1

Aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden modulointi ketogeenisellä ruokavaliolla

Vähähiilihydraattinen ja runsasrasvainen ketogeeninen ruokavalio (LCHF), on menneiden vuosikymmenten saatossa nostettu tuon tuosta esiin terapeuttisena vaihtoehtona metabolisen oireyhtymän, ylipainon ja lihavuuden sekä eräiden lääkeresistenttien sairauksien, kuten epilepsian, syövän, dementian ja masennuksen hoitona. Oma motiivini selvitellä näitä on se, että ketogeenisen ruokavalion neuroprotektiivinen ja tulehduksia hillitsevä luonne voi hidastaa etenevään MS-tautiin liittyvien keskushermoston vaurioiden kehittymistä.

Ruokavaliota on hyödynnetty lääkehoidon rinnalla tai lääkehoidosta riippumatta vuosisatoja. Esimerkiksi diabeteksen hoitoon suositeltiin vähähiilihydraattista ruokavaliota jo 1700-luvun lopulla.

Tutuin tehokkaan ravintoterapian kohde on keliakia, jota sairastavat voivat elää jokseenkin normaalia elämää välttämällä viljojen sisältämää gluteenia. Lääkeresistenttiin epilepsiaan ei edelleenkään tunneta parempaa hoitoa, kuin ketogeeninen ruokavalio, jota on käytetty erityisesti lasten epileptisten kohtausten hillitsemiseen 1920-luvulta alkaen.

Tämän ruokavalion kiistattomista hyödyistä huolimatta, terveydenhuollon ja ravitsemuksen ammattilaiset kyseenalaistavat yhä ketogeenisen ruokavalion turvallisuuden sen aiheuttamien kohonneiden seerumin ketoaineiden ja ruokavalion rajoitetun ravintokuitujen saannin vuoksi.

Ruokavalion herättämiä epäilyjä lisää edelleen huoli aivojen glukoosinsaannin riittävyydestä sekä tyydyttyneisiin rasvoihin ja kolesteroliin liittyvät irrationaaliset pelot.

Siirtymävaiheessa ketogeeninen ruokavalio voi aiheuttaa energiasubstraatin vaihtumisen ja nestehukan seurauksena ohimenevän ketoflunssan. Se on tavallista, eikä lainkaan vaarallista. Usein se kertoo, että ruokavaliomuutoksen jälkeen vettä pitäisi juoda enemmän, koska sokereiden rajoittaminen poistaa kehosta nesteitä.

Ketogeeninen ruokavalio on turvallinen ja tehokas terapiavaihtoehto moniin aineenvaihduntasairauksiin. Tässä katsauksessa tutustutaan eksogeenisten ketoaineiden ja ketonilähteiden aineenvaihduntahyötyjen tieteellisiin perusteisiin.

Katsauksessa käsitellään myös eksogeenisen β-hydroksibutyraatin (BHB) ja siihen liittyvän lyhytketjuisen rasvahapon, butyraatin (BA), synergiaa (yhteisvaikutusta) solutason aineenvaihduntatapahtumissa.

β-hydroksibutyraatin ja butyraatin hyödyt aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden moduloinnissa

Monet soluistamme voivat käyttää rasvahappoja ATP-tuotannon energiasubstaattina, jos glukoosia ei ole riittävästi saatavilla. Aivot eivät kuitenkaan voi suoraan hapettaa rasvohappoja energiaksi, koska rasvahapot eivät läpäise veri-aivoestettä. Vesiliukoinen pienemmän molekyylipainon omaava ketoaine läpäisee vaivatta veri-aivoesteen ja tarjoaa hermosoluille erittäin tehokkaan energialähteen [1, 2].

Ketoaineet, kuten β-hydroksibutyraatti, ovat neuroneille erinomaisia energiasubstraatteja. Erityisen tärkeitä ketoaineet ovat henkilöille, joiden hermosolujen glukoosimetabolia (solujen glukoosin otto) on heikentynyt geneettisten tai elintapoihin liittyvien syiden vuoksi [3]. Ketoaineet aktivoivat mm. kognitiivisista häiriöistä kärsivien aivosolujen energiantuotantoa [4, 5].

Ruokavalion sisältämällä rasvalla on väitetty olevan ratkaiseva rooli ihmisen aivojen evoluutiossa, koska aivot tarvitsevat runsaasti energiaa sisältävää ravintoa sekä rasvojen sisältämiä rakennuspalikoita [6] ja kolesterolia. Tällaista käsitystä tukee huomio, joka osoittaa, että dokosaheksaeenihapolla (DHA) ja muilla rasvoilla on ratkaiseva rooli hermokudosten kasvussa ja toiminnassa. Rasva-aineenvaihdunnan poikkeavuudet tai ravintorasvojen puutteet voivat häiritä aivojen kehitystä ja toimintaa [7].

Eräät asiantuntijat arvelevat, että siirtyminen runsasrasvaisesta ruokavaliosta vähärasvaiseen ruokavalioon on selittävä syy Pohjois-Amerikan metabolisen oireyhtymän (insuliiniresistenssi, diabetes, verenpaine, dyslipidemia, lihavuus) yleistymisen taustalla. USAn makroravinteiden kulutuksen tilastollinen tarkastelu osoittaa lihavuuden lisääntymisen korreloivan ravinnon rasvan vähentämisen kanssa. Rasvan kulutuksen vähentäminen on puolestaan lisännyt runsaasti hiilihydraatteja (sokereita) sisältävien ruokien kulutusta [8].

Samalla noususuuntaisella tilastokäyrällä ovat vuoden 1980 jälkeen kolminkertaistunut lihavien määrä ja aikuistyypin diabeetikkojen määrän kaksinkertaistuminen samana aikana. Iltapäivälehtien clickbait-jutut ketogeenisellä ruokavaliolla sairastuneista kannattaa jättää omaan arvoonsa. Diabeetikkojen määrä on globaalisti jo lähes puoli miljardia ja lihavia on kolmannes kaikista ihmisistä.

Iltapäivälehtien tulisi kiinnittää huomiota todelliseen ongelmaan: Suomessa on puoli miljoonaa aikuistyypin diabetesta sairastavaa. Näistä tilastollisesti joka toinen tulee kuolemaan sydän- ja verisuonitauteihin.

Kaiken lisäksi diabeteksen hoitokustannukset Suomessa ovat samaa luokkaa tai korkeammat kuin tupakoinnin ja alkoholin aiheuttamien sairauksien hoitokustannukset. Koskettavat mielipiteitä muokkaavat tarinat ketogeenisellä ruokavaliolla elämänsä tuhonneesta Penasta tai Sirkka-Liisasta eivät muuta tosiasioita miksikään: voi ja kolesteroli eivät ole suomalaisten suurin terveysongelma.

Tämän hetken kriittisin terveysongelma on hyperglykemian ja hyperinsulinemian aiheuttama insuliiniresistenssi sekä siihen liittyvät aineevaihduntasairaudet. Niiden hoito ravintoterapialla on helppoa ja halpaa.

Jossain ruokavalioiden ääripäiden välillä voi olla terveyden Shangri-La, jossa jalostettuja hiilihydraatteja (sokereiden lähteitä) rajoitetaan, tyydyttyneitä rasvoja ei pelätä ja tuoreilla (matalan glykeemisen indeksin) vihanneksilla on edelleen tärkeä rooli osana terveellistä ruokavaliota [9]. Tai sitten sellaista ei ole.

Energiansaannin rajoittaminen paastoamalla tai ruokavalion sisältämien hiilihydraatteja rajoittamalla johtaa ketoosiin ja seerumin ketonipitoisuuden nousuun [10].

Ketogeeninen vähähiilihydraattinen, runsasrasvainen ruokavalio (LCHF) on kokenut kuluneiden sadan vuoden aikana monta renesanssia ja romahdusta. Jotkut, jotka eivät tunne historiaa, pitävät ketogeenistä ruokavaliota vain muotioikkuna (fad), mutta hiilihydraattien rajoittamista on harjoitettu terveyden kohentamiseksi jo esikristillisillä ajoilla. Lähes jokaiseen uskontoon sisältyy puhdistava paasto, eikä se ole sattumaa, sillä paastolla on tunnustettuja terveyshyötyjä. Paasto johtaa ketoosiin.

Viime vuosisadalla ketogeenisen ruokavalion positiivisista terveysvaikutuksista raportoitiin laajemmin esimerkiksi 1930- ja 1940-luvuilla, jolloin sitä hyödynnettiin mm. astman hoidossa.

Ketogeenistä ruokavaliota on käytetty tehokkaasti hoitona:

  • metaboliseen oireyhtymään[11]

  • epilepsiaan [12]

  • kognitiivisten ja neurologisten häiriöiden [13], kuten Alzheimerin taudin hoitona, jossa sen on osoitettu vähentävän haitallista amyloidiproteiinia [14]
  • termogeneesin proteiiniaktiivisuuden irrottamisen aktivaattorina [15]

  • laihduttamiseen [16]

Ketogeeninen ruokavalio ei ole uusi ja muodikas ruokavalio-oikku, vaan ruokavalio, johon kehomme on täydellisesti adaptoitunut nisäkkäiden ja hominidien evoluution aikana.

Se, että tämä ruokavalioprotokolla voi tehokkaasti vähentää epileptisten kohtausten esiintymistiheyttä [17] ja auttaa hoitamaan lääkeresistenttiä epilepsiaa [18], vahvistettiin jo 1920-luvulla [19, 20].

Tässä katsauksessa käydään läpi joitain ketogeenisen ruokavalion metabolisten ja terveydellisten hyötyjen todisteita, sekä tarkastellaan ruokavalion turvallisuutta ja tehoa terapiavaihtoehtona lääkkeiden rinnalla ja lääkkeistä riippumatta.

Tieteellinen näyttö esitetään myös eksogeenisten ketoaineiden ja muiden erityyppisten ketonilähteiden antamiselle hiilihydraatteja rajoittavan ruokavalioprotokollan täydennyksenä tai vaihtoehtona ruokavaliolle.

Kirjoittajat suosittelevat erityistä menettelytapaa, johon sisältyy eksogeenisen ketonin, β-hydroksibutyraatin (BHB) antaminen lyhytketjuisen rasvahapon, butyraatin (BA) mukana.

Tässä katsauksessa painotetaan tämän BHB-BA-yhdistelmän synergiaa solusignaloinnin ja elimistön hiljaisen tulehduksen, eli inflammaation hallinnan yhteydessä ja sen käyttöä energiasubstraattina ATP: n muodostamiseen TCA-syklissä (sitruunahappokierrossa).

2. Mitä ketogeenisellä ruokavaliolla tarkoitetaan?

Ketogeenisessä ruokavaliossa ravintoaineiden makroravinnprofiili on tärkeä. Päivittäinen energiansaanti sisältää:

  • 65–70% rasvaa

  • 20% proteiinia

  • 5–10% hiilihydraatteja

Ketogeeninen ruokavalio kääntää perinteisen ravintopyramidin ylösalaisin. Päivittäinen hiilihydraattien saanti, joka ei ylitä 75 grammaa, on vähimmäisedellytys ketoosissa pysymiseen; 50 gramman hiilihydraattien saannin enimmäismäärä on toki ketoosin ylläpitämisen kannalta turvallisempi hiilihydraattien saanti. Ketogeenisen ruokavalion alussa hiilihydraattien saantia voi olla järkevää rajoittaa ~20 grammaan päivässä, ja monet ketoilijat pysyvät ~20 gramman päiväsaannissa ilman mitään ongelmia.

Mitä vähämmän hiilihydraatteja ravinto sisältää, sitä tehokkaammin elimistö purkaa rasvasolujen sisältämiä triglyseridejä verenkiertoon, tuottaa ketoaineita energiasubstraateiksi ja hapettaa vapaita rasvahappoja betaoksidaatiossa.

Ketogenressä 75 grammaa hiilihydraatteja päivässä on jo melkoisen villiä sokerihurjastelua, mutta virallinen linja, josta olen kuullut puhuhttavan, on, että alle 150 grammaa hiilihydraatteja päivässä luokitellaan vähähiilihydraattiseksi ruokavalioksi tai karppaamiseksi. Sellainen on absurdia roskaa.

Minä en laske sen enempää hiilihydraatteja, kuin kaloreita. Syön ravintoa, jossa on hiilihydraatteja vähän (alle 6 g/ 100 grammassa) tai ei ollenkaan. Hiilihydraattien saanti vaihtelee minulla keskimäärin 20 ja 50 gramman välillä päivässä. 50 gramman ylittäminen näkyy painossa, verenpaineessa ja verensokerissa. Se ei sovi minulle. Joillekin 50-100 g hiilihydraatteja päivässä voi sopia.

Annos keitettyä riisiä sisältää ~50 gramman hiilihydraatteja. Suuri omena tai banaani, joissa hiilihydraattien määrä on ~40 grammaa, voivat katkaista ketoosin, etenkin kun päälle lasketaan muut päivittäiset hiilihydraattien lähteet.

Myös ruokavalion sisältämillä proteiineilla on vaikutusta seerumin glukoosipitoisuuteen. Esimerkiksi leusiinilla jota saadaan yleensä riittävästi arkiruoasta (eläinperäisestä ravinnosta sekä palkokasveista, siemenistä ja hiivasta), voi olla merkittävä vaikutus ketogeneesin aktivointiin, insuliiniherkkyyteen ja veren puhdistamiseen glukoosista [21].

Sen sijaan eräät mut aminohapot, kuten alaniini, kysteiini ja glysiini, ovat erittäin glukoneogeenisiä (ts. glukoneogeneesiä indusoivia). Matalan energiansaannin aikana keho voi helposti syntetisoida glukoneogeenisiä aminohappoja glukoosiksi [22]. Glukoneogeenisiin / glukogeenisiin aminohappoihin kuuluvat myös arginiini, seriini ja proliini.

Jos ravinto sisältää runsasti glukoneogeenisiä aminohappoja, niistä tuotetaan glukoneogeneesissä glukoosia, mikä kohottaa verensokeria ja insuliinipitoisuutta ehkäisten ketogeneesin käynnistymistä.

Vaikka kohtalaiseen hyperketonemiaan liittyy merkittäviä terveysvaikutuksia riippumatta siitä, käytetäänkö sitä ravintoterapiana tai yksinkertaisesti elämänlaadun parantamiseen, tätä tilaa ei ole helppo saavuttaa ja ylläpitää ilman suunnittelua ja ruokavaliossa tehtäviä uhrauksia [23, 24]. Itse asiassa ketogeenistä elämäntapaa on nykyään jo hieman hankala ylläpitää, kun otetaan huomioon hiilihydraatti- ja sokerikeskeinen kulttuurimme. Hiilihydraattien lähteet ovat hyvin piilossa monissa arkisissa ja jalostetuissa elintarvikkeissa. Moni ei esimerkiksi tule ajatelleeksi, että maito sisältää sokeria (maitosokeria, eli laktoosia).

Yhtäältä lääketieteellisen yhteisön ketogeeniseen ruokavalioon ja varsinkin ketoasidoosiin liittyvä virheellinen viestintä ohjaa väestön kulutustottumuksia kohti hiihihydraattien runsasta saantia.

Ketoasidoosi ja ketoosi sotketaan iloisesti keskenään. Ravintoketoosi on kuitenkin hyvin erilainen fysiologinen tila kuin ketoasidoosi.

Hiilihydraattien rajoittamiseen tai paastoon perustuvista ruokavalion muutoksista johtuva ketoosi ei tarkoita samaa kuin tyypin 1 diabetekseen ja siihen liittyviin diabeettisiin tiloihin liittyvä patologinen ketoasidoosi [25, 26]. Turvallinen hyperketonemia voi saavuttaa jopa 10 mmol/l ketoaine-pitoisuuden paastoamalla tai ketogeenisella ruokavaliolla [27, 28]. Keho  säätelee ketoosia autonomisilla palautemekanismeilla [29]. Ketoasidoosille on ominaista seerumin ketonitasot, jotka ylittävät 18 mmol/l [30].

Ketoasidoosi on fysiologinen tila, jossa jotkin solujen ulkoiset nesteet happamoituvat kun niihin kertyy liikaa happamia ketoaineita. Ihmisillä ketoasidoosit jaetaan aiheuttajien mukaan muun muassa diabeettiseen ketoasidoosiin (DKA) ja alkoholiketoasidoosiin (AKA). Yleisempi diabeettinen ketoasidoosi voi johtaa hoitamattomana kuolemaan. Happomyrkytys on hengenvaarallinen tila, mutta aivan eri eri asia kuin terveen ihmisen paastotessa muodostuvat ketoaineet eli nälkähapot(diabetes.fi). Diabeetikon uhkaavasta happomyrkytyksestä kertoo se, kun verensokeri on koholla ja samaan aikaan verestä löytyy ketoaineita. DKA:n ja AKA:n yhteisiä oireita ovat muun muassa hyperventilaatio, oksentelu, mahakipu, sydämen tiheälyöntisyys ja matala verenpaine. Usein DKA:ssa ilmenee korkea verensokeri, potilas on sekava ja hengitys haisee asetonilta (hedelmäiseltä). Verensokeritaso on AKA:ssa usein normaali tai matala, potilas on lähes tajuissaan ja hengitys ei juurikaan haise asetonilta. – Wikipedia & Diabetes.fi

Koska ketogeeninen ruokavalio muuttaa kehon energia-aineenvaihduntaa glukoosipolttoisesta rasvapolttoiseksi, se imitoi paastoa. Ketogeenisen ruokavalion vaikutukset aineenvaihdunnan modulointiin ovat samanlaisia kuin paaston vaikutukset. Solujen energiasubstraatti vaihtuu glukoosista ketoaineiksi ja vapaiksi rasvahapoiksi, joista hapetetaan asetyylikoentsyymi-A:ta sitruunahappokiertoon.

Energiasubstraatin muutos käynnistää solujen puhdistusjärjestelmän, eli autofagian, joka siivoaa soluja kuona-aineista ja tuottaa niistä energiaa.

Miksi ketogeeninen elämäntapa?

Nykyisillä elintavoilla monet syövät huomamattaan aivan liian hiilihydraattipainotteisesti. Hiilihydraatit muodostuvat sokereista ja kohottavat seerumin glukoosi- ja insuliinipitoisuuksia.

Glukoosi ja sen pitoisuuden kasvun lisäämä seerumin insuliini vaurioittavat esidiabeettisella ja diabeettisella tasolla etenkin kehon pieniä verisuonia. Diabeteksen kehittymisen voi välttää tarkkailemalla sokereiden saantia.

Maksassa ylimääräinen glukoosi (ja fruktoosi) muutetaan lipogeneesissä triglyserideiksi (vrt. alkoholista riippumaton rasvamaksa). Verenkiertoon maksasta erittynyt ylimääräinen glukoosi varastoidaan ylimääräisen rasvan tapaan rasvasoluihin, jossa se muutetaan de novo lipogeneesissä triglyserideiksi.

Ylimääräinen glukoosi on siivottava verenkierrosta, koska glukoosi glykatoituu veressä olevien muiden molekyylien kanssa. Glykaation lopputuotteet (AGE) altistavat monille sairauksille. Tämä on myös se syy, miksi diabetes lisää virtsaamistarvetta: keho yrittää pissaamalla päästä eroon ylimääräisistä sokereista.

Ketogeeninen ruokavalio ei aiheuta ketoasidoosia terveillä. Jatkuvasti kohollaan oleva verensokeri ja korkea insuliini kasvattavat metabolisen oireyhtymän ja insuliiniresistenssin (ne ovat itse asiassa sama asia) ja diabeteksen riskiä. Tyypin 2 diabetes aiheuttaa lihavuutta, alkoholista riippumatonta rasvamaksaa sekä sydän- ja verisuonitauteja monien muiden aineenvaihduntaan kytkeytyvien sairauksien lisäksi.

Tyypin 2 diabetes on ongelma ja ketogeeninen ruokavalio ongelman ratkaisu.

Kun seerumin glukoosia hoidetaan väärin, seurauksena olevat edistyneet glykaation lopputuotteet (AGE) [31, 32] sekä inflammaatio [33, 34] aiheuttavat merkittävää veren toksisuutta [35] ja lisäävät sairastumisriskiä [36].

Glykaation kehittyneille lopputuotteille (AGE) altistunut LDL (matalatiheyksinen lipoproteiini) on ateroskleroosin ja muiden sydän- ja verisuonitautien riskitekijä ja aiheuttaja [37].

LDL itsessään ei ole sydän- ja verisuonitautien riskitekijä, vaan elimistön luonnollinen triglyseridejä, kolesterolia ja rasvaliukoisia vitamiineja kuljettava kuljetusmolekyyli (lipoproteiini), mutta korkean verensokerin aiheuttaman glykaation ja vapaiden happiradikaalien hapettamasta LDL-partikkelista tulee sydäntautien riski.

Elimistön reaktio (hyperglykemia, hyperinsulinemia, glykaatio ja insuliiniresistenssi) seerumin korkeaan glukoosiin, jonka aiheuttaa korkean glykeemisen kuorman ravinto, ei ole terveyttä ja kehon hyvinvointia edistävä. Monet meistä myrkyttävät itseään sokereilla.

Endokriinisen fysiologian peruskäsitys kertoo meille, että joka kerta kun insuliinia erittyy haimasta korkean glykeemisen kuorman ruokien saannin vuoksi tai sitä piikitetään haiman vaurioituneen insuliinintuotannon vuoksi kohonneen glukoosin laskemiseksi, lipolyysi estyy ja energiasubstraatit, glukoosi ja rasvahapot varastoidaan [38]. Tämä toiminta lisää rasvan kertymistä erityisesti sisäelinrasvana ja viskeraalisena keskivartalolihavuutena, mikä vähentää rasvahappojen syntetisoimista ketoaineiksi tai hapettumista betaoksidaatiossa.

Seerumin ketoaineiden saanti soluissa tapahtuu insuliinista riippumattomien metabolisten reittien kautta [39]. Siksi, vaikka insuliiniresistenssi heikentää glukoosin ottoa insuliinista riippuvaisissa soluissa, ketoaineita voidaan hyödyntää energiasubstraatteina insuliinin aineenvaihduntahäiriöistä huolimatta.

Tämä on valtava kehitysaskel neurodegeneratiivisten sairauksien, kuten Parkinsonin ja Alzheimerin taudin tulevia terapiavaihtoehtoja suunniteltaessa. Glukoosin heikentynyt energiametabolia aivoissa on yksi, ei toki ainoa, tekijä monitekijäisissä neurodegeneratiivisissa sairauksissa.

Lisäksi todisteet osoittavat, että kohonneet seerumin ketoainepitoisuudet vähentävät maksan glukoosintuotantoa ja auttavat tällä mekanismilla myös lieventämään kohonneita seerumin glukoosipitoisuuksia [40].

Ketogeeninen ruokavalio on tehokkain lääkkeetön hoito tyypin 2 diabetekseen, metaboliseen oireyhtymään ja alkoholista riippumattomaan rasvamaksaan. LCHF voi kääntää alkavan diabeteksen suunnan [41] ja johtaa aikuistyypin diabeteksen lääkkeettömään remissioon. Hiilihydraattirajoitus vaikuttaa tehokkaasti painonhallintaan [42, 43], laskee seerumin glukoosia eli verensokeria prediabeettisilla sekä diabetesta sairastavilla potilailla [44]. Ketogeeninen ruokavalio laskee myös insuliinin tarvetta insuliiniriippuvaisissa aikuistyypin diabeettisissa oireissa [45, 46].

Hiilihydraattirajoitus ei ole ainoa ruokavaliostrategia, joka torjuu elämäntapaan liittyviä sairauksia. On monta tapaa syödä oikein ja vähintään yhtä monta tapaa syödä väärin.

Ketogeeninen ruokavalio on kuitenkin yksi tehokkaimmista solujen ja elimistön hyvinvointia ylläpitävistä ruokavalioista. Niin hyödyllinen kuin se onkin painonhallinnassa ja metabolisen oireyhtymän terapiana, ketogeenisellä ruokavaliolla tapahtuva kalorirajoitus on tunnetusti huonosti siedetty, ellei sitä kompensoida korkeammalla rasvasta saadulla energialla [47]. Riittävästi rasvaa sisältävä ruoka pitää nälän tehokkaasti loitolla ja ravinnon energiapitoisuus laskee kaloreita miettimättä.

LCHF-ruokavalio myötävaikuttaa seerumin glukoosin ja paastoseerumin glukoosin laskuun sekä parantaa glukoositoleranssia [48]. Jos hiilihydraattien saanti on riittävän matala, seerumin ketonitasot voivat kasvaa riittävästi täyttämään elimistön energiantarvetta ja tukemaan terveyttä useilla tavoilla [49, 50].

Silti vähähiilihydraattisen ruokavalion edellyttämien uhrauksien, kuten leivästä, perunasta, pizzasta, hampurilaisista, bissestä ja sokeriherkuista luopumisen vaikeus on ketoilijoille haaste, joka johtaa herkästi ketogeenisestä ruokavaliosta luopumiseen.

Tämä on hyvin tavallista ruokavalion alkuvaiheessa, mutta vähitellen kaikki sokeriin liittyvät mielihalut vain katoavat. Rasva pitää nälän erinomaisesti loitolla ja energiatasot pysyvät vahvoina koko päivän 1-3 aterialla ilman parin tunnin välein mussutettavia välipaloja.

Monille meistä lääkärin määräämä pilleri tai dosetillinen päivän käynnistäviä lääkkeitä voi olla kuitenkin helpompi ratkaisu, kuin hieman selkärankaa ja sokereista luopumista edellyttävä ketogeeninen ruokavalio.

3. Endogeenisten ketoaineiden muodostuminen

Lihomisen ja laihtumisen metabolinen perusta

Lipolyysi purkaa rasvasoluihin varastoituja triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon lipolyyttisten hormonien (glukagoni, kortikotropiini, adrenaliini ja noradrenaliini) vaikutuksesta.

Veren insuliinipitoisuus säätelee lipolyyttisten hormonien erittymistä. Insuliini on myös lipolyysin tarvitsemien entsyymien estäjä, joten, kun veren insuliinipitoisuus on korkea, lipolyysi ei voi käynnistyä.

Käytännössä: Kaloreita rajoittavalla dieetillä, jossa suuri osa päivittäisestä energiasta otetaan hiilihydraateista, rasvasolujen polttaminen energiaksi estyy veren jatkuvasti korkean insuliinipitoisuuden vuoksi. Tämä tarkoittaa sitä, että painon laskua tapahtuu lähinnä rasvattoman massan (lihasten) vähenemisen kautta. Niukkakalorisella hiilihydraattipitoisella dieetillä rasvaa poltetaan yöaikaan, sillä insuliinipitoisuus laskee riittävästi ~8 tuntia syömisen jälkeen, ja vasta silloin lipolyysi voi käynnistyä. Tällöin laihtumisen aikaikkuna jää kuitenkin verrattain lyhyeksi.

Lipolyysin vastareaktio on lipogeneesi, joka edistää insuliinin vaikutuksesta rasvan ja sokereiden varastoimista rasvasoluihin triglyserideinä. Evoluution ja aineenvaihdunnan kannalta lihominen on perusteltua vain, jos rasvasoluihin tallennettu energia voidaan hyödyntää energiaksi silloin, kun ravinnosta saadaan puutteellisesti energiaa. Tämä on lihomisen ja laihtumisen metabolinen perusta.

Maksa on rasvasoluista vapautuneiden rasvahappojen ja glyserolin ensisijainen kohde. Ketoaineita tuotetaan vapaista rasvahapoista maksassa tapahtuvassa ketogeneesissä. Ketoaineet voivat myöhemmin toimia aivojen energiasubstraateina [51–53].

Triglyseridien glyseroliosaa käytetään glukoosia syntetisoivassa glukoneogeneesissä. Keho pystyy helposti syntetisoimaan kaiken tarvitsemansa glukoosin. Sanonpahan vain, koska kymmenen vuotta sitten aiheesta väiteltiin ankarasti.

Terveellä ihmisellä, jolla haiman β-solut toimivat normaalisti, seerumin ketonitasoja hallitaan autonomisesti [54]. Seerumin ketonit, asetoasetaatti ja asetoni, samoin kuin β-hydroksibutyraatti, toimivat signaaliligandeina, jotka säätelevät maksan β-oksidaatiota [55] seerumin ketoaineiden kuormituksen säätelemiseksi.

Vuosikymmenien aikana on kerääntynyt kiistattomia todisteita, jotka tukevat tämän palautejärjestelmän olemassaoloa ja tehokkuutta sekä ketonisynteesin huolellista säätelyä transkriptiotasolla [27].

Kuinka seerumin ketonikertomus liittyy seerumin glukoosimalliin?

Tarina on rinnasteinen. Molemmissa malleissa huonosti säännellyt energiasubstraatin tasot voivat johtaa toksiseen tasoon, mutta tasot, joita terve fysiologia hallitsee autonomisesti, tukevat terveellistä aineenvaihduntaa.

Itse asiassa terve seerumin glukoosipitoisuus (~5,0 mmol/l) ei ole sen ihmeellisempi kuin seerumin ketonien terveellinen taso. Seerumin ketonien terveeksi tasoksi hyperketonemian yhteydessä on dokumentoitu 2,0 mmol/l – 8,0 mmol/l [56].

Tätä ketoositasoa pidetään lievänä tai kohtalaisena hyperketonemiana, jonka keho tuottaa selviytymismekanismina pitkittyneisiin paastojaksoihin [25, 53].

Ketoaineiden perustaso terveillä henkilöillä vaihtelee 0,1 – 0,2 mmol/l pitoisuutena [57]. Seerumin ketoneja käytetään useimmissa kudoksissa tehokkaasti energiasubstraateina silloin kun glukoosia on niukasti saatavilla [58]. Ketoaineita käyttävät mm.sydän [59] ja aivot. Sydän on hyvin joustava energiasubstraattien suhteen, mutta sydämen energiansaannin kannalta tehokkain energiasubstraatti on rasva, joka hapettuu β -oksidaatiossa. Sydänlihaksen soluihin varastoituu herkästi lipotoksiineja, jos veren glukoosi- ja rasvapitoisuus on jatkuvasti liian korkea ja sydänlihakselle syötetään liikaa erilaisia energiasubstraatteja. Sydänkin rasvoittuu.

Tästä rajoittavasta ruokavaliosta voidaan tehdä siedettävämpi antamalla eksogeenistä ketonilisää (lisäravinteena) etenkin, jos halutaan kiihdyttää ketoosin positiivisia metabolisia vaikutuksia elimistössä. Endogeenisen (elimistön tuottaman) ketoosin käynnistymisen aikaikkuna ~20 g päivittäisillä hiilihydraateilla on 2-3 vuorokautta [60, 61].

Eksogeenisten ketoneiden ja erityisesti β-hydroksibutyraatin tutkimus lääkinnällisenä ja elimistön toimintaa tehostavana metabolisena substraattina on hyvin aktiivista. β-hydroksibutyraatin vaikutuksia tutkitaan aiemmin mainittujen neurodegeneratiivisten sairauksien terapian lisäksi NASAn rahoittamana astronauttien kognitiivisten kykyjen parantamiseksi äärioloissa ja USAn puolustusministeriön rahoittamana taistelusukeltajien toimintakyvyn tehostamiseksi ja sukellusaikojen pidentämiseksi.

Ketogeenisen ruokavalion aloittamisen jälkeen seerumin ATP-tuotannon kannalta riittävän ketonitason saavuttaminen, voi kestää hiilihydraattien saannista riippuen jopa viisi päivää (yleensä 2-3 päivää). Nämä siirtymäpäivät voivat osoittautua vaikeiksi ja johtaa huijauspäiviin. Seerumin toiminnallisten ketonitasojen ylläpito edellyttää ruokavalion noudattamisesta [62, 63]. Tässä eksogeeninen ketonilisäaine voi helpottaa ketogeeniselle ruokavaliolle siirtymistä.

Huijaaminen ketogeenisen ruokavalion aikana hidastaa aineenvaihdunnan siirtymistä glukoosimetaboliasta rasvametaboliaan, ketogeneesiin ja β-oksidaatioon, joka itse asiassa on ketogeenisen ruokavalion pidemmän aikavälin tavoite. Solut oppivat käyttämään vapaita rasvahappoja energiasubstraatteina β-oksidaatiossa joitain viikkoja ketoosin alkamisen jälkeen. Aikaikkuna on varsin lavea, koska toisilla primaaristi β-oksidaatioon perustuva energia-aineenvaihdunta käynnistyy nopeammin kuin toisilla.

Tunnusomaista β-oksidaatioon siirtyneessä metaboliassa on ketoaineiden tuotannon väheneminen. Ruokailujen välillä rasvahappoja vapautuu tasaisena virtana rasvasoluista verenkiertoon, jossa ne kulkeutuvat soluihin ja hapettuvat β-oksidaatiossa energiaksi, mikä ylläpitää energistä, aktiivista, hieman euforista ja kylläistä oloa. Sama tapahtuu paastotessa.

Ketogeenisessä ruokavaliossa voi ja saa tehdä syrjähyppyjä. Jos mielesi tekee juoda lava bisseä, syödä perhepizza tai suklaalevy, anna palaa! Syrjähyppy ei ole maailmanloppu. Ketogeenisen ruokavalion tarkoituksena ei suinkaan ole kurjistaa elämää, vaan parantaa terveyttä ja elämänlaatua. Syrjähyppy on toki horjahdus ja askel taaksepäin, mutta se korjaantuu, kun ketogeenistä ruokavaliota jatkaa. Alussa syrjähyppyjen teko on helppoa ja houkuttelevaa, mutta pidempään ketoillessa syrjähypyn jälkeen on aivan yhtä helppoa ja luontevaa palata hiilihydraatteja rajoittavaan ruokavalioon. Ilmiö rinnastuu mielestäni alkoholin käyttöön: ihminen voi ja saa juoda toisinaan, mutta dokaamisesta ei pitäisi tehdä elämäntapaa. Ketogeeninen ruokavalio on elämäntapa, ei laihdutusruokavalio ja siksi minäkin vältän dieetistä puhumista. sanana dieetti rinnastuu vahvasti laihduttamiseen.

Yleensä kahden-kolmen päivän ketoilun jälkeen hiilihydraattien rajoittaminen johtaa siihen, että aivot alkavat käyttää solujen energiasubstraatteina enimmäkseen ketoaineita. Tämä aikaikkuna johtuu siitä, että maksan sokerivarastoissa, eli glykogeeneissä on glukoosia ihmisestä riippuen 1-3 päiväksi (~250 g) ja ketogeneesi käynnistyy glukoosivarastojen tyhjennyttyä.

96 tunnin kuluessa hiilihydraattien rajoittamisesta keskushermoston solut tyydyttävät suurimman osan ATP-tarpeestaan ketoaineilla [64]. Itse asiassa ketonit voivat toimia ATP-substraatteina ja tuottaa jopa 70% aivojen energiasta energiakysynnän tyydyttämiseksi [65, 66].

Alzheimerin taudin, dementian ja Parkinsonin taudin hoidossa kohonnut seerumin ketonipitoisuus (ketoosi) on lupaava terapiavaihtoehto [67–69]. Magneettikuvissa ketoosin on huomattu aktivoivan taudin passivoimia aivoalueita Alzheimerin tautia sairastavilla. Hyviä tuloksia on saatu myös dementiaa sairastavien potilaiden kognitiivisissa testeissä, joiden tulokset ovat glukoosin vähentymisen ja ketoaineiden lisääntyneen pitoisuuden seurauksena selvästi parantuneet.

Tähän on looginen selitys: hermosolujen glukoosinoton heikentyminen on yksi monista neurodegeneratiivisten tautien solutason vaurioitumisen syistä. Glukoosimetabolian heikentyesssä solut surkastuvat ja kuolevat energianpuutteeseen, mikä lisää aivojen atrofiaa ja ko. tautien oireita. Nämä solut kuitenkin saavat energiaa β-hydroksibutyraatista. Tämä ehkäisee solujen surkastumista ja dementian oireiden pahenemista. Taustalla oleva mekanismi on kiehtova.

4. Eksogeenisten ketonien käyttö

Endogeenisten ketonien muodostuminen on kehon normaali ja terveellinen selviytymismekanismi, jonka ansiosta ihminen selviää pitkään ilman ravintoa [58]. Tämä on ollut erityisen tärkeää esihistoriallisille esivanhemmillemme, joille ravinnon saanti päivittäin tai edes joka viikko ei ollut mikään itsestäänselvyys. Suuri muutos ravinnonsaannissa tapahtui oikestaan vasta maanviljelyn kehityttyä noin 10 000 vuotta sitten, jolloin ravintoa tuotettiin ja varastoitiin yli välittömän kulutuksen.

Metsästäjä-keräilijät elivät sillä, mitä löysivät tai saivat saaliiksi. Ruokaa syötiin silloin kun sitä oli. Ravinnosta saatu ylimääräinen energia varastoitiin rasvakudokseen. Aikoina, jolloin ravinnosta oli pulaa, solut tuottivat energiaa varastorasvasta. Ketogeneesi, glukoneogeneesi, rasvan β-oksidaatio ja perusaineenvaihdunnan hidastuminen pitävät ihmiset hengissä tarvittaessa useita viikkoja ilman ravintoa. Lihomisella on tärkeä fysiologinen tehtävä ihmisen selviytymisessä.

Solusignalointi

ATP-substraattina toimimisen lisäksi ketonit toimivat myös ligandeina, jotka säätelevät solujen signalointia ja käyttäytymistä [27]. Nämä edut toteutuvat vain, jos henkilö noudattaa ketogeenistä ruokavaliota. Ketogeenisen ruokavalion täydentäminen eksogeenisilla ketoaineilla voi ylläpitää ketoosiin perustuvaa aineenvaihduntaa pienistä syrjähypyistä huolimatta. Samanaikaisesti eksogeeniset ketonit edistävät suotuisaa farmakologiaa.

Ketonien tai proketonien (BHB) eksogeeninen käyttö lisäravinteena on ollut käytössä vuodesta 1975 alkaen. BHB (β-hydroksibutyraatti) muuttuu tarpeen mukaan muiksi ketoaineiksi, kuten asetoasetaatiksi tai alavirtaan asetoniksi. Asetoni ja asetoasetaatti ovat biologisia ketoneja, joista seerumin ketonipitoisuus suurimmaksi osaksi muodostuu [70].

Ketogeeninen ruokavalio ruokavalioterapiana aiheuttaa haasteita, koska se vaatii ylimääräistä omistautumista ja rruokavaliorajoituksia. LCHF voi johtaa siirtymäaikana huonovointisuutta aiheuttavaan ketoflunssaan. Joillekin ketoosin saavuttaminen on vaikeampaa kuin toisille metabolisten, geneettisten, ympäristön, sosiaalisten, kulttuuristen ja elämäntapoihin liittyvien tekijöiden vuoksi.

Eksogeeninen ketonilähde voi toimia siltana, joka kompensoi metaboliseen siirtymään liittyvää energiapuutetta, samalla kun se tarjoaa ketonilähteen, joka toimii solujen signalointiligandina. Sillä voi kuitenkin olla myös ruokavaliosta riippumaton rooli solunsisäisten signalointiominaisuuksiensa vuoksi.

Nykyisissä kaupallisissa ketoaineissa käytettyä suurta annostusta voidaan pitää tarpeettomana. Kuluttajille tarjotaan jopa 10 gramman BHB:tä yhdessä keskipitkäketjuisten triglyseridien (MCT) kanssa.

MCT toimii substraatina β-hapetukselle ja BHB:n muodostumiselle. Suun kautta otettava MCT liittyy monilla käyttäjillä ruoansulatuskanavan häiriöihin, kuten ripuliin [71–75]. Lisäksi nämä BHB-lisäravinteet sisältävät natriumia, jota voi olla 1300 mg annosta kohti. Terveydenhuollon ammattilaisen tulisi valvoa tällaisten erittäin suurten terapeuttisten annosten annostelua potilaille. Lisäravinteisiin liittyy aina yliannostuksen riski.

5. Eksogeenisten ketoaineiden hyödyt

Eksogeenisillä ketoaineilla, kuten BHB:llä (β-hydroksibutyraatilla) on on terapeuttista arvoa useiden sairauksien hoidossa. β-hydroksibutyraattilisän (BHB) in vivo -tutkimus vähensi syöpäkasvaimen kasvua ja pidensi tutkittavan kohteen eloonjäämistä muista ruokavalion tekijöistä, kuten seerumin glukoosipitoisuudesta riippumatta [76].

BHB:llä on havaittu tulehdusta hillitsevä vaikutus NLRP3-tulehduksen aiheuttaman IL-1β:n ja IL-18:n välittämisessä ihmisen monosyyteissä [77]. Tällä voi olla merkitystä autoinflammatoristen sairauksien hoidossa. Eksogeenisen ketonin tukema terapeuttinen ketoosi hillitsee epileptisten kohtausten alkamista [78].

β-hydroksibutyraatti (BHB) auttaa myös parantamaan sydämen terveyttä vähentämällä sydänlihaksen glukoosinottoa ja lisäämällä verenkiertoa [79]. Aivojen hypometabolisten sairauksien, kuten Alzheimerin taudin (AD), hoidossa käytetään menestyksekkäästi 10–20 grammaa eksogeenistä ketonilisää annoksiin jaettuna [80].

Alzheimerin tauti liittyy keskushermoston neuronien heikentyneeseen glukoosimetaboliaan, joka korreloi kognitiivisten kykyjen heikentymisen kanssa [81–84]. Ketoni ei ole riippuvainen insuliinista ja sitä voidaan käyttää hermosolujen mitokondrioissa tehokkaasti. β-hydroksibutyraatin saatavuus ehkäisee neurodegeneratiivisten tautien aivosolujen energiavajeen aiheuttamia solutuhoja [85].

Seerumitasojen ei tarvitse nousta merkittävästi, jotta aivojen energiansaantia voidaan tehostaa vaihtoehtoisella energiasubstraatilla. Tämä vähentää sivuoireiden riskiä ja minimoi hoidossa tarvittavan eksogeenisen ketoniannoksen.

Hyperketonemian, jossa systeemiset plasman ketonit nousevat vain tavallisten (0,2 mmol/l) perustasojen yli, on osoitettu parantavan aivojen ketonipitoisuutta ja tarjoavan neuroneille vaihtoehtoisen ja tehokkaan energiasubstraatin [80].

β-hydroksibutyraatti tukee mitokondrioiden energiantuotannon aktiivisuutta ja estää apoptoottisten (solukuolemaan indusoivien) proteiinien kumuloitumista neuroneihin [65]. Myrkytystilasta, vammoista tai iskemiasta johtuva neurodegeneraatio johtaa oksidatiiviseen stressiin. Eksogeenisten ketonien antaminen hiirimalleissa estää turvallisesti reaktiivisten happiradikaalien (ROS) muodostumista [86].

Ketogeenisen ruokavalion on dokumentoitu olevan tehokas hoito epilepsian ja lääkeresistentin epilepsian hoidossa [87, 88]. Eksogeenisten ketonien antamista on vuosikymmenien ajan käytetty hyvällä menestyksellä epilepsian hoitoon [78, 89].

Kokeellisessa rottamallissa eksogeenisten ketonien on havaittu lisäävän sekä rotan fyysistä aktiivisuutta että kognitiivista suorituskykyä [90]. Siitä, missä määrin eksogeeniset ketonit voivat säätää tai parantaa pitkittynyttä suorituskykyä ihmisillä, ei ole vielä tutkittua tietoa [91], mutta professori Tim Noakesin juoksemat ultramaratoonit ja triathlonisti Sami Inkisen käsittämättömät suoritukset ketogeenisellä ruokavaliolla viittaavat siihen, että ketogeeninen ruokavalio parantaa myös ihmisten henkistä ja fyysistä suorituskykyä.

Viime kädessä ketogeenisen ruokavalion vaikutuksia motivaatioon ja jaksamiseen tukee myös se, että minä multippelisklerootikkona käänsin, editoin ja uudelleenkirjoitin marraskuussa kahdeksan 10-25 A4-sivun mittaista tutkimuskatsausta Ruokasotaan. Kyllä sekin jotain kertoo ketogeenisestä ruokavaliosta ja sen vaikutuksista jaksamiseen.

Eksogeeniset ketonit voivat toimia terveyttä edistävinä aineina, mutta kuten myöhemmin osoitetaan, BHB:n ja sen molekyylisesti analogisen lyhytketjuisen rasvahapon, voihapon (BA) yhdistelmä voi olla tehokkaampi ja sopivampi terapiavaihtoehto mm. näiden yhteiskäytön tuoman synergiahyödyn vuoksi.

6. Eksogeenisten ketonien turvallisuus elintarvikkeissa ja hoidoissa

Ruoka sisältää useita luonnollisia ketonilähteitä. Maitotuotteet ja erityisesti täysmaito ovat luonnollisen β-hydroksibutyraatin lähteitä [92, 93]. Yhdysvaltain FDA luokittelee β-hydroksibutyraatin eri muodot yleisesti turvallisiksi (GRAS).

Eksogeeniset ketonit (tai ketoaineet) ovat turvallisia, mutta kuinka paljon on liikaa?

Koehenkilöt testasivat eksogeenisen ketonimäärän 395 mg / kg ketoniesterinä saantia aterian yhteydessä tai ilman. Seerumin BHB-tasot mitattiin tunnin kuluttua lisäravinteen antamisesta. Seerumin BHB oli alhaisempi BHB:n aterian rinnnalla saaneilla koehenkilöillä verrattuna niihin, jotka saivat BHB:n ilman ruokaa (2,1 mM ± 0,2 mM vs. 3,1 mM ± 0,1 Mm). Nämä äärimmäiset BHB-annokset muuttuivat 31,6 grammaksi ketoniestereitä 80 kg painavalla henkilöllä. Annos siedettiin hyvin [94].

Toisessa ihmiskokeessa käytettiin suun kautta annettua annosta (R) -3-hydroksibutyyli (R) -3-hydroksibutyraattia, joka on BHB-molekyylin monoesteri, kvantifioituna 714 mg / kg. Nämä annokset muuttuivat 57,1 grammaksi ketoniestereitä 80 kg painavalla koehenkilöllä. Maksimiplasman ketonit saavutettiin 2 tunnissa (3,30 mmol/l BHB ja 1,19 mmol/l asetoasetaatti). Tätä suurta annosta annettiin viiden päivän ajan kolme kertaa päivässä, ja myös se siedettiin hyvin [95] ilman sivuvaikutuksia.

Tyypillinen 8 tunnin paasto tuottaa 0,5 mmol/l seerumin ketonipitoisuuden [95]. Seitsemän paastopäivän aikana veren kokonaisketonitasot voivat nousta 5–7 mmol/l tasolle [25, 95].

Toksisuustutkimus rotilla, jotka saivat ketoaineita 12 ja 15 g / kg, tukee myös β-hydroksibutyraatin annostelun turvallisuutta [96].

Suun kautta annettu natrium D, L-β-hydroksibutyraatti (1000 mg / kg päivässä) on annettu alle 2-vuotiaille lapsille, joilla on kardiomyopatia ja leukodystrofia asyyli-CoA-dehydrogenaasipuutoksesta. Viikon kuluessa hoidon aloittamisesta havaittiin lasten toipumista täydellisestä halvauksesta. Kahden vuoden jälkeen todettiin neurologisen toiminnan huomattavaa parantumista. Lapset kävelivät ja aivojen MRI-kuvat osoitti selkeää toipumista.

Kaksi muuta samaa tilaa sairastavaa lasta, jotka eivät reagoineet tyypilliseen hoitoon, paranivat progressiivisesti edellä kuvatulla hoidolla [97]. Pikkulasten hyperinsulinemisessa hypoglykemiassa kahta kuuden kuukauden ikäistä lasta hoidettiin ja seurattiin viiden ja seitsemän kuukauden ajan. Lapsille annettiin neljän ja kahdeksan gramman ketoniannoksia, ja ne siedettiin hyvin [60].

On kuitenkin huomattava, että tällainen äärimmäinen terapeuttinen annostelu vaatii lääketieteellistä seurantaa.

7. Butyraatin terveyshyödyt

Lyhytketjuiset rasvahapot, joita kutsutaan myös haihtuviksi (volatile) rasvahapoiksi, ovat tyypillisesti suolen mikrobiomin tuottamia. Näitä rasvahappoja ovat butyraatti, propionaatti ja asetaatti, jotka syntyvät suolen symbioottisten mikrobien ravintokuidun käymisen sivutuotteina [98].

Suolistomikrobien tiedetään edistävän terveyttä ja hyvinvointia, vaikka ne vaikuttavat tavoilla, jotka ylittävät monimutkaisuudessaan immuunijärjestelmän toiminnan.

Nykyään tiedetään, että kommensaalibakteerit (normaalimikrobiston mikrobit, josta ei koidu isännälle hyötyä eikä haittaa) osallistuvat vitamiinien [99] synteesiin, ja tuottavat tärkeän energialähteen lyhytketjuisten rasvahappojen muodossa [100].

Lyhytketjuiset rasvahapot kiertävät takaisin säätääkseen ja ylläpitääkseen terveellistä suolistomikrobipopulaatiota siivoamalla luminaalisen (onteloon liittyvän) ympäristön patogeeneistä tyhjäksi [101, 102].

Luminaalibutyraatti lisää suoliston mikrobiomin hyvinvointia. Patogeenisiin bakteereihin, kuten koli-bakteereihin (Escherichia coli), salmonellaan (Salmonella spp.) ja kampylobakteereihin (Campylobacter spp.) luminaalibutyraatilla on negatiivinen vaikutus [103].

Butyraatin vaikutus ulottuu kuitenkin paksusuolen ulkopuolelle, jossa sitä syntyy. Butyraatti parantaa insuliiniherkkyyttä systeemisesti [102].

Suun kautta nautitun butyraatin on osoitettu indusoivan GLP-1:n eritystä [104]. Tämän hormonin tiedetään tukevan glukoositoleranssin ja ruokahalun hallintaa. Aivoissa GLP-1 tuottaa syvällisiä vaikutuksia, joiden mekanismit eivät ole aina selkeitä. Sen on osoitettu stimuloivan iskeemisten, eli paikalliseen verenpuutteeseen liittyvien vaurioiden neurogeneesiä aivopohjaisen neurotrofisen tekijän (BDNF) ylisääntelyn kautta [105]. Sillä on masennuslääkkeiden kaltaisia vaikutuksia [106].

Tutkimukset osoittavat, että butyraattia saaneet hiiret pysyvät hoikkina (ruokavalion kalorimäärästä huolimatta) [107]. Butyraatti on lisännyt hiirten energiankulutusta kehon lämmöntuotannon muodossa ja tehnyt hiiristä yleensä fyysisesti aktiivisempia [108, 109].

Butyraatilla on osoitettu olevan merkittävä sydän- ja verisuonitauteja ennaltaehkäisevä vaikutus [110, 111]. Tutkimuksissa butyraatti vähensi seerumin triglyseridejä peräti 50% verrokkeihin nähden [112]. Se myös vähentää endogeenisen kolesterolin tuotantoa [112].

Butyraatin ja asetaatin on todettu suojaavan ruokavalion aiheuttamalta lihavuudelta [107, 113]. Butyraatin antamisen on havaittu parantavan ruokahalua ja ravinteiden aineenvaihduntaa [114]. Butyraatti on avainpolttoaine suoliston epiteelisoluille ja se parantaa suolinukan eheyttä [115].

Aivan kuten BHB, butyraatti on histonideasetylaasien (HDAC) estäjä (inhibiittori), joka säätelee oksidatiivisen stressin vastustuskykyä koodaavien geenien transkriptiota [116].

HDAC-modulointi liittyy myös pitkäkestoiseen muistiin, oppimiseen ja neuronien välisten synaptisten yhteyksien plastisuuteen (neuroplastisuuteen) [117]. Aihe, johon täytyy pikimmiten tutustua!

Geenitranskription säätely johtaa myös parempaan suojaan vapailta happiradikaaleilta ja oksidatiivisen stressin aiheuttamilta kudosvaurioilta, joita voivat aiheuttaa äärimmäinen metabolinen stressi ja ympäristömyrkyt.


Butyraatin geenisäätely vaikuttaa neuroprotektiivisesti (aivosoluja suojaten) ja parantaen siten muistia esimerkiksi dementiassa [118]. Butyraatti estää NF-kB:tä ja lisääntyneitä I-kB-tasoja ja parantaa pitkäaikaista tulehduksen hallintaa [119].

Oraalisesti annettu natriumbutyraatti heikentää kokeellisesti indusoitua koliittia [120]. Suun kautta annetulla butyraatilla on myös tulehduksia estävä anti-inflammatorinen vaikutus. Se voi johtaa Crohnin taudin remissioon vähentämällä NF-kB: n ja IL-1β: n tasoa [121].

Suonensisäisesti annetun butyraatin on osoitettu tukevan suoraan ruoansulatuskanavan vuorauksen ja suolinukan terveyttä [103]. Sillä on vaikutuksia suoliston solujen lisääntymiseen ja solujen troofiseen ravinnonottoon 122].

Butyraatti on voimakas suoliston immuunipuolustusta säätelevien T-solujen promoottori [123]. Se luo immuunijärjestelmää säätelevän mekanismin, joka edistää parempaa tulehduksen hallintaa limakalvon vuorauksessa ja suolinukassa, sekä mekanismin suolistosyövän estämiseksi [124].

Butyraatti vähentää tai estää mikrobiomipopulaatiota, joka tuottaa propionihappoa [125]. Propionihappo on osallisena autismikirjon häiriöissä (ASD) [126]. On spekuloitu, että voihapon propionihappoa tuottavien suolistobakteerien säätelyvaikutus on mekanismi kognitiivisen tilan parantamiseksi [127].

70% lapsista, joilla on autismi tai ASD, on ruoansulatuskanavan häiriöitä ja muuttunut geenien ilmentyminen aivoissa. Sen on arveltu johtuvan lyhytketjuisten rasvahappojen epätasapainosta [128]. Butyraatin ja muiden lyhytketjuisten rasvahappojen oraalisten antoon liittyvien terveysetujen luettelo on pitkä (taulukko 1). β-hydroksibutyraatin antamisen yhteydessä butyraatti-lisä on suositeltava näiden yhteisvaikutusten vuoksi.

Taulukko1

Veden passiivinen imeytyminen paksusuolessa riippuu lyhytketjuisten rasvahappojen saatavuudesta [129–131]. Butyraatilla on rooli terveessä peristaltiikassa, joka auttaa normalisoimaan suolessa liikkuvan massan liikettä ummetuksessa tai ripulissa [132, 133]. Butyraatti tukee optimaalista nesteytystä ja optimaalista suolen eliminointitoimintoa [134].

Tämä farmakologinen vaikutus auttaa torjumaan BHB-lisäravinteisiin liittyviä mahdollisia haittatapahtumia.

Yhteenveto butyraatin terveydellisistä hyödyistä, joita on raportoitu in vitro– ja in vivo -malleilla sekä ihmiskokeilla tehdyissä tutkimuksissa

Butyraattia saa runsaasti meijerituotteista. Voi, joka sisältää luonnostaan 3-4 % voihappoa, on itse asiassa yksi parhaimmista voihapon lähteistä. Yksi ruokalusikallinen voita (~14 g) sisältää ~560 mg voihappoa. Butyraatit ovat voihapon suoloja ja estereitä. Suolistossa esiintyvä voihappo näyttää hillitsevän tulehdusta ja syöpäsolujen kasvua sekä vähentävän happiradikaalien syntyä. Ihminen kuluttaa päivässä yli 1000 mg butyraattia ulkoisista lähteistä. Tämä saadaan ruokavalion rasvoista.

Ihmisillä, jotka noudattavat ketogeenistä ja / tai kaloreita rajoittavaa ruokavaliota, mutta eivät syö meijerituotteita (voita, kermaa ja juustoja), ja joiden kuitujen saanti ravinnosta on vähäistä, voihapon saanti ja synteesi suolistossa on kehon tarpeisiin nähden liian vähäistä. Butyraatin ottaminen lisäravinteena on perusteltua myös, koska se yhdistää ketogeenisen ruokavalion ja butyraattilisän edut synergisesti.

Butyraatti lisää FGF21:n pitoisuutta seerumissa, maksassa ja rasvasoluissa, mikä puolestaan stimuloi rasvahappojen β-hapettumista ja maksan ketonituotantoa [135, 136]. Tämä on butyraattifarmakologian keskeinen piirre, joka synergisoi suoraan sen aktiivisuuden ketogeeniseen aineenvaihduntaan ja tukee sen terveydellisiä vaikutuksia. Butyraatti itsessään voi myös toimia substraattina β-hapettumiselle [137].

8. Butyraatin (lyhytketjuisen rasvahapon) ja BHB: n yhdistämisen edut

Butyraatti toimii merkittävänä ketoosin induktiota kiihdyttävänä synergistisenä tekijänä, joka parantaa:

  • BHB-ligandivuorovaikutuksia ja farmakologiaa

  • yleistä terveydentilaa

  • kuntoa ja suorituskykyä

Ketonien, kuten BHB-suolan eksogeeninen saanti lisäravinteena tarjoaa aivosolujen ATP-tuotannolle välittömän vaihtoehtoisen energiasubstraatin kalori- tai hiilihydraattirajoituksen aikana.

Samanaikainen butyraattilisäys natriumin, kalsiumin tai kaliumbutyraatin (tai sen estereiden) muodossa:

  • indusoi elimistön endogeeniseen ketonisynteesin

  • toimii ligandina stimuloimalla reseptoreita, joihin ketonit vaikuttavat

  • myötävaikuttaa insuliinin ja aineenvaihdunnan yleisen terveyden parantamiseen

  • tukee tulehduksellista ja yleistä immuunijärjestelmän terveyttä

  • tukee neurologista terveyttä

  • tukee ruoansulatuskanavan terveyttä ja eheyttä

  • toimii suoraan ATP:n muodostamisen energiasubstraattina

Kaikki nämä toteutuvat rinnakkain niiden etujen kanssa, joita sisarketoaineen (BHB) samanaikainen lisäys tuottaa. Tämän synergistisen järjestelmän arvo ketogeenisen ruokavalion yhteydessä on hyvin perusteltu ja järkevä.

On kuitenkin muistettava, että ketogeeniselle elämäntavalle on ominaista vähäinen hiilihydraattien saanti, mikä johtaa heikentyneeseen sulamattoman kuidun ja resistentin tärkkelyksen saantiin. Sillä on negatiivinen vaikutus suoliston mikrobiomiin ja sen kykyyn tuottaa lyhytketjuisia rasvahappoja, kuten voihappoa.

Suoliston mikrobiomi on säännöllisesti kovan paineen alla ympäristötekijöiden, kuten ruokavalion ja lääkkeiden (esim. antibioottien) vaikutuksesta [138, 139]. Butyraatin ottaminen lisäravinteena suojaa  suoliston mikrobiomia, etenkin jos sulamattomien kuitujen ja resistentin tärkkelyksen saanti on vähäistä.

9. Voihappo ja ketogeeninen painonpudotusstrategiaa

Lisäravinteena otetun BHB:n vaikutusta painonpudotuksessa on tutkittu hyvin paljon. Erityisen paljon huomiota on kiinnitetty lisäravinteisiin, jotka sisältävät BHB:n lisäksi keskipitkäketjuisia triglyseridejä (MCT). Ketoaineet ja MCT sisältävät energiaa ja lisäävät siten päivittäistä energiansaantia.

Tutkimuksissa on havaittu, että seerumin ketonipitoisuuden kasvu ei lisää, vaan estää lipolyysiä. Siltä kannalta lisäravinteena otetut ketoaineet ja MCT itse asiassa estävät rasvasolujen purkamista vapaiksi rasvahapoiksi, ketonien synteesiä ja laihtumista [53, 140]. Toisaalta butyraatti tukee ruokahalun hallintaa ja parantaa kehon rasva-lihas-koostumusta [107, 112–114].

On olemassa näyttöä, jonka mukaan butyraatti vaikuttaa suotuisasti sydän- ja verisuoniterveyteen ja ehkäisee sydän- ja verisuonitauteja [112]. Tasapaino eksogeenisten ja endogeenisten ketoaineiden välillä on oleellista aivojen ja kognitiivisen terveyden silloitustekijänä ja neuroniin liittyvien signaaliligandien riittävän saannin kannalta. Aktivointisignaali, kuten voihaposta peräisin oleva signaali rasvahappojen β-oksidaation käynnistämiseksi aivosoluissa, on neuronien toiminnan kannalta tärkeää.

Lisäravinteena otetutun butyraatin ja beta-hydroksibutyraatin käyttö on perusteltua ruokavalion siirtymäajalla sekä solujen energia-aineenvaihdunnan tehostajana monissa metabolisissa ja neurodegeneratiivisissa sairauksissa, mutta laihtumisen suhteen tällaisesta lisäravinnecocktailista ei ole hyötyä. Sen sijaan lisäaineina syiötävien butyraatin ja beta-hydroksibutyraatin hyödyntäminen paastolla tapahtuvan liikunnan energiabuusterina ja rasvahappojen hapettumisen tehostajana on perusteltua.

Ruokavalion tuottama ketoosi vähentää laktaatin tuotantoa ja parantaa suorituskykyä erityisesti kestävyyttä vaativissa lajeissa, kuten pyöräilyssä [141]. Sen on osoitettu estävän lihaskatoa (kataboliaa) ja suojaavan aivoja ja muita kudoksia hapettumiselta [142].

10. Kurkistus ketoaineiden solunsisäiseen farmakologiaan

BHB-BA-kompleksin farmakologiasta vastaavien mekanismien kartoittamiseksi ravintolisien yhteydessä on tehty useita tutkimuksia. Tutkimukset osoittavat, että erilaiset G-proteiiniin kytketyt HCA-reseptorit toimivat kohteina endogeenisille ketonille ja ketoaineiden ligandeille [143].

Tämä reseptoriperhe luokitellaan useisiin alatyyppeihin, joilla on erillisiä piirteitä, kuten ligandispesifisyys. Vaikka BHB toimii tehokkaana agonistina esimerkiksi HCA2-reseptoreille, se ei kykene toimimaan agonistina muille HCA-reseptoreille. Sekä BA että BHB ovat signalointiligandeja erilaisille reseptoreille, jotka osallistuvat neuroinflammatoriseen säätelyyn, mukaan lukien HCA2-reseptori [144].

Muut ligandit, kuten muut ketonit, voivat toimia agonisteina vaihtamalla HCA-reseptoreita, mutta ne eivät välttämättä pysty käynnistämään HCA2 reseptorista transduktiokaskadia. HCA-reseptoreita voi esiintyä erilaisissa kudos- ja solutyypeissä, kuten rasvasoluissa ja makrofageissa [143].

Näiden reseptorien ilmentyminen voidaan myös indusoida immuunisoluissa, kuten makrofageissa, erilaisilla sytokiineilla ligandiensa solunsisäisen vaikutuksen säätelemiseksi. Vapaat rasvahappo- (FFAR) ja HCA-reseptorit voivat hyvinkin olla keskeisiä kohteita tyypin 2 diabeteksen, lihavuuden ja inflammaation ehkäisyssä ja hoidossa [145].

Ravinnetasapainoa ylläpitävät rasvahapporeseptorit, jotka säätelevät kolekystokiniiniä, peptidiä YY ja leptiiniä ovat kasvavan kiinnostuksen kohteena diabeteksen hoidossa.

Luonnossa esiintyvät ligandit, BHB ja BA moduloivat jo tehokkaasti näitä terapeuttisia kohteita. Kaikki kolme HCA-reseptoria ekspressoidaan rasvasoluissa. HCA1-reseptori aktivoidaan esimerkiksi hydroksipropaanihapolla (laktaatilla), kun taas HCA2:n agonisti on β-hydroksibutyraatti (BHB), ja HCA3 aktivoidaan toisella β-hapetusvälituotteella [146].

Näiden kahden luonnollisen butyraatin säätelyvaikutukset tulehduksellista kaskadia ja immuunijärjestelmän aktiivisuutta säätelevien sytokiinien transkriptiotekijöihin liittyvät läheisesti NF-kB-modulointiin.

Tumatekijä erytroidiin 2 liittyvä tekijä 2 (Nrf2) on ensisijainen transkriptiotekijä, joka käynnistää vasteen oksidatiiviseen stressiin. Ketogeeninen ruokavalio indusoi systemaattisesti Nrf2:ta lievän oksidatiivisen ja elektrofiilisen stressin kautta [147, 148].

Nrf2:n transkriptio avaa sarjan endogeenisiä antioksidanttisia puolustusjärjestelmiä. Transkriptiotekijä siirtyy tumaan ja sitoo antioksidanttivaste-elementin (ARE) transkriptoimaan solua suojaavat sytoprotektiiviset geenit [149].

Nrf2 transkriptoi endogeeniset antioksidanttipeptidit: hemeoksigenaasi-1, katalaasi (CAT), superoksididismutaasi (SOD) ja glutationiperoksidaasi (GSH / GPx) [150-152] oksidatiivisen stressin suojamekanismina. Viime aikoina tätä mekanismia on kohdennettu kemopreventiivisesti, millä on haluttu stimuloida endogeenista antioksidanttisaturaatiota, joka estää syöpä- ja kemoterapialääkkeiden aiheuttamat vahingot isäntäsolun terveessä DNA:ssa [153, 154].

Nrf2 lisää solujen puolustusmekanismeja. Se välittää mitokondrioille hermosuojauksen toksiinin aiheuttaman stressin aikana ja ehkäisee vaurioiden (leesioiden) muodostumista [155, 156].

Tätä solusuojausta nähdään myös kemoterapian yhteydessä, jossa Nrf2-induktio suojaa terveitä soluja [157]. Nrf2-induktio suojaa soluja LPS:n aiheuttamalta tulehdukselliselta aktiivisuudelta ja kuolleisuudelta [158].

Nrf2-signalointireitit ovat lupaavia Parkinsonin taudin mitokondrioiden toimintahäiriöiden vastatoimena [159]. Nrf2-induktion välittää myös puolustuksen sydänlihassolujen kohonneesta seerumin-glukoosin aiheuttamasta oksidatiivisesta vahingosta [160].

Diabeettinen tila liittyy Nrf2-aktiivisuuden alasregulaatioon ERK:n kautta. Tämän uskotaan vaikuttavan stressin aiheuttamaan insuliiniresistenssiin sydämen soluissa [161]. Tutkimukset osoittavat, että Nrf2-aktivaatiota voidaan käyttää terapeuttisena sovelluksena diabeteksen ”metabolisen häiriön parantamiseen ja munuaisvaurioiden lievittämiseen” [162].

Nrf2:n rooli solujen suojauksessa antioksidanttisen puolustuksen pääregulaattorina tekevät siitä kiinnostavan kohteen kudosten ja solujen suojaamisessa hapettavilta ja toksisilta tekijöiltä [163, 164]. Nrf2:lla on huomattava merkitys antioksidanttipuolustusmekanismissa muiden yleisten endogeenisten antioksidanttien rinnalla. Se tukee myös vammoista, toksisuudesta ja hypoksiasta palautumista [165, 166].

Iskemia (paikallinen hapenpuute) on yleinen solun toimintahäiriön ja solukuoleman syy. Iskemia johtuuu verenkierron keskeytymisestä tai hapen saatavuuden heikkenemisestä kudoksissa, mikä johtaa soluvaurioihin. Sen tiedetään olevan keskeinen tekijä aivohalvauksen patologiassa ja yksi yleisimmistä pysyvien solu- ja kudosvaurioiden aiheuttajista sydänsairauksissa [167].

Hemeoksigenaasi-1-induktio suojaa neuroneja [168] ja sydänkudosta [169] iskemialta ja sen aiheuttamilta vaurioilta. Myös glutationiperoksidaasin yliekspressio suojaa sydänlihasta iskeemisiltä reperfuusiovaurioilta [170, 171].

Butyraatti aktivoi Nrf2:ta [172, 173]. Tutkimuskirjallisuudessa on viitteitä siitä, että käsittely butyraatilla tai sen suoloilla (natriumbutyraatilla) lievittää oksidatiivista stressiä [174] ja parantaa katalaasiaktiivisuutta [175]. Esikäsittely BA-annoksella suojaa iskemiaan liittyviä sydänlihaksen vaurioita estämällä tulehduksellisten sytokiinien ilmentymistä [174].

Se myös suojaa keuhkovaltimon sileän lihaksen soluja hyperoksiaan liittyvältä hapettumiselta [175] ja parantaa ikääntymiseen liittyvää aineenvaihduntaa ja lihasten surkastumista [176].

11. Opittavaa on paljon

Monet voivat hyötyä ketogeenisestä ruokavaliosta tai suun kautta otettavista ketoaineista ja niiden tuottamasta ketoositilasta.

Ketoosi ylläpitää parempaa ruokahalun hallintaa, fyysistä kuntoa, aivojen tehostunutta energiansaantia, neuroplastisuutta, neurogeneesiä, oppimiskykyä ja parempaa muistia. Ketoosin aiheuttama beta-oksidaatio ylläpitää tasaista eenergiavirtaa, joka lisää kestävyyttä ja polttaa tehokkaasti rasvaa.

Solutasolla ketonit vaikuttavat neuro- ja sytoprotektiivisesti suojaten soluja ja hillitsevät vapaiden happiradikaalien ja oksidatiivisen stressin aiheuttamia solu- ja kudosvaurioita. Tutkimuskirjallisuuden meta-analyysin perusteella ketoosin hyötyjä ovat:

  • tulehduksen (inflammaation) lievittäminen

  • neurologiseen sairauteen liittyvä kognitiivisen heikentymisen korjaantuminen

  • parantunut ruoansulatuskanavan terveys

  • nopeampi palautuminen liikunnan tai intensiivisen harjoituksen lihasrasituksesta

Lisää työtä ja kliinisiä tutkimuksia tarvitaan, jotta tiedämme tarkemmin, miten näitä strategioita voidaan käyttää potilaiden terapiana.

12. Keskustelua

Tutkimuskirjallisuuden tämänhetkisen näytön perusteella lisäravinteena otetun eksogeenisen ketonin käyttö näyttää olevan toteuttamiskelpoinen strategia, joka tukee ketogeenisen ruokavalion siirtymävaihetta, jossa keho totutetaan glukoosin sijaan uuteen energiasubstraattiin. Butyraatinn on raportoitu antavan positiivisia tuloksia kunto-, painonhallinta-, kognitio- ja suorituskyvyn parantamisen tueksi joko ruokavalion rajoituksilla tai ilman.

Laboratoriomme nykyinen tutkimushanke on suunniteltu tutkimaan edelleen BHB:n ja BHB-BA:n solunsisäisiä vaikutuksia immuunijärjestelmän tärkeimpiin soluihin seerumipitoisuuksilla, jotka voimme saavuttaa suositellulla vähimmäisannoksella.

Eksogeeninen BHB-BA-ravintolisä voi olla toiminnallinen strategia, joka indusoi β-hapettumista ja auttaa nostamaan seerumin ketonitasoja, jotka tuottavat ketoosin (> 0,2 mmol) metaboliset hyödyt ilman makroravinteiden ankaraa säätelyä. BHB:n samanaikainen antaminen siihen liittyvän BA-molekyylin kanssa näyttää olevan tehokas tapa saavuttaa tämä tavoite käyttämällä erittäin pieniä ja turvallisia oraalisia annoksia. Vaikka ketoosin metabolisia hyötyjä saatetaan saavuttaa lisäravinteilla, on todennäköistä, että ketogeeninen ruokavalio yhdessä lisäravinteina otettavien butyraatin ja beta-hydroksibutyraatin kanssa toimii terapiana etenkin kognitiivisten häiriöiden ja painonhallinnan yhteydessä paremmin kuin lisäravinteet yksin.

Ruokavalion täydentäminen BHB-BA-lisäravinteella tukee ketoosissa pysymistä pienistä ruokavaliolipsahduksista huolimatta.

Huomio: Ota yhteys lääkäriin ennenBHB-BA-lisäravinteiden käyttöä. Älä käytä, jos olet raskaana tai imetät. Ei suositella tyypin I diabeetikoille.

Ps. Pahoittelut kirjoitus- ja/tai asiavirheistä. Nppäilyvirheille tulee jotenkin sokeaksi.

Conflicts of Interest

Franco Cavaleri is the owner of a biomedical research group, Biologic Nutrigenomics Health Research Corp., and Biologic Pharmamedical Research that funds and executes research on the pharmacology of nutritional, nutraceutical, and pharmaceutical agents that are studied in the context of disease pathology including characteristics that have been associated with inflammation and dementias. Franco Cavaleri is also the owner of ketone-based and other related intellectual properties. Emran Bashar is an employee of the Biologic Pharmamedical Research.Authors’ ContributionsFranco Cavaleri was responsible for background research and preparation and editing of the manuscript. Emran Bashar was responsible for conducting research and preparation and editing of the manuscript. Franco Cavaleri and Emran Bashar generated research plans.


References

  1. A. Gjedde and C. Crone, “Induction processes in blood-brain transfer of ketone bodies during starvation,” American Journal of Physiology–Legacy Content, vol. 229, no. 5, pp. 1165–1169, 1975. View at: Publisher Site | Google Scholar
  2. M. Pollay and F. Alan Stevens, “Starvation-induced changes in transport of ketone bodies across the blood-brain barrier,” Journal of Neuroscience Research, vol. 5, no. 2, pp. 163–172, 1980. View at: Publisher Site | Google Scholar
  3. S. Cunnane, S. Nugent, M. Roy et al., “Brain fuel metabolism, aging, and Alzheimer’s disease,” Nutrition, vol. 27, no. 1, pp. 3–20, 2011. View at: Publisher Site | Google Scholar
  4. M. A. Reger, S. T. Henderson, C. Hale et al., “Effects of β-hydroxybutyrate on cognition in memory-impaired adults,” Neurobiology of Aging, vol. 25, no. 3, pp. 311–314, 2004. View at: Publisher Site | Google Scholar
  5. L. C. Costantini, L. J. Barr, J. L. Vogel, and S. T. Henderson, “Hypometabolism as a therapeutic target in Alzheimer’s disease,” BMC Neuroscience, vol. 9, no. 2, p. S16, 2008. View at: Publisher Site | Google Scholar
  6. W. R. Leonard, “Dietary change was a driving force in human evolution,” Scientific American, vol. 287, no. 6, pp. 106–116, 2002. View at: Publisher Site | Google Scholar
  7. S. M. Innis, “Dietary (n−3) fatty acids and brain development,” Journal of Nutrition, vol. 137, no. 4, pp. 855–859, 2007. View at: Publisher Site | Google Scholar
  8. E. Cohen, M. Cragg, A. Hite, M. Rosenberg, and B. Zhou, “Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity,” Nutrition, vol. 31, no. 5, pp. 727–732, 2015. View at: Publisher Site | Google Scholar
  9. J. Scholl, “Traditional dietary recommendations for the prevention of cardiovascular disease: do they meet the needs of our patients?” Cholesterol, vol. 2012, pp. 1–9, 2012. View at: Publisher Site | Google Scholar
  10. G. Mullins, C. Hallam, and I. Broom, “Ketosis, ketoacidosis and very-low-calorie diets: putting the record straight,” Nutrition Bulletin, vol. 36, no. 3, pp. 397–402, 2011. View at: Publisher Site | Google Scholar
  11. D. K. Layman and D. A. Walker, “Potential importance of leucine in treatment of obesity and the metabolic syndrome,” Journal of Nutrition, vol. 136, no. 1, pp. 319S–323S, 2006. View at: Publisher Site | Google Scholar
  12. M. Lawson and V. Shaw, “Ketogenic diet for epilepsy,” in Clinical Paediatric Dietetics, pp. 222–232, Blackwell Science Ltd., Oxford, UK, 2nd edition, 2001. View at: Google Scholar
  13. R. Krikorian, M. D. Shidler, K. Dangelo, S. C. Couch, S. C. Benoit, and D. J. Clegg, “Dietary ketosis enhances memory in mild cognitive impairment,” Neurobiology of Aging, vol. 33, no. 2, pp. 425. e19–425. e27, 2012. View at: Publisher Site | Google Scholar
  14. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  15. P. G. Sullivan, N. A. Rippy, K. Dorenbos, R. C. Concepcion, A. K. Agarwal, and J. M. Rho, “The ketogenic diet increases mitochondrial uncoupling protein levels and activity,” Annals of Neurology, vol. 55, no. 4, pp. 576–580, 2004. View at: Publisher Site | Google Scholar
  16. E. C. Westman, J. Mavropoulos, W. S. Yancy Jr., and J. S. Volek, “A review of low-carbohydrate ketogenic diets,” Current Atherosclerosis Reports, vol. 5, no. 6, pp. 476–483, 2003. View at: Publisher Site | Google Scholar
  17. K. M. Maruschak, Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Anthropometrics, Biochemical Values, and Gastrointestinal Symptoms in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  18. S. R. Send, The Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Seizure Severity, Seizure Frequency, and Quality of Life in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  19. C. Dudick, “Carb”(not “Keto”) is a Four Letter Word, 2016.
  20. M. Schmidt, N. Pfetzer, M. Schwab, I. Strauss, and U. Kämmerer, “Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial,” Nutrition and Metabolism, vol. 8, no. 1, p. 54, 2011. View at: Publisher Site | Google Scholar
  21. D. K. Layman and J. I. Baum, “Dietary protein impact on glycemic control during weight loss,” Journal of Nutrition, vol. 134, no. 4, pp. 968S–973S, 2004. View at: Publisher Site | Google Scholar
  22. C. Remesy, P. Fafournoux, and C. Demigne, “Control of hepatic utilization of serine, glycine and threonine in fed and starved rats,” Journal of Nutrition, vol. 113, no. 1, pp. 28–39, 1983. View at: Publisher Site | Google Scholar
  23. N. J. Krilanovich, “Benefits of ketogenic diets,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 238-239, 2007. View at: Publisher Site | Google Scholar
  24. D. W. Kim, H. C. Kang, J. C. Park, and H. D. Kim, “Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet,” Pediatrics, vol. 114, no. 6, pp. 1627–1630, 2004. View at: Publisher Site | Google Scholar
  25. R. L. Veech, “The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 309–319, 2004. View at: Publisher Site | Google Scholar
  26. J. D. McGarry, “Disordered metabolism in diabetes: have we underemphasized the fat component?” Journal of Cellular Biochemistry, vol. 55, no. S1994A, pp. 29–38, 1994. View at: Publisher Site | Google Scholar
  27. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends in Endocrinology and Metabolism, vol. 25, no. 1, pp. 42–52, 2014. View at: Publisher Site | Google Scholar
  28. O. Owen, G. Reichard Jr., H. Markus, G. Boden, M. Mozzoli, and C. Shuman, “Rapid intravenous sodium acetoacetate infusion in man metabolic and kinetic responses,” Journal of Clinical Investigation, vol. 52, no. 10, pp. 2606–2616, 1973. View at: Publisher Site | Google Scholar
  29. E. O. Balasse and F. Féry, “Ketone body production and disposal: effects of fasting, diabetes, and exercise,” Diabetes/Metabolism Reviews, vol. 5, no. 3, pp. 247–270, 1989. View at: Publisher Site | Google Scholar
  30. R. Wilson and W. Reeves, “Neutrophil phagocytosis and killing in insulin-dependent diabetes,” Clinical and Experimental Immunology, vol. 63, no. 2, p. 478, 1986. View at: Google Scholar
  31. M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, and A. Cerami, “Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking,” Science, vol. 232, no. 4758, pp. 1629–1632, 1986. View at: Publisher Site | Google Scholar
  32. N. Ahmed, “Advanced glycation endproducts—role in pathology of diabetic complications,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 3–21, 2005. View at: Publisher Site | Google Scholar
  33. P. Marceau, S. Biron, F. S. Hould et al., “Liver pathology and the metabolic syndrome X in severe obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 5, pp. 1513–1517, 1999. View at: Publisher Site | Google Scholar
  34. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at: Publisher Site | Google Scholar
  35. K. Moley, M. Y. Chi, C. Knudson, S. Korsmeyer, and M. Mueckler, “Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways,” Nature Medicine, vol. 4, no. 12, pp. 1421–1424, 1998. View at: Publisher Site | Google Scholar
  36. S. P. Hays, E. B. Smith, and A. L. Sunehag, “Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants,” Pediatrics, vol. 118, no. 5, pp. 1811–1818, 2006. View at: Publisher Site | Google Scholar
  37. H. Vlassara, “Advanced glycation end-products and atherosclerosis,” Annals of Medicine, vol. 28, no. 5, pp. 419–426, 1996. View at: Publisher Site | Google Scholar
  38. H. Yki-Jarvinen, “Glucose Toxicity,” Endocrine Reviews, vol. 13, no. 3, pp. 415–431, 1992. View at: Publisher Site | Google Scholar
  39. L. L. Madison, D. Mebane, R. H. Unger, and A. Lochner, “The hypoglycemic action of ketones. II. Evidence for a stimulatory feedback of ketones on the pancreatic beta cells,” Journal of Clinical Investigation, vol. 43, no. 3, pp. 408–415, 1964. View at: Publisher Site | Google Scholar
  40. A. Baron, G. Brechtel, and S. Edelman, “Effects of free fatty acids and ketone bodies on in vivo non-insulin-mediated glucose utilization and production in humans,” Metabolism, vol. 38, no. 11, pp. 1056–1061, 1989. View at: Publisher Site | Google Scholar
  41. T. A. Hussain, T. C. Mathew, A. A. Dashti, S. Asfar, N. Al-Zaid, and H. M. Dashti, “Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes,” Nutrition, vol. 28, no. 10, pp. 1016–1021, 2012. View at: Publisher Site | Google Scholar
  42. T. D. Noakes, “Low-carbohydrate and high-fat intake can manage obesity and associated conditions: occasional survey,” South African Medical Journal, vol. 103, no. 11, pp. 826–830, 2013. View at: Publisher Site | Google Scholar
  43. J. Ratliff, G. Mutungi, M. J. Puglisi, J. S. Volek, and M. L. Fernandez, “Carbohydrate restriction (with or without additional dietary cholesterol provided by eggs) reduces insulin resistance and plasma leptin without modifying appetite hormones in adult men,” Nutrition Research, vol. 29, no. 4, pp. 262–268, 2009. View at: Publisher Site | Google Scholar
  44. J. S. Volek, M. J. Sharman, D. M. Love, N. G. Avery, T. P. Scheett, and W. J. Kraemer, “Body composition and hormonal responses to a carbohydrate-restricted diet,” Metabolism, vol. 51, no. 7, pp. 864–870, 2002. View at: Publisher Site | Google Scholar
  45. C. A. Major, M. J. Henry, M. de Veciana, and M. A. Morgan, “The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes,” Obstetrics and Gynecology, vol. 91, no. 4, pp. 600–604, 1998. View at: Publisher Site | Google Scholar
  46. A. Accurso, R. K. Bernstein, A. Dahlqvist et al., “Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal,” Nutrition and Metabolism, vol. 5, no. 1, p. 9, 2008. View at: Publisher Site | Google Scholar
  47. R. D. Feinman, W. K. Pogozelski, A. Astrup et al., “Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base,” Nutrition, vol. 31, no. 1, pp. 1–13, 2015. View at: Publisher Site | Google Scholar
  48. M. K. Badman, A. R. Kennedy, A. C. Adams, P. Pissios, and E. Maratos-Flier, “A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss,” American Journal of Physiology-Endocrinology and Metabolism, vol. 297, no. 5, pp. E1197–E1204, 2009. View at: Publisher Site | Google Scholar
  49. K. Xu, X. Sun, B. O. Eroku, C. P. Tsipis, M. A. Puchowicz, and J. C. LaManna, “Diet-induced ketosis improves cognitive performance in aged rats,” in Advances in Experimental Medicine and Biology, pp. 71–75, Springer, Berlin, Germany, 2010. View at: Google Scholar
  50. K. D. Ballard, E. E. Quann, B. R. Kupchak et al., “Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins,” Nutrition Research, vol. 33, no. 11, pp. 905–912, 2013. View at: Publisher Site | Google Scholar
  51. R. A. Hawkins, A. M. Mans, and D. W. Davis, “Regional ketone body utilization by rat brain in starvation and diabetes,” American Journal of Physiology-Endocrinology and Metabolism, vol. 250, no. 2, pp. E169–E178, 1986. View at: Publisher Site | Google Scholar
  52. T. N. Seyfried and P. Mukherjee, “Targeting energy metabolism in brain cancer: review and hypothesis,” Nutrition and Metabolism, vol. 2, no. 1, p. 30, 2005. View at: Publisher Site | Google Scholar
  53. L. Laffel, “Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes,” Diabetes/Metabolism Research and Reviews, vol. 15, no. 6, pp. 412–426, 1999. View at: Publisher Site | Google Scholar
  54. H. Krebs, “The regulation of the release of ketone bodies by the liver,” Advances in Enzyme Regulation, vol. 4, pp. 339–353, 1966. View at: Publisher Site | Google Scholar
  55. J. McGarry and D. Foster, “Regulation of hepatic fatty acid oxidation and ketone body production,” Annual Review of Biochemistry, vol. 49, no. 1, pp. 395–420, 1980. View at: Publisher Site | Google Scholar
  56. M. T. Newport, T. B. VanItallie, Y. Kashiwaya, M. T. King, and R. L. Veech, “A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease,” Alzheimer’s and Dementia, vol. 11, no. 1, pp. 99–103, 2015. View at: Publisher Site | Google Scholar
  57. E. C. Westman, R. D. Feinman, J. C. Mavropoulos et al., “Low-carbohydrate nutrition and metabolism,” American Journal of Clinical Nutrition, vol. 86, no. 2, pp. 276–284, 2007. View at: Publisher Site | Google Scholar
  58. C. Harvey, What is Nutritional Ketosis? 2015.
  59. I. F. Kodde, J. van der Stok, R. T. Smolenski, and J. W. de Jong, “Metabolic and genetic regulation of cardiac energy substrate preference,” Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 146, no. 1, pp. 26–39, 2007. View at: Publisher Site | Google Scholar
  60. B. Plecko, S. Stoeckler-Ipsiroglu, E. Schober et al., “Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy,” Pediatric Research, vol. 52, no. 2, pp. 301–306, 2002. View at: Publisher Site | Google Scholar
  61. H. White and B. Venkatesh, “Clinical review: ketones and brain injury,” Critical Care, vol. 15, no. 2, p. 219, 2011. View at: Publisher Site | Google Scholar
  62. E. P. Vining, “Clinical efficacy of the ketogenic diet,” Epilepsy Research, vol. 37, no. 3, pp. 181–190, 1999. View at: Publisher Site | Google Scholar
  63. E. H. Kossoff, B. A. Zupec-Kania, and J. M. Rho, “Ketogenic diets: an update for child neurologists,” Journal of Child Neurology, vol. 24, no. 8, pp. 979–988, 2009. View at: Publisher Site | Google Scholar
  64. G. F. Cahill Jr., “Fuel metabolism in starvation,” Annual Review of Nutrition, vol. 26, no. 1, pp. 1–22, 2006. View at: Publisher Site | Google Scholar
  65. M. Gasior, M. A. Rogawski, and A. L. Hartman, “Neuroprotective and disease-modifying effects of the ketogenic diet,” Behavioural Pharmacology, vol. 17, no. 5-6, pp. 431–439, 2006. View at: Publisher Site | Google Scholar
  66. R. de Oliveira Caminhotto and F. B. Lima, “Low carbohydrate high fat diets: when models do not match reality,” Archives of Endocrinology and Metabolism, vol. 60, no. 4, pp. 405-406, 2016. View at: Publisher Site | Google Scholar
  67. M. G. Abdelwahab, S. H. Lee, D. O’Neill et al., “Ketones prevent oxidative impairment of hippocampal synaptic integrity through K ATP channels,” PLoS One, vol. 10, no. 4, Article ID e0119316, 2015. View at: Publisher Site | Google Scholar
  68. J. X. Yin, M. Maalouf, P. Han et al., “Ketones block amyloid entry and improve cognition in an Alzheimer’s model,” Neurobiology of Aging, vol. 39, pp. 25–37, 2016. View at: Publisher Site | Google Scholar
  69. J. Zhang, Q. Cao, S. Li et al., “3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism,” Biomaterials, vol. 34, no. 30, pp. 7552–7562, 2013. View at: Publisher Site | Google Scholar
  70. L. Siegel, N. I. Robin, and L. J. McDonald, “New approach to determination of total ketone bodies in serum,” Clinical Chemistry, vol. 23, no. 1, pp. 46–49, 1977. View at: Google Scholar
  71. D. J. Angus, M. Hargreaves, J. Dancey, and M. A. Febbraio, “Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance,” Journal of Applied Physiology, vol. 88, no. 1, pp. 113–119, 2000. View at: Publisher Site | Google Scholar
  72. L. Misell, N. Lagomarcino, V. Schuster, and M. Kern, “Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners,” Journal of Sports Medicine and Physical Fitness, vol. 41, no. 2, p. 210, 2001. View at: Google Scholar
  73. V. Ööpik, S. Timpmann, L. Medijainen, and H. Lemberg, “Effects of daily medium-chain triglyceride ingestion on energy metabolism and endurance performance capacity in well-trained runners,” Nutrition Research, vol. 21, no. 8, pp. 1125–1135, 2001. View at: Publisher Site | Google Scholar
  74. Y. M. C. Liu, “Medium-chain triglyceride (MCT) ketogenic therapy,” Epilepsia, vol. 49, no. s8, pp. 33–36, 2008. View at: Publisher Site | Google Scholar
  75. A. E. Jeukendrup, W. Saris, P. Schrauwen, F. Brouns, and A. Wagenmakers, “Metabolic availability of medium-chain triglycerides coingested with carbohydrates during prolonged exercise,” Journal of Applied Physiology, vol. 79, no. 3, pp. 756–762, 1995. View at: Publisher Site | Google Scholar
  76. A. Poff, C. Ari, P. Arnold, T. Seyfried, and D. D’Agostino, “Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer,” International Journal of Cancer, vol. 135, no. 7, pp. 1711–1720, 2014. View at: Publisher Site | Google Scholar
  77. Y. H. Youm, K. Y. Nguyen, R. W. Grant et al., “The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease,” Nature Medicine, vol. 21, no. 3, pp. 263–269, 2015. View at: Publisher Site | Google Scholar
  78. D. P. D’Agostino, R. Pilla, H. E. Held et al., “Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 304, no. 10, pp. R829–R836, 2013. View at: Publisher Site | Google Scholar
  79. L. C. Gormsen, M. Svart, H. H. Thomsen et al., “Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study,” Journal of the American Heart Association, vol. 6, no. 3, p. e005066, 2017. View at: Publisher Site | Google Scholar
  80. S. T. Henderson, J. L. Vogel, L. J. Barr, F. Garvin, J. J. Jones, and L. C. Costantini, “Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial,” Nutrition and Metabolism, vol. 6, no. 1, p. 31, 2009. View at: Publisher Site | Google Scholar
  81. E. Arnaiz, V. Jelic, O. Almkvist et al., “Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment,” Neuroreport, vol. 12, no. 4, pp. 851–855, 2001. View at: Publisher Site | Google Scholar
  82. C. X. Gong, F. Liu, and K. Iqbal, “Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation,” Journal of Alzheimer’s Disease, vol. 9, no. 1, pp. 1–12, 2006. View at: Publisher Site | Google Scholar
  83. C. Messier, “Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging,” Neurobiology of Aging, vol. 26, no. 1, pp. 26–30, 2005. View at: Publisher Site | Google Scholar
  84. S. T. Henderson, “Ketone bodies as a therapeutic for Alzheimer’s disease,” Neurotherapeutics, vol. 5, no. 3, pp. 470–480, 2008. View at: Publisher Site | Google Scholar
  85. T. B. VanItallie and T. H. Nufert, “Ketones: metabolism’s ugly duckling,” Nutrition Reviews, vol. 61, no. 10, pp. 327–341, 2003. View at: Publisher Site | Google Scholar
  86. M. Maalouf, P. G. Sullivan, L. Davis, D. Y. Kim, and J. M. Rho, “Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation,” Neuroscience, vol. 145, no. 1, pp. 256–264, 2007. View at: Publisher Site | Google Scholar
  87. C. B. Henderson, F. M. Filloux, S. C. Alder, J. L. Lyon, and D. A. Caplin, “Efficacy of the ketogenic diet as a treatment option for epilepsy: meta-analysis,” Journal of Child Neurology, vol. 21, no. 3, pp. 193–198, 2006. View at: Publisher Site | Google Scholar
  88. J. Sirven, B. Whedon, D. Caplan et al., “The ketogenic diet for intractable epilepsy in adults: preliminary results,” Epilepsia, vol. 40, no. 12, pp. 1721–1726, 1999. View at: Publisher Site | Google Scholar
  89. M. A. McNally and A. L. Hartman, “Ketone bodies in epilepsy,” Journal of Neurochemistry, vol. 121, no. 1, pp. 28–35, 2012. View at: Publisher Site | Google Scholar
  90. A. J. Murray, N. S. Knight, M. A. Cole et al., “Novel ketone diet enhances physical and cognitive performance,” Federation of American Societies for Experimental Biology Journal, vol. 30, no. 12, pp. 4021–4032, 2016. View at: Publisher Site | Google Scholar
  91. P. J. Pinckaers, T. A. Churchward-Venne, D. Bailey, and L. J. van Loon, “Ketone bodies and exercise performance: the next magic bullet or merely hype?” Sports Medicine, vol. 47, no. 3, pp. 383–391, 2017. View at: Publisher Site | Google Scholar
  92. T. Larsen and N. I. Nielsen, “Fluorometric determination of β-hydroxybutyrate in milk and blood plasma,” Journal of Dairy Science, vol. 88, no. 6, pp. 2004–2009, 2005. View at: Publisher Site | Google Scholar
  93. N. I. Nielsen, T. Larsen, M. Bjerring, and K. L. Ingvartsen, “Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents,” Journal of Dairy Science, vol. 88, no. 9, pp. 3186–3200, 2005. View at: Publisher Site | Google Scholar
  94. B. Stubbs, K. Willerton, S. Hiyama, K. Clarke, and P. Cox, Concomitant Meal Ingestion Alters Levels of Circulating Ketone Bodies following a Ketone Ester Drink, The Physiological Society, London, UK, 2015.
  95. K. Clarke, K. Tchabanenko, R. Pawlosky et al., “Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects,” Regulatory Toxicology and Pharmacology, vol. 63, no. 3, pp. 401–408, 2012. View at: Publisher Site | Google Scholar
  96. K. Clarke, K. Tchabanenko, R. Pawlosky et al., “Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate,” Regulatory Toxicology and Pharmacology, vol. 63, no. 2, pp. 196–208, 2012. View at: Publisher Site | Google Scholar
  97. J. L. Van Hove, S. Grünewald, J. Jaeken et al., “D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD),” The Lancet, vol. 361, no. 9367, pp. 1433–1435, 2003. View at: Publisher Site | Google Scholar
  98. H. Endo, M. Niioka, N. Kobayashi, M. Tanaka, and T. Watanabe, “Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis,” PLoS One, vol. 8, no. 5, Article ID e63388, 2013. View at: Publisher Site | Google Scholar
  99. K. M. Maslowski and C. R. Mackay, “Diet, gut microbiota and immune responses,” Nature Immunology, vol. 12, no. 1, pp. 5–9, 2011. View at: Publisher Site | Google Scholar
  100. K. M. Tuohy, L. Conterno, M. Gasperotti, and R. Viola, “Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber,” Journal of Agricultural and Food Chemistry, vol. 60, no. 36, pp. 8776–8782, 2012. View at: Publisher Site | Google Scholar
  101. J. M. Wong, R. De Souza, C. W. Kendall, A. Emam, and D. J. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at: Publisher Site | Google Scholar
  102. M. Velasquez-Manoff, “Gut microbiome: the peacekeepers,” Nature, vol. 518, no. 7540, pp. S3–S11, 2015. View at: Publisher Site | Google Scholar
  103. O. Kanauchi, T. Iwanaga, K. Mitsuyama et al., “Butyrate from bacterial fermentation of germinated barley foodstuff preserves intestinal barrier function in experimental colitis in the rat model,” Journal of Gastroenterology and Hepatology, vol. 14, no. 9, pp. 880–888, 1999. View at: Publisher Site | Google Scholar
  104. H. Yadav, J. H. Lee, J. Lloyd, P. Walter, and S. G. Rane, “Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion,” Journal of Biological Chemistry, vol. 288, no. 35, pp. 25088–25097, 2013. View at: Publisher Site | Google Scholar
  105. H. J. Kim, P. Leeds, and D. M. Chuang, “The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain,” Journal of Neurochemistry, vol. 110, no. 4, pp. 1226–1240, 2009. View at: Publisher Site | Google Scholar
  106. Y. Yamawaki, M. Fuchikami, S. Morinobu, M. Segawa, T. Matsumoto, and S. Yamawaki, “Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus,” World Journal of Biological Psychiatry, vol. 13, no. 6, pp. 458–467, 2012. View at: Publisher Site | Google Scholar
  107. H. V. Lin, A. Frassetto, E. J. Kowalik Jr. et al., “Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms,” PLoS One, vol. 7, no. 4, Article ID e35240, 2012. View at: Publisher Site | Google Scholar
  108. Z. Gao, J. Yin, J. Zhang et al., “Butyrate improves insulin sensitivity and increases energy expenditure in mice,” Diabetes, vol. 58, no. 7, pp. 1509–1517, 2009. View at: Publisher Site | Google Scholar
  109. K. M. Tuohy, H. M. Probert, C. W. Smejkal, and G. R. Gibson, “Using probiotics and prebiotics to improve gut health,” Drug Discovery Today, vol. 8, no. 15, pp. 692–700, 2003. View at: Publisher Site | Google Scholar
  110. R. B. Canani, M. Di Costanzo, and L. Leone, “The epigenetic effects of butyrate: potential therapeutic implications for clinical practice,” Clinical Epigenetics, vol. 4, no. 1, p. 4, 2012. View at: Publisher Site | Google Scholar
  111. A. Alvaro, R. Sola, R. Rosales et al., “Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids,” IUBMB Life, vol. 60, no. 11, pp. 757–764, 2008. View at: Publisher Site | Google Scholar
  112. J. W. Finley, J. B. Burrell, and P. G. Reeves, “Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans,” Journal of Nutrition, vol. 137, no. 11, pp. 2391–2398, 2007. View at: Publisher Site | Google Scholar
  113. E. E. Canfora, J. W. Jocken, and E. E. Blaak, “Short-chain fatty acids in control of body weight and insulin sensitivity,” Nature Reviews Endocrinology, vol. 11, no. 10, pp. 577–591, 2015. View at: Publisher Site | Google Scholar
  114. J. Darzi, G. S. Frost, and M. D. Robertson, “Do SCFA have a role in appetite regulation?” Proceedings of the Nutrition Society, vol. 70, no. 1, pp. 119–128, 2011. View at: Publisher Site | Google Scholar
  115. A. Hague, B. Singh, and C. Paraskeva, “Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate,” Gastroenterology, vol. 112, no. 3, pp. 1036–1040, 1997. View at: Publisher Site | Google Scholar
  116. J. R. Davie, “Inhibition of histone deacetylase activity by butyrate,” Journal of Nutrition, vol. 133, no. 7, pp. 2485S–2493S, 2003. View at: Publisher Site | Google Scholar
  117. D. P. Stefanko, R. M. Barrett, A. R. Ly, G. K. Reolon, and M. A. Wood, “Modulation of long-term memory for object recognition via HDAC inhibition,” Proceedings of the National Academy of Sciences, vol. 106, no. 23, pp. 9447–9452, 2009. View at: Publisher Site | Google Scholar
  118. S. G. Gray, “Epigenetic treatment of neurological disease,” Epigenomics, vol. 3, no. 4, pp. 431–450, 2011. View at: Google Scholar
  119. J. Segain, D. R. De La Blétiere, A. Bourreille et al., “Butyrate inhibits inflammatory responses through NFkappa B inhibition: implications for Crohn’s disease,” Gut, vol. 47, no. 3, pp. 397–403, 2000. View at: Publisher Site | Google Scholar
  120. E. L. Vieira, A. J. Leonel, A. P. Sad et al., “Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis,” Journal of Nutritional Biochemistry, vol. 23, no. 5, pp. 430–436, 2012. View at: Publisher Site | Google Scholar
  121. A. Sabatino, R. Morera, R. Ciccocioppo et al., “Oral butyrate for mildly to moderately active Crohn’s disease,” Alimentary Pharmacology and Therapeutics, vol. 22, no. 9, pp. 789–794, 2005. View at: Publisher Site | Google Scholar
  122. A. Kotunia, J. Wolinski, D. Laubitz et al., “Effect of sodium butyrate on the small intestine,” Journal of Physiology and Pharmacology, vol. 55, no. 2, pp. 59–68, 2004. View at: Google Scholar
  123. Y. Furusawa, Y. Obata, S. Fukuda et al., “Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells,” Nature, vol. 504, no. 7480, pp. 446–450, 2013. View at: Publisher Site | Google Scholar
  124. H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. Troost, and R. J. Brummer, “Review article: the role of butyrate on colonic function,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 2, pp. 104–119, 2008. View at: Publisher Site | Google Scholar
  125. D. F. MacFabe, N. E. Cain, F. Boon, K. P. Ossenkopp, and D. P. Cain, “Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder,” Behavioural Brain Research, vol. 217, no. 1, pp. 47–54, 2011. View at: Publisher Site | Google Scholar
  126. D. F. MacFabe, D. P. Cain, K. Rodriguez-Capote et al., “Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders,” Behavioural Brain Research, vol. 176, no. 1, pp. 149–169, 2007. View at: Publisher Site | Google Scholar
  127. N. Kratsman, D. Getselter, and E. Elliott, “Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model,” Neuropharmacology, vol. 102, pp. 136–145, 2016. View at: Publisher Site | Google Scholar
  128. M. W. Bourassa, I. Alim, S. J. Bultman, and R. R. Ratan, “Butyrate, neuroepigenetics and the gut microbiome,” Physiological Reviews, vol. 81, pp. 1031–1064, 2001. View at: Google Scholar
  129. N. I. McNeil, J. Cummings, and W. James, “Short chain fatty acid absorption by the human large intestine,” Gut, vol. 19, no. 9, pp. 819–822, 1978. View at: Publisher Site | Google Scholar
  130. O. C. Velazquez, H. M. Lederer, and J. L. Rombeau, Butyrate and the Colonocyte. Dietary Fiber in Health and Disease, Springer, Berlin, Germany, 1997.
  131. G. Sandle, “Salt and water absorption in the human colon: a modern appraisal,” Gut, vol. 43, no. 2, pp. 294–299, 1998. View at: Publisher Site | Google Scholar
  132. R. Havenaar, “Intestinal health functions of colonic microbial metabolites: a review,” Beneficial Microbes, vol. 2, no. 2, pp. 103–114, 2011. View at: Publisher Site | Google Scholar
  133. R. B. Canani, G. Terrin, P. Cirillo et al., “Butyrate as an effective treatment of congenital chloride diarrhea,” Gastroenterology, vol. 127, no. 2, pp. 630–634, 2004. View at: Publisher Site | Google Scholar
  134. J. Butzner, R. Parmar, C. Bell, and V. Dalal, “Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat,” Gut, vol. 38, no. 4, pp. 568–573, 1996. View at: Publisher Site | Google Scholar
  135. H. Li, Z. Gao, J. Zhang et al., “Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3,” Diabetes, vol. 61, no. 4, pp. 797–806, 2012. View at: Publisher Site | Google Scholar
  136. X. Zhang, D. C. Yeung, M. Karpisek et al., “Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans,” Diabetes, vol. 57, no. 5, pp. 1246–1253, 2008. View at: Publisher Site | Google Scholar
  137. F. Hird and R. Symons, “The mechanism of ketone-body formation from butyrate in rat liver,” Biochemical Journal, vol. 84, no. 1, pp. 212–216, 1962. View at: Publisher Site | Google Scholar
  138. R. Linskens, X. Huijsdens, P. Savelkoul, C. Vandenbroucke-Grauls, and S. Meuwissen, “The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics,” Scandinavian Journal of Gastroenterology, vol. 36, no. 234, pp. 29–40, 2001. View at: Publisher Site | Google Scholar
  139. R. B. Sartor, “Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics,” Gastroenterology, vol. 126, no. 6, pp. 1620–1633, 2004. View at: Publisher Site | Google Scholar
  140. A. K. Taggart, J. Kero, X. Gan et al., “(D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G,” Journal of Biological Chemistry, vol. 280, no. 29, pp. 26649–26652, 2005. View at: Publisher Site | Google Scholar
  141. B. Egan and D. P. D’Agostino, “Fueling performance: ketones enter the mix,” Cell Metabolism, vol. 24, no. 3, pp. 373–375, 2016. View at: Publisher Site | Google Scholar
  142. A. J. Murray and H. E. Montgomery, “How wasting is saving: Weight loss at altitude might result from an evolutionary adaptation,” Bioessays, vol. 36, pp. 721–729, 2014. View at: Google Scholar
  143. C. C. Blad, K. Ahmed, A. P. Ijzerman, and S. Offermanns, “Biological and pharmacological roles of HCA receptors,” Advances in Pharmacology, vol. 62, pp. 219–250, 2014. View at: Publisher Site | Google Scholar
  144. S. Offermanns and M. Schwaninger, “Nutritional or pharmacological activation of HCA 2 ameliorates neuroinflammation,” Trends in Molecular Medicine, vol. 21, no. 4, pp. 245–255, 2015. View at: Publisher Site | Google Scholar
  145. S. Offermanns, “Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors,” Annual Review of Pharmacology and Toxicology, vol. 54, no. 1, pp. 407–434, 2014. View at: Publisher Site | Google Scholar
  146. S. Offermanns, S. L. Colletti, T. W. Lovenberg, G. Semple, A. Wise, and A. P. Ijzerman, “International union of basic and clinical pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B),” Pharmacological Reviews, vol. 63, no. 2, pp. 269–290, 2011. View at: Publisher Site | Google Scholar
  147. J. B. Milder, L. P. Liang, and M. Patel, “Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet,” Neurobiology of Disease, vol. 40, no. 1, pp. 238–244, 2010. View at: Publisher Site | Google Scholar
  148. M. Storoni and G. T. Plant, “The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis,” Multiple Sclerosis International, vol. 2015, Article ID 681289, 9 pages, 2015. View at: Publisher Site | Google Scholar
  149. M. Sandberg, J. Patil, B. D’angelo, S. G. Weber, and C. Mallard, “NRF2-regulation in brain health and disease: implication of cerebral inflammation,” Neuropharmacology, vol. 79, pp. 298–306, 2014. View at: Publisher Site | Google Scholar
  150. H. C. Huang, T. Nguyen, and C. B. Pickett, “Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42769–42774, 2002. View at: Publisher Site | Google Scholar
  151. J. Vriend and R. J. Reiter, “The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome,” Molecular and Cellular Endocrinology, vol. 401, pp. 213–220, 2015. View at: Publisher Site | Google Scholar
  152. N. Wei, D. Yuan, H. B. He et al., “Saponins from Panax japonicas reduces myocardial infarction induced reactive oxygen species production and cardiomyocyte apoptosis via activation of the Nrf-2 pathway,” Advanced Materials Research, vol. 881–883, pp. 339–346, 2014. View at: Publisher Site | Google Scholar
  153. J. S. Lee and Y. J. Surh, “Nrf2 as a novel molecular target for chemoprevention,” Cancer Letters, vol. 224, no. 2, pp. 171–184, 2005. View at: Publisher Site | Google Scholar
  154. S. Braun, C. Hanselmann, M. G. Gassmann et al., “Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound,” Molecular and Cellular Biology, vol. 22, no. 15, pp. 5492–5505, 2002. View at: Publisher Site | Google Scholar
  155. A. Y. Shih, S. Imbeault, V. Barakauskas et al., “Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo,” Journal of Biological Chemistry, vol. 280, no. 24, pp. 22925–22936, 2005. View at: Publisher Site | Google Scholar
  156. J. M. Lee, A. Y. Shih, T. H. Murphy, and J. A. Johnson, “NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37948–37956, 2003. View at: Publisher Site | Google Scholar
  157. R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto, and S. Biswal, “Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray,” Cancer Research, vol. 62, no. 18, pp. 5196–5203, 2002. View at: Google Scholar
  158. R. K. Thimmulappa, C. Scollick, K. Traore et al., “Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide,” Biochemical and Biophysical Research Communications, vol. 351, no. 4, pp. 883–889, 2006. View at: Publisher Site | Google Scholar
  159. K. U. Tufekci, E. Civi Bayin, S. Genc, and K. Genc, “The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease,” Parkinson’s Disease, vol. 2011, p. 314082, 2011. View at: Publisher Site | Google Scholar
  160. X. He, H. Kan, L. Cai, and Q. Ma, “Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 1, pp. 47–58, 2009. View at: Publisher Site | Google Scholar
  161. Y. Tan, T. Ichikawa, J. Li et al., “Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress–induced insulin resistance in cardiac cells in vitro and in vivo,” Diabetes, vol. 60, no. 2, pp. 625–633, 2011. View at: Publisher Site | Google Scholar
  162. H. Zheng, S. A. Whitman, W. Wu et al., “Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 3055–3066, 2011. View at: Publisher Site | Google Scholar
  163. J. M. Lee, J. Li, D. A. Johnson et al., “Nrf2, a multi-organ protector?” Federation of American Societies for Experimental Biology, vol. 19, no. 9, pp. 1061–1066, 2005. View at: Publisher Site | Google Scholar
  164. A. Neymotin, N. Y. Calingasan, E. Wille et al., “Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 88–96, 2011. View at: Publisher Site | Google Scholar
  165. S. Yu, T. O. Khor, K. L. Cheung et al., “Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice,” PLoS One, vol. 5, no. 1, Article ID e8579, 2010. View at: Publisher Site | Google Scholar
  166. H. Nagatomo, Y. Morimoto, A. Ogami et al., “Change of heme oxygenase-1 expression in lung injury induced by chrysotile asbestos in vivo and in vitro,” Inhalation Toxicology, vol. 19, no. 4, pp. 317–323, 2007. View at: Publisher Site | Google Scholar
  167. S. Suzuki, L. Toledo-Pereyra, F. Rodriguez, and D. Cejalvo, “Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury,” Transplantation, vol. 55, no. 6, pp. 1265–1272, 1993. View at: Publisher Site | Google Scholar
  168. P. Bowman, Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage, DTIC Document, 2012.
  169. R. Hinkel, B. Petersen, M. Thormann et al., “hHO-1 overexpression in transgenic pigs is cardioprotective after acute myocardial ischemia and reperfsuion,” Circulation, vol. 120, no. 18, p. S1042, 2009. View at: Google Scholar
  170. T. Yoshida, M. Watanabe, D. T. Engelman et al., “Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury,” Journal of Molecular and Cellular Cardiology, vol. 28, no. 8, pp. 1759–1767, 1996. View at: Publisher Site | Google Scholar
  171. N. S. Dhalla, A. B. Elmoselhi, T. Hata, and N. Makino, “Status of myocardial antioxidants in ischemia–reperfusion injury,” Cardiovascular Research, vol. 47, no. 3, pp. 446–456, 2000. View at: Publisher Site | Google Scholar
  172. W. Dong, Y. Jia, X. Liu et al., “Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC,” Journal of Endocrinology, vol. 232, no. 1, pp. 71–83, 2017. View at: Publisher Site | Google Scholar
  173. X. Chen, W. Su, T. Wan et al., “Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway,” Biochemical Pharmacology, vol. 142, pp. 111–119, 2017. View at: Publisher Site | Google Scholar
  174. X. Hu, K. Zhang, C. Xu, Z. Chen, and H. Jiang, “Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion,” Experimental and Therapeutic Medicine, vol. 8, no. 1, pp. 229–232, 2014. View at: Publisher Site | Google Scholar
  175. S. Yano and D. F. Tierney, “Butyrate increases catalase activity and protects rat pulmonary artery smooth muscle cells against hyperoxia,” Biochemical and Biophysical Research Communications, vol. 164, no. 3, pp. 1143–1148, 1989. View at: Publisher Site | Google Scholar
  176. M. E. Walsh, A. Bhattacharya, K. Sataranatarajan et al., “The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging,” Aging Cell, vol. 14, no. 6, pp. 957–970, 2015. View at: Publisher Site | Google Scholar

Copyright

Copyright © 2018 Franco Cavaleri and Emran Bashar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Ketogeeninen ruokavalio ja terveys

Korkea verenpaine on huonojen ravitsemustottumusten jälkeen toiseksi yleisin sairastumisen riskiä lisäävä tekijä, kertoo David J. Unwin (lue tutkimus tästä). Unwin on vuoden 2012 jälkeen hoitanut lihavia, korkeaa verenpainetta ja aikuistyypin diabetesta sairastavia potilaita ketogeenisellä ruokavaliolla. Tulokset ovat olleet hyviä.  Ketogeeninen ruokavalio ja terveys on laaja katsaus ketoilun positiivisiin terveysvaikutuksiin.

Kymmenet lääkärit ympäri maailman suosittelevat ketogeenistä ruokavaliota laihduttamiseen ja kardiometabolisten sairauksien hoitoon.

Uuden ravitsemusmallin omaksumisen vaikeus on siinä, että kasvavasta tutkimusnäytöstä ja parantuneista potilaista huolimatta ketogeeninen ruokavalio ei sovi nykyisiin ravitsemusmalleihin. Se haastaa vuosikymmeniä vallalla olleet ravitsemusopit ja lääketieteen paradigmat.

Ketogeeninen ruokavalio olettaa, että tyydyttyneisiin rasvoihin perustuva energiansaanti laihduttaa ja pitää kehon terveenä. Se sotii kaikkea oppimaamme vastaan.

Tieteen itseään korjaava periaate sopii huonosti ravitsemustieteen institutionalisoituihin dogmeihin. Jos tutkimukset antavat tuloksia, jotka eivät tue vallalla olevia käsityksiä, vanhoja oppeja pitää korjata vastaamaan uusia havaintoja.

Onko ketoilu vaarallista, koska siinä syödään paljon rasvaa?

Oppi rasvojen terveyshaitoista on rakennettu tieteellisesti hataralle perustalle. Rasvojen yhteys sydän- ja verisuonitauteihin on tieteellisesti kyseenalaistettu, mutta tämän paradigman asema ravitsemustieteessä on horjumaton.

Laajan kohorttitutkimusten meta-analyysin mukaan tyydyttyneet rasvat eivät lisää sydän- ja verisuonitautien riskiä.

” This current meta-analysis of cohort studies suggested that total fat, SFA, MUFA, and PUFA intake were not associated with the risk of cardiovascular disease. However, we found that higher TFA intake is associated with greater risk of CVDs in a dose-response fashion. Furthermore, the subgroup analysis found a cardio-protective effect of PUFA in studies followed up for more than 10 years.” Lue meta-analyysi tästä!

Olen laihtunut ketogeenisellä ruokavaliolla kolmessa kuukaudessa 9-10 kiloa. Ruokavalioni perusravinne on rasva, jota syön valtavasti virallisiin saantisuosituksiin nähden.  Verensokerini on hyvä 4,5-5,5. Verenpaineet ovat keskimäärin 135/85/80 -tasolla, mutta vaihteluväli on +/-10 suuntaansa.

Laihtuminen on ollut käsittämättömän helppoa, ja oloni on säilynyt koko ajan energisenä. Tältä osin uskallan suositella ruokavaliota muillekin. Tässä esiin tulevat lääketieteelliset havainnot ja väitteet perustuvat useisiin lähteisiin, joihin viittaan tekstissä ja tekstin jälkeen.

Kardiometabolinen syndrooma (CMS)

Kardiometaboliseen syndroomaan (CMS) sisältyy joukko aineenvaihduntaan, verenkiertoon ja munuaisiin assosioituvia häiriöitä. Yhteisiä nimittäjiä kardiometabolisille sairauksille ovat viskeraalinen rasva, keskivartalolihavuus ja insuliiniresistenssi.

Keskivartalolihavuuteen liittyy usein insuliinin heikompi vaikutus ääreiskudoksissa ja/tai seerumin korkea insuliinipitoisuus.

CMS:n oireisiin kuuluvat mm. korkea verenpaine, poikkeavuudet verenpaineen ja sykkeen vuorokausivaihtelussa, diabetekseen viittaavat rasva- ja sokeriaineenvaihdunnan muutokset, aikuistyypin diabetes, alkoholista riippumaton rasvamaksa, lisääntynyt verenhyytymistaipumus, kihti sekä sydän- ja verenkiertoelinten lisääntynyt tulehdusriski.

Epidemiologisissa tutkimuksissa on havaittu, että kardiometabolinen oireyhtymä kasvattaa sepelvaltimotauti-, aivohalvaus-, sydän- ja verisuonitautikuolleisuus- ja kokonaiskuolleisuus-riskejä.

Rohkeimpien lääkäreiden ja ketogeenisen ruokavalion puolestapuhujien, kuten Joseph R. Kraftin ja Ted Naimanin mukaan useimmat sydän- ja verisuonitaudit assosioituvat diagnosoituun tai diagnosoimattomaan diabetekseen. Tämä näkemys sopii hyvin havaintoon, että diabeetikoiden sydän- ja verisuonitautikuolleisuus on hyvin korkea.

Diabeteksen laboratoriodiagnoosin kehitykseen 1970-luvulla osallistuneen tri Joseph R. Kraftin mukaan hyperinsulinemia liittyy vahvasti verenpainetaudin, lihavuuden, ateroskleroosin, neurodegeneratiivisten sairauksien (Parkinsonin tauti, Alzheimerin tauti), eräiden syöpien ja verisuonitautien kehittymiseen.

Kardiometabolinen oireyhtymä ja kardiometaboliset sairaudet yleistyvät vauhdilla. Kraft varoitti diabetesepidemiasta ja hyperinsulinemiaan assosioituvista sairauksista jo 1970-luvulla.

Yhteinen nimittäjä kardiometabolisille sairauksille on samanaikainen insuliiniresistenssin aiheuttama hyperinsulinemia. Paikallinen insuliiniresistenssi ei yksistään yleensä aiheuta sairauksia, sillä aineenvaihdunta turvautuu siihen joskus tarkoituksella. Insuliiniresistenssi ja korkeat insuliinitasot yhdessä ovat vakava uhka terveydelle.

Lihavien prosentuaalinen osuus väestöstä Euroopassa

Synkkiä lukuja

Monet sairastuvat, vaikka he liikkuvat ja noudattavat yleisiä ravitsemussuosituksia. Länsimaissa on maailman paras sairaanhoitojärjestelmä, mutta samanaikaisesti todella sairas väestö.

Ylipainoisten ja lihavien määrä on Maailman terveysjärjestön (WHO) mukaan kolminkertaistunut vuoden 1975 jälkeen.

Kiinassa lihavia on 5-6 prosenttia väestöstä, mutta suurissa kiinalaiskaupungeissa, joissa syödään eniten pikaruokaa, lihavien osuus on lyhyessä ajassa kasvanut yli 20 prosenttiin; ylipainoisten ja lihavien kiinalaisten määrä on vain 10 viime vuoden aikana kolminkertaistunut. Keskivartalolihavien kiinalaisten määrä on samana aikana lisääntynyt 50 prosenttia.

Amerikkalaisista 35,4 prosenttia on lihavia, 61,5 % vyötärölihavia. Noin 100 miljoonaa amerikkalaista sairastaa tyypin 2 diabetesta tai esidiabetesta. Euroopan unionin alueella 30-70 % ihmisistä on jo ylipainoisia ja 10-30 % lihavia. EU:ssa lähes 30 miljoonaa ihmistä sairastaa diabetesta. Koko Euroopan (56 valtiota) alueella diabetesta sairastaa noin 60 miljoonaa ihmistä.

Diabetes

Aikuistyypin diabetesta sairastavien määrä on kasvanut noin 108 miljoonasta (1980) 422 miljoonaan (2014). Prosentuaalisesti maailman väestössä diabeteksen esiintyvyys on kasvanut 4,3 prosentista 8,8 prosenttiin neljässä vuosikymmenessä. Kasvun uskotaan jatkuvan. Nykyisen trendin perusteella vuonna 2045 joka kymmenes maailman ihminen sairastaa diabetesta.

Diabetesta sairastavien lisäksi jopa 352 miljoonan ihmisen glukoosin sieto on heikentynyt ja he sairastavat esidiabetesta. Mikä tällaisen selittää ja pitääkö tästä huolestua?

Minun mielestäni pitää huolestua. Diabetes yleistyy nopeimmin pieni- ja keskituloisten parissa, mutta se yleistyy myös muissa sosioekonomisissa väestöryhmissä. Diabetes on tärkein sokeutta, munuaisvaurioita, sydänkohtauksia ja alaraajojen amputaatioita aiheuttava sairaus.

Vuonna 2016 1,6 miljoonaa ihmistä menehtyi diabeteksen seurauksena ja näiden lisäksi 2,2 miljoonaa kuolemantapausta assosioitui vahvasti korkeaan verensokeriin (WHO).

IDF:n tilastojen mukaan diabetes ja siihen liittyvät komplikaatiot tappavat vuosittain noin 4 miljoonaa ihmistä. Tilastollisesti yksi ihminen kuolee diabeteksen seurauksena seitsemän sekunnin välein. Inhimillisen kärsimyksen lisäksi tyypin 2 diabetes tulee yhteiskunnille mahdottoman kalliiksi.

”The figures given in the IDF Atlas fit well with the estimates of an international consortium reporting worldwide trends in diabetes since 1980 based on a pooled analysis of 751 population-based studies with 4·4 million participants. According to this group global age-standardised diabetes prevalence increased from 4.3% (95% CI 2.4-7.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women.”

Syitä diabetesepidemialle voidaan etsiä esimerkiksi vähentyneestä arkiliikunnasta, väestön lisääntymisestä ja ihmisten odotettavissa olevan elinajan kasvusta. Nämä eivät kuitenkaan selitä nykyistä diabetesepidemiaa riittävän hyvin, sillä miljoonat raskasta fyysistä työtä tekevät ja ravintosuosituksia noudattavat lihovat ja sairastuvat diabetekseen.

Eräs tärkeimmistä diabeteksen kasvua selittävistä tekijöistä on keskivartalolihavuuden nopea lisääntyminen lähes kaikissa sosioekonomisissa ryhmissä ympäri maailman.

Mistä tiedän, onko minulla diabetes?

Terveellä ihmisellä paaston jälkeinen plasman sokeri on 6 mmol/l tai vähemmän. Kahden tunnin sokerirasituksessa terveen ihmisen verensokeri pysyy alle 7,8 mmol/l.

Kun paastoverinäytteestä mitataan sokeria 6,1–6,9 mmol/l, kyseessä on kohonnut paastoplasman sokeri eli heikentynyt paastosokeri (IFG, impaired fasting glucose).

Heikentynyt sokerinsieto (IGT, impaired glucose tolerance) todetaan, kun verensokeripitoisuus on 7,8–11 mmol/l sokerirasituskokeessa 2 tunnin kohdalla tai 2 tuntia aterian jälkeen.

Tutkimuksessa ketogeeninen ruokavalio oli perinteistä vähärasvaista diabetesruokavaliota parempi:

”Individuals with type 2 diabetes improved their glycemic control and lost more weight after being randomized to a very low-carbohydrate ketogenic diet and lifestyle online program rather than a conventional, low-fat diabetes diet online program. Thus, the online delivery of these very low-carbohydrate ketogenic diet and lifestyle recommendations may allow them to have a wider reach in the successful self-management of type 2 diabetes.”

Hyvä uutinen on se, että tyypin 2 diabetes ei ole krooninen sairaus. Se on voitettavissa! Tyypin 2 diabetes voidaan hoitaa esimerkiksi vähäkalorisella tai ketogeenisellä ruokavaliolla. Näistä jälkimmäinen on tutkimusten perusteella parempi.

”A literature search was performed, and a total of 99 original articles containing information pertaining to diabetes reversal or remission were included. Results: Evidence exists that T2D reversal is achievable using bariatric surgery, low-calorie diets (LCD), or carbohydrate restriction (LC).” Lue tästä!

Lihavien määrän kasvu eri väestöissä

Pitääkö klassinen ruokapyramidi kaataa?

Perinteiset lautasmallit ja ravintopyramidit eivät selvästikään suojele meitä lihomiselta ja sairastumiselta. Sairaudet yleistyvät, vaikka ihmiset noudattavat suosituksia, liikkuvat ja lääketiede kehittyy. Missä vika?

Eräs perinteisen ravintopyramidin kaatajista on professori Tim Noakes, joka on elämänsä aikana juossut kymmeniä maratoneja ja ultramaratoneja. Noakes kirjoitti uransa alussa vähärasvaiseen ja runsaasti hiilihydraatteja sisältävään ruokavalioon kannustavia kirjoja.

Noakes käänsi oman ravitsemuksensa ylösalaisin sairastuttuaan aikuistyypin diabetekseen. Hän sairastui, vaikka vältteli rasvoja, liikkui hyvin aktiivisesti ja söi virallisten suositusten mukaisesti. Vallalla olevan mallin mukaan maailman ”timnoakesien” ei pitäisi lihoa tai sairastua aikuistyypin diabetekseen, mutta monet maailman ”timnoakesit” sairastuvat.

Tohtori David Unwin kertoo, että vuonna 1986 hänen vastaanotollaan kävi 57 aikuistyypin diabetesta sairastavaa. Tauti oli tuohon aikaan vielä melko harvinainen ja siihen sairastuivat lähinnä iäkkäät ihmiset. Vuonna 2012 samalla vastaanotolla tyypin 2 diabeetikkoja oli jo 472.


Insuliini on anabolinen hormoni

Verenpainetauti, lihavuus, dyslipidemia ja glukoosi-intoleranssi assosioituvat hyperinsulinemiaan. Oirekirjo tunnetaan metabolisena oireyhtymänä. Hyperinsulinemia vaikuttaa verenpaineeseen lisäämällä munuaisten natriumretentiota (natriumin säilytystä).

Insuliini on aminohapoista muodostuva hormoni. Hormonit ovat elimistön valmistamia endogeenisiä viestinvälittäjämolekyylejä, jotka kulkevat erittymispaikasta kohdesoluihin pääosin verenkierron välityksellä. Hormoni voi vaikuttaa pieninäkin määrinä soluun, jossa on hormonille spesifisiä reseptoreja.

Eri puolilla elimistöä sijaitsevat umpirauhaset erittävät hormoneja aivolisäkkeen ja hypotalamuksen säätelemänä. Insuliinin eritystä ohjaa veren sokeripitoisuus. Glukoosi aiheuttaa piikin insuliinin erityksessä. Proteiinit ja rasvat vaikuttavat insuliinin eritykseen paljon sokereita maltillisemmin.


Mitä hormonit ovat?

Hormonit, jotka voivat olla joko vesiliukoisia (katekoliamiinit, glukagoni ja insuliini) tai rasvaliukoisia (D-vitamiini, steroidit ja kilpirauhashormonit) säätelevät lähes kaikkia elimistön aineenvaihduntaprosesseja. Ne ovat aminohappo-, rasvahappo-, proteiini- ja peptidihormoneja tai steroideja.

Aminohappoyhdisteistä muodostuneet hormonit muodostuvat tyrosiinista ja tryptofaanista. näihin hormoneihin kuuluvat kilpirauhasen erittämät kilpirauhashormonit ja lisämunuaisytimen erittämät katekoliamiinit.

Solukalvojen fosfolipidi arakidonihappo toimii rasvahappoyhdisteisten hormonien lähtöaineena. Tällaisia ovat mm. eikosanoidit (esimerkiksi postglandiinit, tromoksiaanit ja leukotrieenit).

Proteiini- ja peptidihormonit ovat muodostuneet muutamista tai jopa sadoista aminohapoista. Tällaisia ovat esimerkiksi vasopressiini ja tyreoliberiini.

Proteiinihormoneja ovat mm. insuliini ja kasvuhormoni. Proteiinihormoneja, joihin on liittyneenä hiilihydraattiryhmä, kutsutaan glykoproteiineiksi. Glykoproteiineja ovat esimerkiksi follikkelia stimuloiva hormoni ja luteinisoiva hormoni. Steroidihormonien lähtöaineena toimii kolesteroli.

Insuliini ja insuliiniresistenssi

Terve aineenvaihdunta reagoi ruokailun kohottamaan verensokeriin erittämällä insuliinia haiman Langerhansin saarekkeiden β-soluista. Insuliinimolekyylit kulkeutuvat verenkierron mukana soluihin ja kiinnittyvät kudosten insuliiniherkkien solujen insuliinireseptoreihin.

Insuliinireseptoriin kiinnittynyt insuliinimolekyyli ”kutsuu” solukalvon läpäisevän kanavan, jota pitkin glukoosimolekyyli pääsee sujahtamaan solun sytoplasmaan.

Insuliini vaikuttaa insuliiniherkkiin kudoksiin, kuten lihas- ja rasvasoluihin sekä maksan soluihin. Sillä on merkittävä tehtävä kehon energiataloudessa ja erityisesti sokeriaineenvaihdunnassa, koska insuliini lisää insuliiniherkissä kudoksissa glukoosin, aminohappojen ja rasvahappojen soluun ottoa. Insuliiniresistenssi vaikuttaa ensimmäiseksi lihassoluihin, joten rasvasolujen energian varastoiminen lisääntyy.

Normaalisti insuliinin eritys vähenee verensokerin laskiessa. Terveillä verensokeri pysyy noin 5 mmol /l (90 mg /dl) -tuntumassa. Esidiabeteksessa sokeritasot kohoavat lähelle 7 mmol /l -tasoa. Diabetekseen sairastuneilla yön yli paaston jälkeen mitattu verensokeri on toistuvasti 7,0 mmol/l tai sitä korkeampi. Normaalin verensokerin yläraja on 6,0 mmol/l.

Insuliini on kehon energiatalouden kapellimestari. Se ohjaa ravinteiden käyttöä energian tuotantoon tai varastoimiseen solujen kylläisyysasteen mukaisesti.

Insuliinipitoisuuden laskiessa glukagoni purkaa insuliinin rakentamia energiavarastoja maksan ja lihasten glykogeeneistä. Näiden hormonien pitoisuus veressä vaihtelee jatkuvasti. Välillä glukoosia puretaan glukagonin aktivoimana glykogeeneistä ja välillä glykogeeni- ja rasvavarastoja kootaan insuliinin avulla.

Insuliiniresistentillä henkilöllä insuliini ei laske verensokeria halutulla tavalla. Rasva- ja lihassolut, tarvitsevat insuliinia glukoosin sisäänottoon. Kun nämä solut eivät reagoi insuliiniin, verensokeri nousee.

Pitkään jatkuvalla korkealla verensokerilla on monia haitallisia terveysvaikutuksia: se mm. heikentää verisuonia.  Aterioiden välillä insuliinitasot laskevat. Insuliinin laskun vaikutuksesta haiman alfasolut erittävät vereen glukagonia. Tämä insuliinin vastavaikuttaja aktivoi sokerivarastojen purkamisen maksasta vereen ja lihaksista lihasten omaan käyttöön. Näin verensokeri pysyy tasaisena myös aterioiden välillä.

Rasvasolujen insuliiniresistenssissä verenkierrossa olevien lipidien imeytyminen heikkenee ja varastoituneiden triglyseridien hydrolyysi kiihtyy. Tämä lisää vapaiden rasvahappojen määrää veriplasmassa ja voi edelleen pahentaa insuliiniresistenssiä.

Hyperinsulinemia


Lisääntynyt viskeraalinen rasva erittää tulehdusta aiheuttavia sytokiinejä vereen, ja nämä vaikuttavat insuliinireseptorien toimintaa heikentävästi.

Hyperinsulinemia

Insuliiniresistenssi voi johtaa hyperinsulinemiaan, eli tilaan, jossa veressä on aivan liikaa insuliinia. Rasvasolujen insuliinisensitiivisyys säilyy pisimpään, minkä vuoksi veren glukoosia varastoidaan rasvasoluihin.

Insuliiniresistenssin vaikutuksesta lihasten toiminta heikkenee, sillä lihassolujen glukoosinsaanti vähenee. Samalla insuliinin vaikutuksesta rasvakudoksen rakentaminen tehostuu ja ihminen lihoo.

Koska insuliini on ensisijainen hormonaalinen signaali energian varastoimiselle insuliiniherkkiin rasvasoluihin, se stimuloi uuden rasvakudoksen muodostumista ja kiihdyttää painonnousua.

Insuliiniresistenssi lisää haiman beetasolujen insuliinin tuotantoa. Tämä nostaa veren insuliinitasoja (hyperinsulinemia) korkean verensokerin kompensoimiseksi.

Kompensoidun insuliiniresistenssivaiheen aikana insuliinitasot kasvavat, mutta verenkierron lisääntynyt insuliini ei kuitenkaan laske verensokeria.

Jos lisääntynyttä verensokeria kompensoiva insuliinieritys epäonnistuu laskemaan verensokeria, paastoglukoosi ja aterianjälkeinen glukoosi näkyvät mittauksissa kohonneina glukoosipitoisuuksina. Normaali glukoosipitoisuus pysyy aina 5 mml/l tuntumassa. Esidiabeteksessa verensokeritasot ovat 6,0-6,9 mml/l ja diabeteksessa yli 7 mml/l. Heikentynyt insuliinisensitiivisyys eli insuliiniresistenssi vaikuttaa näin tyypin 2 diabeteksen kehittymiseen.

Insuliiniherkät rasvasolut maksassa ja haimassa säilyttävät insuliinisensitiivisyyden lihassoluja pidempään. Tämän vuoksi insuliini kompensoi kohonnutta verensokeria ohjaamalla glukoosia rasvasoluihin, jossa glukoosi de novo lipogeneesissä muutetaan triglyserideiksi.

Tämä lisää myös maksan ja haiman rasvoittumista. Maksan rasvoittuminen lisää alkoholista riippumattoman rasvamaksan riskiä, mutta sitä suurempi ongelma insuliiniresistenssin ja aikuistyypin diabeteksen kannalta on haiman rasvoittuminen, sillä se heikentää entisestään insuliinintuotantoa, kunnes lopulta beetasolujen toiminta lakkaa kokonaan.

Insuliiniresistenssi assosioituu vahvasti ihmisiin, joilla on runsaasti viskeraalista keskivartaloläskiä, verenpainetauti, hyperglykemia, dyslipidemia, kohonneet triglyseriditasot, kohonnut hyvin pienten matalan tiheyden lipoproteiinien (sdLDL) tasot ja pienentyneet HDL-tasot.

Viskeraalinen keskivartalorasva assosioituu tutkimusten perusteella vahvasti insuliiniresistenssiin kahdella tavalla:

Ensinnäkin toisin kuin ihonalainen rasvakudos, viskeraalinen rasva tuottaa tulehduksellisia sytokiinejä, kuten tuumorinekroositekijä-alfa (TNF-a), interleukiini-1 ja interleukiini-6. Monissa kokeissa on osoitettu, että nämä proinflammatoriset, eli tulehdusta edistävät sytokiinit, hajottavat insuliinia tai estävät insuliinin normaalia toimintaa. Suuri osa tulehduksellisten sytokiinien tuotannosta on keskittynyt IKK-beeta / NF-kappa-B-reitille, proteiiniverkolle, joka tehostaa insuliiniresistenssiä vaikuttamalla tulehduksellisten markkerien ja välittäjien transkriptioon.

Toisaalta viskeraalinen rasva vaikuttaa myös rasvan kerääntymiseen maksaan, mikä aiheuttaa alkoholista riippumattoman rasvamaksan kehittymistä (NAFLD). Tämän seurauksena verenkiertoon vapautuu liikaa vapaita rasvahappoja lisääntyneen lipolyysin seurauksena. Edelleen NAFLD:n seurauksena maksan glykogenolyysi (glykogeenien pilkkominen glukoosiksi) ja maksan glukoosin tuotanto kiihtyvät, mikä pahentaa perifeeristä insuliiniresistenssiä ja kasvattaa tyypin 2 diabeteksen riskiä.

Insuliiniresistenssiin liittyy usein myös hyperkoaguloituva tila (heikentynyt fibrinolyysi) ja lisääntyneet tulehdukselliset sytokiinitasot.

Molekyylitasolla

Molekyylitasolla solu havaitsee insuliinin insuliinireseptoreiden välityksellä signaalin kulkiessa signalointikaskadin läpi. Tämä tunnetaan nimellä PI3K / Akt / mTOR signalointireitti.

Tuoreet tutkimukset viittaavat siihen, että tämä signalointireitti voi toimia fysiologisista olosuhteista riippuvaisena kaksisuuntaisena eli bistabiilina kytkimenä tietyntyyppisille soluille, jossa insuliinivaste voi olla kynnysilmiö.

Tämän signalointireitin herkkyys insuliinille voi heikentyä monien tekijöiden, kuten vapaiden rasvahappojen aiheuttaman insuliiniresistenssin seurauksena. Laajemmasta näkökulmasta herkkyyden virittäminen (tai herkkyyden vähentäminen) on organismin normaali tapa sopeutua muuttuvan ympäristön tai aineenvaihdunnan olosuhteisiin. Eli insuliiniresistenssi voi joissain tilanteissa olla elimistön kannalta toivottava tila.

Esimerkiksi raskaus muuttaa odottavan äidin aineenvaihduntaa. Odottavan äidin elimistön on vähennettävä lihaksiensa insuliiniherkkyyttä varatakseen enemmän glukoosia aivan erityisesti sikiön aivojen kehitykselle. Tämä voidaan saavuttaa siirtämällä insuliinin vastekynnystä, eli herkkyyttä erittämällä vereen istukan kasvutekijää, joka estää insuliinireseptorisubstraatin (IRS) ja PI3K:n vuorovaikutusta. Tämä on ns. säädettävän kynnyshypoteesin ydin.

Insuliiniresistenssi superoksidaasidismutaasi

Insuliiniresistenssi voi olla lisääntyneen ravinnonsaannin aiheuttama solutason reaktio. Ylimääräinen energiansaanti vaikuttaa solujen mitokondrioissa superoksidaasidismutaasin toimintaan.

Superoksidisdaasimutaasi on yksi tärkeimmistä antioksidanteista. Tällaisesta molekyylitason vaikutuksesta on viitteitä erilaisissa insuliiniresistenssistä tehdyissä havainnoissa. Kokeissa on havaittu myös, että insuliiniresistenssi voidaan kääntää nopeasti altistamalla solut esimerkiksi elektronin kuljetusketjun estäjille tai mitokondrioiden superoksididismutaasia jäljitteleville aineille.

Superoksidaasidismutaasi

Insuliiniresistenssi on yhteydessä verenpaineeseen. Nakamura tutkijakollegoineen. osoitti insuliiniresistenteillä jyrsijöillä ja ihmisillä, että vaikka insuliinin stimuloiva vaikutus adiposyyttien glukoosin imeytymisen insuliinireseptorisubstraatin 1 (IRS1) välityksellä heikentyi voimakkaasti, IRS2 välittämä vaikutus suolan imeytymiseen munuaisten proksimaaliseen tubulukseen, säilyi.

Kompensoiva hyperinsulinemia yksilöillä, joilla on insuliiniresistenssi, voi lisätä natriumin kerääntymistä proksimaaliseen tubulukseen, mikä johtaa natriumin ylikuormitukseen ja verenpaineen kohoamiseen.

Superoksidaasidismutaasi (SOD3) on useimmissa kudoksissa esiintyvä antioksidanttientsyymi, joka muuttaa haitallista superoksidia vähemmän haitalliseksi vetyperoksidiksi. Sekin on reaktiivinen happiyhdiste, mutta se toimii myös solujen viestinnässä viestinvälitysmolekyylinä. SOD3 saattaa siis osallistua solujen viestintään.

FM, PhD Lilja Laatikainen selvitti väitöstutkimuksessaan, kuinka solunulkoinen superoksididismutaasi-entsyymi suojaa kudoksia tulehdusreaktion aiheuttamilta vaurioilta. Tutkimus osoitti, että kudokseen virusvektorin avulla siirretty SOD3 estää tulehdussolujen, erityisesti makrofagien, kulkeutumisen vaurioituneeseen kohtaan.

Mekanismi on Laatikaisen tutkimuksen perusteella tulehdussolujen tarvitsemien tarttumismolekyylien ja tulehdusta edistävien sytokiinien tuoton vähentäminen estämällä keskeisen NF-kappa-B-molekyylin toimintaa. Tämän lisäksi SOD3 voimisti viestien välitystä Erk- ja Akt-signalointireiteillä, jotka edistävät solujen eloonjääntiä stressitilanteissa, ja vastaavasti vähensi solukuolemaan johtavien tekijöiden ilmentymistä, vähensi kudosvaurion laajuutta ja nopeutti kudoksen paranemista.

Insuliiniresistenssi tai heikentynyt insuliiniherkkyys on olennainen piirre aineenvaihdunnan oireyhtymässä, johon assosioituvat liikalihavuus, heikentynyt glukoosin sieto, dyslipidemia ja verenpaine. Dyslipidemialla tarkoitetaan rasva-aineenvaihdunnan häiriötä, jossa jokin veren rasva-arvoista (LDL, HDL, triglyseridit) ei vastaa suosituksia. Dyslipidemiasta puhutaan, jos seerumin LDL on yli 3 mmol litrassa, triglyseridipitoisuus yli 2 mmol/l tai HDL-pitoisuus alle 1mmol/l.

Insuliinin toiminta

Heikentynyt insuliiniherkkyys johtaa kompensoivaan hyperinsulinemiaan normaalin verensokerin ylläpitämiseksi. Insuliiniresistenssi voi olla toissijainen vaste insuliinireseptorin (IR) ja telakointiproteiinien, kuten insuliinireseptorisubstraattien (IRS) vaimennussäätelyä tai inaktivaatiota ohjaavalle signaloinnille.

Insuliinilla on tärkeä tehtävä verensokerin säätelyssä, sillä se stimuloi glukoosin kuljetusta rasvasolujen ja luurankolihasten kudosten läpi insuliinireseptorisubstraattien aktivaation jälkeen.

Insuliini stimuloi glukoosin kuljettajien (GLUT) siirtämistä solunsisäisistä kalvo-osastoista plasmakalvoon lisäämällä sokerin imeytymistä. Rasva- ja luurankolihaskudoksissa vaikuttaa useita glukoosin kuljetusmolekyylejä, mutta havaintojen perusteella GLUT4 on glukoosin solukalvojen läpi kuljettamisen kannalta tärkein kuljetusmolekyyli.

Insuliini sitoutuu ja aktivoi insuliinireseptori-tyrosiinikinaasia (IR), mikä johtaa IRS1:n, IRS2:n, IRS3:n ja IRS4:n fosforylaatioon. Sitoutumalla signalointipartnereiden, kuten fosfoinositidi-3-kinaasin (PI3K) kanssa insuliini aktivoi Akt/proteiinikinaasi B- ja proteiinikinaasi C-ζ -kaskadit, joilla on tärkeä tehtävä insuliinin toiminnassa.

IRS-alatyypit jakautuvat kudosspesifisesti, ja niillä on selkeät signalointikanavat. IRS1 välittää insuliinin vaikutusta glukoosin imeytymiseen rasvasoluissa ja luurankolihaksissa. IRS2 toimii ensisijaisesti välittäen insuliinin vaikutusta munuaistiehyihin.

Insuliiniresistenssi ja verenpaine

Insuliiniresistenssi ja verenpaine

Insuliiniresistenssin ja verenpaineen välinen yhteys on joko kahden itsenäisen prosessin yhteys, joka ei ole ainakaan suoraan yhteydessä verenpaineeseen, tai syy-seuraussuhde, jossa insuliiniresistenssi aiheuttaa kohonneen verenpaineen.

Jos insuliiniresistenssi ei aiheuta kohonnutta verenpainetta, insuliiniresistenssi ja kohonnut verenpaine voivat olla saman soluhäiriön toisiinsa liittymättömiä seurauksia. Eli kyse voi olla solunsisäisen vapaan kalsiumin määrän lisääntymisestä, mikä johtaa verisuonten supistumiseen ja insuliinin heikentyneeseen toimintaan.

Insuliiniresistenssi on toisaalta myös moniin verenpaineen kohoamista aiheuttaviin aineenvaihdunnan poikkeamiin assosioituva molekyylimarkkeri.

Toinen vaihtoehto on, että hyperinsulinemia vaikuttaa verenpainetaudin syntyyn, lisäämällä natriumin imeytymistä munuaisiin, aktivoimalla sympaattista hermostoa ja muuttamalla verisuonten resistenssiä.

Kudoksen heikentynyt insuliiniherkkyys on yhteinen nimittäjä useille sairauksille, kuten metabolinen oireyhtymä, keskivartalolihavuus, hyperglykemia, dyslipidemia, hypertensio ja insuliiniresistenssi. Vaikka insuliiniresistenssin osuutta hyperglykemian ja dyslipidemian osalta on tutkittu, insuliiniresistenssin merkityksestä verenpainetaudin patogeneesissä tiedetään vähemmän kuin insuliiniresistenssin merkityksestä metabolisen oireyhtymän ja tyypin 2 diabeteksen sekä lihavuuden synnyssä.

Miten Suomessa?

Diabetesliiton mukaan Suomessa vajaat puoli miljoonaa ihmistä sairastaa aikuistyypin diabetesta. Arviolta 100 000 sairastaa diabetesta tietämättään. Joka vuosi yli 20 000 suomalaista sairastuu tyypin 2 diabetekseen.

Diabetes on suurin yksittäinen valtimotautien, aivoverenkiertohäiriöiden ja alaraaja-amputaatioiden syy. Se lisää myös munuais- ja silmäsairauksia. Suomessa diabeteksen hoitokustannuksiin kuluu ihan helvetisti rahaa. Diabeteksen hoitoon käytetään 15 % terveydenhuollon menoista.

FinTerveys 2017 -tutkimuksen mukaan yli 30-vuotiaista miehistä 72 % ja naisista 63 % oli vähintään ylipainoisia. Miehistä 26 % ja naisista 28 % oli lihavia. Melkein puolet suomalaisista on vyötärölihavia.

Jo noin puoli miljoonaa ihmistä käyttää verenpainelääkkeitä. Tuhansilla verenpaineet ovat jatkuvasti riskirajoilla.  

Ketogeeninen ruokavalio toimii painonhallinnassa, pitää verensokerin tasaisena ympäri vuorokauden ja laskee tutkitusti verenpainetta. Voisiko ketogeeninen ruokavalio auttaa verenpaineen, painon ja huonojen lipidiprofiilien kanssa kamppailevia myös Suomessa?

Miksi ketoilu laskee verenpainetta?

David J. Unwin kertoo hiljattain tehdystä pilottitutkimuksesta, jossa tutkijat havaitsivat, että hyvin vähän hiilihydraatteja sisältävään ruokavalioon assosioitui merkittäviä verenpaineen, painon ja lipidiprofiilien paranemista, minkä vuoksi potilaiden lääkitystä voitiin tutkimuksen aikana vähentää.

Kysymys on: Voidaanko samanlaisia positiivisia terveyshyötyjä saada laajemmassa tutkimuksessa? Unwin tutkijaryhmineen rekrytoi perusterveydenhuollon seurantatutkimukseen 154 potilasta, jotka sairastivat aikuistyypin diabetesta, tai joilla sokerin sietokyky oli merkittävästi heikentynyt.

Vähähiilihydraattisen ruokavalion vaikutuksia sydämen ja verisuonitautien riskitekijöihin tutkittiin keskimäärin kaksi vuotta. Seurattujen potilaiden verenpaine laski merkittävästi LCHF-ruokavaliolla:

* Systolinen verenpaine laski keskimäärin 10,9 mmHg
*Diastolinen verenpaine laski keskimääräinen 6,3 mmHg
*Tutkimukseen osallistuneiden potilaiden paino laski keskimäärin 9,5 kg    *lipidiprofiilit paranivat selvästi

Tutkimuksen aikana potilaiden verenpainelääkitystä vähennettiin 20 prosentilla.  Kansallinen terveydenhuollon huippuosaamisinstituutti (National Institute for Health and Care Excellence – NICE) määrittelee kohonneen verenpaineen riskirajaksi 140/90 mmHg ja sitä korkeammat tulokset. Kotioloissa mitatut päivittäiset verenpaineen keskiarvot, jotka ovat vähintään135/85 mmHg ovat korkean verenpaineen riskirajoilla. Ymmärtääkseni näitä arvoja noudatetaan myös suomalaisessa terveydenhuollossa.

Hiljattain julkaistun tutkimuksen (lue tästä) mukaan huonojen ravitsemustottumusten jälkeen korkea verenpaine on globaalisti merkittävin sairastumisen riskitekijä.

Isossa-Britanniassa korkea verenpaine on tupakoinnin ja huonojen ravitsemustottumusten jälkeen kolmanneksi merkittävin sairastumiselle altistava riskitekijä.

Usein korkean verenpaineen syy voi johtua esimerkiksi ylipainosta, tupakoinnista, runsaasta suolan käytöstä tai perinnöllisistä tekijöistä, mutta toisinaan kohonneelle verenpaineelle ei löydetä mitään suoraa kausaalista syytä. Tällöin puhutaan essentiaalisesta hypertensiosta. Se on viisaalta kuulostava diagnoosi, joka kertoo, että syytä kohonneelle verenpaineelle ei tiedetä.

Tutkijat laativat vuonna 2013 ohjeita vähähiilihydraattisen ruokavalion (vähemmän kuin 130 g hiilihydraattia / päivä) hoitosuosituksia tyypin 2 diabeteksen. 19 potilaan pilottitutkimuksen potilaat sairastivat aikuistyypin diabetesta tai heidän sokerinsietokykynsä (IGT) oli merkittävästi heikentynyt. Kahdeksan kuukauden tutkimuksen hämmästyttävimmät seuraukset olivat potilaiden verenpaineen merkittävä parantuminen.  è systolinen 148 ± 17–133 ± 15 mmHg, p <0,005 è diastolinen 91 ± 8–83 ± 11 mmHg, p <0,05).  Koehenkilöiden verenpaineet laskivat huolimatta verenpainelääkkeiden käytön lopettamisesta.

Hypoteesi vuoden 2013 pilottitutkimuksen tuloksille oli, että vähähiilihydraattiset ruokavaliot voivat toimia diabeteksen ja painonhallinnan hoidossa perinteisiä hoitomuotoja paremmin. Aluksi hypoteesi herätti lääketieteellisessä yhteisössä runsaasti kritiikkiä ja epäilyjä, mutta sittemmin ketogeeninen ruokavalio on laajemmin hyväksytty osaksi aikuistyypin diabeteksen hoitoa. (Lue tästä ja tästä).

Hiilihydraattien vähentämisen vaikutukset insuliinin aktiivisuuteen ja metabolisen oireyhtymän oireiden hoitoon osoitettiin jo vuonna 2005 (lue tutkimus). Lisätyn sokerin lisäksi kaikkien ravinnon glukoosilähteiden, kuten leivän, perunan, viljan ja riisin rajoittaminen vähentää insuliinin eritystä ja parantaa insuliiniherkkyyttä.

Metabolinen oireyhtymä, korkea verenpaine DB2, keskivartalolihavuus, dyslipidemia ja alkoholista riippumaton rasvamaksa (NAFLD) ovat vain jäävuoren huippu. Kaikki nämä sairaudet palautuvat pinnan alla vaanivaan insuliiniresistenssiin.

Vuonna 2013 valmistunut vähän hiilihydraatteja sisältävän ketogeenisen ruokavalion ja vähärasvaisen ruokavalion pitkäaikaisia vaikutuksia selvittänyt satunnaistettujen kontrolloitujen tutkimusten (> 12 kuukauden kesto) meta-analyysi, osoitti vähän hiilihydraatteja sisältävällä ruokavaliolla selvää laskua diastolisessa verenpaineessa, mutta ei systolisessa verenpaineessa.

Samana vuonna valmistunut toinen satunnaistettu kontrolloitu tutkimus havaitsi, että sekä systolinen että diastolinen verenpaine laskivat kuuden viikon kuluttua.

Tyypin 2 diabetesta sairastavilla hyperinsulinemia lisää munuaisten natriumin pidättämistä. Samaa ei tapahdu terveillä verrokeilla. Vuonna 2017 satunnaistettujen vertailututkimusten systemaattinen katsaus ja meta-analyysi osoitti, että pienemmän glykeemisen kuorman ruokavalio laskee merkittävästi verenpainetta. (Lue tästä)

Huolimatta ketogeenisen ruokavalion hyötyjen laajemmasta hyväksynnästä, vähähiilihydraattisen ruokavalion pitkäaikaisvaikutukset herättävät yhä kysymyksiä.

Iso-Britannian diabetesyhdistyksen marraskuussa 2018 antaman lausunnon mukaan: vaikka vähän hiilihydraatteja sisältävän ruokavalion ”lyhytaikaiset” hyödyt diabetesta sairastavan painonhallintaan, parantunut glykeeminen kontrolli ja pienentynyt sydän- ja verisuonitautien riski on osoitettu, ketogeenisen ruokavalion pitkäaikaisvaikutuksista tarvitaan lisää tutkimuksia.

Tutkimus ja menetelmät

Tutkimuksessa analysoitiin retrospektiivisesti yleislääkäreiden tutkimusta varten keräämiä kliinisiä tietoja 9700 potilaasta Pohjois-Englannista.  Lääkärit ja sairaanhoitajat tarjosivat tyypin 2 diabetesta tai heikentynyttä glukoositoleranssia (IGT) sairastaville potilaille vaihtoehtoisena hoitomuotona vähän hiilihydraatteja sisältävää ruokavaliota.

Tutkimuksesta poissuljettiin: raskaana olevat, syömishäiriöiset, alipainoiset, tyypin 1 diabetesta sairastavat ja alle 18-vuotiaat. Tietoja kerättiin maliskuusta 2013 marraskuuhun 2018.

Ruokavalio-kokeeseen osallistuneille annettiin kirjalliset ohjeet ja lisätukea potilaan valinnasta ja kliinisestä tarpeesta riippuen.  Kokeeseen valikoitui monenkirjava joukko eri ikäisiä ja erilaisissa elämäntilanteissa eläviä ihmisiä.  Lääkärin ja sairaanhoitajan tapaamisten lisäksi kokeeseen osallistuville tarjottiin säännöllisiä 90 minuutin ”ryhmäistuntoja” lähes kuukausittain.

Ryhmäistuntoihin osallistui myös perheenjäseniä. Kohorttiin valikoitui 154 osallistujaa: 90 miestä ja 64 naista. Kunkin potilaan paino, verenpaine ja verenkuva tutkittiin ennen tutkimuksen alkua. 89 oli tyypin 2 diabetes. Kokeeseen osallistuvien ikähajonta oli 40-89 ja ryhmän keski-ikä 63 vuotta tutkimuksen alkaessa. Useimmat seurantaan osallistuvista olivat ylipainoisia (keskimääräinen painoindeksi 34).

Alkutiedot Lähtötason mittauksiin sisältyivät seuraavat: Paino, verenpaine, kokonaiskolesteroli, HDL-kolesteroli, paaston triglyseriditasot ja verenpainetaudit. Kaikki mittaukset kerättiin käyttämällä Yhdistyneen kuningaskunnan kansallisen terveyspalvelun standardilaitteita ja laboratorioanalyysejä.

Tutkittavia ohjeistettiin vähentämään merkittävästi ruokavalion sisältämiä piilosokereita ja tärkkelyspitoisia elintarvikkeita, kuten perunoita, leipää ja riisiä. Ohjeistuksessa käytettiin apuna tutkimusta varten kehitettyä sokeriekvivalenttijärjestelmää, joka edustaa erilaisten elintarvikkeiden glykeemistä kuormaa.

Esimerkiksi pieni viipale leipää aiheuttaa vastaavan verensokerin nousun kuin kolme teelusikallista sokeria, ja 150 g keitettyä riisiä nostaa verensokeria saman verran kuin kymmenen teelusikallista sokeria.  Sokeriekvivalenttijärjestelmän avulla potilaat ymmärsivät, että esimerkiksi maissihiutaleista, paahtoleivästä ja mehusta muodostuva aamiainen on käytännössä sokeria.

Tulokset

Kahden vuoden tutkimuksen aikana tutkittavien potilaiden verenpaine, paino ja lipidiprofiilit paranivat selvästi ketogeenisellä ruokavaliolla.

Tutkimus osoitti, että hiilihydraattien rajoittaminen on turvallinen ja tehokas tapa hoitaa tyypin 2 diabeteksen oireita.


Yhteenveto

Ketogeenisen ruokavalion vaaroja liioitellaan. Todennäköisesti näin tehdään, koska keto-dieetti ei mahdu perinteisiin oppeihin hyvästä ja terveellisestä ruokavaliosta.

Tutkimuksia ketogeenisen ruokavalion terveyshyödyistä julkaistaan kiihtyvään tahtiin ja yhä useammat lääketieteen ammattilaiset ovat ottaneet ketogeenisen ruokavalion osaksi lihavuutta, verenpainetautia, metabolista oireyhtymää, tyypin 2 diabetesta jne. sairastavien potilaiden hoitosuunnitelmaa.

Ketogeeninen ruokavalio pitää verensokerin ja veren insuliinipitoisuuden tasaisena. Korkea verensokeri ja korkea insuliini assosioituvat  kardiometabolisiin ja kroonisiin sairauksiin, kuten tyypin 2 diabetekseen. Ketogeeninen ruokavalio on paras tapa hoitaa insuliiniresistenssiä, joka on monien sairauksien perussyy. Ruokavalio hillitsee oksidatiivista stressiä ja inflammaatiota, jotka assosioituvat lukemattomiin kroonisiin sairauksiin.

Kansainvälisesti yhä suurempi joukko lääketieteen ammattilaisia ja ketogeeniseen ruokavalioon syvällisesti perehtyneitä ravintoterapeutteja, insinöörejä ja nörttejä luennoi ja kirjoittaa ketogeenisen ruokavalion hyödyistä.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695889/

https://en.wikipedia.org/wiki/Insulin_resistance

https://www.sciencedirect.com/science/article/pii/S0085253815301745

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359196/

https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1035-2

https://www.ncbi.nlm.nih.gov/pubmed/28193599

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664869/

 




Mitä, miten ja miksi LCHF-ruokavalio?

Mitä, miten ja miksi LCHF`Vähän hiilihydraatteja ja runsaasti rasvoja sisältävässä ruokavaliossa (LCHF) hiilihydraattien saantia korvataan hyvillä rasvoilla. LCHF-ruokavaliot (ketogeeninen ruokavalio ja Atkinsin dieetti) ovat suosittuja etenkin laihduttajien keskuudessa, sillä ne laihduttavat nopeasti ja tehokkaasti.

Vähän hiilihydraatteja sisältävässä ruokavaliossa elimistö opetetaan käyttämään energianlähteenä sekä ravinnosta saatua että rasvasoluihin varastoitua rasvaa, josta aineenvaihdunta valmistaa energiaravinteiksi kelpaavia ketoaineita.

Lääketieteellisesti suhtautuminen LCHF-dieetteihin on hyvin kaksijakoinen. Perinteisemmän rasvateorian mukaan rasvat ovat syypäitä lähes kaikkiin terveysongelmiin ja kaikkiin maailman muihinkin ongelmiin nälänhädästä Antti Rinteen hallitukseen.

Kasvavan tutkimusaineisto haastaa perinteiset ja fakkiutuneet opit rasvojen haitallisuudesta. Yleistä tieteellistä konsensusta rasvojen terveyshaitoista ja -hyödyistä ei kuitenkaan vallitse.


Miten noin niin kuin aikuisten oikeasti? Kannattaako ketoilu?


Täällä Ruokasodan ketonurkkauksessa haluan tarjota objektiivisen ja kattavan kuvan ketogeenisistä ruokavalioista, Atkinsin dieetistä ja muista pahamaineisista moraalia ja terveyttä turmelevista LCHF-ruokavalioista. Yritän tarjota terveellisiä LCHF-reseptejä ja vinkkejä ketoiluun. Katsotaan kuin tämä etenee.

Lähdin tähän seikkailuun 02.12.2019. Aiemmat kokemukseni vähähiilihydraattisesta ruokavaliosta olivat hyvin rohkaisevia, mutta niistä on jo vuosia. Sen jälkeen vyötärönympärys on harpannut kolme paitakokoa ja paino 20 kiloa. Tervetuloa mukaan!

Asetun itse ruokavalion keskiöön koekaniiniksi. Kommentoin ketonurkkauksessa viimeaikaista keskustelua ketogeeenisten ruokavalioiden ympärillä, tuoreita tutkimuksia ja uutisia sekä omia havaintojani. Lähtöpainoni on 92 kg ja vyötärölihavuus alkaa olla hengenvaarallisella tasolla. Lisäksi sairastan etenevää multippeliskleroosia, mikä vaikuttaa fyysiseen aktiivisuuteen sitomalla minut käytännössä tuoliin. Tavoitepainoni on 72 kg. Verenpaineeni ovat nyt riskirajoilla (keskimäärin 80-90 alapaine ja yläpaine 135-150 tasolla).

Vähän hiilihydraatteja, mutta runsaasti rasvaa ja proteiineja sisältävä ruokavalio ylläpitää kylläisyyden tunnetta hiilihydraatteja paremmin. Tämän seurauksena ravinnosta saatu kokonaisenergia yleensä laskee, mikä edistää laihtumista. Kaikissa ruokavalioissa on kuitenkin muistettava turvata välttämättömien ravintoaineiden saanti. Se on terveyden kannalta olennaista.

Laihtumisen lisäksi LCHF-dieetti auttaa ylläpitämään terveyttä, kuten European Journal of Clinical Nutrition kertoo katsauksessaan. Tuoreiden tutkimusten valossa LCHF-ruokavaliolla on suotuisia vaikutuksia

  • aikuistyypin diabetekseen
  • eräisiin syöpiin
  • munasarjojen monirakkulaoireyhtymään (PCOS)
  • Alzheimerin tautiin
  • sydämen terveydelle
  • etenevään multippeliskleroosiin

Varoituksen sana on paikallaan: tutkimukset ovat antaneet ristiriitaisia tuloksia LCHF-ruokavalioiden terveysvaikutuksista. Vähän hiilihydraatteja, kohtuullisesti proteiineja ja runsaasti rasvoja sisältävien ruokavalioiden pitkäaikaisvaikutuksia ei vielä tunneta.

Lääketieteellisessä Lancet-julkaisussa esitetyn tutkimuksen mukaan LCHF lisää kuolleisuutta kaikkiin syihin, mutta sama ilmiö toteutuu U-käyrän toisessa päässä; myös eniten hiilihydraatteja syövien kuolleisuus kasvaa saman tutkimuksen perusteella verrokkeihin nähden. Mistä tällainen voisi johtua?

On luultavaa ja jopa todennäköistä, että molemmissa ääripäissä ruokavalion yksipuolisuuden vuoksi syntyy puutoksia välttämättömistä ravintoaineista. Erään toisen tutkimuksen mukaan terveyden kannalta tärkeintä ei ole se, kuinka monta pizzaa tai hampurilaista syö, vaan se, että samalla saa kaikki välttämättömät ravintoaineet. Välttämättömien ravintoaineiden merkitystä terveydelle ei voi korostaa liikaa.

On jännä, että varsin monille LCHF-ruokavalio on punainen vaate, joka herättää suoranaista raivoa. Samanlainen vihainen asennoituminen on havaittavissa suhtautumisesta kasvisruokaan, lihan rajoittamiseen, vegaanisuuteen ja paleo-dieetin noudattamiseen. Yhteistä kaikille näille ruokavalioille on se, että niillä pyritään ylläpitämään terveyttä. Jonkin rajatun ruokavalion noudattaminen johtaa nopeasti paljon syvällisempään ravintoaineiden ja aineenvaihdunnan ymmärtämiseen, kuin mihin raivokkaimmat ruokavalioiden vastustajat koskaan yltävät. Miksi sortua trendikkäisiin ruokavalioihin, jotka muuttuvat nopeammin kuin muoti?

En halua asettaa ruokavalioita paremmuusjärjestykseen. Useimmat niistä painottavat välttämättömien ravintoaineiden saantia ja karsivat epäterveellisiä tai elimistön kannalta turhia ravintoaineita pois. On valtavasti tutkimusnäyttöä siitä, että esimerkiksi kasvisruokavaliot ja vegaanisuus ovat oikein noudatettuina hyvin terveellisiä.


Tärkeimmät syyt miettiä mitä suuhunsa laittaa ovat


Aikuistyypin diabetes

The International Diabetes Federation arvioi maailmanlaajuisesti aikuistyypin diabetekseen sairastuneiden määräksi yli 400 miljoonaa vuonna2015. Sairastuneiden määrä lisääntyy nopeasti.

Tutkimusten mukaan Yhdysvalloissa esidiabetesta sairastaa yksi kolmesta aikuisesta ja yhdeksän kymmenestä esidiabetesta sairastavasta ei tiedä olevansa sairas ennen kuin esidiabetes pahenee diabetekseksi. Pelkästään Yhdysvalloissa aikuistyypin diabetesta sairastavia on lähemmäksi 10 % väestöstä ja joka vuosi diagnosoidaan 1,4 miljoonaa uutta sairastunutta. Yhdysvalloissa diabeteksen hoitomenot olivat 245 miljardia dollaria vuonna 2012 ja kasvavat vuosittain.

Maailmanlaajuisesti diabetes aiheutti arviolta 1,5 miljoonaa ennenaikaista kuolemantapausta vuonna 2012. Sairastuneiden määrä, hoidon hinta ja kuolleisuus lisääntyvät joka vuosi.

Tyypin 2 diabetes on elintaso- ja elintapasairaus, johon vaikuttavat mm. lihavuus (erityisesti vyötärölihavuus), ikä, vähäinen liikunta ja huonot ravitsemustottumukset. Tutkimusten mukaan LCHF-ruokavaliot pienentävät sairastumisen riskiä ja vähentävät aikuistyypin diabetesta sairastavien lääkkeiden tarvetta. Esimerkiksi Ruotsissa LCHF on aikuistyypin diabeteksen hoidossa hyväksytty ruokavalio.


Lihavuus

Lihominen on maailmanlaajuinen ongelma. Se tappaa jo enemmän ihmisiä kuin aliravitsemus. Vuoden 1975 jälkeen lihavien määrä on kolminkertaistunut. Ylipainoisia aikuisia maailman väestöstä oli vuonna 2016 yli 1,9 miljardia. Näistä 650 miljoonaa eli 39 % oli lihavia. Alle 5-vuotiaista lapsista jopa 41 miljoonaa ja 5-19-vuotiaista 340 miljoonaa oli samana vuonna ylipainoisia tai lihavia. Luvut ovat käsittämättömiä. (WHO)

WHO:n mukaan ylipainoisia ovat ihmiset, joiden BMI (painoindeksi) on 25 tai suurempi. Lihavia ovat ihmiset, joiden BMI on 30 tai suurempi.

Lihavuus on lisääntynyt dramaattisesti. Lihavien ja ylipainosten osuus lapsista oli 4 % vuonna 1975. Nyt lapsista lähes viidennes (18 %) on ylipainoisia tai lihavia. Vuonna 1975 ylipainoisten ja lihavien 5-19-vuotiaiden osuus ikäryhmässä oli vain 1 %, vuonna 2016 saman ikäisten ylipainoisten ja lihavien osuus oli ikäryhmän tytöistä 6 % ja pojista 8 %.

Lihavuus kasvattaa mm. sydän- ja verisuonitautien, metabolisen oireyhtymän, aikuistyypin diabeteksen, syöpien, luunmurtumien ja erilaisten nivel- ja selkävaivojen sekä ennenaikaisen kuoleman riskiä.


Suolistotulehdukset (ärtyvän suolen oireyhtymä eli IBS)

Ärtyvän suolen oireyhtymä (IBS) vaivaa jopa 10-15 prosenttia maailman aikuisväestöstä. IBS ei sinänsä ole hengenvaarallinen sairaus, mutta sen vaikutukset elämänlaatuun ja terveydenhoidolliset kustannukset ovat merkittäviä. IBS on suurin sairauspoissaolopäivien syy tavallisen flunssan jälkeen.

Tulehdukselliset suolistosairaudet yleistyvät nopeasti. Suomessa myös paksusuolen syöpä lisääntyy, mutta lisääntymisen syytä ei tunneta.

Crohnin tauti ja haavainen paksusuolentulehdus ovat kroonisia suoliston tulehduksellisia sairauksia, jotka oireilevat mm. ripulina, verisenä ulosteena ja vatsakipuina. Molemmat edellyttävät perinnöllisen alttiuden sairastua, mutta sairastuminen käynnistyy usein jonkin infektion (kuten turistiripulin) tai stressin seurauksena. Riskitekijöitä ovat lisäksi runsaasti eläinperäistä proteiinia sisältävä ja rasvainen ruoka sekä D-vitamiinin puutos.

Ärtyvän suolen oireyhtymää sairastaa Suomessa jo noin 300 000 henkilöä ja esiintyvyys aikuisväestössä on 10 %. Diagnosoitujen keliakiatapausten ja tulehduksellisten suolistosairauksien esiintyvyys on 1 prosentin luokkaa molempien kohdalla.

Ärtyvän suolen oireyhtymän tavallisia oireita ovat: vatsan turvotus, vatsakipu sekä ummetus- ja ripulioireet. Oireiden taustalla voi olla mm.

Tavallista herkempi vatsan alueen kipuaistimus (alhainen kipukynnys)

  • Lisääntynyt kaasun tuotto paksusuolessa ja mahdollisesti ohutsuolessa
  • Häiriöitä suoliston mikrobitasapainossa
  • Matala-asteinen tulehdus suolessa
  • Suoliston voimakas ja kivulias supistelu tai suolen toiminnan laiskistuminen


    FODMAP-hiilihydraattien (fermentoituvien hiilihydraattien) rajoittaminen helpottaa viimeaikaisen tutkimusnäytön perusteella ärtyvän suolen oireyhtymää. FODMAP-hiilihydraatit ovat kasvikunnan tuotteissa esiintyviä huonosti ohutsuolessa imeytyviä kuitumaisia hiilihydraatteja. FODMAP-hiilihydraattien huono imeytyminen ohutsuolessa päästää näitä paksusuoleen, jossa ne fermentoituvat paksusuolen mikrobien vaikutuksesta. Fermentaatio on sinänsä aivan luonnollinen ja hyvä reaktio, mutta IBS-potilailla se aiheuttaa oireita.

    Laktoosi-intoleranteilla ihmisillä oireita aiheuttaa maitotuotteet. Ksylitoli, sorbitoli, laktitoli, maltitoli, mannitoli ja isomalti, luumut ja kivelliset hedelmät, omenat, sienet, raffinoosi, inuliini, vehnä, ruis, ohra, palkokasvit, sipulit, kaalikasvit ja vesimelonit, jogurtit ja fruktoosi selittävät oireita monilla ärtyvän suolen oireyhtymää sairastavilla.

Kesäkuussa 2009 Clinical Gastroenterology and Hepatology -lehdessä julkaistun tutkimusraportin mukaan hyvin vähän hiilihydraatteja sisältävä ruokavalio helpottaa ärtyvän suolen oireyhtymän oireita. On jonkin verran tieteellistä näyttöä siitä, että suolisto-oireet helpottavat LCHF-ruokavaliolla.

Alkoholista riippumaton rasvamaksa (NAFLD)

Alkoholista riippumaton rasvamaksa yleistyy nopeasti myös Suomessa. Maksan vähäinen rasvoittuminen ei välttämättä ole vaarallista, mutta se voi johtaa vakavampiin sairauksiin, kuten NASH (non-alcoholic steatohepatitis), jossa maksan rasvoittuminen assosioituu maksan tulehdukseen. Se voi johtaa maksan arpeutumiseen ja maksakirroosiin. Rasvamaksa ei välttämättä juuri oireile ennen kuin se pahenee maksatulehdukseksi.

NAFLD liittyy lihomiseen, metaboliseen oireyhtymään, esidiabetekseen ja aikuistyypin diabetekseen. Mikä maksan rasvoittumista aiheuttaa. Tästä vallitsee useita tieteellisesti perusteltuja näkemyksiä. Tutkimuksissa on havaittu, että vakavampaan NASH-tautiin vaikuttavat mm.

– Oksidatiivinen stressi
– Inflammaatio
– Maksasolujen nekroosi eli maksasolujen kuoleminen
– Rasvakudoksen inflammaatio
– Suoliston mikrobiomin epätasapaino (huono bakteerikanta)

Alkoholista riippumattoman rasvamaksan riskitekijöistä lihavuus on ylivoimainen ykkönen. Lihavista kahdella kolmanneksella on rasvoittunut maksa. Insuliiniresistenssi ja aikuistyypin diabetes sekä PCOS kasvattavat myös maksan rasvoittumisen riskiä.

Tehokkain tapa hoitaa rasvoittunutta maksaa on laihduttaminen. Myös lisättyjen sokereiden ja aivan erityisesti teollisen fruktoosisiirapin saannin vähentäminen päivittäisestä energiansaannista on järkevää, koska fruktoosin aineenvaihdunta tapahtuu maksassa ja pieni osa fruktoosista muutetaan aina triglyserideiksi maksassa.

Vähän hiilihydraatteja ja runsaasti rasvaa sisältävistä LCHF-ruokavalioista ja niiden terveysvaikutuksista voidaan toki olla montaa mieltä, mutta varmaa on se, että oheiset ravitsemukseen liittyvät epidemiana leviävät sairaudet eivät johdu siitä, että kourallinen ihmisiä rajoittaa hiilihydraatteja ja korvaa merkittävän osan päivän energiansaannista rasvoilla.

Jos LCHF ei paranna mainittuja sairauksia, on todennäköistä, että oksidatiivisen stressin ja inflammaation hillitseminen sekä laihtuminen helpottavat oheisten sairauksien oireita ja laskevat sairastumisriskiä LCHF-ruokavaliolla.

Nykyiset elintavat, energiatiheät ja ravitsemukseltaan köyhät ruoat sekä stressi ja jatkuva kiire ylläpitävät ja levittävät lihavuusepidemiaa, metabolista oireyhtymää, suolistosairauksia, diabetesta, rasvamaksaa jne. Siksi mikä tahansa ruokavalio kasvisruokavaliosta välimerelliseen tai LCHF-ruokavalioon sekä ymmärrys ravintoaineista ja aineenvaihdunnasta voi laskea sairastumisen riskiä ja ylläpitää terveyttä ja terveellistä painonhallintaa.

Joskus lääketieteessä tuntuu olevan vallalla ajatus, että jos auto liikkuu, ei autolla kannata ajaa ennen kuin tiedetään mihin sen liikkuminen perustuu. Tarvitaan siis lisää tutkimuksia. Se on hyvä asia. LCHF toimii ja sitä noudattavat ihmiset raportoivat jatkuvasti laihtumisesta ja terveyden kohenemisesta, mutta teoriassa sitä ei kannata noudattaa, koska vielä ei sataprosenttisesti ymmärretä, miksi se toimii. LCHF-ruokavalion pitkäaikaisvaikutuksista ei ole olemassa tutkittua tietoa ja siksi siihen suhtaudutaan vielä hyvin varovaisesti. Jokaisen on järkevää kuunnella ja seurata oman elimistönsä lähettämiä viestejä.

Ruokasotaa aloitellessani vuosia sitten uskoin, että jos kysyn oikeat kysymykset, löydän myös oikeat vastaukset. Nykyään olen paljon skeptisempi. Uskon, että ei ole oikeita kysymyksiä ja oikeita vastauksia. Kaikkiin lupauksiin, joita nettivideoissa ja kirjoituksissa annetaan, kannattaa suhtautua terveen skeptisesti.

Helppoja ja yleispäteviä vastauksia vaikeisiin kysymyksiin ei ole. LCHF ei ole ruokavalio, joka soveltuu kaikille tai parantaa kaikki vaivat. Se on tehokas laihdutusruokavalio, joka tutkimusten mukaan voi vähentää oksidatiivista stressiä ja inflammaatiota. Stanfordin yliopistossa tehdyn tutkimuksen mukaan sekä kaloreita rajoittamalla että runsaasti rasvaa sisältävällä ruokavaliolla laihtuu, mutta molemmissa tutkimusryhmissä esiintyi paljon vaihtelua seurattujen henkilöiden laihtumisen suhteen.

Kesäkurpitsanuudelit


Okei, miten aloitan?


Aineenvaihdunta on mutkikas järjestelmä. Ihmisten painonhallintaan vaikuttaa lukemattomia tekijöitä stressistä hormoneihin ja perinnölliseen lihomisalttiuteen. Jotkut eivät liho ja toiset keräävät varastorasvoja luokattoman helposti ja nopeasti. Toisaalta joillekin arkiliikunta ja tasapainoinen ruokavalio riittävät hyvän terveyden ylläpitoon, kun taas sairaalloisen lihavien laihtuminen vaikuttaa jo mahdottomalta.

Jörn Donner totesi, että lukeminen kannattaa aina. Hän oli oikeassa. Sama pätee laihduttamiseen ylipainoisilla. Laihtuminen parantaa terveyttä ja lisää terveitä elinvuosia. Se, miten ihminen laihtuu, on vähemmän tärkeää kuin se, että ihminen laihtuu. Tavallaan on ristiriitaista, että ihmisiä syyllistetään ja pelotellaan onnistumisesta, perustuu onnistuminen sitten vegaaniruokavalioon tai Atkinsin dieettiin. Jos ihmisen verenkuva, paino, verenpaine, verensokeri ja yleinen hyvinvointi kohenevat, onko sillä väliä, päästiinkö tulokseen LCHF-ruokavaliolla vai kasvisruokavaliolla.

Tärkeintä on, että ihminen saa ravinnostaan kaikki välttämättömät ravintoaineet. Laajemmin on havaittu, että vähemmän energiaa sisältävä ravinto (syödyistä makroravinteista riippumatta) ylläpitää terveyttä ja terveitä elinvuosia. Tämä johtunee sirtuiineista (histonideasetylaaseista). Esimerkiksi SIRT1 säätelee keskeisiä metabolisia prosesseja ja sillä on tärkeä merkitys aineenvaihdunnan säätelyssä.

SIRT1 säätelee mm. mitokondrioiden biogeneesiä sekä energia- ja rasvametaboliaa, oksidatiivista stressiä ja vaikuttaa esimerkiksi lihavuuteen ja diabetekseen. SIRT1 säätelee todennäköisesti tulehdusvaisteita ja kudosten atrofioitumista sitoutumalla NF-kB:en. SIRT2 vaikuttaa solunjakautumiseen.

Henkilöiden, jotka päättävät kohentaa terveyttä ja laihtua LCHF-ruokavalion avulla, on syytä syödä hiilihydraattirajoitteista riippumatta mahdollisimman monipuolisesti.

On jonkin verran tutkimusnäyttöä, jonka mukaan kasviperäisten proteiinien ja rasvojen saanti LCHF-ruokavaliossa ylläpitää terveyttä paremmin kuin eläinperäiset rasvat ja proteiinit. Ruokavalion sallimia kasviksia on hyvä syödä runsaasti. Niistä saa kuituja, antioksidantteja, polyfenoleita, vitamiineja, mineraaleja jne., joita elimistö tarvitsee. Rasva on LCHF-ruokavaliossa polttoaine, mutta keho tarvitsee myös aminohappoja, kuituja, vitamiineja jne.

Ensimmäinen ja kenties yksi tärkeimmistä ravintoon liittyvistä valinnoista koskee lisättyjen sokereiden, valkoisten jauhojen ja voimakkaasti raffinoitujen elintarvikkeiden välttämistä. Pelkästään tämä pieni muutos elämäntavoissa voi auttaa laihtumaan ja parantamaan yleistä hyvinvointia. Vaaleat leivät kannattaa korvata täysjyväviljoista leivottuihin leipiin, makeisista ja virvoitusjuomista on hyvä luopua kokonaan jne.

Minä en laske kaloreita tai hiilihydraatteja lainkaan. Tiedän suurin piirtein, mitä kasviksia voin syödä ja sen jälkeen seuraan vain omaa kylläisyyttäni. Luultavasti saan päivittäisestä energiastani nyt yli puolet rasvasta, 30 prosenttia proteiineista ja 10-20 % hiilihydraateista. Se ei aivan noudata ketogeenistä ruokavaliota tai Atkins-ruokavaliota, mutta toisaalta olen luopunut lisätyistä sokereista, runsaasti tärkkelystä sisältävistä perunoista ja riisistä sekä viljoista ja korvaan noiden rajoittamisen tuottaman energiavajeen rasvoilla.

Tämä on kolmas päivä ruokavaliomuutokseni jälkeen. Kaksi ateriaa päivässä on pitänyt minut kylläisenä ja energisenä kahtena ensimmäisenä päivänä. Olen syönyt lounasbrunssin puolen päivän tienoilla ja päivällisen 17-18 aikaan.

Molempien päivien ruoka on koostunut suuresta määrästä sallittuja kasviksia (tomaatit, kurkku, kaali, paprika, salaatti, kesäkurpitsa), rasvasta ja proteiinista (jauheliha, kana). Mitään välipaloja tms. ei ole tehnyt mieli. Yhtenä huomiona olen havainnut, että suoli on toimin poikkeuksellisen hyvin ja täsmällisesti. Se on ilahduttavaa, sillä minulla on ollut ärsyttäviä suolistovaivoja.

Eilinen ruoka (0.12.2019)

Heräsin viiden aikaan. Join aamun ja aamupäivän aikana 4 kupillista mustaa kahvia. En ole koskaan ollut aamupalan ystävä.

Nälkä tuli kello 11 ja 12 välillä, jolloin tein kanasalaattia lounaaksi. Salaattiin tuli jäävuorisalaattia, kurkkua, tomaatteja ja keitettyjä vihreitä papuja. Paistoin ja maustoin (pippurilla, suolalla ja chilillä) kanafileistä leikkaamani suikaleet runsaassa voissa. Tein majoneesin itse: 2 dl rypsiöljyä, muna, korkillinen etikkaa, 0,5 tl suolaa, 1 tl mustapippuria, 1 tl valkosipulijauhetta, 1 tl chilimurskaa öljyssä, 2 tl currya. Näin syntyy hyvin kiinteä majoneesi, jota pehmensin 1,5 desillä rasvaista maustamatonta turkkilaista jogurttia. Sekoitin ainekset keskenään ja hyvää tuli. Se oli lounas.

Iltapäivällä join melkoisesti vettä. Päivälliseksi tein ison täytetyn kesäkurpitsan, johon tuli täytteeksi mm. paistettua jauhelihaa, tomaattikastiketta ja runsas juustokuorrutus. Päivällisen jälkeen join vielä 4 kupillista teetä.

Ruokavalion noudattamisessa on tärkeää seurata ja kuunnella omaa elimistöä

LCHF sisältää useita koulukuntia ja erilaisia ravintohifistelijöitä mahtuu jokaiseen koulukuntaan ruokavalioista riippumatta. En pidä hifistelyä tarkoituksenmukaisena. Pääpiirteitten ollessa selvät henkilön tulee kuunnella omaa elimistöään, eikä jotain gurua. Hiilihydraattien määrä LCHF-ruokavaliossa lasketaan maksimissaan 50 grammaa päivätasolle, mutta mieluummin vieläkin alemmalle tasolle, jos tarkoituksena on ketoosiin pääsy.

Atkinsin ruokavalio

Atkinsin ruokavalio koostuu neljästä vaiheesta:

  • Vaihe 1: Hiilihydraattien määrä lasketaan 20 grammaan päivässä. Tämä jatkuu 2 viikkoa.
  • Vaihe 2: Päivittäiseen syömiseen lisätään pähkinöitä, vähäisiä määriä hedelmiä ja vähähiilihydraattisia vihanneksia.
  • Vaihe 3: Asetetun painotavoitteen lähestyessä hiilihydraattien saantia voidaan lisätä.
  • Vaihe 4: Ruokavalioon otetaan mukaan täysjyväviljoja ja muita terveellisiä hiilihydraatteja sen verran, että paino pysyy tasaisena.

The ketogeeninen ruokavalio

Ketogeeninen ruokavalio rajoittaa hiilihydraatteja merkittävästi ja tähtää ketoosiin, jossa elimistö alkaa tehokkaasti käyttää rasvoja solujen energian lähteenä.

Ketogeeniset ruokavaliot jakautuvat opillisten ja tavoitteellisten erojen puitteissa eräänlaisiin koulukuntiin. Tavallisesti tavoitteena on laskea päivittäinen hiilihydraattien saanti 5-10 prosenttiin päivittäisestä energiasta. Määrällisesti tämä tarkoittaa noin 20-50 grammaa hiilihydraatteja/päivässä.

Ruokavalion tavoitteena on ketoosi, joka on luonnollinen tila, kun elimistö ei saa riittävästi energiaa hiilihydraateista. Ketoosissa elimistö alkaa pilkkomaan varastoimiaan rasvahappoja ketoaineiksi, joita solut voivat hyödyntää energian tuotannossa. Ketoosia ei tule sekoittaa vaaralliseen happomyrkytykseen, ketoasidoosiin. Ketoasidoosissa veren ketoainepitoisuudet nousevat jopa kymmenkertaisiksi ketoosiin verrattuna.

Kanasalaatti


Hyvin suunniteltu on puoliksi tehty


Kaikki ruokavaliot edellyttävät hieman valmistelua ja suunnittelua. Ongelmia syntyy, jos ruokavalio yksipuolistuu liikaa. Silloin se ruokavalion noudattamisesta tulee vaikeaa ja laihduttaminen loppuu nopeasti alkuinnostuksen jälkeen. Siksi on tärkeää suunnitella ruokavaliota niin, että se sisältää vaihtelua, monipuolisia raaka-aineita ja tarjoaa kaikki tarvitut ravinteet.


Mitä söisin tänään?


LCHF-ruokavalioissa hiilihydraattien rajoittaminen rajoittaa syötävien ruokien määrää. Tämä voi tuottaa motivaatio-ongelmia.

Alkavan ketoilijan kauppalista

– Cashew-pähkinät (hyviä rasvoja ja proteiineja)
– Lihat (possu, nauta, kana, kalkkuna, lammas)
– Kalat (erityisesti rasvaiset lohi, sardiinit ja makrilli)
– Juustot
– Voi
– Avokadot
– Öljyt (oliivi-, kookos-, avokado- ja pellavansiemenöljy)
– Pähkinät (maapähkinät, mantelit, cashew-pähkinät)
– Siemenet (auringonkukan siemenet, chia ja pellavansiemenet)
– Munat
– Pinaatti ja muut tummanvihreät lehtivihannekset
– Marjat (mustikat, mustaviinimarjat, mansikat )
– Parsakaali
– Kukkakaali
– Valkokaali
– Ruusukaali
– Parsa
– Kesäkurpitsa
– Tomaatit
– Paprika
– Myskikurpitsa
– Juomaksi (vesi, kahvi, tee)

Seuraavia voi ketogeenisella ruokavaliolla syödä hieman ruokavalion tavoitteista riippuen:

– Porkkanat (vähän)
– Punajuuret (vähän)
– Omena, vesimeloni tai persikka (vähän)
– Kvinoa (vähän)
– Bataatti (vähän)
– Pavut ja palkokasvit (vähän)
– Kauraa (vähän)
– Täysjyviä (vähän)

Rajoitettavia ruokia ovat

Kaikilla LCHF-ruokavalioilla rajoitetaan hiilihydraatteja ja aivan erityisesti puhtaita sokereita ja runsaasti tärkkelystä sisältäviä kasviksia, kuten perunoita ja riisiä. Ruokavalio ei suosittele virvoitusjuomia, mehuja, kakkuja, leivoksia, makeisia, fruktoosisiirapilla tai millään teollisilla makeutusaineilla makeutettuja raffinoituja elintarvikkeita tai alkoholisokereita. Muita rajoitettavia ovat:

  • valkoinen pasta
  • valkoinen riisi
  • leipä, sämpylät ja patongit
  • leivonnaiset, pullat, muffinssit jne.
  • makeiset
  • virvoitusjuomat, mehut
  • olut
  • dieettijuomat ja yleensäkin dieetti-mitkä tahansa
  • vähärasvaiset elintarvikkeet, sillä niissä rasvat on korvattu sokereilla

Kaikkia hiilihydraatti- ja tärkkelyspitoisia ruokia ei ole pakko poistaa ruokalistalta. LCHF-ruokavaliota voi noudattaa, jos siihen sisältyy rajoitetusti papuja ja muita palkokasveja sekä täysjyväviljoja. Niiden määrien tulisi olla vähäisiä, eikä niitä suositella päivittäiseen ruokavalioon.

Ja lopuksi

LCHF-ruokavaliot vaikuttavat eri ihmisiin eri tavoin. Korostan jälleen, että välttämättömien ravintoaineiden saannista tulee huolehtia, vettä tulee juoda riittävästi ja elimistöä pitää kuunnella. LCHF-ruokavaliot voivat aiheuttaa (ainakin kuurin alkuvaiheessa)

  • väsymystä ja heikkoutta
  • kramppeja
  • päänsärkyä
  • ummetusta tai ripulia
  • kutinaa
  • pahanhajuisen hengityksen

Kun elimistö sopeutuu ruokavalion muutoksiin, sivuoireet vähenevät ja katoavat. Tsemppiä ja hyvää terveyttä kaikille, jotka tämän tien valitsevat. Omat kokemukseni olivat ja ovat rohkaisevia, mutta nähtäväksi jää. Oli LCHF-ruokavalio terveellinen tai ei, se ei ainakaan voi olla huonompi vaihtoehto kuin ravinneköyhien ja energiatiheiden transrasvoja runsaasti sisältävien eines- ja pikaruokien, makeisten ja makeiden virvoitusjuomien ahmiminen pitkin päivää.

Kuvat: Pixabay




Ketogeeninen ruokavalio ja MS

Noudatin vähähiilihydraattista ruokavaliota vuosia sitten. Kokeilu jäi vain vajaan vuoden mittaiseksi, mutta kokemukseni olivat sekä painonhallinnan että yleisen hyvinvoinnin kannalta rohkaisevia. Oloni oli erinomaisen hyvä ja painoni laski.

Ruokavalion noudattaminen kaatui jouluherkkuihin. Noiden aikojen jälkeen olen lihonut 20 kiloa ja rasvaa on kerääntynyt erityisesti keskivartalolle haitallisena viskeraalisena läskinä. On aika tehdä jotain.

Ketogeeninen ruokavalio ja MS selvittää vähän hiilihydraatteja ja runsaasti rasvaa sisältävän ruokavalion vaikutuksia etenevää MS-tautia sairastavan terveyteen. 

Ketogeeninen ruokavalio herättää voimakkaita tunteita. Monien on yhä vaikea hyväksyä sitä, että syöty rasva voi laihduttaa. Ketogeeninen ruokavalio kuitenkin toimii mainiosti laihdutusruokavaliona.

MS on siinä mielessä viheliäinen sairaus, että se vaikuttaa vääjäämättä fyysiseen aktiivisuuteen. Painoa alkaa kertyä huomaamatta. Minä olen nauttinut invaliditeetin tuomasta joutenolosta syömällä epäterveellisesti ja juomalla pikkukylän vuosittaista vedenkulutusta vastaavan määrän olutta. Siinäpä tekosyyt.

Mitä ketogeenisella ruokavaliolla tarkoitetaan?

Ketogeeninen dieetti on vähähiilihydraattinen ja runsaasti rasvaa sisältävä ruokavalio. Proteiinien määrä pidetään ruokavaliossa maltillisena.

Evidenssiä tämän ruokavalion hyödyistä laihdutusruokavaliona on runsaasti. Sen sijaan näyttö siitä, että ketogeeninen ruokavalio helpottaisi etenevän multippeliskleroosin oireita, on vähäistä.

Laihtumisella ja elimistön hiljaisen tulehduksen – inflammaation – hillitsemisellä on terveyttä edistäviä vaikutuksia. En usko, että ruokavalio tekee ihmeitä sairaudelleni, mutta toivon laihtuvani sen avulla.

Ruokavaliossa hiilihydraattien, kuten tärkkelyksen ja sokereiden määrää rajoitetaan. Tämä tarkoittaa, että monet yleiset ruoka-aineet, kuten perunat, pastat, riisi, leivät ja hedelmät ovat rajoitettavien ravintoaineiden listalla.

Lihakasvis-vartaat

Ruokavalion puolestapuhujat korostavat, että ketogeeninen ruokavalio voi auttaa laihtumaan ja hillitsemään keskushermostoa degeneroivia tulehdusreaktioita.

Ketogeenisen aineenvaihdunnan perusteet ja toivotut hyödyt

Ketogeeninen ruokavalio voi mahdollisesti hillitä multippeliskleroosin oireita. Mihin ruokavalio ja tällaiset väitteet perustuvat?

Ketogeenisen ruokavalion tarkoituksena on ohjata solujen energia-aineenvaihdunta sokeripolttoisesta rasvapolttoiseksi. Kehon energiantuotantoa säätelee monet hormonit ja entsyymit, joista ketogeenisen ruokavalion kannalta mielenkiintoisimpia ovat insuliini ja glukagoni.
Ketogeeninen ruokavalio perustuu pitkälti juuri insuliinin ja glukagonin toiminnan ymmärtämiseen ja hyödyntämiseen.

Solujen energiantuotanto

Solut rakastavat glukoosia, sillä se on helppo ja nopea energianlähde. Ruoansulatuskanavassa hiilihydraatit, kuten tärkkelystä sisältävät perunat ja riisi, pilkotaan sokereiksi ja muiksi ravinteiksi. Glukoosi kulkee ohutsuolen endoteelin läpi verenkiertoon eräiden glut-molekyylien kuljettamana ja kohottaa verensokeria.

Haima reagoi sokeripitoisuuden lisääntymiseen erittämällä vereen insuliinia. Insuliinimolekyylit kiinnittyvät solujen insuliinireseptoreihin, jolloin solun sisältämät solukalvon läpäisevät glukoosia kuljettavat kanavat tulevat solukalvolle. Näiden avulla glukoosi pääsee soluun.

Solun sytoplasmassa käynnistyy glykolyysi, jossa glukoosimolekyyli pilkotaan kahdeksi pyruvaatiksi. Reaktiossa syntyy myös kaksi korkeaenergistä ATP-molekyyliä ja kuusi vetyionia kumpaakin pyruvaattia kohden. Syntyneet 12 protonia pelkistävät NAD+ ja NADP+ (dyhydronikotiiniamidi-adeniini-dikuleotidi -fosfatti) ionit.

NADH ja NADPH molekyylit siirtävät protonit elektronisiirtoketjun käyttöön, jos happea on riittävästi soluhengityksen käynnistämiseen. Anaerobinen (hapeton) energiantuotanto loppuu siihen, että pyruvaatit pelkistyvät laktaatiksi.

Sitruunahappokierto
Kuvan lähde: Wikipedia

Aerobinen (hapellinen) energiantuotanto jatkuu soluhengityksenä sitruunahappokierrossa sellaisissa soluissa, joilla on käytettävänään happea ja mitokondrioita. Sitruunahappokierto (Krebsin sykli, trikarboksyylihappokierto (TCA-kierto)) käynnistyy sitraattisyntaasientsyymin katalysoidessa sitraatin muodostumista oksaaliasetaatista ja asetyylikoentsyymi-A:sta.  

Sitraatista kierto etenee isositraattiin, siitä alfa-ketoglutaraattiin, edelleen sukkinyyli-koentsyymi-A:han, sitten sukkinaattiin, edelleen fumaraattiin, sitten malaattiin, kunnes kierto palaa oksaaliasetaattiin. Tuloksena asetyyliryhmä on hapetettu täydellisesti hiilidioksidiksi ja kolme NADH:ta, yksi FADH2 ja yksi GTP on tuotettu. Ketoilijoiden kannalta oleellista on, että rasva muutetaan sitruunahappokierron väliaineeksi – asetyylikoentsyymi-A:ksi.

Ennen kuin hiilihydraatit ja rasvat voivat tulla mukaan sitruunahappokiertoon, solussa tapahtuvien muiden prosessien on muutettava ne sopivaan muotoon asetyyliryhmäksi, joka sitoutuu koentsyymi-A:n kanssa aktiiviseksi etikkahapoksi eli asetyylikoentsyymi-A:ksi.

 Mitokondrioissa tapahtuvassa sitruunahappokierrossa syntyy vielä parikymmentä korkeaenergistä ATP-molekyyliä ja protoneja elektroninsiirtoketjuun. Soluhengityksen lopputuotteena on vettä ja hiilidioksidia, jotka poistuvat ihon ja hengityksen kautta. Sokerit ja rasvat siis palavat solujen mitokondrioissa vedeksi ja hiilidioksidiksi. Glukoosi kelpaa sellaisenaan solujen energiantuotantoon. Rasvat ja proteiinit on ensin muokattava asetyylikoentsyymi-A:ksi ja sokerit glukoosiksi.

Kun elimistö pakotetaan hyödyntämään rasvasoluihin varastoitua rasvaa energianlähteenä, läskin palaminen tehostuu huomattavasti.

Kaikki sokerit eivät kelpaa suoraan energiantuotantoon, vaan ne pitää ensin muuttaa glukoosiksi ja glykogeeneiksi, jotka muodostuvat jopa kymmenistä tuhansista yksittäisistä glukoosimolekyyleistä. Ravinnosta saatavan fruktoosin aineenvaihdunta eli fruktolyysi tapahtuu maksassa. Suurin osa fruktoosista syntetisoidaan glykogeeneiksi maksan nopeisiin sokerivarastoihin. Osa fruktoosista muutetaan maksassa glukoosiksi, joka vapautuu verenkiertoon ja ravitsee solujen energiantarvetta. Pari prosenttia fruktoosista muutetaan maksassa suoraan triglyserideiksi eli varastorasvaksi. Fruktoosin aineenvaihdunta rasittaa ja voi pahimmillaan rasvoittaa maksaa. Ilmeisesti epidemiaksi äitynyt alkoholista riippumaton rasvamaksa palautuu väestön ylettömään sokerin kulutukseen.

Jos veressä on liikaa glukoosia solujen ravinteiksi sekä lihasten ja maksan glykogeenivarastoihin, aineenvaihdunta alkaa muuttaa sokereita triglyserideiksi eli varastorasvaksi de novo lipogeneesissa. Insuliini osallistuu myös rasvanhappojen varastoimiseen rasvasoluihin. Tähän perustuu sokereiden lihottava vaikutus.

Kun veren sokeripitoisuus laskee, haima erittää vereen glukagonia. Glukagoni on insuliinin vastavaikuttaja ja sillä on monia tärkeitä tehtäviä aineenvaihdunnan säätelyssä.

1. Glukagoni purkaa maksan glykogeenivarastoja glukoosiksi verenkiertoon solujen energiantuotannon turvaamiseksi ja lihasten glykogeenivarastoja lihasten energiantuotantoon.

2. Glukagonin vaikutuksesta rasvasoluihin varastoituja triglyseridejä vapautuu verenkiertoon. Maksassa ja munuaisissa käynnistyvät ketogeneesi ja glukoneogeneesi. Ne valmistavat verenkiertoon vapautuneista vapaista rasvahapoista yms. aineista solujen energiantuotantoon kelpaavia ketoaineita ja glukoosia. Glukoneogeneesi syntetisoi mm. vapaista aminohapoista ja sitruunahappokierron välituotteista glukoosia.

Verensokerin kohotessa insuliini keskeyttää ketogeneesin ja glukoneogeneesin.

3. Rasvahappojen beetaoksidaatio käynnistyy

Beetaoksidaatiossa rasvahappoketjusta muodostetaan ketohappoja siten, että kolmanteen hiileen liittyy ketoryhmä. Sen edellä oleva kahden hiilen mittainen ketju karboksyyliryhmineen irrotetaan muodostamaan asetyylikoentsyymi-A-molekyyli ja jäljellä oleva hiiliketju aloittaa ketohappojen muodostamisen alusta, kunnes ketju on pilkottu loppuun. Rasvahapon kohta, johon ketoryhmä muodostuu, joutuu ensin luovuttamaan 2 protonia, jotka NAD+ molekyylit siirtävät elektronisiirtoketjulle.

Ketogeenisessä ruokavaliossa elimistö alkaa aktiivisesti muuttaa varastoimiaan rasvoja energiaksi kelpaavaan muotoon, koska soluille ei tarjota helppoa ja nopeaa glukoosia energianlähteeksi. Keho siis pakotetaan polttamaan rasvaa. Tästä ketoosissa ja ketogeenisessä ruokavaliossa on kyse.

Aineenvaihduntaprosessi on täysin luonnollinen. Elimistö osaa käyttää rasvaa polttoaineena, mutta koska solut on lapsuudesta lähtien tehokkaasti opetettu käyttämään polttoaineena sokeria, rasvavarastoja ei juurikaan pureta; lihominen jatkuu niin kauan kuin tarjolla on helppoja hiilihydraatteja ja veren insuliinipitoisuus säilyy korkeana. Elimistö alkaa purkaa rasvavarastoja, kun sille ei tarjota helppoa energiaa. Tavallaan kaloreita merkittävästi rajoittamalla päädytään samaan tilanteeseen, jossa kehon on turvauduttava varastoenergiaan.


Ketoosin hyödyt

Elimistö menee ketoosiin, kun veren sokeripitoisuus ja sen seurauksena insuliinipitoisuus ovat matalat. Varsinainen ketoaineita tuottava ketoosi käynnistyy muutamassa vuorokaudessa, jos hiilihydraattien saantia rajoitetaan 20-50 grammaan vuorokaudessa. Kehon varastoimien rasvojen tehokas käyttö energianlähteenä alkaa noin kolmessa viikossa edellyttäen, että hiilihydraattien saanti pysyy hyvin matalana. Ketoosissa:

  • paino laskee ja elimistö käyttää tehokkaasti varastorasvoja energianlähteenä
  • muuttunut aineenvaihdunta suojaa soluja
  • inflammaatio ja hapetus-pelkistysreaktion epätasapainon seurauksena syntyneet happiradikaalit vähenevät ja antioksidatiiviset prosessit tehostuvat
  • stressihormonien määrä elimistössä ja stressitasot laskevat


Ketogeeninen ruokavalio ja MS

Eräs ketogeeniseen ruokavalioon liitetty vaikutus on se, että se suojelee elimistöä solutasolla vaikuttamalla hapetusstressiin (oksidatiivinen stressi). Verensokerin nousu assosioituu oksidatiiviseen stressiin ja se ylläpitää inflammaatiota.  

Lihavilla myös ylimääräinen rasvakudos ylläpitää elimistön tulehdustilaa, koska rasvakudos erittää erilaisia tulehdussytokiineja eli tulehdusta välittäviä aineita. Laihduttaminen vähentää tällaista inflammaatiota ja tehokas laihtuminen voi laskea tulehdusarvoja (CRP) merkittävästi ja siten parantaa yleistä terveyttä.  

Mitä tutkimukset sanovat?

Saksalaisen 2015 toteutetun seurantatutkimuksen perusteella ketogeeninen ruokavalio parantaa multippeliskleroosia sairastavien elämänlaatua. Tutkimuksen miinuksena on, että se oli hyvin pienimuotoinen (60 osallistujaa) ja kesti vain puoli vuotta.

Saman vuoden aikana ilmestynyt tutkimusraportti löysi viitteitä siitä, että ketogeeninen ruokavalio suojaa etenevää multippeliskleroosia sairastavien keskushermostoa etenevään multippeliskleroosiin assosioituvilta neurodegeneratiivisilta tuhoilta.

”Until recently, multiple sclerosis has been viewed as an entirely inflammatory disease without acknowledgment of the significant neurodegenerative component responsible for disease progression and disability. This perspective is being challenged by observations of a dissociation between inflammation and neurodegeneration where the neurodegenerative component may play a more significant role in disease progression. In this review, we explore the relationship between mitochondrial dysfunction and neurodegeneration in multiple sclerosis. We review evidence that the ketogenic diet can improve mitochondrial function and discuss the potential of the ketogenic diet in treating progressive multiple sclerosis for which no treatment currently exists.” Lue tutkimus
tästä.

Ketogeeninen ruokavalio näyttää hyödyttävän multippeliskleroosia sairastavia solutasolla. Se vähentää oksidatiivista stressiä ja lisää veren antioksidanttitasoja. Tämä suojaa hermo- ja aivosoluja neurodegeneraatiolta. Vastaavia havaintoja on tehty dementian ja Alzheimerin taudin kohdalla; ketogeeninen ruokavalio on tutkimuksissa liitetty pienempään muistisairauksien riskiin.

Oksidatiivinen stressi ja antioksidantit

Oksidatiivinen stressi tarkoittaa solujen ja laajemmin koko elimistön hapetus-pelkistystilan epätasapainoa. Käytännössä hapettavien tekijöiden liiallinen määrä ja antioksidatiivisten järjestelmien vajavainen toiminta välittyy reaktiivisten happi- ja typpiradikaalien kautta, mikä ylläpitää elimistön inflammaatiota.

Verensokeri vaikuttaa oksidatiiviseen stressiin ja inflammaatioon sitä enemmän, mitä korkeammalle verensokeri nousee ja mitä suuremmasta syödystä hiilihydraattimäärästä on kyse. Suuren glykeemisen kuorman sisältävät ruoka-annokset nostavat verensokeria rajusti. Oksidatiivisen stressin aiheuttamia tulehdusta lisääviä vaikutuksia voi vähentää tulehdusta jarruttavilla tekijöillä: polyfenoleilla, C-vitamiinilla, kanelilla ja etikalla, kuiduilla ja rasvalla.

Miten se toimii?

Reaktiivinen happiradikaali sisältää parittoman elektronin ja on siksi hyvin reaktiivinen. Energiataloudellisesti parittomat elektronit ovat epäedullisia ja siksi yhdiste pyrkii parilliseen elektronimäärään reagoimalla läheisyydessä olevien muiden yhdisteiden kanssa. Happiradikaali vaurioittaa kohtaamiaan molekyylejä. Tämä voi ilmetä eri tavoin:

Lipidiperoksidaatiossa rasvat härskiintyvät. Oksidatiivisessa stressissä rasvat hapettuvat happiradikaalien liiallisen määrän vuoksi ja seurauksena voi olla esimerkiksi rasvakalvojen virheellinen toiminta, joka vaikuttaa hormonien ja muiden viestiaineiden aikaansaamien signaalien välittymisessä solukalvon kautta soluun.
– Proteiinien vauriot. Proteiinit toimivat entsyymikatalyytteina, jotka mahdollistavat elintoiminnoille välttämättömät kemialliset reaktiot. Jotkin proteiinit toimivat reseptoreina, jotka vastaanottavat soluun tulevia kemiallisia viestejä. Happiradikaalien vaikutukset proteiineihin voivat aiheuttaa monenlaisia elintoimintojen häiriöitä.
– Myös DNA voi vaurioitua hapettumisen seurauksena. Tämä aiheuttaa geneettisiä vaurioita eli mutaatioita DNA:n emäsjärjestyksissä. Tällaiset muutokset voivat muuttaa ko. aluetta koodinaan käyttävän proteiinin rakennetta ja edelleen pysyvästi solun toimintaa, minkä seurauksena solut saattavat muuttua pahanlaatuisiksi. Se altistaa syövän kehittymiselle.  

Happiradikaaleja syntyy elimistön normaalin toiminnan seurauksena esimerkiksi ruokailun jälkeen ja soluhengityksessä, kun mitokondrioiden elektroninsiirtoketju käyttää happea energiantuotannossa. Happiradikaalien muodostuminen on osa perusaineenvaihduntaa, mutta niiden määrää rajoittaa elimistön omat antioksidatiiviset järjestelmät. Hapetus-pelkistystiloissa tapahtuvat muutokset ovat osa solujen välistä viestintämekanismia (redox signaling). Keho voi hyödyntää happiradikaaleja myös immuunijärjestelmän osana. Luontainen immuniteetti ja siihen liittyvät fagosytoivat solut tuhoavat elimistölle vieraita mikrobeja tuottamalla happiradikaaleja.

Elimistöllä on omia mekanismeja reaktiivisten happiradikaalien määrän rajoittamiseen. Näistä tärkeimpiä ovat happiradikaaleja vaarattomiksi molekyyleiksi muuttavat entsyymit, kuten superoksididismutaasi, katalaasi ja glutationiperoksidaasi.  Ravinnosta saatavat pienimolekyyliset antioksidantit pystyvät myös inaktivoimaan happiradikaaleja. Antioksidantteihin kuuluu eräitä vitamiineja ja flavonoideja. Tutuimpia ovat C- ja E-vitamiinit.

Liiallinen oksidatiivinen stressi voi johtaa solukuolemaan ja kudostuhoon. Inflammaatio on kaikkien kroonisten sairauksien riskitekijä.

Tässä on syytä painottaa sitä, että kovin paljon tutkimustietoa ketogeenisen ruokavalion hyödyistä multippeliskleroosia sairastavien oireiden helpottajana ei ole. Havaitut hyödyt on todennettu lähinnä eläinkokeissa ja pitkäaikaisvaikutuksista ei ole tietoa. Toisaalta tutkimusten tulokset ovat hyvin rohkaisevia.

Huomioitavaa

Ketogeenisen ruokavalion noudattaminen voi aiheuttaa multippeliskleroosia sairastavilla väsymystä (fatiikkia). Omalla kohdallani en sellaista huomannut, mutta multippeliskleroosi vaikuttaa eri ihmisiin eri tavoin, joten varoituksen sana on paikallaan.

Usein vähän hiilihydraatteja sisältävää ruokavaliota noudattavia varoitetaan kuitujen ja välttämättömien ravintoaineiden mahdollisista puutoksista hiilihydraattirajoitteiden seurauksena. Se voi olla yksipuolisella ketogeenisella dieetillä ongelma, mutta myös vähän hiilihydraatteja sisältävällä ruokavaliolla saa kaikki välttämättömät ravintoaineet ja riittävästi kuituja, jos ruokavalio on riittävän monipuolinen.

Mitä pitäisi vältellä

Ketoosi edellyttää hiilihydraattien tuntuvaa rajoittamista päivittäisessä ruokavaliossa ja hiilihydraattien korvaamista rasvalla ja proteiineilla. Välteltäviä ravintoaineita ovat erityisesti sokerit ja tärkkelys, jauhot ja niistä valmistetut ruoat sekä riisi, peruna, maissi ja hedelmät.

Rasvat

Hyväksyttyihin ravintoaineisiin kuuluvat hyvät rasvat ja proteiinit sekä vähän hiilihydraatteja sisältävät kasvikset ja pähkinät. Voi kuuluu monissa virallisissa ravintosuosituksissa vältettäviin epäterveellisiin rasvoihin, mutta minä suhtaudun voihin äärimmäisen myönteisesti. Sen sijaan margariineja en mielelläni syö. Voin terveysvaikutuksista vallitsee kaksi koulukuntaa: klassinen rasvavastainen koulukunta ja uusimpiin tutkimuksiin perustuva modernimpi lähestymistapa. Jokainen tehköön valintansa itse. Yhtä totuutta voin terveysvaikutuksista ei ole olemassa.

  • oliiviöljy
  • voi (tai ei, jos syö mieluummin voimakkaasti raffinoituja margariineja)
  • avokadot
  • pähkinät, mantelit, pistaasit
  • rasvaiset kalat, kuten lohi, sardiinit ja makrilli

Proteiinit

Ketogeeniseen ruokavalioon voi sisältyä sekä eläin- että kasvisperäisiä proteiineja.

  • liha
  • meijerituotteet (juustot yms.)
  • munat
  • pähkinät, maapähkinät ja cashew-pähkinät

Hiilihydraatit

Ketogeenisella ruokavaliolla rajoitetaan erityisesti seuraavien hiilihydraattien saantia:

  • sokerit
  • hedelmämehut, virvoitusjuomat ja makeutetut teet
  • makeiset ja leivonnaiset
  • maitoa, sillä se sisältää maitosokeria eli laktoosia
  • pasta
  • leipä
  • pavut
  • hedelmät
  • murot, puurot yms.
  • tärkkelyspitoiset vihannekset, kuten perunat ja maissi

Esimerkki päivän ruoista ketogeenisella ruokavaliolla

Aamiainen

  • pari paistettua munaa
  • pekonia
  • kahvia

Välipala

  • puolikas avokado, kourallinen pähkinöitä

Lounas

  • viipaloitua kurpitsaa
  • lihapullia ja tomaattikastiketta

Välipala

  • manteleita

Päivällinen

  • paistettua lohta
  • kukkakaalia ja voita
  • pinaattia

Tuo on vain eräs esimerkki päivittäisen ruokavalion sisällöstä. Tulen lisäämään tänne ketonurkkaukseen erilaisia hyviksi koettuja reseptejä sekä muuta aihetta sivuavaa infoa.  

Lopuksi

En voi sietää sanaa ”karppaaminen”. Siinä on jotenkin negatiivinen sointi. Lisäksi se kuulostaa pikemminkin hiilihydraattien syömiseltä kuin niiden rajoittamiselta. Käytän itse ketoilu-sanaa vähän hiilihydraatteja ja runsaasti rasvaa sisältävästä ruokavaliosta.

 Aloitin ketoilun eilen 2.12.2019. Söin päivän aikana kaksi ateriaa. Brunssi-lounaalla naudan jauhelihapihvin, runsaasti paistettua valkosipulilla ja chilillä maustettua kaali-paprika-sekoitusta ja juustoraastetta. Päivällisellä 3 paistettua munaa, kaali-paprikasekoituksen jämät ja paistetun naudan jauhelihapihvin. Pysyin kylläisenä, enkä kaivannut välipaloja tai iltapalaa.

Aloitan tulevien viikkojen aikana kokoamaan Ruokasotaan erityistä Ketonurkkausta, jossa kerron ketoiluun liittyvistä tutkimuksista, omista havainnoistani ja hyvistä resepteistä.

 




Atkinsin dieetti

Atkinsin dieetti on tunnetuin pysyvään laihtumiseen tähtäävä vähähiilihydraattinen ruokavalio.

Atkinsin mukaan insuliinilla on tärkeä rooli rasvan varastoimisessa ja rasvakudoksen rakentamisessa. Atkinsin dieetin tavoitteena on hiilihydraatteja rajoittamalla laskea haiman erittämän insuliinin määrää verenkierrossa, mikä Atkinsin mukaan vähentää rasvan varastoitumista rasvakudokseen, tehostaa varastoidun rasvan ”polttamista” energiaksi ja auttaa laihtumaan.

Amerikkalainen kardiologi Robert Atkins laati Atkinsin dieetin 1970-luvun alussa. Ruokavalio on kehittynyt vuosikymmenten saatossa. Nykyisin Atkinsin dieetti kehottaa täydentämään liha- ja rasva-painotteisen ruokavalion laihduttavia vaikutuksia runsaskuituisilla, vähän tärkkelystä sisältävillä kasviksilla ja liikunnalla.

Kahden viikon vähähiilihydraattisen induktiovaiheen tavoitteena on käynnistää ketoosi. Induktion jälkeen hiilihydraattien määrää lisätään varovasti jatkuvan laihtumisen, esiylläpidon- ja ylläpidon vaiheiden aikana, kunnes ihannepaino saavutetaan.


Atkinsin dieetti ja aineenvaihdunta


Ketoosi on aineenvaihdunnan tila, joka käynnistyy, kun ravinnosta saatavien hiilihydraattien määrä ei riitä täyttämään elimistön energiantarvetta. Hiilihydraateista saatava glukoosi on elimistön ensisijainen ”polttoaine”, mutta aineenvaihdunta osaa tuottaa tarvitsemansa energian myös rasvasta ja proteiineista. Kun glukoosi ei täytä energiantarvetta, aineenvaihdunta aloittaa energiantuotannon rasvoista.

Kun veren insuliinipitoisuus laskee, haiman erittämän glukagonin määrä veressä lisääntyy. Glukagoni käynnistää maksaan ja lihaksiin varastoitujen glykogeenien purkamisen vereen glukoosi- eli sokerimolekyyleiksi. Glukagonin vaikutuksesta maksassa ja munuaisisten kuoriosissa alkaa glukoneogeneesi ja ketogeneesi sekä rasvahappojen hiiliä asetyylikoentsyymi-A:ksi hapettavan β-oksidaatio.

Ketoosissa vapaista rasvahapoista muodostetaan ketoaineita, joita solut voivat käyttää energiantuotantoon.

Ketoosin aikana rasvasoluista vapautuu rasvahappoja verenkiertoon. jolloin aineenvaihdunta alkaa hyödyntää vapaita rasvahappoja energianlähteenä.

Ketoosi ja varastorasvojen hyödyntäminen

Glukoneogeneesin käynnistyessä elimistö alkaa muodostaa glukoosia vapaista aminohapoista, rasvojen glyseroliosista ja maitohaposta. Glukoneogeneesin rinnalla käynnistyy ketogeneesi.

Ketogeneesi vähentää glukoosin tuottamisen tarvetta, mikä säästää vapaita aminohappoja solujen uusiutumiseen.

Ketogeneesi muodostaa verenkierron vapaista rasvahapoista ketoaineita (asetoasetaatti, beeta-hydroksibutyraatti), joita useimmat solut pystyvät käyttämään energianlähteenä palauttaen ketoaineet asetyylikoentsyymi-A:ksi, joka on suoraan käytettävissä oksidatiiviseen energiantuotantoon sitruunahappokierron kautta mitokondrioissa samaan tapaan kuin glukoosi.

Insuliini

Insuliini, jolla on keskeinen merkitys Atkinsin ajattelussa, on ihmiselle elintärkeä sokeriaineenvaihduntaa säätelevä hormoni, jota erittyy haiman Langerhansin saarekkeiden β-soluista, kun hiilihydraateista ohutsuolesta verenkiertoon imeytyvä sokeri (glukoosi) nostaa veren sokeripitoisuutta.

Vereen erittyneet insuliinimolekyylit kiinnittyvät solujen insuliinireseptoreihin, mikä saa solussa olevat solukalvon läpäisevät glukoosinsiirtäjäproteiinit siirtymään solukalvolle. Näiden avulla glukoosimolekyylit pääsevät verestä solun sisälle.

Solussa glukoosimolekyylit osallistuvat energiantuotantoon glykolyysissä ja sitruunahappokierrossa. Ylimääräinen glukoosi varastoidaan lihasten ja maksan glykogeeneihin ja / tai muutetaan rasvasynteesin avulla varastorasvaksi.

Veren sokeripitoisuuden kasvu lisää insuliinin eritystä. Verensokerin lasku puolestaan aktivoi haimaa erittämään glukagonia, jonka vaikutuksesta maksan ja lihassolujen glykogeenejä puretaan glukoosimolekyyleiksi. Kun glykogeenivarastot tyhjentyvät, elimistö siirtyy ketoosiin ja alkaa tuottaa energianlähteiksi kelpaavia ketoaineita mm. rasvahapoista.

Insuliinireseptori

Insuliinireseptorin tehtävä on ohjata veren sokeria siirtävät proteiinit kuten SLC2A4 solukalvolle, edelleen ohjata näiden reseptoreiden suorittamaa glukoosin siirtoa soluihin ja glykogeenin sekä rasvahappojen synteesiä.

Insuliinimolekyylin elinkaari kestää noin 71 minuuttia. Haiman erittämästä insuliinista suuri osa on tavallisesti kiinnittyneenä maksan insuliinireseptoreihin. Osa insuliinista vapautuu reseptoreista takaisin verenkiertoon. Insuliinimolekyylit voivat hajota verenkierrossa monella tavalla.

Endoteliinit

Verenkierrossa insuliini stimuloi myös endoteliinien, eli verisuonten endoteelisolujen tuottamien peptidihormonien tuotantoa. Endoteliinit säätelevät verisuonten sileiden lihassyiden supistumista ja osallistuvat verenkierron paikalliseen säätelyyn. Endoteliinit voivat myös paksuntaa ja jäykentää verisuonia, mikä kohottaa verenpainetta ja altistaa sydän- ja verisuonitaudeille.


Atkinsin dieetti käytännössä


Atkinsin ruokavalioon sopivat vähähiilihydraattiset vihannekset, proteiinit ja rasvat.

Atkinsin kehittämässä ruokavaliossa hiilihydraattien saantia ravinnosta vähennetään rajusti, mutta rasvojen ja proteiinien määrää ei tavallisesti rajoiteta lainkaan.

Atkinsin mukaan prosessoidut hiilihydraatit, sokerit, maissisiirappi ja valkoiset jauhot ovat lihomisen tärkeimmät aiheuttajat. Atkins ei usko perinteiseen kaloriteoriaan.

Atkinsin ruokavalion päämääränä on vähentää glykeemistä kuormaa ja tehostaa laihtumista.

Glykeeminen kuorma (GL) ja glykeeminen indeksi (GI) kertovat ravinnon sisältämien hiilihydraattien laadusta, määrästä ja imeytymisnopeudesta. Sitä voidaan hyödyntää arvioitaessa aterian vaikutusta veren sokeriin ja veren insuliinivasteeseen.

Nopeilla ja hitailla hiilihydraateilla viitataan korkean glykeemisen indeksin hiilihydraatteihin ja matalan glykeemisen indeksin hiilihydraatteihin. Yleensä nopean glykeemisen indeksin hiilihydraatteja pidetään terveyden ja painonhallinnan kannalta huonompina kuin hitaasti imeytyviä hiilihydraatteja.

Glykeeminen kuorma

Glykeeminen kuorma voidaan laskea, ja siten selvittää syödyn ravinnon vaikutus veren sokeriin ja elimistön insuliinivasteeseen. Suuri hiilihydraattimäärä ja hiilihydraattien korkea glykeeminen indeksi kasvattavat ravinnon glykeemista kuormaa. Glykeemisen indeksin ja kuorman ymmärtäminen on erityisen tärkeää diabeetikoille.

Glykeeminen kuorma lasketaan seuraavasti: aterian glykeeminen indeksi x imeytyvän hiilihydraatin määrä / 100. Aterian glykemiakuormaa määritettäessä lasketaan yhteen sen sisältämien ruoka-aineiden GL-arvot.

Glykeeminen indeksi

Glykeeminen indeksi määrittelee ruoka-aineen imeytyvien hiilihydraattien aiheuttaman vaikutuksen verensokeriin verrattuna referenssiruoka-aineeseen kuten glukoosiliuokseen tai valkoiseen leipään.

Hiilihydraatin korkea GI kertoo, että se kohottaa verensokeria nopeasti ja vereen vapautuu paljon insuliinia. Matala GI kertoo, että hiilihydraattien imeytyminen on hitaampaa ja tasaisempaa.

Runsaasti prosessoidut hiilihydraatit, kuten leivokset, karamellit ja valkoinen leipä sekä runsaasti tärkkelystä sisältävät hiilihydraatit, kuten perunat ja riisi, ovat korkean glykeemisen indeksin ruokia ja ne kohottavat verensokeri- ja insuliinitasoja nopeasti aterian jälkeen. Määrä on kuitenkin laatua keskeisemmässä asemassa, joten glykeeminen kuorma on parempi indikaattori aterian vaikutuksista verensokeri- ja insuliinitasoihin.

Jotkin hiilihydraatit, kuten kaura, kohottavat veren glukoositasoja hitaasti ja tasaisesti. Niiden glykeeminen indeksi on matala.

Nettohiilihydraatit

Nettohiilihydraattien määrä saadaan, kun hiilihydraattien kokonaismäärästä vähennetään kuidut ja sokerialkoholit. Sokerialkoholeilla on minimaalinen vaikutus veren sokeripitoisuuteen. Atkinsin mukaan parhaita hiilihydraatteja ovat ne, joiden glykeeminen kuorma on vähäisin.

Vitamiinit lisäravinteina

Atkinsin ruokavaliossa vältetään monia mineraali- ja vitamiinirikkaita vihanneksia ja hedelmiä, joten vitamiini- ja mineraalilisien ottaminen on suositeltavaa Atkinsin dieetin aikana.

Kuinka Atkinsin ruokavalio toimii?

Atkinsin ruokavalion neljä perustavoitetta:  

  • Laihtuminen
  • Painonhallinta
  • Hyvä terveys
  • Sairauksien ehkäisy

Atkinsin ruokavalion tavoitteena on muuttaa elimistön energia-aineenvaihdunta sokeripolttoisesta rasvapolttoiseksi. Se muistuttaa monin tavoin muita vähähiilihydraattisia ruokavalioita, kuten ketogeenistä ruokavaliota.

Hiilihydraattien korvaaminen rasvalla ja proteiineilla ohjaa elimistön käyttämään energianlähteenä ravinnon sisältämien rasvojen lisäksi kehoon varastoituneita rasvoja.

Aloittaminen

Atkinsin dieetti aloitetaan kahden viikon idnuktiovaiheella, jossa hiilihydraattien saanti rajoitetaan alle 20 grammaan vuorokaudessa. Tavoitteena on elimistön ketoositilan nopea saavuttaminen.

Induktion jälkeen hiilihydraattien määrää nostetaan kuukausien mittaan eri vaiheissa vähitellen, kunnes saavutetaan ihannepaino ja sopiva ylläpitotaso.

Ruokavalion laihduttava vaikutus perustuu siihen, että elimistö oppii käyttämään energianlähteenä rasvasoluihin varastoimiaan rasvoja, kun energia-aineenvaihdunnan kannalta nopeita ja helppoja hiilihydraatteja ei ole tarjolla ja veren insuliinitaso pidetään hiilihydraatteja rajoittamalla matalana.

Toisaalta Atkinsin ruokavalio hillitsee myös ruokahalua, jolloin ravinnosta saatava energiamäärä laskee luonnostaan.

Huomioi ennen Atkinsin dieetin aloittamista!

Jos sairastat jotain kroonista sairautta ja syöt siihen säännöllisesti lääkkeitä, sinun on syytä neuvotella lääkärin tai ravitsemusasiantuntijan kanssa ennen Atkinsin ruokavalion aloittamista.
Eräillä lääkkeillä, kuten insuliinilla, voi Atkinsin ruokavaliota noudatettaessa olla odottamattomia ja negatiivisia vaikutuksia.

Muista juoda riittävästi

Atkinsin dieetti on diureettinen, eli nesteitä poistava, joten myös nesteitä poistavien lääkkeiden ja muiden diureettien, kuten kahvin ja alkoholin välttäminen on suotavaa dieetin aikana. Riittävän nesteensaannin turvaaminen ja kehon nestetasapainon ylläpitäminen on Atkinsin ruokavaliossa erittäin tärkeää. Nestehukka aiheuttaa yleensä päänsärkyä, joten Atkinsin ruokavalioon liittyvä päänsärky viittaa usein liian vähäiseen nesteytykseen.

Diabeetikoilla insuliinintarve muuttuu Atkinsin ruokavalion seurauksena, joten on ehdottoman tärkeää, että diabetesta sairastavat neuvottelevat Atkinsin ruokavalioon siirtymisestä lääkärin kanssa ja noudattavat ruokavaliota asiantuntijan tai lääkärin valvonnassa.


Induktio ja syöminen


Atkinsin ruokavaliossa ketoosi käynnistetään nopeasti pudottamalla syötyjen hiilihydraattien määrä alle 20 grammaan vuorokaudessa. Tämä induktiovaihe jatkuu kaksi viikkoa. Proteiineja ja rasvaa voi induktiovaiheen aikana syödä nälkäänsä rajoituksetta.

Ruokavalioon sopivat kaikki lihat, kalat, linnut, äyriäiset, kananmunat ja juustot ja vihannekset, joissa on alle 10 % hiilihydraatteja. Atkinsin ruokavaliossa ei syödä induktio-, laihdutus- ja esiylläpitovaiheen aikana hedelmiä, viljoja, margariinia, tärkkelystä (kuten perunat, riisi, maissi), pastoja tai vähärasvaisia maitotuotteita.

Hiilihydraattien rajoittamisesta seuraava verensokerin lasku aktivoi haiman erittämään insuliinin vastavaikuttajaa, glukagonia, joka käynnistää ketogeneesin ja glukoneogeneesin. Glukagoni myös aktivoi soluissa tapahtuvan β-oksidaation käynnistymisen.

β-oksidaatio

β-oksidaatio tapahtuu solujen mitokondrioissa ja peroksisomeissa. Oksidaatiossa ravinnon ja rasvasolujen rasvahappojen β-hiiliä hapetetaan karbonyyleiksi. Reaktioketju tapahtuu neljässä vaiheessa:

– Dehydraus
– Hydraatio
– Hapetus-pelkistysreaktio
– Tiolyysi

Reaktiosarja toistuu, kunnes rasvahappo on kulunut loppuun. Joka toistossa rasvahapoista poistuu 2 hiiltä asetyylikoentsyymi-A:na. Tiolyysin asetyylikoentsyymi-A siirtyy yleensä sitruunahappokiertoon mennen siten ATP:n tuottoon. Muissa vaiheissa saadut NADH ja FADH2 päätyvät ATP:n tuottoon menemällä mitokondrion elektroninsiirtoketjuun. Lähde: Wikipedia


Kuvakaappauksen lähde. Wikipedia

Ketoosin käynnistyminen

Tavoitteena oleva ketoosi saavutetaan yleensä parissa viikossa, kun maksan ja lihasten polysakkarideista muodostuvat glykogeenivarastot tyhjenevät. Tämän vaiheen tavoitteena on katkaista energia-aineenvaihdunnan hiilihydraattiriippuvuus ja siirtää elimistön aineenvaihdunta käyttämään sokerin sijasta rasvaa ja varastorasvoja energianlähteenä.

Atkinsin ruokavalion alkuvaiheessa elimistöstä poistuu paljon nesteitä. Ensimmäisen puolentoista viikon aikana painonpudotus johtuu pääasiassa elimistöstä poistuvista nesteistä.


Atkinsin dieetti sisältää neljä vaihetta


Vaihe 1: Induktio

Hiilihydraattien saanti lasketaan alle 20 grammaan päivässä. Päivittäiset hiilihydraatit saadaan hyvin vähän tärkkelystä ja hiilihydraatteja sisältävistä vihanneksista.

Ruokavaliossa syödään runsaasti rasvaa ja proteiineja sekä salaatteja tms. vihreitä lehtivihanneksia.

Vaihe 2: Jatkuva laihtuminen / tasapainottaminen

Ravinnerikkaita ja runsaasti kuituja sisältäviä ruokia lisätään päivittäiseen ruokavalioon. Hiilihydraattien päivittäistä määrää nostetaan viidellä grammalla kerrallaan niin kauan kuin laihtuminen jatkuu.

Sallittuihin ruokiin sisältyvät edellisten lisäksi mm. pähkinät, vähähiilihydraattiset vihannekset ja vähäinen määrä hedelmää.

Vaihe 3: Esiylläpitovaihe

Hiilihydraattien määrää nostetaan tasolle, jossa painonpudotus hidastuu tai loppuu. (25-90 g /vuorokausi), kun dieetissä on päästy noin viiden kilon päähän tavoitepainosta. Tämä esiylläpitovaihe jatkuu vähintään 2 kuukautta siten, että painoa putoaa alle puoli kiloa viikossa.

Vaihe 4: Ylläpitovaihe

Kun asetettu tavoitepaino on saavutettu, siirrytään Atkinsin dieetissä ylläpitovaiheeseen. Laihduttaja lisää ruokavalioonsa monipuolisesti erilaisia hiilihydraatteja, mutta tarkkailee samalla, että paino pysyy vakiona, eikä lähde kasvuun. Ylläpitovaiheessa ketoosi ei enää ole tarpeellinen.

Ylläpitovaiheen aikana voi jo syödä lihan ja rasvan lisäksi monipuolisemmin useimpia vihanneksia, pähkinöitä, marjoja ja kokojyväviljoja sekä joskus hiukan perunaa ja hedelmiä. Lisättyä sokeria ei suositella. Alkoholia ja kahvia tulee käyttää kohtuudella. Robert Atkinsin mukaan liikunta on tärkeä osa Atkinsin laihdutusohjelmaa.

Atkins suositteli, että tyydyttyneen rasvan osuus päivittäisestä energiansaannista pysyisi alle 20 prosentissa.

Atkins 40:

Atkinsin ruokavaliosta on olemassa erilaisia variaatioita. Atkins 40 on hieman helpompi noudattaa, sillä alun induktiovaiheessa saa syödä 40 grammaa hiilihydraatteja vuorokaudessa.

Atkinsin ruokavaliota noudatettaessa omaan hyvinvointiin tulee kiinnittää huomiota. Ruokavalio ei välttämättä sovi kaikille. Jos paino alkaa nousta, päivittäisten hiilihydraattien määrää tulee jälleen laskea laihduttavalle tasolle.

Atkins ja kasvisruokavalio

Atkinsin dieetin noudattaminen kasvisruokavaliona on ongelmallista, koska kasviproteiinit esiintyvät yleensä yhdessä hiilihydraattien kanssa. Dieetistä voi toisaalta muokata kasvisruokavalion, kun siihen sisällyttää maitotuotteita ja kananmunia. Lakto-ovovegetaristinen Atkinsin dieetti suositellaan aloittamaan kakkosvaiheesta, eli jatkuvan painonpudotuksen vaiheesta, jossa hiilihydraattien määrä pidetään 30 grammassa vuorokaudessa.

Atkinsin kasvisversio sisältää runsaasti kasviöljyjä. Myös vegaaninen Atkinsin dieetti on mahdollinen, jos hiilihydraattien määrä pidetään 50 grammassa päivässä, mutta siinä proteiinien saannin kanssa on oltava erityisen tarkkana. Proteiininlähteiksi soveltuvat esimerkiksi siemenet, pähkinät, soijaruoat, kvinoa ja vegaanisessa Atkinsin dieetissä myös palkokasvit.

Mitä Atkinsin dieetissä saa ja ei saa syödä

Syötävät ruoat:

Laihduttajat saavat syödä avokadoja, sillä ne sisältävät terveellisiä rasvoja.

  • kaikki lihat ovat
  • rasvaiset kalat ja äyriäiset
  • munat
  • avokadot
  • vähän hiilihydraatteja sisältävät vihannekset, kuten valkokaali, parsakaali ja parsa
  • täysirasvaiset maitotuotteet, kuten juustot
  • pähkinät ja siemenet
  • terveelliset rasvat, kuten neitsytoliiviöljy, kookosöljy ja avokadoöljy

Dieettiin sopivia juomia ovat vesi, kahvi ja vihreä tee

Päivän ruokavalio on esimerkiksi tällainen:

  • Aamiainen: Juustomunakas ja vähän hiilihydraatteja sisältäviä vihanneksia
  • Lounas: Kanasalaatti ja pähkinöitä
  • Päivällinen: Lihapullia ja vähähiilihydraattisia vihanneksia

Välipaloiksi sopivat esimerkiksi pähkinät, siemenet, kananmunat ja kreikkalainen jogurtti

Vältettävät ruoat:

  • sokeri, virvoitusjuomat, leivokset ja makeiset
  • kaikki viljat, kuten vehnä, speltti ja riisi
  • vähärasvaiset laihdutusruoat, koska niissä rasva on usein korvattu hiilihydraateilla
  • palkokasvit, kuten linssit, pavut, herneet

Induktiovaiheen aikana runsashiilihydraattisia hedelmiä, kuten banaaneita, omenoita ja rypäleitä sekä runsashiilihydraattisia vihanneksia, kuten porkkanoita, tulee välttää.

TL;DR

Atkinsin mukaan verensokeri ja pohjukaissuolen erittämä GIP-hormoni stimuloivat insuliinin eritystä ja insuliinia tarvitaan rasvan ja sokereiden varastoimiseen rasvasoluihin. Rasvasoluissa myös sokerimolekyyleistä syntetisoidaan rasvahappoja. Insuliinin erityksen vähentäminen hiilihydraattien rajoittamisella vähentää rasvan varastoitumista, tehostaa varastorasvojen käyttämistä energiaksi ja auttaa laihduttamaan.


Kritiikki


”Insuliinilla on aineenvaihdunnassa muitakin tehtäviä. Verensokerin ohella se säätelee myös rasvahappojen siirtymistä verestä rasvasoluihin, jotka varastoivat ne rasvana. Varastorasva on juuri sitä tuttua rasvaa, jota nimitämme läskiksi. – – – Vaikka päättely insuliinista saattaa kuulostaa loogiselta, se on täysin virheellinen yksinkertaistus. Sen esittäjät ovat poimineet ihmisen aineenvaihdunnasta yhden palan ymmärtämättä rasvan varastoitumisen kokonaisuutta.” Sisätautien erikoislääkäri Pertti Mustajoki – Duodecim

Pertti Mustajoki korostaa, että Atkinsin dieetin laihduttavat ominaisuudet perustuvat siihen, että Atkinsin ruokavaliota noudattava saa ravinnostaan vähemmän kaloreita. Vastakkain ovat klassinen kaloriteoria ja uudempi aineenvaihdunnan erilaisia mekanismeja korostava näkemys. Tutkimuksissa on osoitettu, että vähähiilihydraattinen ruokavalio laihduttaa vähän kaloreita sisältävää ravintoa selvästi tehokkaammin dieetin ensimmäiset kuukaudet, mutta erot ruokavalioiden välillä tasoittuvat noin vuoden laihduttamisen jälkeen.

”Oikeastaan ei tarvita edellä kuvattujen monimutkaisten aineenvaihdunnan tapahtumien tuntemusta. Energian häviämättömyyden lain perusteella voidaan helposti ymmärtää, että painonhallinnassa ruuan rasva ei suinkaan ole viaton. Jos saamme ruuasta energiaa enemmän kuin ”poltamme” eli kulutamme, ainoa mahdollisuus on varastoida se. Ylimääräinen energia ei voi hävitä. Se jää meihin, oli se sitten peräisin hiilihydraateista, proteiinista tai rasvoista.” Sisätautien erikoislääkäri Pertti Mustajoki – Duodecim

Kuinka rasvasolut vaikuttavat painonhallintaan?

Rasvasolut eli adiposyytit tai liposyytit ovat kantasoluista kehittyneitä soluja, joiden tärkein tehtävä on varastoida ylimääräistä energiaa. Ihmisillä on kahdenlaisia rasvasoluja: valkoisia rasvasoluja (WAT) ja ruskeita rasvasoluja (BAT).

Ravinnon sisältämä ylimääräinen energia varastoidaan rasvasoluihin. Kun rasvasolut täyttyvät ja kasvavat riittävän suuriksi, ne jakautuvat ja tekevät näin varastoitavalle energialle enemmän tilaa.

Kerran muodostuneet rasvasolut eivät katoa mihinkään, vaikka paino putoaisi. Se on eräs laihduttamisen vaikeuteen vaikuttava tekijä. Laihtumisen ja lihomisen seurauksena rasvasoluihin varastoituneen rasvan määrä vaihtelee; solut eivät katoa.

Valkoiset rasvasolut

Valkoiset rasvasolut ovat yhden nesterakkulan soluja, jotka sisältävät ohuen sytoplasman ympäröimän ”rasvapisaran”. Valkoiset rasvasolut varastoivat ensisijaisesti triglyseridejä.

Valkoiset rasvasolut muistuttavat toiminnaltaan elintä, sillä ne erittävät aineenvaihduntaan vaikuttavia hormoneja, adipokiinejä kuten resistiiniä, adiponektiinia, leptiiniä ja apeliinia. Näillä hormoneilla on suuri vaikutus painonhallintaan. Esimerkiksi rasvasolujen erittämä leptiini kertoo aivoille, kun kehon energiavarastot ovat täyttyneet. Leptiini on siis kylläisyyshormoni.

Mitä enemmän ihmisellä on rasvasoluja, sitä hitaammin kehon energiavarastot täyttyvät ja rasvasolujen kemiallinen viesti energiavarastojen täyttymisestä hidastuu.

Suuri määrä energiatyydyttyneitä rasvasoluja voi aiheuttaa leptiinisignaaleilla eräänlaisen oikosulun aivojen leptiinireseptoreissa. Tällainen aiheuttaa leptiiniresistenssin, jossa aivot eivät enää reagoi kylläisyyshormoniin normaalisti. Kun rasvasolujen määrä kasvaa tai leptiinin toiminta heikkenee, ihminen syö enemmän kuin tarvitsee.

Ihmisellä on keskimäärin 30 miljardia valkoista rasvasolua, joihin on varastoitunut noin 13,5 kiloa rasvaa.

Ruskeat rasvasolut

Ruskeat rasvasolut sisältävät useita nesterakkuloita, joihin on varastoitunut rasvapisaroita. Ruskeat rasvasolut poikkeavat valkoisista rasvasoluista erityisesti koska ne sisältävät runsaasti energiaa tuottavia mitokondrioita. Ruskeaa rasvaa kutsutaan joskus vauvanrasvaksi ja se tuottaa elimistöön lämpöä.

Atkinsin dieetti voi vaikuttaa suotuisasti tyypin 2 diabetesta tai metabolista oireyhtymää sairastavien terveyteen ja vähentää lääkkeiden tarvetta. Diabetekseen erikoistuneet lääkärit varoittavat kuitenkin, että Atkinsin dieetti ei ole yksinkertainen ratkaisu tyypin 2 diabeteksen hoitoon, vaikka hiilihydraattien ja glukoosin saannin seuraaminen on tärkeä osa diabeteksen hoitoa.


Entä vaikutukset – toimiiko Atkinsin dieetti?


Atkinsin ruokavalion tavoitteena on laihtua ja ehkäistä eräitä sairauksia, kuten metabolista oireyhtymää, tyypin 2 diabetesta, korkeaa verenpainetta sekä sydän- ja verisuonitauteja.

Tutkimuksen mukaan useimmat lopettavat Atkinsin ruokavalion noudattamisen 2-3 vuodessa.

Stanfordin yliopiston tutkimuksessa Atkinsin dieettiä noudattavien verenpaine ja kolesterolitasot kehittyivät suotuisaan suuntaan, ja dieetti laihdutti tehokkaammin kuin vertailtavat laihdutusruokavaliot.

Ruokavalion alkuvaiheessa joillain laihduttajilla ilmenee:

  • päänsärkyä
  • huimausta
  • heikotusta
  • väsymystä
  • ummetusta

Atkinsin dieetin puolestapuhujien mukaan ruokavalio sopii painonpudotuksen ohella diabeteksen ja korkean verenpaineen hoitoon. Muunneltua Atkinsin dieettiä käytetään myös lasten vaikean epilepsian lääketieteelliseen hoitoon.

Hyödyt

Ruokavalion kehittäjän Robert Atkinsin mukaan vähähiilihydraattisen ruokavalion etuja ovat:

  • Ruoan määrää tai kalorimäärää ei rajoiteta
  • Nälkää ei tarvitse tuntea
  • Ruokahalu vähenee
  • Ruoansulatus paranee
  • Paino laskee eikä tule takaisin, koska ruokavalio sopii pysyvään painonhallintaan
  • Useimmat ylipainoisuuteen liittyvät terveysongelmat helpottuvat

Atkinsin mukaan vähän hiilihydraatteja sisältävän ketogeenisen ruokavalion myötä veren kolesteroliarvot paranevat ja sydäntautien riski vähenee. Atkinsin mukaansa ruokavalioon liitetyt terveysongelmat eivät johdu rasvasta, vaan 1800-luvun jälkeen yleistyneiden prosessoitujen hiilihydraattien käytöstä.

ketogeenisen ruokavalion hyötyjä:

1. Vähähiilihydraattinen ruokavalio vähentää ruokahalua

Monissa laihdutusruokavalioissa jatkuva näläntunne tuottaa ongelmia. Se johtaa helposti dieetin lopettamiseen. Vähähiilihydraattinen ruokavalio ylläpitää kylläisyyden tunnetta erinomaisesti, vaikka se samalla leikkaa energiansaantia.

Tutkimusten mukaan hiilihydraatteja rasvalla ja proteiineilla korvaavat saavat ravinnosta vähemmän kaloreita kuin hiilihydraattipainotteista ruokavaliota noudattavat.

2. Atkinsin dieetti on tehokkain laihdutusruokavalio ensimmäiset kuukaudet

Hiilihydraattien rajoittaminen on yksinkertaisin ja tehokkain tapa laihtua. Tutkimusten mukaan vähän hiilihydraatteja sisältävää ruokavaliota noudattavat laihtuvat nopeammin kuin laihduttajat, jotka rajoittavat rasvaa ja laskevat kaloreita.

Tutkimuksissa, joissa on vertailtu vähähiilihydraattisen ruokavalion ja vähärasvaisen ruokavalion tehoa laihduttamisessa, on havaittu, että hiilihydraatteja rajoittamalla laihtuu selvästi nopeammin ja enemmän tuntematta nälkää.

Vähän hiilihydraatteja sisältävä dieetti on muita laihdutusruokavalioita tehokkaampi ensimmäisen puolen vuoden aikana, mutta sen jälkeen erot ruokavalioiden välillä tasoittuvat.

3. Viskeraalinen vyötärölihavuus vähenee selvästi

Kaikki rasvat eivät ole samanarvoisia. Pahinta elimistöön kertyvää rasvaa on vatsaonteloon elinten ympärille varastoituva viskeraalinen rasva eli sisälmysrasva.

Sillä mihin kehon osaan rasva varastoituu, on merkitystä terveyden ja sairastumisriskin kannalta. Viskeraalinen rasva on yleisintä ylipainoisilla miehillä. Vyötärölihavuuteen liittyy usein myös maksan rasvoittuminen.

Viskeraalinen rasva kerääntyy vatsaontelossa elinten ympärille ja kasvattaa inflammaation sekä insuliiniresistenssin riskiä.

Vähän hiilihydraatteja sisältävät ruokavaliot, kuten Atkinsin dieetti, vähentävät hyvin tehokkaasti erityisesti vatsaonteloon kerääntyvää viskeraalista rasvaa.

4. Triglyseridien määrä veressä laskee merkittävästi

Triglyseridit ovat verenkierrossa kiertäviä vapaita rasvahappoja. Koholla olevat triglyseridit on tunnettu sydäntautien riskitekijä. Runsaasti hiilihydraatteja sisältävä ravinto ja etenkin fruktoosi kasvattavat veren triglyseridipitoisuutta.

Hiilihydraatteja rajoittavassa ruokavaliossa veren vapaat rasvahapot – triglyseridit siirtyvät ketoaineiden ja energiantuotantoon.

5. Atkinsin ruokavalio lisää hyvän HDL-kolesterolin määrää

HDL tunnetaan ns. ”hyvänä” kolesterolina: ts. mitä enemmän HDL-kolesterolia veressä on suhteessa LDL-kolesteroliin, sitä pienempi sydäntautiriski. Vastaavasti LDL-kolesterolin kasvu kasvattaa sydäntautien riskiä.

Paras tapa lisätä hyvän HDL-kolesterolin määrää, on syödä rasvaa. Atkinsin ruokavalio ja muut ketogeeniset ruokavaliot ovat runsasrasvaisia dieettejä. Lähde1, Lähde2.

6. Veren sokeri- ja insuliinipitoisuus laskee

Vähähiilihydraattiset ja ketogeeniset ruokavaliot saattavat vähentää lääkkeiden tarvetta metabolista oireyhtymää ja tyypin 2 diabetesta sairastavilla. Hiilihydraattien rajoittaminen laskee verensokeria ja veren insuliinitasoja.

Joidenkin aikuistyypin diabetesta sairastavien insuliinintarve laskee Atkinsin ruokavalion myötä jopa 50 %. Yhden tutkimuksen mukaan tyypin 2 diabetesta sairastavista 95 prosenttia vähensi lääkkeiden käyttöä 6 kuukauden sisällä Atkinsin dietiin aloittamisesta. Lähde.

Jos sairastat diabetesta ja aloitat vähähiilihydraattisen ja ketogeenisen ruokavalion, konsultoi asiasta lääkäriäs, sillä riskinä on hypglykemia.

7. Atkinsin ruokavalio voi laskea verenpainetta

Kohonnut verenpaine lisää sydän- ja verisuonitautien riskiä. Vähän hiilihydraatteja sisältävät ruokavaliot voivat joidenkin tutkimusten mukaan laskea verenpainetta.

Lähteitä:

Glykemiakuorma
Ketoosi
What to know about low-carb, high-fat diets
Atkins diet: What is it and should I try it?
Aktins.com
Atkinsin dieetti