ketogeenistä ruokavaliota on käytetty farmakologisesti resistentin epilepsian hoitoon [1–3]. Viime aikoina KD:n on havaittu olevan toimiva terapia myös monissa täysin erilaisissa sairauksissa, kuten lihavuus [4], PCOS [5], syöpä [1, 6, 7], diabetes [8] ja muut patologiset tilat [9– 11].

Vaikka monet tutkimukset ovat osoittaneet KD:n potentiaaliset positiiviset vaikutukset moniin neurologisiin ja hermo-lihassairauksiin, vain harvat tutkimukset ovat tutkineet tämän lupaavan ravitsemuksellisen lähestymistavan mekanismeja [12].

Tämän katsauksen tarkoituksena on tarkastella KD:n roolia hermostoon ja lihasten toimintaan vaikuttavissa sairauksissa.

Ketogeenisessä ruokavaliossa

Muutaman päivän paastoamisen tai hiilihydraattien huomattavan rajoittamisen (alle 20 g päivässä) seurauksena glukoosivarastot eivät riitä:

  1. normaaliin rasvan hapettumiseen oksaloasetaatin syöttämisen kautta sitruunahappokierrossa (Krebsin syklissä, TCA-sykli) ja
  2. keskushermoston glukoositarpeen tyydyttämiseen [13, 14] (kuva 1)

Keskushermostossa glukoosia tarvitaan energia lähteeksi, sekä tuottamaan pyruvaatteja, jotka voidaan edelleen muuntaa oksaloasetaatiksi.

Oksaloasetaatin määrän tulisi pysyä tasolla, joka on riittävä sitruunahappokierron toiminnan (ts. asetyyli-CoA:n ja oksaloasetaatin välinen kondensaatio) mahdollistamiseksi.

Oksaloasetaatti on epävakaa ja se on uudelleenkoottava (tällaisia reaktioita kutsutaan anaplerooteiksi). Elimistölle helpoin tapa tuottaa oksaloasetaattia on pyruvaatista, joka saadaan glukoosista.

Oksaloetikkahappo (oksaloasetaatti) on ketodikarboksyylihappoihin kuuluva orgaaninen yhdiste. Oksaloetikkahappo on välituote useissa biokemiallisesti tärkeissä reaktioissa.

Sitruunahappokierron ensimmäisessä vaiheessa oksaloetikkahappo ja asetyylikoentsyymi-A reagoivat sitraattisyntaasientsyymin katalysoimana muodostaen sitruunahappoa. Reaktiossa asetyyliryhmä siirretään oksaloetikkahapon ketonihiileen ja karbonyyliryhmä pelkistetään hydroksyyliryhmäksi.

Oksaloetikkahappoa muodostuu sitruunahappokierron kymmenennessä vaiheessa, kun omenahappo dehydrataan malaattidehydrogenaasientsyymin avulla.

Glukoneogeneesin ensimmäisessä vaiheessa palorypälehappo muutetaan oksaloetikkahapoksi. Reaktio kuluttaa ATP-molekyylin ja sitä katalysoi pyruvaattikarboksylaasientsyymi.

Glukoneogeneesin toisessa vaiheessa oksaloetikkahappo muutetaan fosfoenolipalorypälehapoksi. Reaktiossa tarvittava energia saadaan hydrolysoimalla yksi gyanosiinitrifosfaatin korkeaenergiainen fosfaattiryhmä. Reaktiossa muodostuu lisäksi hiilidioksidia ja guanosiinidifosfaattia. Reaktiota katalysoi fosfoenolipyruvaattikarboksikinaasi.

Eliöt voivat tuottaa aminohappo asparagiinihappoa oksaloetikkahaposta. Asparagiinihappoa syntyy, kun oksaloetikkahappo ja glutamiinihappo reagoivat. Reaktio on transaminaatioreaktio ja sitä katalysoi eräs transaminaasien luokkaan kuuluva entsyymi, aspartaattiaminotransferaasi. Koentsyyminä toimii pyridoksaalifosfaatti. – Wikipedia

Nisäkkäillä pyruvaattia ei voida tuottaa asetyylikoentsyymi-A:sta, kuten kuvassa on esitetty.

(1) Oksaloasetaatti on ruumiin normaalilämmössä melko epävakaa molekyyli. Sitä ei voi varastoida mitokondrioiden matriksiin. Tässä ”glukoosinpuutos” -tilassa tarvitaan oksaloasetaattia trikarboksyylihapposyklin tehokkaan toiminnan varmistamiseksi. Oksaloasetaatti toimitetaan anapleroottisyklin kautta, joka syntetisoi oksaloasetaatin glukoosista pyruviinihapon ATP-riippuvaisen karboksyloinnin kautta pyruvaattikarboksylaasilla [15].

(2) Koska keskushermosto ei voi käyttää vapaita rasvahappoja (FFA) betaoksidaatiossa suoraan energialähteenä (vapaat rasvahapot eivät läpäise veri-aivoestettä), keskushermosto käyttää yleensä solujen energiasubstraattina glukoosia.

3-4 päivän kuluttua hiilihydraattien saannin rajoittamisesta, keskushermoston on löydettävä soluille vaihtoehtoinen energialähde, kuten Felig et al. [13, 14, 16, 17] ovat osoittaneet. Vaihtoehtoisen energianlähteen soluille tarjoavat maksan tuottamat ketoaineet (KB): asetoasetaatti (AcAc), 3-hydroksibutyraatti (3HB, beta-hydroksibutyraatti) ja asetoni [18], joita saadaan asetyylikoentsyymi-A:n ylituotannosta ilman oksaloasetaatin samanaikaista tuotantoa. Energiasubstraateiksi kelpaavia ketoaineita sytyy ketogeneesissä. Ketogeneesiä tapahtuu pääasiassa maksan mitokondrioiden matriksissa [19].

Maksa tuottaa ketoaineita, mutta ei pysty käyttämään niitä, koska maksassa ei ole sukkinyyli-CoA: 3-CoA transferaasi (SCOT) -entsyymiä, jota tarvitaan asetoasetaatin muuttamiseksi asetyylikoentsyymi-A:ksi [18]. maksan ketogeneesissä syntetisoidaan asetoasetaattia, mutta ensisijainen verenkierrossa kiertävä ketoaine on 3-hydroksibutyraatti, eli beta-hydroksibutyraatti.

Normaaleissa olosuhteissa vapaan asetoasetaatin tuotanto on vähäistä ja se voi metaboloitua useissa kudoksissa, kuten luurankolihaksessa ja sydämessä. Asetoasetaatin ylituotanto-olosuhteissa sitä syntyy normaalia enemmän, mutta osa siitä syntetisoidaan kahdeksi muuksi ketoaineeksi.

Korkea ketoaineiden taso veressä ja niiden eliminaatio virtsan kautta aiheuttaa ketonemiaa ja ketonuriaa. Normaaleissa olosuhteissa ketoaineiden pitoisuus on yleensä hyvin matala (<0,3 mmol / l) verrattuna glukoosiin (noin 4-5 mmol / l) [20, 21].

Kun ketoaineet ovat saavuttaneet noin 4 mmol / l konsentraation, keskushermosto alkaa käyttää niitä energialähteenä [21]. Kudokset käyttävät ketoaineita energialähteenä [19, 21, 23] aineenvaihduntareitin kautta, joka muuntaa ensin beta-hydroksibutyraatin (3HB) takaisin asetyyliasetaatiksi, joka sitten muutetaan asetoasetyylikoentsyymi-A:ksi. Jälkimmäinen jaetaan lopulta kahteen asetyylkoentsyymi-A-molekyyliksi, joita käytetään myöhemmin sitruunahappokierrossa (kuva 2).

On mielenkiintoista huomata, että verensokeriin verrattuna ketoaineet pystyvät tuottamaan suuremman energiamäärän johtuen niiden aiheuttamista mitokondrioiden ATP-tuotannon muutoksista [21, 24, 25].

Ruokavalion hiilihydraattien vähentynyt saatavuus johtaa lisääntyneeseen ketoaineiden tuotantoon maksassa. Maksa ei voi käyttää ketoaineita, koska siitä puuttuu mitokondrioiden tarvitsema entsyymi sukkinyyli-CoA: 3-ketohappo (oksohappo) CoA-transferaasi (SCOT), jota tarvitaan asetoasetaatin aktivaatioon asetoasetyyli-CoA:ksi. Ketoaineita hyödyntävät kudokset, erityisesti aivot. Ketoaineet siirtyvät sitruunahappokiertoon muututtuaan asetyylikoentsyymi-A:ksi sukkinyyli-CoA: 3-CoA-transferaasin (SCOT) ja metyyliasetoasetyyli-CoA-tiolaasin (MAT) avulla. Vaikka glukoosi on vähentynyt, se pysyy fysiologisilla tasoilla [26, 27] johtuen kahdesta päälähteestä:

(1) glukogeenisista aminohapoista ja
(2) triglyserideistä hajotuksen kautta vapautuneesta glyserolista [28, 29]

Fysiologisen ketoosin (nopea tai erittäin vähäkalorinen ketogeeninen ruokavalio) aikana ketonemia saavuttaa maksimiarvot 7/8 mmol / l ilman pH:n muutoksia, kun taas hallitsemattomassa diabeettisessa ketoasidoosissa ketoaineiden pitoisuus voi ylittää 20 mmol / l, kun veren pH laskee samanaikaisesti.

Terveiden ihmisten veren ketoaineiden pitoisuudet eivät ylitä 8 mmol / l, koska keskushermosto (CNS) käyttää näitä molekyylejä tehokkaasti energiasubstraatteina glukoosin sijasta [16]. Taulukossa veren ketoaineiden tasot normaalin ruokavalion ja ketogeenisen ruokavalion aikana (ts. 20 grammaa hiilihydraatteja päivässä) sekä diabeettinen ketoasidoosi [10] .

Ketogeeninen ruokavalio imitoi paastoa ja sen aineenvaihduntamekanismeja

Perinteisesti lääkärit vierastavat ketoosia, koska he yhdistävät ketoosin insuliinin puutteesta johtuvaan vaikeaan hyperketonemiaan, joka voi aiheuttaa vakavan ketoasidoosin ja kuoleman tyypin 1 diabetesta sairastavilla henkilöillä.

Hans Krebs oli ensimmäinen, joka käytti termiä ”fysiologinen ketoosi” erottaakseen paaston ja ketogeenisen ruokavalion aiheuttaman lievän (8 mmol / l ketonipitoisuuden) ketoosin metabolisesti epätasapainoisen diabeteksen ”patologisesta ketoasidoosista” [31].

Paaston tai aliravitsemuksen jaksot ovat siinä mielessä ketogeenisiä [23], että insuliinin ja glukoosin pitoisuudet laskevat, kun taas glukagonin pitoisuudet kasvavat normaalia verensokeritason ylläpitämiseksi. Kun keho siirtyy ravinnon runsauden tilasta ravinnon puutteen tilaan (ketoosiin esimerkiksi ketogeenisen ruokavalion simuloidun ravinnon puutteen kautta), veren vapaiden rasvahappojen (FFA) ja ketoaineiden pitoisuus kasvaa pienellä viiveellä.

Tästä näkökulmasta tarkasteltuna ketogeenistä ruokavaliota voidaan verrata kalorirajoitukseen, aliravitsemukseen tai paastoamiseen. Tämä ravinteiden saannin metabolisen vasteen manipulointi, sekä määrällisesti että laadullisesti, vaikuttaa sekä verensokeriin että ketoaineisiin. Sillä on myös kyky edistää aineenvaihduntareittien ja soluprosessien, kuten stressiresistenssin ja autofagian muutoksia.

Ketogeeniset ruokavaliot voivat toimia myös samalla tavalla kuin kalorirajoitus (CR) AMPK:lla ja SIRT-1:llä [33]. Jotta ymmärtäisimme ketogeenisen ruokavalion monimutkaiset vaikutukset ja mekanismit elimistössä, meidän on otettava huomioon nämä solunsisäiset molekyylitason aineenvaihduntareitit.

PGC1α aktivoituu fosforyloidussa tilassa. Fosforyloitu PGC1α siirtyy sytosolista solun tumaan, jossa se edistää rasvahappojen kuljetusta, rasvan hapettumista ja oksidatiivista fosforylaatiota sekä osallistuvien geenien transkriptiota [34].

PGC1α voidaan fosforyloida useiden eri aineenvaihduntareittien kautta, kuten AMPK, kalsium-kalmoduliinista riippuvainen proteiinikinaasi ja p38-mitogeeniaktivoitunut proteiinikinaasireitti [35]. PGC1α voidaan aktivoida myös SIRT1-välitteisellä deasetylaatiolla [36]. AMPK voi toimia joko PGC1α:n fosforyloimalla tai suoraan.

AMPK-aktivointi estää myös mTOR-signaloinnin. Vaikuttaa kuitenkin epäjohdonmukaiselta estää tärkeä kasvuvälitteinen reitti (mTOR), joka säätelee lihasmassaa, jotta luurankolihakset voivat kasvaa.

Ravinteiden manipulointi vaikuttaa näihin aineenvaihduntareitteihin; esim. hiilihydraattien puutteellinen saanti stimuloi in vivo AMPK:n ja SIRT-1:n aktivaatiota, lisäämällä AMPK:n fosforylaatiota ja PGC1α:n deasetylointia luurankolihaksissa vaikuttamatta AMPK:n, PGC1α:n tai SIRT 1: n kokonaismäärään.

Nämä mekanismit näyttävät aktivoituvan muutaman tunnin (5 tunnin) paaston jälkeen hiirillä [39]. Aktivoiduttuaan SIRT1 ja AMPK tuottavat hyödyllisiä vaikutuksia glukoosin homeostaasissa ja insuliinimetaboliassa [40].

Askel vaikeampaan: mikä helvetin AMPK?


Tämä on teknisempää settiä. 5′-AMP-aktivoitu proteiinikinaasi, AMPK tai 5′-adenosiinimonofosfaatilla aktivoitu proteiinikinaasi on entsyymi, jolla on suuri vaikutus soluenergian homeostaasissa.

AMPK vaikuttaa erityisesti aktivoimalla glukoosin ja rasvahappojen imeytymistä ja hapettumista, kun solujen energiataso on matala. AMPK:ta ei tule sekoittaa cAMP-aktivoituun proteiinikinaasiin.

AMPK koostuu kolmesta proteiinista (α, β, γ -alayksiköistä), jotka yhdessä muodostavat toiminnallisen entsyymin. AMPK ilmentyy useissa kudoksissa, kuten maksassa, aivoissa ja luurankolihaksissa.

AMPK-aktivaation nettovaikutus vasteena AMP:n ja ADP:n sitoutumiselle on maksan rasvahappojen hapettumisen stimulointi, ketogeneesi, luustolihasten rasvahappojen hapettumisen stimulointi ja glukoosin imeytymisen tehostaminen, kolesterolisynteesin esto, lipogeneesin ja triglyseridisynteesin esto sekä, rasvasolujen lipogeneesin ja lipolyysin esto ja insuliinin erityksen modulointi haiman beetasoluista.

Kullakin AMPK:n kolmella alayksiköllää on erityinen rooli AMPK:n vakaudessa ja aktiivisuudessa. Vaikka AMPK:N yleisimmät isoformit, jotka ilmentyvät useimmissa soluissa, ovat α1-, β1- ja γ1-isoformeja, on osoitettu, että α2-, β2-, γ2- ja γ3-isoformit ilmentyvät myös sydämen ja luuston lihaksissa.
Johtuen AMPK:n komponenttien isoformeista, nisäkkäillä on 12 versiota AMPK:sta, joista jokaisella voi olla erilainen kudospaikannus ja erilaiset toiminnot eri olosuhteissa. AMPK:ta säännellään allosterisesti ja translaation jälkeisillä muokkauksilla, jotka toimivat yhdessä. Jos AMPK:n alfa-alayksikön tähde T172 fosforyloidaan, AMPK aktivoituu; fosfataasien pääsy tähän jäännökseen estetään, jos AMP tai ADP voivat estää pääsyn ja ATP voi syrjäyttää AMP:n ja ADP:n.

AMPK:ta säätelee allosterisesti enimmäkseen kilpaileva sitoutuminen gamma-alayksikköön ATP:n (joka sallii fosfataasipääsyn T172: een) ja AMP:n tai ADP:n (joista kukin estää pääsyn fosfataaseihin) välillä.

Näin ollen näyttää siltä, että AMPK on AMP / ATP- tai ADP / ATP-suhteiden ja siten solujen energiatason anturi.

On eräitä aineenvaihduntamekanismeja, joilla insuliini, leptiini ja diasyyliglyseroli estävät AMPK: ta indusoimalla erilaisia muita fosforylaatioita. AMPK:ta voidaan estää tai aktivoida erilaisilla kudosspesifisillä ubikitinaatioilla. Sitä säätelevät myös useat proteiini-proteiini-vuorovaikutukset, ja hapettavat tekijät voivat joko aktivoida tai estää niitä. Kun AMPK fosforyloi asetyyli-CoA-karboksylaasi 1: tä (ACC1) tai sterolia säätelevää elementtiä sitovaa proteiinia 1c (SREBP1c), se estää rasvahappojen, kolesterolin ja triglyseridien synteesiä ja aktivoi rasvahappojen saannin ja β-oksidaation. AMPK stimuloi glukoosinottoa luurankolihassa fosforyloimalla Rab-GTPaasia aktivoivan proteiinin TBC1D1, joka lopulta indusoi GLUT1-rakkuloiden fuusion plasmamembraaniin. AMPK stimuloi glykolyysiä aktivoimalla 6-fosfofrukto-2-kinaasi / fruktoosi-2,6-bisfosfataasi 2/3: n fosforylaation ja aktivoimalla glykogeenifosforylaasin fosforylaation, ja se estää glykogeenisynteesiä estävän fosforyylin kautta

Monet luurankolihasten biokemialliset muutokset, jotka tapahtuvat yhden harjoittelun tai pitkittyneen harjoittelun aikana, kuten lisääntynyt mitokondrioiden biogeneesi ja kapasiteetti, lisääntynyt lihasten glykogeeni ja lisääntynyt entsyymien erikoistuminen glukoosinottoon soluissa, kuten GLUT4 ja heksokinaasi II, ovat todennäköisesti ainakin osittain AMPK:n aktivaation välittämiä tapahtumia.

AMPK:lla on keskeinen rooli liikunnan / treenattujen lihassolujen verenkierron lisäämisessä stimuloimalla ja vakauttamalla sekä vaskulogeneesiä että angiogeneesiä.

Yhdessä nämä muutokset ilmenevät todennäköisesti sekä väliaikaisen että ylläpidetyn AMPK-aktiivisuuden lisääntymisen seurauksena, jonka AMP : ATP-suhteen nousu aiheuttaa yksittäisten liikuntajaksojen ja pitkäaikaisen harjoittelun aikana.

Yhden akuutin harjoittelun aikana AMPK antaa supistuvien lihassolujen sopeutua energiahaasteisiin lisäämällä heksokinaasi II: n ilmentymistä, GLUT4:n translokaatiota plasmakalvoon, glukoosinottoa ja stimuloimalla glykolyysiä. Jos liikunta jatkuu pitkitettynä harjoituksena, AMPK ja muut signaalit helpottavat lihasten adaptoitumista sopeuttamalla lihassolujen aktiivisuuden aineenvaihdunnan muutokseen, mikä johtaa rasvahappojen hapettumisen kautta muodostuvaaan ATP:hen glykolyysin sijaan.

AMPK saavuttaa siirtymisen oksidatiiviseen metaboliaan säätelemällä ja aktivoimalla oksidatiivisia entsyymejä, kuten heksokinaasi II, PPARalpha, PPARdelta, PGC-1, UCP-3, sytokromi C ja TFAM. AMPK-aktiivisuus kasvaa liikunnan seurauksena ja LKB1 / MO25 / STRAD-kompleksia pidetään 5′-AMP-aktivoidun proteiinikinaasin tärkeimpänä ylävirran AMPKK:na. Tämä on hämmentävä ilmiö, kun otetaan huomioon, että vaikka AMPK-proteiinien määrä kasvaa luukudoksessa kestävyysharjoittelun vaikutuksesta, niiden aktiivisuus vastaavasti laskee kestävyysharjoittelun seurauksena.

On mahdollista, että on olemassa suora yhteys kestävyysharjoitettujen luurankolihasten havaitun AMPK-aktiivisuuden vähenemisen ja kestävyysharjoitteluun liittyvän AMPK-vasteen ilmeisen vähenemisen välillä.

Yksi keskeisistä reiteistä AMPK:n rasvahappojen hapettumisen säätelyssä on asetyyli-CoA-karboksylaasin fosforylaatio ja inaktivaatio. Asetyyli-CoA-karboksylaasi (ACC) muuntaa asetyyli-CoA n malonyyli-CoA:ksi, joka on karnitiinipalmmityylitransferaasi 1:n (CPT-1) estäjä. CPT-1 kuljettaa rasvahapot mitokondrioihin hapetusta varten. ACC: n inaktivointi johtaa siis lisääntyneeseen rasvahappokuljetukseen ja sitä seuraavaan hapettumiseen.

Todennäköisesti malonyyli-CoA:n väheneminen tapahtuu malonyyli-CoA-dekarboksylaasin (MCD) vaikutuksesta, jota AMPK voi säätää. MCD on ACC:n antagonisti dekarboksyloimalla malonyyli-CoA:ta asetyyli-CoA:ksi, mikä johtaa vähentyneeseen malonyyli-CoA:han ja lisääntyneeseen CPT-1:een ja rasvahappojen hapettumiseen.

AMPK: lla on myös tärkeä rooli maksan lipidien aineenvaihdunnassa. On pitkään tiedetty, että maksan ACC:tä on säännelty maksassa fosforylaatiolla. AMPK fosforyloi ja inaktivoi myös 3-hydroksi-3-metyyliglutaryyli-CoA-reduktaasin (HMGCR), joka on kolesterolisynteesin avainentsyymi. HMGR muuntaa 3-hydroksi-3-metyyliglutaryyli-CoA:n, joka on valmistettu asetyylikoentsyymi-A:sta, mevalonihapoksi, joka sitten kulkee useita muita metabolisia vaiheita kolesteroliksi.

AMPK auttaa säätelemään rasvahappojen hapettumista ja kolesterolisynteesiä. Insuliini on hormoni, joka auttaa säätelemään elimistön glukoosipitoisuutta. Kun verensokeri on korkea, insuliinia vapautuu Langerhansin saarekkeiden beetasoluista. Insuliini muun muassa helpottaa glukoosin imeytymistä soluihin lisäämällä glukoosinkuljettaja GLUT-4:n ilmentymistä ja siirtymistä.

AMPK ja kilpirauhashormoni säätelevät eräitä samanlaisia prosesseja. Nämä yhtäläisyydet tuntien Winder ja Hardie et al. suunnittelivat kokeen selvittääkseen, vaikuttiko kilpirauhashormoni AMPK: hon. He havaitsivat, että kaikki AMPK:n alayksiköt lisääntyivät luurankolihaksissa kilpirauhashormonihoidolla. Myös fosfo-ACC: n, AMPK-aktiivisuuden markkerin, määrä lisääntyi.

AMPK:n häviämisen on raportoitu muuttavan glukoosia tunnistavien solujen herkkyyttä huonosti tunnettujen mekanismien kautta. AMPKα2-alayksikön menetys haiman beetasoluissa ja hypotalamuksen neuroneissa vähentää näiden solujen herkkyyttä solunulkoisen glukoosipitoisuuden muutoksille.

Altistuminen toistuville insuliinin aiheuttamille hypoglykemioille laski AMPK:n aktivaatiota hypotalamuksessa ja samalla esti hypoglykemian vasta-ainevasteen rottakokeissa.

AMPK säätyy lysosomeissa useiden kliinisesti merkittävien järjestelmien kautta. Näihin sisältyy AXIN – LKB1 -kompleksi, joka toimii vasteena AMP-tunnistuksesta riippumatta toimiviin glukoosirajoituksiin, joka tunnistavat matalan glukoosin fruktoosi-1,6-bisfosfaatin puuttumisena dynaamisen vuorovaikutussarjan kautta kosketuksissa olevien lysosomaalisesti lokalisoidun V-ATPaasi-aldolaasin välillä.

Toinen lysosomeihin lokalisoitu AMPK-ohjausjärjestelmä riippuu Galectin-9-TAK1-järjestelmästä ja ubikvitinaatiovasteista kontrolloiduilla deubikitinoivilla entsyymeillä, kuten USP9X, mikä johtaa AMPK:n aktivaatioon vasteena lysosomaalisille vaurioille.

Nämä lysosomaaliset vauriot voivat ilmentyä biokemiallisesti ja fyysisesti proteiiniaggregaattien, kuten proteopaattisten tau-proteiinien kautta Alzheimerin taudissa, kiteisinä piidioksideina, jotka aiheuttavat silikoosia, kolesterolikiteinä, jotka aiheuttavat inflammaatiota NLRP3-tulehduksen kautta ja kihtiin liittyvinä uraattikiteinä, tai mikrobien hyökkäyksen aikana, kuten Mycobacterium tuberculosis-infektiossa ja koronavirus-infektiossa.

[62] Molemmat yllä mainitut lysosomaalisesti lokalisoidut AMPK:ta säätelevät järjestelmät aktivoivat vasteena metformiinille, laajalti määrätylle diabeteslääkkeelle. Jotkut todisteet osoittavat, että AMPK:lla voi olla rooli kasvaimen tukahduttamisessa. Tutkimukset ovat osoittaneet, että AMPK voi käyttää suurinta osaa tai jopa kaikkia maksakinaasi B1:n (LKB1) tuumoria tukahduttavista ominaisuuksista. Lisäksi tutkimuksissa, joissa AMPK-aktivaattori metformiinia käytettiin diabeteksen hoitoon, havaittiin korrelaatio vähentyneeseen syöpäriskiin verrattuna muihin lääkkeisiin.

Hiirillä, joilla ei ollut AMPK:ta ilmentävää geeniä, oli kasvanut riski lymfoomien kehittymiselle. Toisaalta jotkut tutkimukset ovat tulkinneet AMPK:n kasvaimen promoottorina, joka suojaa pahanlaatuisia syöpäsoluja. Vaikuttaa siltä, että AMPK voi kääntää takkia syöpäsolujen kohdalla. Kun syöpäsolut ovat muodostuneet organismiin, AMPK alkaakin suojaamaan organismin solujen sijaan pahanlaatuisia syöpäsoluja.

Ei ole suoraa näyttöä siitä, että AMPK:n estäminen olisi tehokas syöpähoito ihmisillä. AMPK:n näennäisesti paradoksaalinen rooli syövän puolustajana/promoottorina toteutuu, kun tarkastelemme lähemmin energiaa tunnistavaa entsyymiä suhteessa liikuntaan ja pitkäaikaiseen harjoitteluun.

Lyhytaikaisen akuutin harjoitusasteikon tavoin pitkäaikaiset kestävyysharjoittelututkimukset paljastavat myös oksidatiivisten metabolisten entsyymien, GLUT-4:n, mitokondrioiden koon ja määrän lisääntymisen ja lisääntyneen riippuvuuden rasvahappojen hapettumisesta. – Wikipedia

4. Ketogeeninen ruokavalio ja amyotrofinen lateraaliskleroosi

Amyotrofinen lateraaliskleroosi, ALS ( sclerosis lateralis amyotrophica) eli Lou Gehrigin tauti tai motoneuronitauti (engl. Motor neuron disease, MND) on etenevä motoneuronisairaus, joka rappeuttaa sekä ylempiä että alempia liikehermoja.

ALS aiheuttaa etenevää rappeutumista liikehermosoluissa, jotka ohjaavat tahdosta riippuvien lihasten toimintaa. ALS:n pääasiallisia oireita ovat lihasten jäykkyys, lihasnykäykset ja asteittain pahentuva lihasten heikentyminen niiden koon pienentyessä.

Tämä johtaa vaikeuksiin puhumisessa, nielemisessä, liikkumisessa ja lopulta hengittämisessä. Sairaus ei vaikuta näköön tai kuuloon eikä haju-, maku- tai tuntoaisteihin. Myös sydän, verenkierto sekä ruoansulatus ja eritysjärjestelmät säilyvät vahingoittumattomina.

Kun sairaus on pitkälle edennyt, potilas ei kykene tekemään juuri mitään ilman ulkopuolista apua; jossain vaiheessa joudutaan tukeutumaan hengityskoneeseen, tarjoamaan potilaalle pillillä imettävää nestemäistä ruokaa tai antamaan ruoka PEG-letkun kautta ja auttamaan tätä kaikissa arkipäivän toimissa. Kuoleman aiheuttaa hengityslihasten heikkous.

Sairaus on harvinainen ja parantumaton. Sairauden aiheuttajaa ei toistaiseksi tunneta. Sairausprosessia on todennäköisesti käynnistämässä usean tekijän vuorovaikutus. – Wikipedia

ALS

Amyotrofinen lateraaliskleroosi (ALS) on progressiivinen neurodegeneratiivinen sairaus, joka vaikuttaa selkärangan ja aivokuoren motorisiin hermosoluihin, mikä johtaa lihasten progressiiviseen heikkenemiseen ja luurankolihasten toimintakyvyn menetykseen.

Tautiin sairastuvat henkilöt kuolevat keskimäärin 2–5 vuoden kuluessa oireiden ilmaantumisesta. Kuolema tapahtuu yleensä hengityshalvauksesta. Tällä hetkellä ALS:lle ei tunneta tehokasta hoitoa.

Ainoa Yhdysvaltain FDA:n hyväksymä farmakologinen hoito rajoittuu rilutsoliin, joka vaikuttaa vain vähän taudin etenemisen ja pidentää elinaikaa vain 2-3 kuukaudella [41]. ALS:n syyt ovat monimutkaisia ja monitekijäisiä. Niihin sisältyy geneettiset tekijät ja ympäristömuuttujat:

  • elimistön oksidatiiviset vauriot,
  • neurofilamenttien kertyminen soluihin,
  • eksitotoksisuus, joka liittyy glutamaattimetabolian häiriöön ja
  • mitokondrioiden kalvojen toimintahäiriöt

ovat eräitä oletettuja taudin kehittymiseen vaikuttavia tekijöitä [42–44]. Muiden hermosoluja rappeuttavien neurodegeneratiivisten häiriöiden tapaan mitokondrioiden todennäköinen vaikutus ALS:n patogeneesiin tekee ketogeenisestä ruokavaliosta lupaavan synergisen työkalun ALS: n hoitoon [45].

Mitokondrioiden yhteys

Noin 10%:lla ALS-potilaista sairaus on perinnöllinen (familiaalinen amyotrofinen skleroosi FALS) ja joka viidennellä FALSia sairastavalla on mutaatio geenissä, joka koodaa entsyymiä Cu / Zn superoksididismutaasi 1 (SOD1) [46]. Tämä mutaatio liittyy mitokondrioiden aktiivisuuteen; itse asiassa juuri mutantti SOD1 on lokalisoitu mitokondrioita sitovaan bcl2:een (solun antiapoptoottinen proteiini) [47].

Lisäksi mitokondrioiden kompleksin I aktiivisuuden heikkeneminen on mitattu ALS-potilaiden luurankolihaksissa ja selkäytimissä [48]. Tulokset osoittavat, että ketoaineet voivat vaikuttaa mitokondrioiden toimintaan palauttamalla esimerkiksi kompleksin I toiminnan farmakologisen eston jälkeen. Lisäksi viljellyissä hermosoluissa, joita hoidetaan farmakologisilla aineilla, jotka estävät kompleksin I, ketoaineiden lisäys palauttaa kompleksin toiminnan [49].

Tutkijat osoittivat hiljattain, että ALS-hiirimallissa ketogeeninen ruokavalio johti korkeampaan motoristen hermosolujen eloonjäämiseen ja parempaan motoriseen toimintaan verrattuna hiiriin, jotka eivät saaneet KD-ruokaa [50]. Tutkimuksissa on myös havaittu, että ketoaineiden lisäys (kapryylihappo) paransi mitokondrioiden toimintaa ja motoristen hermosolujen määrää ALS-hiirimallissa [51].

Tutkijat selittivät nämä tulokset DHB:n neuroprotektiivisella vaikutuksella. Lisäksi he arvelivat, että hyperketonemia saattaa parantaa mitokondrioiden vikoja lisäämällä mitokondrioiden energian ja ATP-molekyylien tuotantoa (mitattuna puhdistetuissa mitokondrioissa ALS-hiirimallista). On huomattava, että kummassakaan tutkimuksessa hiirien eloonjääminen ei lisääntynyt merkittävästi.

Ketogeenisen ruokavalion aikana ruokavalion rasvojen prosenttiosuus oli erittäin korkea (60%). Tämä voi selittää energia-aineenvaihdunnan havaitut ja mitatut parannukset.

Kolesteroli ja fosfolipidit ovat välttämättömiä aksonikalvojen terveydelle ja perifeeristen hermokalvojen vamman korjauksille. Erityisen tärkeitä ovat pienitiheyksiset lipoproteiinit [52].

Eräät epidemiologiset havainnot viittaavat siihen, että hyperlipidemia on merkittävä ALS-potilaiden elinajanodotetta lisäävä tekijä [53]. Paganoni et al. [54], osoitti kuitenkin UI-muotoisen yhteyden painoindeksin ja kuolleisuuden välillä, sekä suuremman eloonjäämistodennäköisyyden potilailla, joilla oli korkeampi painoindeksi (BMI: 30–35). Tässä tutkimuksessa dyslipidemia ei osoittanut riippumattomasti potilaan parempaa ennustetta.

Wills et al. [55] osoittivat äskettäin, että potilailla, jotka saivat runsaasti energiaa / runsaasti hiilihydraatteja sisältävää ravintoa, oli vähemmän haittatapahtumia ja kuolemantapauksia kuin runsaasti rasvaa / paljon kaloreita sisältävässä ryhmässä tai kontrolliryhmässä.

Nämä ilmeisen ristiriitaiset tulokset kuvaavat ALS:n monimutkaista luonnetta. Taudin ennusteessa on tosin joitain yhteisiä piirteitä: suurempi kalorien saanti näyttää parantavan selviytymistä ALS-potilailla, vaikka kolesterolin ja parempien olosuhteiden välillä ei ole löydetty täsmällisiä suhteita.

Insuliini lisää ndogeenisen kolesterolin tuotantoa, mikä vähentää eksogeenistä kolesterolia [4]. Siten runsaasti hiilihydraatteja sisältävä ruokavalio voi olla hyödyllinen kolesterolin tuotannon lisäämiseksi. Korkean energiapitoisuuden hiilihydraattipainotteisen ruokavalion positiivisia vaikutuksia voitaisiin soveltaa vuorotellen korkean rasvapitoisuuden (runsaasti voita [56]) ketogeenisen ruokavalion kanssa joissakin ALS-tyypeissä (SOD1), mutta ei RNA-prosessointihäiriöihin liittyvissä. (TDP43, FUS ja C9orf72).

Lisää kontrolloituja satunnaistettuja tutkimuksia tarvitaan ravitsemuksen ja ketogeenisen ruokavalion täsmällisempien menetelmien tutkimiseksi ALS-terapiana.

5. Mitokondrioiden häiriöt ja ketogeeninen ruokavalio

Edellisessä osassa viittasimme mitokondrioiden rooliin neurologisessa sairaudessa, kuten ALS. On yhä enemmän todisteita siitä, että ketogeeninen ruokavalio voi parantaa mitokondrioiden toimintaa ja stimuloida mitokondriogeneesiä [57–60].

Kuten Wallace ja hänen kollegansa ovat todenneet,

”Ironista kyllä, yksi vanhimmista terapeuttisista lähestymistavoista – paasto ja ketogeeninen ruokavalio – on edelleen lupaavin hoito mitokondrioiden häiriöissä” [61].

Itse asiassa, vaikka ketogeeninen ruokavalio on terapeuttinen työkalu, joka tunnetaan 20-luvulta lähtien, sen vaikutukset mitokondrioihin ovat suhteellisen tuore tutkimushavainto.

Jotkut mitokondrioiden häiriöt voivat aiheuttaa kohtauksia, joilla on erilaisia epileptisia fenotyyppejä [62]. Ketogeenisen ruokavalion vaikutuksista mitokondriopatioihin on joitain rohkaisevia tietoja.

Kang et al. [63] osoitti, että ketogeeninen ruokavalio voisi olla turvallinen ja tehokas hoito, joka vähentää kohtauksia lapsilla, joilla on vaikeasti hoidettava epilepsia ja erilaisia hengityskompleksihäiriöitä (kompleksi I, II, IV tai yhdistetty).

Ahola-Erkkilä ym. [64] ovat hoitaneet ketogeenisellä ruokavaliolla myöhään alkavan mitokondrioiden myopatian hiirimallia. Mitokondrioiden myopatian tiedetään aiheuttavan ihmisillä autosomaalisesti hallitsevaa progressiivista oftalmoplegiaa, lisäävän lihasheikkoutta ja mitokondrioiden mtDNA-vaurioita sekä sytokromi c-oksidaasi-negatiivisia lihaskuiduituja.

Ketogeeninen ruokavalio vähensi sytokromi c-oksidaasi-negatiivisten lihaskuitujen määrää ja esti mitokondrioiden ultrastruktuuristen poikkeavuuksien muodostumisen lihaksessa. Ruokavalio paransi suurimman osan metabolisista ja lipidoomisista poikkeavuuksista, mutta ei vaikuttamalla mtDNA:han, vaan lisäämällä mitokondrioiden biogeneesiä.

Kolikolla on kaksi puolta

Vaikka ketogeeninen ruokavalio voi olla terapeuttinen työkalu monissa mitokondriopohjaisissa sairauksissa, se on kontraindikatorinen (vasta-aiheinen; kontraindikatorinen menetelmä estää jonkin hoidon tai tutkimuksen soveltamisen, koska voi laukaista toisen häiriön tai sairauden).

Rasva-aineenvaihduntasairaudesta kärsivät potilaat saattavat kokea ketogeenisellä ruokavaliolla vakavan katabolisen kriisin. Synnynnäiset virheet lipidien aineenvaihduntaan liittyvissä entsyymeissä: mitokondrioiden kalvon pitkäketjuisten rasvahappojen kuljetusmekanismista beeta-hapetukseen ja Krebsin sykliin voivat olla kohtalokkaita paaston tai ketogeenisen ruokavalion aikana. Potilaan karnitiinipuutos, karnitiinipalmitoyylitransferaasin (CPT) I tai II puutos, karnitiinitransokaasipuutos, beta-oksidaation virheet tai pyruvaattikarboksylaasipuutos tulisi seuloa ennen ketogeenisen ruokavalio-terapian aloittamista. Ketogeeninen ruokavalio voi pahentaa myös akuuttia ajoittaista porfyriaa sairastavien potilaiden tilaa [65].

6. Alzheimerin tauti (AD) ja ketogeeninen ruokavalio

Alzheimerin tauti (AD) on yleisin neurodegeneratiivinen sairaus ja ikääntyneen väestön johtava dementian syy. AD-oireet ovat yleensä kognitiivisia häiriöitä, joihin liittyy progressiivisia muistivajeita ja persoonallisuuden muutoksia.

Alzheimer-potilaiden kognitiivisen taantumisen syyt johtuvat etenevästä synaptisesta toimintahäiriöstä ja sen aiheuttamasta hermosolujen surkastumisesta. Hermosolujen atrofiaa tapahtuu monilla aivojen alueilla: lähinnä neokorteksissa, limbisessä järjestelmässä ja aivokuoren alapuolisilla alueilla [66].

Hippokampus on ketogeenisen ruokavalion spesifinen kohde

McDaniel et al. osoitti, että kainihappo-indusoidussa status epilepticus -rottamallissa ketogeeninen ruokavalio esti mTOR-reitin signalointia aivoissa estäen hippokampuksen myöhäisen mTOR-aktivaation kainihappo-indusoidun status epilepticuksen jälkeen [59].

Kaiinihappo on voimakas neurotoksinen aminohapon agonisti , joka toimii aktivoimalla glutamaatti-reseptoreita. Glutamaatti on pääasiallinen eksitatorinen välittäjäaine keskushermostossa. Glutamaattireseptoreihin on neljä pääluokkaa:

– NMDA-reseptorit,
– AMPA-reseptorit,
– kainaattireseptorit ja
– metabotrooppiset glutamaattireseptorit

Kainiinihappo on kainaattireseptoreiden agonisti. Kainaattireseptorit kontrolloivat todennäköisesti natriumkanavaa, joka tuottaa viritystä aiheuttavia postsynaptisia potentiaaleja (EPSP), kun glutamaatti sitoutuu.

Hippokampuksen neuroneilla on kriittinen rooli oppimisessa ja muistin toiminnassa. Ne ovat erityisen alttiita Alzheimerin taudin aiheuttamille häiriöille ja rappeutumiselle.

AD on luokiteltu kahteen päämuotoon: familiaalinen AD (FAD) ja satunnainen AD (SAD) tai myöhään alkava ikääntymiseen liittyvä AD (LOAD); jälkimmäinen on dementian johtava syy, joka selittää yli puolet kaikista tapauksista. Melkein kaikki FAD-tapaukset johtuvat mutaatiosta kolmessa geenissä (amyloidin esiasteproteiini APP, preseniliini 1 PSEN1 ja preseniliini 2 PSEN2 [67]),

SAD:n tarkkaa etiologiaa ei ymmärretä vielä täysin. Tiedetään, että ikä on suurin riskitekijä. Alzheimerin taudin riski kasvaa eksponentiaalisesti iän myötä 65-vuotiailla tai sitä vanhemmilla ihmisillä [68].

Ikääntymisen tiedetään vaikuttavan yhdessä muiden tekijöiden kanssa. Näitä ovat:

(1) apolipoproteiini E:n (Apo E) alleelivaihtelut
(2) anatomisten reittien rappeutuminen,
(3) mitokondrioiden toimintahäiriöt,
(4) vaurioitunut veri-aivoeste,
(5) immuunijärjestelmän toimintahäiriöt,
(6) tartuntataudit ja muut ympäristötekijät, kuten altistuminen alumiinille,
(7) toistuvaT pään vammat ja
(8) aliravitsemus [69]

Kuten monissa muissakin kroonisissa sairauksissa, myös Alzheimerin taudissa hoidot voidaan jakaa kahteen luokkaan:

(A) oireenmukaiset hoidot (jotka tarjoavat tilapäistä oireiden lieventämistä muuttamatta taudin etenemistä) ja

(B) hoidot, jotka voivat mahdollisesti muuttaa taudin patogeneesiä (hidastaa tai pysäyttää taudin etenemiseen liittyviä neurologisia vaurioita)

Huolimatta joistakin FDA:n hyväksymistä lääkkeistä, kuten asetyylikoliiniesteraasin estäjistä ja memantiinista (glutamaattiantagonisti, jota käytetään käyttäytymisoireiden lieventämiseen taudin kohtalaisessa vaiheessa), tällä hetkellä ei ole olemassa tehokasta hoitoa AD:n estämiseksi, hidastamiseksi tai parantamiseksi. Suurin osa hyväksytyistä lääkkeistä tarjoaa vain kohtalaisen oireellisen vaikutuksen [70, 71].

Muiden sairauksien osalta tehokkaiden hoitojen kehittämistä vaikeuttaa AD-etiologian puutteellinen tuntemus [71] siitäkin huolimatta, että ”amyloidikaskadin” hypoteesia on tutkittu laajasti. Tämä patogeneettinen hypoteesi perustuu β-amyloidin (Aβ) neurotoksisiin ominaisuuksiin ja sen soluihin kumuloitumiseen liittyvään neurotoksisten tapahtumien kaskadin käynnistämiseen. Neurodegeneratiiviseen prosessiin lukeutuvat tunnettujen neurofibrillaaristen vyyhtien (NFT) muodostumisen lisäksi myös krooniset tulehdusreaktiot, oksidatiivisen stressin lisääntyminen ja lopuksi mitokondrioiden toimintahäiriö [71].

Alzheimerin taudin kaksi päätyyppiä johtuvat erillisistä proteiineista: tau neurofibrillaaristen vyyhtien aiheuttajana on tau-proteiini ja amyloidiplakkien tapauksessa aiheuttajana on amyloidi-β-proteiini.

Kuten edellä mainittiin, FAD:lle ja SAD:lle ei tunneta yhtenäistä etiopatogeenista mekanismia. Jälkimmäisestä on saatu havaintoja, jotka viittaavat siihen, että amyloidi-β-proteiinin ja NFT:n väheneminen toimivat yhdessä aiheuttaen mitokondrioiden toiminnan heikkenemistä ja muuttaen aivojen metabolista aktiivisuutta ikääntymisprosesseihin liittyen.

Ottaen huomioon ikääntymisprosessin ja Alzheimerin taudin välisen vahvan yhteyden ja ketogeenisen ruokavalion positiiviset vaikutukset ikääntyvissä aivoissa [72], sekä Alzheimerin taudin monitekijäisen luonteen (mitokondrioiden ja aineenvaihdunnan toimintahäiriöt), on vakuuttavaa näyttöä hypoteesille, jonka mukaan ketogeenisen ruokavalion noudattaminen AD-terapiana tuottaa myönteisiä fysiologisia, metabolisia ja kognitiivisa hoitovasteita potilailla [73, 74].
Esimerkiksi in vitro -tutkimus on osoittanut, että beeta-hydroksibutyraatin (ketoaine) lisääminen suojaa hippokampuksen hermosoluja Aβ -toksisuudelta. Tämä viittaa ketogeenisen ruokavalion mahdollisiin terapeuttisiin hyötyihin Alzheimerin tautiin liittyvissä mitokondrioiden toimintahäiriöissä [75].

Toisaalta eläinkokeet ovat antaneet osin ristiriitaisia tuloksia:

Van der Auwera et al. [76] osoitti Aβ: n vähenemistä nuorten 1,5 kk KD:lla syötettyjen siirtogeenisten AD-hiirten aivoissa, kun taas ikääntyneille koirille KD:n vaikutus näytti rajoittuneen aivojen parietaaliseen lohkoon [77].

Eläinkokeissa ketoniestereitä sisältävä pitkäaikainen (8 kuukautta) ruokinta keski-ikäisillä (8,5 kuukauden ikäisillä) hiirillä paransi hiirten kognitiota ja Aβ- ja tau-patologiaa [75]. Beckett et al. [78] osoitti, että AD-hiirimalli, jossa hiiriä ruokittiin runsaasti rasvaa ja vähän hiilihydraatteja sisältävällä ketogeenisellä ruokavaliolla, johti AD-hiirten parantuneisiin motorisin toimintoihin ilman muutoksia Aβ:ssä.

Eläinkokeiden keskenään ristiriitaiset tulokset voivat johtua eläinten iästä: hiiret ovat useimmiten nuoria tai keski-ikäisiä, mutta aineenvaihdunnan muutoksia esiintyy toistuvasti pääasiassa vanhuksilla.

Alzheimerin tauti liittyy myös metaboliseen dysregulaatioon ja insuliiniresistenssiin [79]. Monet tutkijat ovat osoittaneet, että ketogeeninen ruokavalio voi merkittävästi parantaa glukoosin homeostaasia vähentämällä aineenvaihdunnan häiriöitä ja insuliiniresistenssiä [80–82].

AD:ssä on toinen patofysiologinen mekanismi, joka johtuu muuttuneesta mitokondrioiden toiminnasta ja glukoosimetaboliasta: edistyneiden glykaation lopputuotteiden (AGE) kertyminen [83].

Huolimatta siitä, että AGE:n kertyminen soluihin ja kudoksiin on normaali ikääntymisen ominaisuus, tämä prosessi kiihtyy Alzheimerin taudissa. Glykaation lopputuotteita löytyy myös amyloidiplakeista ja neurofibrillaarisista punoksista. AGE-arvojen nousu voi selittää Alzheimerin taudin monia neuropatologisia muutoksia (proteiinien silloittuminen, oksidatiivisen stressin gliaalinen induktio ja hermosolujen surkastuminen ja kuolema).

Voidaan spekuloida, että ketogeenisen ruokavalion hermosoluja suojaavat neuroprotektiiviset vaikutukset ja ketogeeniseen ruokavalioon liittyvä glykeemisen kuorman väheneminen vaikuttavat suotuisasti Alzheimerin taudissa. Toinen mielenkiintoinen hypoteesi on ketogeenisen ruokavalion arvioidut vaikutukset mitokondriogeneesiin yhdessä mitokondriokoneiston parantamisen kanssa [61, 72, 74, 84–86].

Kuten aiemmin todettiin, mitokondrioiden toimintahäiriöiden uskotaan liittyvän Alzheimerin taudin etiologiaan [72]. Iäkkäillä potilailla on havaittu selvää hermo- ja gliasolujen mitokondrioiden metabolian heikkenemistä verrattuna terveisiin nuoriin koehenkilöihin [87]. Tämä toimintahäiriö, joka liittyy mitokondrioiden glukoosi / pyruvaattihapetuksen heikentyneeseen energiantuotantoon, voi parantaa Aβ :n ja tau:n patologista kerrostumista. Heikentynyttä mitokondrioiden toimintaa voi edustaa lisääntynyt superoksidituotanto hapettumisvaurioiden vasteena, oksidatiivisen fosforylaation väheneminen ja näin ollen mitokondrioiden elektronikuljetusketjun heikkeneminen.

Muut AD: lle ominaiset glukoosimetaboliset häiriöt aivojen tietyissä osissa liittyvät mitokondrioiden toimintahäiriöihin [88]. On mielenkiintoista huomata, että aikaisempi vähentynyt glukoosin hyödyntäminen energiasubstraattina voidaan havaita FDG-PET:llä kognitioon liittyvissä kokeissa henkilöillä, joilla on tunnettu AD-historia [89].

On luultavaa, että alentunut aivojen glukoosin käyttö (hermosolujen heikentynyt glukoosinotto) edistää AD-neuropatologian kehittymistä. Aivojen glukoosimetabolian varhainen heikkeneminen voidaan havaita ennen mitattavissa olevaa kognitiivista heikkenemistä [90]. Muut todisteet tukevat tätä teoriaa, kuten alentunut pitoisuus glukoosin kuljettajia (GLUT 1 ja 2, mutta myös hermosolujen glukoosi kuljettaja GLUT 3). Alzheimerin taudissa aivoissa todettava tau-taudin hyperfosforylaatio liittyy tähän ilmiöön [91].

Aivojen aineenvaihdunnan muutos glukoosista ketogeenisen ruokavalion tuottamiin ketoaineisiin [17] on tehokas hoitomuoto tyypin I glukoosinkuljettajapuutosoireyhtymässä [92]. Ketogeeninen ruokavalio voi olla toimiva terapiavaihtoehto myös GLUT-kuljettajien puutteen aiheuttamaan hermosolujen rappeutumiseen Alzheimerin taudissa [73].

Lopuksi: vaikka suoraa näyttöä ketogeenisen ruokavalion terapeuttisista hyödyistä Alzheimerin taudin hoidossa ei ole, tämä ravitsemuksellinen lähestymistapa näyttää lupaavalta ja ansaitsee siten laajemmat kliiniset tutkimukset.


7. Parkinsonin tauti ja ketogeeninen ruokavalio


Sporadisen Parkinsonin taudin (PD) patogeneesi on yhä ratkaisematta. Tutkimukset viittaavat siihen, että ensisijainen syy on dopaminergisten* hermosolujen eksitotoksinen rappeutuminen
substantia nigrassa, mikä johtaa motoriikan heikentymiseen ja lisääntyvässä määrin kognition alentumiseen sekä muihin kortikaalisen toiminnan häiriöihin.

*Dopaminerginen: autonomisen hermoston hermosoluista dopamiinia erittävä tai sen välityksellä stimuloituva; 2. (aineista) dopamiinin tavoin vaikuttava

Dopamiinia sisältäviä neuroneja on runsaasti erityisesti keskiaivoissa substantia nigran ja tegmentumin tienoilla. Näiden aksonit haarautuvat laajalle alueelle. Aivoissa on neljä dopaminergista päärataa: mesokortikaalinen, mesolimbinen, nigrostriataalinen ja tuberoinfundibulaarinen.

Nigrostriataalisen radan tuhoutuessa ilmentyy Parkinsonin tauti. Skitsofrenian ajatellaan johtuvan mesokortikaalisen ja mesolimbisen radan dopamiinin D2-reseptorien ylistimuloitumisesta.

Mitokondrioiden toiminnan heikentymisellä, johon liittyy substantia nigra (mustatumake), on merkittävä rooli Parkinsonin taudin kehittymisessä ja etenemisessä [94].

Kashiwaya et al. käytti heroiinianalogia 1-metyyli-4-fenyylipyridiniumia, MPP (+), joka tuottaa dopaminergisten substantia nigran eli mustatumakkeen -solujen kuoleman estämällä mitokondrioiden NADH-dehydrogenaasien monientsyymikompleksin. Tämä aiheuttaa samanlaisen oireyhtymän kuin Parkinsonin tauti viljellyissä mesenkefaalisissa neuroneissa. β-hydroksibutyraatti suojasi näitä hermosoluja MPP (+) – toksisuuden aiheuttamalta neurodegeneraatiolta [74].

Eläinmalleissa 1-metyyli-4-fenoli-1,2,5,6-tetrahydropyridiiniä (MPTP) käytetään tuottamaan ihmisen Parkinsonin taudin kaltaista oireyhtymää jäljittelevä dopaminergisten hermosolujen selektiivinen tuhoaminen mustatumakkeessa. Kuten edellä mainituissa sairauksissa, ketogeenisen ruokavalion positiiviset vaikutukset mitokondrioiden toimintaan voivat olla avaintekijä tällaisen ruokavalion terapiakäytössä, koska ketonit voivat ohittaa Parkinsonin taudin aiheuttaman kompleksin I aktiivisuuden puutteen.

Hiirikokeissa β-hydroksibutyraatin infuusio suojasi hiiriä MPTP:n aiheuttamalta dopaminergiseltä hermoston rappeutumiselta ja motorisilta häiriöiltä [49]. Lisäksi ketogeeninen ruokavalio suojasi mustatumakkeen dopaminergisiä neuroneja 6-hydroksidopamiinin neurotoksisuudelta Parkinsonin taudin rottamallissa [95].

VanItaille et al. [96] osoitti, että ihmisillä, jotka pystyvät valmistamaan ”hyperketogeenisen” ruokavalion kotona ja noudattamaan sitä 28 päivän ajan, korkea ketoaineiden pitoisuus assosioitui taudin oireiden paranemiseen yhtenäisellä Parkinsonin taudin luokitusasteikolla Unified Parkinson’s Disease Rating Scale).

8. Glykogenoosit ja ketogeeninen ruokavalio

Glykogenoosit (glykogeenin varastointisairaudet, GSD) ovat entsyymivirheistä johtuvia perinnöllisiä häiriöitä, jotka vaikuttavat glykogeenimetaboliaan ja johtavat normaalin tai epänormaalin rakenteen glykogeenin solunsisäiseen kertymiseen erilaisiin solutyyppeihin.

Klassisesti GSD numeroitiin I – VIII niiden löytämisen ja erityisen entsyymivian mukaan [97]. Viime vuosina on tunnistettu muita primaarisia glykogenooseja (GSD 0, GSD IX – XV) [98].

GSD välittyy autosomaalisena resessiivisenä, lukuun ottamatta GSD VIII, joka on X-kytketty. Toiminnallisesta näkökulmasta GSD I, III, IV, VI ja VIII / IXa voidaan ryhmitellä maksan GSD:ksi [99], koska puutteelliset entsyymit ilmentyvät enimmäkseen maksasoluissa. Kun otetaan huomioon maksan keskeinen rooli glykemian säätelyssä glykogenolyysin avulla, ei ole yllättävää, että hypoglykemia on maksan GSD:n pääasiallinen ilmenemismuoto [97, 100]. Tämä puolestaan aiheuttaa neurologisia oireita, jotka vaihtelevat kouristuksista kohtauksiin, varsinkin sairauden alkuvaiheessa. Pitkällä aikavälillä uusiutuva vaikea hypoglykemia voi aiheuttaa aivovaurioita erityisesti GSD I:ssä (von Gierken tauti, G-6-P-fosfataasin puutos), joka on yleisin maksan GSD.

GSD-hoito perustuu ruokavaliohoitoon hypoglykemian estämiseksi. Potilaita ruokitaan tärkkelyspitoisilla elintarvikkeilla ympäri vuorokauden [100, 101]. Tieteellinen perustelu ketogeenisen ruokavalion (KD) mahdolliselle käytölle johtuu varhaisesta havainnosta, jonka mukaan hypoglykemiaan liittyvät oireet paranivat iän myötä GSD:ssä [102] sekä GSD III:ssa [100].
On tunnettua, että tämä sopeutuminen tapahtuu aivoissa sekä paastotilassa että kuumeen aikana [102]. Tämä havainto tulkittiin klassisesti aivoissa tapahtuvien sopeutumisten seurauksena, joka sallii ketoaineiden lisääntyneen käytön polttoainesubstraateina glukoosin sijasta. Sama mekanismi selittää kalorirajoituksen [100] vaikutusta, joka johtaa myös mataliin verensokeritasoihin.

Mekanistinen tulkinta olisi se, että ketogeeninen ruokavalio lisää aivojen energia-aineenvaihdunnan reittien käyttöä riippumatta glykogeenin hajoamisesta. Näiden näkökohtien perusteella ketogeenistä ruokavaliota on käytetty tehokkaasti lihassolujen GSD V:n (McArdlen tauti) hoidossa [103, 104].

Ketogeenisen ruokavalion kouristuksia estävät vaikutukset ovat tunnustetaan yleisesti, vaikka mekanismeja ei ole vielä täysin selvitetty [105]. Ketogeenisen ruokavalion mahdollista käyttöä patologisissa olosuhteissa, joille on tunnusomaista krooninen hypoglykemia, tukee edelleen se, että ketogeeninen ruokavalio on standardi GLUT1-puutosoireyhtymän hoidossa [106]. Tätä voidaan pitää maksan GSD:n metabolisena fenokopiana, koska siinä verensokeria ei voida kuljettaa hermosoluihin.

Tuore tutkimus [107] arveli, että ketogeenistä ruokavaliota voidaan käyttää menestyksekkäästi vakavan GSD III:een liittyvän kardiomyopatian hoidossa. Kaiken kaikkiaan nämä havainnot saattavat kannustaa jatkotutkimuksiin ketogeenisen ruokavalion käytöstä valittujen GSD-muotojen hoidossa.

9. Loppupäätelmä

Ketogeenisen ruokavalion aiheuttamaa erikoista metabolista tilaa on tutkittu laajalti viime vuosina. Ketoaineiden pitoisuuden nousu, verensokerin aleneminen yhdessä monien tärkeiden aineenvaihduntareittien (esim. IGF-1 / AKT / mTor, AMPK / PGC1α) kanssa on osoittautunut potentiaaliseksi terapeuttiseksi aseeksi monia neurologisia ja neuromuskulaarisia sairauksia vastaan.

Nämä tutkimukset tarjoavat teoreettisen perustan ketogeenisen ruokavalion vaikutukselle useissa hermo-lihassairauksissa. Monia korkeita esteitä on kavuttava, ennen kuin näitä löydöksiä voidaan soveltaa laajasti kliiniseen käytäntöön tai kansanterveyden parantamiseen.

Ensinnäkin ketogeenisen ruokavalion tarkasta mekanismista hermo-lihassairauksien terapiana tiedetään edelleen liian vähän, ja toiseksi tällaisen ruokavalion pitkäaikaisia vaikutuksia tulisi tutkia näillä potilailla, huolimatta siitä, että meillä on vain alustavia todisteita ja todisteita, jotka perustuvat lähinnä eläinmalleihin. Saatavilla olevat tiedot osoittavat, että KD:n aineenvaihduntamekanismi joillakin neurologisilla ja hermo-lihassairauksilla voisi olla seuraava:

(1) Tehokas energialähde tietyntyyppisten hermostoa rappeuttavien sairauksien hoidolle, joille on tunnusomaista aivojen fokaalinen hypometabolia. Tällaisia ovat esimerkiksi Parkinsonin ja Alzheimerin taudit. Neuronaaliset solut pystyvät metabolisoimaan ketoaineita glukoosipuutoksen aikana.

(2) Ketonit voivat lisätä ATP-hydrolyysin vaikutusta ja korvata asetyyli-CoA:lla Alzheimerin taudille ominaisen asetyylikoliinin vähenemisen. Glukoosimetaboliaan verrattuna ketonit tuottavat alhaisempia oksidatiivisen stressin tasoja aivoissa yhdessä suuremman soluenergiantuoton ja antioksidanttikapasiteetin kanssa. Lisäksi ketoosi voi lisätä glutationiperoksidaasia hippokampussoluissa ja yleensä vähentää mitokondrioiden ROS-tuotantoa.

(3) Lisää mitokondrioiden biogeneesireittejä (AMPK:n ja PGC1a-reitin aktivoinnin kautta). Mitokondrioiden reittien parantaminen voi auttaa parantamaan aivojen ja hermosolujen aineenvaihduntaa.

(4) Ketoaineet ohittavat ALS:n luurankolihakseen ja selkäytimeen perustuvan mitokondrioiden kompleksin I aktiivisuuden vian. Viljellyissä hermosoluissa, joita hoidetaan farmakologisilla aineilla, jotka estävät kompleksin I, ketoaineiden lisäys palauttaa kompleksin toiminnan.

(5) Vähentää sytokromi-c-oksidaasi-negatiivisten lihassyiden määrää joissakin mitokondrioiden myopatioissa ja estää mitokondrioiden ultrastruktuuristen poikkeavuuksien muodostumisen.

Lopuksi uskomme, että ketogeenistä ruokavaliota tulisi tutkia syvällisemmin sen rohkaisevan potentiaalisen terapiavaikutuksen vuoksi monien hermo-lihas- ja neurodegeneratiivisten sairauksien hoidossa.

Tutkimuskatsauksen irjoittajat toteavat, ettei heillä ole omia lehmiä ojassa tai mitään taloudellisia intressejä. Minulla ketofiilistelevänä multippelisklerootikkona on, mutta tässä toimin lähinnä editorina. Artikkelin julkaisu voi tuottaa mainostuloja joitain senttejä.

Ketogeeninen ruokavalio ei paranna syntyneitä neurologisia ja neuromotorisia vaurioita, mutta on perusteltua uskoa, että se ainakin hidastaa, ellei jopa ehkäise, uusien vaurioiden syntyä. KD ei lupaa ihmettä, mutta se lupaa parempaa kuin mitä tähän asti on ollut tarjolla. Tieto lisääntyy koko ajan. Ketogeenisen ruokavalion stimuloima autofagosytoosi yhdessä neurogeneesin ja neuroplastisuuden kanssa voi ehkä korjata joitain syntyneitä vaurioita pitkällä aikavälillä. Näín toivon.

Viitteet

  1. N. N. Danial, A. L. Hartman, C. E. Stafstrom, and L. L. Thio, “How does the ketogenic diet work? Four potential mechanisms,” Journal of Child Neurology, vol. 28, no. 8, pp. 1027–1033, 2013. View at: Publisher Site | Google Scholar
  2. E. Kossoff, “The fat is in the fire: ketogenic diet for refractory status epilepticus,” Epilepsy Currents, vol. 11, no. 3, pp. 88–89, 2011. View at: Publisher Site | Google Scholar
  3. R. G. Levy, P. N. Cooper, and P. Giri, “Ketogenic diet and other dietary treatments for epilepsy,” Cochrane Database of Systematic Reviews, vol. 3, 2012. View at: Google Scholar
  4. A. Paoli, “Ketogenic diet for obesity: friend or foe?” International Journal of Environmental Research and Public Health, vol. 11, pp. 2092–2107, 2014. View at: Google Scholar
  5. J. C. Mavropoulos, W. S. Yancy, J. Hepburn, and E. C. Westman, “The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study,” Nutrition and Metabolism, vol. 2, article 35, 2005. View at: Publisher Site | Google Scholar
  6. R. J. Klement and U. Kämmerer, “Is there a role for carbohydrate restriction in the treatment and prevention of cancer?” Nutrition & Metabolism, vol. 8, article 75, 2011. View at: Publisher Site | Google Scholar
  7. T. N. Seyfried, J. Marsh, L. M. Shelton, L. C. Huysentruyt, and P. Mukherjee, “Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?” Epilepsy Research, vol. 100, no. 3, pp. 310–326, 2012. View at: Publisher Site | Google Scholar
  8. A. Accurso, R. K. Bernstein, A. Dahlqvist et al., “Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal,” Nutrition and Metabolism, vol. 5, no. 1, article 9, 2008. View at: Publisher Site | Google Scholar
  9. A. Paoli, A. Rubini, J. S. Volek, and K. A. Grimaldi, “Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets,” European Journal of Clinical Nutrition, vol. 67, no. 8, pp. 789–796, 2013. View at: Publisher Site | Google Scholar
  10. A. Paoli, K. Grimaldi, L. Toniolo, M. Canato, A. Bianco, and A. Fratter, “Nutrition and acne: therapeutic potential of ketogenic diets,” Skin Pharmacology and Physiology, vol. 25, no. 3, pp. 111–117, 2012. View at: Publisher Site | Google Scholar
  11. A. Paoli, M. Canato, L. Toniolo et al., “The ketogenic diet: an underappreciated therapeutic option?” La Clinica Terapeutica, vol. 162, no. 5, pp. e145–e153, 2011. View at: Google Scholar
  12. C. E. Stafstrom and J. M. Rho, “The ketogenic diet as a treatment paradigm for diverse neurological disorders,” Frontiers in Pharmacology, vol. 3, article 59, 2012. View at: Publisher Site | Google Scholar
  13. P. Felig, O. E. Owen, J. Wahren, and G. F. Cahill Jr., “Amino acid metabolism during prolonged starvation,” Journal of Clinical Investigation, vol. 48, no. 3, pp. 584–594, 1969. View at: Publisher Site | Google Scholar
  14. O. E. Owen, P. Felig, A. P. Morgan, J. Wahren, and G. F. Cahill Jr., “Liver and kidney metabolism during prolonged starvation,” The Journal of Clinical Investigation, vol. 48, no. 3, pp. 574–583, 1969. View at: Publisher Site | Google Scholar
  15. S. Jitrapakdee, A. Vidal-Puig, and J. C. Wallace, “Anaplerotic roles of pyruvate carboxylase in mammalian tissues,” Cellular and Molecular Life Sciences, vol. 63, no. 7-8, pp. 843–854, 2006. View at: Publisher Site | Google Scholar
  16. F. C. George, “Fuel metabolism in starvation,” Annual Review of Nutrition, vol. 26, pp. 1–22, 2006. View at: Publisher Site | Google Scholar
  17. O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill Jr., “Brain metabolism during fasting,” Journal of Clinical Investigation, vol. 46, no. 10, pp. 1589–1595, 1967. View at: Publisher Site | Google Scholar
  18. T. Fukao, G. Mitchell, J. O. Sass, T. Hori, K. Orii, and Y. Aoyama, “Ketone body metabolism and its defects,” Journal of Inherited Metabolic Disease, 2014. View at: Publisher Site | Google Scholar
  19. T. Fukao, G. D. Lopaschuk, and G. A. Mitchell, “Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 243–251, 2004. View at: Publisher Site | Google Scholar
  20. A. Paoli, L. Cenci, M. Fancelli et al., “Ketogenic diet and phytoextracts comparison of the efficacy of mediterranean, zone and tisanoreica diet on some health risk factors,” Agro Food Industry Hi-Tech, vol. 21, no. 4, pp. 24–29, 2010. View at: Google Scholar
  21. R. L. Veech, “The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 309–319, 2004. View at: Publisher Site | Google Scholar
  22. R. L. Leino, D. Z. Gerhart, R. Duelli, B. E. Enerson, and L. R. Drewes, “Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain,” Neurochemistry International, vol. 38, no. 6, pp. 519–527, 2001. View at: Publisher Site | Google Scholar
  23. M. D. McCue, “Starvation physiology: reviewing the different strategies animals use to survive a common challenge,” Comparative Biochemistry and Physiology A: Molecular & Integrative Physiology, vol. 156, no. 1, pp. 1–18, 2010. View at: Publisher Site | Google Scholar
  24. K. Sato, Y. Kashiwaya, C. A. Keon et al., “Insulin, ketone bodies, and mitochondrial energy transduction,” The FASEB Journal, vol. 9, no. 8, pp. 651–658, 1995. View at: Google Scholar
  25. Y. Kashiwaya, K. Sato, N. Tsuchiya et al., “Control of glucose utilization in working perfused rat heart,” The Journal of Biological Chemistry, vol. 269, no. 41, pp. 25502–25514, 1994. View at: Google Scholar
  26. A. Paoli, L. Cenci, and K. A. Grimaldi, “Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees,” Nutrition Journal, vol. 10, no. 1, article 112, 2011. View at: Publisher Site | Google Scholar
  27. T. N. Seyfried and P. Mukherjee, “Targeting energy metabolism in brain cancer: review and hypothesis,” Nutrition and Metabolism, vol. 2, article 30, 2005. View at: Publisher Site | Google Scholar
  28. J. A. Vazquez and U. Kazi, “Lipolysis and gluconeogenesis from glycerol during weight reduction with very-low-calorie diets,” Metabolism: Clinical and Experimental, vol. 43, no. 10, pp. 1293–1299, 1994. View at: Publisher Site | Google Scholar
  29. M. A. B. Veldhorst, M. S. Westerterp-Plantenga, and K. R. Westerterp, “Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet,” The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 519–526, 2009. View at: Publisher Site | Google Scholar
  30. A. M. Robinson and D. H. Williamson, “Physiological roles of ketone bodies as substrates and signals in mammalian tissues,” Physiological Reviews, vol. 60, no. 1, pp. 143–187, 1980. View at: Google Scholar
  31. H. A. Krebs, “The regulation of the release of ketone bodies by the liver,” Advances in Enzyme Regulation, vol. 4, pp. 339–353, 1966. View at: Publisher Site | Google Scholar
  32. N. Amen-Ra, “Humans are evolutionarily adapted to caloric restriction resulting from ecologically dictated dietary deprivation imposed during the Plio-Pleistocene period,” Medical Hypotheses, vol. 66, no. 5, pp. 978–984, 2006. View at: Publisher Site | Google Scholar
  33. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends in Endocrinology and Metabolism, vol. 25, no. 1, pp. 42–52, 2014. View at: Publisher Site | Google Scholar
  34. S. Jäer, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at: Publisher Site | Google Scholar
  35. C. R. Benton, D. C. Wright, and A. Bonen, “PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions,” Applied Physiology, Nutrition and Metabolism, vol. 33, no. 5, pp. 843–862, 2008. View at: Publisher Site | Google Scholar
  36. J. Yu and J. Auwerx, “Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation,” Pharmacological Research, vol. 62, no. 1, pp. 35–41, 2010. View at: Publisher Site | Google Scholar
  37. D. L. Williamson, “Normalizing a hyperactive mTOR initiates muscle growth during obesity,” Aging, vol. 3, no. 2, pp. 83–84, 2011. View at: Google Scholar
  38. B. Draznin, C. Wang, R. Adochio, J. W. Leitner, and M.-A. Cornier, “Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle,” Hormone and Metabolic Research, vol. 44, no. 9, pp. 650–655, 2012. View at: Publisher Site | Google Scholar
  39. J. C. Yoon, P. Puigserver, G. Chen et al., “Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1,” Nature, vol. 413, no. 6852, pp. 131–138, 2001. View at: Publisher Site | Google Scholar
  40. N. B. Ruderman, X. J. Xu, L. Nelson et al., “AMPK and SIRT1: a long-standing partnership?” The American Journal of Physiology: Endocrinology and Metabolism, vol. 298, no. 4, pp. E751–E760, 2010. View at: Publisher Site | Google Scholar
  41. R. G. Miller, J. D. Mitchell, M. Lyon, and D. H. Moore, “Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND),” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001447, 2002. View at: Google Scholar
  42. L. I. Bruijn, T. M. Miller, and D. W. Cleveland, “Unraveling the mechanisms involved in motor neuron degeneration in ALS,” Annual Review of Neuroscience, vol. 27, pp. 723–749, 2004. View at: Publisher Site | Google Scholar
  43. L. P. Rowland and N. A. Shneider, “Amyotrophic lateral sclerosis,” The New England Journal of Medicine, vol. 344, no. 22, pp. 1688–1700, 2001. View at: Publisher Site | Google Scholar
  44. M. Strong and J. Rosenfeld, “Amyotrophic lateral sclerosis: a review of current concepts,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 4, no. 3, pp. 136–143, 2003. View at: Publisher Site | Google Scholar
  45. N. Siva, “Can ketogenic diet slow progression of ALS?” The Lancet Neurology, vol. 5, no. 6, article 476, 2006. View at: Google Scholar
  46. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at: Publisher Site | Google Scholar
  47. P. Pasinelli, M. E. Belford, N. Lennon et al., “Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria,” Neuron, vol. 43, no. 1, pp. 19–30, 2004. View at: Publisher Site | Google Scholar
  48. S. Vielhaber, D. Kunz, K. Winkler et al., “Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis,” Brain, vol. 123, no. 7, pp. 1339–1348, 2000. View at: Publisher Site | Google Scholar
  49. K. Tieu, C. Perier, C. Caspersen et al., “D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 892–901, 2003. View at: Publisher Site | Google Scholar
  50. Z. Zhao, D. J. Lange, A. Voustianiouk et al., “A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis,” BMC Neuroscience, vol. 7, article 29, 2006. View at: Publisher Site | Google Scholar
  51. W. Zhao, M. Varghese, P. Vempati et al., “Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease,” PLoS ONE, vol. 7, no. 11, Article ID e49191, 2012. View at: Publisher Site | Google Scholar
  52. E. I. Posse de Chaves, A. E. Rusinol, D. E. Vance, R. B. Campenot, and J. E. Vance, “Role of lipoproteins in the delivery of lipids to axons during axonal regeneration,” Journal of Biological Chemistry, vol. 272, no. 49, pp. 30766–30773, 1997. View at: Publisher Site | Google Scholar
  53. L. Dupuis, P. Corcia, A. Fergani et al., “Dyslipidemia is a protective factor in amyotrophic lateral sclerosis,” Neurology, vol. 70, no. 13, pp. 1004–1009, 2008. View at: Publisher Site | Google Scholar
  54. S. Paganoni, J. Deng, M. Jaffa, M. E. Cudkowicz, and A. Wills, “Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 44, no. 1, pp. 20–24, 2011. View at: Publisher Site | Google Scholar
  55. A. M. Wills, J. Hubbard, E. A. Macklin et al., “Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial,” The Lancet, vol. 383, no. 9934, pp. 2065–2072, 2014. View at: Google Scholar
  56. A. Fergani, H. Oudart, J. G. De Aguilar et al., “Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis,” Journal of Lipid Research, vol. 48, no. 7, pp. 1571–1580, 2007. View at: Publisher Site | Google Scholar
  57. K. J. Bough, J. Wetherington, B. Hassel et al., “Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet,” Annals of Neurology, vol. 60, no. 2, pp. 223–235, 2006. View at: Publisher Site | Google Scholar
  58. D. Y. Kim, J. Vallejo, and J. M. Rho, “Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors,” Journal of Neurochemistry, vol. 114, no. 1, pp. 130–141, 2010. View at: Publisher Site | Google Scholar
  59. S. S. McDaniel, N. R. Rensing, L. L. Thio, K. A. Yamada, and M. Wong, “The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway,” Epilepsia, vol. 52, no. 3, pp. e7–e11, 2011. View at: Publisher Site | Google Scholar
  60. S. Srivastava, Y. Kashiwaya, M. T. King et al., “Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet,” FASEB Journal, vol. 26, no. 6, pp. 2351–2362, 2012. View at: Publisher Site | Google Scholar
  61. D. C. Wallace, W. Fan, and V. Procaccio, “Mitochondrial energetics and therapeutics,” Annual Review of Pathology, vol. 5, pp. 297–348, 2010. View at: Publisher Site | Google Scholar
  62. H. Kang, Y. Lee, and H. D. Kim, “Mitochondrial disease and epilepsy,” Brain and Development, vol. 35, no. 8, pp. 757–761, 2013. View at: Publisher Site | Google Scholar
  63. H. Kang, Y. Lee, H. D. Kim, J. S. Lee, and A. Slama, “Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects,” Epilepsia, vol. 48, no. 1, pp. 82–88, 2007. View at: Publisher Site | Google Scholar
  64. S. Ahola-Erkkilä, C. J. Carroll, K. Peltola-Mjösund et al., “Ketogenic diet slows down mitochondrial myopathy progression in mice,” Human Molecular Genetics, vol. 19, no. 10, Article ID ddq076, pp. 1974–1984, 2010. View at: Publisher Site | Google Scholar
  65. E. H. Kossoff, B. A. Zupec-Kania, P. E. Amark et al., “Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group,” Epilepsia, vol. 50, no. 2, pp. 304–317, 2009. View at: Publisher Site | Google Scholar
  66. A. Serrano-Pozo, M. P. Frosch, E. Masliah, and B. T. Hyman, “Neuropathological alterations in Alzheimer disease,” Cold Spring Harbor perspectives in Medicine, vol. 1, no. 1, Article ID a006189, 2011. View at: Google Scholar
  67. P. G. Ridge, M. T. W. Ebbert, and J. S. K. Kauwe, “Genetics of alzheimer’s disease,” BioMed Research International, vol. 2013, Article ID 254954, 13 pages, 2013. View at: Publisher Site | Google Scholar
  68. J. Weuve, L. E. Hebert, P. A. Scherr, and D. A. Evans, “Deaths in the United States among persons with Alzheimer’s disease (2010–2050),” Alzheimer’s & Dementia, vol. 10, no. 2, pp. e40–e46, 2014. View at: Publisher Site | Google Scholar
  69. B. J. Balin and A. P. Hudson, “Etiology and pathogenesis of late-onset Alzheimer’s disease,” Current Allergy and Asthma Reports, vol. 14, article 417, 2014. View at: Publisher Site | Google Scholar
  70. D. M. Holtzman, E. Mandelkow, and D. J. Selkoe, “Alzheimer disease in 2020,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 11, 2012. View at: Google Scholar
  71. D. Selkoe, E. Mandelkow, and D. Holtzman, “Deciphering Alzheimer disease,” Cold Spring Harbor perspectives in Medicine, vol. 2, no. 1, Article ID a011460, 2012. View at: Google Scholar
  72. J. Yao and R. D. Brinton, “Targeting mitochondrial bioenergetics for Alzheimer’s prevention and treatment,” Current Pharmaceutical Design, vol. 17, no. 31, pp. 3474–3479, 2011. View at: Publisher Site | Google Scholar
  73. S. A. Hashim and T. B. Vanitallie, “Ketone Body Therapy: from ketogenic diet to oral administration of ketone ester,” Journal of Lipid Research, 2014. View at: Publisher Site | Google Scholar
  74. Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, and R. L. Veech, “D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5440–5444, 2000. View at: Publisher Site | Google Scholar
  75. Y. Kashiwaya, C. Bergman, J. Lee et al., “A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease,” Neurobiology of Aging, vol. 34, no. 6, pp. 1530–1539, 2013. View at: Publisher Site | Google Scholar
  76. I. Van Der Auwera, S. Wera, F. Van Leuven, and S. T. Henderson, “A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease,” Nutrition and Metabolism, vol. 2, article 28, 2005. View at: Publisher Site | Google Scholar
  77. C. M. Studzinski, W. A. MacKay, T. L. Beckett et al., “Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-β precursor protein (APP) levels in the aged dog,” Brain Research, vol. 1226, pp. 209–217, 2008. View at: Publisher Site | Google Scholar
  78. T. L. Beckett, C. M. Studzinski, J. N. Keller, M. Paul Murphy, and D. M. Niedowicz, “A ketogenic diet improves motor performance but does not affect β-amyloid levels in a mouse model of Alzheimer’s disease,” Brain Research, vol. 1505, pp. 61–67, 2013. View at: Publisher Site | Google Scholar
  79. K. Akter, E. A. Lanza, S. A. Martin, N. Myronyuk, M. Rua, and R. B. Raffa, “Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment?” British Journal of Clinical Pharmacology, vol. 71, no. 3, pp. 365–376, 2011. View at: Publisher Site | Google Scholar
  80. H. M. Dashti, T. C. Mathew, M. Khadada et al., “Beneficial effects of ketogenic diet in obese diabetic subjects,” Molecular and Cellular Biochemistry, vol. 302, no. 1-2, pp. 249–256, 2007. View at: Publisher Site | Google Scholar
  81. A. Paoli, A. Bianco, K. A. Grimaldi, A. Lodi, and G. Bosco, “Long term successful weight loss with a combination biphasic ketogenic mediterranean diet and mediterranean diet maintenance protocol,” Nutrients, vol. 5, no. 12, pp. 5205–5217, 2013. View at: Publisher Site | Google Scholar
  82. E. C. Westman, W. S. Yancy Jr., J. C. Mavropoulos, M. Marquart, and J. R. McDuffie, “The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus,” Nutrition and Metabolism, vol. 5, no. 1, article 36, 2008. View at: Publisher Site | Google Scholar
  83. V. Srikanth, A. Maczurek, T. Phan et al., “Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease,” Neurobiology of Aging, vol. 32, no. 5, pp. 763–777, 2011. View at: Publisher Site | Google Scholar
  84. M. Balietti, B. Giorgetti, G. Di Stefano et al., “A ketogenic diet increases succinic dehydrogenase (SDH) activity and recovers age-related decrease in numeric density of SDH-positive mitochondria in cerebellar Purkinje cells of late-adult rats,” Micron, vol. 41, no. 2, pp. 143–148, 2010. View at: Publisher Site | Google Scholar
  85. M. Balietti, P. Fattoretti, B. Giorgetti et al., “A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes,” Annals of the New York Academy of Sciences, vol. 1171, pp. 377–384, 2009. View at: Publisher Site | Google Scholar
  86. M. Maalouf, J. M. Rho, and M. P. Mattson, “The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies,” Brain Research Reviews, vol. 59, no. 2, pp. 293–315, 2009. View at: Publisher Site | Google Scholar
  87. F. Boumezbeur, G. F. Mason, R. A. de Graaf et al., “Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy,” Journal of Cerebral Blood Flow & Metabolism, vol. 30, no. 1, pp. 211–221, 2010. View at: Publisher Site | Google Scholar
  88. S. Hoyer, “Causes and consequences of disturbances of cerebral glucose metabolism in sporadic alzheimer disease: therapeutic Implications,” Advances in Experimental Medicine and Biology, vol. 541, pp. 135–152, 2003. View at: Google Scholar
  89. L. Mosconi, R. Mistur, R. Switalski et al., “Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease,” Neurology, vol. 72, no. 6, pp. 513–520, 2009. View at: Publisher Site | Google Scholar
  90. T. B. Vanitallie, “Preclinical sporadic Alzheimer’s disease: target for personalized diagnosis and preventive intervention,” Metabolism: Clinical and Experimental, vol. 62, supplement 1, pp. S30–S33, 2013. View at: Publisher Site | Google Scholar
  91. Y. Liu, F. Liu, K. Iqbal, I. Grundke-Iqbal, and C. Gong, “Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease,” FEBS Letters, vol. 582, no. 2, pp. 359–364, 2008. View at: Publisher Site | Google Scholar
  92. P. Veggiotti, F. Teutonico, E. Alfei et al., “Glucose transporter type 1 deficiency: Ketogenic diet in three patients with atypical phenotype,” Brain and Development, vol. 32, no. 5, pp. 404–408, 2010. View at: Publisher Site | Google Scholar
  93. M. A. Reger, S. T. Henderson, C. Hale et al., “Effects of β-hydroxybutyrate on cognition in memory-impaired adults,” Neurobiology of Aging, vol. 25, no. 3, pp. 311–314, 2004. View at: Publisher Site | Google Scholar
  94. A. Camilleri and N. Vassallo, “The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease,” CNS Neuroscience & Therapeutics, vol. 20, no. 7, pp. 591–602, 2014. View at: Google Scholar
  95. B. Cheng, X. Yang, L. An, B. Gao, X. Liu, and S. Liu, “Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson’s disease,” Brain Research, vol. 1286, pp. 25–31, 2009. View at: Publisher Site | Google Scholar
  96. T. B. VanItallie, C. Nonas, A. Di Rocco, K. Boyar, K. Hyams, and S. B. Heymsfield, “Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study,” Neurology, vol. 64, no. 4, pp. 728–730, 2005. View at: Publisher Site | Google Scholar
  97. Y. S. Shin, “Glycogen storage disease: clinical, biochemical, and molecular heterogeneity,” Seminars in Pediatric Neurology, vol. 13, no. 2, pp. 115–120, 2006. View at: Publisher Site | Google Scholar
  98. E. Gazzerro, A. L. Andreu, and C. Bruno, “Neuromuscular disorders of glycogen metabolism,” Current Neurology and Neuroscience Reports, vol. 13, article 333, 2013. View at: Publisher Site | Google Scholar
  99. T. Goldberg and A. E. Slonim, “Nutrition therapy for hepatic glycogen storage diseases,” Journal of the American Dietetic Association, vol. 93, no. 12, pp. 1423–1430, 1993. View at: Publisher Site | Google Scholar
  100. S. Heller, L. Worona, and A. Consuelo, “Nutritional therapy for glycogen storage diseases,” Journal of Pediatric Gastroenterology and Nutrition, vol. 47, pp. S15–S21, 2008. View at: Publisher Site | Google Scholar
  101. T. J. Triomphe, “Glycogen storage disease: a basic understanding and guide to nursing care.,” Journal of pediatric nursing, vol. 12, no. 4, pp. 238–249, 1997. View at: Publisher Site | Google Scholar
  102. J. B. Walter, General Pathology, 1987.
  103. V. Busch, K. Gempel, A. Hack et al., “Treatment of glycogenosis type V with ketogenic diet,” Annals of Neurology, vol. 58, no. 2, article 341, 2005. View at: Google Scholar
  104. M. Vorgerd and J. Zange, “Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle,” Acta Myologica, vol. 26, no. 1, pp. 61–63, 2007. View at: Google Scholar
  105. J. M. Rho and R. Sankar, “The ketogenic diet in a pill: is this possible?” Epilepsia, vol. 49, supplement 8, pp. 127–133, 2008. View at: Publisher Site | Google Scholar
  106. P. Veggiotti and V. De Giorgis, “Dietary treatments and new therapeutic perspective in GLUT1 deficiency syndrome,” Current Treatment Options in Neurology, vol. 16, no. 5, p. 291, 2014. View at: Publisher Site | Google Scholar
  107. V. Valayannopoulos, F. Bajolle, J. Arnoux et al., “Successful treatment of severe cardiomyopathy in glycogen storage disease type III with d,l-3-hydroxybutyrate, ketogenic and high-protein diet,” Pediatric Research, vol. 70, no. 6, pp. 638–641, 2011. View at: Publisher Site | Google Scholar

Antonio Paoli, Antonino Bianco, Ernesto Damiani, and Gerardo Bosco
Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35031 Padova, ItalySport and Exercise Sciences Research Unit, University of Palermo, Via Eleonora Duse 2, 90146 Palermo, Italy
Academic Editor: Giuseppe D’Antona
Received24 Apr 2014
Accepted30 May 2014
Published03 Jul 2014
Copyright © 2014 Antonio Paoli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin ja siihen assosioituvien oireiden taustalla.

Mitä eroa on infektiolla ja inflammaatiolla?

Autoimmuunitaudin voi laukaista jokin infektio, kuten Epstein-Barr- tai herpesvirus. Inflammaatio altistaa sairastumiselle ja pahentaa immuunivälitteisten tulehduksellisten sairauksien oireita. Eräät ravintoaineet aiheuttavat oksidatiivista stressiä, joka ylläpitää ja pahentaa inflammaatiota.    

Infektio ja inflammaatio menevät helposti sekaisin, koska molemmat kertovat tulehduksesta. Ne eivät kuitenkaan tarkoita samaa asiaa.

Infektion aiheuttama lyhytaikainen tulehdus (tartuntatulehdus) auttaa elimistöön tunkeutuneen sairastuttavan mikrobin tuhoamisessa. Jatkuva matala-asteinen tulehdus (inflammaatio) on kudoksia ärsyttävä tila, joka voi kehittyä mm. vamman, ravinnon (postbrandiaalinen tulehdus), tupakoinnin, alkoholin ja eräiden toksiinien sekä joidenkin tuntemattomien syiden seurauksena, kuten eräät autoimmuunitulehdukset (esimerkiksi reuma).

Matala-asteinen tulehdus ei tavallisesti näy ulospäin tai oireile kipuna. Tutkimukset viittaavat siihen, että matala-asteinen tulehdus on kuitenkin lähes kaikkien kroonisten tautien osatekijä.

”Ne ruoka-aineet, jotka vähentävät tulehdusta tuntuvat edistävän ihmisen terveyttä muutoinkin. Ruokavalio, joka vähentää voimallisesti tulehdusta, vähentää myös kolesterolia, verenpainetta, aterian jälkeistä hapetusstressiä, LDL-kolesterolin hapettumista ja verensokeria aterian jälkeen ja paastossa sekä estää lihomista.” – Pronutritionist

Infektio siis puolustaa elimistöä mikrobeja vastaan. Pitkään jatkuva matala-asteinen inflammaatio on elimistölle haitallinen tila, koska se voi aiheuttaa kudosvaurioita. Wikipedian mukaan autoimmuunitulehdus vahingoittaa elimistöä immuunipuolustuksen hyökätessä elimistön omia soluja vastaan.

C-reaktiivinen proteiini eli CRP

Elimistön tulehduksista kertoo verinäytteestä mitattava CRP eli C-reaktiivinen proteiini. CRP on maksan syntetisoima akuutin infektion proteiini, joka sitoutuu solun erilaisiin ainesosiin, kuten polysakkarideihin, lipideihin, nukleiinihappoihin, nukleotideihin sekä kationeihin kuten hepariiniin, protamiiniin ja histoineihin.

CRP on komplementtijärjestelmän aktivoija, joka edistää vierasaineiden opsonisaatiota ja fagosytoosia. CRP osallistuu luontaiseen immuniteettiin ja vierasaineiden eliminointiin. Opsonisaatio on prosessi, jossa infektoivan patogeenin pintaan tarttuu siihen erikoistunut vasta-ainemolekyyli eli opsoniini, jonka avulla syöjäsolut (fagosyytit) tunnistavat ja tuhoavat patogeenit.

CRP:n pitoisuus veressä nousee bakteeri-infektioiden ja muiden tulehdustilojen sekä kudosvaurion yhteydessä nopeasti. CRP:n normaali viitealue on alle 10 mg/l, mutta infektion aikana CRP:n määrä voi kasvaa jopa 1000-kertaiseksi viitealueeseen verrattuna.

Ruokavalio, laihtuminen ja CRP

Lihavuus on matala-asteisen inflammaation yksi tärkeä syy. Laihtuminen voi laskea inflammaatiota mittaavaa CRP-arvoa jopa 80 %. Myös ruokavalio vaikuttaa tulehdusta mittaavaan CRP-arvoon. Terveellinen ruoka, kuten kasvikset, marjat, hedelmät ja kala voivat laskea tulehdusarvoja jopa kolmanneksella.

Wikipedia kertoo, että jo muutaman päivän vesipaasto vahvistaa kehon immuunijärjestelmää taistelussa tulehduksia vastaan. Vastaavia tuloksia on saatu kerran tai kahdesti kuussa toteutettavilla nelipäiväisillä niukan ravinnon jaksoilla.

Elimistö näyttäisi pääsevän paaston ja niukan dieetin avulla eroon immuunijärjestelmän vahingoittuneista ja vanhentuneista osista, joka johtaa immuunijärjestelmän uusiutumiseen (Kari Tyllilä: Yllättävä löytö voi tuoda apua syöpähoitoihin: Paasto uudistaa immuunijärjestelmää).

Tulehdus ja sytokiinit

Sytokiinit ovat immuunijärjestelmän säätelijöitä. Ne ohjaavat immuunijärjestelmän kaikkien solujen erilaistumista, kasvua ja toiminnallista säätelyä. Sytokiini on yleisnimitys yli sadalle pienimolekyyliselle proteiinirakenteiselle välittäjäaineelle.

Valkosolut tuottavat sytokiineihin lukeutuvia interferoneja virusinfektion aikana. Interferonien tarkoituksena on estää virusten lisääntyminen infektion alkuvaiheessa. Proinflammatoristen eli inflammaatiota lisäävien interferonien (sekä happiradikaalien) ensisijaisena tehtävänä on tappaa elimistöön päässeitä viruksia, bakteereita ja ja sieniä.

Jos immuunivasteeseen osallistuvia sytokiineja tai happiradikaaleja muodostuu elimistössä liikaa, ne vaurioittavat kudoksia ja altistavat sairastumiselle.

Beetainterferoneja käytetään MS-taudin oireita hillitsevänä lääkkeenä. Toisaalta gammainterferoni, jota naisilla muodostuu luonnostaan miehiä enemmän, assosioituu suurina pitoisuuksina MS-taudin puhkeamiseen ja pahenemiseen.

Tärkeät sytokiinit

Kuva sytokiinien merkityksestä ja hierarkkisista säätelyverkoista tarkentuu koko ajan. Sytokiineja on tunnistettu yli sata. Pelkästään interleukiiniperheeseen kuuluvia sytokiineja tunnetaan 29. Sytokiinien tutkimus tarjoaa uusia lähestymistapoja myös autoimmuunitautien ja syöpien hoitoon.

Immuunijärjestelmän kannalta keskeisiä sytokiinejä ovat interleukiinit (IL), interferonit (IFN), tuumorinekroositekijä alfa (TNF-α), ja solutyyppispesifiset kasvutekijät, kuten granulosyyttikasvutekijä (G-CSF) ja erytropoietiini (EPO).

Sytokiinien eritys lisääntyy infektion aikana, mikä vahvistaa elimistön puolustautumista taudinaiheuttajia vastaan. Immuunivasteeseen ja infektion torjuntaan osallistuvat ainakin proinflammatoriset sytokiinit, kuten IL-1, IL-6, TNF- α.

IL-17 on nopeasti kasvava sytokiiniperhe, jonka jäsenet eroavat rakenteellisesti muista sytokiineista. IL-17 on keskeinen sytokiini MS-taudin patogenesissä (Gold & Lühder, Interleukin-17 – Extended Features of a Key Player in Multiple Sclerosis).

Monet sytokiinit aiheuttavat ja ylläpitävät elimistön matala-asteista tulehdusta. Toisaalta sytokiinit voivat olla myös inflammaatiota vähentäviä eli anti-inflammatorisia, kuten mm. IL-4, IL-10 ja TGF- β.

Sytokiinien säätelyverkot

Sytokiinit muodostavat toiminnalllisia verkostoja. Yksittäinen sytokiini vaikuttaa tavallisesti useisiin solutyyppeihin, mutta sen aikaansaamat vasteet eri soluissa voivat olla täysin erilaiset.

Monissa immuunivälitteisissä tulehduksellisissa sairauksissa aktivoituu osin samanlainen sytokiiniverkosto, mutta yksittäisen sytokiinin merkitys eri sairauksien patogeneesissa voi vaihdella paljonkin. Yhtenä esimerkkinä tuumorinekroositekijä (TNF-α), joka vaikuttaa mm. nivelreuman, selkärankareuman, tulehduksellisten suolistotautien ja psoriaasin patogeneesissa.

Sytokiinit toimivat ajallisesti ja paikallisesti tarkan säätelyn alaisina hierarkkisina säätelyverkostoina. Jos säätely jostakin syystä pettää, sytokiinien ylituotanto voi toimia laukaisevana mekanismina monissa sairauksissa, kuten autoimmuunitaudeissa.

Sytokiinireseptoreiden signalointi

Sytokiinien biologiset vaikutukset välittyvät solun pinnalla sijaitsevien erityisten reseptoreiden kautta. Interferonien, useimpien interleukiinien ja solutyyppispesifisten kasvutekijöiden (EPO, TPO, GM-CSF, G-CSF) reseptorit välittävät vaikutuksensa hematopoieettiseen sytokiinireseptoriperheeseen kuuluvien reseptoreiden kautta.

Kaikkien reseptroreiden aktivaatiomekanismi on samankaltainen: sytokiinin sitoutuminen reseptorin solunulkoiseen osaan saa aikaan ketjuen pariutumisen ja johtaa reseptoriin kiinnittyneiden JAK-tyrosiinikinaasien (JAK1-3 ja TYK2) aktivaatioon ja signaalinvälitykseen erikoistuneiden proteiinien fosforylaatioon sekä muutoksiin mm. DNA-synteesissä ja transkriptiossa (Levy ja Darnell 2002, O’Shea ym. 2002).

Luettavaa sytokiineista

Kuinka elimistö reagoi tulehdukseen?

Elimistö reagoi tulehdukseen tavallisesti verisuonimuutoksilla sekä kudosnesteen ja tulehdussolujen kertymisellä tulehdusalueelle. Verisuonimuutosten seurauksena hiussuonten seinämät muuttuvat läpäisevimmiksi ja tulehdusalueelle kertyy proteiineja ja nestettä.

Tulehdusreaktio houkuttelee paikalle myös valkosoluja, kuten syöjäsoluja, joiden tehtävänä on puolustaa elimistöä ulkoisilta taudinaiheuttajilta ja siivota tulehdusaluetta vaurioituneista soluista. Tulehduksien aiheuttama ”märkä” muodostuu tulehdussoluista, taudinaiheuttajista, osin tuhoutuneesta kudoksesta ja kudosnesteestä.

Tulehduksen oireet ovat rubor, tumor, calor, dolor ja functio laesa eli punoitus, turvotus, kuumotus, kipu ja toimintakyvyn heikkeneminen.

Ravinto ja inflammaatio

Pitkään jatkuva matala-asteinen tulehdus kasvattaa sairastumisen riskiä. Tutkimusten mukaan inflammaatio on useimpien kroonisten sairauksien taustatekijä. Inflammaatio altistaa mm. autoimmuunitaudeille, sydän- ja verisuonitaudeille, syöville, tyypin 2 diabetekselle, lihavuudelle ja Alzheimerin taudille.

Rasvakudos erittää runsaasti erilaisia tulehdussytokiineja, joten lihavuus ylläpitää ja lisää inflammaatiota. Laihduttaminen voi merkittävästi vähentää elimistöä rasittavaa matala-asteista tulehdusta.

Aterianjälkeinen (postbrandiaalinen) verensokerin nousu kasvattaa oksidatiivista stressiä muodostamalla happiradikaaleja. Oksidatiivinen stressi pahentaa inflammaatiota. Mitä korkeammaksi verensokeri nousee, sitä enemmän muodostuu happiradikaaleja.

Ravinto vaikuttaa inflammaatioon monin tavoin.

Ravinto voidaan jakaa karkeasti tulehduksia aiheuttaviin, neutraaleihin ja tulehduksia hillitseviin ravintoaineisiin. Ravintoaineiden aiheuttamaan tulehdusvasteeseen vaikuttavat mm. ravinnon määrä ja muut samaan aikaan nautitut ravintoaineet.

Rasvat ovat tavallisilla annoksilla tulehduksen kannalta yleensä neutraaleja. Värikkäiden marjojen, hedelmien ja kasvisten syöminen lievittää tulehdusta. Imeytymättömät proteiinit voivat lisätä suoliston tulehduksia, mutta lihan, kanan ja äyriäisten tulehdusvaikutuksista on hyvin vähän tutkittua tietoa.

Tulehduksia vähentäviä (anti-inflammatorisia) ruokia ovat mm.

  • Rasvainen kala
  • Neitsytoliiviöljy
  • Kala
  • Mantelit ja pähkinät
  • Marjat ja hedelmät
  • Monet kasvikset
  • Appelsiinimehu
  • Granaattiomena
  • Kaakao
  • Punaviini

Inflammaation kannalta neutraaleja ruokia ovat mm.

  • Rypsiöljy
  • Margariini
  • Voi
  • Soija ja palkokasvit
  • Meijerituotteet
  • Kananmunat
  • Eräät täysjyvätuotteet
  • Monet kasvikset
  • Tumma pasta
  • Peruna
  • Leipä
  • Vihreä tee
  • Kahvi
  • Valkoviini
  • Maito ja piimä

Tulehduksia lisääviä ruokia ovat mm.

  • Kerma suurina annoksina
  • Makkarat ja lihajalosteet
  • Runsas sokeri
  • Runsas fruktoosi (fruktoosisiirappi?)

Lue lisää:

Pronutritionist: Anti-inflammatorinen eli tulehdusta vähentävä ruokavalio


Inflammaation vaikutus RRMS- ja PPMS-tautien oireisiin

Tulehdustekijät ovat havaittavissa aaltoilevasti etenevän RRMS-taudin patologiassa ja assosioituvat selkeästi taudin oireisiin. RRMS-tautimuodossa keskushermostossa ilmenevät tulehduspesäkkeet (leesiot) ovat yhteydessä taudinkuvaan liittyviin kliinisiin pahenemisvaiheisiin. Inflammaation helpottuminen ilmenee remissiona, jolloin taudin oireet paranevat joko osittain tai lähes täysin etenkin taudin varhaisvaiheessa.

Progressiivinen MS-tauti

Ensisijaisesti etenevä MS-tauti (primaarisprogressiivinen, PPMS) on MS-taudin alatyyppi, jossa oireet ja invaliditeetti lisääntyy sairauden alusta alkaen tasaisesti ilman selviä inflammaatioon assosioituvia pahenemisvaiheita, RRMS etenee toissijaisesti eteneväksi (SPMS) taudiksi yleensä noin parin vuosikymmenen aikana. SPMS ja PPMS muistuttavat hyvin läheisesti toisiaan.

”PPMS-potilailla yleisimmät taudin alkuoireet olivat motoriset-, pikkuaivo- ja tuntohäiriöt. Motorisen toiminnan häiriöt olivat yleisimmät löydökset kliinisessä neurologisessa tutkimuksessa. Kaikilla PPMS-potilailla oli virtsaustoiminnan häiriöitä, joista tihentynyt virtsaamistarve ja siihen liittyvä virtsan karkailu olivat yleisimmät oireet. Urodynaamisen tutkimuksen yleisimmät löydökset olivat virtsarakon seinämälihaksen yliaktiivisuus (detrusor hyperrefleksia) sekä seinämälihaksen ja virtsaputken sulkijalihaksen koordinoimaton supistelu (detrusor sphinkterin dyssynergia, DSD).” – Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva

Tulehduksen vaikutusta ei ole poissuljettu myöskään etenevässä MS-taudissa. Inflamaation voi aiheuttaa autoimmuunitulehdus tai solujen (oligodendrosyyttien) rappeutumisen eli sytodegeneraation aiheuttama neurologinen tulehdus.

”Adheesiomolekyylien ja joidenkin sytokiinien ilmentymisen lisääntyminen viittaa siihen, että tulehduksellista aktiviteettia esiintyy pidemmälle edenneessä PPMS-taudissakin.” – Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva

Tutkimukselliset löydöt

Etenevissä MS-taudeissa on havaittavissa runsaasti molekyyli- ja solutason muutoksia, jotka selittävät taudinkuvaan liittyvää neurologista rappeutumista (neurodegeneraatiota).  Tällaisia neurologiseen rappeutumiseen assosioituvia muutoksia ovat mm.

  • keskushermoston syöjäsoluina toimivien mikrogliasolujen aktivoituminen
  • kroonisen hapettumisreaktion aiheuttamat vauriot keskushermoston soluissa
  • mitokondrioihin kumuloituvat vauriot keskushermoston viejähaarakkeissa
  • ikään liittyvä atrofia
  • viejähaarakkeiden signaalinvälityksen havaittava heikkeneminen.

Tällaiset patologiset muutokset voivat johtua autoimmuunitulehduksen aiheuttamista viejähaarakkeiden eristekalvojen vaurioista (demyelinaatio), mutta syynä voi olla myös tautiin liittyvä keskushermoston solujen (neuronien ja oligodendrosyyttien) primaari rappeutuminen.

Mahdollisesti moolemmat, sekä inflammaatio että keskushermoston solujen rappeutuminen (sytodegeneraatio) vaikuttavat etenevien MS-tautimuotojen patogeneesiin.

Patologiset mekanismit, jotka ylläpitävät neurodegeneraatiota ja aiheuttavat PPMS-ja SPMS-potilaille kudosvaurioita, tunnetaan huonosti. Nämä tekijät liittyvät ilmeisesti perifeerisen immunologisen toleranssin virheelliseen toimintaan.

Taudin aiheuttamasta neurodegeneraatiosta on esitetty (ainakin) kaksi hypoteessia: inside-out-hypoteesi ja outside-in-hypoteesi.

Inside-out hypoteesin mukaan taudin alusta alkaen etenevä keskushermoston solujen rappeutuminen on kaikkien tautiin liittyvien prosessien selittävä tekijä.

Outside-in hypoteesi olettaa, että taudin varhaisvaiheessa ilmenevät inflammaatioon assosioituvat demyelinoivat prosessit laukaisevat joukon keskushermostoa rappeuttavia tapahtumaketjuja.

Osallistuuko suoliston mikrobiomi autoimmuunitaudin patogeneesiin?

Viime aikoina on saatu viitteitä siitä, että suoliston mikrobiomin hyvinvoinnilla on tärkeämpi rooli etenevän MS-taudin taudinkuvassa kuin on aiemmin oletettu.

Tieto mikrobiomista ja sen merkityksestä isäntäorganismille täsmentyy koko ajan. Vagus-hermo välittää tietoa ruoansulatuselimistön tapahtumista aivoille. Se toimii suorana välittäjänä mikrobiomin ja keskushermoston välillä.

Mikrobiomi vaikuttaa keskushermostoon muokkaamalla signaalireittejä aivo-suolisto-akselilla. Tämä kaksisuuntainen kommunikaatioverkko hermoston ja suoliston välillä aktivoi hermoston makrofageja ja vaikuttaa neurologisiin tapahtumiin säätelemällä hermoston immuuniaktiivisuutta.

Mikrobiomin merkitys

BBC kirjoittaa, että kehon solujen kokonaismäärästä 43 % on ihmisen omia soluja. Suurin osa kehossamme elävistä soluista kuuluu kuitenkin mikrobiomin bakteereille, arkeille, viruksille ja sienille.

Ihmisen DNA:ssa on noin 23 000 proteiineja koodaavaa geeniä. Geenit säätelevät solujemme, kudostemme ja elimistömme rakennetta. Geenien väliset alueet ohjaavat geenien toimintaa. Oman genomin lisäksi kehossamme on mikrobiomin geneettistä materiaalia, joka koostuu 2-20 miljoonasta geenistä.

DNA, mutaatiot ja yhden emäksen variaatiot

Ihmisen DNA on noin 3 miljardia emästä pitkä kaksoisjuoste. DNA:n rakenteessa toistuu neljä emästä, joita kuvataan kirjaimilla A (adeniini), T (tymiini, C (sytosiini) ja G (guaniini). A ja T sekä C ja G muodostavat DNA:n kaksoisjuosteessa emäspareja.

Geenit eli perintötekijät muodostuvat eri mittaisista DNA-jaksoista

Solun jakautuminen edellyttää DNA:n kahdentumista. Prosessi on hyvin täsmällinen, mutta aika ajoin siinä tapahtuu virheitä ja DNA-juosteen alkuperäinen emäsjärjestys muuttuu. Tällaiset virheet aiheuttavat geenimutaatioita.

Geenimuutosten kolme lähdettä ovat vanhemmilta saatu perimä, elintapojen ja ympäristön tuoma altistus (myrkyt, patogeenit, ravinto jne.) sekä sattumanvaraiset DNA:n kopioitumisvirheet. Kopioitumisvirheitä tapahtuu jatkuvasti. Aina, kun solu jakaantuu, aiheutuu DNA:han keskimäärin kolme virhettä. Tällaiset geenimutaatiot voivat käynnistää syövän.

Pistemutaatiot eli yhden emäksen variaatiot (Single Nucleotide Polymorphism), joissa esimerkiksi DNA:n emäsjuosteen jonkin geenin emäsparissa adeniini muuttuu sytosiiniksi, ovat hyvin yleisiä. Yleensä nämä ovat neutraaleja, mutta jotkin yhden nukleotidin polymorfismit assosioituvat lisääntyneeseen sairastumisriskiin.

Toinen genomi

Professori Sarkis Mazmanian (Caltech) kertoi BBC:lle, että periaatteessa meillä on kaksi toisiinsa vuorovaikuttavaa genomia. Ne ”kommunikoivat” keskenään kemiallisten signaalien välityksellä. Tällaisia mikrobiomin tuottamia hermostoon vaikuttavia välittäjäaineita ova esimerkiksi eräät mikrobien aineenvaihduntatuotteet, kuten dopamiini, serotoniini ja GABA.

Mikrobiomin tuottamat kemialliset signaalit voivat vaikuttaa myös epigeneettisesti ihmisen omaan genomiin. Tämä tapahtuu esimerkiksi siten, että johonkin geenin emäksistä kiinnittyy ympäristötekijöiden säätelemänä geenin transkriptioon vaikuttava metyyliryhmä.

Mikrobiomiin vaikuttavat ympäristötekijät voivat olla viruksia, bakteereita, sieniä, tietyn kemiallisen koostumuksen omaavia ravintoaineita sekä toksisia tai inflammatorisia kemikaaleja. Nämä voivat heikentää immuunijärjestelmän säätelyä ja edesauttaa epigeneettisten muutosten, pistemutaatioiden ja geenimutaatioiden kehittymistä DNA:han.

Yhden nukleotidin polymorfismit (single nucletide polymorphism, SNP) assosioituvat moniin sairauksiin, kuten syöpiinn ja autoimmuunitauteihin. Esimerkiksi tyypin 1 diabeteksessa ja MS-taudissa tällaisia tautiin assosioituvia yhden nukleotidin polymorfismeja on tunnistettu muun muassa geenin CYP27B1 eri lokuksissa.

Geenit eivät ole täysin muuttumattomia. Ympäristötekijät vaikuttavat geenien toimintaan.

Myös epigeneettinen muutos, jossa geenin yhden tai useamman emäksen päälle on kiinnittynyt metyyliryhmä vaikuttaa geenin ekspressioon ja transkriptioon.

Kuinka mikrobiomi vaikuttaa elimistöön?

Suoliston mikro-organismit estävät vieraiden ja mahdollisesti haitallisten mikrobien pesiytymisen suolistoon ja pääsyn suoliston kautta verenkiertoon.

Mikrobiomi vaikuttaa myös ruoansulatukseen, aineenvaihduntaan, immuunijärjestelmän säätelyyn sekä eräiden vitamiinien ja muiden tärkeiden yhdisteiden, kuten dobamiinin, GABAn ja serotoniinin synteesiin ja edelleen keskushermoston toimintaan mm. vagus-hermon välityksellä.

Onko antibiooteilla ja rokotuksilla vaikutuksia mikrobiomiin?

Antibiootit ja rokotukset ovat pelastaneet kymmeniä tai satoja miljoonia ihmishenkiä viimeisen vuosisadan aikana, mutta joidenkin tutkijoiden mukaan mikrobiomin lajikirjo on pienentynyt infektioilta suojaavan taistelun seurauksena ja tämä on heikentänyt mikrobiomin vaikutusta immuunijärjestelmän säätelyyn.

Hypoteesin mukaan mikrobiomin lajikirjon pienentyminen vaikuttaa immuunijärjestelmän säätelyn kautta sairastumissalttiuden lisääntymiseen. Erityisesti sairastumisalttiuden lisääntyminen vaikuttaa allergioihin ja autoimmuunitauteihin.

Professori Ruth Ley (Max Planck Institute) totesi BBC:lle, että vaikka olemmme taistelleet menestyksekkäästi infektioita vastaan, autoimmuunitautien ja allergioiden määrä on kääntynyt selvään kasvuun.

Tulkitsen tämän niin, että koska mikrobiomi yleensä periytyy äidiltä lapselle, voivat pienet mikrobiomin lajikirjon muutokset kumuloitua sukupolvien aikana ja heikentää pitkällä aikajänteellä immuunijärjestelmän säätelyä. Se voisi selittää väestötasolla eräiden tautien yleistymisen.

Rokotukset ja antibiootit eivät kausaalisesti aiheuta autoimmuunitauteja, mutta ovat voineet useiden sukupolvien aikana vaikuttaa autoimmuunitautien kehittymisen kannalta otollisemman immunologisen ympäristön rakentumiseen. Tällainen spekulaatio kuulostaa ihan järkeenkäyvältä.

Näkökulma: Rokotteiden sisältämät viruksen proteiinit toimivat autoimmuunitaudin laukaisijoina minimaalisen pienellä todennäköisyydellä, mutta näin kävi surullisessa narkolepsiaepidemiassa. Yleisesti ottaen rokotteet ovat hyvin turvallisia. Virus, jolta rokote suojaa voi laukaista autoimuunitaudin myös rokottamattomilla.

Rokottaminen voi laukaista vakavan allergisen reaktion tai sairauden, mutta todennäköisyys sellaiselle on häviävän pieni. Myös rokotteen sisältämien tehoste- ja säilöntäaineiden pelko on aiheeton; hengittämällä elimistöön kulkeutuu taajama-alueilla jo yhdessä päivässä rokotteisiin verrattuna moninkertainen määrä teollisuudesta ja liikenteestä peräisin olevia haitallisia mikropartikkeleita. Hengitysilman pienhiukkaset kulkeutuvat keuhkoista verenkiertoon ja vaikuttavat siten terveyteen.

Maailmanlaajuisesti ilmansaasteet tappavat vuosittain miljoonia ihmisiä. Suurin ongelma on Aasiassa ja Afrikassa. Tämä on rokotteita todellisempi ja akuutimpi uhkakuva myös Euroopassa.

Teollinen ruoka yksipuolisti mikrobiomia

Mikrobiomin heikentymiseen on vaikuttanut myös viime vuosisadalla alkanut ravinnon teollistuminen. Teollisesti valmistetut vähemmän ravinteita ja enemmän energiaa sisältävät ruoat ja rasvat sekä runsas sokereiden käyttö ovat syrjäyttäneet luonnnollisemmat ravinnonlähteet.

Lihan ja sokereiden määrä ravinnossa on lisääntynyt samaan aikaan, kun hapatettujen ruokien ja kasvisten saanti on vähentynyt. Punainen liha, lihajalosteet, transrasvat ja sokerit assosioituvat tutkimuksissa heikentyneen suolistoterveyden ja suoliston tulehdusten kanssa; nämä heikentävät immuunijärjestelmää ja sen säätelyä.

Punainen liha ja suoliston terveys

Runsaan proteiinien saannin kohdalla ongelmia aiheuttaa se, että vaikka proteiinit pilkotaan tärkeiksi aminohapoiksi ja peptideiksi ohutsuolessa, osa proteiineista ei imeydy ohutsuolesta elimistön hyödynnettäväksi, vaan päätyy paksusuoleen, jossa ne ravitsevat mikrobiomin huonoja bakteereita.

Imeytymättömän proteiinin vaikutuksesta paksusuoleen syntyy imeytymätöntä rautaa, ammoniakkia, amiineja, sulfideja ja haaraketjuisia rasvahappoja (BCFA).

Erityisesti lihan paistamisen yhteydessä Mailard-reaktiossa (ruskistumisessa) syntyy sokeroituneita proteiineja, jotka eivät imeydy ohutsuolessa, vaan kulkeutuvat paksusuolen bakteerien fermentoitavaksi (Tuohy et al. 2006). Lähde: Pronutritionist

Ravitsemuksessa tapahtunut muutos ei tietenkään ole yksiselitteisesti huono asia. Ravintoa on enemmän ja monipuolisemmin tarjolla kuin koskaan aiemmin historiassa. Samaan aikaan pikaruoka- ja herkuttelukulttuurilla on kuitenkin hintansa: immuunijärjestelmän toiminnan säätelyyn osallistuvan mikrobiomin heikentyminen on ehkä mahdollistanut aiemmin harvinaisten tautien ja oireyhtymien yleistymisen.

Autoimmuunitautien, allergioiden ja autismin lisääntyminen voisi siis selittyä väestötasolla tapahtuneilla mikrobiomin pitkän aikavälin muutoksilla. Tämä on mielenkiintoinen ajatus.

Ymäristömuuttujat ja terveys

Evoluutio on tehnyt meistä ympäristön muutoksiin hyvin sopeutuvan lajin. Ympäristön muuttuminen mm. ravinnon ja erilaisten kemikaalien osalta on nykyään kuitenkin niin nopeaa, ettei ihmisen aineenvaihdunta ja immuunijärjestelmä ehdi sopeutua muutoksiin.

Kun ihmiset aiemmin sairastuivat ja kuolivat infektioihin, nyt infektioita suurempia uhkia ainakin kehittyneissä maissa ovat elintapoihin assosioituvat kardiometaboliset oireyhtymät, sydän- ja verisuonitaudit, diabetes, syövät jne.

Ravintoaineiden puutokset ja ympäristön myrkyt altistavat sairastumiselle

Välttämättömien ravintoaineiden puutos ei välittömsti johda sairastumiseen, sillä keho varastoi jonkin verran välttämättömiä vitamiineja ja mineraaleja. Elimistössä on simerkiksi B12-vitamiinia yleensä riittävästi kattamaan muutaman vuoden tarpeen, vaikka sitä ei ravinnosta saisikaan. Vakavien puutosoireiden kehittyminen edellyttää pidempiaikaista vitamiinien tai mineraalien puutosta.

Elimistöllä on myös monia aineenvaihduntamekanismeja elintoimintoja ylläpitävien elinten energiansaannin turvaamiseksi. Solut saavat energiaa hiilihydraateista, rasvoista ja proteiineista.

Kun ravintoa ei ole saatavilla, elimistö muuttaa varastorasvoja ketoaineiksi ja glukoneogeneesissä ketoaineita edelleen glukoosiksi tai soluissa energiaksi. Kun elimistön glykogeenit ja rasvavarastot loppuvat, elimistö alkaa tuottaa ketoaineita vapaista proteiineista ja rasvahapoista. Ravinnon jatkuva puutos saa aineenvaihdunnan pilkkomaan lihaksia aminohapoiksi, joita voi käyttää ketoaineina. Näiden selviytymismekanismien ansiosta terve ihminen voi elää jopa kuukauden pelkällä vedellä.

Toksisten aineiden kumuloituminen elimistöön ja välttämättömien ravinteiden puutokset altistavat kuitenkin pitkään jatkuessaan sairastumiselle.

Ravinto ja suolisto

Yksipuolinen ravinto, liiallinen hygienia, runsas alkoholi, tupakointi sekä eräät lääkkeet voivat heikentää suoliston mikrobiomia. Tälla on vaikutuksia terveyteen, koska suoliston mikribiomia tarvitaan mm. suojaamaan suolistoa ulkoisilta taudinaiheuttajilta, vähentämään suolistotulehdusten vaaraa, ehkäisemään suolistosyöpää ja pilkkomaan ravinnon sulamattomia kuituja.

Monista hedelmistä, kasveista, marjoista, tummasta suklaasta ja kahvista saatavilla polyfenoleilla on suoliston mikrobiomille ja painonhallinnalle ilmeisen myönteisiä vaikutuksia. Ne tukevat suoliston terveyttä ylläpitävien bifidobakteerien kasvua. Punaisesta lihasta saatava hemirauta voi pahentaa suoliston tulehduksia, mutta samaan aikaan saatava resistentti tärkkelys vähentää inflammaatiota.

RRSM ja PPMS

MS-taudin kaksi yleisintä mutoa ovat taudinkuvaltaan ja patologisilta mekanismeiltaan hyvin erilaisia tauteja. On ehkä aiheellista harkita sellaista vaihtoehtoa, että RRMS ja PPMS ovat kaksi erillistä sairautta tai monitekijäistä oireyhtymää.

Ne muistuttavat monin tavoin toisiaan, mutta näiden kahden MS-taudin patogeneesi poikkeaa toisistaan merkittävällä tavalla. RRMS on tulehduksellinen autoimmuunitauti, jossa keskushermoston tulehdukset laukaisevat MS-tudille ominaisen demyelinoivan autoimmuunireaktion. PPMS on sairauden alusta alkaen neurodegeneratiivinen, hermoston soluja rappeuttava sairaus, jossa oligodendrosyyttien tuhoutumista ja atrofiaa tapahtuu tasaisesti ilman inflmaatioon assosioituvia pahenemisvaiheita.

Tällaista hypoteesia tukee kliinisten löydösten ohella myös se, että anti-inflammatoriset ja immunosupressiiviset lääkkeet eivät toimi toivotulla tavalla etenevissä MS-taudeissa, vaikka nillä saadaan hyviä hoitotuloksia aaltoilevaa tautimuotoa sairastavilla.

Myöskään kantasoluhoidosta ei löydy apua etenevään MS-tautiin. Kantasoluhoidossa potilaalta kerätään kantasoluja, joita kasvatetaan petri-maljoissa. Kantasolujen keräämisen jälkeen potilaan virheellisesti toimiva immuunijärjestelmä tuhotaan voimakkaalla kemoterapialla. Viimeisessä vaiheessa kantasoluista istutetaan potilaalle uusi immuunijärjestelmä.

Kaiken kaikkiaan kantasoluhoito kestää noin kuukauden ja sillä on saatu hyviä hoitotuloksia RRMS-potilailla. PPMS- ja SPMS-potilaille kantasoluhoito ei ainakaan nykyisellään sovellu.

Immuunijärjestelmää hillitsevillä lääkkeillä ja kantasoluhoidolla ei ole toivottua vaikutusta etenevässä MS-taudissa, koska immuunijärjestelmän virheellinen toiminta ei ole oireiden ensisijainen syy. Etenevä MS-tauti ei myöskään ole ensisijaisesti tulehduksellinen sairaus, koska tulehduksia vähnetävillä lääkkeillä ei saada toivottua vastetta.

Tästä hypoteesista ei vallitse tietellistä konsensusta, mutta etenevien MS-tautien tutkimus on lisääntynyt ja viime aikoina on saatu selkeitä viitteitä siitä, että PPMS on osin virheellisesti ymmärretty sairaus; sen sekoittaminen relapsoivaan-remittoivaan MS-tautiin vain pahentaa tilannetta ja hidastaa tutkimustyötä.

Niin tai näin, molemmissa MS-taudin muodoissa ravinto ja elintavat vaikuttavat taudin etenemiseen, mutta erilaisten patologisten prosessien ja aineenvaihduntakanavien kautta.   

Ehkäpä MS-taudin yksilölliset oireet ja taudinkulku eri potilailla selittyy sillä, että kahteen yleisimpään MS-taudin muotoon vaikuttavat erilaiset geenivariaatiot, geenien alleelit, yhden nukleotidin polymorfismit ja epigeneettiset muutokset.

MS-tautiin assosioituvia geenejä on tunnistettu noin 200, mutta yksikään potilaista ei varmasti kanna kaikkia mahdollisia MS-tautiin liittyviä geenimuutoksia. Tämä monimuotoisuus selittää sen, miksi MS-tautiin on äärimmäisen vaikeaa löytä parantavaa ja kaikille potilaille soveltuvaa hoitoa.

Oksidatiiviseen ainnenvaihduntaan vaikuttavia tekijöitä: PPAR, sirtuiinit ja AMPK

Palataan hapetusreaktioihin, sillä ne vaikuttavat solujen aineenvaihduntaan mm. ravintoaineiden kautta. Oksidatiivinen stressi ja matala-asteinen tulehdus heikentävät elimistön terveyttä ja altistavat kroonisille sairauksille. Immuunivälitteisissä tulehduksellisissa sairauksissa oksidatiivinen stressi ja inflammaatio ylläpitävät ja pahentavat taudin oireita.

Happiradikaalit kaappaavat elektroneja muilta molekyyleiltä

Oksidatiivisella stressillä tarkoitetaan solujen ja laajemmin koko elimistön hapetus-pelkistystilan epätasapainoa. Kun hapettavia tekijöitä on liikaa suhteessa pelkistäviin tekijöihin, oksidatiivinen stressi välittyy reaktiivisten happi- ja typpiradikaalien kautta muihin molekyyleihin.

Reaktiivinen happiradikaali (ROS) on hapesta muodostunut yhdiste, joka sisältää parittoman elektronin. Se pyrkii parilliseen elektronimäärään reagoimalla läheisyydessään olevien muiden yhdisteiden kanssa. Tämä johtaa eräänlaiseen dominoefektiin, jossa happiradikaali vaurioittaa kohtaamansa molekyylin rakennetta ja/tai toimintaa.

Oksidatiivisen metabolismin vaikutusta tehostaa kaksi entsyymiä ja tumareseptori. Entsyymit ovat AMP-aktivoidut proteiinikinaasit: AMPK (Steinberg and Kemp, 2009) sekä sirtuiinit (SIRT), jotka ovat joukko NAD+ -vaikutuksesta aktivoituvia histonideasetylaaseja (Zhang et al., 2011; Rice et al., 2012). Vaikuttava tumareseptori on PPAR-isotyyppi (peroxisome proliferator-activated receptors) Desvergne and Wahli, 1999; Burns and VandenHeuvel, 2007).

Rasvojen energiantuotanto

Keho säilyttää energiaa rasvahappoina, koska rasvahapoissa on hiilihydraatteihin nähden yli kaksinkertainen määrä energiaa painoyksikköä kohden. Rasvahappoja muutetaan energiaksi mitokondrioissa tapahtuvassa beeta-oksidaatiossa:

  • Aluksi rasvat hajotetaan rasvahapoiksi ja glyseroliksi. Esimerkiksi triglyseridissä on kolme rasvahappoketjua, jotka ovat kiinnittyneenä glyseroliosaan.
  • Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi, joka voidaan käyttää energiantuotantoon (n. 5 % triglyserideistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä. Glukoneogeneesi käyttää glukoosimolekyylin tuottamiseen enemmän energiaa kuin syntyvästä glukoosimolekyylistä vapautuu glykolyysissä ja soluhengityksessä.
  • Rasvahapot hapetetaan mitokondrioissa tapahtuvassa beeta-oksidaatiossa (β–oksidaatiossa).
    Rasvahapot aktivoidaan edelleen mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Soluliman asyyli-KoA:lla ja mitokondrion asyyli KoA:lla on eri tehtävät: solulimassa ”rakentava” anabolia ja mitokondriossa ”hajottava” katabolia.
  • Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA).
  • Asetyyli KoA (asetyylikoentsyymi A) hapetetaan edelleen sitruunahappokierrossa.
  • Elimistön energiantuotannon lopputuotteena syntyy vettä ja hiilidioksidia, jotka poistuvat kehosta mm. hengityksen ja hikoilun kautta.

Mitokondrioissa ja peroksisomeissa tapahtuvaa rasvahappojen beetaoksidaatiota tehostavat PPAR-isotyypit. Beetaoksidaatiossa ravinnon tai kehon varastoimia rasvahappoja käytetään energianlähteenä.  PPAR-isotyypit säätelevät beetaoksidaatioon liittyvien geenien transkriptiota ja muodostavat AMPK-sirtuiinipolkuja.

Vähäenerginen ravinto ja liikunta aktivoi AMPK-sirtuiini-PPAR-polun aineenvaihduntaa

AMPK-sirtuiini-PPAR-polku aktivoituu vähäenergisen ravinnon ja fyysisen harjoittelun seurauksena. Aktivaatiota tehostavat kasvisten ja hedelmien sisältämät polyfenolit ja pitkäketjuiset monityydyttämättömät rasvahapot (omega-3). Ligandin aktivoimat PPAR-isotyypit muodostavat kahdesta erilaisesta osasta koostuvia (heterodimeerisiä) komplekseja RXR-reseptorin kanssa.

Käytännössä: Vähäenerginen, omega-3-rasvahappoja ja polyfenoleita sisältävä ravinto tehostaa aineenvaihduntaprosessia, jossa rasvahappoja muutetaan energiaksi beeta-oksidaatiossa.

Vastaavasti runsasenerginen ravinto tehostaa anabolista aineenvaihduntaa ja lipogeneesiä, jossa verenkierrossa olevia sokereita muutetaan varastorasvoiksi. Energiatiheät ravintoaineet edistävät solujen kasvua aktivoimalla SREBP-1c ja SREBP-2 proteiineja (sterol regulatory element-binding proteins), Xu et al., 2013, ja ChREBP (carbohydrate responsive element-binding protein), Xu et al., 2013.

LXR tumareseptorit kontrolloivat SREBP-1c ja SREBP-2-proteiineja, Mitro et al., 2007; Nelissen et al., 2012. Oksysterolit ja glukoosi puolestaan aktivoivat SREBP-1c- ja SREBP-2-proteiineja, jotka osallistuvat lipidien, triglyseridien ja kolesterolin synteesiin.

MS ja inflammaatio: NF-kB ja AP-1)

Ravinnon, inflammaation ja MS-taudin yhteyden kannalta merkityksellisiä ovat kaksi transkriptiotekijää, jotka osallistuvat inflammaatioon ja autoimmuunireaktioihin. Nämä ovat tuman transkriptiotekijä-kB (NF-kB) ja aktivaattoriproteiini (AP-1; Yan and Greer, 2008).

MS-taudissa sekä NF-kB ja AP-1 aktivoituvat vaikuttaen useiden proinflammatoristen geenien ekspressioon ja proinflammatoristen molekyylien tuotantoon. Aktivoitumisen mekanismia ei täysin tunneta, mutta on todennäköistä, että aktivaatioon vaikuttaa virusten, sytokiinien ja oksidatiivisen stressin lisäksi eräät ravintoaineet, kuten tyydyttyneet rasvat, transrasvat.

Tumareseptoreiden aktivaatio

Kaikkien tumareseptoreiden (PPAR, LXR ja VDR) on aktivoiduttava erityisten ligandien avulla. Nämä ligandit voivat olla spesifejä ravintotekijöitä, mikä osoittaa, kuinka solut reagoivat ravintoaineisiin ja säätelevät energian homeostaasia. Samalla tämä mekanismi on kuin molekylaarinen avain, joka auttaa ymmärtämään kuinka ravintoaineet vaikuttavat tulehduksellisten sairauksien etenemiseen (Heneka et al., 2007; Zhang-Gandhi and Drew, 2007; Krishnan and Feldman, 2010; Cui et al., 2011; Schnegg and Robbins, 2011; Gray et al., 2012).

”Therefore, each of the three nuclear receptors—PPAR, LXR, and VDR—competes for the binding to RA-RXR and forms hetero-complexes that can inhibit NF-kB and exert a tight control over the expression of inflammatory genes, thus integrating metabolic and inflammatory signaling. It is clear that there is competition between the three receptors PPAR, LXR, and VDR-D, for the binding with RA-RXR, but this competition should have an influence only on metabolism and not on inflammation, because it is not yet known which of the three heterodimers is more effective in inhibiting NF-kB.”

Proinflammatoristen molekyylien tuotanto MS-taudin pahenemisvaiheen aikana on biosynteettinen prosessi, jota ylläpitää ja pahentaa runsasenerginen ruokavalio. Toisaalta inflammaatioon assosioituvan relapsin oireita ja kestoa voi helpottaa vähäenergisellä ruokavaliolla.

”In principle, what favors anabolism will promote the inflammatory processes, while what favors catabolism will contrast them.”

Kuvan lähde:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342365/figure/fig4-1759091414568185/

Tästä artikkelisarjasta on tullut sellainen iisakin kirkko, joka ei näytä koskaan valmistuvan. Aihe on älyttömän kiinnostava.




Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2

Tulehdusten vaikutus neurodegeneratiivisiin tapahtumiin assosioituu vahvasti kaikkiin MS-taudin muotoihin. Aktiiviset leesiot liittyvät yleensä inflammaatioon. Tästä syystä MS-hoitojen kohdentaminen tulehduksellisiin tekijöihin on aiheellista. (Frischer et al., 2009; Lassmann, 2013, Kutzelnigg and Lassmann, 2014). Inflammaatio ja sen merkitys MS-taudissa jatkaa edellisen artikkelin aloittamaa syvempää tutustumista MS-tautiin vaikuttaviin tekijöihin.

MS on ongelmallinen sairaus. Tautiin vahvasti assosioituvia geenivariantteja tunnetaan 100-200. Näistä useimmat osallistuvat immuunijärjestelmän toimintaan. Monitekijäiseen tautiin vaikuttaa vaihtelevien ympäristö- ja geenitekijöiden lisäksi myös eräät aineenvaihduntaan kytkeytyvät tekijät. (Ascherio, 2013)

Ravinnolla on kiistattomia vaikutuksia terveyteen. Jotkin ravintoaineet altistavat lihomiselle, matala-asteiselle tulehdukselle ja sairastumiselle, mutta toiset ehkäisevät tulehduksia, ylläpitävät kehon normaalia aineenvaihduntaa ja terveyttä.

Ravintoaineet osallistuvat solujen ja suoliston mikrobiomin kautta aineenvaihduntaan tulehduksellisissa taudeissa, kuten MS-taudissa. Ravintoaineet voivat siis hillitä tai pahentaa tulehdusreaktioita. Jatketaan tässä artikkelissa Paolo Riccion ja Rocco Rossanon laajan ravintoa ja tulehdustekijöitä käsittelevän tutkimuskatsauksen avaamista.

Inflammaatio ja sen merkitys MS-taudissa

 

  1. Ravinnon määrä ja laatu vaikuttavat mm. entsyymien, transkriptiotekijöiden sekä solun tuman reseptorien toiminnan kautta aineenvaihduntaan. Ravintoaineet myös ohjaavat soluja joko anaboliseen tai kataboliseen aineenvaihduntaan sekä säätelevät tulehduksellisia ja immunologisia vasteita elimistössä. (Desvergne et al., 2006).
  2. Ravinto ja elintavat osallistuvat monella tavalla suolistoflooran hyvinvointiin. Ihminen on eräänlainen metaorganismi, joka elää mutualistisessa taikka symbiottisessa suhteessa kehon mikrobiomin kanssa.Mikrobiomi muodostuu biljoonista mikrobeista (1014), jotka voivat edustaa  satoja tai jopa yli tuhatta bakteerilajia. Mikrobiomin merkitystä korostaa lisäksi se, että kehossa mikrobien soluja on arvioiden mukaan kymmenkertainen määrä kehon omiin soluihin nähden.Tämä monimutkainen ekosysteemi on keskeinen osa ihmistä, ja se vaikuttaa sekä aineenvaihdunnan että immuunijärjestelmän kautta elimistön toimintaan.

Osallistuva mikrobiomi

Keho toimii mutualistisessa tai symbioottisessa suhteessa mikrobiomin hyvien mikrobien kanssa. Mutualismilla tarkoitetaan biologiassa kahden osapuolen välistä fysiologista suhdetta, joka on kummallekin myönteinen.

Eubioosi ja dysbioosi

Suolistoflooralla on useita tärkeitä immunologisia ja metabolisia tehtäviä; se mm. suojelee elimistöä enteropatogeeneiltä ja osallistuu moniin immuunijärjestelmän normaaleihin toimintoihin.

Suolisto on ihmisen suurin immunologinen elin ja monilla sairauksilla on yhteys ruoansulatuksen ja suoliston toimintaan. Eubioottinen suoliston mikrobiomi on terve ja tasapainoinen.

Terve ja tasapainoinen, eubioottinen mikrobiomi voi muuttua oireilevaksi, dysbioottiseksi mikrobiomiksi, jos patogeenisten mikrobikantojen määrä pääsee lisääntymään ja horjuttamaan suoliston mikrobien herkkää tasapainoa. Dysbioosilla tarkoitetaan suoliston bakteerikannan haitallisia muutoksia. (Chassaing and Gewirtz, 2014)

Dysbioosi voi aiheuttaa monenlaisia oireita, kuten:

  • Vatsan turvotus
  • Aivosumu
  • Akne
  • Ripuli
  • Ummetus
  • Ihon kutina
  • Heikot kynnet
  • Väsymys
  • Ahdistus
  • Painonnousu

Dysbioosin aiheuttamiin oireisiin vaikuttaa se, mitkä suoliston bakteerikannat ovat epätasapainossa. Tutkimuksissa on havaittu, että suolistoflooran dysbioosi assosioituu mm. tulehduksellisiin suolistosairauksiin (IBD), ärtyneen suolen oireyhtymään (IBS), allergioihin, astmaan, sydän- ja verisuonitauteihin, metaboliseen oireyhtymään, autoimmuunitauteihin ja ylipainoon.

Dysbioosiin vaikuttavia tekijöitä

Suolistofloora on herkästi haavoittuva mikrobien ekosysteemi.  Dysbioosi voi kehittyä suolistoon mm. antibioottien käytön, stressin ja epäterveellisen, paljon sokeria, valkoisia jauhoja, huonoja rasvoja, alkoholia sekä punaista lihaa sisältävän ruokavalion seurauksena.

Toisaalta dysbioosia voi ehkäistä ruokavalion avulla. Runsaskuituinen, pro- ja prebiootteja sisältävä, kasvisvoittoinen hapatettuja ruokia sisältävä ruokavalio ylläpitää suolistoflooran hyvinvointia. Suolistoflooran kannalta hyviä ravintoaineita ovat:

  • Juurekset
  • Tummanvihreät lehtikasvit, kuten pinaatti
  • Sipulit
  • Palkokasvit
  • Kaalit
  • Hapatetut ruoat (hapankaali, suolakurkut, kimchi, jogurtti, viili ja piimä)
  • Täysjyväviljat

Ravinnon vaikutukset suolistoflooran tasapainoon perustuvat siihen, että eri ravintoaineet ruokkivat erilaisia mikrobipopulaatioita suolistossa. Ruokavalio voi johtaa yhtä hyvin elimistölle hyödyllisten tai haitallisten bakteerikantojen lisääntymiseen ja siten vaikuttaa suolistoflooran tasapainoon.

Yksipuolinen ravinto yksipuolistaa myös suoliston mikrobiomia ja heikentää siten immuunijärjestelmän toimintaa.

Runsaasti prosessoituja ravintoaineita, sokereita, huonoja rasvoja, punaista lihaa ja alkoholia sisältävä dysbioosia edistävä ravinto altistaa suoliston inflammaatiolle. Suoliston tulehdukset ja immuuunijärjestelmän toiminnan muutokset kasvattavat systeemisen inflammaation ja kroonisten tulehdussairauksien riskiä.

Suoliston hyvät mikrobit hyödyntävät ruoansulatuskanavassa sulamatonta kuitua ja vapauttavat elimistöön ihmiselle tärkeitä lyhytketjuisia rasvahappoja. Lyhytketjuiset rasvahapot vahvistavat suolen pintakerroksia, hillitsevät tulehduksia sekä säätelevät kylläisyyttä ja rasvan kertymistä kehoon.

FODMAP

Aina suolistobakteereita hyödyttävä sinänsä terveellinen ravinto ei toimi toivotulla tavalla. Ärtyvän suolen oireyhtymää (IBS) sairastavilla huonosti ohutsuolesta imeytyvät lyhytketjuiset ns. FODMAP-hiilihydraatit voivat aiheuttaa oireita, kuten turvotusta, vatsakipuja ja ilmavaivoja.

FODMAP-nimitys tulee hiilihydraattien englanninkielisistä nimistä fermentable oligo-, di- and monosaccharides and polyols. FODMAP-hiilihydraatteja ovat fruktaanit, galaktaanit, raffinoosit, fruktoosi, laktoosi ja polyolit eli sokerialkoholit.

FODMAP-hiilihydraattien on todettu aiheuttavan vaikeita oireita suurimmalle osalle IBS:stä kärsivistä. Osalla ärtyvän suolen oireyhtymän oireita voi aiheuttaa FODMAP-hiilihydraattien sijaan stressi ja muut elintavat.

Kuvan lähde: Valio

 

Metabolia: Ravintoaineet vaikuttavat aineenvaihduntaan ja soluihin sekä säätelevät tulehdusreaktiota

Aineenvaihdunta on kaksisuuntainen biologinen prosessi. Ravinto pilkotaan ruoansulatuskanavassa imeytyvään muotoon eli ravinnon perusmolekyyleiksi (aminohapot, rasvahapot, sokerit, suojaravinteet ja vesi), joita elimistö voi käyttää energiaravinteina sekä elimistön uusiutumisen ja veren, lihasten, luiden, entsyymien, hormonien ja ruoansulatusnesteiden tarvitsemina rakennusaineina.

Aineenvaihdunta jaetaan kahteen toimintamekanismiin: anaboliseen ja kataboliseen aineenvaihduntaan.

Anaboliset reaktiot ovat energiaa kuluttavia reaktioita, joissa yksinkertaisista lähtöaineista valmistetaan monimutkaisempia yhdisteitä. Kataboliset reaktiot ovat energiaa tuottavia reaktioita, joissa suuret molekyylit pilkotaan yksinkertaisemmiksi yhdisteiksi. Ravintoaineiden pilkkomisen seurauksena energiaravinteista (hiilihydraatit, rasvat ja proteiinit) vapautetaan energiaa elimistön käyttöön.

Esimerkiksi:

Anabolisissa reaktioissa yksinkertaisista lähtöaineista rakennetaan monimutkaisempia makromolekyylejä:

Solun rakennuspalikat                           Solurakenteen suuremmat yksiköt

Sokerit                                – – >               Polysakkaridit
Rasvahapot                         – – >               Rasvat, lipidit, solukalvot
Aminohapot                        – – >               Proteiinit
Nukleotidit                         – – >               Nukleiinihappo

Anaboliset reaktiot kuluttavat energiaa ATP:n tai NADH:n (ja NADPH:n) muodossa.
ATP – – > ADP + Pi
NADH + H+ – – > NAD+

Aineenvaihdunnan proteiinisynteesi kuluttaa runsaasti energiaa. Myös glukoosia muodostava glukoneogeneesi kuluttaa enemmän energiaa kuin mitä se tuottaa glukoosina solujen glykolyysissä ja soluhengityksessä.

Anabolinen ja katabolinen aineenvaihdunta vuorottelevat elimistössä päivittäisten rutiinien lisäksi myös iän ja elämäntilanteen mukaan. Fyysinen harjoittelu ja sairaudesta toipuminen kallistavat aineenvaihduntaa anaboliseksi, jolloin aineenvaihdunta rakentaa esimerkiksi lihaskudosta tai korjaa sairauden aiheuttamia vaurioita. Myös kasvavien lasten aineenvaihdunta painottuu anabolisen metabolian puolelle.

Minulla ja uskoakseni monella MS-tautia sairastavalla aineenvaihdunta on katabolisessa tilassa. Se osaltaan selittää lihaskatoa.

Aineenvaihduntaan vaikuttavia tekijöitä

Aineenvaihduntaan vaikuttaa useita tekijöitä, kuten ravinnon määrä ja laatu, makroravinteet, ravinnon sisältämät suojaravinteet (vitamiinit ja mineraalit), stressi, nestetasapaino, maksan, suoliston ja haiman terveys, geenit, hormonit, insuliinisensitiivisyys, leptiinisensitiivisyys, liikunta, ja uni jne.

Entsyymit ja transkriptiotekijät

Kuinka ravintomolekyylit vaikuttavat solujen metaboliaan? Tämän ymmärtämiseksi täytyy määritellä kataboliaan ja anaboliaan vaikuttavien entsyymien ja transkriptiotekijöiden merkitys.

Yksinkertaistettu kaavio osoittaa miten luonnolliset ravintotekijät säätelevät solumetaboliaa oksidatiiviseen aineenvaihduntaan (vasemmalla), biosynteesiin (oikealla) ja NF-kB-välitteiseen inflammaatioon (alla keskellä) sitoutumalla tumareseptoreihin, transkriptiotekijöihin sekä vuorovaikutteisiin entsyymeihin. Kuvan lähde: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342365/

Agonisti ja antagonisti

Agonisti eli ”reseptorinaktivoija” on kemiallinen yhdiste, joka rakenteensa perusteella eli ligandina ja elimistön viestimolekyylien tavoin aktivoi kohdereseptoriaan ja käynnistää siihen kytkeytyvän solun fysiologisen signaalinvälitysmekanismin.

Agonistin vaikutus voidaan kumota agonistin kanssa samaan reseptoriin sitoutuvalla antagonistilla eli reseptorinsalpaajalla.

Tumareseptori

Tumareseptorit sijaitsevat joko tumassa DNA:han kiinnittyneinä tai solun sytoplasmassa. Ne aktivoituvat solukalvon läpäisevän, hydrofobisen viestimolekyylin sitouduttua niihin.

Tällaisia viestimolekyylejä ovat mm. monet hormonit (tyroksiini, estradioli, testosteroni, kortisoli, retinoli ja D-vitamiini), jotka reseptoriinsa sitouduttuaan vaikuttavat suoraan solun geeniekspressioon.

Kaikkien tumareseptorien rakenteeseen kuuluu:

  • Transkriptiota säätelevä alue
  • DNA:han sitoutuva alue
  • Ligandia sitova alue.

Transkriptio

Transkriptio on biologinen prosessi, jossa DNA-templaatin avulla valmistetaan yhdelle DNA-juosteelle komplementaarinen RNA-molekyyli. Transkriptiossa RNA-polymeraasi kopioi DNA:ssa olevaa geneettistä koodia RNA:ksi. Se on proteiinisynteesin ensimmäinen vaihe.

Transkriptiossa syntyy myös lähetti-RNA-, ribosomaalinen-RNA- ja siirtäjä-RNA-molekyylejä. Lähetti-RNA:ta käytetään proteiinisynteesin mallina translaatiossa, siirtäjä-RNA:t kuljettavat aminohappoja translaatiossa käytettäväksi ja ribosomaalinen RNA muodostaa yhdessä ribosomaalisten proteiinien kanssa ribosomeja, jotka toimivat translaatiossa moottoreina.

RNA-polymeraasi

RNA-polymeraasi on entsyymi, joka aukaisee kaksijuosteista DNA:ta lyhyeltä matkalta ja liittää nukleotidejä toisen DNA-juosteen (templaatin) pariksi muodostuvaan RNA-molekyyliin.

Templaattina toimivaa DNA-juostetta kutsutaan (-)-juosteeksi ja koodaavaa juostetta (+)-juosteeksi (koodaavassa juosteessa siis sama emäsjärjestys kuin muodostuvassa RNA-molekyylissä).

Toisin kuin DNA-polymeraasi, RNA-polymeraasi ei tarvitse aluketta, vaan voi aloittaa RNA:n synteesin suoraan DNA:n ja nukleotidien (A, U, C, G) avulla. RNA-polymeraasi tarvitsee kuitenkin erityisiä DNA-sekvenssejä, promoottoreita, joiden kohdalle polymeraasi sitoutuu. Lähde: Solunetti

Kuvan lähde: Wikipedia

Transkriptiotekijät

Transkriptiotekijät eli transkriptiofaktorit ovat proteiineja, jotka tunnistavat DNA:ssa promoottoreita ja tehostajia ja säätelevät geenin transkriptiota. Transkriptiotekijöiden on tunnistettava ja liityttävä DNA:n aloituskohtaan, ennen kuin RNA-polymeraasi voi liittyä siihen. Transkriptiotekijät jaetaan kolmeen luokkaan:

  1. Yleiset transkriptiotekijät, jotka ovat transkriptiolle välttämättömiä proteiineja. Yhdessä RNA-polymeraasin kanssa ne muodostavat perustranskriptiokoneiston.
  2. Ylävirran transkriptiotekijät ovat säätelyn ulkopuolisia proteiineja, jotka kiinnittyvät DNA:han geenin aloituskohdasta ylävirtaan ja säätelevät transkriptiota.
  3. Indusoivat transkriptiotekijät ovat ylävirran transkriptiofaktoreiden kaltaisia, mutta ne edellyttävät aktivointia tai inhibointia.

Yleisten transkriptiotekijöiden (TFIIA, TFIIB, TFIID, TFIIE, TFIIF) läsnäolo geenien käynnistäjien TATA-alueella on välttämätöntä, jotta transkriptio lähtee alkuun. Sinkkisormet, leusiinivetoketjut, ja heliksi-mutka-heliksin sisältävät proteiinit (engl. homeodomain) ovat tavallisimman tyyppiset transkriptiota säätelevät proteiinit. Lähde: Internetix

Ligandi

Ligandi on molekyyli tai ioni, joka on koordinoitunut keskusioniin ja sitoutunut siihen koordinatiivisella sidoksella. Sidoksen muodostuessa keskusioni toimii Lewisin happona ja ligandit Lewisin emäksinä. Ligandeja kutsutaan yksi-, kaksi-, kolme-, neljä- tai kuusihampaisiksi riippuen siitä kuinka monta elektroniparin luovuttajaksi soveltuvaa luovuttaja-atomia sen rakenteessa on.

Reseptorit voivat olla entsyymejä tai ne voivat aktivoida entsyymejä. Entsyymejä aktivoivien (tai entsyymeinä toimivien) reseptoreiden rakenteessa on ligandia sitovan solun ulkopuolisen osan lisäksi katalyyttinen tai entsyymiä sitova solunsisäinen osa. Entsyymireseptorien ligandina toimii usein kasvutekijä.

Entsyymejä aktivoivat reseptorit ovat toimintansa perusteella

  • tyrosiinikinaasireseptorit
  • tyrosiinikinaaseja aktivoivat reseptorit
  • tyrosiinifosfataasireseptorit
  • seriini/treoniinikinaasireseptorit
  • guanylaattisyklaasireseptorit
  • histidiinikinaasia aktivoivat reseptorit

Entsyymit ja substraatit

Entsyymit ovat biologisia katalyyttejä eli ne nopeuttavat kemiallisia reaktioita. Entsyymit ovat tavallisesti proteiineja, mutta myös RNA-molekyylit voivat olla entsyymejä, jolloin puhutaan ribotsyymeistä.

Monissa proteiinientsyymeissä aktiivinen keskus koostuu muusta kuin aminohapoista, usein aminohappoihin koordinoituneesta yhdestä tai useammasta metalli-ionista. Näitä entsyymiä auttavia ryhmiä kutsutaan kofaktoreiksi ja tavallisimpia ovat kupari-, rauta- ja sinkki-ionit. Jos kofaktori on orgaaninen molekyyli, puhutaan koentsyymistä.

Molekyyliä, johon entsyymin toiminta kohdistuu, kutsutaan substraatiksi. Entsyymien katalyyttinen toiminta perustuu niiden kykyyn alentaa substraattiin kohdistuvan reaktion aktivaatioenergiaa. Tämä tapahtuu siten, että entsyymi pakottaa substraatin kohti siirtymätilaa muodostamalla sen kanssa heikkoja vuorovaikutuksia. Heikkojen vuorovaikutusten ja siirtymätilan uusien sidosten syntyminen vapauttaa energiaa, jka sysää katalysoitavan reaktion liikkeelle nopeammin.

Ilman entsyymejä kemialliset reaktiot tapahtuisivat soluissa liian hitaasti, eikä elämä olisi mahdollista. Entsyymit nopeuttavat reaktioita vähintään tuhatkertaisesti, joskus jopa 1017-kertaisesti. Nopeimmat entsyymit muuttavat jopa 40 miljoonaa molekyyliä reaktiotuotteiksi yhdessä sekunnissa.

Alla lista tulehduksia säätelevistä agonisteista (+) ja antagonisteista (-) sekä eräistä tavallisista lääkkeistä, entsyymeistä, tumareseptoreista ja transkriptiotekijöistä.

Useimmissa tapauksissa agonistit hillitsevät ja antagonistit edistävät inflammaatioita. Joissain tapauksissa tilanne näyttää kuitenkin olevan päinvastainen. Tämä on melko sekavaa, mutta ehkä tästä jonkinlaisen yleiskuvan saa:

AMPK

AMP-aktivoitu proteiinikinaasi. Proteiinikinaasit ovat kinaasientsyymeitä, joiden substraatti on proteiini. Kinaasit ovat tärkeä tekijä solunsisäisessä viestinnässä. Fosfaattiryhmän siirtämällä proteiinikinaasit tyypillisesti aktivoivat tai deaktivoivat substraattinsa. Yksi proteiinikinaasi voi fosforyloida useita substraattimolekyylejä.

AMPK (5-adenosiinimonofosfaatti-aktivoitu proteiinikinaasi) osallistuu solujen energiatasapainon säätelyyn. AMPK:ta esiintyy mm. maksa-, aivo- ja lihaskudoksissa.

(+) Agonistit – Inflammaatiota vähentävät tekijät

  • Kaloreiden rajoittaminen; vähäenerginen ravinto.
  • Liikunta
  • AMP: Adenosiinimonofosfaatti eli adenyylihappo on nukleotidi. Se muodostuu adenosiinikukleosidistä ja siihen liittyneestä fosfaattiryhmästä. Adenosiinimonofosfaatilla on tärkeä rooli aineenvaihdunnassa. se aktivoi useita tärkeitä reaktioita esimerkiksi glykolyysissä, glykogenolyysissä ja rasvahappojen hapettamisessa.
  • Greliini: Growth hormone release inducing, eli KH-reliini tai GH-reliini on pääasiassa mahalaukun limakalvolta erittyvä 28 aminohapon mudostama peptidihormoni, joka lisää kasvuhormonin eritystä aivolisäkkeestä. Sen lisäksi greliini stimuloi ruokahalua ja nopeuttaa mahalaukun tyhjenemistä. Greliini vaikuttaa kasvuun aiheuttamalla ruokahalun lisäyksen kautta elimistöön kasvun mahdollistavan anabolisen tilan.
  • Alfa-lipoiinihappo: LA; Antioksidantti ja koentsyymi hapetus-pelkistysreaktiossa. Lipoiinihappo on yleinen lisäravinne, joka tutkimuksissa on alentanut MS-tautia sairastavien tulehdusreaktioita.
  • Adiponektiini: Rasvasolujen erittämä hormoni, jonka vähäinen määrä veressä korreloi monien sairauksien kanssa.
  • Flavonoidit: Kasveissa esiintyviä yhdisteitä, jotka vaikuttavat makuun, väriin, koostumukseen ja säilyvyyteen sekä toimivat antioksidantteina. Flavonoidit voivat vaikuttaa veren hyytymiseen ja ehkäistä syöpiä. Flavonoideja tunnetaan yli 4000.
  • Nonflavonoidit: Polyfenoleita, jotka hyödyttävät erityisesti suoliston hyviä mikrobeja.
  • Metformiini: Metformiini on suun kautta otettava diabeteslääke, joka parantaa solujen insuliinivastetta. Metformiini voi hillitä inflammaatiota, mutta pitkäaikainen käyttö on yhdistetty kohonneisiin homokysteiinitasoihin sekä B12-vitamiinin imeytymisen heikkenemiseen.
  • Salisyylaatit: Salisylaatit ovat salisyylihapon suoloja ja estereitä

(−) Antagonistit – Inflammaatiota lisäävät tekijät

  • Dysbioottinen eli epätasapainoinen suoliston mikrobiomi.
  • Leptiini: Leptiini on rasvakudoksen vereen erittämä kylläisyyshormoni, joka säätelee ruokahalua ja elimistön energiankäyttöä. Leptiini kertoo hypotalamuksen kautta keskushermostolle kehon varastorasvan määrästä. Kun leptiinin määrä lisääntyy, ruokahalu vähenee ja päinvastoin: leptiinin vähäinen määrä aiheuttaa näläntunnetta.Leptiini vaikuttaa aktiivisuuteen yhdessä insuliinin ja melatoniinin kanssa. Se hillitsee ruokahalua ja vaikuttaa tyreotropiinin (TSH) ja kortikotropiinin (ACTH) erittymiseen aivolisäkkeestä, mikä puolestaan vaikuttaa aineenvaihdunnan vilkkauteen.

Sirtuiinit

Ihmisen histonideasetylaaseja kutsutaan sirtuiineiksi ja niillä on seitsemän alatyyppiä. Histonideasetylaasit (HDAC) ovat entsyymejä, jotka toimivat asetyyliryhmän poistajina.

Esimerkiksi SIRT 1 säätelee useita keskeisiä metabolisia prosesseja ja sillä on suuri merkitys myös energia-aineenvaihdunnan säätelyssä. SIRT 1 säätelee mm. mitokondrioiden biogeneesiä sekä energiametaboliaa ja vaikuttaa mm. diabetekseen ja lihavuuteen. SIRT 1 osallistuu myös rasvametaboliaan ja oksidatiivisen stressin säätelyyn. Sitoutumalla NF-kB:en se todennäköisesti säätelee tulehdusvasteita ja kudosten atrofioitumista. SIRT 2 vaikuttaa mm. solun jakautumisen säätelyyn.

(+) Agonistit – Inflammaatiota vähentävät tekijät

  • VDR-D: D-vitamiini ja solujen D-vitamiinireseptorit.
  • Kaloreiden rajoittaminen; vähän energiaa sisältävä ravinto.
  • Alfa-lipoiinihappo (LA): Antioksidantti ja koentsyymi hapetus-pelkistysreaktiossa. Lipoiinihappo on yleinen lisäravinne, joka tutkimuksissa on hillinnyt MS-tautia sairastavien tulehdusreaktioita.
  • Resveratroli: Resveratroli on useissa kasveissa esiintyvä fenoliyhdiste, jolla uskotaan olevan terveyttä hyödyttäviä ominaisuuksia, kuten syöpiä, virustauteja, vanhenemista ja tulehdusta ehkäiseviä sekä hermosoluja suojaavia vaikutuksia.Resveratrolia on erityisesti punaisissa ja sinisissä viinirypäleissä sekä viininlehdissä ja karpaloissa, mutta sitä on myös punaviinissä. Erään tutkimuksen mukaan resveratroli suojaa diabetekselta ja ylipainolta aktivoimalla aineenvaihdunnan säätelyyn vaikuttavaa Sirt1-geeniä. Toisessa tutkimuksessa punaviinillä saatiin hiirikokeissa anti-inflammatorisia vaikutuksia, mutta vastaavien hyötyjen saamiseksi punaviinillä, ihmisen pitäisi juoda 400 lasia punaviinia päivässä.Resveratrolin terveysvaikutuksiin kannattaakin suhtautua varauksella. Tutkimus on hyvin keskeneräistä ja resveratrolin pitkäaikaisvaikutuksia ihmiselle ei tunneta.
  • Niasiini (B3-vitamiini): Niasiini on yhteisnimitys nikotiiniamidille ja nikotiinihapolle. Niasiinin johdannaiset ovat elintärkeitä solun aineenvaihdunnalle. Puutos aiheuttaa vakavaa puutostautia – pellagraa.Kaikki B-vitamiinit ovat entsyymien tarvitsemien koentsyymien esiasteita. niasiinia tarvitaan etenkin nikotiiniamidiadeniinidinukleotidien (NAD+ ja NADP+) valmistukseen.Niasiinia saa eläuinperäisestä ravinnosta, kuten lihasta, sisäelimistä, kalasta, kananmunista, maitovalmisteista sekä kokojyväviljoista, pähkinöistä ja lehtivihanneksista.
  • TRP (Transient receptor potential channel): TRP-kanavat ovat joukko ionikanavareseptoreita. Ionikanavareseptorit ovat perustilassaan suljettuja. Kun reseptoriin sitoutuu ligandi, kanava avautuu ja ionit pääsevät kulkeutumaan muodostuneen vesihuokosen kautta kalvon läpi konsentraatiogradienttinsa suuntaisesti. Tapahtuma on nopea ja lyhytkestoinen (transient).Monet hermovälittäjäaineiden reseptorit ovat ionikanavareseptoreita. Ionikanavareseptorin kautta kulkeutuvat ionit vaikuttavat hermosoluissa sijaitsevien jänniteherkkien kanavien toimintaan ja voivat synnyttää tai ehkäistä aktiopotentiaalin muodostumista. Ionikanavareseptorien vaikutus solujen ionitasapainoon on nopeampaa kuin esimerkiksi G-proteiinien välityksellä aktivoituvien ionikanavien. Lähde: Solunetti
  • NAD+: Nikotiiniamidiadeniinidinukleotidi on kaikista elävistä soluista löytyvä kahdesta nukleotidista koostuva koentsyymi. Nikotiiniamidiadeniinidinukleotidi osallistuu hapetus-pelkistysreaktioon siirtämällä elektroneja reaktioiden välillä.NAD+ on hapettava tekijä – eli se vastaanottaa elektroneja muilta molekyyleiltä ja pelkistyy. Reaktiossa syntyy NADH, joka toimii pelkistävänä tekijänä luovuttaen elektroneja vastaanottaville molekyyleille.

(−) Antagonistit – Inflammaatiota lisäävät tekijät

  • Alkoholi
  • Tupakointi
  • Nikotiiniamidi: Tämä on mielenkiintoista. Vaikuttaa siltä, että eräät niasiinien ryhmään kuuluvat B-vitamiinit hillitsevät tai lisäävät inflammaatiota.

PPAR alfa/gamma

PPAR säätelee rasva-aineenvaihduntaa. PPAR-agonistit ovat metabolisen oireyhtymän hoidossa käytettäviä lääkkeitä, jotka kohdistuvat PPAR-reseptoriin (peroxisome proliferator-activated receptor).

Peroksisomit ovat yksinkertaisen lipidikalvon ympäröimiä soluelimiä, joita on melkein kaikissa aitotumallisten soluissa. Peroksisomit osallistuvat tärkeisiin solun aineenvaihdunta- ja signalointitehtäviin.

PPAR-reseptorit ovat joukko tumareseptoriproteiineja, jotka toimivat transkriptiotekijöinä ja säätelevät geenien ilmentymistä (gene expression). Geenin ilmentyminen tarkoittaa geneettisen infromaation lukemista DNA:sta uuden proteiinin valmistuksen yhteydessä.

 (+) Agonistit – Inflammaatiota vähentävät tekijät

  • Polyfenolit: Polyfenolit ovat kasveissa esiintyviä antioksidantteja. Monet polyfenoleja runsaasti sisältävät ravintoaineet yhdistyvät sekä väestötutkimuksissa että satunnaistetuissa välimuuttujatutkimuksissa hyvään terveyteen. Tällaisia polyfenoleja ovat mm. neitsytoliiviöljy (fenoliset alkoholit: hydroksityrosoli, tyrosoli), omena (kversetiini: flavonoli), soija (genisteiini: isoflavoni), mustikka (antosyaanit, ferula- ja kahvihapot: fenolisia happoja), kahvi (klorogeenihappo: fenolinen happo).
  • Sirtuiinit; kahvin sisältämä yhdiste hydroksyyli hydrokinoni (HHQ):”We show that coffee component HHQ has significant apoptotic effect on MDA-MB-231 and MCF-7 cells in vitro, and that ROS generation, change in mitochondrial membrane permeability, upregulation of Bax and Caspase-8 as well as down regulation of PGK1 and PKM2 expression may be important apoptosis-inducing mechanisms. The results suggest that PPARγ ligands may serve as potential therapeutic agents for breast cancer therapy. HHQ was also validated as a ligand for PPARγ by docking procedure.”
  • Thiazolidinedione (TZD): TZD aktivoi PPAR-reseptoreita. Vapaat rasvahapot (FFA) ja eikosanoidit ovat reseptorien endogeenisiä (luonnostaan esiintyviä) ligandeja. Aktivoitu reseptori kiinnittyy DNA:han kompleksina, johon kuuluu toinen tumareseptori eli RXR-reseptori (retinoid X receptor). Aktivaatio lisää eräiden spesifien geenien transkriptiota ja vähentää toisten geenien transkriptiota.Keskeinen vaikutus on eräiden spesifien geenien ekspression ja repression säätely, jolloin rasvahappojen varastoiminen rasvasoluihin (adiposyytteihin) tehostuu ja vapaat rasvahapot vähenevät verenkierrosta.Tämän seurauksena solujen energiantuotanto hiilihydraattien ja erityisesti glukoosin oksidaatiosta tehostuu.
  • Kannabinoidiagonistit: Kannabinoidireseptoreja esiintyy kaikkialla elimistössä osana endokannabinoidijärjestelmää. Tämä järjestelmä vaikuttaa moniin fysiologisiin mekanismeihin, kuten ruokahaluun, kivun aistimiseen, mielialaan ja muistiin.Kannabinoidiagonistit aktivoivat CB1- ja CB2-reseptoreita ja niitä käytetään lääkkeinä mm. kivun, anoreksian sekä oksentelun ja pahoinvoinnin hoidossa.Kannabinoidiagonisteja ja -antagonisteja käytetään lääkkeinä. Esimerkiksi Sativex, jota käytetään neuropaattisten kipujen lieventämiseen MS-taudissa.
  • 15d PGJ2 eli anti-inflammatorinen prostaglandiini. Eikosanoidit ovat solujen välisessä parakriinisessä signaloinnissa toimivia molekyylejä. Eikosanoidit valmistetaan arakidonaatista, monityydyttämättömästä rasvahaposta, jota nisäkkäät tuottavat kasviravinnosta saatavasta linolaatista.Esimerkiksi hermoärsytys voi aiheuttaa sen, että fosfolipaasi alkaa hajottaa fosfolipidejä ja vapauttaa samalla arakidonaattia. sER:n entsyymit muuttavat arakidonaatin prostaglandiinien ja tromboksaanien yhteiseksi esiasteeksi ja edelleen prostaganiideiksi, jotka ovat tulehdusreaktioissa toimivia signalointimolekyylejä. Esimerkiksi ibuprofeenin ja aspiriinin toiminta perustuu näiden sER:llä tapahtuvien reaktioiden estämiseen.”In particular, 15d-PGJ2 is recognized as the endogenous ligand for the intranuclear receptor PPARgamma. This property is responsible for many of the 15d-PGJ2 anti-inflammatory functions. In this review, we summarize the current understanding of 15d-PGJ2 synthesis, biology and main effects both in molecular physiology and pathological states.”

NF-kB

NF-kB (nuclear factor kappa-light-chain-enchancer of activated B cells) on proteiinikompleksi, joka säätelee DNA:n transkriptiota, sytokiinien tuotantoa ja solun elinkaarta. NF-kB löytyy lähes kaikista soluista. Se osallistuu soluvasteisiin mm. sytokiinien, stressin, vapaiden happiradikaalien, raskasmetallien, ultraviolettisäteliyn, hapettuneen LDL-kolesterolin sekä patogeenien stimuloimana.

NF-kB on keskeinen vaikuttaja infektioiden aiheuttamassa immuunivasteessa. Häiriintynyt NF-kB:n toiminta assosioituu syöpiiin, tulehduksellisiin sairauksiin, autoimmuunitauteihin, virusinfektioihin, septiseen shokkiin sekä immuunijärjestelmän kehityshäiriöihin. NF-kB saattaa vaikuttaa myös synaptiseen plastisuuteen sekä muistiin.

NF-kB on merkittävä synnynnäiseen ja adaptiiviseen immuunijärjestelmään liittyviä geenejä säätelevä transkriptiotekijä

Koska NF-kB ohjaa monia inflammaatioon liittyviä geenejä, ei liene yllätys, että NF-kB on erityisen aktiivinen monissa tulehduksellisissa sairauksissa.

”It is important to note though, that elevation of some NF-κB activators, such as osteoprotegerin (OPG), are associated with elevated mortality, especially from cardiovascular diseases. Elevated NF-κB has also been associated with schizophrenia. Recently, NF-κB activation has been suggested as a possible molecular mechanism for the catabolic effects of cigarette smoke in skeletal muscle and sarcopenia.Lähde: Wikipedia

Kuvan lähde: Wikipedia

(+) Agonistit: NF-kB-agonistit assosioituvat inflammaatioon

  • Tyydyttyneet (kovat) rasvat ja transrasvat.
  • Onkoproteiinit: Onkogeenien koodaamat proteiinit eli onkoproteiinit säätelevät solukasvua ja erikoistumista. NF-kB aktivoi onkoproteiineja, jotka altistavat syövälle. Onkogeenit ovat mutatoituneita geenejä, jotka voivat saada solun muodostamaan kasvaimen. Onkogeenit saavat kasvaimia aiheuttavat ominaisuutensa mutaatioiden kautta.Onkoproteiineja ovat:
    – Kasvutekijän kinaasireseptorit, jotka muodostavat autofosforyloivia dimeerejä sopontaanisti ilman ligandia.
    – Sytoplasman tyrosiinikinaasit, jotka fosforyloivat ylitehokkaasti.
  • ROS (Reactive oxygen species): Reaktiiviset happiradikaalit ovat hapesta muodostuvia yhdisteitä, jotka sisältävät parittoman elektronin ja ovat siksi hyvin reaktiivisia. Energiataloudellisesti parittomat elektronit ovat epäedullisia ja yhdiste pyrkii parilliseen elektronimäärään reagoimalla läheisyydessä olevien muiden yhdisteiden kanssa. Happiradikaali vaurioittaa kohtaamansa molekyylin rakennetta ja/tai toimintaa.Happiradikaaleja syntyy erityisesti soluhengityksessä, kun mitokondrioiden elektroninsiirtoketju käytää happea energiantuotannossa. Soluhengitys kuluttaa suurimman osan hengitysilman mukana elimistöön tulevasta hapesta, mutta sivutuotteena prosessista syntyy superoksidianionia sekä pieniä määriä muita happiradikaaleja. Myös hapetus-pelkistysreaktioita katalysoivien oksidoreduktaasien sekä elimistölle haitallisia aineita tuhoavien sytokromi P450-entsyymien toiminta tuottaa jonkin verran reaktiivisia happiradikaaleja.
  • TNF-α: Tuumorinekroositekijä alfa on tulehdusreaktion syntyyn vaikuttava välittäjäaine eli sytokiini. TNF-alfa on lähinnä makrofagien erittämä proteiini, joka osallistuu tulehdusreaktion ohella monenlaisiin biologisiin prosesseihin, kuten solunjakautumiseen, solujen erilaistumiseen, apoptoosiin (ohjattuun solukuolemaan), rasva-aineiden metaboliaan ja verihyytymän muodostukseen. TNF-alfalla on havaittu olevan osuutta mm. autoimmuunisairauksissa, insuliiniresistenssissä ja syövässä. TNF-alfan vasta-aine on infliksimabi.” TNF-alfa sekä sen solukalvon läpäisevä TNF-alfareseptori ovat kolmesta osasta kohdistuvia eli trimeerisiä proteiineja. TNF-alfan sitoutuminen solukalvon pinnalla olevaan TNF-alfareseptoriin johtaa reseptorin soluliman puoleisten osien asennon Tällöin soluliman puoleiset osat voivat aktivoida erilaisia viestimekanismeja, jotka johtavat edelleen seriini/treoniinikinaasien aktivoitumiseen. Aktivoituneet seriini/treosiinikinaasit fosforyloivat IκB-kinaasin (IKK), jolloin se aktivoituu. Fosforyloitu IκB-kinaasi liittää IκB-proteiinin kahteen seriinitähteeseen fosfaattia. Tämä fosforylaatio johtaa ubikitiinin liittämiseen IκB-proteiiniin. Proteasomit tunnistavat ubikitinoidun IκB:n ja hajottavat sen. Tällöin IκB:n solulimaan sitoma NFκB-proteiini vapautuu sen otteesta ja kulkeutuu tumaan. Tumassa NFκB yhdessä muiden proteiinien kanssa lisää kohdegeeniensä luentaa eli transkriptiota.” Lähde: Wikipedia
  • IL-1b: Interleukiini 1 beeta (IL1β) on sytokiiniproteiini, jota koodaa IL1B geeni. Interleukiini 1 beeta on merkittävä aktivoitujen makrofagien erittämä tulehdusvälittäjäaine. Se osallistuu solujen säätelyyn, kuten lisääntymiseen (proliferaatio), erikoistumiseen ja apoptoosiin.Interleukiinit ovat proteiineja ja peptidejä, jotka auttavat valkosoluja kommunikoimaan. Interleukiineja tuottavat pääasiassa auttaja-T-solut, monosyytit, makrofagit ja endoteelisolut. Interleukiinit edistävät T- ja B-solujen lisääntymistä ja vaikuttavat immuunivasteeseen. Toisaalta interleukiinit edistävät inflammaatiota ja aiheuttavat suurina määrinä kuumeen.Interleukiini 1 (IL-1) on makrofagien, fibrosyyttien ja T-lymfosyyttien tuottama pieni proteiini, jonka tehtävänä on vahvistaa makrofagien kykyä tappaa mikro-organismeja ja aktivoi auttaja-T-lymfosyyttejä. IL-1 vaikuttaa myös elimistön lämmönsäätelykeskukseen, jossa se saa aikaan ruumiinlämmön kohoamisen. Indusoi akuuttia tulehdusta.Interleukiini 1 beeta ja IL-1 antagonistireseptori (IL-1RN) geenin polymorfismit assosioituvat haavaiseen paksusuolen tulehdukseen.
  • LPS (Lipopolysaccharides): Lipopolysakkaridit tunnetaan myös polyglykaaneina ja endotoksiineina. Ne ovat suuria lipidistä ja polysakkarideista muodostuvia molekyylejä.Endotoksiinit ovat gramnegatiivisten bakteerien ulkokalvon sisältämiä myrkkyaineita, jotka vapautuvat bakteerin hajotessa. Endotoksiineilla viitataan usein lipopolysakkaridiin (LPS), jonka lipidi A-osa aiheuttaa infektion aikana isäntäelimistössä toksisia reaktioita: kuumetta, valkosolujen ja verihiutaleiden niukkuutta sekä mahdollisesti shokin (endotoksiinishokki).Endotoksiineja ovat myös Bacillus thuringiensis-bakteerin delta-endotoksiinit, jotka ovat kiteisiä proteiineja.
  • Virusten aiheuttamat infektiot: Infektiotaudit ovat virusten, bakteerien tai sienten aiheuttamia tulehdustiloja. Infektiotauteja ei aiheuta kylmettyminen, vetoisuus, stressi, valvominen, vitamiinipuute tai huono ruokavalio; infektiotauteja aiheuttavat aina mikrobit.Infektiotaudeille on ominaista tulehdusreaktion syntyminen. Tulehdusreaktioon liittyy valkosolujen ilmaantuminen ja lisääntyminen infektiokohdassa ja verenkierrossa. Valkosolut erittävät tulehdushormoneja, sytokiinejä, jotka saavat aikaan yleisoireina esimerkiksi kuumeen nousun, lihassärkyä ja huonon olon. Oireet eivät niinkään johdu itse mikrobista, vaan sen aiheuttamasta elimistön reaktiosta.Virukset ovat millimetrin tuhannesosan kokoisia proteiineista ja geeneistä muodostuvia rakenteita, jotka esimerkiksi hengitysteihin tai suolistoon tunkeuduttuaan aihauttavat tulehdusreaktion. Virusten infektoimat solut alkavat infektion seurauksena erittää tulehdusvälittäjäaineita, mikä aiheuttaa nuhaa, yskää, ripulia tai oksentelua. Limakalvon soluissa virukset monistuvat ja syntyvät uudet virukset leviävät verenkiertoon ja infektoivat uusia soluja. Antibiootit eivät tehoa viruksiin.Bakteerit ovat yleensä satoja kertoja viruksia suurempia ja muistuttavat rakenteeltaan ihmisen omia soluja. Bakteerit eroavat ihmisen omista kudoksista mm. vahvan, bakteeria suojaavan seinämän perusteella. Monet antibiootit tuhoavat bakteereita tuhoamalla bakteerien vahvan seinän. Tavallisimpia infektioita aiheuttavia bakteereita on alle kymmenen eri lajia. Yleisimmät infektioita aiheuttavat bakteerit ovat: pneumokokki, hemofilus, streptokokki, stafylokokki ja branhamella.

 (−) NF-kB-antagonistit hillitsevät inflammaatiota

  • Kaloreiden rajoittaminen eli vähäenerginen ravinto
  • Polyfenolit
  • n-3 PUFA: Monityydyttämättömät (PUFA) omega-3 rasvahapot eli alfalinoleenihappo.
  • Butyraatti: Suoliston hyvät mikrobit, kuten bifidobakteerit ja laktobasillit tuottavat kaasua syömällä imeytymättömiä fermentoituvia hiilihydraatteja. Kaasua synnyttävässä prosessissa syntyy suolisto- ja kokonaisterveyttä edistäviä lyhytketjuisia rasvahappoja (SCFA). Näitä ovat asetaatti, propionaatti ja butyraatti. Lyhytketjuisilla rasvahapoilla on havaittu suoliston inflammaatiota, infektioita ja syöpiä ehkäiseviä vaikutuksia. Ne myös auttavat suoliston pintaa uusiutumaan ja pysymään terveenä.
  • Sirtuiinit

LXR (Liver X receptor)

LXR on tumareseptori ja transkriptiotekijä. Se muistuttaa läheisesti PPAR-, FXR ja RXR-reseptoreita. LXR-reseptorit osallistuvat kolesterolin, rasvahappojen ja glukoosin homeostaasin säätelyyn.

(+) LXR-Agonisteja

  • Omega-6 monityydyttämättömät rasvahapot (PUFA):Omega-6 eli linolihappo on toinen kehon välttämättä tarvitsemista rasvahapoista. Toinen on omega-3 eli alfalinoleenihappo. Elimistö tarvitsee linolihappoa mm. ihon kunnon ylläpitämiseen. Sekä omega-6 että omega-3 rasvoja tarvitaan solukalvojen rakennusaineina sekä eikosanoidien lähtöaineina. Eikosanoidit ovat yhdisteitä, jotka säätelevät elimistössä esimerkiksi verenpainetta, veren hyytymistä, immuunivastetta ja tulehdustilaa.Matala-asteinen tulehdus assosioituu moniin sairauksiin. Monet omega-3 rasvahapoista tuotettavat eikosanoidit lievittävät tulehdusreaktioita, kun taas omega-6 rasvahapoista tuotettavat eikosanoidit osallistuvat veren hyytymisen säätelyyn sekä tulehdustilan ylläpitoon. Toisaalta omega-6 rasvat voivat myös hillitä tulehdusreaktioita.” Ylenmääräinen omega-6 rasvahappojen saanti suhteessa omega-3 rasvahappojen saantiin tai toisinpäin voi mahdollisesti estää toisen ryhmän rasvahappojen hyödyntämistä elimistössä. Näiden syiden takia on ajateltu, että runsas omega-6 rasvahappojen saanti voisi edistää tulehdusreaktioita. Tutkimuksissa runsas omega-6 rasvahappojen saanti ei ole kuitenkaan johdonmukaisesti johtanut tulehdustekijöiden lisääntymiseen tai vähenemiseen. Lisäksi on viitteitä siitä, että paitsi omega-3 rasvahappojen saanti myös linolihapon saanti ja omega-6 rasvahappojen riittävä pitoisuus verenkierrossa ovat yhteydessä pienempään sydän- ja verisuonisairauksien riskiin. Omega-3 ja omega-6 rasvahappojen saannin suhteella ei ole havaittu yhteyttä sydänsairauksien riskiin.” Lähde: Sydän.fi

    Kuvan lähde: Wikipedia

  • Oxysterolit: Oxysterolit muodostuvat hapettuneesta kolesterolista. Niiden uskotaan vaikuttavan mm. ateroskleroosiin syntyyn ja etenemiseen.”Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation.The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation.” PubMed

(−) LXR-antagonisteja

  • Omega-3 monityydyttämättömät rasvahapot (PUFA). Omega-3 eli alfalinoleenihappo on monien eikosanoidien esiaste ja sillä uskotaan olevan inflammaatiota hillitseviä vaikutuksia.

SREBP-1c (Sterol regulatory element-binding protein 1)

Proteiini, jota ihmisillä koodaa kromosomissa 17 sijaitseva SREBF1-geeni. SREBF1-geenin transkriptiovariantit koodaavat kahta erilaista isoformia: SREBP-1a ja SREBP-1c. Geenin koodaamat proteiinit ovat transkripitotekijöitä, jotka kiinnittyvät DNA:n promoottorisekvenssiin (sterol regulatory element-1; SRE1).

SREBP-1c säätelee geenejä, joita tarvitaa glukoosin aineenvaihdunnassa ja lipidien valmistuksessa. Sen ilmenemistä säätelee insuliini. SREBP-1a säätelee geenejä, jotka liittyvät lipidien ja kolesterolin valmistukseen; sem aktiivisuutta säätelee solun sterolitasot.

”Insulin, cholesterol derivatives, T3 and other endogenous molecules have been demonstrated to regulate the SREBP1c expression, particularly in rodents. Serial deletion and mutation assays reveal that both SREBP (SRE) and LXR (LXRE) response elements are involved in SREBP-1c transcription regulation mediated by insulin and cholesterol derivatives. Peroxisome proliferation-activated receptor alpha (PPARα) agonists enhance the activity of the SREBP-1c promoter via a DR1 element at -453 in the human promoter. PPARα agonists act in cooperation with LXR or insulin to induce lipogenesis.” Lähde: Wikipedia

SREBF1 vuorovaikuttaa ainakin seuraavien kanssa:

  • CREB-binding protein,
  • DAX1
  • LMNA
  • TWIST2
  • BHLHE40
  • BHLHE41

(+) SREBP-1c-agonisteja

  • LXR: LXR-reseptorit osallistuvat kolesterolin, rasvahappojen ja glukoosin homeostaasin säätelyyn.
  • Suoliston dysbioosi
  • Alkoholi
  • Insuliini

(−) SREBP-1c-antagonisteja

  • n-3 PUFA: Omega-3 rasvahapot
  • Metformiini: Diabeteslääke, joka voi hillitä myös inflammaatiota.
  • Sirtuiinit
  • AMPK

SREBP-2 (sterol regulatory element-binding proteins)

SREBP-2 on transkriptiotekijä, joka säätelee kolesterolin aineenvaihduntaan osallistuvia geenejä. SREB proteiineja tarvitaan kolesterolisynteesiin.

”This gene encodes a ubiquitously expressed transcription factor that controls cholesterol homeostasis by stimulating transcription of sterol-regulated genes. The encoded protein contains a basic helix-loop-helix leucine zipper (bHLH-Zip) domain. Various single nucleotide polymorphisms (SNPs) of the SREBF2 have been identified and some of them are found to be associated with higher risk of knee osteoarthritis. SREBF2 has been shown to interact with INSIG1 and CREB-binding protein.” Lähde: Wikipedia

(−) SREBP-2-antagonisteja

  • LXR
  • Statiinit

ChREBP (Carbohydrate-responsive element-binding protein)

ChREBP eli MLXIPL on proteiini, jota ihmisillä koodaa MLXIPL-geeni. ChREBP vuorovaikuttaa hiilihydraatteja säätelevään DNA-sekvenssiin. ChREBP siirtyy solun tumaan ja kiinnittyy DNA:han fosforylaation jälkeen.

”Although the regulation of ChREBP remains unknown in detail, the transactivity of ChREBP is partly regulated by a phosphorylation/dephosphorylation mechanism. During fasting, protein kinase A and AMP-activated protein kinase phosphorylate ChREBP and inactivate its transactivity. During feeding, xylulose-5-phosphate in the hexose monophosphate pathway activates protein phosphatase 2A, which dephosphorylates ChREBP and activates its transactivity. ChREBP controls 50% of hepatic lipogenesis by regulating glycolytic and lipogenic gene expression. In ChREBP (-/-) mice, liver triglyceride content is decreased and liver glycogen content is increased compared to wild-type mice. These results indicate that ChREBP can regulate metabolic gene expression to convert excess carbohydrate into triglyceride rather than glycogen.” PubMed

Liiallinen hiilihydraattien saanti johtaa rasvan kerääntymiseen ja insuliiniresistenssiin. Glukoosi ja insuliini säätelevät glukoosin de novo lipogeneesiä maksassa. Insuliini aktivoi useita transkriptiotekijöitä, kuten SREBP1c ja LXR. ChREBP kiinnittyy DNA:ssa hiilihydraatteja säätelevän sekvenssin (ChoRE) promottorialueelle, jossa sen kohteena on glykolyysiä, lipogeneesiä ja glukoneogeneesiä säätelevät geenit

”This gene encodes a basic helix-loop-helix leucine zipper transcription factor of the Myc / Max / Mad superfamily. This protein forms a heterodimeric complex and binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoters of triglyceride synthesis genes.

(+) ChREBP-agonisteja

  • Glukoosi

(−) ChREBP-antagonisteja

  • LXR
  • Statiinit

PPAR = peroxisome proliferator-activated receptor;
LXR = liver X receptor; RXR = retinoid X-receptor;
NF-kB = nuclear transcription factor-kB;
SREBP = steroid regulatory element-binding protein;
ChREBP = carbohydrate responsive element-binding protein;
Sirtuins = SIRT-1/2, deacetylating enzymes;
AMPK = AMP-activated protein kinase;
n-3 PUFA = omega-3 polyunsaturated fatty acids.

Selityksiä: kaloreiden rajoittaminen

Sirtuiinit löydettiin tämän vuosituhannen alussa. Jo 1930-luvulta asti on tosin tiedetty, että ravinnosta saatavan energian rajoittaminen pidentää jyrsijöiden elinikää. Energiamäärä, joka on 60-70 % normaalista vaikuttaa suotuisasti elimistön toimintaan.

Sirtuiinit

Energiansaannin rajoittaminen laskee kehon lämpötilaa, pudottaa painoa ja rasvamäärää sekä vähentää insuliini- ja glukoosipitoisuutta. Saadun energian määrällä vaikuttaa olevan suurempi merkitys kuin sillä mistä energia saadaan. (Guarante ja Picard, 2005).

Vähäinen energiansaanti vaikuttaa oksidatiivista stressiä hillitsevästi. Eläinkokeissa energiansaannin rajoittaminen on suojannut laboratorioeläimiä monilta ikään liittyviltä sairauksita sekä diabetekselta ja syöviltä. Vaikuttaa siltä, että vähäinen energiansaanti johtaa aineenvaihdunnan sopeutumismekanismeihin, joissa SIR2-geeni (silent information regulator 2, sirtuiini) on keskeisessä osassa.

Sirtuiinit ovat NAD+:sta riippuvaisia proteiiniasetylaaseja. Nämä entsyymit pidentävät hiivojen elinikää 70 %, matojen elinikää 15-40 %, hyönteisten elinikää 30 % ja hiirien elinikää 30 % (Denu 2005). Sirtuiinit säätelevät myös solujen ohjattua kuolemaa eli apoptoosia, tulehdusvastetta, solujen elämänkaarta, geenitranskriptiota ja aineenvaihduntaa.

Sirtuiineja on seitsemän:

SIRT1: Tumassa sijaitseva deasetylaasi, joka säätelee aineenvaihduntaa ja elinikää.
SIRT2: Solulimassa sijaitseva deasetylaasi, joka vaikuttaa syövän syntyyn.
SIRT3: Mitokondrioissa sijaitseva deasetylaasi, joka osallistuu aineenvaihduntaan.
SIRT4: Mitokondrioissa sijaitseva deasetylaasi, joka osallistuu aineenvaihduntaan ja säätelee aminohappovälitteistä insuliinin eritystä.
SIRT5: Mitokondriossa sijaitseva deasetylaasi.
SIRT6: Tumassa esiintyvä sirtuiini.
SIRT7: Tumassa esiintyvä sirtuiini.

Entiten tutkitulla SIRT1-sirtuiinilla on huomattava rooli aineenvaihdunnan kannalta tärkeissä kudoksissa, kuten haimassa, maksassa ja rasvakudoksessa. SIRT1 säätelee erityisesti mekanismeja, jotka liittyvät ikääntymiseen ja energiansäätelyyn paaston tai niukkaenergisen ruokavalion aikana. SIRT1-aktivaatio voi lisätä insuliiniherkkyyttä sekä laskea insuliini- ja glukoosipitoisuuksia.

SIRT1 on PPARϓ:n estäjä, joka aiheuttaa lipolyysin kiihtymisen rasvakudoksessa ja vähentää näin rasvakudoksen määrää. SIRT1 lisää insuliinin eritystä haimasta ja suojaa haiman beetasoluja oksidatiiviselta stressiltä (Moynihan ym. 2005). Maksassa SIRT1:n aktivaatio lisää glukoosin uudismuodostusta PCG-1α:n aktivoitumisen kautta.  Lähde: Sirtuiinit – energiatasapainon ja glukoosimetabolian uudet molekyylit, Markku Laakso

 

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 julkaistaan Ruokasodassa huhtikuun vaihteen tienoilla. Tässä lienee pureskeltavaa vähäksi aikaa.