Ravinto ja evoluutio: Lucy & fat of the land

Miten meistä tuli ihmisiä ja mikä erottaa ihmiset muista luontokappaleista? Entä mitä ensimmäiset esi-ihmiset ja ihmiset söivät? Näihin kysymyksiin on esitetty monia kiinnostavia vastauksia. Yritän rekonstruoida esihistorian ja Homojen historian kompaktiin ja helposti pureskeltavaan pikaruokapamflettiin.

Viimeisen vuosisadan aikana syömämme ravinto on muuttunut valtavasti, mutta geenien ja aineenvaihdunnan toiminnan osalta emme ole muuttuneet juuri lainkaan kymmeniin tuhansiin vuosiin.

Yritän hahmotella johdonmukaisen selvityksen esihistoriallisten ihmisten ruokavaliota avaavien luentojen pohjalta. Neil Armstrongin sanoja mukaillen: arvoitukset herättävät ihmetystä ja ihmetys johtaa haluun ymmärtää.

Planeetta Helvetti

Alussa oli Helvetti. Satoja miljoonia vuosia myrskyävä kahden miljardin kuutiokilometrin hornankattila ja vulkaanisesti aktiivinen kiehuva planeetta. Neljä miljardia vuotta sitten nuori maailmamme muistutti enemmän helvettiä kuin paratiisia. Nuori maa oli painajaismainen, kaoottinen ja villi kurimus, jonka kaasukehän toiseksi yleisin aine oli hiilidioksidi.

Ensimmäinen solu kehittyi tässä noidankattilassa noin 3,5 miljardia vuotta sitten. Se oli ehkä kemoheterotrofi, joka hyödynsi elinympäristönsä orgaanisia yhdisteitä. Alkusoluille muodostui kyky valmistaa orgaanisia yhdisteitä hiilidioksidista muuttamalla valoenergiaa kemialliseen muotoon. Soluista tuli fotosynteettisiä.

Miljoonia vuosia, muutamaa hetkeä ja yhtä epookkia myöhemmin soluille kehittyi kyky käyttää vettä fotosynteettisenä elektronilähteenä. Näin muodostui kehittyneemmän elämän kannalta kriittinen happea tuottava fotosynteesi. Happea kertyi nuoren planeetan kaasukehään. Jotkin organismit sopeutuivat happeen ja alkoivat käyttää sitä energianlähteenä.

Prokaryootit, eli esitumalliset tumattomat yksisoluiset eliöt eriytyivät jo varhain bakteereihin ja arkeoneihin.

LUCA

Viimeinen tunnettu yhteinen esivanhempamme LUCA (Last Universal Common Ancestor) ei ollut ensimmäinen eliö, mutta se oli viimeisin yhteinen alkusolu, josta kaikki maapallolla nykyisin elävät eliöt ovat polveutuneet. LUCA kehittyi noin 3,5–3,8 miljardia vuotta sitten (paleoarkeeisen maailmankauden aikana).

Aitotumaisia eukaryootteja kehittyi alkuemereen 1,5–2 miljardia vuotta sitten. Niiden syntytapaa ei tunneta. Monisoluiset eliöt kehittyivät vasta 600-800 miljoonaa vuotta sitten. Soluille energiaa tuottava mitokondrio oli varhaisen esieukaryoottisolun kanssa endosymbioosissa elänyt aerobinen bakteeri.

Solu on elämän perusyksikkö

Elämä tarkoittaa yksinkertaisimmillaan soujen aineenvaihduntaa. Solu on kaikkien elävien organismien sähköisesti varautunut perusyksikkö.

Ihmisillä ja muilla suvullisesti lisääntyvillä eläimillä solut voidaan jakaa somaattisiin soluihin ja ituradan sukusoluihin eli gameetteihin. Somaattiset solut syntyvät mitoosissa ja sukusolut meioosissa. Olen käsitellyt syntymän ihmettä tarkemmin täällä.

Ihmisen kudoksesta yli 96 % muodostuu neljästä alkuaineesta. Vedyn, hiilen, typen ja hapen lisäksi kudoksissa on pieniä pitoisuuksia natriumia, magnesiumia, fosforia, rikkiä, klooria, kaliumia ja kalsiumia. Solut ovat 60–90 prosenttisesti vettä. Solujen tärkeimpiä orgaanisia yhdisteitä ovat lipidit, hiilihydraatit, proteiinit sekä nukleiinihapot (DNA ja RNA).

Paratiisin puutarhassa elämä on paikka, jossa elektroni lepää

Kaikki elämä edellyttää ravintoa. Ravintoon ja sitä hyödyntävään lajistoon vaikuttaa ilmasto, joka vaihtelee eri paikoissa. Ilmastolliset tekijät, kuten lämpötila ja sademäärä, aiheuttavat eroja eri alueiden kasvillisuudessa, mikä perusteella maapallo jaetaan ilmasto- ja kasvillisuusvyöhykkeisiin.

Tuulet tuovat kosteutta maalle. Pasaatituulet kohtaavat tropiikissa ja aiheuttavat ukkosilmoja, kosteutta ja monsuuneja. Pasaatituulten pohjois- ja eteläpuolella noin 30. leveysasteen kohdalla on vain vähän tuulia, minkä johdosta valtameriltä ei tule mantereille paljon kosteutta. Paratiisin puutarhan suuret aavikkoalueet sijaitsevat näillä leveysasteilla.

Valtameret tuovat kosteutta, joka synnyttää sademyrskyjä ja tasaa rannikkoseutujen lämpötiloja. Elämää esiintyyy lähes kaikkialla ilmakehästä aina viiden kilometrin syvyyteen asti. Tiedetään, että elämä ja ihmiset ovat sopeutunut hyvin erilaisiin olosuhteisiin, mutta mitä se elämä on?

Erwin Schrödinger määritteli 1940-luvulla elämän negatiiviseksi entropiaksi. Albert Szent-Györgyi kuvasi elämän paikaksi, jossa elektroni voi levätä. Biologiassa elämän ominaisuudeksi mainitaan yleensä kyky tuottaa uusia kopioita itsestään. Astrobiologi André Brackin mukaan elämä on “vesiliukoinen kemiallinen systeemi, joka siirtää molekyylirakenteisiin sisältyvän informaation ja kehittyy”. Addy Pross ja Robert Pascal toteavat, että elämä on toiminnallisuuteen perustuva stabiili tila, joka toimii ulkopuolelta tulevan energian varassa.

Elämä, mitä ikinä sillä tarkoitetaankaan, syntyi noin 3,5-4,0 miljardia vuotta sitten. Alkellista elämää oli aluksi vain merissä. 800 miljoonaa vuotta sitten kehittyivät ensimmäiset alkueläimet, jotka käyttivät ravintonaan muita eliöitä. Toisten eliöiden käyttäminen ravintona on yksi elämän kiertokulkua ylläpitävistä luonnon perusmekanismeista.

Alkueläimet kehittyivät 120 miljoonan vuoden kuluessa monimutkaisiksi ja monisoluisiksi eläimiksi. Selkärangattomien eläinten perusryhmät ilmestyivät proterotsooisen kauden lopulla ja paleotsooisen kauden alussa noin 540 miljoonaa vuotta sitten.

Ensimmäiset maakasvit kehittyivät noin 450 miljoonaa vuotta sitten. Sammakkoeläimiä alkoi nousta maalle devonikaudella. Triaskaudella 245–200 miljoonaa vuotta sitten ilmestyivät nisäkkäät, sisiliskot, dinosaurukset, kilpikonnat ja krokotiilit. Dinosaurusten valtakausi kesti 160 miljoonaa vuotta. Ensimmäiset ädelliset kehittyivät dinosaurusten joukkosukupuuton jälkeen 65 miljoonaa vuotta sitten.

Miten solut saavat energiaa?

Solujen rakenne ja aineenvaihdunta ovat käytännössä hyvin samanlaisia nyt kuin alkumeren ensimmäisillä soluilla:

  • vettä 50–90 prosenttia
  • hiili, vety, typpi ja happi
  • samoja sokereita, aminohappoja, nukleotideja, rasvahappoja, fosfolipidejä, vitamiineja ja entsyymejä
  • tärkeimpinä makromolekyyleinä proteiinit, lipidit, hiilihydraatit ja nukleiinihapot
  • samanlainen solujen kaksinkertainen solukalvo
  • entsyymien välityksellä tapahtuvat solujen reaktiot
  • samanlainen prosessi energian tuottamiseksi ja saamiseksi
  • välireaktioista koostuvat aineenvaihdunnan reaktiot
  • DNA:sta koostuva solujen perimä
  • kaikissa soluissa olevat ribosomit, joissa proteiinisynteesi tapahtuu
  • perimässä tapahtuvat mutaatiot, jotka voivat muuttaa kaiken elollisen ilmiasua.

Solujen energialähteinä toimivat hiilihydraatit ja rasvahapot. Myös proteiineja voidaan käyttää energianlähteinä, mutta silloin aminohapoista on syntetisoitava glukoosia glukoneogeneesissä.

Aitotumallisissa soluissa rasvahapot hapetetaan mitokondrioissa β-oksidaatiossa, jolloin syntyy pelkistyneitä elektroninsiirtäjäkoentsyymejä NADH:ta ja FADH2:ta. Hiilihydraatit pilkotaan ja muokataan ensin glukoosiksi tai sen johdannaisiksi. Solulimassa tapahtuvassa glykolyysissä glukoosimolekyylit hajotetaan pyruvaatiksi, mikä tuottaa NADH:ta ja ATP:tä.

Sekä pyruvaateista että rasvahappojen hapetustuotteista muodostetaan asetyylikoentsyymi-A:ta, joka on kaikkien energiaravinteidren yhteinen välimuoto mitokondrioiden sitruunahappokierrossa. Asetyylikoentsyymi-A pilkotaan hapettamalla sitruunahappokierrossa, mikä tuottaa NADH:ta ja FADH2:ta.

Sitruunahappokierron jäännöstuotteina ovat vesi ja hiilidioksidi. Kun läski palaa, suurin osa osa haihtuu ulos hengitetyn hiilidioksidin ja ihon hikoilun välityksellä.

Aerobisten eli happea käyttävien solujen mitokondrion elektroninsiirtoketjussa aiemmissa reaktioissa tuotetut NADH ja FADH2 luovuttavat elektroninsa eli hapettuvat NAD+:ksi ja FAD:ksi pelkistäen hapen vedeksi ketjureaktion jälkeen.

Seurauksena mitokondrion sisemmän kalvon eri puolille syntyy protonikonsentraatiogradientti, jossa matriisi on emäksisempi kuin solulima. Proteiinikanavat eli ATP-syntaasit antavat protonikonsentraation tasoittua tekemällä samalla protonivirrasta saatavalla energialla ADP:sta ja fosfaatista ATP:ta oksidatiivisessa fosforylaatiossa.

ATP on solun perusenergiamolekyyli, jota entsyymit käyttävät reaktioihinsa.

Solu ottaa aineita ympäristöstään endosytoosilla, joka voidaan jakaa kahteen mekanismiin: fagosytoosiin (”solusyönti”) ja pinosytoosiin (”solun juominen”). Molemmissa tapahtumissa solun ulkopuolella olevat molekyylit kiinnittyvät solukalvon reseptoreihin ja saavat aikaan solukalvon vetäytymisen kuopalle. Kuoppa syvenee, ja lopulta kuoppa irtoaa solun sisälle endosomina ja solukalvo umpeutuu kiinnittymällä vastakkaiseen reunaan. Endosomi yhdistyy solussa lysosomin kanssa.

Lysosomi sisältää entsyymejä, jotka hajottavat endosomin sisällön solun käyttöön. Esimerkkinä fagosytoosista on, kun fagosytoivat solut (makrofagit, neutrofiilit) syövät bakteereja ja tappavat ne sisällään. Fagosytoosin jälkeen ns. myöhäinen endosomi liitetään yleensä uudestaan kalvolle eksosytoosilla, jolloin sen sisältämät kuona-aineet vapautuvat soluvälitilaan. Eksosytoosi on käänteinen endosytoosille. Wikipedia

Solujen syntymä

Solut syntyvät soluista jakautumalla joko mitoottisesti tai meioottisesti. Mitoosissa solu jakautuu kahdeksi identtiseksi kopioksi. Solunjakautuminen kestää noin tunnin, ja sitä seuraa välivaihe, joka on mitoosia paljon pitempi.

Meioosia esiintyy ainoastaan sukusolujen eli munasolujen ja siittiöiden muodostuessa. Meioosissa on kaksi peräkkäistä solunjakautumista, joista syntyy neljä haploidista sukusolua.

Verisolut, monet epiteelisolut ja siittiöt jakautuvat hyvin nopeasti. Suolen epiteelisolut uusiutuvat noin kerran viidessä vuorokaudessa. Maksan solut uusiutuvat keskimäärin kerran kuukaudessa. Hermosolujen kyky jakautua päättyy yleensä hermosolun erikoistumiseen. Suurin osa hermosoluista syntyy jo sikiövaiheessa. Uusia hermosoluja syntyy jonkin verran hippokampuksessa. Jos hermosolujen regeneraatiota tapahtuu, se on ilmeisen hidasta.

Ihmisen elämä on lyhyt kuin päivänkorennon lento

Evoluution ajallista perspektiiviä on vaikea hahmottaa. Elinaikamme on lyhyt kuin päivänkorennon lento. Näemme tuokion maailmasta. Henkilökohtainen elämämme on tuskin muuta kuin silmänräpäys ihmisen kehityshistoriaan.

Evoluutiossa havaittaviin muutoksiin ja lajiutumiseen vierähtää tuhansia sukupolvia. Ympäristössä ja ravinnossa tapahtuneet muutokset voivat vaikuttaa epigeneettisesti lajien sopeutumiseen ja kehitykseen hyvin lyhyessä ajassa.

Lajina päivänkorennot ovat meitä ihmisiä vanhempia. Vanhimmat päivänkorentojen fossiilit on ajoitettu permikauteen kahden- tai kolmensadan miljoonan vuoden päähän menneisyyteen. Permikausi oli matelijoiden, kuten synapsidien, pelykosaurien ja nisäkkäitä muistuttavien terapsidien aikaa. Päivänkorennot olivat olemassa ennen dinosauruksia ja ovat olemassa luultavasti kauan sen jälkeen, kun nykyihmisen jättämät jäljet ovat peittyneet ajan tomuun.

Varhaisia terapsoideja kutsuttiin nisäkäsmäisiksi matelijoiksi. Terapsidit korvasivat muut synapsidit permikauden aikana noin 269 miljoonaa vuotta sitten. Terapsidien valtakausi kesti keskiselle triaskaudelle asti. Sen jälkeen (noin 245–216 milj. v. sitten) alkoi Archosauromorpha-matelijoiden kuten krokotiilien varhaisten sukulaisten ja dinosaurusten vuoro hallita maailmaa suurimpina maaeläiminä. Terapsidit nousivat nisäkkäinä uudelleen hallitsevaan asemaan kenotsooisella maailmankaudella noin 65 milj. v. sitten.

Elämän uusi aika, eli kenotsooinen maailmankausi

Ihmisten kantamuodot alkoivat kehittyä noin 65 miljoonaa vuotta sitten mesotsooisen maailmankauden lopulla kissaa pienemmistä pitkäkuonoisista kädellisistä.

Kenotsooisen kauden kahdeksan epookkia on nimetty eläimistön monimuotoisuuden mukaan kreikaksi. Ihmisen kehittymiseen johtanut ajanjakso alkoi hieman ennen pleistoseenikauden alkua.

  • Paleoseeni paleos, muinainen (66-56 miljoonaa vuotta sittten)
  • Eoseeni eos, sarastus (56-33,9 miljoonaa vuotta sitten)
  • Oligoseeni oligos, muutama (33,8-23,8 miljoonaa vuotta sitten)
  • Mioseeni meion, vähemmän (23-5,33 miljoonaa vuotta sitten)
  • Plioseeni pleion, enemmän (5,3-2,6 miljoonaa vuotta sitten)
  • Pleistoseeni pleistos, eniten (2,588 miljoonaa -11 560 vuotta sitten)
  • Holoseeni, holos, kokonaan, kaikki (alkoi 11 560 vuotta sitten, eli 9600 eaa.)


Kenotsooinen maailmankausi on geologinen ajanjakso, joka alkoi liitukauden lopun joukkosukupuutosta noin 65 miljoonaa vuotta sitten ja jatkuu edelleen.

Kauden alussa ilmasto oli hyvin lämmin ja kostea, mutta alkoi kauden edetessä viiletä ja kuivua. Metsää kuivemmat ruohoa kasvaneet savannit ja arot valtasivat maa-alaa. Tämä mahdollisti monien suurten maanisäkkäiden, kuten hevosten ja norsueläinten kehityksen. Kauden aikana kädelliset kehittyivät ihmisapinoiksi ja edelleen ihmisiksi.

Paleoseenikauden alkukädelliset olivat kissaa pienempiä ja pitkäkuonoisia. Eoseenikauden nykyisiä makeja ja kummituseläimiä muistuttavien kädellisten etuna oli ruumiinpainoon nähden suuret aivot ja kyky hyödyntää monipuolisesti erilaisia ravinnonlähteitä.

DNA-mallien perusteella itä- ja länsiapinat erkanivat varhain eoseenikauden lopulla. Häntä- ja ihmisapinat erkanivat oligoseenikauden lopulla. Ihmiset ja ihmisapinat, kuten simpanssi, erkanivat omiksi kehityslinjoikseen noin seitsemän miljoonaa vuotta sitten.

Suuri joukkosukupuutto pyyhki Maata eoseeni-kauden lopulla. Samoihin aikoihin tapahtui myös merivirtojen muutoksia. Ilmasto viileni ja heinäkasvit yleistyivät. Valtavat ruohotasangot levittäytyivät Maan pinnalle.

Oligoseenikaudella ruohoaroille ilmestyi erilaisia laiduntajia sekä niitä saalistavia kissa- ja koiraeläimiä. Sapelihampaat kehittyivät moneen kertaan eri eläinlajeille. Norsueläimistä kasvoi hyvin suuria.

Kauden lopulla kädellisten kehitys johti ihmisapinoiden, apinaihmisten ja ihmisen syntyyn. Plioseenilla Afrikassa eli eteläapinoita, joista kehittyi jo ennen pleistoseenia nykyihmisen edeltäjiä.

Kasviravintoa syövä Ramapithecus oli enemmän apina kuin apinaihminen. Hieman myöhemmin (2-3 miljoonaa vuotta sitten) elänyt Australopithecus africanus oli ruumiinrakenteensa ja hampaidensa perusteella sekasyöjä.

Eräs mielenkiintoinen huomio on se, että eräillä villikoirilla esiintyvät laakamadot yleistyivät näihin aikoihin ihmisapinoilla.

Ilmasto muuttuu ja muutos vaikuttaa lajien migraatioon ja kehitykseen

Ilmaston muuttuminen on ohjannut kaikkien lajien sopeutumista ja kehittymistä. Kenotsooisella kaudella Afrikan ja Euroopan välissä kulki lämmin merivirta. Meri oli selvästi korkeammalla ja peitti suuremman osan maapallosta.

Esimerkiksi Saharassa ilmaston vaihtelu kosteasta kuivaan on ollut syklistä miljoonien vuosien ajan. Viimeisimmän jääkauden jälkeen Saharan alue oli vehreää savannia, jossa asui kirjava eläinkanta ja ihmisyhteiskuntia. Ihmisten pääasiallinen elinkeino alueella oli maanviljely ja metsästäminen. Monsuunisateet olivat alueella yleisiä, mutta ne alkoivat vähentyä noin 8000 vuotta sitten. Saharan alueen ilmastonmuutos johtui muutoksista maapallon kiertoradassa ja kallistuskulmassa. Vielä 10 000 vuotta sitten Saharan alue oli täynnä jokia ja järviä.

Paleoseenikauden lopussa kenotsooisen kauden ilmasto lämpeni yhä. Noin 55,5 miljoonaa vuotta sitten lämpötila nousi ~10 000 vuoden aikana keskileveyksillä 4–8 °C. Tämän lämpöhuipun (PETM) aiheutti todennäköisesti tulivuorenpurkausten ja syvänmeren metaanikatraattimineraaleihin sitoutuneen metaanin vapautumisen aiheuttama kasvihuoneilmiö. Kuuman lämpöhuipun jälkeen maailma koki vielä pitkän ja lämpimän eoseenin lämpöoptimin, minkä jälkeen maapallo alkoi jäähtyä.

Mioseeni oli Euroopassa lämmin ja kostea, mutta trooppiset lajit alkoivat kauden edetessä kadota. Palmut hävisivät Alppien pohjoispuolisesta Euroopasta. 7–5 miljoonaa vuotta sitten Afrikka viileni ja aavikoitui.

Maapallon lämpötila romahti ~2,74 miljoonaa vuotta sitten kylmään jääkausitilaan, jossa jääkauden ja lämpökaudet vuorottelivat. Pleistoseenikaudella oli arviolta 26 jäätiköitymistä, joista kymmenen olivat suuria. Pitkät jääkaudet alkoivat viimeistään 0,9 miljoonaa vuotta sitten.

Sään armoilla

Ihmisten kehityslinjan eritymiseen vaikutti miljoonien vuosien aikana muuttunut ilmasto ja ympäristö. Selviytyminen edellytti sopeutumista ja sopeutuminen johti kehitysaskeliin, kuten kahdella jalalla liikkumiseen, aivojen kasvuun, tulen keksimiseen ja kieleen perustuvaan kommunikaatioon.

Ensimmäinen merkittävä kehitysaskel tapahtui 7–8 miljoonaa vuotta sitten, kun ilmasto muuttui kuivemmaksi ja viileämmäksi. Metsät vähenivät ja savannit laajenivat. Muutoksen seurauksena ihmisen kantamuodon oli laskeuduttava puista ja sopeuduttava elämään savanneilla. Näihin aikoihin ihmisen kantamuodot erkanivat ihmisapinoiden kantamuodoista.

Jotkut apinalajit sopeutuivat elämään savanneilla nousemalla kahdelle jalalle. Tällaisesta oli selviä etuja. Pystyasennossa liikkuminen vapautti kädet, pitkät etäisyydet taittuivat tehokkaammin kahdella jalalla ja pystyasento paransi lämmönsäätelyä kuumilla ja kuivilla ruohotasangoilla. Kahdelle jalalle nousemisen uskotaan johtaneen työkalujen tehokkaampaan käyttöön.

Savannilla kahdella jalalla kulkevat apinat näkivät kauemmaksi. Seksuaalista valintaa ei myöskään voi sivuuttaa. Naaraat suosivat kookkaita ja vahvoja uroksia kaikissa apina- ja ihmispopulaatioissa.

Seuraava merkittävä kehitysaskel oli työkalujen käyttö. Savanneilla elävät ihmisapinat oppivat hajottamaan luita hakkaamalla niitä kivillä.

Tämä vaihe ihmisen evoluutiossa sivuutetaan usein hyppäämällä puista suoraan työkaluja taidokkaasti hyödyntäviin metsästäjäkeräilijöihin. Apinaihmiset eivät aloittaneet suurriistan metsästämistä heti savanneille sopeuduttuaan, vaikka saattoivat pyydystää ravinnoksi pienriistaa samaan tapaan kuin simpanssit.

Toban vaikutus?

73 800 votta sitten Sumatralla purkautui jättitulivuori Toba. Yhdellä kertaa taivaalle räjähti 8000 kuutiokilometriä vulkaanista tuhkaa ja kiveä. Toban kraateri on 100 km pitkä ja 35 km leveä.

Rikkikaasut levisivät ilmakehään ja heijastivat suuren osan auringon lämpösäteilystä avaruuteen 5-6 vuoden ajan. Lähes valkoinen tuhka levisi ainakin 21 miljoonan neliökilometrin alalle, mutta todennäköisesti ohut tuhkakerros levisi paljon laajemmalle. Vaaleaa tuhkaa on löydetty 10 cm tasainen kerros esimerkiksi yli 400 neliökilometrin alueella tehdyissä kaivauksissa Intiassa. Vaalean tuhkan albedovaikutus heijasti lämpösäteilyä maan pinnalta samaan tapaan kuin jäätiköt.

Hiili-isotooppianalyysin perusteella tuhkakerroksen alapuolinen maa-aines on peräisin metsistä (C3), kun tuhkan päällä oleva maakerros on peräisin ruohokasveista (C4). Tämä tiedetään, koska maatuneiden metsien hiili-isotoopit eroavat maatuneiden ruohokasvien hiili-isotoopeista.

Alueilla, johon Toban purkaus vaikutti oli aiemmin metsiä ja purkauksen jälkeen ruohoa kasvavia aroja. Toba aiheutti vuosia kestäneen ydintalven.

Apinoiden, apinaihmisten ja ensimmäisten ihmisten kehitystä on tarkasteltava muuttuvan ilmaston, ympäristön ja lajiston viitekehyksessä. Lämpötilan muutokset ja Toban kaltaiset luonnonmullistukset vaikuttivat ravinnon laatuun, saatavuuteen ja migraatioon.

Muutokset pakottavat lajit sopeutumaan uudenlaiseen ilmastoon ja uusiin ravinnonlähteisiin. Evoluutiolla on monia mekanismeja, mutta muuttuva ilmasto johtaa adaptaatioihin ja luonnonvalintaan, joka karsii heikommin ympäristöön sopeutuvat geenit geenipoolista.

Ihmisen evoluutio

Perinteinen evoluutiopuu on geneettisen tiedon lisäännyttyä muuttunut sotkuisemmaksi. Adam Rutherford kuvaa nykyihmisen kehitykseen johtavaa puolen miljoonan vuoden epookkia termillä ”clusterfuck”.

Käytännössä hän tarkoittaa, että pitkään vallalla ollut kuva ihmisen kehityshistoriasta erilaisten kehitysharppausten kautta etelänapinoista valkoiseksi mieheksi kuvaa huonosti todellisuutta. Geneettisen datan perusteella ajallisesti päällekkäin lomittuvia ihmislajeja oli ainakin kahdeksan ja ne sekoittuivat keskenään useita kertoja eri aikoina (clusterfuck).

Rutherfordin mukaan massiiviset muuttoliikkeet Afrikasta Aasiaan ja Eurooppaan tapahtuivat hyvin hitaasti kymmenien tuhansien vuosien aikana. Pienet populaatiot vaelsivat luultavasti ravinnon perässä ja lisääntyivät kohtaamiensa muiden ihmispopulaatioiden kanssa.

Länsi- ja itä-Neandertalin ihmisten geenit sekoittuivat Homo sapiensin geeneihin useita kertoja Euroopassa ja Euraasiassa. Aasiassa Denisovan ihmisten geenejä sekoittui Aasiaan vaeltaneisiin populaatioihin. Ja toisiin ihmislajeihin sekoittuneet lajit sekoittuivat myös keskenään. Se oli kaikin tavoin hyvin sekavaa.

Ihmisapinasta apinan tavoin käyttäytyvään ihmiseen

Sahelinapinaihminen eli Tšadissa 6-8 miljoonaa vuotta sitten. Sen kallo muistutti joiltain osin simpanssia ja joiltain osin ihmistä. Sahelinapinaihminen eli aikana, jolloin ihmisen ja simpanssin kehityslinjat alkoivat erkaantua. Se saattoi olla molempien kantamuoto tai kuulua jompaankumpaan kehityslinjaan. Luultavasti Sahelinapinaihminen käytti samanlaista ravintoa kuin ihmisapinat.

Tugeeniapinaihminen eli mioseenikaudella 5,7-6,2 miljoonaa vuotta sitten. Tugeeniapinaihminen voi olla ihmisen suora edeltäjä, mutta voi olla olemattakin. Todennäköisesti samaan aikaan eli muitakin apinaihmislajeja, jotka saattoivat olla rinnakkaisia kehityslinjoja tai ihmisen suoria esivanhempia.

Australopithecus

Varhaisin tunnettu etelänapina (Australopithecus) eli 4,1-5,1 miljoonaa vuotta sitten. Sukuun kuului 5-6 lajia. Tunnetuin Australopithecus-fossiili on Beatlesin ”Lucy in the sky with diamonds” -kappaleen mukaan Lucyksi nimetty 3,2 miljoonaa vuotta sitten elänyt Australopithecus afarensis.

Tutkijat päättelivät Lucyn luista, että se oli kuollut putoamalla puusta noin 12 metrin korkeudesta. Se ei ollut yhtä taitava kiipeilijä kuin apinat. Lucyn aivojen tilavuus oli noin kolmanneksen nykyihmisen aivojen tilavuudesta.

Dart ja tappaja-apinat

Raymond Dartin 1924 löytämä Australopithecus africanus oli lihansyöjä, mikä johti tappaja-apina hypoteesiin. Ihmisen luontainen väkivaltaisuus sai Raymond Dartin vakuuttumaan siitä, että ihmisellä oli saalistamiseen pystyvät esivanhemmat.

Robert Ardrey kirjoitti: ”Not in innocence and not in Asia was mankind born”. Stanley Kubrick kuljetti ihmisen evoluution tappaja-apinasta avaruuteen muutamalla vaikuttavalla kuvalla elokuvassa 2001 Avaruusseikkailu.

Varhaisilla savanneilla oli suurten saaliseläinten osin syötyjä raatoja. Ne tarjosivat etelänapinoille luiden sisältämää herkkua. On perusteltua olettaa, että Australopithecus käytti kiviä löytämiensä luiden hajottamiseen. Luissa on runsaasti energiaa sisältävää luuydintä, joka säilyy luissa pilaantumatta hyvin pitkään.

Kenyanthropys platyops

Joidenkin tutkijoiden mukaan Australopithecukset ovat ihmisen esivanhempia, mutta ne saattoivat myös olla rinnakkaismuoto varhaisten ihmisten edeltäjälle Kenyantropukselle.

Australopithecus oli selvästi ihmisen ja apinan välimuoto. Australopithecukset kävelivät pystyssä ihmismäisillä jaloillaan, mutta sillä oli apinan käsivarret ja suuret apinamaiset poskihampaat.

Kenianesi-ihminen (Kenyanthropus platyops, eli litteänaamainen kenianihminen) eli ~3,5 miljoonaa vuotta sitten. Kenianesilla oli ihmismäisiä piirteitä, kuten litteät kasvot. Joidenkin tutkijoiden mukan Kenianesi on ihmisen edeltäjä, mutta jos näin on, Australopithecuksen täytyy olla rinnakkainen kehityslinja. Kenianihmistä seurasi Turkananihminen (Homo rudolfensis) 1,9 miljoonaa vuotta sitten.

Ihmisten suvun (Homo) eriytyminen apinaihmisten ja ihmisten yhteisestä kantamuodosta ajoitetaan tavallisesti 2,0-2,5 miljoonan vuoden taakse. Ensimmäisenä varsinaisena Homo-suvun edustajana pidetään yleensä yksinkertaisia kivityökaluja käyttänyttä Homo habilista, eli käteväihmistä, jonka aivojen tilavuus oli noin puolet nykyihmisen aivojen tilavuudesta.

Homo habilis

1,9-1,5 miljoonaa vuotta sitten elänyt Homo habilis ei ehkä ollut mikään ruudinkeksijä, mutta ei enää ihan täysi apinakaan.

Australopithecusten, Homo habiliksen ja Homo erectuksen kallon lihaksia ja hampaita vertailemalla havaitaan, että samaan aikaan eli kasviravintoa ja sekaravintoa syöviä Australopithecuksia. Kasviravintoa syövillä ihmisapinoilla on selvästi isommat juurien ja puunverrsojen jauhamiseen soveltuvat poskihampaat.

Hampaat jauhavat, aivot ajattelevat

Elektronimikroskoopeilla voidaan kuvata tarkasti fossiilien hampaiden pintoja, joihin eri ravintoaineet jättävät erilaisia mikroskooppisen pieniä jälkiä. Löydettyjen kallojen mekaniikkaa voidaan mallintaa tietokoneilla, jolloin saadaan tietoa mm. purentalihaksista. Näiden avulla tieto apinaihmisten ja varhaisten ihmisten syömästä ravinnosta on jatkuvasti tarkentunut.

Itä-Afrikasta löytyneiden kallojen (hampaiden ja kallonlihasten) perusteella Australopithecus boisei (Zinjanthropus boisei tai Paranthropus boisei) söi ensisijassa kasviravintoa. Mary Leakeyn 1959 Tansaniasta löytämä vankka-apinaihminen tunnetaan nimellä ”Nutcracker Man” vahvojen leukojen ja poskihampaiden vuoksi. 2,6-1,2 miljoonaa vuotta sitten eläneen lajin arvellaan olevan ensimmäinen kivityökaluja käyttänyt apinaihminen. Vankka-apinaihmisen kallon tilavuus oli 500-550 kuutiosenttimetriä, mikä on isompi kuin simpansseilla, Australopithecus afarensiksella ja Australopithecus africanusilla. Kallossa on yhtäläisyyksiä gorillan kalloon ja se on selvästi kehittynyt tehokkaaseen pureskeluun. Lajin takahampaat ovat noin neljä kertaa nykyihmisen hampaita kookkaammat ja ne sopivat hyvin juurien, pähkinöiden, lehtien ja erilaisten kasvinversojen jauhamiseen.

Selvästi isompikalloisten Homo habiliksen ja Homo erectuksen hampaat ja kallojen lihakset eivät sen sijaan sovellu samanlaisen kasviravinnon syömiseen. Homo habilis ja Homo erectus puolestaan erottuvat kallojen koon, pienempien hampaiden ja – kallon lihasten puolesta työkaluja valmistavina ja ajattelevina sekasyöjinä.

Alkeellisten apinaihmisten ja ihmisten ruokavalio

Savanneilla oli alkuihmisille jotain hyvin arvokasta ja helposti saatavaa: suurten eläinten raatoja, joiden luista varhaiset apinaihmiset saivat rasvaista, ravitsevaa ja herkullista luuydintä. Luuydin sisältää noin kaksi kertaa enemmän energiaa kuin liha tai hedelmät. Se myös säilyy luissa pilaantumatta pitkiä aikoja. Varhaiset apinaihmiset käyttivät ravinnoksi luuydintä rikkomalla luita kivillä.

Apinaihmisten ruumiinrakenne kehittyi yhä ihmismäisemmäksi.Afrikan pystyihminen (Homo ergaster / Homo erectus) levittäytyi Afrikasta Aasiaan ja Eurooppaan.

Tulen ja parempien kivityökalujen käyttöönotto tapahtui 1,5-1,8 miljoonaa vuotta sitten. Homo erectus käytti tulta jo ~1,5 miljoonaa vuotta sitten itä-Afrikassa. Tulenkäyttö oli yleistä kaikilla ihmispopulaatioilla viimeistään 125 000 vuotta sitten. Tulen käyttö yleistyi eri aikoina eri puolilla maailmaa.

Ihmisapinat ja ihmiset ovat aina syöneet raakaravintoa, mutta uskomus raakaravinnon merkityksestä varhaisten ihmisten pääasiallisena ravinnonlähteenä ei perustu arkeologiseen näyttöön tai ihmisen metabolian ja ruoansulatuselimistön toimintaan.

Ihmiset eivät ole koskaan olleet raaka-ravinnolla eläviä fruitaristeja yhtään sen enempää kuin manteleita, banaaneja, kahvia, suklaata, tonnikalaa ja sisäfilettä sisältävällä paleoruokavaliolla. Ravinteiden osalta molemmat ovat hyviä ruokavalioita, mutta hyvin kaukana siitä, mitä ihmisen esivanhemmat söivät.

Ravinnon kypsentäminen tulella alkoi yli miljoona vuotta ennen nykyihmisten kehittymistä. Ruoan kypsentäminen vaikutti ihmisen ruoansulatuskanavan rakenteeseen.

Ihmisen ruoansulatuskanava, maha ja suolisto eroavat hedelmiä ja kasviksia syövien sukulaistemme simpanssien, orankien ja gorillojen ruoansulatuselimistöstä. Ruoansulatuselimistömme ei myöskään muistuta lihansyöjien ruoansulatuselimistöä. Useimmat kasvissyöjät käyttävät suuren osan hereilläoloajasta syömiseen. Ihmisen aineenvaihdunta on kehittynyt niin, että ihminen selviää ilman ravintoa viikkoja. Pätkäpaasto ja ketogeeninen ruokavalio muistuttavat hieman alkuihmisten tapaa syödä, mutta jalostettujen ruokien maailmassa todellisen paleoruokavalion noudattaminen on mahdotonta.

Ihminen ei pysty hyödyntämään ruohoa ravintona niin kuin laiduntavat eläimet. Jos ihmisen ravinto ei sisällä muuta kuin vähärasvaista lihaa, ihminen kuolee nälkään. Ihminen pystyy syömään ruohonsyöjiä ja muita eläimiä sekä monipuolisesti erilaisia kasveja.

Tulen keksimisen seurauksena varhaiset esivanhempamme oppivat kypsentämään juuria ja muita vaikeasti sulavia kasveja. Näin ravinto esikäsiteltiin ruoansulatuselimistöä varten. Kypsytetystä ravinnosta elimistö sai irti enemmän energiaa ja ravinteita.

Neljäs ja ehkä tärkein kehitysaskel oli aivojen kasvu. Aivojen paino on vain muutaman prosentin kehon painosta, mutta aivot käyttävät viidenneksen elimistön tarvitsemasta energiasta. Aivojen kehitys ei olisi ollut mahdollista ilman runsasenergistä ravintoa. Tämän perusteella rasvainen liha ja kypsytetyt tärkkelystä sisältävät mukulajuuret ja muut hiilihydraattien lähteet näyttelivät tärkeää roolia ihmisen kehityksessä.


Aivot tarvitsevat paljon energiaa. Simpanssin aivojen tilavuus on 350-400 kuutiosenttimetriä. Simpanssin aivojen lepokulutus on 10 % energian kokonaiskulutuksesta. Ihmisen aivojen koko on 1350-1400 kuutiosenttimetriä. Ihmisen aivot kuluttavat levossa 20 % ihmisen päivittäisestä energiasta. Se on paljon kun aivojen paino suhteutetaan kokonaispainoon. Aivojen osuus ihmisen painosta on vain pari prosenttia.

Lihansyönti ei yksin selitä aivojen kasvua. Entä hiilihydraatit ja rasvat? Hyviä hiilihydraattien lähteitä, kuten hedelmiä, marjoja, siemeniä ja pähkinöitä on saatavilla vain osan vuotta. Hedelmät ovat varmasti olleet osa ihmisen ravintoa koko evoluutiohistorian. Rasvaa saatiin luuytimistä, pähkinöistä ja rasvaisesta lihasta.

Australopithecusten poskihampaat soveltuivat juurten, kovien siementen ja pähkinöiden syömiseen. Mukulajuuret sisältävät hiilihydraattien lisäksi runsaasti imeytymättömiä kuituja.

Mukulajuurten hyödyntäminen ravintona on yleistä, mutta raakojen mukulajuurien käyttö energianlähteenä on lähes yhtä tehotonta kuin elimistön ruokkiminen männyn juuria jauhamalla.

Nyt siis puhutaan sellaisista juurista, joita apinaihmiset ja varhaiset metsästäjä-keräilijät söivät. Jalostetut runsaasti tärkkelystä sisältävät perunat ja mehevät porkkanat muistuttavat hyvin vähän luonnollisia juurikasveja.

Paleoideologian kompastuskivi on se, että kaikki kasvikset, joita me nykyään syömme, on pitkälle jalostettuja. Paleoruokavalion uskottavuutta lisäisi, jos siinä suosittaisiin vain paikallisia luonnosta kerättyjä marjoja, juuria, lehtikasveja, sieniä jne. runsaasti jalostettujen vihannesten ja hedelmien sijaan. Kivikautiset ihmiset söivät eläimistä kaiken (silmät, aivot, posket, kielen, sisäelimet, rasvan ja luuytimen jne.) eivät vain rasvattomia sisäfilepihvejä.

Varhaisten metsästäjä-keräilijöiden ravinto oli vahvasti sidottu vuodenkiertoon. Talvisin riista saattoi olla ainoa ravinnonlähde, mutta kesäisin syötiin hyvin monipuolisesti erilaisia kasveja. Metsästäjä-keräilijät söivät myös hunajaa.

Mukulajuuria syötiin varmasti ainakin nopeasti kypsennettyinä tai kypsentämättä, kuten hadzat vieläkin tekevät. Nopeakin kypsentäminen lisää mukulajuurten maukkatta. Pidempi kypsennys tekee juuriin sidotun tärkkelyksen paremmin imeytyväksi.

Varhaiset esivanhempamme saivat aivojen kasvun edellyttämän energian kypsennetyistä juurista (ja kausittaisista hiilihydraateista, kuten hedelmistä), hunajasta, lihasta, sisäelimistä ja eläinrasvasta. On hyvin luultavaa, että eläinperäiset rasvat olivat aivojen kehitykselle kriittisen tärkeitä, kuten Jessica Thompson kertoo. Samaan päätelmään päätyy rintamaidon koostumuksen perusteella.

Rintamaito on kasvavan ihmisen parasta ravintoa. Maidossa on noin 7,3 prosenttia laktoosia, 3,4 % rasvaa ja prosentin verran proteiinia. Äidinmaidon rasvahappokoostumus vaihtelee yksilöllisesti, mutta näillä eroilla ei ole havaittu olevan vaikutusta lapsen kasvuun.

Suurin osa rintamaidon rasvoista on tyydyttyneitä, mutta siinä on myös monityydyttämättömiä ja kertatyydyttämättömiä rasvoja, omega-3 ja omega-6-rasvoja, DHA:ta ja EPAa sekä ~10-14 mg kolesterolia / 100 g. Yli puolet rintamaidon energiasisällöstä tulee maidon sisältämistä rasvoista. Rintamaidon proteiineista noin 36 % on kaseiineja, toiset 36 % alfa-laktalbumiinia, noin 9 % immunoglobuliineja ja noin 18 % laktoferriiniä. Äidinmaito sisältää lisäksi entsyymejä, hormoneja ja kasvutekijöitä.

Hadzat

Hadzat ovat nykyihmisen synnyinseuduilla Tansaniassa elävä pieni alkuperäiskansa, joka saa ravintonsa metsästyksestä ja keräilystä, kuten varhaiset esivanhempamme ennen maanviljelyn kehittymistä. Hadzat eivät juurikaan varastoi ruokaa.

Miehet heräävät aamuisin ja lähtevät metsästämään. Naiset keräävät juuria, hedelmiä ja marjoja. Joskus ruokaa löydetään enemmän ja joskus vähemmän. Keskimäärin hadza-naiset keräävät enemmän ravintoa pöytään kuin miehet saavat pyydettyä. Ihmisen aineenvaihdunta on hyvin sopeutunut siihen, että elimistö ei saa jatkuvasti ravintoa. Se on oikeastaan pätkäpaastoilun perusta.

Jos miehet onnistuvat pyytämään suuren riistaeläimen kuten seepran, hadzat syövät usein koko eläimen kerralla. He voivat syödä lihaa ja eläinrasvaa jopa 15 000 kilokaloria päivässä silloin kun sellaisia on saatavilla. Aina niitä ei ole saatavilla. Vuodenajat vaikuttavat luonnon antimiin ja hadzojen syömään ravintoon. Tällä on vaikutuksia mikrobiomiin.

Hadzat eivät syö juuri mitään viljeltyä tai kasvatettua. He eivät kasvata eläimiä ravinnoksi. Käytännössä lähes kaikki hadzojen syömä ravinto löytyy luonnosta.

Hadzojen ruoka on tyyppiesimerkki oikeasta paleoruokavaliosta, tai siitä, mitä paleoideologiassa tavoitellaan. Se ei sisällä prosessoituja hiilihydraatteja, vliljoja. runsaasti tärkkelystä sisältäviä tai teollisesti valmistettuja ruokia.

Teollistuneessa maailmassa paleo-, keto- ja pätkäpaasto-dieetit muistuttavat hieman hadzojen ruokavaliota. Hadzojen elintapoja ei tietenkään voi toisintaa teollistuneissa maissa, mutta ravinto, joka sisältää runsaasti kasviksia, tyydyttyneitä eläinrasvoja ja maltillisesti eläinproteiineja toimii aineenvaihdunnan ja mikrobiomin kannalta paremmin kuin runsaasti tärkkelystä, viljoja ja teollisia rasvoja sisältävä arkiruokavalio.

Hadzat ovat mielenkiintoinen kansa, sillä heillä ei tiettävästi esiinny aineenvaihduntaan liittyviä sairauksia, autoimmuunitauteja tai sydäntauteja, eli sairauksia, jotka liittyvät vahvasti länsimaiseen elämäntapaan.

Ulostenäytteiden perusteella hadzojen mikrobiomi on lajikirjoltaan runsaampi ja elinvoimaisempi kuin meillä, jotka saamme ravintomme tehoviljelystä, teollisista lihavalmisteista ja tehtaissa valmistetuista rasvoista.

Hadzojen mikrobiomi muistuttaa muiden alkuperäiskansojen mikrobiomia, vaikka kansojen viimeinen yhteinen esi-isä on saattanut elää kymmeniä tuhansia uosia sitten. Jos hadzojen mikrobiomi rinnastetaan meidän mikrobiomiimme, se muistuttaa elämää sykkivää viidakkoa, kun meidän mikrobiomimme muistuttaa avohakkuiden raiskaamaa metsää. Ruokavalioltaan ja mikrobiomiltaan hadzat muistuttavat Stanfordin tutkijoiden mukaan maanviljelyn kehittymistä ennen eläneitä metsästäjäkeräilijöitä. He ovat ikkuna siihen, kuinka varhaiset esivanhempamme elivät.

Hadzojen runsaasti kuituja (100-150 g / vrk) sisältävä ruokavalio ravitsee suoliston satoja mikrobilajeja ja biljoonia mikrobeja, joiden aineenvaihdunta tuottaa suolistosta verenkiertoon imeytyviä kemikaaleja, kuten lyhytketjuisia rasvahappoja, joiden tiedetään vaikuttavan kaikkeen immuunijärjestelmän toiminnasta mielialaan. Itse asiassa 97 % ihmisen mukanaan kantamasta geneettisestä materiaalista ei ole omaamme. Elämme täysin mutualistisessa suhteessa suoliston mikrobipopulaation kanssa. Kun ihmisen genomissa on parikymmentä kuitujen aineevaihduntaan vaikuttavaa geeniä, mikrobiomissa on satoja kuitujen pilkkomista ohjaavia geenejä.

https://www.youtube.com/watch?v=tcBtNbFFjMA

https://www.youtube.com/watch?v=miEngVBrrIc

https://www.youtube.com/watch?v=iSCV_XFcVPU

https://www.youtube.com/watch?v=Cuyp1bvuaxA

https://www.youtube.com/watch?v=41IfdwLqtkA

https://www.youtube.com/watch?v=FNIoKmMq6cs

https://www.youtube.com/watch?v=SsSHzTsG4wY

https://www.youtube.com/watch?v=Me5LFbPrEe0

https://www.youtube.com/watch?v=r7rKKFOui8w

https://www.youtube.com/watch?v=Lt3cY9i7kgQ

https://www.youtube.com/watch?v=LScfRoudcC4

https://www.youtube.com/watch?v=koTIBNRqMIA

https://www.youtube.com/watch?v=ZrJb7R1u5Iw




Aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden modulointi ketogeenisellä ruokavaliolla

Vähähiilihydraattinen ja runsasrasvainen ketogeeninen ruokavalio (LCHF), on menneiden vuosikymmenten saatossa nostettu tuon tuosta esiin terapeuttisena vaihtoehtona metabolisen oireyhtymän, ylipainon ja lihavuuden sekä eräiden lääkeresistenttien sairauksien, kuten epilepsian, syövän, dementian ja masennuksen hoitona. Oma motiivini selvitellä näitä on se, että ketogeenisen ruokavalion neuroprotektiivinen ja tulehduksia hillitsevä luonne voi hidastaa etenevään MS-tautiin liittyvien keskushermoston vaurioiden kehittymistä.

Ruokavaliota on hyödynnetty lääkehoidon rinnalla tai lääkehoidosta riippumatta vuosisatoja. Esimerkiksi diabeteksen hoitoon suositeltiin vähähiilihydraattista ruokavaliota jo 1700-luvun lopulla.

Tutuin tehokkaan ravintoterapian kohde on keliakia, jota sairastavat voivat elää jokseenkin normaalia elämää välttämällä viljojen sisältämää gluteenia. Lääkeresistenttiin epilepsiaan ei edelleenkään tunneta parempaa hoitoa, kuin ketogeeninen ruokavalio, jota on käytetty erityisesti lasten epileptisten kohtausten hillitsemiseen 1920-luvulta alkaen.

Tämän ruokavalion kiistattomista hyödyistä huolimatta, terveydenhuollon ja ravitsemuksen ammattilaiset kyseenalaistavat yhä ketogeenisen ruokavalion turvallisuuden sen aiheuttamien kohonneiden seerumin ketoaineiden ja ruokavalion rajoitetun ravintokuitujen saannin vuoksi.

Ruokavalion herättämiä epäilyjä lisää edelleen huoli aivojen glukoosinsaannin riittävyydestä sekä tyydyttyneisiin rasvoihin ja kolesteroliin liittyvät irrationaaliset pelot.

Siirtymävaiheessa ketogeeninen ruokavalio voi aiheuttaa energiasubstraatin vaihtumisen ja nestehukan seurauksena ohimenevän ketoflunssan. Se on tavallista, eikä lainkaan vaarallista. Usein se kertoo, että ruokavaliomuutoksen jälkeen vettä pitäisi juoda enemmän, koska sokereiden rajoittaminen poistaa kehosta nesteitä.

Ketogeeninen ruokavalio on turvallinen ja tehokas terapiavaihtoehto moniin aineenvaihduntasairauksiin. Tässä katsauksessa tutustutaan eksogeenisten ketoaineiden ja ketonilähteiden aineenvaihduntahyötyjen tieteellisiin perusteisiin.

Katsauksessa käsitellään myös eksogeenisen β-hydroksibutyraatin (BHB) ja siihen liittyvän lyhytketjuisen rasvahapon, butyraatin (BA), synergiaa (yhteisvaikutusta) solutason aineenvaihduntatapahtumissa.

β-hydroksibutyraatin ja butyraatin hyödyt aineenvaihdunnan, inflammaation, kognition ja yleisen terveyden moduloinnissa

Monet soluistamme voivat käyttää rasvahappoja ATP-tuotannon energiasubstaattina, jos glukoosia ei ole riittävästi saatavilla. Aivot eivät kuitenkaan voi suoraan hapettaa rasvohappoja energiaksi, koska rasvahapot eivät läpäise veri-aivoestettä. Vesiliukoinen pienemmän molekyylipainon omaava ketoaine läpäisee vaivatta veri-aivoesteen ja tarjoaa hermosoluille erittäin tehokkaan energialähteen [1, 2].

Ketoaineet, kuten β-hydroksibutyraatti, ovat neuroneille erinomaisia energiasubstraatteja. Erityisen tärkeitä ketoaineet ovat henkilöille, joiden hermosolujen glukoosimetabolia (solujen glukoosin otto) on heikentynyt geneettisten tai elintapoihin liittyvien syiden vuoksi [3]. Ketoaineet aktivoivat mm. kognitiivisista häiriöistä kärsivien aivosolujen energiantuotantoa [4, 5].

Ruokavalion sisältämällä rasvalla on väitetty olevan ratkaiseva rooli ihmisen aivojen evoluutiossa, koska aivot tarvitsevat runsaasti energiaa sisältävää ravintoa sekä rasvojen sisältämiä rakennuspalikoita [6] ja kolesterolia. Tällaista käsitystä tukee huomio, joka osoittaa, että dokosaheksaeenihapolla (DHA) ja muilla rasvoilla on ratkaiseva rooli hermokudosten kasvussa ja toiminnassa. Rasva-aineenvaihdunnan poikkeavuudet tai ravintorasvojen puutteet voivat häiritä aivojen kehitystä ja toimintaa [7].

Eräät asiantuntijat arvelevat, että siirtyminen runsasrasvaisesta ruokavaliosta vähärasvaiseen ruokavalioon on selittävä syy Pohjois-Amerikan metabolisen oireyhtymän (insuliiniresistenssi, diabetes, verenpaine, dyslipidemia, lihavuus) yleistymisen taustalla. USAn makroravinteiden kulutuksen tilastollinen tarkastelu osoittaa lihavuuden lisääntymisen korreloivan ravinnon rasvan vähentämisen kanssa. Rasvan kulutuksen vähentäminen on puolestaan lisännyt runsaasti hiilihydraatteja (sokereita) sisältävien ruokien kulutusta [8].

Samalla noususuuntaisella tilastokäyrällä ovat vuoden 1980 jälkeen kolminkertaistunut lihavien määrä ja aikuistyypin diabeetikkojen määrän kaksinkertaistuminen samana aikana. Iltapäivälehtien clickbait-jutut ketogeenisellä ruokavaliolla sairastuneista kannattaa jättää omaan arvoonsa. Diabeetikkojen määrä on globaalisti jo lähes puoli miljardia ja lihavia on kolmannes kaikista ihmisistä.

Iltapäivälehtien tulisi kiinnittää huomiota todelliseen ongelmaan: Suomessa on puoli miljoonaa aikuistyypin diabetesta sairastavaa. Näistä tilastollisesti joka toinen tulee kuolemaan sydän- ja verisuonitauteihin.

Kaiken lisäksi diabeteksen hoitokustannukset Suomessa ovat samaa luokkaa tai korkeammat kuin tupakoinnin ja alkoholin aiheuttamien sairauksien hoitokustannukset. Koskettavat mielipiteitä muokkaavat tarinat ketogeenisellä ruokavaliolla elämänsä tuhonneesta Penasta tai Sirkka-Liisasta eivät muuta tosiasioita miksikään: voi ja kolesteroli eivät ole suomalaisten suurin terveysongelma.

Tämän hetken kriittisin terveysongelma on hyperglykemian ja hyperinsulinemian aiheuttama insuliiniresistenssi sekä siihen liittyvät aineevaihduntasairaudet. Niiden hoito ravintoterapialla on helppoa ja halpaa.

Jossain ruokavalioiden ääripäiden välillä voi olla terveyden Shangri-La, jossa jalostettuja hiilihydraatteja (sokereiden lähteitä) rajoitetaan, tyydyttyneitä rasvoja ei pelätä ja tuoreilla (matalan glykeemisen indeksin) vihanneksilla on edelleen tärkeä rooli osana terveellistä ruokavaliota [9]. Tai sitten sellaista ei ole.

Energiansaannin rajoittaminen paastoamalla tai ruokavalion sisältämien hiilihydraatteja rajoittamalla johtaa ketoosiin ja seerumin ketonipitoisuuden nousuun [10].

Ketogeeninen vähähiilihydraattinen, runsasrasvainen ruokavalio (LCHF) on kokenut kuluneiden sadan vuoden aikana monta renesanssia ja romahdusta. Jotkut, jotka eivät tunne historiaa, pitävät ketogeenistä ruokavaliota vain muotioikkuna (fad), mutta hiilihydraattien rajoittamista on harjoitettu terveyden kohentamiseksi jo esikristillisillä ajoilla. Lähes jokaiseen uskontoon sisältyy puhdistava paasto, eikä se ole sattumaa, sillä paastolla on tunnustettuja terveyshyötyjä. Paasto johtaa ketoosiin.

Viime vuosisadalla ketogeenisen ruokavalion positiivisista terveysvaikutuksista raportoitiin laajemmin esimerkiksi 1930- ja 1940-luvuilla, jolloin sitä hyödynnettiin mm. astman hoidossa.

Ketogeenistä ruokavaliota on käytetty tehokkaasti hoitona:

  • metaboliseen oireyhtymään[11]

  • epilepsiaan [12]

  • kognitiivisten ja neurologisten häiriöiden [13], kuten Alzheimerin taudin hoitona, jossa sen on osoitettu vähentävän haitallista amyloidiproteiinia [14]
  • termogeneesin proteiiniaktiivisuuden irrottamisen aktivaattorina [15]

  • laihduttamiseen [16]

Ketogeeninen ruokavalio ei ole uusi ja muodikas ruokavalio-oikku, vaan ruokavalio, johon kehomme on täydellisesti adaptoitunut nisäkkäiden ja hominidien evoluution aikana.

Se, että tämä ruokavalioprotokolla voi tehokkaasti vähentää epileptisten kohtausten esiintymistiheyttä [17] ja auttaa hoitamaan lääkeresistenttiä epilepsiaa [18], vahvistettiin jo 1920-luvulla [19, 20].

Tässä katsauksessa käydään läpi joitain ketogeenisen ruokavalion metabolisten ja terveydellisten hyötyjen todisteita, sekä tarkastellaan ruokavalion turvallisuutta ja tehoa terapiavaihtoehtona lääkkeiden rinnalla ja lääkkeistä riippumatta.

Tieteellinen näyttö esitetään myös eksogeenisten ketoaineiden ja muiden erityyppisten ketonilähteiden antamiselle hiilihydraatteja rajoittavan ruokavalioprotokollan täydennyksenä tai vaihtoehtona ruokavaliolle.

Kirjoittajat suosittelevat erityistä menettelytapaa, johon sisältyy eksogeenisen ketonin, β-hydroksibutyraatin (BHB) antaminen lyhytketjuisen rasvahapon, butyraatin (BA) mukana.

Tässä katsauksessa painotetaan tämän BHB-BA-yhdistelmän synergiaa solusignaloinnin ja elimistön hiljaisen tulehduksen, eli inflammaation hallinnan yhteydessä ja sen käyttöä energiasubstraattina ATP: n muodostamiseen TCA-syklissä (sitruunahappokierrossa).

2. Mitä ketogeenisellä ruokavaliolla tarkoitetaan?

Ketogeenisessä ruokavaliossa ravintoaineiden makroravinnprofiili on tärkeä. Päivittäinen energiansaanti sisältää:

  • 65–70% rasvaa

  • 20% proteiinia

  • 5–10% hiilihydraatteja

Ketogeeninen ruokavalio kääntää perinteisen ravintopyramidin ylösalaisin. Päivittäinen hiilihydraattien saanti, joka ei ylitä 75 grammaa, on vähimmäisedellytys ketoosissa pysymiseen; 50 gramman hiilihydraattien saannin enimmäismäärä on toki ketoosin ylläpitämisen kannalta turvallisempi hiilihydraattien saanti. Ketogeenisen ruokavalion alussa hiilihydraattien saantia voi olla järkevää rajoittaa ~20 grammaan päivässä, ja monet ketoilijat pysyvät ~20 gramman päiväsaannissa ilman mitään ongelmia.

Mitä vähämmän hiilihydraatteja ravinto sisältää, sitä tehokkaammin elimistö purkaa rasvasolujen sisältämiä triglyseridejä verenkiertoon, tuottaa ketoaineita energiasubstraateiksi ja hapettaa vapaita rasvahappoja betaoksidaatiossa.

Ketogenressä 75 grammaa hiilihydraatteja päivässä on jo melkoisen villiä sokerihurjastelua, mutta virallinen linja, josta olen kuullut puhuhttavan, on, että alle 150 grammaa hiilihydraatteja päivässä luokitellaan vähähiilihydraattiseksi ruokavalioksi tai karppaamiseksi. Sellainen on absurdia roskaa.

Minä en laske sen enempää hiilihydraatteja, kuin kaloreita. Syön ravintoa, jossa on hiilihydraatteja vähän (alle 6 g/ 100 grammassa) tai ei ollenkaan. Hiilihydraattien saanti vaihtelee minulla keskimäärin 20 ja 50 gramman välillä päivässä. 50 gramman ylittäminen näkyy painossa, verenpaineessa ja verensokerissa. Se ei sovi minulle. Joillekin 50-100 g hiilihydraatteja päivässä voi sopia.

Annos keitettyä riisiä sisältää ~50 gramman hiilihydraatteja. Suuri omena tai banaani, joissa hiilihydraattien määrä on ~40 grammaa, voivat katkaista ketoosin, etenkin kun päälle lasketaan muut päivittäiset hiilihydraattien lähteet.

Myös ruokavalion sisältämillä proteiineilla on vaikutusta seerumin glukoosipitoisuuteen. Esimerkiksi leusiinilla jota saadaan yleensä riittävästi arkiruoasta (eläinperäisestä ravinnosta sekä palkokasveista, siemenistä ja hiivasta), voi olla merkittävä vaikutus ketogeneesin aktivointiin, insuliiniherkkyyteen ja veren puhdistamiseen glukoosista [21].

Sen sijaan eräät mut aminohapot, kuten alaniini, kysteiini ja glysiini, ovat erittäin glukoneogeenisiä (ts. glukoneogeneesiä indusoivia). Matalan energiansaannin aikana keho voi helposti syntetisoida glukoneogeenisiä aminohappoja glukoosiksi [22]. Glukoneogeenisiin / glukogeenisiin aminohappoihin kuuluvat myös arginiini, seriini ja proliini.

Jos ravinto sisältää runsasti glukoneogeenisiä aminohappoja, niistä tuotetaan glukoneogeneesissä glukoosia, mikä kohottaa verensokeria ja insuliinipitoisuutta ehkäisten ketogeneesin käynnistymistä.

Vaikka kohtalaiseen hyperketonemiaan liittyy merkittäviä terveysvaikutuksia riippumatta siitä, käytetäänkö sitä ravintoterapiana tai yksinkertaisesti elämänlaadun parantamiseen, tätä tilaa ei ole helppo saavuttaa ja ylläpitää ilman suunnittelua ja ruokavaliossa tehtäviä uhrauksia [23, 24]. Itse asiassa ketogeenistä elämäntapaa on nykyään jo hieman hankala ylläpitää, kun otetaan huomioon hiilihydraatti- ja sokerikeskeinen kulttuurimme. Hiilihydraattien lähteet ovat hyvin piilossa monissa arkisissa ja jalostetuissa elintarvikkeissa. Moni ei esimerkiksi tule ajatelleeksi, että maito sisältää sokeria (maitosokeria, eli laktoosia).

Yhtäältä lääketieteellisen yhteisön ketogeeniseen ruokavalioon ja varsinkin ketoasidoosiin liittyvä virheellinen viestintä ohjaa väestön kulutustottumuksia kohti hiihihydraattien runsasta saantia.

Ketoasidoosi ja ketoosi sotketaan iloisesti keskenään. Ravintoketoosi on kuitenkin hyvin erilainen fysiologinen tila kuin ketoasidoosi.

Hiilihydraattien rajoittamiseen tai paastoon perustuvista ruokavalion muutoksista johtuva ketoosi ei tarkoita samaa kuin tyypin 1 diabetekseen ja siihen liittyviin diabeettisiin tiloihin liittyvä patologinen ketoasidoosi [25, 26]. Turvallinen hyperketonemia voi saavuttaa jopa 10 mmol/l ketoaine-pitoisuuden paastoamalla tai ketogeenisella ruokavaliolla [27, 28]. Keho  säätelee ketoosia autonomisilla palautemekanismeilla [29]. Ketoasidoosille on ominaista seerumin ketonitasot, jotka ylittävät 18 mmol/l [30].

Ketoasidoosi on fysiologinen tila, jossa jotkin solujen ulkoiset nesteet happamoituvat kun niihin kertyy liikaa happamia ketoaineita. Ihmisillä ketoasidoosit jaetaan aiheuttajien mukaan muun muassa diabeettiseen ketoasidoosiin (DKA) ja alkoholiketoasidoosiin (AKA). Yleisempi diabeettinen ketoasidoosi voi johtaa hoitamattomana kuolemaan. Happomyrkytys on hengenvaarallinen tila, mutta aivan eri eri asia kuin terveen ihmisen paastotessa muodostuvat ketoaineet eli nälkähapot(diabetes.fi). Diabeetikon uhkaavasta happomyrkytyksestä kertoo se, kun verensokeri on koholla ja samaan aikaan verestä löytyy ketoaineita. DKA:n ja AKA:n yhteisiä oireita ovat muun muassa hyperventilaatio, oksentelu, mahakipu, sydämen tiheälyöntisyys ja matala verenpaine. Usein DKA:ssa ilmenee korkea verensokeri, potilas on sekava ja hengitys haisee asetonilta (hedelmäiseltä). Verensokeritaso on AKA:ssa usein normaali tai matala, potilas on lähes tajuissaan ja hengitys ei juurikaan haise asetonilta. – Wikipedia & Diabetes.fi

Koska ketogeeninen ruokavalio muuttaa kehon energia-aineenvaihduntaa glukoosipolttoisesta rasvapolttoiseksi, se imitoi paastoa. Ketogeenisen ruokavalion vaikutukset aineenvaihdunnan modulointiin ovat samanlaisia kuin paaston vaikutukset. Solujen energiasubstraatti vaihtuu glukoosista ketoaineiksi ja vapaiksi rasvahapoiksi, joista hapetetaan asetyylikoentsyymi-A:ta sitruunahappokiertoon.

Energiasubstraatin muutos käynnistää solujen puhdistusjärjestelmän, eli autofagian, joka siivoaa soluja kuona-aineista ja tuottaa niistä energiaa.

Miksi ketogeeninen elämäntapa?

Nykyisillä elintavoilla monet syövät huomamattaan aivan liian hiilihydraattipainotteisesti. Hiilihydraatit muodostuvat sokereista ja kohottavat seerumin glukoosi- ja insuliinipitoisuuksia.

Glukoosi ja sen pitoisuuden kasvun lisäämä seerumin insuliini vaurioittavat esidiabeettisella ja diabeettisella tasolla etenkin kehon pieniä verisuonia. Diabeteksen kehittymisen voi välttää tarkkailemalla sokereiden saantia.

Maksassa ylimääräinen glukoosi (ja fruktoosi) muutetaan lipogeneesissä triglyserideiksi (vrt. alkoholista riippumaton rasvamaksa). Verenkiertoon maksasta erittynyt ylimääräinen glukoosi varastoidaan ylimääräisen rasvan tapaan rasvasoluihin, jossa se muutetaan de novo lipogeneesissä triglyserideiksi.

Ylimääräinen glukoosi on siivottava verenkierrosta, koska glukoosi glykatoituu veressä olevien muiden molekyylien kanssa. Glykaation lopputuotteet (AGE) altistavat monille sairauksille. Tämä on myös se syy, miksi diabetes lisää virtsaamistarvetta: keho yrittää pissaamalla päästä eroon ylimääräisistä sokereista.

Ketogeeninen ruokavalio ei aiheuta ketoasidoosia terveillä. Jatkuvasti kohollaan oleva verensokeri ja korkea insuliini kasvattavat metabolisen oireyhtymän ja insuliiniresistenssin (ne ovat itse asiassa sama asia) ja diabeteksen riskiä. Tyypin 2 diabetes aiheuttaa lihavuutta, alkoholista riippumatonta rasvamaksaa sekä sydän- ja verisuonitauteja monien muiden aineenvaihduntaan kytkeytyvien sairauksien lisäksi.

Tyypin 2 diabetes on ongelma ja ketogeeninen ruokavalio ongelman ratkaisu.

Kun seerumin glukoosia hoidetaan väärin, seurauksena olevat edistyneet glykaation lopputuotteet (AGE) [31, 32] sekä inflammaatio [33, 34] aiheuttavat merkittävää veren toksisuutta [35] ja lisäävät sairastumisriskiä [36].

Glykaation kehittyneille lopputuotteille (AGE) altistunut LDL (matalatiheyksinen lipoproteiini) on ateroskleroosin ja muiden sydän- ja verisuonitautien riskitekijä ja aiheuttaja [37].

LDL itsessään ei ole sydän- ja verisuonitautien riskitekijä, vaan elimistön luonnollinen triglyseridejä, kolesterolia ja rasvaliukoisia vitamiineja kuljettava kuljetusmolekyyli (lipoproteiini), mutta korkean verensokerin aiheuttaman glykaation ja vapaiden happiradikaalien hapettamasta LDL-partikkelista tulee sydäntautien riski.

Elimistön reaktio (hyperglykemia, hyperinsulinemia, glykaatio ja insuliiniresistenssi) seerumin korkeaan glukoosiin, jonka aiheuttaa korkean glykeemisen kuorman ravinto, ei ole terveyttä ja kehon hyvinvointia edistävä. Monet meistä myrkyttävät itseään sokereilla.

Endokriinisen fysiologian peruskäsitys kertoo meille, että joka kerta kun insuliinia erittyy haimasta korkean glykeemisen kuorman ruokien saannin vuoksi tai sitä piikitetään haiman vaurioituneen insuliinintuotannon vuoksi kohonneen glukoosin laskemiseksi, lipolyysi estyy ja energiasubstraatit, glukoosi ja rasvahapot varastoidaan [38]. Tämä toiminta lisää rasvan kertymistä erityisesti sisäelinrasvana ja viskeraalisena keskivartalolihavuutena, mikä vähentää rasvahappojen syntetisoimista ketoaineiksi tai hapettumista betaoksidaatiossa.

Seerumin ketoaineiden saanti soluissa tapahtuu insuliinista riippumattomien metabolisten reittien kautta [39]. Siksi, vaikka insuliiniresistenssi heikentää glukoosin ottoa insuliinista riippuvaisissa soluissa, ketoaineita voidaan hyödyntää energiasubstraatteina insuliinin aineenvaihduntahäiriöistä huolimatta.

Tämä on valtava kehitysaskel neurodegeneratiivisten sairauksien, kuten Parkinsonin ja Alzheimerin taudin tulevia terapiavaihtoehtoja suunniteltaessa. Glukoosin heikentynyt energiametabolia aivoissa on yksi, ei toki ainoa, tekijä monitekijäisissä neurodegeneratiivisissa sairauksissa.

Lisäksi todisteet osoittavat, että kohonneet seerumin ketoainepitoisuudet vähentävät maksan glukoosintuotantoa ja auttavat tällä mekanismilla myös lieventämään kohonneita seerumin glukoosipitoisuuksia [40].

Ketogeeninen ruokavalio on tehokkain lääkkeetön hoito tyypin 2 diabetekseen, metaboliseen oireyhtymään ja alkoholista riippumattomaan rasvamaksaan. LCHF voi kääntää alkavan diabeteksen suunnan [41] ja johtaa aikuistyypin diabeteksen lääkkeettömään remissioon. Hiilihydraattirajoitus vaikuttaa tehokkaasti painonhallintaan [42, 43], laskee seerumin glukoosia eli verensokeria prediabeettisilla sekä diabetesta sairastavilla potilailla [44]. Ketogeeninen ruokavalio laskee myös insuliinin tarvetta insuliiniriippuvaisissa aikuistyypin diabeettisissa oireissa [45, 46].

Hiilihydraattirajoitus ei ole ainoa ruokavaliostrategia, joka torjuu elämäntapaan liittyviä sairauksia. On monta tapaa syödä oikein ja vähintään yhtä monta tapaa syödä väärin.

Ketogeeninen ruokavalio on kuitenkin yksi tehokkaimmista solujen ja elimistön hyvinvointia ylläpitävistä ruokavalioista. Niin hyödyllinen kuin se onkin painonhallinnassa ja metabolisen oireyhtymän terapiana, ketogeenisellä ruokavaliolla tapahtuva kalorirajoitus on tunnetusti huonosti siedetty, ellei sitä kompensoida korkeammalla rasvasta saadulla energialla [47]. Riittävästi rasvaa sisältävä ruoka pitää nälän tehokkaasti loitolla ja ravinnon energiapitoisuus laskee kaloreita miettimättä.

LCHF-ruokavalio myötävaikuttaa seerumin glukoosin ja paastoseerumin glukoosin laskuun sekä parantaa glukoositoleranssia [48]. Jos hiilihydraattien saanti on riittävän matala, seerumin ketonitasot voivat kasvaa riittävästi täyttämään elimistön energiantarvetta ja tukemaan terveyttä useilla tavoilla [49, 50].

Silti vähähiilihydraattisen ruokavalion edellyttämien uhrauksien, kuten leivästä, perunasta, pizzasta, hampurilaisista, bissestä ja sokeriherkuista luopumisen vaikeus on ketoilijoille haaste, joka johtaa herkästi ketogeenisestä ruokavaliosta luopumiseen.

Tämä on hyvin tavallista ruokavalion alkuvaiheessa, mutta vähitellen kaikki sokeriin liittyvät mielihalut vain katoavat. Rasva pitää nälän erinomaisesti loitolla ja energiatasot pysyvät vahvoina koko päivän 1-3 aterialla ilman parin tunnin välein mussutettavia välipaloja.

Monille meistä lääkärin määräämä pilleri tai dosetillinen päivän käynnistäviä lääkkeitä voi olla kuitenkin helpompi ratkaisu, kuin hieman selkärankaa ja sokereista luopumista edellyttävä ketogeeninen ruokavalio.

3. Endogeenisten ketoaineiden muodostuminen

Lihomisen ja laihtumisen metabolinen perusta

Lipolyysi purkaa rasvasoluihin varastoituja triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon lipolyyttisten hormonien (glukagoni, kortikotropiini, adrenaliini ja noradrenaliini) vaikutuksesta.

Veren insuliinipitoisuus säätelee lipolyyttisten hormonien erittymistä. Insuliini on myös lipolyysin tarvitsemien entsyymien estäjä, joten, kun veren insuliinipitoisuus on korkea, lipolyysi ei voi käynnistyä.

Käytännössä: Kaloreita rajoittavalla dieetillä, jossa suuri osa päivittäisestä energiasta otetaan hiilihydraateista, rasvasolujen polttaminen energiaksi estyy veren jatkuvasti korkean insuliinipitoisuuden vuoksi. Tämä tarkoittaa sitä, että painon laskua tapahtuu lähinnä rasvattoman massan (lihasten) vähenemisen kautta. Niukkakalorisella hiilihydraattipitoisella dieetillä rasvaa poltetaan yöaikaan, sillä insuliinipitoisuus laskee riittävästi ~8 tuntia syömisen jälkeen, ja vasta silloin lipolyysi voi käynnistyä. Tällöin laihtumisen aikaikkuna jää kuitenkin verrattain lyhyeksi.

Lipolyysin vastareaktio on lipogeneesi, joka edistää insuliinin vaikutuksesta rasvan ja sokereiden varastoimista rasvasoluihin triglyserideinä. Evoluution ja aineenvaihdunnan kannalta lihominen on perusteltua vain, jos rasvasoluihin tallennettu energia voidaan hyödyntää energiaksi silloin, kun ravinnosta saadaan puutteellisesti energiaa. Tämä on lihomisen ja laihtumisen metabolinen perusta.

Maksa on rasvasoluista vapautuneiden rasvahappojen ja glyserolin ensisijainen kohde. Ketoaineita tuotetaan vapaista rasvahapoista maksassa tapahtuvassa ketogeneesissä. Ketoaineet voivat myöhemmin toimia aivojen energiasubstraateina [51–53].

Triglyseridien glyseroliosaa käytetään glukoosia syntetisoivassa glukoneogeneesissä. Keho pystyy helposti syntetisoimaan kaiken tarvitsemansa glukoosin. Sanonpahan vain, koska kymmenen vuotta sitten aiheesta väiteltiin ankarasti.

Terveellä ihmisellä, jolla haiman β-solut toimivat normaalisti, seerumin ketonitasoja hallitaan autonomisesti [54]. Seerumin ketonit, asetoasetaatti ja asetoni, samoin kuin β-hydroksibutyraatti, toimivat signaaliligandeina, jotka säätelevät maksan β-oksidaatiota [55] seerumin ketoaineiden kuormituksen säätelemiseksi.

Vuosikymmenien aikana on kerääntynyt kiistattomia todisteita, jotka tukevat tämän palautejärjestelmän olemassaoloa ja tehokkuutta sekä ketonisynteesin huolellista säätelyä transkriptiotasolla [27].

Kuinka seerumin ketonikertomus liittyy seerumin glukoosimalliin?

Tarina on rinnasteinen. Molemmissa malleissa huonosti säännellyt energiasubstraatin tasot voivat johtaa toksiseen tasoon, mutta tasot, joita terve fysiologia hallitsee autonomisesti, tukevat terveellistä aineenvaihduntaa.

Itse asiassa terve seerumin glukoosipitoisuus (~5,0 mmol/l) ei ole sen ihmeellisempi kuin seerumin ketonien terveellinen taso. Seerumin ketonien terveeksi tasoksi hyperketonemian yhteydessä on dokumentoitu 2,0 mmol/l – 8,0 mmol/l [56].

Tätä ketoositasoa pidetään lievänä tai kohtalaisena hyperketonemiana, jonka keho tuottaa selviytymismekanismina pitkittyneisiin paastojaksoihin [25, 53].

Ketoaineiden perustaso terveillä henkilöillä vaihtelee 0,1 – 0,2 mmol/l pitoisuutena [57]. Seerumin ketoneja käytetään useimmissa kudoksissa tehokkaasti energiasubstraateina silloin kun glukoosia on niukasti saatavilla [58]. Ketoaineita käyttävät mm.sydän [59] ja aivot. Sydän on hyvin joustava energiasubstraattien suhteen, mutta sydämen energiansaannin kannalta tehokkain energiasubstraatti on rasva, joka hapettuu β -oksidaatiossa. Sydänlihaksen soluihin varastoituu herkästi lipotoksiineja, jos veren glukoosi- ja rasvapitoisuus on jatkuvasti liian korkea ja sydänlihakselle syötetään liikaa erilaisia energiasubstraatteja. Sydänkin rasvoittuu.

Tästä rajoittavasta ruokavaliosta voidaan tehdä siedettävämpi antamalla eksogeenistä ketonilisää (lisäravinteena) etenkin, jos halutaan kiihdyttää ketoosin positiivisia metabolisia vaikutuksia elimistössä. Endogeenisen (elimistön tuottaman) ketoosin käynnistymisen aikaikkuna ~20 g päivittäisillä hiilihydraateilla on 2-3 vuorokautta [60, 61].

Eksogeenisten ketoneiden ja erityisesti β-hydroksibutyraatin tutkimus lääkinnällisenä ja elimistön toimintaa tehostavana metabolisena substraattina on hyvin aktiivista. β-hydroksibutyraatin vaikutuksia tutkitaan aiemmin mainittujen neurodegeneratiivisten sairauksien terapian lisäksi NASAn rahoittamana astronauttien kognitiivisten kykyjen parantamiseksi äärioloissa ja USAn puolustusministeriön rahoittamana taistelusukeltajien toimintakyvyn tehostamiseksi ja sukellusaikojen pidentämiseksi.

Ketogeenisen ruokavalion aloittamisen jälkeen seerumin ATP-tuotannon kannalta riittävän ketonitason saavuttaminen, voi kestää hiilihydraattien saannista riippuen jopa viisi päivää (yleensä 2-3 päivää). Nämä siirtymäpäivät voivat osoittautua vaikeiksi ja johtaa huijauspäiviin. Seerumin toiminnallisten ketonitasojen ylläpito edellyttää ruokavalion noudattamisesta [62, 63]. Tässä eksogeeninen ketonilisäaine voi helpottaa ketogeeniselle ruokavaliolle siirtymistä.

Huijaaminen ketogeenisen ruokavalion aikana hidastaa aineenvaihdunnan siirtymistä glukoosimetaboliasta rasvametaboliaan, ketogeneesiin ja β-oksidaatioon, joka itse asiassa on ketogeenisen ruokavalion pidemmän aikavälin tavoite. Solut oppivat käyttämään vapaita rasvahappoja energiasubstraatteina β-oksidaatiossa joitain viikkoja ketoosin alkamisen jälkeen. Aikaikkuna on varsin lavea, koska toisilla primaaristi β-oksidaatioon perustuva energia-aineenvaihdunta käynnistyy nopeammin kuin toisilla.

Tunnusomaista β-oksidaatioon siirtyneessä metaboliassa on ketoaineiden tuotannon väheneminen. Ruokailujen välillä rasvahappoja vapautuu tasaisena virtana rasvasoluista verenkiertoon, jossa ne kulkeutuvat soluihin ja hapettuvat β-oksidaatiossa energiaksi, mikä ylläpitää energistä, aktiivista, hieman euforista ja kylläistä oloa. Sama tapahtuu paastotessa.

Ketogeenisessä ruokavaliossa voi ja saa tehdä syrjähyppyjä. Jos mielesi tekee juoda lava bisseä, syödä perhepizza tai suklaalevy, anna palaa! Syrjähyppy ei ole maailmanloppu. Ketogeenisen ruokavalion tarkoituksena ei suinkaan ole kurjistaa elämää, vaan parantaa terveyttä ja elämänlaatua. Syrjähyppy on toki horjahdus ja askel taaksepäin, mutta se korjaantuu, kun ketogeenistä ruokavaliota jatkaa. Alussa syrjähyppyjen teko on helppoa ja houkuttelevaa, mutta pidempään ketoillessa syrjähypyn jälkeen on aivan yhtä helppoa ja luontevaa palata hiilihydraatteja rajoittavaan ruokavalioon. Ilmiö rinnastuu mielestäni alkoholin käyttöön: ihminen voi ja saa juoda toisinaan, mutta dokaamisesta ei pitäisi tehdä elämäntapaa. Ketogeeninen ruokavalio on elämäntapa, ei laihdutusruokavalio ja siksi minäkin vältän dieetistä puhumista. sanana dieetti rinnastuu vahvasti laihduttamiseen.

Yleensä kahden-kolmen päivän ketoilun jälkeen hiilihydraattien rajoittaminen johtaa siihen, että aivot alkavat käyttää solujen energiasubstraatteina enimmäkseen ketoaineita. Tämä aikaikkuna johtuu siitä, että maksan sokerivarastoissa, eli glykogeeneissä on glukoosia ihmisestä riippuen 1-3 päiväksi (~250 g) ja ketogeneesi käynnistyy glukoosivarastojen tyhjennyttyä.

96 tunnin kuluessa hiilihydraattien rajoittamisesta keskushermoston solut tyydyttävät suurimman osan ATP-tarpeestaan ketoaineilla [64]. Itse asiassa ketonit voivat toimia ATP-substraatteina ja tuottaa jopa 70% aivojen energiasta energiakysynnän tyydyttämiseksi [65, 66].

Alzheimerin taudin, dementian ja Parkinsonin taudin hoidossa kohonnut seerumin ketonipitoisuus (ketoosi) on lupaava terapiavaihtoehto [67–69]. Magneettikuvissa ketoosin on huomattu aktivoivan taudin passivoimia aivoalueita Alzheimerin tautia sairastavilla. Hyviä tuloksia on saatu myös dementiaa sairastavien potilaiden kognitiivisissa testeissä, joiden tulokset ovat glukoosin vähentymisen ja ketoaineiden lisääntyneen pitoisuuden seurauksena selvästi parantuneet.

Tähän on looginen selitys: hermosolujen glukoosinoton heikentyminen on yksi monista neurodegeneratiivisten tautien solutason vaurioitumisen syistä. Glukoosimetabolian heikentyesssä solut surkastuvat ja kuolevat energianpuutteeseen, mikä lisää aivojen atrofiaa ja ko. tautien oireita. Nämä solut kuitenkin saavat energiaa β-hydroksibutyraatista. Tämä ehkäisee solujen surkastumista ja dementian oireiden pahenemista. Taustalla oleva mekanismi on kiehtova.

4. Eksogeenisten ketonien käyttö

Endogeenisten ketonien muodostuminen on kehon normaali ja terveellinen selviytymismekanismi, jonka ansiosta ihminen selviää pitkään ilman ravintoa [58]. Tämä on ollut erityisen tärkeää esihistoriallisille esivanhemmillemme, joille ravinnon saanti päivittäin tai edes joka viikko ei ollut mikään itsestäänselvyys. Suuri muutos ravinnonsaannissa tapahtui oikestaan vasta maanviljelyn kehityttyä noin 10 000 vuotta sitten, jolloin ravintoa tuotettiin ja varastoitiin yli välittömän kulutuksen.

Metsästäjä-keräilijät elivät sillä, mitä löysivät tai saivat saaliiksi. Ruokaa syötiin silloin kun sitä oli. Ravinnosta saatu ylimääräinen energia varastoitiin rasvakudokseen. Aikoina, jolloin ravinnosta oli pulaa, solut tuottivat energiaa varastorasvasta. Ketogeneesi, glukoneogeneesi, rasvan β-oksidaatio ja perusaineenvaihdunnan hidastuminen pitävät ihmiset hengissä tarvittaessa useita viikkoja ilman ravintoa. Lihomisella on tärkeä fysiologinen tehtävä ihmisen selviytymisessä.

Solusignalointi

ATP-substraattina toimimisen lisäksi ketonit toimivat myös ligandeina, jotka säätelevät solujen signalointia ja käyttäytymistä [27]. Nämä edut toteutuvat vain, jos henkilö noudattaa ketogeenistä ruokavaliota. Ketogeenisen ruokavalion täydentäminen eksogeenisilla ketoaineilla voi ylläpitää ketoosiin perustuvaa aineenvaihduntaa pienistä syrjähypyistä huolimatta. Samanaikaisesti eksogeeniset ketonit edistävät suotuisaa farmakologiaa.

Ketonien tai proketonien (BHB) eksogeeninen käyttö lisäravinteena on ollut käytössä vuodesta 1975 alkaen. BHB (β-hydroksibutyraatti) muuttuu tarpeen mukaan muiksi ketoaineiksi, kuten asetoasetaatiksi tai alavirtaan asetoniksi. Asetoni ja asetoasetaatti ovat biologisia ketoneja, joista seerumin ketonipitoisuus suurimmaksi osaksi muodostuu [70].

Ketogeeninen ruokavalio ruokavalioterapiana aiheuttaa haasteita, koska se vaatii ylimääräistä omistautumista ja rruokavaliorajoituksia. LCHF voi johtaa siirtymäaikana huonovointisuutta aiheuttavaan ketoflunssaan. Joillekin ketoosin saavuttaminen on vaikeampaa kuin toisille metabolisten, geneettisten, ympäristön, sosiaalisten, kulttuuristen ja elämäntapoihin liittyvien tekijöiden vuoksi.

Eksogeeninen ketonilähde voi toimia siltana, joka kompensoi metaboliseen siirtymään liittyvää energiapuutetta, samalla kun se tarjoaa ketonilähteen, joka toimii solujen signalointiligandina. Sillä voi kuitenkin olla myös ruokavaliosta riippumaton rooli solunsisäisten signalointiominaisuuksiensa vuoksi.

Nykyisissä kaupallisissa ketoaineissa käytettyä suurta annostusta voidaan pitää tarpeettomana. Kuluttajille tarjotaan jopa 10 gramman BHB:tä yhdessä keskipitkäketjuisten triglyseridien (MCT) kanssa.

MCT toimii substraatina β-hapetukselle ja BHB:n muodostumiselle. Suun kautta otettava MCT liittyy monilla käyttäjillä ruoansulatuskanavan häiriöihin, kuten ripuliin [71–75]. Lisäksi nämä BHB-lisäravinteet sisältävät natriumia, jota voi olla 1300 mg annosta kohti. Terveydenhuollon ammattilaisen tulisi valvoa tällaisten erittäin suurten terapeuttisten annosten annostelua potilaille. Lisäravinteisiin liittyy aina yliannostuksen riski.

5. Eksogeenisten ketoaineiden hyödyt

Eksogeenisillä ketoaineilla, kuten BHB:llä (β-hydroksibutyraatilla) on on terapeuttista arvoa useiden sairauksien hoidossa. β-hydroksibutyraattilisän (BHB) in vivo -tutkimus vähensi syöpäkasvaimen kasvua ja pidensi tutkittavan kohteen eloonjäämistä muista ruokavalion tekijöistä, kuten seerumin glukoosipitoisuudesta riippumatta [76].

BHB:llä on havaittu tulehdusta hillitsevä vaikutus NLRP3-tulehduksen aiheuttaman IL-1β:n ja IL-18:n välittämisessä ihmisen monosyyteissä [77]. Tällä voi olla merkitystä autoinflammatoristen sairauksien hoidossa. Eksogeenisen ketonin tukema terapeuttinen ketoosi hillitsee epileptisten kohtausten alkamista [78].

β-hydroksibutyraatti (BHB) auttaa myös parantamaan sydämen terveyttä vähentämällä sydänlihaksen glukoosinottoa ja lisäämällä verenkiertoa [79]. Aivojen hypometabolisten sairauksien, kuten Alzheimerin taudin (AD), hoidossa käytetään menestyksekkäästi 10–20 grammaa eksogeenistä ketonilisää annoksiin jaettuna [80].

Alzheimerin tauti liittyy keskushermoston neuronien heikentyneeseen glukoosimetaboliaan, joka korreloi kognitiivisten kykyjen heikentymisen kanssa [81–84]. Ketoni ei ole riippuvainen insuliinista ja sitä voidaan käyttää hermosolujen mitokondrioissa tehokkaasti. β-hydroksibutyraatin saatavuus ehkäisee neurodegeneratiivisten tautien aivosolujen energiavajeen aiheuttamia solutuhoja [85].

Seerumitasojen ei tarvitse nousta merkittävästi, jotta aivojen energiansaantia voidaan tehostaa vaihtoehtoisella energiasubstraatilla. Tämä vähentää sivuoireiden riskiä ja minimoi hoidossa tarvittavan eksogeenisen ketoniannoksen.

Hyperketonemian, jossa systeemiset plasman ketonit nousevat vain tavallisten (0,2 mmol/l) perustasojen yli, on osoitettu parantavan aivojen ketonipitoisuutta ja tarjoavan neuroneille vaihtoehtoisen ja tehokkaan energiasubstraatin [80].

β-hydroksibutyraatti tukee mitokondrioiden energiantuotannon aktiivisuutta ja estää apoptoottisten (solukuolemaan indusoivien) proteiinien kumuloitumista neuroneihin [65]. Myrkytystilasta, vammoista tai iskemiasta johtuva neurodegeneraatio johtaa oksidatiiviseen stressiin. Eksogeenisten ketonien antaminen hiirimalleissa estää turvallisesti reaktiivisten happiradikaalien (ROS) muodostumista [86].

Ketogeenisen ruokavalion on dokumentoitu olevan tehokas hoito epilepsian ja lääkeresistentin epilepsian hoidossa [87, 88]. Eksogeenisten ketonien antamista on vuosikymmenien ajan käytetty hyvällä menestyksellä epilepsian hoitoon [78, 89].

Kokeellisessa rottamallissa eksogeenisten ketonien on havaittu lisäävän sekä rotan fyysistä aktiivisuutta että kognitiivista suorituskykyä [90]. Siitä, missä määrin eksogeeniset ketonit voivat säätää tai parantaa pitkittynyttä suorituskykyä ihmisillä, ei ole vielä tutkittua tietoa [91], mutta professori Tim Noakesin juoksemat ultramaratoonit ja triathlonisti Sami Inkisen käsittämättömät suoritukset ketogeenisellä ruokavaliolla viittaavat siihen, että ketogeeninen ruokavalio parantaa myös ihmisten henkistä ja fyysistä suorituskykyä.

Viime kädessä ketogeenisen ruokavalion vaikutuksia motivaatioon ja jaksamiseen tukee myös se, että minä multippelisklerootikkona käänsin, editoin ja uudelleenkirjoitin marraskuussa kahdeksan 10-25 A4-sivun mittaista tutkimuskatsausta Ruokasotaan. Kyllä sekin jotain kertoo ketogeenisestä ruokavaliosta ja sen vaikutuksista jaksamiseen.

Eksogeeniset ketonit voivat toimia terveyttä edistävinä aineina, mutta kuten myöhemmin osoitetaan, BHB:n ja sen molekyylisesti analogisen lyhytketjuisen rasvahapon, voihapon (BA) yhdistelmä voi olla tehokkaampi ja sopivampi terapiavaihtoehto mm. näiden yhteiskäytön tuoman synergiahyödyn vuoksi.

6. Eksogeenisten ketonien turvallisuus elintarvikkeissa ja hoidoissa

Ruoka sisältää useita luonnollisia ketonilähteitä. Maitotuotteet ja erityisesti täysmaito ovat luonnollisen β-hydroksibutyraatin lähteitä [92, 93]. Yhdysvaltain FDA luokittelee β-hydroksibutyraatin eri muodot yleisesti turvallisiksi (GRAS).

Eksogeeniset ketonit (tai ketoaineet) ovat turvallisia, mutta kuinka paljon on liikaa?

Koehenkilöt testasivat eksogeenisen ketonimäärän 395 mg / kg ketoniesterinä saantia aterian yhteydessä tai ilman. Seerumin BHB-tasot mitattiin tunnin kuluttua lisäravinteen antamisesta. Seerumin BHB oli alhaisempi BHB:n aterian rinnnalla saaneilla koehenkilöillä verrattuna niihin, jotka saivat BHB:n ilman ruokaa (2,1 mM ± 0,2 mM vs. 3,1 mM ± 0,1 Mm). Nämä äärimmäiset BHB-annokset muuttuivat 31,6 grammaksi ketoniestereitä 80 kg painavalla henkilöllä. Annos siedettiin hyvin [94].

Toisessa ihmiskokeessa käytettiin suun kautta annettua annosta (R) -3-hydroksibutyyli (R) -3-hydroksibutyraattia, joka on BHB-molekyylin monoesteri, kvantifioituna 714 mg / kg. Nämä annokset muuttuivat 57,1 grammaksi ketoniestereitä 80 kg painavalla koehenkilöllä. Maksimiplasman ketonit saavutettiin 2 tunnissa (3,30 mmol/l BHB ja 1,19 mmol/l asetoasetaatti). Tätä suurta annosta annettiin viiden päivän ajan kolme kertaa päivässä, ja myös se siedettiin hyvin [95] ilman sivuvaikutuksia.

Tyypillinen 8 tunnin paasto tuottaa 0,5 mmol/l seerumin ketonipitoisuuden [95]. Seitsemän paastopäivän aikana veren kokonaisketonitasot voivat nousta 5–7 mmol/l tasolle [25, 95].

Toksisuustutkimus rotilla, jotka saivat ketoaineita 12 ja 15 g / kg, tukee myös β-hydroksibutyraatin annostelun turvallisuutta [96].

Suun kautta annettu natrium D, L-β-hydroksibutyraatti (1000 mg / kg päivässä) on annettu alle 2-vuotiaille lapsille, joilla on kardiomyopatia ja leukodystrofia asyyli-CoA-dehydrogenaasipuutoksesta. Viikon kuluessa hoidon aloittamisesta havaittiin lasten toipumista täydellisestä halvauksesta. Kahden vuoden jälkeen todettiin neurologisen toiminnan huomattavaa parantumista. Lapset kävelivät ja aivojen MRI-kuvat osoitti selkeää toipumista.

Kaksi muuta samaa tilaa sairastavaa lasta, jotka eivät reagoineet tyypilliseen hoitoon, paranivat progressiivisesti edellä kuvatulla hoidolla [97]. Pikkulasten hyperinsulinemisessa hypoglykemiassa kahta kuuden kuukauden ikäistä lasta hoidettiin ja seurattiin viiden ja seitsemän kuukauden ajan. Lapsille annettiin neljän ja kahdeksan gramman ketoniannoksia, ja ne siedettiin hyvin [60].

On kuitenkin huomattava, että tällainen äärimmäinen terapeuttinen annostelu vaatii lääketieteellistä seurantaa.

7. Butyraatin terveyshyödyt

Lyhytketjuiset rasvahapot, joita kutsutaan myös haihtuviksi (volatile) rasvahapoiksi, ovat tyypillisesti suolen mikrobiomin tuottamia. Näitä rasvahappoja ovat butyraatti, propionaatti ja asetaatti, jotka syntyvät suolen symbioottisten mikrobien ravintokuidun käymisen sivutuotteina [98].

Suolistomikrobien tiedetään edistävän terveyttä ja hyvinvointia, vaikka ne vaikuttavat tavoilla, jotka ylittävät monimutkaisuudessaan immuunijärjestelmän toiminnan.

Nykyään tiedetään, että kommensaalibakteerit (normaalimikrobiston mikrobit, josta ei koidu isännälle hyötyä eikä haittaa) osallistuvat vitamiinien [99] synteesiin, ja tuottavat tärkeän energialähteen lyhytketjuisten rasvahappojen muodossa [100].

Lyhytketjuiset rasvahapot kiertävät takaisin säätääkseen ja ylläpitääkseen terveellistä suolistomikrobipopulaatiota siivoamalla luminaalisen (onteloon liittyvän) ympäristön patogeeneistä tyhjäksi [101, 102].

Luminaalibutyraatti lisää suoliston mikrobiomin hyvinvointia. Patogeenisiin bakteereihin, kuten koli-bakteereihin (Escherichia coli), salmonellaan (Salmonella spp.) ja kampylobakteereihin (Campylobacter spp.) luminaalibutyraatilla on negatiivinen vaikutus [103].

Butyraatin vaikutus ulottuu kuitenkin paksusuolen ulkopuolelle, jossa sitä syntyy. Butyraatti parantaa insuliiniherkkyyttä systeemisesti [102].

Suun kautta nautitun butyraatin on osoitettu indusoivan GLP-1:n eritystä [104]. Tämän hormonin tiedetään tukevan glukoositoleranssin ja ruokahalun hallintaa. Aivoissa GLP-1 tuottaa syvällisiä vaikutuksia, joiden mekanismit eivät ole aina selkeitä. Sen on osoitettu stimuloivan iskeemisten, eli paikalliseen verenpuutteeseen liittyvien vaurioiden neurogeneesiä aivopohjaisen neurotrofisen tekijän (BDNF) ylisääntelyn kautta [105]. Sillä on masennuslääkkeiden kaltaisia vaikutuksia [106].

Tutkimukset osoittavat, että butyraattia saaneet hiiret pysyvät hoikkina (ruokavalion kalorimäärästä huolimatta) [107]. Butyraatti on lisännyt hiirten energiankulutusta kehon lämmöntuotannon muodossa ja tehnyt hiiristä yleensä fyysisesti aktiivisempia [108, 109].

Butyraatilla on osoitettu olevan merkittävä sydän- ja verisuonitauteja ennaltaehkäisevä vaikutus [110, 111]. Tutkimuksissa butyraatti vähensi seerumin triglyseridejä peräti 50% verrokkeihin nähden [112]. Se myös vähentää endogeenisen kolesterolin tuotantoa [112].

Butyraatin ja asetaatin on todettu suojaavan ruokavalion aiheuttamalta lihavuudelta [107, 113]. Butyraatin antamisen on havaittu parantavan ruokahalua ja ravinteiden aineenvaihduntaa [114]. Butyraatti on avainpolttoaine suoliston epiteelisoluille ja se parantaa suolinukan eheyttä [115].

Aivan kuten BHB, butyraatti on histonideasetylaasien (HDAC) estäjä (inhibiittori), joka säätelee oksidatiivisen stressin vastustuskykyä koodaavien geenien transkriptiota [116].

HDAC-modulointi liittyy myös pitkäkestoiseen muistiin, oppimiseen ja neuronien välisten synaptisten yhteyksien plastisuuteen (neuroplastisuuteen) [117]. Aihe, johon täytyy pikimmiten tutustua!

Geenitranskription säätely johtaa myös parempaan suojaan vapailta happiradikaaleilta ja oksidatiivisen stressin aiheuttamilta kudosvaurioilta, joita voivat aiheuttaa äärimmäinen metabolinen stressi ja ympäristömyrkyt.


Butyraatin geenisäätely vaikuttaa neuroprotektiivisesti (aivosoluja suojaten) ja parantaen siten muistia esimerkiksi dementiassa [118]. Butyraatti estää NF-kB:tä ja lisääntyneitä I-kB-tasoja ja parantaa pitkäaikaista tulehduksen hallintaa [119].

Oraalisesti annettu natriumbutyraatti heikentää kokeellisesti indusoitua koliittia [120]. Suun kautta annetulla butyraatilla on myös tulehduksia estävä anti-inflammatorinen vaikutus. Se voi johtaa Crohnin taudin remissioon vähentämällä NF-kB: n ja IL-1β: n tasoa [121].

Suonensisäisesti annetun butyraatin on osoitettu tukevan suoraan ruoansulatuskanavan vuorauksen ja suolinukan terveyttä [103]. Sillä on vaikutuksia suoliston solujen lisääntymiseen ja solujen troofiseen ravinnonottoon 122].

Butyraatti on voimakas suoliston immuunipuolustusta säätelevien T-solujen promoottori [123]. Se luo immuunijärjestelmää säätelevän mekanismin, joka edistää parempaa tulehduksen hallintaa limakalvon vuorauksessa ja suolinukassa, sekä mekanismin suolistosyövän estämiseksi [124].

Butyraatti vähentää tai estää mikrobiomipopulaatiota, joka tuottaa propionihappoa [125]. Propionihappo on osallisena autismikirjon häiriöissä (ASD) [126]. On spekuloitu, että voihapon propionihappoa tuottavien suolistobakteerien säätelyvaikutus on mekanismi kognitiivisen tilan parantamiseksi [127].

70% lapsista, joilla on autismi tai ASD, on ruoansulatuskanavan häiriöitä ja muuttunut geenien ilmentyminen aivoissa. Sen on arveltu johtuvan lyhytketjuisten rasvahappojen epätasapainosta [128]. Butyraatin ja muiden lyhytketjuisten rasvahappojen oraalisten antoon liittyvien terveysetujen luettelo on pitkä (taulukko 1). β-hydroksibutyraatin antamisen yhteydessä butyraatti-lisä on suositeltava näiden yhteisvaikutusten vuoksi.

Veden passiivinen imeytyminen paksusuolessa riippuu lyhytketjuisten rasvahappojen saatavuudesta [129–131]. Butyraatilla on rooli terveessä peristaltiikassa, joka auttaa normalisoimaan suolessa liikkuvan massan liikettä ummetuksessa tai ripulissa [132, 133]. Butyraatti tukee optimaalista nesteytystä ja optimaalista suolen eliminointitoimintoa [134].

Tämä farmakologinen vaikutus auttaa torjumaan BHB-lisäravinteisiin liittyviä mahdollisia haittatapahtumia.

Yhteenveto butyraatin terveydellisistä hyödyistä, joita on raportoitu in vitro– ja in vivo -malleilla sekä ihmiskokeilla tehdyissä tutkimuksissa

Butyraattia saa runsaasti meijerituotteista. Voi, joka sisältää luonnostaan 3-4 % voihappoa, on itse asiassa yksi parhaimmista voihapon lähteistä. Yksi ruokalusikallinen voita (~14 g) sisältää ~560 mg voihappoa. Butyraatit ovat voihapon suoloja ja estereitä. Suolistossa esiintyvä voihappo näyttää hillitsevän tulehdusta ja syöpäsolujen kasvua sekä vähentävän happiradikaalien syntyä. Ihminen kuluttaa päivässä yli 1000 mg butyraattia ulkoisista lähteistä. Tämä saadaan ruokavalion rasvoista.

Ihmisillä, jotka noudattavat ketogeenistä ja / tai kaloreita rajoittavaa ruokavaliota, mutta eivät syö meijerituotteita (voita, kermaa ja juustoja), ja joiden kuitujen saanti ravinnosta on vähäistä, voihapon saanti ja synteesi suolistossa on kehon tarpeisiin nähden liian vähäistä. Butyraatin ottaminen lisäravinteena on perusteltua myös, koska se yhdistää ketogeenisen ruokavalion ja butyraattilisän edut synergisesti.

Butyraatti lisää FGF21:n pitoisuutta seerumissa, maksassa ja rasvasoluissa, mikä puolestaan stimuloi rasvahappojen β-hapettumista ja maksan ketonituotantoa [135, 136]. Tämä on butyraattifarmakologian keskeinen piirre, joka synergisoi suoraan sen aktiivisuuden ketogeeniseen aineenvaihduntaan ja tukee sen terveydellisiä vaikutuksia. Butyraatti itsessään voi myös toimia substraattina β-hapettumiselle [137].

8. Butyraatin (lyhytketjuisen rasvahapon) ja BHB: n yhdistämisen edut

Butyraatti toimii merkittävänä ketoosin induktiota kiihdyttävänä synergistisenä tekijänä, joka parantaa:

  • BHB-ligandivuorovaikutuksia ja farmakologiaa

  • yleistä terveydentilaa

  • kuntoa ja suorituskykyä

Ketonien, kuten BHB-suolan eksogeeninen saanti lisäravinteena tarjoaa aivosolujen ATP-tuotannolle välittömän vaihtoehtoisen energiasubstraatin kalori- tai hiilihydraattirajoituksen aikana.

Samanaikainen butyraattilisäys natriumin, kalsiumin tai kaliumbutyraatin (tai sen estereiden) muodossa:

  • indusoi elimistön endogeeniseen ketonisynteesin

  • toimii ligandina stimuloimalla reseptoreita, joihin ketonit vaikuttavat

  • myötävaikuttaa insuliinin ja aineenvaihdunnan yleisen terveyden parantamiseen

  • tukee tulehduksellista ja yleistä immuunijärjestelmän terveyttä

  • tukee neurologista terveyttä

  • tukee ruoansulatuskanavan terveyttä ja eheyttä

  • toimii suoraan ATP:n muodostamisen energiasubstraattina

Kaikki nämä toteutuvat rinnakkain niiden etujen kanssa, joita sisarketoaineen (BHB) samanaikainen lisäys tuottaa. Tämän synergistisen järjestelmän arvo ketogeenisen ruokavalion yhteydessä on hyvin perusteltu ja järkevä.

On kuitenkin muistettava, että ketogeeniselle elämäntavalle on ominaista vähäinen hiilihydraattien saanti, mikä johtaa heikentyneeseen sulamattoman kuidun ja resistentin tärkkelyksen saantiin. Sillä on negatiivinen vaikutus suoliston mikrobiomiin ja sen kykyyn tuottaa lyhytketjuisia rasvahappoja, kuten voihappoa.

Suoliston mikrobiomi on säännöllisesti kovan paineen alla ympäristötekijöiden, kuten ruokavalion ja lääkkeiden (esim. antibioottien) vaikutuksesta [138, 139]. Butyraatin ottaminen lisäravinteena suojaa  suoliston mikrobiomia, etenkin jos sulamattomien kuitujen ja resistentin tärkkelyksen saanti on vähäistä.

9. Voihappo ja ketogeeninen painonpudotusstrategiaa

Lisäravinteena otetun BHB:n vaikutusta painonpudotuksessa on tutkittu hyvin paljon. Erityisen paljon huomiota on kiinnitetty lisäravinteisiin, jotka sisältävät BHB:n lisäksi keskipitkäketjuisia triglyseridejä (MCT). Ketoaineet ja MCT sisältävät energiaa ja lisäävät siten päivittäistä energiansaantia.

Tutkimuksissa on havaittu, että seerumin ketonipitoisuuden kasvu ei lisää, vaan estää lipolyysiä. Siltä kannalta lisäravinteena otetut ketoaineet ja MCT itse asiassa estävät rasvasolujen purkamista vapaiksi rasvahapoiksi, ketonien synteesiä ja laihtumista [53, 140]. Toisaalta butyraatti tukee ruokahalun hallintaa ja parantaa kehon rasva-lihas-koostumusta [107, 112–114].

On olemassa näyttöä, jonka mukaan butyraatti vaikuttaa suotuisasti sydän- ja verisuoniterveyteen ja ehkäisee sydän- ja verisuonitauteja [112]. Tasapaino eksogeenisten ja endogeenisten ketoaineiden välillä on oleellista aivojen ja kognitiivisen terveyden silloitustekijänä ja neuroniin liittyvien signaaliligandien riittävän saannin kannalta. Aktivointisignaali, kuten voihaposta peräisin oleva signaali rasvahappojen β-oksidaation käynnistämiseksi aivosoluissa, on neuronien toiminnan kannalta tärkeää.

Lisäravinteena otetutun butyraatin ja beta-hydroksibutyraatin käyttö on perusteltua ruokavalion siirtymäajalla sekä solujen energia-aineenvaihdunnan tehostajana monissa metabolisissa ja neurodegeneratiivisissa sairauksissa, mutta laihtumisen suhteen tällaisesta lisäravinnecocktailista ei ole hyötyä. Sen sijaan lisäaineina syiötävien butyraatin ja beta-hydroksibutyraatin hyödyntäminen paastolla tapahtuvan liikunnan energiabuusterina ja rasvahappojen hapettumisen tehostajana on perusteltua.

Ruokavalion tuottama ketoosi vähentää laktaatin tuotantoa ja parantaa suorituskykyä erityisesti kestävyyttä vaativissa lajeissa, kuten pyöräilyssä [141]. Sen on osoitettu estävän lihaskatoa (kataboliaa) ja suojaavan aivoja ja muita kudoksia hapettumiselta [142].

10. Kurkistus ketoaineiden solunsisäiseen farmakologiaan

BHB-BA-kompleksin farmakologiasta vastaavien mekanismien kartoittamiseksi ravintolisien yhteydessä on tehty useita tutkimuksia. Tutkimukset osoittavat, että erilaiset G-proteiiniin kytketyt HCA-reseptorit toimivat kohteina endogeenisille ketonille ja ketoaineiden ligandeille [143].

Tämä reseptoriperhe luokitellaan useisiin alatyyppeihin, joilla on erillisiä piirteitä, kuten ligandispesifisyys. Vaikka BHB toimii tehokkaana agonistina esimerkiksi HCA2-reseptoreille, se ei kykene toimimaan agonistina muille HCA-reseptoreille. Sekä BA että BHB ovat signalointiligandeja erilaisille reseptoreille, jotka osallistuvat neuroinflammatoriseen säätelyyn, mukaan lukien HCA2-reseptori [144].

Muut ligandit, kuten muut ketonit, voivat toimia agonisteina vaihtamalla HCA-reseptoreita, mutta ne eivät välttämättä pysty käynnistämään HCA2 reseptorista transduktiokaskadia. HCA-reseptoreita voi esiintyä erilaisissa kudos- ja solutyypeissä, kuten rasvasoluissa ja makrofageissa [143].

Näiden reseptorien ilmentyminen voidaan myös indusoida immuunisoluissa, kuten makrofageissa, erilaisilla sytokiineilla ligandiensa solunsisäisen vaikutuksen säätelemiseksi. Vapaat rasvahappo- (FFAR) ja HCA-reseptorit voivat hyvinkin olla keskeisiä kohteita tyypin 2 diabeteksen, lihavuuden ja inflammaation ehkäisyssä ja hoidossa [145].

Ravinnetasapainoa ylläpitävät rasvahapporeseptorit, jotka säätelevät kolekystokiniiniä, peptidiä YY ja leptiiniä ovat kasvavan kiinnostuksen kohteena diabeteksen hoidossa.

Luonnossa esiintyvät ligandit, BHB ja BA moduloivat jo tehokkaasti näitä terapeuttisia kohteita. Kaikki kolme HCA-reseptoria ekspressoidaan rasvasoluissa. HCA1-reseptori aktivoidaan esimerkiksi hydroksipropaanihapolla (laktaatilla), kun taas HCA2:n agonisti on β-hydroksibutyraatti (BHB), ja HCA3 aktivoidaan toisella β-hapetusvälituotteella [146].

Näiden kahden luonnollisen butyraatin säätelyvaikutukset tulehduksellista kaskadia ja immuunijärjestelmän aktiivisuutta säätelevien sytokiinien transkriptiotekijöihin liittyvät läheisesti NF-kB-modulointiin.

Tumatekijä erytroidiin 2 liittyvä tekijä 2 (Nrf2) on ensisijainen transkriptiotekijä, joka käynnistää vasteen oksidatiiviseen stressiin. Ketogeeninen ruokavalio indusoi systemaattisesti Nrf2:ta lievän oksidatiivisen ja elektrofiilisen stressin kautta [147, 148].

Nrf2:n transkriptio avaa sarjan endogeenisiä antioksidanttisia puolustusjärjestelmiä. Transkriptiotekijä siirtyy tumaan ja sitoo antioksidanttivaste-elementin (ARE) transkriptoimaan solua suojaavat sytoprotektiiviset geenit [149].

Nrf2 transkriptoi endogeeniset antioksidanttipeptidit: hemeoksigenaasi-1, katalaasi (CAT), superoksididismutaasi (SOD) ja glutationiperoksidaasi (GSH / GPx) [150-152] oksidatiivisen stressin suojamekanismina. Viime aikoina tätä mekanismia on kohdennettu kemopreventiivisesti, millä on haluttu stimuloida endogeenista antioksidanttisaturaatiota, joka estää syöpä- ja kemoterapialääkkeiden aiheuttamat vahingot isäntäsolun terveessä DNA:ssa [153, 154].

Nrf2 lisää solujen puolustusmekanismeja. Se välittää mitokondrioille hermosuojauksen toksiinin aiheuttaman stressin aikana ja ehkäisee vaurioiden (leesioiden) muodostumista [155, 156].

Tätä solusuojausta nähdään myös kemoterapian yhteydessä, jossa Nrf2-induktio suojaa terveitä soluja [157]. Nrf2-induktio suojaa soluja LPS:n aiheuttamalta tulehdukselliselta aktiivisuudelta ja kuolleisuudelta [158].

Nrf2-signalointireitit ovat lupaavia Parkinsonin taudin mitokondrioiden toimintahäiriöiden vastatoimena [159]. Nrf2-induktion välittää myös puolustuksen sydänlihassolujen kohonneesta seerumin-glukoosin aiheuttamasta oksidatiivisesta vahingosta [160].

Diabeettinen tila liittyy Nrf2-aktiivisuuden alasregulaatioon ERK:n kautta. Tämän uskotaan vaikuttavan stressin aiheuttamaan insuliiniresistenssiin sydämen soluissa [161]. Tutkimukset osoittavat, että Nrf2-aktivaatiota voidaan käyttää terapeuttisena sovelluksena diabeteksen ”metabolisen häiriön parantamiseen ja munuaisvaurioiden lievittämiseen” [162].

Nrf2:n rooli solujen suojauksessa antioksidanttisen puolustuksen pääregulaattorina tekevät siitä kiinnostavan kohteen kudosten ja solujen suojaamisessa hapettavilta ja toksisilta tekijöiltä [163, 164]. Nrf2:lla on huomattava merkitys antioksidanttipuolustusmekanismissa muiden yleisten endogeenisten antioksidanttien rinnalla. Se tukee myös vammoista, toksisuudesta ja hypoksiasta palautumista [165, 166].

Iskemia (paikallinen hapenpuute) on yleinen solun toimintahäiriön ja solukuoleman syy. Iskemia johtuuu verenkierron keskeytymisestä tai hapen saatavuuden heikkenemisestä kudoksissa, mikä johtaa soluvaurioihin. Sen tiedetään olevan keskeinen tekijä aivohalvauksen patologiassa ja yksi yleisimmistä pysyvien solu- ja kudosvaurioiden aiheuttajista sydänsairauksissa [167].

Hemeoksigenaasi-1-induktio suojaa neuroneja [168] ja sydänkudosta [169] iskemialta ja sen aiheuttamilta vaurioilta. Myös glutationiperoksidaasin yliekspressio suojaa sydänlihasta iskeemisiltä reperfuusiovaurioilta [170, 171].

Butyraatti aktivoi Nrf2:ta [172, 173]. Tutkimuskirjallisuudessa on viitteitä siitä, että käsittely butyraatilla tai sen suoloilla (natriumbutyraatilla) lievittää oksidatiivista stressiä [174] ja parantaa katalaasiaktiivisuutta [175]. Esikäsittely BA-annoksella suojaa iskemiaan liittyviä sydänlihaksen vaurioita estämällä tulehduksellisten sytokiinien ilmentymistä [174].

Se myös suojaa keuhkovaltimon sileän lihaksen soluja hyperoksiaan liittyvältä hapettumiselta [175] ja parantaa ikääntymiseen liittyvää aineenvaihduntaa ja lihasten surkastumista [176].

11. Opittavaa on paljon

Monet voivat hyötyä ketogeenisestä ruokavaliosta tai suun kautta otettavista ketoaineista ja niiden tuottamasta ketoositilasta.

Ketoosi ylläpitää parempaa ruokahalun hallintaa, fyysistä kuntoa, aivojen tehostunutta energiansaantia, neuroplastisuutta, neurogeneesiä, oppimiskykyä ja parempaa muistia. Ketoosin aiheuttama beta-oksidaatio ylläpitää tasaista eenergiavirtaa, joka lisää kestävyyttä ja polttaa tehokkaasti rasvaa.

Solutasolla ketonit vaikuttavat neuro- ja sytoprotektiivisesti suojaten soluja ja hillitsevät vapaiden happiradikaalien ja oksidatiivisen stressin aiheuttamia solu- ja kudosvaurioita. Tutkimuskirjallisuuden meta-analyysin perusteella ketoosin hyötyjä ovat:

  • tulehduksen (inflammaation) lievittäminen

  • neurologiseen sairauteen liittyvä kognitiivisen heikentymisen korjaantuminen

  • parantunut ruoansulatuskanavan terveys

  • nopeampi palautuminen liikunnan tai intensiivisen harjoituksen lihasrasituksesta

Lisää työtä ja kliinisiä tutkimuksia tarvitaan, jotta tiedämme tarkemmin, miten näitä strategioita voidaan käyttää potilaiden terapiana.

12. Keskustelua

Tutkimuskirjallisuuden tämänhetkisen näytön perusteella lisäravinteena otetun eksogeenisen ketonin käyttö näyttää olevan toteuttamiskelpoinen strategia, joka tukee ketogeenisen ruokavalion siirtymävaihetta, jossa keho totutetaan glukoosin sijaan uuteen energiasubstraattiin. Butyraatinn on raportoitu antavan positiivisia tuloksia kunto-, painonhallinta-, kognitio- ja suorituskyvyn parantamisen tueksi joko ruokavalion rajoituksilla tai ilman.

Laboratoriomme nykyinen tutkimushanke on suunniteltu tutkimaan edelleen BHB:n ja BHB-BA:n solunsisäisiä vaikutuksia immuunijärjestelmän tärkeimpiin soluihin seerumipitoisuuksilla, jotka voimme saavuttaa suositellulla vähimmäisannoksella.

Eksogeeninen BHB-BA-ravintolisä voi olla toiminnallinen strategia, joka indusoi β-hapettumista ja auttaa nostamaan seerumin ketonitasoja, jotka tuottavat ketoosin (> 0,2 mmol) metaboliset hyödyt ilman makroravinteiden ankaraa säätelyä. BHB:n samanaikainen antaminen siihen liittyvän BA-molekyylin kanssa näyttää olevan tehokas tapa saavuttaa tämä tavoite käyttämällä erittäin pieniä ja turvallisia oraalisia annoksia. Vaikka ketoosin metabolisia hyötyjä saatetaan saavuttaa lisäravinteilla, on todennäköistä, että ketogeeninen ruokavalio yhdessä lisäravinteina otettavien butyraatin ja beta-hydroksibutyraatin kanssa toimii terapiana etenkin kognitiivisten häiriöiden ja painonhallinnan yhteydessä paremmin kuin lisäravinteet yksin.

Ruokavalion täydentäminen BHB-BA-lisäravinteella tukee ketoosissa pysymistä pienistä ruokavaliolipsahduksista huolimatta.

Huomio: Ota yhteys lääkäriin ennenBHB-BA-lisäravinteiden käyttöä. Älä käytä, jos olet raskaana tai imetät. Ei suositella tyypin I diabeetikoille.

Ps. Pahoittelut kirjoitus- ja/tai asiavirheistä. Nppäilyvirheille tulee jotenkin sokeaksi.

Conflicts of Interest

Franco Cavaleri is the owner of a biomedical research group, Biologic Nutrigenomics Health Research Corp., and Biologic Pharmamedical Research that funds and executes research on the pharmacology of nutritional, nutraceutical, and pharmaceutical agents that are studied in the context of disease pathology including characteristics that have been associated with inflammation and dementias. Franco Cavaleri is also the owner of ketone-based and other related intellectual properties. Emran Bashar is an employee of the Biologic Pharmamedical Research.Authors’ ContributionsFranco Cavaleri was responsible for background research and preparation and editing of the manuscript. Emran Bashar was responsible for conducting research and preparation and editing of the manuscript. Franco Cavaleri and Emran Bashar generated research plans.

Lähde: https://www.hindawi.com/journals/jnme/2018/7195760/
References

  1. A. Gjedde and C. Crone, “Induction processes in blood-brain transfer of ketone bodies during starvation,” American Journal of Physiology–Legacy Content, vol. 229, no. 5, pp. 1165–1169, 1975. View at: Publisher Site | Google Scholar
  2. M. Pollay and F. Alan Stevens, “Starvation-induced changes in transport of ketone bodies across the blood-brain barrier,” Journal of Neuroscience Research, vol. 5, no. 2, pp. 163–172, 1980. View at: Publisher Site | Google Scholar
  3. S. Cunnane, S. Nugent, M. Roy et al., “Brain fuel metabolism, aging, and Alzheimer’s disease,” Nutrition, vol. 27, no. 1, pp. 3–20, 2011. View at: Publisher Site | Google Scholar
  4. M. A. Reger, S. T. Henderson, C. Hale et al., “Effects of β-hydroxybutyrate on cognition in memory-impaired adults,” Neurobiology of Aging, vol. 25, no. 3, pp. 311–314, 2004. View at: Publisher Site | Google Scholar
  5. L. C. Costantini, L. J. Barr, J. L. Vogel, and S. T. Henderson, “Hypometabolism as a therapeutic target in Alzheimer’s disease,” BMC Neuroscience, vol. 9, no. 2, p. S16, 2008. View at: Publisher Site | Google Scholar
  6. W. R. Leonard, “Dietary change was a driving force in human evolution,” Scientific American, vol. 287, no. 6, pp. 106–116, 2002. View at: Publisher Site | Google Scholar
  7. S. M. Innis, “Dietary (n−3) fatty acids and brain development,” Journal of Nutrition, vol. 137, no. 4, pp. 855–859, 2007. View at: Publisher Site | Google Scholar
  8. E. Cohen, M. Cragg, A. Hite, M. Rosenberg, and B. Zhou, “Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity,” Nutrition, vol. 31, no. 5, pp. 727–732, 2015. View at: Publisher Site | Google Scholar
  9. J. Scholl, “Traditional dietary recommendations for the prevention of cardiovascular disease: do they meet the needs of our patients?” Cholesterol, vol. 2012, pp. 1–9, 2012. View at: Publisher Site | Google Scholar
  10. G. Mullins, C. Hallam, and I. Broom, “Ketosis, ketoacidosis and very-low-calorie diets: putting the record straight,” Nutrition Bulletin, vol. 36, no. 3, pp. 397–402, 2011. View at: Publisher Site | Google Scholar
  11. D. K. Layman and D. A. Walker, “Potential importance of leucine in treatment of obesity and the metabolic syndrome,” Journal of Nutrition, vol. 136, no. 1, pp. 319S–323S, 2006. View at: Publisher Site | Google Scholar
  12. M. Lawson and V. Shaw, “Ketogenic diet for epilepsy,” in Clinical Paediatric Dietetics, pp. 222–232, Blackwell Science Ltd., Oxford, UK, 2nd edition, 2001. View at: Google Scholar
  13. R. Krikorian, M. D. Shidler, K. Dangelo, S. C. Couch, S. C. Benoit, and D. J. Clegg, “Dietary ketosis enhances memory in mild cognitive impairment,” Neurobiology of Aging, vol. 33, no. 2, pp. 425. e19–425. e27, 2012. View at: Publisher Site | Google Scholar
  14. K. W. Barañano and A. L. Hartman, “The ketogenic diet: uses in epilepsy and other neurologic illnesses,” Current Treatment Options in Neurology, vol. 10, no. 6, pp. 410–419, 2008. View at: Publisher Site | Google Scholar
  15. P. G. Sullivan, N. A. Rippy, K. Dorenbos, R. C. Concepcion, A. K. Agarwal, and J. M. Rho, “The ketogenic diet increases mitochondrial uncoupling protein levels and activity,” Annals of Neurology, vol. 55, no. 4, pp. 576–580, 2004. View at: Publisher Site | Google Scholar
  16. E. C. Westman, J. Mavropoulos, W. S. Yancy Jr., and J. S. Volek, “A review of low-carbohydrate ketogenic diets,” Current Atherosclerosis Reports, vol. 5, no. 6, pp. 476–483, 2003. View at: Publisher Site | Google Scholar
  17. K. M. Maruschak, Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Anthropometrics, Biochemical Values, and Gastrointestinal Symptoms in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  18. S. R. Send, The Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Seizure Severity, Seizure Frequency, and Quality of Life in Adult Patients with Epilepsy, Rush University, Chicago, IL, USA, 2016.
  19. C. Dudick, “Carb”(not “Keto”) is a Four Letter Word, 2016.
  20. M. Schmidt, N. Pfetzer, M. Schwab, I. Strauss, and U. Kämmerer, “Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial,” Nutrition and Metabolism, vol. 8, no. 1, p. 54, 2011. View at: Publisher Site | Google Scholar
  21. D. K. Layman and J. I. Baum, “Dietary protein impact on glycemic control during weight loss,” Journal of Nutrition, vol. 134, no. 4, pp. 968S–973S, 2004. View at: Publisher Site | Google Scholar
  22. C. Remesy, P. Fafournoux, and C. Demigne, “Control of hepatic utilization of serine, glycine and threonine in fed and starved rats,” Journal of Nutrition, vol. 113, no. 1, pp. 28–39, 1983. View at: Publisher Site | Google Scholar
  23. N. J. Krilanovich, “Benefits of ketogenic diets,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 238-239, 2007. View at: Publisher Site | Google Scholar
  24. D. W. Kim, H. C. Kang, J. C. Park, and H. D. Kim, “Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet,” Pediatrics, vol. 114, no. 6, pp. 1627–1630, 2004. View at: Publisher Site | Google Scholar
  25. R. L. Veech, “The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 309–319, 2004. View at: Publisher Site | Google Scholar
  26. J. D. McGarry, “Disordered metabolism in diabetes: have we underemphasized the fat component?” Journal of Cellular Biochemistry, vol. 55, no. S1994A, pp. 29–38, 1994. View at: Publisher Site | Google Scholar
  27. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends in Endocrinology and Metabolism, vol. 25, no. 1, pp. 42–52, 2014. View at: Publisher Site | Google Scholar
  28. O. Owen, G. Reichard Jr., H. Markus, G. Boden, M. Mozzoli, and C. Shuman, “Rapid intravenous sodium acetoacetate infusion in man metabolic and kinetic responses,” Journal of Clinical Investigation, vol. 52, no. 10, pp. 2606–2616, 1973. View at: Publisher Site | Google Scholar
  29. E. O. Balasse and F. Féry, “Ketone body production and disposal: effects of fasting, diabetes, and exercise,” Diabetes/Metabolism Reviews, vol. 5, no. 3, pp. 247–270, 1989. View at: Publisher Site | Google Scholar
  30. R. Wilson and W. Reeves, “Neutrophil phagocytosis and killing in insulin-dependent diabetes,” Clinical and Experimental Immunology, vol. 63, no. 2, p. 478, 1986. View at: Google Scholar
  31. M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, and A. Cerami, “Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking,” Science, vol. 232, no. 4758, pp. 1629–1632, 1986. View at: Publisher Site | Google Scholar
  32. N. Ahmed, “Advanced glycation endproducts—role in pathology of diabetic complications,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 3–21, 2005. View at: Publisher Site | Google Scholar
  33. P. Marceau, S. Biron, F. S. Hould et al., “Liver pathology and the metabolic syndrome X in severe obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 5, pp. 1513–1517, 1999. View at: Publisher Site | Google Scholar
  34. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at: Publisher Site | Google Scholar
  35. K. Moley, M. Y. Chi, C. Knudson, S. Korsmeyer, and M. Mueckler, “Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways,” Nature Medicine, vol. 4, no. 12, pp. 1421–1424, 1998. View at: Publisher Site | Google Scholar
  36. S. P. Hays, E. B. Smith, and A. L. Sunehag, “Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants,” Pediatrics, vol. 118, no. 5, pp. 1811–1818, 2006. View at: Publisher Site | Google Scholar
  37. H. Vlassara, “Advanced glycation end-products and atherosclerosis,” Annals of Medicine, vol. 28, no. 5, pp. 419–426, 1996. View at: Publisher Site | Google Scholar
  38. H. Yki-Jarvinen, “Glucose Toxicity,” Endocrine Reviews, vol. 13, no. 3, pp. 415–431, 1992. View at: Publisher Site | Google Scholar
  39. L. L. Madison, D. Mebane, R. H. Unger, and A. Lochner, “The hypoglycemic action of ketones. II. Evidence for a stimulatory feedback of ketones on the pancreatic beta cells,” Journal of Clinical Investigation, vol. 43, no. 3, pp. 408–415, 1964. View at: Publisher Site | Google Scholar
  40. A. Baron, G. Brechtel, and S. Edelman, “Effects of free fatty acids and ketone bodies on in vivo non-insulin-mediated glucose utilization and production in humans,” Metabolism, vol. 38, no. 11, pp. 1056–1061, 1989. View at: Publisher Site | Google Scholar
  41. T. A. Hussain, T. C. Mathew, A. A. Dashti, S. Asfar, N. Al-Zaid, and H. M. Dashti, “Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes,” Nutrition, vol. 28, no. 10, pp. 1016–1021, 2012. View at: Publisher Site | Google Scholar
  42. T. D. Noakes, “Low-carbohydrate and high-fat intake can manage obesity and associated conditions: occasional survey,” South African Medical Journal, vol. 103, no. 11, pp. 826–830, 2013. View at: Publisher Site | Google Scholar
  43. J. Ratliff, G. Mutungi, M. J. Puglisi, J. S. Volek, and M. L. Fernandez, “Carbohydrate restriction (with or without additional dietary cholesterol provided by eggs) reduces insulin resistance and plasma leptin without modifying appetite hormones in adult men,” Nutrition Research, vol. 29, no. 4, pp. 262–268, 2009. View at: Publisher Site | Google Scholar
  44. J. S. Volek, M. J. Sharman, D. M. Love, N. G. Avery, T. P. Scheett, and W. J. Kraemer, “Body composition and hormonal responses to a carbohydrate-restricted diet,” Metabolism, vol. 51, no. 7, pp. 864–870, 2002. View at: Publisher Site | Google Scholar
  45. C. A. Major, M. J. Henry, M. de Veciana, and M. A. Morgan, “The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes,” Obstetrics and Gynecology, vol. 91, no. 4, pp. 600–604, 1998. View at: Publisher Site | Google Scholar
  46. A. Accurso, R. K. Bernstein, A. Dahlqvist et al., “Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal,” Nutrition and Metabolism, vol. 5, no. 1, p. 9, 2008. View at: Publisher Site | Google Scholar
  47. R. D. Feinman, W. K. Pogozelski, A. Astrup et al., “Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base,” Nutrition, vol. 31, no. 1, pp. 1–13, 2015. View at: Publisher Site | Google Scholar
  48. M. K. Badman, A. R. Kennedy, A. C. Adams, P. Pissios, and E. Maratos-Flier, “A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss,” American Journal of Physiology-Endocrinology and Metabolism, vol. 297, no. 5, pp. E1197–E1204, 2009. View at: Publisher Site | Google Scholar
  49. K. Xu, X. Sun, B. O. Eroku, C. P. Tsipis, M. A. Puchowicz, and J. C. LaManna, “Diet-induced ketosis improves cognitive performance in aged rats,” in Advances in Experimental Medicine and Biology, pp. 71–75, Springer, Berlin, Germany, 2010. View at: Google Scholar
  50. K. D. Ballard, E. E. Quann, B. R. Kupchak et al., “Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins,” Nutrition Research, vol. 33, no. 11, pp. 905–912, 2013. View at: Publisher Site | Google Scholar
  51. R. A. Hawkins, A. M. Mans, and D. W. Davis, “Regional ketone body utilization by rat brain in starvation and diabetes,” American Journal of Physiology-Endocrinology and Metabolism, vol. 250, no. 2, pp. E169–E178, 1986. View at: Publisher Site | Google Scholar
  52. T. N. Seyfried and P. Mukherjee, “Targeting energy metabolism in brain cancer: review and hypothesis,” Nutrition and Metabolism, vol. 2, no. 1, p. 30, 2005. View at: Publisher Site | Google Scholar
  53. L. Laffel, “Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes,” Diabetes/Metabolism Research and Reviews, vol. 15, no. 6, pp. 412–426, 1999. View at: Publisher Site | Google Scholar
  54. H. Krebs, “The regulation of the release of ketone bodies by the liver,” Advances in Enzyme Regulation, vol. 4, pp. 339–353, 1966. View at: Publisher Site | Google Scholar
  55. J. McGarry and D. Foster, “Regulation of hepatic fatty acid oxidation and ketone body production,” Annual Review of Biochemistry, vol. 49, no. 1, pp. 395–420, 1980. View at: Publisher Site | Google Scholar
  56. M. T. Newport, T. B. VanItallie, Y. Kashiwaya, M. T. King, and R. L. Veech, “A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease,” Alzheimer’s and Dementia, vol. 11, no. 1, pp. 99–103, 2015. View at: Publisher Site | Google Scholar
  57. E. C. Westman, R. D. Feinman, J. C. Mavropoulos et al., “Low-carbohydrate nutrition and metabolism,” American Journal of Clinical Nutrition, vol. 86, no. 2, pp. 276–284, 2007. View at: Publisher Site | Google Scholar
  58. C. Harvey, What is Nutritional Ketosis? 2015.
  59. I. F. Kodde, J. van der Stok, R. T. Smolenski, and J. W. de Jong, “Metabolic and genetic regulation of cardiac energy substrate preference,” Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 146, no. 1, pp. 26–39, 2007. View at: Publisher Site | Google Scholar
  60. B. Plecko, S. Stoeckler-Ipsiroglu, E. Schober et al., “Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy,” Pediatric Research, vol. 52, no. 2, pp. 301–306, 2002. View at: Publisher Site | Google Scholar
  61. H. White and B. Venkatesh, “Clinical review: ketones and brain injury,” Critical Care, vol. 15, no. 2, p. 219, 2011. View at: Publisher Site | Google Scholar
  62. E. P. Vining, “Clinical efficacy of the ketogenic diet,” Epilepsy Research, vol. 37, no. 3, pp. 181–190, 1999. View at: Publisher Site | Google Scholar
  63. E. H. Kossoff, B. A. Zupec-Kania, and J. M. Rho, “Ketogenic diets: an update for child neurologists,” Journal of Child Neurology, vol. 24, no. 8, pp. 979–988, 2009. View at: Publisher Site | Google Scholar
  64. G. F. Cahill Jr., “Fuel metabolism in starvation,” Annual Review of Nutrition, vol. 26, no. 1, pp. 1–22, 2006. View at: Publisher Site | Google Scholar
  65. M. Gasior, M. A. Rogawski, and A. L. Hartman, “Neuroprotective and disease-modifying effects of the ketogenic diet,” Behavioural Pharmacology, vol. 17, no. 5-6, pp. 431–439, 2006. View at: Publisher Site | Google Scholar
  66. R. de Oliveira Caminhotto and F. B. Lima, “Low carbohydrate high fat diets: when models do not match reality,” Archives of Endocrinology and Metabolism, vol. 60, no. 4, pp. 405-406, 2016. View at: Publisher Site | Google Scholar
  67. M. G. Abdelwahab, S. H. Lee, D. O’Neill et al., “Ketones prevent oxidative impairment of hippocampal synaptic integrity through K ATP channels,” PLoS One, vol. 10, no. 4, Article ID e0119316, 2015. View at: Publisher Site | Google Scholar
  68. J. X. Yin, M. Maalouf, P. Han et al., “Ketones block amyloid entry and improve cognition in an Alzheimer’s model,” Neurobiology of Aging, vol. 39, pp. 25–37, 2016. View at: Publisher Site | Google Scholar
  69. J. Zhang, Q. Cao, S. Li et al., “3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism,” Biomaterials, vol. 34, no. 30, pp. 7552–7562, 2013. View at: Publisher Site | Google Scholar
  70. L. Siegel, N. I. Robin, and L. J. McDonald, “New approach to determination of total ketone bodies in serum,” Clinical Chemistry, vol. 23, no. 1, pp. 46–49, 1977. View at: Google Scholar
  71. D. J. Angus, M. Hargreaves, J. Dancey, and M. A. Febbraio, “Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance,” Journal of Applied Physiology, vol. 88, no. 1, pp. 113–119, 2000. View at: Publisher Site | Google Scholar
  72. L. Misell, N. Lagomarcino, V. Schuster, and M. Kern, “Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners,” Journal of Sports Medicine and Physical Fitness, vol. 41, no. 2, p. 210, 2001. View at: Google Scholar
  73. V. Ööpik, S. Timpmann, L. Medijainen, and H. Lemberg, “Effects of daily medium-chain triglyceride ingestion on energy metabolism and endurance performance capacity in well-trained runners,” Nutrition Research, vol. 21, no. 8, pp. 1125–1135, 2001. View at: Publisher Site | Google Scholar
  74. Y. M. C. Liu, “Medium-chain triglyceride (MCT) ketogenic therapy,” Epilepsia, vol. 49, no. s8, pp. 33–36, 2008. View at: Publisher Site | Google Scholar
  75. A. E. Jeukendrup, W. Saris, P. Schrauwen, F. Brouns, and A. Wagenmakers, “Metabolic availability of medium-chain triglycerides coingested with carbohydrates during prolonged exercise,” Journal of Applied Physiology, vol. 79, no. 3, pp. 756–762, 1995. View at: Publisher Site | Google Scholar
  76. A. Poff, C. Ari, P. Arnold, T. Seyfried, and D. D’Agostino, “Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer,” International Journal of Cancer, vol. 135, no. 7, pp. 1711–1720, 2014. View at: Publisher Site | Google Scholar
  77. Y. H. Youm, K. Y. Nguyen, R. W. Grant et al., “The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease,” Nature Medicine, vol. 21, no. 3, pp. 263–269, 2015. View at: Publisher Site | Google Scholar
  78. D. P. D’Agostino, R. Pilla, H. E. Held et al., “Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 304, no. 10, pp. R829–R836, 2013. View at: Publisher Site | Google Scholar
  79. L. C. Gormsen, M. Svart, H. H. Thomsen et al., “Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study,” Journal of the American Heart Association, vol. 6, no. 3, p. e005066, 2017. View at: Publisher Site | Google Scholar
  80. S. T. Henderson, J. L. Vogel, L. J. Barr, F. Garvin, J. J. Jones, and L. C. Costantini, “Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial,” Nutrition and Metabolism, vol. 6, no. 1, p. 31, 2009. View at: Publisher Site | Google Scholar
  81. E. Arnaiz, V. Jelic, O. Almkvist et al., “Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment,” Neuroreport, vol. 12, no. 4, pp. 851–855, 2001. View at: Publisher Site | Google Scholar
  82. C. X. Gong, F. Liu, and K. Iqbal, “Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation,” Journal of Alzheimer’s Disease, vol. 9, no. 1, pp. 1–12, 2006. View at: Publisher Site | Google Scholar
  83. C. Messier, “Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging,” Neurobiology of Aging, vol. 26, no. 1, pp. 26–30, 2005. View at: Publisher Site | Google Scholar
  84. S. T. Henderson, “Ketone bodies as a therapeutic for Alzheimer’s disease,” Neurotherapeutics, vol. 5, no. 3, pp. 470–480, 2008. View at: Publisher Site | Google Scholar
  85. T. B. VanItallie and T. H. Nufert, “Ketones: metabolism’s ugly duckling,” Nutrition Reviews, vol. 61, no. 10, pp. 327–341, 2003. View at: Publisher Site | Google Scholar
  86. M. Maalouf, P. G. Sullivan, L. Davis, D. Y. Kim, and J. M. Rho, “Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation,” Neuroscience, vol. 145, no. 1, pp. 256–264, 2007. View at: Publisher Site | Google Scholar
  87. C. B. Henderson, F. M. Filloux, S. C. Alder, J. L. Lyon, and D. A. Caplin, “Efficacy of the ketogenic diet as a treatment option for epilepsy: meta-analysis,” Journal of Child Neurology, vol. 21, no. 3, pp. 193–198, 2006. View at: Publisher Site | Google Scholar
  88. J. Sirven, B. Whedon, D. Caplan et al., “The ketogenic diet for intractable epilepsy in adults: preliminary results,” Epilepsia, vol. 40, no. 12, pp. 1721–1726, 1999. View at: Publisher Site | Google Scholar
  89. M. A. McNally and A. L. Hartman, “Ketone bodies in epilepsy,” Journal of Neurochemistry, vol. 121, no. 1, pp. 28–35, 2012. View at: Publisher Site | Google Scholar
  90. A. J. Murray, N. S. Knight, M. A. Cole et al., “Novel ketone diet enhances physical and cognitive performance,” Federation of American Societies for Experimental Biology Journal, vol. 30, no. 12, pp. 4021–4032, 2016. View at: Publisher Site | Google Scholar
  91. P. J. Pinckaers, T. A. Churchward-Venne, D. Bailey, and L. J. van Loon, “Ketone bodies and exercise performance: the next magic bullet or merely hype?” Sports Medicine, vol. 47, no. 3, pp. 383–391, 2017. View at: Publisher Site | Google Scholar
  92. T. Larsen and N. I. Nielsen, “Fluorometric determination of β-hydroxybutyrate in milk and blood plasma,” Journal of Dairy Science, vol. 88, no. 6, pp. 2004–2009, 2005. View at: Publisher Site | Google Scholar
  93. N. I. Nielsen, T. Larsen, M. Bjerring, and K. L. Ingvartsen, “Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents,” Journal of Dairy Science, vol. 88, no. 9, pp. 3186–3200, 2005. View at: Publisher Site | Google Scholar
  94. B. Stubbs, K. Willerton, S. Hiyama, K. Clarke, and P. Cox, Concomitant Meal Ingestion Alters Levels of Circulating Ketone Bodies following a Ketone Ester Drink, The Physiological Society, London, UK, 2015.
  95. K. Clarke, K. Tchabanenko, R. Pawlosky et al., “Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects,” Regulatory Toxicology and Pharmacology, vol. 63, no. 3, pp. 401–408, 2012. View at: Publisher Site | Google Scholar
  96. K. Clarke, K. Tchabanenko, R. Pawlosky et al., “Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate,” Regulatory Toxicology and Pharmacology, vol. 63, no. 2, pp. 196–208, 2012. View at: Publisher Site | Google Scholar
  97. J. L. Van Hove, S. Grünewald, J. Jaeken et al., “D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD),” The Lancet, vol. 361, no. 9367, pp. 1433–1435, 2003. View at: Publisher Site | Google Scholar
  98. H. Endo, M. Niioka, N. Kobayashi, M. Tanaka, and T. Watanabe, “Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis,” PLoS One, vol. 8, no. 5, Article ID e63388, 2013. View at: Publisher Site | Google Scholar
  99. K. M. Maslowski and C. R. Mackay, “Diet, gut microbiota and immune responses,” Nature Immunology, vol. 12, no. 1, pp. 5–9, 2011. View at: Publisher Site | Google Scholar
  100. K. M. Tuohy, L. Conterno, M. Gasperotti, and R. Viola, “Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber,” Journal of Agricultural and Food Chemistry, vol. 60, no. 36, pp. 8776–8782, 2012. View at: Publisher Site | Google Scholar
  101. J. M. Wong, R. De Souza, C. W. Kendall, A. Emam, and D. J. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at: Publisher Site | Google Scholar
  102. M. Velasquez-Manoff, “Gut microbiome: the peacekeepers,” Nature, vol. 518, no. 7540, pp. S3–S11, 2015. View at: Publisher Site | Google Scholar
  103. O. Kanauchi, T. Iwanaga, K. Mitsuyama et al., “Butyrate from bacterial fermentation of germinated barley foodstuff preserves intestinal barrier function in experimental colitis in the rat model,” Journal of Gastroenterology and Hepatology, vol. 14, no. 9, pp. 880–888, 1999. View at: Publisher Site | Google Scholar
  104. H. Yadav, J. H. Lee, J. Lloyd, P. Walter, and S. G. Rane, “Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion,” Journal of Biological Chemistry, vol. 288, no. 35, pp. 25088–25097, 2013. View at: Publisher Site | Google Scholar
  105. H. J. Kim, P. Leeds, and D. M. Chuang, “The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain,” Journal of Neurochemistry, vol. 110, no. 4, pp. 1226–1240, 2009. View at: Publisher Site | Google Scholar
  106. Y. Yamawaki, M. Fuchikami, S. Morinobu, M. Segawa, T. Matsumoto, and S. Yamawaki, “Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus,” World Journal of Biological Psychiatry, vol. 13, no. 6, pp. 458–467, 2012. View at: Publisher Site | Google Scholar
  107. H. V. Lin, A. Frassetto, E. J. Kowalik Jr. et al., “Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms,” PLoS One, vol. 7, no. 4, Article ID e35240, 2012. View at: Publisher Site | Google Scholar
  108. Z. Gao, J. Yin, J. Zhang et al., “Butyrate improves insulin sensitivity and increases energy expenditure in mice,” Diabetes, vol. 58, no. 7, pp. 1509–1517, 2009. View at: Publisher Site | Google Scholar
  109. K. M. Tuohy, H. M. Probert, C. W. Smejkal, and G. R. Gibson, “Using probiotics and prebiotics to improve gut health,” Drug Discovery Today, vol. 8, no. 15, pp. 692–700, 2003. View at: Publisher Site | Google Scholar
  110. R. B. Canani, M. Di Costanzo, and L. Leone, “The epigenetic effects of butyrate: potential therapeutic implications for clinical practice,” Clinical Epigenetics, vol. 4, no. 1, p. 4, 2012. View at: Publisher Site | Google Scholar
  111. A. Alvaro, R. Sola, R. Rosales et al., “Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids,” IUBMB Life, vol. 60, no. 11, pp. 757–764, 2008. View at: Publisher Site | Google Scholar
  112. J. W. Finley, J. B. Burrell, and P. G. Reeves, “Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans,” Journal of Nutrition, vol. 137, no. 11, pp. 2391–2398, 2007. View at: Publisher Site | Google Scholar
  113. E. E. Canfora, J. W. Jocken, and E. E. Blaak, “Short-chain fatty acids in control of body weight and insulin sensitivity,” Nature Reviews Endocrinology, vol. 11, no. 10, pp. 577–591, 2015. View at: Publisher Site | Google Scholar
  114. J. Darzi, G. S. Frost, and M. D. Robertson, “Do SCFA have a role in appetite regulation?” Proceedings of the Nutrition Society, vol. 70, no. 1, pp. 119–128, 2011. View at: Publisher Site | Google Scholar
  115. A. Hague, B. Singh, and C. Paraskeva, “Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate,” Gastroenterology, vol. 112, no. 3, pp. 1036–1040, 1997. View at: Publisher Site | Google Scholar
  116. J. R. Davie, “Inhibition of histone deacetylase activity by butyrate,” Journal of Nutrition, vol. 133, no. 7, pp. 2485S–2493S, 2003. View at: Publisher Site | Google Scholar
  117. D. P. Stefanko, R. M. Barrett, A. R. Ly, G. K. Reolon, and M. A. Wood, “Modulation of long-term memory for object recognition via HDAC inhibition,” Proceedings of the National Academy of Sciences, vol. 106, no. 23, pp. 9447–9452, 2009. View at: Publisher Site | Google Scholar
  118. S. G. Gray, “Epigenetic treatment of neurological disease,” Epigenomics, vol. 3, no. 4, pp. 431–450, 2011. View at: Google Scholar
  119. J. Segain, D. R. De La Blétiere, A. Bourreille et al., “Butyrate inhibits inflammatory responses through NFkappa B inhibition: implications for Crohn’s disease,” Gut, vol. 47, no. 3, pp. 397–403, 2000. View at: Publisher Site | Google Scholar
  120. E. L. Vieira, A. J. Leonel, A. P. Sad et al., “Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis,” Journal of Nutritional Biochemistry, vol. 23, no. 5, pp. 430–436, 2012. View at: Publisher Site | Google Scholar
  121. A. Sabatino, R. Morera, R. Ciccocioppo et al., “Oral butyrate for mildly to moderately active Crohn’s disease,” Alimentary Pharmacology and Therapeutics, vol. 22, no. 9, pp. 789–794, 2005. View at: Publisher Site | Google Scholar
  122. A. Kotunia, J. Wolinski, D. Laubitz et al., “Effect of sodium butyrate on the small intestine,” Journal of Physiology and Pharmacology, vol. 55, no. 2, pp. 59–68, 2004. View at: Google Scholar
  123. Y. Furusawa, Y. Obata, S. Fukuda et al., “Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells,” Nature, vol. 504, no. 7480, pp. 446–450, 2013. View at: Publisher Site | Google Scholar
  124. H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. Troost, and R. J. Brummer, “Review article: the role of butyrate on colonic function,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 2, pp. 104–119, 2008. View at: Publisher Site | Google Scholar
  125. D. F. MacFabe, N. E. Cain, F. Boon, K. P. Ossenkopp, and D. P. Cain, “Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder,” Behavioural Brain Research, vol. 217, no. 1, pp. 47–54, 2011. View at: Publisher Site | Google Scholar
  126. D. F. MacFabe, D. P. Cain, K. Rodriguez-Capote et al., “Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders,” Behavioural Brain Research, vol. 176, no. 1, pp. 149–169, 2007. View at: Publisher Site | Google Scholar
  127. N. Kratsman, D. Getselter, and E. Elliott, “Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model,” Neuropharmacology, vol. 102, pp. 136–145, 2016. View at: Publisher Site | Google Scholar
  128. M. W. Bourassa, I. Alim, S. J. Bultman, and R. R. Ratan, “Butyrate, neuroepigenetics and the gut microbiome,” Physiological Reviews, vol. 81, pp. 1031–1064, 2001. View at: Google Scholar
  129. N. I. McNeil, J. Cummings, and W. James, “Short chain fatty acid absorption by the human large intestine,” Gut, vol. 19, no. 9, pp. 819–822, 1978. View at: Publisher Site | Google Scholar
  130. O. C. Velazquez, H. M. Lederer, and J. L. Rombeau, Butyrate and the Colonocyte. Dietary Fiber in Health and Disease, Springer, Berlin, Germany, 1997.
  131. G. Sandle, “Salt and water absorption in the human colon: a modern appraisal,” Gut, vol. 43, no. 2, pp. 294–299, 1998. View at: Publisher Site | Google Scholar
  132. R. Havenaar, “Intestinal health functions of colonic microbial metabolites: a review,” Beneficial Microbes, vol. 2, no. 2, pp. 103–114, 2011. View at: Publisher Site | Google Scholar
  133. R. B. Canani, G. Terrin, P. Cirillo et al., “Butyrate as an effective treatment of congenital chloride diarrhea,” Gastroenterology, vol. 127, no. 2, pp. 630–634, 2004. View at: Publisher Site | Google Scholar
  134. J. Butzner, R. Parmar, C. Bell, and V. Dalal, “Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat,” Gut, vol. 38, no. 4, pp. 568–573, 1996. View at: Publisher Site | Google Scholar
  135. H. Li, Z. Gao, J. Zhang et al., “Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3,” Diabetes, vol. 61, no. 4, pp. 797–806, 2012. View at: Publisher Site | Google Scholar
  136. X. Zhang, D. C. Yeung, M. Karpisek et al., “Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans,” Diabetes, vol. 57, no. 5, pp. 1246–1253, 2008. View at: Publisher Site | Google Scholar
  137. F. Hird and R. Symons, “The mechanism of ketone-body formation from butyrate in rat liver,” Biochemical Journal, vol. 84, no. 1, pp. 212–216, 1962. View at: Publisher Site | Google Scholar
  138. R. Linskens, X. Huijsdens, P. Savelkoul, C. Vandenbroucke-Grauls, and S. Meuwissen, “The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics,” Scandinavian Journal of Gastroenterology, vol. 36, no. 234, pp. 29–40, 2001. View at: Publisher Site | Google Scholar
  139. R. B. Sartor, “Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics,” Gastroenterology, vol. 126, no. 6, pp. 1620–1633, 2004. View at: Publisher Site | Google Scholar
  140. A. K. Taggart, J. Kero, X. Gan et al., “(D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G,” Journal of Biological Chemistry, vol. 280, no. 29, pp. 26649–26652, 2005. View at: Publisher Site | Google Scholar
  141. B. Egan and D. P. D’Agostino, “Fueling performance: ketones enter the mix,” Cell Metabolism, vol. 24, no. 3, pp. 373–375, 2016. View at: Publisher Site | Google Scholar
  142. A. J. Murray and H. E. Montgomery, “How wasting is saving: Weight loss at altitude might result from an evolutionary adaptation,” Bioessays, vol. 36, pp. 721–729, 2014. View at: Google Scholar
  143. C. C. Blad, K. Ahmed, A. P. Ijzerman, and S. Offermanns, “Biological and pharmacological roles of HCA receptors,” Advances in Pharmacology, vol. 62, pp. 219–250, 2014. View at: Publisher Site | Google Scholar
  144. S. Offermanns and M. Schwaninger, “Nutritional or pharmacological activation of HCA 2 ameliorates neuroinflammation,” Trends in Molecular Medicine, vol. 21, no. 4, pp. 245–255, 2015. View at: Publisher Site | Google Scholar
  145. S. Offermanns, “Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors,” Annual Review of Pharmacology and Toxicology, vol. 54, no. 1, pp. 407–434, 2014. View at: Publisher Site | Google Scholar
  146. S. Offermanns, S. L. Colletti, T. W. Lovenberg, G. Semple, A. Wise, and A. P. Ijzerman, “International union of basic and clinical pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B),” Pharmacological Reviews, vol. 63, no. 2, pp. 269–290, 2011. View at: Publisher Site | Google Scholar
  147. J. B. Milder, L. P. Liang, and M. Patel, “Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet,” Neurobiology of Disease, vol. 40, no. 1, pp. 238–244, 2010. View at: Publisher Site | Google Scholar
  148. M. Storoni and G. T. Plant, “The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis,” Multiple Sclerosis International, vol. 2015, Article ID 681289, 9 pages, 2015. View at: Publisher Site | Google Scholar
  149. M. Sandberg, J. Patil, B. D’angelo, S. G. Weber, and C. Mallard, “NRF2-regulation in brain health and disease: implication of cerebral inflammation,” Neuropharmacology, vol. 79, pp. 298–306, 2014. View at: Publisher Site | Google Scholar
  150. H. C. Huang, T. Nguyen, and C. B. Pickett, “Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42769–42774, 2002. View at: Publisher Site | Google Scholar
  151. J. Vriend and R. J. Reiter, “The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome,” Molecular and Cellular Endocrinology, vol. 401, pp. 213–220, 2015. View at: Publisher Site | Google Scholar
  152. N. Wei, D. Yuan, H. B. He et al., “Saponins from Panax japonicas reduces myocardial infarction induced reactive oxygen species production and cardiomyocyte apoptosis via activation of the Nrf-2 pathway,” Advanced Materials Research, vol. 881–883, pp. 339–346, 2014. View at: Publisher Site | Google Scholar
  153. J. S. Lee and Y. J. Surh, “Nrf2 as a novel molecular target for chemoprevention,” Cancer Letters, vol. 224, no. 2, pp. 171–184, 2005. View at: Publisher Site | Google Scholar
  154. S. Braun, C. Hanselmann, M. G. Gassmann et al., “Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound,” Molecular and Cellular Biology, vol. 22, no. 15, pp. 5492–5505, 2002. View at: Publisher Site | Google Scholar
  155. A. Y. Shih, S. Imbeault, V. Barakauskas et al., “Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo,” Journal of Biological Chemistry, vol. 280, no. 24, pp. 22925–22936, 2005. View at: Publisher Site | Google Scholar
  156. J. M. Lee, A. Y. Shih, T. H. Murphy, and J. A. Johnson, “NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37948–37956, 2003. View at: Publisher Site | Google Scholar
  157. R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto, and S. Biswal, “Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray,” Cancer Research, vol. 62, no. 18, pp. 5196–5203, 2002. View at: Google Scholar
  158. R. K. Thimmulappa, C. Scollick, K. Traore et al., “Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide,” Biochemical and Biophysical Research Communications, vol. 351, no. 4, pp. 883–889, 2006. View at: Publisher Site | Google Scholar
  159. K. U. Tufekci, E. Civi Bayin, S. Genc, and K. Genc, “The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease,” Parkinson’s Disease, vol. 2011, p. 314082, 2011. View at: Publisher Site | Google Scholar
  160. X. He, H. Kan, L. Cai, and Q. Ma, “Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 1, pp. 47–58, 2009. View at: Publisher Site | Google Scholar
  161. Y. Tan, T. Ichikawa, J. Li et al., “Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress–induced insulin resistance in cardiac cells in vitro and in vivo,” Diabetes, vol. 60, no. 2, pp. 625–633, 2011. View at: Publisher Site | Google Scholar
  162. H. Zheng, S. A. Whitman, W. Wu et al., “Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 3055–3066, 2011. View at: Publisher Site | Google Scholar
  163. J. M. Lee, J. Li, D. A. Johnson et al., “Nrf2, a multi-organ protector?” Federation of American Societies for Experimental Biology, vol. 19, no. 9, pp. 1061–1066, 2005. View at: Publisher Site | Google Scholar
  164. A. Neymotin, N. Y. Calingasan, E. Wille et al., “Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 88–96, 2011. View at: Publisher Site | Google Scholar
  165. S. Yu, T. O. Khor, K. L. Cheung et al., “Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice,” PLoS One, vol. 5, no. 1, Article ID e8579, 2010. View at: Publisher Site | Google Scholar
  166. H. Nagatomo, Y. Morimoto, A. Ogami et al., “Change of heme oxygenase-1 expression in lung injury induced by chrysotile asbestos in vivo and in vitro,” Inhalation Toxicology, vol. 19, no. 4, pp. 317–323, 2007. View at: Publisher Site | Google Scholar
  167. S. Suzuki, L. Toledo-Pereyra, F. Rodriguez, and D. Cejalvo, “Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury,” Transplantation, vol. 55, no. 6, pp. 1265–1272, 1993. View at: Publisher Site | Google Scholar
  168. P. Bowman, Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage, DTIC Document, 2012.
  169. R. Hinkel, B. Petersen, M. Thormann et al., “hHO-1 overexpression in transgenic pigs is cardioprotective after acute myocardial ischemia and reperfsuion,” Circulation, vol. 120, no. 18, p. S1042, 2009. View at: Google Scholar
  170. T. Yoshida, M. Watanabe, D. T. Engelman et al., “Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury,” Journal of Molecular and Cellular Cardiology, vol. 28, no. 8, pp. 1759–1767, 1996. View at: Publisher Site | Google Scholar
  171. N. S. Dhalla, A. B. Elmoselhi, T. Hata, and N. Makino, “Status of myocardial antioxidants in ischemia–reperfusion injury,” Cardiovascular Research, vol. 47, no. 3, pp. 446–456, 2000. View at: Publisher Site | Google Scholar
  172. W. Dong, Y. Jia, X. Liu et al., “Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC,” Journal of Endocrinology, vol. 232, no. 1, pp. 71–83, 2017. View at: Publisher Site | Google Scholar
  173. X. Chen, W. Su, T. Wan et al., “Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway,” Biochemical Pharmacology, vol. 142, pp. 111–119, 2017. View at: Publisher Site | Google Scholar
  174. X. Hu, K. Zhang, C. Xu, Z. Chen, and H. Jiang, “Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion,” Experimental and Therapeutic Medicine, vol. 8, no. 1, pp. 229–232, 2014. View at: Publisher Site | Google Scholar
  175. S. Yano and D. F. Tierney, “Butyrate increases catalase activity and protects rat pulmonary artery smooth muscle cells against hyperoxia,” Biochemical and Biophysical Research Communications, vol. 164, no. 3, pp. 1143–1148, 1989. View at: Publisher Site | Google Scholar
  176. M. E. Walsh, A. Bhattacharya, K. Sataranatarajan et al., “The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging,” Aging Cell, vol. 14, no. 6, pp. 957–970, 2015. View at: Publisher Site | Google Scholar

Copyright

Copyright © 2018 Franco Cavaleri and Emran Bashar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Mitä on kolesteroli?

Kehotan tarkkaavaisuuteen ja avoimeen mieleen, koska tämä voi järkyttää herkempiä lukijoita. LDL ei ole kolesterolia! Paha kolesteroli on sellainen kummitusjuttu?

Pahamainen LDL on lipoproteiini (Low Density Lipoprotein), eli kuljetusmolekyyli, jota elimistö tarvitsee triglyseridien, kolesterolin ja rasvaliukoisten vitamiinien kuljettamiseen verenkierrossa.

LDL on kuin pizzataksi, joka kuljettaa ravintoa nälkäisille soluille.

Elimistö saa kolesterolia ravinnosta ja syntetisoi sitä itse soluissa tapahtuvasssa kolesterolisynteesissä. Kolesterolisynteesin lopputuotteita ovat mm. ruoansulatusneste, steroidihormonit, kuten testosteroni ja estrogeeni sekä kalsiumin homeostaasia ja immuunijärjestelmää säätelevä D-vitamiini. Elimistö tarvitsee välttämättä kaikkia näitä.

Koska kolesteroli on elämälle välttämätön steroli, elimistö pyrkii pitämään kolesterolin määrän tasaisena. Ravinnosta saatu kolesteroli vähentää soluissa tapahtuvaa kolesterolisynteesiä.

Ei liene sattumaa, että samalla kun miesten kolesteroli laskee, yhä useampi mies huomaa kärsivänsä testosteronin vajauksesta. Mieskunto laskee samaa tahtia kolesterolin kanssa. Voiko se olla sattumaa? Ehkä, mutta epäilen vahvasti?

Nykyisen lääketieteellisen paradigman karikatyyri on seuraava: laske kolesterolia statiineilla, nosta testoja lääkkeillä, sairastu metaboliseen oireyhtymään ja diabetekseen, korjaa korkea verensokeri metformiinilla tai insuliinilla, syö ohjeiden mukaan riittävästi sokeria ja vedä helvetisti verenpaine-, verensokeri- ja muita lääkkeitä. Syö lääkkeitä lääkkeiden aiheuttamiin sivuoireisiin, äläkä missään nimessä hairahdu ketogeeniseen ruokavalioon, koska siitä voit sairastua! Tuo voisi olla tinfoil-tuesdayn big pharma-hupailu, mutta surullista kyllä se on hyvin lähellä arkista totuutta.

Multippeliskleroottisesti suuntautuneena onnen kerjäläisenä pääsin osaksi institutionalisoitua medikalisaatiota. Etenevään multippeliskleroosiin ei tunneta oireita hidastavaa, tai parantavaa hoitoa, mutta minulla oli reseptillä parhaimmillaan kymmenkunta erilaista droppia ja nappia. Ja voi pojat, että rouskin uskollisesti erilaisia pillereitä ja palleroita, kunnes havahduin siihen, että jokainen syömäni lääke loi tarpeen uudelle lääkkeelle: lepovapinaa korjaavat lääkkeet edellyttivät vastapainoksi lihasrelaksantteja jne.

Oloni oli saamaton, tyhjämielinen, ahdistunut ja fyysisesti heikko. Älkää ymmärtäkö väärin: osa lääkkeistä on potilaille elintärkeitä ja välttämättömiä, mutta kaikki lääkkeet eivät ole kaikille välttämättömiä ja elintärkeitä. Siinä on merkittävä ero. Suunta on aivan väärä, jos meidät medikalisoidaan parhaassa iässä.

Syö, juo, liho, liiku, laihdu, mies, nainen!

Jokainen kolmekymppinen tarvitsee pian oman dosetin. Päivittäinen ääkecocktail on uskonnollinen rituaali, joka pitää kehon kasassa ja maailman radallaan. Mutta ei helvetti! Minun mielestäni ei ole tervettä tai normaalia, että jo kolme- ja nelikymppiset syövät päivittäin 5-10 reseptilääkettä statiineista masennuslääkkeisiin ja närästyslääkkeistä verenohennuslääkkeisiin. Jossain on nyt menty pahasti metsään. Ilmiö on globaali.

Suomessa on puoli miljoonaa diabeetikkoa ja saman verran verenpainelääkkeitä syöviä. Masennuslääkkeitä määrätään yhä nuoremmille ja yhä lievemmillä perusteilla. Joka toinen lapsi sairastaa ADHD:tä ja joka toinen ADD:tä. Terveitä lapsia mahtuu kourallinen tiuhun. Lähes kaikki suomalaiset kärsivät närästyksestä, ummetuksta, turvotuksesta, vitutuksesta ja muista ruoansulatus- ja suolistovaivoista.

Pahaa kolesterolia ei oikeastaan ole olemassa sen enempää kuin yksisarvisia, vampyyrejä tai ihmissusia. On olemassa vain kolesterolia ja erilaisia kolesterolia kuljettavia molekyylejä.

Jos muutat kolesterolimolekyylissä yhdenkin atomin paikan, se ei enää ole kolesterolia. LDL ja HDL ovat kuljetusmolekyylejä, jotka sisältävät samaa kolesterolia, mutta toinen on pahaa kolesterolia ja toinen hyvää kolesterolia.

Mitä se kolesteroli on?

Dave Feldman on käyttänyt vuosikymmenen vastatakseen tähän kysymykseen ja selvittääkseen, mitä kolesteroli oikeasti on. Tutustutaan Feldmanin havaintoihin.

Jos noudatat vähähiilihydraattista ja runsaasti rasvaa sisältävää ketogeenistä ruokavaliota, sinun on hyvä ymmärtää muutama asia kolesterolista ja siitä, kuinka kolesteroli liittyy valitsemaasi elämäntapaan.

Kolesterolista liikkuu paljon kummallisia ja kauhistuttavia juttuja. Osa niistä on totta. Hapettuneet lipoproteiinit ovat todellakin terveydelle haitallisia ja voivat ennustaa sydän- ja verisuonitauteja. Kolesterolia voi kumuloitua verisuonten seinämiin, mutta kysymys kuuluu: onko kolesterolin kumuloituminen verisuonten endoteeleihin syy vai seuraus. Tästä, kuten kaikista asioista, on vähintään kaksi keskenään kinastelevaa näkemystä.

Tässä jutussa käsitellään kolesterolia ensiksi hyvin yksinkertaisella ja yleisellä tavalla. Tämä ei ole täydellinen selvitys kolesterolista. Tätä on yksinkertaistettu tarkoituksella, jotta se olisi helpompi lukea ja ymmärtää. Kirjoituksen toisessa osassa siirrytään vaikeammin sulaviin rasva- ja kolesterolijuttuihin ja lopuksi luodaan katsaus todisteisiin, jotka kyseenalaistavat lipidihypoteesin.

Ennen kuin tutustutaan kolesteroliin, hiljennytään rasvaisten juttujen ja rasvasta saadun energian äärelle. Mitä ruoka ylipäätään on? Mitä rasva on? Mieti sitä hetki. Onko ruoka makaroonilaatikkoa, katkarapusalaattia vai sisäfilepihvi pippurikastikkeella? Ehkä maksalaatikkoa ja puolukkahilloa?

Ihan sama, mitä suuhusi lapioit. Ruoka on elimistölle ensisijaisesti energiaa ja rakennusaineita.

Kaikki elävät organismit muodostuvat ahneista soluista, jotka himoitsevat sokeria, rasvaa ja välttämättömiä ravinteita. Sydän koostuu soluista. Aivot koostuvat soluista. Jokainen solu sisältää kolesterolia ja rasvaa. Puolet aivojen kuivapainosta on rasvaa. Neljännes kehon kolesterolista on aivoissa. Äidin rintamaito sisältää runsaasti myrkyllistä tyydyttynyttä rasvaa ja kolesterolia. Yrittääkö luonto myrkyttää imeväiset?

Hyvä Jumala! Miksei äidinmaito voisi olla kuin kolesterolitonta, laktoositonta, ja rasvatonta monityydyttämätöntä sokeripitoista teollista mönjää?

Biljoonien solujen solupilvet muodostavat jalat, kädet, sormet, varpaat jne. Me ihmiset olemme eräänlaisia mutualistisesti toimivia soluparvia, jotka sekoilevat erilaisten mikrobien kanssa. Kaikki kehon solut ja kehon ulkopuoliset mikrobit janoavat energiaa ja rakennusaineita, jotta ne voivat jakautua.

Solut jakautuvat mitoosissa. Ex nihilo nihil fit – mitään ei synny tyhjästä. Solut tarvitsevat erilaisia aineita uusiutuakseen. Yksi solujen uusiutumisen tarvitsema aine on kolesteroli.

Ja joka Jumalan siunaama päivä noin 200 grammaa soluja uusiutuu sinussakin. Se edellyttää rakennuspalikoita (proteiineja, rasvoja ja suojaravinteita, kuten vitamiineja ja mineraaleja) sekä energiaa (hiilihydraatteja ja rasvaa). Solujen jakautumiseen tarvitaan myös kolesterolia.

Entä kuinka ravinnon sisältämä energia pääsee lautaselta elimistön kaikkiin soluihin ja sinne pikkuvarpaan päähän asti?

Valtaosa soluista ottaa energiaa vereen imeytyneistä ravinteista. Solujen yleisin energialähde on hiilihydraattien sisältämä glukoosi (sokeri). Hiilihydraatit pilkotaan ruoansulatuskanavassa yksittäisiksi sokerimolekyyleiksi, jotka imeytyvät ohutsuolesta verenkiertoon. Verenkierrossa glukoosi pääsee kaikkialle kehoon, sinne pikkuvarpaan päähän asti, jolloin nälkäiset solut voivat napata verenkierrosta joitain ravinteita itselleen.

Solujen ruokailu tapahtuu insuliinin avulla. Insuliini ja glukagoni orkestroivat energia-aineenvaihduntaa energiantuotannosta energian varastointiin. Ilman insuliinia solut eivät pysty tehokkaasti ottamaan verenkierrosta ravintoa, mutta jos insuliinia on liikaa, solut kyllästyvät, eivätkä enää reagoi insuliiniin halutulla tavalla.

Elimistö haluaa pitää sokeriaineenvaihdunnan tasapainossa. Nykyinen elämäntapa ei tue sokeri- ja insuliiniaineenvaihdunnan tasapainoa. Jatkuvasti korkea verensokeri ja insuliini vaurioittavat verisuonia ja elimiä altistaen insuliiniresistenssille, metaboliselle oireyhtymälle (mikä itse asiassa on vain toinen nimitys insuliiniresistenssille), diabetekselle, lihomiselle, Alzheimerin taudille ja sydän- ja verisuonitaudeille.

Glukoosin ohella rasva on myös tärkeä energialähde soluille. Esimerkiksi sydänlihaksen solut hapettavat pitkäketjuisia rasvahappoja betaoksidaatiossa.

Solut saavat rasvahappoja verenkierrosta, mutta hieman eri tavalla kuin glukoosia. Glukoosi voi antautua verenkierron vietäväksi, mutta rasvahapot eivät voi. Rasvahapot tarvitsevat kyydin!

Rasvahapot ja veri ovat kuin öljy ja vesi: ne eivät sekoitu keskenään. Rasvahapot ovat siis hydrofobisia

Rasvahappojen kuljetuksesta vastaa lipoproteiinit. Ensiksikin elimistö pakkaa kolme rasvahappoa yhdistelmämolekyyleiksi, joita kutsutaan triglyserideiksi. Triglyseridit ovat nisäkkäiden tärkein rasva. Ne muodostuvat kolmesta rasvahaposta ja glyseroliosasta (tri-glyseridi).

Seuraavaksi keho valmistaa rasvahapoille kuljetusvälineen. Tämä rasvahappoja kuljettava taksi on lipoproteiini. Perinteisissä tulkinnoissa  LDL-lipoproteiineja kutsutaan pahaksi kolesteroliksi. Lipoproteiineja on useita erilaisia. Kullakin on oma tarkoituksensa ja oma reittinsä.

Itse asiassa sellainen lipoproteiini, joka toimittaa kaikkia rasvahappoja, tunnetaan hyvin pienitiheyksisenä lipoproteiinina – tai VLDL:nä (Very Low Density Lipoprotein). Pakettien toimittamisen jälkeen se muuttuu matalatiheyksiseksi lipoproteiiniksi – mutta luultavasti tunnet sen jo lyhenteellä LDL (Low Density Lipoprotein) tai vain pahana kolesterolina.

Kolesteroli on steroideihin kuuluva tyydyttymätön, rengasrakenteinen, veteen liukenematon kiteinen alkoholi, joka ei triglyseridiserkkujensa tapaan sekoitu vereen. Kolesteroli hylkii vettä.

Lääketieteellisessä maailmassa triglyseridi- ja kolesterolimolekyylejä kutsutaan yleisesti lipideiksi. Lipidit hylkivät vettä, joten niitä sanotaan hydrofobisiksi (hydro = vesi, fobinen = hylkivä).

Elimistöllä voi olla syitä kolesterolin saatavuudelle myös verenkierrossa, mutta palataan siihen tuonnempana. On vielä muutama muu vesikammoinen paketti, jotka keho haluaa toimittaa soluihin kyydillä: nimittäin rasvaliukoiset A-, E-, D- ja K-vitamiinit.

Pitäisikö kehon valmistaa erillinen lipoproteiinitaksi kullekin näistä molekyyleistä?

Elimistö pakkaa kaikki munat tehokkaasti samaan koriin: lipoproteiiniin. Ihmiskeho on hämmästyttävän älykkäästi kehittynyt ja joustava. Elämä on kehittänyt eräänlaisen FedEx-kuljetuspalvelun kaikille solujen tarvitsemille vesikammoisille elementeille. Se ei ole ihmisen suuri saavutus, sillä kolesteroli on välttämätöntä kaikelle elämälle.

Suurin osa kolesterolista, jota ei käytetä solujen uusiutumiseen, kierrätetään muihin käyttötarkoituksiin, kuten steroidihormonien tai sappinesteen tuotantoon.

Olet ehkä kuullut sanottavan, että triglyseridit lisääntyvät vähähiilihydraattisella ruokavaliolla. Se ei täsmälleen ottaen ole totta.

Itse asiassa rasvassa rietastelevien LCHF-ketohörhöjen verikokeissa triglyseridipitoisuudet ovat alhaisempia, kuin teveellistä 40-60 prosenttista sokeridieettiä noudattavilla ravitsemusneuvottelukunnan ohjeiden mukaista ruokavaliota suosivilla verrokki-ihmisillä.

Hiljattain ystäväni mittautti veriarvot. Vuoden ketogeenisen ruokavalion jälkeen triglyt olivat optimaaliset, trigly-HDL-suhde optimaalinen, HDL erinomainen ja LDL:n määrässä ei ollut tapahtunut muutosta suhteessa esiketoilevaan aikaan. Sen sijaan hän oli pudottanut painoa 19 kiloa, päässyt verenpainelääkkeistä ja laskenut verensokerin esidiabeettiselta tasolta optimaaliseksi. Lääkäri oli aiheellisen huolestunut,..

Analogia: Verenkierto on kuin liikenneväylä. Tehtaat, eli solut, tarvitsevat ravinteita ja energiaa. Välillä liikenne ruuhkautuu. Erityisesti niin tapahtuu ruokailun jälkeen, jolloin veressä on runsaasti erilaisia ravinteita matkalla soluihin. Verikoe kertoo miten aktiivista työmatkaliikenne on. Se kertoo kuinka paljon glukoosia tai rasvaa on matkalla soluihin. Se ei kuitenkaan suoraan kerro, kuinka paljon ja kuinka tehokkaasti solut käyttävät ko. ravintoaineita.

Tyypin 2 diabeteksen yleinen oire on, että veressä on erittäin paljon glukoosia myös silloin kuin työmatkaliikenne ei ole aktiivista. Tämä kertoo siitä, että glukoosin pääsy soluihin on heikentynyt. Aikuistyypin diabeetikot ovat insuliiniresistenttejä. Insuliiniresistentit solut ovat ikään kuin lakossa. Ne eivät reagoi insuliiniin toivotulla tavalla. Insuliiniresistentit solut päästävät vain vähän ravinteita soluun. Seurauksena on, että solulaitteet ja solut surkastuvat ja kuolevat energianpuutteeseen.

Samalla verenkierron työmatkaliikenne uhkaa kirjaimellisesti puuroutua, sillä glukoosi aiheuttaa veressä glykaatiota, joka tekee verestä siirappia. Se kohottaa verenpainetta, ja on muutenkin rinnastettavissa kymmenen auton ketjukolariin Länsi- tai Itäväylällä.

Diabetesta sairastavat voivat syödä saman määrän ruokaa kuin terveet, mutta diabeetikon verensokeri nousee korkeammaksi ja laskee hitaammin insuliinin heikentyneen vaikutuksen vuoksi.

Insuliiniresistenssit solut eivät saa energiaa yhtä tehokkaasti kuin terveet solut. Se voi lisätä nälkää säätelevien hormonien, kuten greliinin eritystä, jolloin olo on nälkäinen pian syömisen jälkeen.

Veren glukoosista on päästävä eroon, koska muuten se tukkii suonet glykatoitumalla muiden ravinteiden kanssa.

Osa glukoosista säilötään rasvasoluihin, joiden insuliinisensitiivisyys säilyy lihassoluja kauemmin. Osan elimistö yrittää pissata pois. Siksi diabetesta sairastavien virtsaneritys lisääntyy.

Hyvin yleinen uniapnea johtuu erään hypoteesin mukaan myös korkeasta verensokerista, joka kuluttaa B1-vitamiinia; tiamiini on välttämätön vitamiini aivojen hengityskeskuksen autonomisen toiminnan säätelyssä. Tiamiinin puute aiheuttaa beriberiä ja SIDS-oireyhtymää (kätkytkuolema). Yksinkertaisin ja halvin tapa helpottaa uniapneaa on laskea verensokeria ja varmistaa B1-vitamiinin riittävä saanti.

Jos olet vähentänyt hiilihydraatteja ja saat energiasi pääasiassa rasvasta, solusi ottavat rasvaa tehokkaasti verenkierrosta. Vaikka ruokavalio sisältäisi enemmän rasvaa ja kolesterolia, niiden määrä verenkierrossa laskee, koska solut ottavat verenkierrosta glukoosin puutteessa rasvaa ja kolesterolia tehokkaammin.

Toinen yleinen oletus ketogeenisestä ruokavaliosta on, että suurin osa energiasta saadaan ketoneista, koska ketogeeninen ruokavalio johtaa ketoosiin. Maksa valmistaa ketogeenisellä ruokavaliolla energiasubstraateiksi kelpaavia ketoaineita vapaista rasvahapoista, mutta vaikka ketoaineiden tuotanto ja käyttö lisääntyy, ne ovat toissijainen energianlähde. Ensisijainen energianlähde ovat vapaat rasvahapot,joita hapetetaan energiaksi betaoksidaatiossa. Toisaalta aivojen soluille ketoaineet, kuten beta-hydroksibutyraatti, ovat optimaalista ravintoa.

Entä kuinka vapaat rasvahapot pääsevät soluihin, jossa niitä hapetetaan energiaksi? Vapaat rasvahapot kuljetetaan soluihin LDL-kuljetusmolekyylien kuljettamina. Siis se paha kolesteroli vie ruokaa soluille. Aika paha, vai mitä luulet?

Hiilihydraatteja rajoittavalla ruokavaliolla elimistön on korvattava glukoosin puute ja liikuteltava enemmän triglyseridejä solujen polttoaineeksi, koska suurin osa energiasta otetaan rasvasta. Ruokavalion vaikutuksesta veren triglyseriditasot laskevat, koska solut ottavat rasvaa vastaan ja hapettavat siitä energiaa.

Veren rasva- ja kolesteroliarvot korjaantuvat jo kolmessa kuukaudessa. Samalla verenpaine ja paino laskevat. Lue tästä!

  1. Solut tarvitsevat energiaa
  2. Rasvaisella ruokavaliolla solujen ensisijainen energialähde on triglyseridit
  3. Triglyseridit kuljetetaan soluihin hyvin pienitiheyksisissä lipoproteiineissa (VLDL), jotka lopulta muuttuvat pienitiheyksisiksi lipoproteiineiksi (LDL)
  4. Kaikki hyvin pienitiheyksiset lipoproteiinit (VLDL) sisältävät sekä triglyseridejä että kolesterolia (mutta enimmäkseen triglyseridejä)

Meidät on ehdollistettu uskomaan, että kolesteroli on tosi paha asia. Niin yksinkertaista se ei suinkaan ole. Kolesteroli voi tietyissä tilanteissa kasvattaa sairastumisen riskiä, mutta laajasti ottaen elimistömme ja itse asiassa elämä itsessään on täysin riippuvainen kolesterolista.

Lipoproteiini on hieman kuin postin pakettiauto. Se kuljettaa triglyserdien lisäksi kolesterolia ja rasvaliukoisia vitamiineja. Kolesterolin osuus lipoproteiinin lastista on hyvin niukka.

Kolesteroli kierrätetään enimmäkseen takaisin maksassa. Kolesterolin olemassaolo itsessään ei ole riski. Riski syntyy lipoproteiinien oksidoituessa ja tulehdustilanteissa.

Tämä on kolesterolista käytävän tulehduskeskustelun ydin. Vahingoittaako kolesteroli verisuonia? Vai onko kolesteroli laastari, joka paikkaa verisuoniin syntyneitä vaurioita? Perinteinen muna-kana-kysymys siis!

Monet arvovaltaiset tutkijat, lääkärit ja laitokset ovat kallistuneet jälkimmäisen hypoteesin kannattajiksi. Kolesterolikeskustelua tärkeämpää olisi varoittaa korkean verensokerin, hyperinsulinemian, insuliiniresistenssin ja diabeteksen aiheuttamista sydän- ja verisuonitautiriskeistä. Ne nimittäin ovat hyvin todellisia riskejä yli puolelle miljoonalle suomalaiselle diabeetikolle.

2. osa: Mitä se kolesteroli siis on?

Tämä on astetta laajempi ja teknisempi selitys kolesterolista. Kolesteroli (tulee antiikin Kreikan sanoista chole– (sappi) ja stereos (kiinteä), jota seuraa alkoholin kemiallinen loppuliite -ol) on orgaaninen molekyyli.

Se on steroli (tai modifioitu steroidi), siis eräänlainen lipidi. Kolesterolia biosyntetisoituu kaikissa eläinsoluissa, ja se on olennainen eläinsolukalvojen rakenteellinen komponentti. Kolesteroli toimii myös esiasteena steroidihormonien, sappihapon ja D-vitamiinin biosynteesissä.

Kolesteroli on tärkein kaikkien eläinten syntetisoima steroli. Selkärankaisilla maksan solut tuottavat tyypillisesti suurimman osan kolesterolista. Sitä ei ole prokaryooteilla (bakteereilla ja arkeilla), vaikka on olemassa joitain poikkeuksia, kuten Mycoplasma, jotka edellyttää kasvua varten kolesterolia.

François Poulletier de la Salle tunnisti kolesterolin kiinteässä muodossa sappikivissä ensimmäisen kerran vuonna 1769. Vasta vuonna 1815 kemisti Michel Eugène Chevreul nimitti yhdisteen ”kolesteriiniksi”.

Kolesteroli on välttämätöntä elämälle, ja jokainen solu kykenee syntetisoimaan sen monimutkaisen 37-vaiheisen prosessin avulla. Tämä alkaa mevalonaatti- tai HMG-CoA-reduktaasireitillä, joka on statiinilääkkeiden kohde, joka käsittää ensimmäiset 18 vaihetta. Tätä seuraa 19 lisävaihetta saadun lanosterolin muuttamiseksi kolesteroliksi.

Mies, joka painaa 68 kg, syntetisoi normaalisti noin 1 gramman (1000 mg) kolesterolia päivässä, ja hänen kehossaan on noin 35 g kolesterolia (lähinnä solukalvoissa). Tyypillinen päivittäinen kolesterolin saanti ravinnosta Yhdysvalloissa on 307 mg.

Suurin osa nautitusta kolesterolista on esteröitynyttä, minkä vuoksi se imeytyy suolesta elimistöön hyvin huonosti. Elimistö kompensoi myös nautittavan kolesterolin meytymistä vähentämällä omaa kolesterolisynteesiään. Näistä syistä ravinnon sisältämällä kolesterolilla on seitsemän – kymmenen tuntia nauttimisen jälkeen vain vähän tai ei lainkaan vaikutusta veren kolesterolipitoisuuksiin.

Mutta kolesterolin saanti ravinnosta nostaa kolesterolipitoisuutta seitsemän ensimmäisen tunnin aikana ruokailun jälkeen. Tämä johtuu siitä, että lipoproteiinit (jotka kuljettavat kaikkia elimistöön imeytyneitä lipidejä solujen ulkopuolella) jakautuvat kehon ympäri solunulkoiseen veteen, Tämän vuoksi pitoisuudet kasvavat.

Kasvit eivät tuota kolesterolia, mutta ne tuottavat fytosteroleja, jotka ovat kemiallisesti samanlaisia aineita. Samankaltaisuutensa vuoksi ne voivat kilpailla kolesterolin kanssa suoliston takaisinimeytymisestä ja siten vähentää kolesterolin reabsorptiota.

Kun suoliston vuoraussolut imevät fytosteroleja kolesterolin sijasta, ne erittävät tavallisesti fytosterolimolekyylit takaisin ruoansulatuskanavaan, mikä on tärkeä suojamekanismi. Luonnossa esiintyvien kasvisterolien ja stanolien sisältämien fytosterolien saanti vaihtelee välillä ~ 200–300 mg päivässä syömistottumuksista riippuen. Kasvisruokavalioissa fytosterolien saanti voi kasvaa 700 mg:n vuorokausisaantiin.

Kolesteroli muodostaa noin 30% kaikista eläinsolujen kalvoista eli membraaneista. Sitä tarvitaan solukalvojen rakentamiseksi ja ylläpitämiseksi. Kolesteroli moduloi kalvojen juoksevuutta fysiologisten lämpötilojen alueella. Kunkin kolesterolimolekyylin hydroksyyliryhmä on vuorovaikutuksessa kalvoa ympäröivien vesimolekyylien kanssa, samoin kuin kalvon fosfolipidien ja sfingolipidien napapäät, kun taas iso steroidi- ja hiilivetyketju on upotettu kalvoon, polaarisen rasvahappoketjun rinnalla.

Muut lipidit

Kolesteroli lisää kalvopakkauksia vuorovaikutuksessa fosfolipidirasvahappoketjujen kanssa, mikä muuttaa kalvon juoksevuutta ja ylläpitää kalvon eheyttä siten, että solujen ei tarvitse rakentaa erillisiä soluseiniä (kuten kasvien ja useimpien bakteerien). Kalvo pysyy vakaana ja kestävänä olematta jäykkä, jolloin solut voivat muuttaa muotoa ja soluelimet liikkua.

Kolesterolin tetrasyklisen renkaan rakenne edistää solukalvon juoksevuutta, koska molekyyli on trans-konformaatiossa, joka tekee kolesterolin sivuketjun paitsi jäykäksi, myös tasomaiseksi. Tässä rakenteellisessa roolissa kolesteroli vähentää neutraalien liuenneiden aineiden, sekä vety- ja tatriumionien plasmakalvon läpäisevyyttä.

Kolesteroli vaikuttaa solunsisäisessä kuljetuksessa, solujen signaloinnissa ja hermoissa kulkevien signaalien johtamisessa. Kolesteroli on välttämätön invasiivisten caveolae- ja klatrriinipäällysteisten kuoppien rakenteelle ja toiminnalle, mukaan lukien caveolasta riippuvainen ja klathriinista riippuvainen endosytoosi.

Kolesterolin roolia tämän tyyppisessä endosytoosissa voidaan tutkia käyttämällä metyylibeta-syklodekstriiniä (MβCD) kolesterolin poistamiseksi plasmamembraanista. Kolesteroli säätelee substraatin esittelyn biologista prosessia ja entsyymejä, jotka käyttävät substraatin esittelyä aktivoitumismekanismina. (PLD2) on hyvin määritelty esimerkki entsyymistä, joka aktivoituu substraatin esittämisen avulla. Entsyymi palmitoyloidaan*, jolloin entsyymi kulkeutuu kolesterolista riippuvaisiin lipididomeeneihin, joita kutsutaan joskus ”lipidilautoiksi”.

*Palmitoylaatio tapahtuu, kun rasvahappoihin sitoutuu kovalenttisesti kalvoproteiini, kuten palmitiinihappo, johon on sitoutunut kysteiini ( S -palmitoylation) ja harvemmin seriini tai treoniini. Palmitoylaation tarkka toiminta riippuu tarkasteltavasta proteiinista. Palmitoylaatio lisää proteiinien hydrofobisuutta ja myötävaikuttaa niiden kalvoyhdistelmään. Palmitoylaatiolla näyttää myös olevan merkittävä rooli proteiinien solunsisäisessä liikenteessä membraaniosastojen välillä sekä proteiini-proteiini-vuorovaikutuksen moduloinnissa .

Toisin kuin prenylaatio ja myristoylaatio, palmitoylaatio on yleensä palautuva,k koska palmitiinihapon ja proteiinin välinen sidos on usein tioesterisidos. Käänteisen reaktion nisäkkään soluissa katalysoivat asyyli-proteiini tioesteraasit (APT) solujen sytosolissa ja palmitoyyli-proteiinin tioesteraasit lysosomeissa.

Koska palmitoylaatio on dynaaminen, translaation jälkeinen prosessi, solun uskotaan käyttävän sitä muuttavan proteiinin solunsisäistä sijaintia, proteiini-proteiini-vuorovaikutusta tai sitoutumiskapasiteettia.

Esimerkki palmitoylaation läpikäyvästä proteiinista on hemagglutiniini , membraaniglykoproteiini, jota influenssa-virus käyttää isäntäsolureseptoreihin kiinnittymiseen. Lukuisten entsyymien palmitoylaatiojaksot on tunnistettu viime vuosina, mukaan lukien: H-Ras , Gsα , β2-adrenerginen reseptori ja endoteelin typpioksidisyntaasi (eNOS).

Signaalitransduktiossa G-proteiinin kautta a-alayksikön palmitoylaatio, y-alayksikön prenylaatio ja myristoylaatio osallistuvat G-proteiinin sitomiseen plasmakalvon sisäpintaan niin, että G-proteiini voi olla vuorovaikutuksessa reseptorinsa kanssa.

S-palmitoylaation tekevät yleensä proteiinit, joilla on DHHC-domeeni . Ei-entsymaattisissa reaktioissa on poikkeuksia. Asyyliproteiinitioesteraasi (APT) katalysoi käänteisen reaktion. Myös muut asyyliryhmät, kuten stearaatti tai oleaatti, hyväksytään usein kasvien ja virusten proteiineissa, mikä tekee S-asyloinnista käyttökelpoisemman nimen.

Noin 40% synaptisista proteiineista löydettiin palmitoylomeista. Palmitoylaatio välittää proteiinin affiniteetin lipidilauttoihin ja helpottaa proteiinien klusteroitumista. Klusterointi voi lisätä kahden molekyylin läheisyyttä. Vaihtoehtoisesti klusterointi voi sitoa proteiinin pois substraatista.

Esimerkiksi fosfolipaasi D:n (PLD) palmitoylaatio erottaa entsyymin pois substraatistaan fosfatidyylikoliinista. Kun kolesterolitasot laskevat tai PIP2-tasot lisäävät palmitaatin välittämää lokalisoitumista , entsyymi siirtyy PIP2:een, jossa se kohtaa substraatinsa ja on aktiivinen substraatin esittämisen kautta .

Tärkein proteiinin klustereiden välittäjä synapsissa on postsynaptisen tiheyden ( 95 kD) proteiini PSD-95 . Kun tämä proteiini palmitoyloidaan, se rajoittuu kalvoon. Tämän kalvoon kohdistuvan rajoituksen avulla se voi sitoutua postsynaptiseen kalvoon ja klusteroida sen . Presynaptisessa hermosolussa SNAP-25:n palmitoylaatio ohjaa sen jakautumaan solukalvoon ja antaa SNARE- kompleksin hajota vesikkelifuusion aikana. Tämä tarjoaa palmitoylaatiolle roolin välittäjäaineiden vapautumisen säätelyssä . Delta-kateniinin palmitoylaatio näyttää koordinoivan aktiivisuudesta riippuvia muutoksia muistinmuodostukseen osallistuvissa synaptisissa adheesiomolekyyleissä, synapsiorakenteessa ja reseptoripaikannuksissa. Gefyriinin palmitoylaation on raportoitu vaikuttavan GABAergisiin synapseihin.

Palmitoylaatio – https://fi.qaz.wiki/wiki/Palmitoylation


Fosfolipaasi D:n substraatti on fosfatidyylikoliini (PC), joka on tyydyttymätön ja jota on vähän
lipidilautoissa. PC lokalisoituu solun häiriintyneelle alueelle yhdessä monityydyttymättömän lipidifosfatidyyli- inositoli 4,5-bisfosfaatin (PIP2) kanssa. PLD2:lla on PIP2:ta sitova domeeni.

Kun PIP2-pitoisuus membraanissa kasvaa, PLD2 poistuu kolesterolista riippuvaisista domeeneista ja sitoutuu PIP2:een, missä se sitten saa pääsyn substraatti-PC:hen ja aloittaa katalyytin substraatin esityksen perusteella.

Solujen signallointi

Kolesteroli on osallisena myös solujen signalointiprosesseissa, mikä auttaa lipidilautojen muodostumista plasmamembraanissa. Prosessi tuo korkean toisioviestimolekyylikonsentraation reseptoriproteiinit esiin. Kolesteroli ja fosfolipidit (sähköeristimet), voivat monella tavalla helpottaa sähköimpulssien siirtonopeutta hermokudosta pitkin.

Monissa hermokuiduissa runsaasti kolesterolia sisältävä myeliinivaippa (joka on peräisin tiivistetyistä Schwannin solukalvokerroksista) tarjoaa eristeen sähköisten impulssien tehokkaammalle johtamiselle. Myeliinivaipan vaurioituminen esimerkiksi multippeliskleroosissa hidastaa tai katkaisee hermostossa kulkevia sähköisiä impulsseja, jolloin aivojen lähettämät toimintakäskyt eivät aina saavuta lihaksia.

Demyelinaation (Schwann-solujen surkastuminen) uskotaan olevan osa multippeliskleroosin patogeneesiä. Multippelisklerootikkona minulla on siis oma lehmä ojassa. Minä tunnen kolesterolin hieman eri merkityksessä, kuin monet muut. Minä näen kolesterolin hermovälittäjiä suojaavien myeliinivaippojen välttämättömänä rakennusaineena.

Kolesteroli sitoutuu ja vaikuttaa useiden ionikanavien, kuten nikotiiniasetyylikoliinireseptorin, GABA A-reseptorin ja sisäänpäin suuntautuvan kaliumkanavan välityksellä. Kolesteroli aktivoi myös estrogeeniin liittyvän alfa-reseptorin (ERRα) ja se voi olla reseptorin endogeeninen ligandi.

Reseptorin rakenteeltaan aktiivinen luonne voidaan selittää sillä, että kolesterolia on kaikkialla kehossa. ERRα-signaloinnin estäminen kolesterolin tuotannon vähentämisellä on tunnistettu keskeiseksi välittäjäksi statiinien ja bisfosfonaattien vaikutuksissa luuhun, lihakseen ja makrofageihin. Näiden havaintojen perusteella on ehdotettu, että ERRα tulisi luokitella kolesterolin reseptoriksi.

Kolesteroli on mm. steroidihormonien lähtöaine

Kolesteroli on useiden solunsisäisten biokemiallisten reittien edeltäjämolekyyli. Se on lähtöaine D-vitamiinin synteesissä, kalsiumin aineenvaihdunnassa ja kaikkien steroidihormoneien synteesissä, mukaan lukien lisämunuaishormonit kortisoli ja aldosteroni, sekä sukupuolihormonit progesteroni, estrogeenit, testosteroni ja niiden johdannaiset. Elimistö ei syntetisoi kolesterolia turhaan. Sitä tarvitaan lukemattomiin aineenvaihduntatapahtumiin, solukalvoihin, solusignalointiin ja hermoratoja suojaavien myeliinivaippojen rakenteisiin.

Kolesteroli kierrätetään elimistössä. Maksa erittää kolesterolia sappinesteisiin, jotka sitten varastoidaan sappirakoon, joka edelleen erittää kolesterolin esteröimättömässä muodossa (sapen kautta) ruoansulatuskanavaan. Tyypillisesti noin 50% erittyvästä kolesterolista imeytyy ohutsuolessa takaisin verenkiertoon.

Kaikki eläinsolut tuottavat kolesterolia sekä kalvorakenteeseen että muuhun käyttöön, suhteelliset tuotantonopeudet vaihtelevat solutyypin ja elimen toiminnan mukaan. Noin 80% päivittäisestä kolesterolituotannosta tapahtuu maksassa ja suolistossa; muita korkeampia synteesinopeuspaikkoja ovat aivot, lisämunuaiset ja lisääntymiselimet. Kolesterolin biosynteesiä säätelevät suoraan olemassa olevat kolesterolitasot, vaikka mukana olevat homeostaattiset mekanismit ymmärretään vain osittain. Suurempi ravinnon kolesterolipitoisuus johtaa endogeenisen tuotannon nettovähennykseen, kun taas pienemmällä kolesterolin saannilla on päinvastainen vaikutus.

Tärkein säätelymekanismi on solunsisäisen kolesterolin havaitseminen endoplasman verkkokalvossa SREBP-proteiinin (sterolia säätelevää elementtiä sitova proteiini 1 ja 2) avulla.

Kolesterolin läsnä ollessa SREBP sitoutuu kahteen muuhun proteiiniin: SCAP:iin (SREBP:n pilkkoutumista aktivoivaan proteiiniin) ja INSIG-1:een. Kun kolesterolitaso laskee, INSIG-1 irtoaa SREBP-SCAP-kompleksista, mikä antaa kompleksin siirtyä Golgin laitteisiin. Tässä SREBP katkaistaan S1P: llä ja S2P: llä (site-1-proteaasi ja site-2-proteaasi), kahdella entsyymillä, jotka aktivoituvat SCAP:lla, kun kolesterolitasot ovat alhaiset. Pilkottu SREBP siirtyy sitten solun tumaan ja toimii transkriptiotekijänä sitoutuakseen sterolin säätelyelementtiin (SRE), joka stimuloi monien geenien transkriptiota. Näitä ovat pienitiheyksinen lipoproteiinireseptori (LDL) ja HMG-CoA-reduktaasi. LDL-reseptori imee verenkierrossa kiertävää LDL:ää, kun taas HMG-CoA-reduktaasi johtaa kolesterolin endogeenisen tuotannon lisääntymiseen.

Suuren osan tästä signalointireitistä selvittivät tohtori Michael S. Brown ja tohtori Joseph L. Goldstein 1970-luvulla. Vuonna 1985 he saivat Nobel-palkinnon fysiologisesta ja lääketieteestä työstään. Heidän myöhempi työ osoittaa, kuinka SREBP-reitti säätelee monia lipidien metaboliaa ja muodostumista sekä energiasubstraattien allokointia kontrolloivien geenien ilmentymistä.

Kolesterolisynteesi voidaan myös kytkeä pois päältä, kun kolesterolitaso on korkea. HMG-CoA-reduktaasi sisältää sekä sytosolidomeenin (vastuussa sen katalyyttisestä toiminnasta) että kalvodomeenin. Kalvodomeeni tunnistaa signaalit sen hajoamisesta. Kolesterolin (ja muiden sterolien) lisääntyvät pitoisuudet aiheuttavat muutoksen tämän domeenin oligomerisaatiotilassa, mikä tekee siitä alttiimman proteosomin tuhoamiselle. Tämän entsyymin aktiivisuutta voidaan vähentää myös fosforyloimalla AMP-aktivoidulla proteiinikinaasilla. Koska tämä kinaasi aktivoituu AMP:llä, joka syntyy, kun ATP hydrolysoidaan, seuraa, että kolesterolisynteesi pysähtyy, kun ATP-tasot ovat alhaiset.

Eristettynä molekyylinä kolesteroli liukenee huonosti veteen (se on heikosti hydrofiilinen). Tämän vuoksi kolesterolia liukenee vereen erittäin pieninä pitoisuuksina.

Lipoproteiinit

Tehokkaasta kolesterolin kuljetuksesta vastaavat lipoproteiinit, joihin kolesteroli pakataan. Lipoproteiinit ovat monimutkaisia diskoidisia molekyylejä, joissa on ulkopuolisia amfifiilisiä proteiineja ja lipidejä, joiden ulospäin suuntautuvat pinnat ovat vesiliukoisia ja sisäänpäin osoittavat pinnat rasvaliukoisia.

Rakenteensa ansiosta lipoproteiini voi kulkea veren läpi emulgoinnin avulla. Sitoutumaton kolesteroli, joka on amfipaattinen, kulkeutuu lipoproteiinimolekyylin yksikerroksisella pinnalla fosfolipidien ja proteiinien mukana. Rasvahappoon sitoutuneet kolesteroliesterit kulkeutuvat toisaalta lipoproteiinin rasva-hydrofiilisen ytimen sisällä yhdessä triglyseridin kanssa.

Veressä on useita lipoproteiinityyppejä. Suuren tiheyden järjestyksessä ne ovat kylomikronit, hyvin matalatiheyksinen lipoproteiini (VLDL), keskitiheyksinen lipoproteiini (IDL), matalatiheyksinen lipoproteiini (LDL) ja suuritiheyksinen lipoproteiini (HDL).

Eri lipoproteiinien kuljettma kolesteroli on kemiallisesti on identtistä, vaikka jotkut kolesterolimolekyylit kulkeutuvatkin kolesterolin natiivina ”vapaana” alkoholimuotona (kolesteroli-OH-ryhmä), kun taas toisissa molekyyleissä kolesteroli on rasva-asyyliestereinä, jotka tunnetaan myös kolesteroliesterinä.

Lipoproteiinimolekyylit organisoidaan monimutkaisilla apolipoproteiineilla, tyypillisesti 80-100 erilaista proteiinia partikkelia kohden, jotka voidaan tunnistaa ja sitoa solukalvojen spesifisillä reseptoreilla, ohjaamalla niiden lipidien hyötykuorma spesifisiin soluihin ja kudoksiin, jotka ovat herkistyneitä näille rasvansiirtomolekyyleille.

Nämä pintareseptorit toimivat ainutlaatuisina molekyylirekistereinä, jotka auttavat rasvan jakautumisen koko kehoon. Kylomikronit, eli vähiten tiheät kolesterolia kuljettavat molekyylit, sisältävät kuorissaan apolipoproteiini B-48:n, apolipoproteiini C:n ja apolipoproteiini E:n (tärkein kolesterolin kuljettaja aivoissa). Kylomikronit kuljettavat rasvoja suolesta lihaksiin ja muihin kudoksiin, jotka tarvitsevat rasvahappoja energiaksi tai rasvan tuottamiseksi.

Maksa tuottaa VLDL-molekyylejä triglyserideistä ja kolesterolista, jota ei käytetty sappihappojen synteesissä. Nämä molekyylit sisältävät kuorissaan apolipoproteiini B100:n ja apolipoproteiini E:n, ja valtimon seinämän lipoproteiinilipaasi voi hajottaa ne IDL:ksi. Tämä valtimon seinämän pilkkominen sallii triglyseridin imeytymisen ja lisää kiertävän kolesterolin pitoisuutta. IDL-molekyylejä kulutetaan sitten kahdessa prosessissa: puolet metaboloituu HTGL:n kautta ja LDL-reseptori vie ne maksan solupinnoille, kun taas toinen puoli menettää edelleen triglyseridejä verenkierrossa, kunnes niistä tulee kolesterolipitoisia LDL-molekyylejä.

LDL-molekyylit ovat tärkeimmät veren kolesterolinkuljettajat. Jokainen niistä sisältää noin 1500 kolesteroliesterimolekyyliä. LDL-molekyylikuoret sisältävät vain yhden molekyylin apolipoproteiini B100:n, jonka perifeeristen kudosten LDL-reseptorit tunnistavat. Apolipoproteiini B100:n sitoutuessa monet LDL-reseptorit keskittyvät klatriinilla päällystettyihin kuoppiin. Sekä LDL että sen reseptori muodostavat rakkuloita solussa endosytoosin kautta. Nämä rakkulat sulautuvat sitten lysosomiin, jossa lysosomaalihappo-lipaasientsyymi hydrolysoi kolesteroliesterit.

Kolesterolia voidaan sitten käyttää membraanin biosynteesiin tai esteröidä ja varastoida soluun, jotta se ei häiritse solukalvoja. LDL-reseptorit kuluvat kolesterolin imeytymisen aikana, ja sen synteesiä säätelee SREBP, sama proteiini, joka kontrolloi kolesterolin synteesiä de novo, sen mukaan, onko se solussa. Solun, jossa on runsaasti kolesterolia, LDL-reseptorisynteesi estetään, jotta estetään uuden kolesterolin lisääntyminen LDL-molekyyleissä. Päinvastoin, LDL-reseptorisynteesi etenee, kun solussa on kolesterolipuutetta.

Paha kolesteroli

Kun tämä prosessi muuttuu sääntelemättömäksi, veressä alkaa näkyä LDL-molekyylejä, joissa ei ole reseptoreita. Nämä LDL-molekyylit hapetetaan ja ne imeytyvät makrofageihin, jotka tukkeutuvat ja muodostavat vaahtosoluja. Nämä vaahtosolut jäävät usein kiinni verisuonten seinämiin ja edistävät ateroskleroottisten plakkien muodostumista. Tämä on se paha kolesteroli.

Kolesterolihomeostaasin häiriöt vaikuttavat varhaisen ateroskleroosin (kaulavaltimon intima-väliaineen paksuus) kehittymiseen. Näiden plakkien yhteys sydänkohtauksiin, aivohalvauksiin ja muihin vakaviin lääketieteellisiin ongelmiin on syy, minkä vuoksi kolesterolia kauhistellaan.

HDL-molekyylien uskotaan kuljettavan kolesterolia takaisin maksaan joko erittymiseen tai muihin hormoneja syntetisoiviin kudoksiin prosessissa, joka tunnetaan käänteisenä kolesterolikuljetuksena (RCT). Suuri määrä HDL-molekyylejä korreloi parempaan terveyteen

Kolesteroli on altis hapettumiselle ja muodostaa helposti hapetettuja johdannaisia, joita kutsutaan oksysteroleiksi. Kolme erilaista mekanismia voi muodostaa tällaisia: autoksidaatio, sekundaarinen hapettuminen lipidiperoksidaatioksi ja kolesterolia metaboloiva entsyymihapetus.

Suuri kiinnostus oksysteroleihin syntyi, kun niiden osoitettiin vaikuttavan estävästi kolesterolin biosynteesiin. Tämä havainto tunnettiin nimellä ”oksysterolihypoteesi”. Oksysterolien lisärooleja ihmisen fysiologiassa ovat niiden osallistuminen sappihappojen biosynteesiin, toiminta kolesterolin kuljetuksessa ja geenitranskription säätely.

Kolesteroli hapetetaan maksassa erilaisiksi sappihapoiksi. Nämä puolestaan ovat konjugoituja glysiinin, tauriinin, glukuronihapon tai sulfaatin kanssa. Konjugoitujen ja konjugoimattomien sappihappojen seos yhdessä kolesterolin kanssa erittyy maksasta sappeen. Noin 95% sappihapoista imeytyy takaisin suolistosta ja loput häviävät ulosteiden mukana. Sappihappojen erittyminen ja imeytyminen muodostavat enterohepaattisen verenkierron perustan, mikä on välttämätöntä ravintorasvojen sulatukselle ja imeytymiselle. Tietyissä olosuhteissa kolesteroli voi kiteytyä sappirakossa ja vaikuttaa sappikivien muodostumiseen (myös lesitiinistä ja bilirubiinista muodostuvia sappikiviä esiintyy, mutta harvemmin).

Joka päivä paksusuoleen pääsee jopa 1 g kolesterolia. Tämä kolesteroli on peräisin ruokavaliosta, sapesta ja suolen poistetuista suolistosoluista, ja paksusuolibakteerit voivat metaboloida sen. Kolesteroli muuttuu pääasiassa koprostanoliksi, imeytymättömäksi steroliksi, joka erittyy ulosteisiin.

Vaikka kolesteroli on steroidi, joka yleensä liittyy nisäkkäisiin, ihmisen patogeeni Mycobacterium tuberculosis pystyy hajottamaan tämän molekyylin täysin ja sisältää suuren määrän geenejä, joita sen läsnäolo säätelee.

Monet näistä kolesterolilla säädellyistä geeneistä ovat rasvahappojen β-hapetusgeenien homologeja, mutta ne ovat kehittyneet sitomaan suuria steroidisubstraatteja, kuten kolesterolia. Eläinrasvat ovat monimutkaisia triglyseridiseoksia, joissa on vähäisempiä määriä sekä fosfolipidejä että kolesterolimolekyylejä, joista kaikki eläin- (ja ihmisen) solukalvot rakennetaan.

Koska kaikki eläinsolut tuottavat kolesterolia, kaikki eläinperäiset elintarvikkeet sisältävät kolesterolia vaihtelevissa määrissä. Suurimpia ruokavalion kolesterolilähteitä ovat punainen liha, munankeltuainen ja kokonaiset munat, maksa, munuaiset, pikkulohet, kalaöljy ja voi. Ihmisen äidinmaito sisältää myös merkittäviä määriä kolesterolia. Kasvisolut syntetisoivat kolesterolia muiden yhdisteiden, kuten fytosterolien ja steroidisten glykoalkaloidien, esiasteena, ja kolesterolia on kasviruoissa vain vähän tai ei ollenkaan. Jotkut kasviruoat, kuten avokado, pellavansiemenet ja maapähkinät, sisältävät fytosteroleja, jotka kilpailevat kolesterolin kanssa imeytymisestä suolistossa, vähentävät sekä ruokavalion että sappikolesterolin imeytymistä. Tyypillinen ruokavalio myötävaikuttaa noin 0,2 gramman fytosteroleihin, mikä ei riitä vaikuttamaan merkittävästi kolesterolin imeytymisen estoon.

Fytosterolien saantia voidaan täydentää käyttämällä fytosterolia sisältäviä funktionaalisia elintarvikkeita tai ravintolisiä, joiden tiedetään olevan potentiaalisia alentamaan LDL-kolesterolitasoja. Vuonna 2016 Yhdysvaltain maatalousministeriön ruokavalion ohjeiden neuvoa-antava komitea suositteli amerikkalaisia syömään mahdollisimman vähän kolesterolia. Useimmissa kolesterolipitoisissa elintarvikkeissa on myös runsaasti tyydyttyneitä rasvoja, mikä voi siten lisätä sydän- ja verisuonitautien riskiä. [57] Joissakin täydentävissä ohjeissa suositellaan fytosterolien annoksia 1,6–3,0 grammaa päivässä (Health Canada, EFSA, ATP III, FDA).

Äskettäinen meta-analyysi osoittaa LDL-kolesterolin laskevan 12%:lla fytosterolien 2,1 gramman päiväsaannilla. Fytosteroleilla täydennetyn ruokavalion edut on kuitenkin kyseenalaistettu.

Perinteisen ja institutionalisoidun lipidihypoteesin mukaan kohonnut kolesterolitaso veressä aiheuttaa ateroskleroosia, mikä voi lisätä sydänkohtauksen, aivohalvauksen ja perifeerisen valtimosairauden riskiä. Koska veren korkeammat LDL-pitoisuudet ja pienempi LDL-partikkelikoko – vaikuttavat tähän prosessiin enemmän kuin HDL-hiukkasten kolesterolipitoisuus, LDL-partikkeleita kutsutaan usein ”pahaksi kolesteroliksi”.

Suuret toiminnallisen HDL:n pitoisuudet, jotka voivat poistaa kolesterolin soluista ja ateroomista, tarjoavat suojan ja niitä kutsutaan yleisesti ”hyväksi kolesteroliksi”. Nämä tasapainot määritetään enimmäkseen geneettisesti, mutta niitä voidaan muuttaa kehon koostumuksen, lääkkeiden, ruokavalion ja muiden tekijöiden perusteella. Vuoden 2007 tutkimus osoitti, että veren kokonaiskolesterolitasoilla on eksponentiaalinen vaikutus sydän- ja verisuonitauteihin ja kokonaiskuolleisuuteen, ja yhteys on selvempi nuoremmilla koehenkilöillä.

Koska sydän- ja verisuonitaudit ovat suhteellisen harvinaisia nuoremmalla väestöllä, korkean kolesterolin vaikutus terveyteen on suurempi iäkkäillä ihmisillä. Kohonnut lipoproteiinifraktioiden, LDL-, IDL- ja VLDL-tasojen, sijaan kokonaiskolesterolitaso, korreloivat ateroskleroosin laajuuden ja etenemisen kanssa.

Päinvastoin, kokonaiskolesteroli voi olla normaaleissa rajoissa, mutta se koostuu pääasiassa pienistä LDL- ja pienistä HDL-hiukkasista, joissa aterooman kasvunopeus on korkea. IDEALin ja EPIC:n prospektiivisten tutkimusten post hoc -analyysi havaitsi yhteyden korkeaan HDL-kolesterolitasoon (mukautettu apolipoproteiini AI ja apolipoproteiini B) ja lisääntyneeseen sydän- ja verisuonitautien riskiin, mikä epäili ”hyvän kolesterolin” kardioprotektiivista roolia.

Yhdellä 250 aikuisesta voi olla geneettinen mutaatio LDL-kolesterolireseptorille, mikä aiheuttaa heille familiaalisen hyperkolestrolemian. Peritty korkea kolesteroli voi myös sisältää geneettisiä mutaatioita PCSK9-geenissä ja apolipoproteiini B -geenissä.

Kohonnutta kolesterolitasoa hoidetaan tiukalla ruokavaliolla, joka koostuu vähärasvaisista ruoista, transrasvattomista sejö vähän kolesterolia sisältävistä elintarvikkeista. Usein (lähes poikkeuksetta) kolesterolin laskua tehostetaan hypolipideemisillä aineilla, kuten statiineilla, fibraateilla, kolesterolin imeytymisen estäjillä, nikotiinisillä happojohdannaisilla tai sappihappoa sitovilla lääkkeillä.

Hyperkolesterolemian hoidossa on useita kansainvälisiä ohjeita. Ihmiskokeet, joissa käytettiin HMG-CoA-reduktaasin estäjiä, jotka tunnetaan nimellä statiinit, ovat toistuvasti vahvistaneet, että lipoproteiinien kuljetusmallien muuttaminen epäterveellisistä terveellisempiin kuvioihin alentaa merkittävästi sydän- ja verisuonitautitapahtumien määrää myös ihmisillä, joiden kolesteroliarvot katsotaan tällä hetkellä alhaisiksi aikuisille.

Tutkimukset ovat osoittaneet, että LDL-kolesterolitasojen alentaminen noin 38,7 mg / dl statiinien avulla voi vähentää sydän- ja verisuonitauteja ja aivohalvausriskiä noin 21%. Tutkimukset ovat myös havainneet, että statiinit vähentävät aterooman etenemistä. Tämän seurauksena ihmiset, joilla on ollut sydän- ja verisuonitauteja, voivat hyötyä statiineista riippumatta heidän kolesterolipitoisuudestaan (kokonaiskolesteroli alle 5,0 mmol / L [193 mg / dl]), ja miehillä, joilla ei ole sydän- ja verisuonitauteja, on hyötyä poikkeuksellisen korkean kolesterolitason alentamisesta (”ensisijainen ennaltaehkäisy”).

Ensisijaista ennaltaehkäisyä naisilla harjoitettiin alun perin vain laajentamalla miehillä tehtyjen tutkimusten tuloksia, koska naisilla yksikään ennen vuotta 2007 toteutetuista suurista statiinitutkimuksista ei osoittanut merkittävää kokonaiskuolleisuuden tai kardiovaskulaaristen päätetapahtumien vähenemistä.

Meta-analyysit ovat osoittaneet merkittävän vähenemisen kaikista syistä ja kardiovaskulaarisesta kuolleisuudesta ilman merkittävää heterogeenisyyttä sukupuolen mukaan. Kansallisen kolesterolikoulutusohjelman vuonna 1987 julkaisema raportti, Aikuisten hoitopaneelit, ehdottaa, että veren kokonaiskolesterolitason tulisi olla: <200 mg / dl normaalia veren kolesterolia, 200–239 mg / dl raja-korkea,> 240 mg / dl korkea kolesteroli.

American Heart Association (AHA) tarjoaa samanlaiset ohjeet veren (paasto) kokonaiskolesterolipitoisuuksista ja sydänsairauksien riskistä: Statiinit alentavat tehokkaasti LDL-kolesterolia ja niitä käytetään laajalti ensisijaiseen ennaltaehkäisyyn ihmisillä, joilla on suuri sydän- ja verisuonitautiriski samoin kuin toissijaisessa ennaltaehkäisyssä niille, joille on kehittynyt sydän- ja verisuonitauti. Nykyisemmät testausmenetelmät määrittävät LDL (”huono”) ja HDL (”hyvä”) kolesterolin erikseen, jolloin kolesterolianalyysi on vivahteikkaampi. Halutun LDL-tason katsotaan olevan alle 130 mg / dl (2,6 mmol / L), vaikka uudempaa ylärajaa 70 mg / dl (1,8 mmol / L) voidaan harkita korkeamman riskin omaavilla henkilöillä joitakin edellä mainituista kokeista. Kokonaiskolesterolin suhde HDL: ään – toinen hyödyllinen mitta – on paljon alle 5: 1.

Keskustelu kolesterolista ja erityisesti pahasta LDL-kolesterolista käy kiivaana. Kaikki eivät suhtaudu luottavaisesti lipidihypoteesin paradigmaan. Epidemiologiset tutkimukset, joita kolesterolihypoteesin tukemiseksi laaditaan, ovat todistusvoimaltaan kovin heppoisia. Virallinen lääke- ja ravitsemustieteellinen linja on selvä: vähemmän kolesterolia ja tyydyttyneitä rasvoja sekä enemmän statiineja. Mitä nuorempana aloitat statiinit, sitä parempi (lääkeyhtiöille). On nimittäin kiusallista tutkimusnäyttöä, jonka mukaan kolesterolin laskeminen lisää sydänkuolleisuutta (Minnesota Heart Study, Framingham Heart Study ja Sydney Heart Study, jotka olivat kontrolloituja satunnaistettuja tutkimuksia).

Palataan rasvateoriaan

Kolesteroliteoria on hallinnut vuosikymmeniä lääkäreiden ja maallikoiden käsityksiä sydän- ja verisuonitautien syistä, mutta on tullut aika hylätä tämä käsitys, kirjoittavat ruotsalaiset tiedemiehet, sisätautiopin professori Lars Werkö, kirurgian professori Tore Schrestén ja elinsiirtokirurgian dosentti Ralf SundBerg.

Sydänkohtaukseen sairastuneiden ja kuolleiden ihmisten kolesterolilukemat ovat usein muita pienempiä. Matala seerumin kolesteroli liittyy suurentuneeseen kuoleman riskiin.

Kiista kolesterolin merkityksestä vauhdittui 1990-luvulla, jolloin monet tutkijat (mm. Ruotsissa sisätautiopin dosentti Uffe Ravnskov) kyseenalaistivat syy-yhteyden korkeiden kolesteroliarvojen ja sydäntautien välillä.

Tämä perustui suureksi osaksi 30 vuotta jatkuneeseen Framinghamin tutkimukseen. Se näet osoitti, ettei kohonnut kolesteroli ole sydäntaudin riskitekijä yli 47-vuotiailla ihmisillä. Asia oli pikemminkin niin päin, että kolesterolin aleneminen lisäsi kuolleisuutta verrattuna niihin, joiden kolesterolipitoisuus suureni.

Sachdevan työryhmä julkaisi tammikuussa 2009 jättitutkimuksen Amerikan Sydänliiton aloitteesta, jossa mitattiin veren kolesteroliarvot lähes 137 000 sydänkohtauksen vuoksi sairaalahoitoa saaneelta potilaalta. Kaikki kolesteroliarvot olivat oletettuja pienempiä, jopa huomattavasti alle amerikkalaisten keskiarvon.

Emeriusprofessorit Matti Järvilehto Oulusta ja Pentti Tuohimaa Tampereelta kritisoivat Medical Hypotheses-lehden artikkelissaan kolesterolihoitoja. Medialle lähettämässään tiedotteessa he esittävät näkemyksensä, joka tukee täysin Erkki Antilan, Pentti Raasteen ja Matti Tolosen vuosia esittämiä näkemyksiä: ravinnon rasvat ja kolesteroli eivät ole valtimotautien syy ja kolesterolin alentaminen lääkkein on enimmäkseen turhaa ja jopa terveydelle haitallista.

Statiinien käyttäjillä D-vitamiinin vajauksen yhteydessä lähes kaikilla esiintyy lihas- ja sidekudoskipuja. Statiinit saattavat lisäksi heikentää D-vitamiinin vaikutusta syrjäyttämällä hoitopitoisuuksilla D-vitamiinin reseptoristaan.

Etusivun uutiseksi päätynyt Oxfordin yliopiston professori Rory Collins myöntää salanneensa tutkimuksissaan statiinien sivuvaikutuksia. Statiineista voi olla vakavaa haittaa sydänlihakselle kirjoittavat japanilaiset sydänlääkärit yhdessä amerikkalaisen kardiologin Peter Langsjoenin kanssa julkaisemassaan artikkelissa.

Vääristeltyjen tutkimusten perusteella miljoonat britit syövät statiineja turhaan. Collins johtaa vuonna 1994 perustettua Cholesterol Treatment Trialists (CTT) Collaborationia, jonka tutkimuksiin mm. Suomen Sydänliiton ylilääkäri Mikko Syvänne on vedonnut statiineja puolustaessaan.

Yli 20 tutkimusta osoittaa, että pisimpään elävät ne ihmiset, joiden veressä on riittävästi kolesterolia. Siis enemmän kuin 5 mmol/l, jota lääkärit pitävät lääkehoidon rajana.

Päivi Tirkkalan väitöskirjassa (2011)osoitettiin, että matalat kolesteroliarvot ovat yhteydessä kuolleisuuteen. Sen sijaan korkeat kolesterolitasot yli 74-vuotiailla eivät lisänneet sairastumisen tai kuoleman riskiä. Lisäksi kolesterolit ovat yhteydessä kognitiivisiin kykyihin. Matalat kolesterolitasot heikentävät muistia ja voivat aiheuttaa dementiaa.

Norjan HUNT2-tutkimuksessa seurattiin yli 50 000 20-74 vuotiasta henkilöä. 1,0 mmol/l kokonaiskolesterolin nousu naisilla vähensi kuolleisuutta 6 %, kun alle 5 mmol/l tasot lisäsivät kuoleman riskiä. Miehillä kuolleisuus oli pienintä, kun kolesteroli oli 5,0-5,9 mmol/l. Naisten kuoleman riski on 28 % pienempi, kun kokonaiskolesteroli on yli 7,0 mmol/l verrattuna arvoon alle 4,9 mmol/l.

Myös Pietarissa ja Honolulussa tehdyissä tutkimuksissa toistuu sama ilmiö: matala kolesteroli korreloi suurentuneen kuolemanriskin kanssa (Shestov ym. 1993, Schatz ym 2001). Kelan autoklinikkatutkimus tukee näitä tutkimuksia: sen mukaan miesten optimaalinen kolesterolitaso on 5-7 mmol/l ja naisilla vastaava suositus on 6-9 mmol/l.

Statiinit nostavat verensokeria ja lisäävät aikuistyypin diabeteksen riskiä keskimäärin 9-13 %, mutta naisilla riski kasvaa lähes 50 %. Suomalaiseen tutkimukseen osallistui 10 149 henkilöä, joilla oli suurentunut diabeteksen riski.

Amit Sachdeva ym. havaitsivat 136 905 potilaan tutkimusaineisossa, että akuutin sydänkohtauksen saaneiden potilaiden kolesteroli oli merkittävästi matalampi kuin samanikäisten terveiden verrokkien (American Heart Journal 2009).

Al-Mallah ym. totesivat, että ”pahan” LDL-kolesterolin pioisuudet olivat tavallista pienempiä ja kuolleisuus kaksin verroin yleisempää matalien LDL-lukemien potilailla (Cardiology Journal 2009). Nämä tutkimukset osoittavat, että seerumin kohonneen kolesterolipitoisuuden ja sydänkuoleman välillä ei vallitse kausaalisuhdetta.


Pohjoismaiden tunnetuin ja vaikutuvaltaisin ravitsemustieteilijä, tanskalainen professori Arne Astrup on muuttanut täysin mielipiteensä rasvoista ja kolesteroliteoriasta. Aikaisemmin hyvin kriittisesti tyydyttyneisiin rasvoihin suhtautunut Astrup kirjoitti vastattain maailman johtavan ravitsemuslääketieteen lehden pääkirjoituksessa, ettei tyydyttyneillä rasvoilla ole syy-yhteyttä sydän- ja verisuonitauteihin.

Astrupin kanssa samoilla linjoilla on myös professori Heikki Karppanen, joka sai melkoisesti kuraa niskaansa puhuessaan kolesteroliteoriaa vastaan.

Arne Astrup oli vannoutunut tyydyttyneiden rasvojen vastustaja ja hiilihydraattien puolestapuhuja. Vuonna 2013 Astrup siirtyi näkemykissään lähelle vähähiilihydraattisen ruokavalion periaatteita.

Hän myönsi julkisesti, ettei rasva ole vaarallista, kuten vuosikymmeniä on opetettu. Samaa sanoi myös professori Jussi Huttunen Suomessa. Nykyisin tiedetään, että elintasosairauksien taustalla ei ole välttämätön rasva, vaan hiilihydraattien liiallinen painottaminen ruokavaliossa.

Ryhmä tutkijoita Oaklandin lasten sairaalasta Kaliforniassa ja Harvardin kansanterveyslaitoksen ravitsemus- ja epidemiologian osastolta Bostonissa, Massachusettsissa, tekivät meta-analyysin prospektiivisista epidemiologisista tutkimuksista tyydyttyneiden rasvahappojen saannin ja sepelvaltimotauti-, aivohalvaus- tai sydän- ja verisuonitauti-riskin assosiaatiosta yleensä.

Prospektiivisissä epidemiologisissa tutkimuksissa seurataan ajan mittaan ryhmää alun perin terveitä ihmisiä, kohorttia, ja koetetaan selvittää, liittyykö taudin esiintyminen tiettyjen tunnistettavien tekijöiden toteutumiseen esim. ruokavalio- ja muut elämäntapatekijät. Meta-analyysissä kerätään ja analysoidaan yhdessä tiettyä aihetta koskevien eri tutkimusten tuloksia yleisen johtopäätöksen tekemiseksi kertyneen tieteellisen tiedon perusteella.

Kaksikymmentäyksi tutkimusta vastasi nykyisen meta-analyysin sisällyttämisperusteita. Yhdessä nämä käsittivät 347 747 henkilöä, joista noin 11 000 sairastui sydän- ja verisuonitauteihin.

Analyysin tulokset eivät osoittaneet merkittävää yhteyttä tyydyttyneiden rasvahappojen suuren saannin ja sepelvaltimotaudin, aivohalvauksen tai sydän- ja verisuonitautien lisääntyneen riskin välillä. Ikä, sukupuoli ja tutkimuksen laatu olivat tekijöitä, jotka otettiin huomioon analyysissä, mutta ne eivät vaikuttaneet tulokseen. Linkki

Prospektiivisten kohorttitutkimusten ja satunnaistettujen kontrolloitujen tutkimusten meta-analyysi tutki rasvahappojen ja sepelvaltimotaudin välistä yhteyttä. Tähän analyysiin tunnistettiin yhteensä 32 prospektiivista kohorttitutkimusta, jotka sisälsivät tietoja ruokavalion rasvahappojen saannista.

Analyysissä tutkittiin 530 525 osallistujaa. Tutkimus käsitti 15 907 sepelvaltimotautitapausta. Tutkimusten kesto oli 5–23 vuotta. Kirjoittajat tutkivat myös 17 havainnointitutkimusta, joissa oli tietoja kiertävästä rasvahappokoostumuksesta (ts. Rasvahapot veressä). Näihin tutkimuksiin osallistui 25721 osallistujaa, joista 5 519 johti sepelvaltimotautiin. Näissä tutkimuksissa seuranta oli 1,3-30,7 vuotta.

Tyydyttyneiden rasvahappojen kokonaissaantiin ei liittynyt sepelvaltimotaudin riskiä (yhdistetty suhteellinen riski 1,02, 95%:n luottamusväli: 0,97-1,07).

Kiertävien tyydyttyneiden rasvahappojen kokonaismäärään ei liittynyt sepelvaltimotaudin riskiä (yhdistetty suhteellinen riski 1,06, 95%: n luottamusväli: 0,86-1,30)

Yksittäisiin kiertäviin rasvahappoihin, kuten palmitiini- ja steariinihappoihin, ei myöskään liittynyt sepelvaltimotaudin riskiä.

Margariinihappoon (maitotuotteissa esiintyvä tyydyttynyt rasvahappo) liittyi merkittävästi pienempi sepelvaltimotaudin riski

Kirjoittajat päättelivät, että olemassaolevat todisteet eivät tue selvästi sydän- ja verisuonitautien suuntaviivoja, jotka suosivat tyydyttyneiden rasvojen korvaamista monityydyttämättömillä rasvoilla.

Toinen 26 kohorttitutkimuksen ameta-analyysi rvioi runsaasti tyydyttyneitä rasvoja sisältävien elintarvikkeiden ja kuolleisuuden riskin välistä yhteyttä. Runsas maidon, juuston, jogurtin ja voin saanti ei lisännyt sydän- ja verisuonitautiekuolleisuuden tai kaikkien syiden aiheuttaman kuolleisuuden riskiä matalaan saantiin verrattuna.

Runsaan maitotuotteiden, maidon ja juuston kokonaissaanti ei liittynyt sydän- ja verisuonikuolleisuuteen.

Vuoden 2010 meta-analyysi kohorttitutkimuksista, joka seurasivat 347747 ihmistä 5-23 vuoden aikana, toimitti seuraavat todisteet tyydyttyneen rasvan ja sepelvaltimotaudin, aivohalvauksen ja sydän- ja verisuonitautien välisestä yhteydestä:

Tyydyttyneiden rasvojen saanti ei liittynyt sepelvaltimotaudin, aivohalvauksen tai sydän- ja verisuonitautien lisääntyneeseen riskiin

Yhdistetyt suhteelliset riskit olivat 1,07 (95%: n luottamusväli: 0,96–1,19, p = 0,22) sepelvaltimotaudissa, 0,81 (95%: n luottamusväli: 0,62–1,05, p = 0,11) aivohalvauksessa ja 1,00 (95%: n luottamusväli: 0,89- 1,11, p = 0,95) sydän- ja verisuonitaudeissa.

Kovarianttien, kuten ikä, sukupuoli ja tutkimuksen laatu, mukauttamisen jälkeen tulokset eivät muuttuneet eikä merkittävää yhteyttä tyydyttyneiden rasvojen ja sydän- ja verisuonitautitapahtumien välillä havaittu.

Ruokavalion tyydyttyneiden rasvojen ja sairauksien esiintyvyyden välillä ei havaittu yhteyttä muiden ravintoaineiden ja kokonaisenergian mukauttamisen jälkeen.

Vuoden 2009 järjestelmällisessä katsauksessa toimitettiin seuraava yhteenveto mahdollisista kohorttitutkimuksista ja satunnaistetuista kontrolloiduista tutkimuksista:

Tyydyttyneiden rasvojen ja sepelvaltimotaudin kohorttitutkimusten meta-analyysin perusteella tyydyttyneiden rasvahappojen saanti ei liittynyt merkittävästi sepelvaltimotauditapahtumiin.

Suhteelliset riskit korkeimmalle verrattuna pienimpään tyydyttyneiden rasvojen saantiluokkaan olivat sepelvaltimotautikuolleisuuden osalta 1,14 (95%: n luottamusväli: 0,82–1,60, p = 0,431) ja 0,93 (95%: n luottamusväli: 0,83–1,05, p = 0,269). sepelvaltimotautitapahtumiin.

Tyydyttyneiden rasvojen ja kuoleman tai sydän- ja verisuonitautitapahtumien välillä ei ollut merkittävää yhteyttä tyydyttyneiden rasvahappojen saannin 5 prosentin kokonaisenergian lisäyksellä.

Ruokavalion rasvan ja sepelvaltimotaudin satunnaistettujen kontrolloitujen tutkimusten meta-analyysin perusteella kuolemaan johtavan sepelvaltimotaudin suhteellista riskiä ei vähennetty rasvamodifioiduilla ruokavalioilla.

Ruotsissa julkaistu väestötutkimus käsitti lähes kaksi miljoonaa miestä ja kaksi miljoonaa naista. Vuosina 1998–2002 määrätyt statiinit eivät olleet yhtään vähentäneet sydänkohtauksia eikä sydänkuolemia.

Tulos on yhdenmukainen Ray et. al. meta-analyysin kanssa (2010): Statiinien käyttö ei lisännyt elinikää satunnaistetuissa primaaripreventiotutkimuksissa, joihin oli osallistunut 65 229 ”suuren riskin” henkilöä. Analyysi käsitti 244 000 henkilövuotta ja 2793 kuolemantapausta.

Kelan ja Tilastokeskuksen tilastot kertovat samaa Suomesta: Statiinien jyrkästi lisääntynyt käyttö ei ole vähentänyt sydänkuolemia.

Amerikkalaiset lääkärit Hayward ja Krumholz kritisoivat LDL-kolesterolin saamaa liaallista huomiota hoidossa. Heidän mielestään pitäisi hoitaa todellisia risikitekijöitä, ei LDL:ää. ”On aika jättää hyvästit tälle vanhalle, perusteettomalle ja harhaanjohtavalle rasvateorialle”, kirjoittivat ruotsalaislääkärit.

Mitään kovin kummoista konsensusta kolesterolin ja tyydyttyneiden rasvojen yhteydestä sydän- ja verisuonitauteihin ei ole. Nykyisestä käytännöstä hyötyvät lääketeollisuus ja siihen sijoittaneet enemmän kuin kolesterolilääkkeitä ahmivat statinistit. Oma kantani on, että ihminen tarvitsee välttämättä kolesterolia ja sen laskeminen johtaa terveyden heikkenemiseen. Uskon, että sydän- ja verisuonitautien todellinen syypää on hyperglykemia ja hyperinsulinemia. Jokainen tehköön omat johtopäätöksensä.

Täydentävää materiaalia

https://cholesterolcode.com/a-simple-guide-to-cholesterol-on-low-carb-part-i/https://cholesterolcode.com/a-simple-guide-to-cholesterol-on-low-carb-part-ii/

https://ruokasota.fi/2020/11/27/90-paivan-ketohaaste-sokeri-ja-rasva-arvot-paranevat-90-paivan-ketogeenisella-dieetilla/

https://ruokasota.fi/2020/11/23/ketogeeninen-ruokavalio-neuromuskulaarisiset-ja-neurodegeneratiiviset-taudit/

https://ruokasota.fi/2020/11/20/ketogeeninen-ruokavalio-ja-epilepsia/

https://ruokasota.fi/2020/11/12/%ce%b2-hydroksibutyraatin-oksidaatio-edistaa-immunometaboliittien-kertymista-aktivoituneisiin-mikroglia-soluihin/

https://ruokasota.fi/2020/11/03/insuliini-ja-terveys-neljas-luku/

https://ruokasota.fi/2020/10/27/insuliini-ja-terveys-kolmas-luku/

https://ruokasota.fi/2020/10/20/insuliini-ja-terveys-hiilihydraatti-insuliinimalli/

https://ruokasota.fi/2020/09/01/ruokasotaa-ja-anarkiaa-osa-3/

https://ruokasota.fi/2020/08/23/mozaffarianin-meta-analyysin-kritiikki/

https://ruokasota.fi/2020/08/12/hammentavia-ruokajuttuja-osa-1/

https://ruokasota.fi/2020/10/11/insuliini-ja-terveys-johdanto/

https://ruokasota.fi/2015/03/26/rasvateoria/

https://en.wikipedia.org/wiki/Cholesterol




Ketogeeninen ruokavalio: neuromuskulaarisiset ja neurodegeneratiiviset taudit

Neuromuskulaariset sairaudet ovat joukko sairauksia, jotka vaikuttavat lihaksia sääteleviin hermoihin tai heikentävät itse lihaksia. Esimerkiksi ALS.

Neurodegeneratiivinen sairaus on yleistermi useille sairauksille, jotka rappeuttavat aivojen ja keskushermoston soluja, kuten neuroneja. Neuronit eivät yleensä uusiudu tai korjaa itseään, joten jos ne surkastuvat ja kuolevat, elimistö ei voi korvata niitä. Neurodegeneratiivisia sairauksista ovat mm. Parkinsonin tauti, Alzheimerin tauti ja Huntingtonin tauti.

Johdanto

Päivä päivältä useammat tutkimukset osoittavat ketogeenisten ruokavalioiden kiistattomat hyödyt metabolisten sairauksien, kuten lihavuuden, metabolisen oireyhtymän ja aikuistyypin diabeteksen hoidossa.

Olen ketoillut puolivallattomasti joulukuun alusta alkaen. Joulukuun 2. päivän ja tämän päivän väliin mahtuu useita horjahduksia olut-, makeis- ja burgeriseikkailuineen. Paino on laskenut ~13 kiloa. Verensokeri pysyy KD:llä optimaalisena ja verenpaine hyvällä tasolla. Oloni on hyvin motivoitunut ja aktiivinen. Arkista huuhailua ei haittaa nälkä tai aivosumu.

Neurologisten häiriöiden osalta ketogeeninen ruokavalio hyväksytään tehokkaaksi terapiaksi farmakoresistentin epilepsian hoidossa, mutta uudet tutkimukset viittaavat siihen, että ketogeeninen ruokavalio voi olla hyödyllinen myös amyotrofisen lateraaliskleroosin (ALS), Alzheimerin- ja Parkinsonin taudin sekä eräiden mitokondriopatioiden yhteydessä.

Esittelin Ruokasodassa aimmin tutkimuskatsauksen, jonka mukaan ketogeeninen ruokavalio voi hidastaa myös multippeliskleroosin etenemistä.

Vaikka näillä sairauksilla on erilaiset patogeneesit, on olemassa eräitä yleisiä mekanismeja, jotka voivat selittää ketogeenisten ruokavalioiden hyötyjä:

  1. ketogeenisen ruokavalion metaboliset mekanismit tarjoavat tehokkaan energianlähteen sellaisten neurodegeneratiivisten sairauksien hoidossa, joille on tunnusomaista fokaalinen aivojen hypometabolia, eli solujen energiansaannin heikkeneminen
  2. ketogeeninen ruokavalio vähentää erityyppisiin metabolisiin stresseihin liittyviä oksidatiivisia vaurioita ja inflammaatiota
  3. ketogeeninen ruokavalio lisää mitokondrioiden biogeneesireittejä
  4. ketonit ohittavat joihinkin neurologisiin sairauksiin liittyvän kompleksin I aktiivisuuteen liittyvän vian

Tässä katsauksessa tutustutaan ketogeenisen ruokavalion neuroprotektiivisiin aineenvaihduntamekanismeihin

Yksittäisillä ravintoaineilla voi olla positiivisia vaikutuksia luurankolihasten terveyteen. Lisäksi ravintoaineiden yhdistelmät voivat vaimentaa joidenkin hermo-lihassairauksien oireita. Toisaalta tiedetään myös, että laihduttamisen vaikutukset terveyteen liittyvät eri makro- ja hivenravinteiden keskinäiseen saantisuhteeseen, eikä niinkään yksittäisin ravintoaineeseen.

Ketogeeninen ruokavalio (KD) on viime vuosina herättänyt suurta kiinnostusta. 1900-luvun kolmannelta vuosikymmeneltä lähtien ketogeenistä ruokavaliota on käytetty farmakologisesti resistentin epilepsian hoitoon [1–3]. Viime aikoina KD:n on havaittu olevan toimiva terapia myös monissa täysin erilaisissa sairauksissa, kuten lihavuus [4], PCOS [5], syöpä [1, 6, 7], diabetes [8] ja muut patologiset tilat [9– 11].

Vaikka monet tutkimukset ovat osoittaneet KD:n potentiaaliset positiiviset vaikutukset moniin neurologisiin ja hermo-lihassairauksiin, vain harvat tutkimukset ovat tutkineet tämän lupaavan ravitsemuksellisen lähestymistavan mekanismeja [12].

Tämän katsauksen tarkoituksena on tarkastella KD:n roolia hermostoon ja lihasten toimintaan vaikuttavissa sairauksissa.

Ketogeenisessä ruokavaliossa

Muutaman päivän paastoamisen tai hiilihydraattien huomattavan rajoittamisen (alle 20 g päivässä) seurauksena glukoosivarastot eivät riitä:

  1. normaaliin rasvan hapettumiseen oksaloasetaatin syöttämisen kautta sitruunahappokierrossa (Krebsin syklissä, TCA-sykli) ja
  2. keskushermoston glukoositarpeen tyydyttämiseen [13, 14] (kuva 1)

Keskushermostossa glukoosia tarvitaan energia lähteeksi, sekä tuottamaan pyruvaatteja, jotka voidaan edelleen muuntaa oksaloasetaatiksi.

Oksaloasetaatin määrän tulisi pysyä tasolla, joka on riittävä sitruunahappokierron toiminnan (ts. asetyyli-CoA:n ja oksaloasetaatin välinen kondensaatio) mahdollistamiseksi.

Oksaloasetaatti on epävakaa ja se on uudelleenkoottava (tällaisia reaktioita kutsutaan anaplerooteiksi). Elimistölle helpoin tapa tuottaa oksaloasetaattia on pyruvaatista, joka saadaan glukoosista.

Oksaloetikkahappo (oksaloasetaatti) on ketodikarboksyylihappoihin kuuluva orgaaninen yhdiste. Oksaloetikkahappo on välituote useissa biokemiallisesti tärkeissä reaktioissa.

Sitruunahappokierron ensimmäisessä vaiheessa oksaloetikkahappo ja asetyylikoentsyymi-A reagoivat sitraattisyntaasientsyymin katalysoimana muodostaen sitruunahappoa. Reaktiossa asetyyliryhmä siirretään oksaloetikkahapon ketonihiileen ja karbonyyliryhmä pelkistetään hydroksyyliryhmäksi.

Oksaloetikkahappoa muodostuu sitruunahappokierron kymmenennessä vaiheessa, kun omenahappo dehydrataan malaattidehydrogenaasientsyymin avulla.

Glukoneogeneesin ensimmäisessä vaiheessa palorypälehappo muutetaan oksaloetikkahapoksi. Reaktio kuluttaa ATP-molekyylin ja sitä katalysoi pyruvaattikarboksylaasientsyymi.

Glukoneogeneesin toisessa vaiheessa oksaloetikkahappo muutetaan fosfoenolipalorypälehapoksi. Reaktiossa tarvittava energia saadaan hydrolysoimalla yksi gyanosiinitrifosfaatin korkeaenergiainen fosfaattiryhmä. Reaktiossa muodostuu lisäksi hiilidioksidia ja guanosiinidifosfaattia. Reaktiota katalysoi fosfoenolipyruvaattikarboksikinaasi.

Eliöt voivat tuottaa aminohappo asparagiinihappoa oksaloetikkahaposta. Asparagiinihappoa syntyy, kun oksaloetikkahappo ja glutamiinihappo reagoivat. Reaktio on transaminaatioreaktio ja sitä katalysoi eräs transaminaasien luokkaan kuuluva entsyymi, aspartaattiaminotransferaasi. Koentsyyminä toimii pyridoksaalifosfaatti. – Wikipedia

Nisäkkäillä pyruvaattia ei voida tuottaa asetyylikoentsyymi-A:sta, kuten kuvassa on esitetty.

(1) Oksaloasetaatti on ruumiin normaalilämmössä melko epävakaa molekyyli. Sitä ei voi varastoida mitokondrioiden matriksiin. Tässä ”glukoosinpuutos” -tilassa tarvitaan oksaloasetaattia trikarboksyylihapposyklin tehokkaan toiminnan varmistamiseksi. Oksaloasetaatti toimitetaan anapleroottisyklin kautta, joka syntetisoi oksaloasetaatin glukoosista pyruviinihapon ATP-riippuvaisen karboksyloinnin kautta pyruvaattikarboksylaasilla [15].

(2) Koska keskushermosto ei voi käyttää vapaita rasvahappoja (FFA) betaoksidaatiossa suoraan energialähteenä (vapaat rasvahapot eivät läpäise veri-aivoestettä), keskushermosto käyttää yleensä solujen energiasubstraattina glukoosia.

3-4 päivän kuluttua hiilihydraattien saannin rajoittamisesta, keskushermoston on löydettävä soluille vaihtoehtoinen energialähde, kuten Felig et al. [13, 14, 16, 17] ovat osoittaneet. Vaihtoehtoisen energianlähteen soluille tarjoavat maksan tuottamat ketoaineet (KB): asetoasetaatti (AcAc), 3-hydroksibutyraatti (3HB, beta-hydroksibutyraatti) ja asetoni [18], joita saadaan asetyylikoentsyymi-A:n ylituotannosta ilman oksaloasetaatin samanaikaista tuotantoa. Energiasubstraateiksi kelpaavia ketoaineita sytyy ketogeneesissä. Ketogeneesiä tapahtuu pääasiassa maksan mitokondrioiden matriksissa [19].

Maksa tuottaa ketoaineita, mutta ei pysty käyttämään niitä, koska maksassa ei ole sukkinyyli-CoA: 3-CoA transferaasi (SCOT) -entsyymiä, jota tarvitaan asetoasetaatin muuttamiseksi asetyylikoentsyymi-A:ksi [18]. maksan ketogeneesissä syntetisoidaan asetoasetaattia, mutta ensisijainen verenkierrossa kiertävä ketoaine on 3-hydroksibutyraatti, eli beta-hydroksibutyraatti.

Normaaleissa olosuhteissa vapaan asetoasetaatin tuotanto on vähäistä ja se voi metaboloitua useissa kudoksissa, kuten luurankolihaksessa ja sydämessä. Asetoasetaatin ylituotanto-olosuhteissa sitä syntyy normaalia enemmän, mutta osa siitä syntetisoidaan kahdeksi muuksi ketoaineeksi.

Korkea ketoaineiden taso veressä ja niiden eliminaatio virtsan kautta aiheuttaa ketonemiaa ja ketonuriaa. Normaaleissa olosuhteissa ketoaineiden pitoisuus on yleensä hyvin matala (<0,3 mmol / l) verrattuna glukoosiin (noin 4-5 mmol / l) [20, 21].

Kun ketoaineet ovat saavuttaneet noin 4 mmol / l konsentraation, keskushermosto alkaa käyttää niitä energialähteenä [21]. Kudokset käyttävät ketoaineita energialähteenä [19, 21, 23] aineenvaihduntareitin kautta, joka muuntaa ensin beta-hydroksibutyraatin (3HB) takaisin asetyyliasetaatiksi, joka sitten muutetaan asetoasetyylikoentsyymi-A:ksi. Jälkimmäinen jaetaan lopulta kahteen asetyylkoentsyymi-A-molekyyliksi, joita käytetään myöhemmin sitruunahappokierrossa (kuva 2).

On mielenkiintoista huomata, että verensokeriin verrattuna ketoaineet pystyvät tuottamaan suuremman energiamäärän johtuen niiden aiheuttamista mitokondrioiden ATP-tuotannon muutoksista [21, 24, 25].

Ruokavalion hiilihydraattien vähentynyt saatavuus johtaa lisääntyneeseen ketoaineiden tuotantoon maksassa. Maksa ei voi käyttää ketoaineita, koska siitä puuttuu mitokondrioiden tarvitsema entsyymi sukkinyyli-CoA: 3-ketohappo (oksohappo) CoA-transferaasi (SCOT), jota tarvitaan asetoasetaatin aktivaatioon asetoasetyyli-CoA:ksi. Ketoaineita hyödyntävät kudokset, erityisesti aivot. Ketoaineet siirtyvät sitruunahappokiertoon muututtuaan asetyylikoentsyymi-A:ksi sukkinyyli-CoA: 3-CoA-transferaasin (SCOT) ja metyyliasetoasetyyli-CoA-tiolaasin (MAT) avulla. Vaikka glukoosi on vähentynyt, se pysyy fysiologisilla tasoilla [26, 27] johtuen kahdesta päälähteestä:

(1) glukogeenisista aminohapoista ja
(2) triglyserideistä hajotuksen kautta vapautuneesta glyserolista [28, 29]

Fysiologisen ketoosin (nopea tai erittäin vähäkalorinen ketogeeninen ruokavalio) aikana ketonemia saavuttaa maksimiarvot 7/8 mmol / l ilman pH:n muutoksia, kun taas hallitsemattomassa diabeettisessa ketoasidoosissa ketoaineiden pitoisuus voi ylittää 20 mmol / l, kun veren pH laskee samanaikaisesti.

Terveiden ihmisten veren ketoaineiden pitoisuudet eivät ylitä 8 mmol / l, koska keskushermosto (CNS) käyttää näitä molekyylejä tehokkaasti energiasubstraatteina glukoosin sijasta [16]. Taulukossa veren ketoaineiden tasot normaalin ruokavalion ja ketogeenisen ruokavalion aikana (ts. 20 grammaa hiilihydraatteja päivässä) sekä diabeettinen ketoasidoosi [10] .

Ketogeeninen ruokavalio imitoi paastoa ja sen aineenvaihduntamekanismeja

Perinteisesti lääkärit vierastavat ketoosia, koska he yhdistävät ketoosin insuliinin puutteesta johtuvaan vaikeaan hyperketonemiaan, joka voi aiheuttaa vakavan ketoasidoosin ja kuoleman tyypin 1 diabetesta sairastavilla henkilöillä.

Hans Krebs oli ensimmäinen, joka käytti termiä ”fysiologinen ketoosi” erottaakseen paaston ja ketogeenisen ruokavalion aiheuttaman lievän (8 mmol / l ketonipitoisuuden) ketoosin metabolisesti epätasapainoisen diabeteksen ”patologisesta ketoasidoosista” [31].

Paaston tai aliravitsemuksen jaksot ovat siinä mielessä ketogeenisiä [23], että insuliinin ja glukoosin pitoisuudet laskevat, kun taas glukagonin pitoisuudet kasvavat normaalia verensokeritason ylläpitämiseksi. Kun keho siirtyy ravinnon runsauden tilasta ravinnon puutteen tilaan (ketoosiin esimerkiksi ketogeenisen ruokavalion simuloidun ravinnon puutteen kautta), veren vapaiden rasvahappojen (FFA) ja ketoaineiden pitoisuus kasvaa pienellä viiveellä.

Tästä näkökulmasta tarkasteltuna ketogeenistä ruokavaliota voidaan verrata kalorirajoitukseen, aliravitsemukseen tai paastoamiseen. Tämä ravinteiden saannin metabolisen vasteen manipulointi, sekä määrällisesti että laadullisesti, vaikuttaa sekä verensokeriin että ketoaineisiin. Sillä on myös kyky edistää aineenvaihduntareittien ja soluprosessien, kuten stressiresistenssin ja autofagian muutoksia.

Ketogeeniset ruokavaliot voivat toimia myös samalla tavalla kuin kalorirajoitus (CR) AMPK:lla ja SIRT-1:llä [33]. Jotta ymmärtäisimme ketogeenisen ruokavalion monimutkaiset vaikutukset ja mekanismit elimistössä, meidän on otettava huomioon nämä solunsisäiset molekyylitason aineenvaihduntareitit.

PGC1α aktivoituu fosforyloidussa tilassa. Fosforyloitu PGC1α siirtyy sytosolista solun tumaan, jossa se edistää rasvahappojen kuljetusta, rasvan hapettumista ja oksidatiivista fosforylaatiota sekä osallistuvien geenien transkriptiota [34].

PGC1α voidaan fosforyloida useiden eri aineenvaihduntareittien kautta, kuten AMPK, kalsium-kalmoduliinista riippuvainen proteiinikinaasi ja p38-mitogeeniaktivoitunut proteiinikinaasireitti [35]. PGC1α voidaan aktivoida myös SIRT1-välitteisellä deasetylaatiolla [36]. AMPK voi toimia joko PGC1α:n fosforyloimalla tai suoraan.

AMPK-aktivointi estää myös mTOR-signaloinnin. Vaikuttaa kuitenkin epäjohdonmukaiselta estää tärkeä kasvuvälitteinen reitti (mTOR), joka säätelee lihasmassaa, jotta luurankolihakset voivat kasvaa.

Ravinteiden manipulointi vaikuttaa näihin aineenvaihduntareitteihin; esim. hiilihydraattien puutteellinen saanti stimuloi in vivo AMPK:n ja SIRT-1:n aktivaatiota, lisäämällä AMPK:n fosforylaatiota ja PGC1α:n deasetylointia luurankolihaksissa vaikuttamatta AMPK:n, PGC1α:n tai SIRT 1: n kokonaismäärään.

Nämä mekanismit näyttävät aktivoituvan muutaman tunnin (5 tunnin) paaston jälkeen hiirillä [39]. Aktivoiduttuaan SIRT1 ja AMPK tuottavat hyödyllisiä vaikutuksia glukoosin homeostaasissa ja insuliinimetaboliassa [40].

Askel vaikeampaan: mikä helvetin AMPK?


Tämä on teknisempää settiä. 5′-AMP-aktivoitu proteiinikinaasi, AMPK tai 5′-adenosiinimonofosfaatilla aktivoitu proteiinikinaasi on entsyymi, jolla on suuri vaikutus soluenergian homeostaasissa.

AMPK vaikuttaa erityisesti aktivoimalla glukoosin ja rasvahappojen imeytymistä ja hapettumista, kun solujen energiataso on matala. AMPK:ta ei tule sekoittaa cAMP-aktivoituun proteiinikinaasiin.

AMPK koostuu kolmesta proteiinista (α, β, γ -alayksiköistä), jotka yhdessä muodostavat toiminnallisen entsyymin. AMPK ilmentyy useissa kudoksissa, kuten maksassa, aivoissa ja luurankolihaksissa.

AMPK-aktivaation nettovaikutus vasteena AMP:n ja ADP:n sitoutumiselle on maksan rasvahappojen hapettumisen stimulointi, ketogeneesi, luustolihasten rasvahappojen hapettumisen stimulointi ja glukoosin imeytymisen tehostaminen, kolesterolisynteesin esto, lipogeneesin ja triglyseridisynteesin esto sekä, rasvasolujen lipogeneesin ja lipolyysin esto ja insuliinin erityksen modulointi haiman beetasoluista.

Kullakin AMPK:n kolmella alayksiköllää on erityinen rooli AMPK:n vakaudessa ja aktiivisuudessa. Vaikka AMPK:N yleisimmät isoformit, jotka ilmentyvät useimmissa soluissa, ovat α1-, β1- ja γ1-isoformeja, on osoitettu, että α2-, β2-, γ2- ja γ3-isoformit ilmentyvät myös sydämen ja luuston lihaksissa.
Johtuen AMPK:n komponenttien isoformeista, nisäkkäillä on 12 versiota AMPK:sta, joista jokaisella voi olla erilainen kudospaikannus ja erilaiset toiminnot eri olosuhteissa. AMPK:ta säännellään allosterisesti ja translaation jälkeisillä muokkauksilla, jotka toimivat yhdessä. Jos AMPK:n alfa-alayksikön tähde T172 fosforyloidaan, AMPK aktivoituu; fosfataasien pääsy tähän jäännökseen estetään, jos AMP tai ADP voivat estää pääsyn ja ATP voi syrjäyttää AMP:n ja ADP:n.

AMPK:ta säätelee allosterisesti enimmäkseen kilpaileva sitoutuminen gamma-alayksikköön ATP:n (joka sallii fosfataasipääsyn T172: een) ja AMP:n tai ADP:n (joista kukin estää pääsyn fosfataaseihin) välillä.

Näin ollen näyttää siltä, että AMPK on AMP / ATP- tai ADP / ATP-suhteiden ja siten solujen energiatason anturi.

On eräitä aineenvaihduntamekanismeja, joilla insuliini, leptiini ja diasyyliglyseroli estävät AMPK: ta indusoimalla erilaisia muita fosforylaatioita. AMPK:ta voidaan estää tai aktivoida erilaisilla kudosspesifisillä ubikitinaatioilla. Sitä säätelevät myös useat proteiini-proteiini-vuorovaikutukset, ja hapettavat tekijät voivat joko aktivoida tai estää niitä. Kun AMPK fosforyloi asetyyli-CoA-karboksylaasi 1: tä (ACC1) tai sterolia säätelevää elementtiä sitovaa proteiinia 1c (SREBP1c), se estää rasvahappojen, kolesterolin ja triglyseridien synteesiä ja aktivoi rasvahappojen saannin ja β-oksidaation. AMPK stimuloi glukoosinottoa luurankolihassa fosforyloimalla Rab-GTPaasia aktivoivan proteiinin TBC1D1, joka lopulta indusoi GLUT1-rakkuloiden fuusion plasmamembraaniin. AMPK stimuloi glykolyysiä aktivoimalla 6-fosfofrukto-2-kinaasi / fruktoosi-2,6-bisfosfataasi 2/3: n fosforylaation ja aktivoimalla glykogeenifosforylaasin fosforylaation, ja se estää glykogeenisynteesiä estävän fosforyylin kautta

Monet luurankolihasten biokemialliset muutokset, jotka tapahtuvat yhden harjoittelun tai pitkittyneen harjoittelun aikana, kuten lisääntynyt mitokondrioiden biogeneesi ja kapasiteetti, lisääntynyt lihasten glykogeeni ja lisääntynyt entsyymien erikoistuminen glukoosinottoon soluissa, kuten GLUT4 ja heksokinaasi II, ovat todennäköisesti ainakin osittain AMPK:n aktivaation välittämiä tapahtumia.

AMPK:lla on keskeinen rooli liikunnan / treenattujen lihassolujen verenkierron lisäämisessä stimuloimalla ja vakauttamalla sekä vaskulogeneesiä että angiogeneesiä.

Yhdessä nämä muutokset ilmenevät todennäköisesti sekä väliaikaisen että ylläpidetyn AMPK-aktiivisuuden lisääntymisen seurauksena, jonka AMP : ATP-suhteen nousu aiheuttaa yksittäisten liikuntajaksojen ja pitkäaikaisen harjoittelun aikana.

Yhden akuutin harjoittelun aikana AMPK antaa supistuvien lihassolujen sopeutua energiahaasteisiin lisäämällä heksokinaasi II: n ilmentymistä, GLUT4:n translokaatiota plasmakalvoon, glukoosinottoa ja stimuloimalla glykolyysiä. Jos liikunta jatkuu pitkitettynä harjoituksena, AMPK ja muut signaalit helpottavat lihasten adaptoitumista sopeuttamalla lihassolujen aktiivisuuden aineenvaihdunnan muutokseen, mikä johtaa rasvahappojen hapettumisen kautta muodostuvaaan ATP:hen glykolyysin sijaan.

AMPK saavuttaa siirtymisen oksidatiiviseen metaboliaan säätelemällä ja aktivoimalla oksidatiivisia entsyymejä, kuten heksokinaasi II, PPARalpha, PPARdelta, PGC-1, UCP-3, sytokromi C ja TFAM. AMPK-aktiivisuus kasvaa liikunnan seurauksena ja LKB1 / MO25 / STRAD-kompleksia pidetään 5′-AMP-aktivoidun proteiinikinaasin tärkeimpänä ylävirran AMPKK:na. Tämä on hämmentävä ilmiö, kun otetaan huomioon, että vaikka AMPK-proteiinien määrä kasvaa luukudoksessa kestävyysharjoittelun vaikutuksesta, niiden aktiivisuus vastaavasti laskee kestävyysharjoittelun seurauksena.

On mahdollista, että on olemassa suora yhteys kestävyysharjoitettujen luurankolihasten havaitun AMPK-aktiivisuuden vähenemisen ja kestävyysharjoitteluun liittyvän AMPK-vasteen ilmeisen vähenemisen välillä.

Yksi keskeisistä reiteistä AMPK:n rasvahappojen hapettumisen säätelyssä on asetyyli-CoA-karboksylaasin fosforylaatio ja inaktivaatio. Asetyyli-CoA-karboksylaasi (ACC) muuntaa asetyyli-CoA n malonyyli-CoA:ksi, joka on karnitiinipalmmityylitransferaasi 1:n (CPT-1) estäjä. CPT-1 kuljettaa rasvahapot mitokondrioihin hapetusta varten. ACC: n inaktivointi johtaa siis lisääntyneeseen rasvahappokuljetukseen ja sitä seuraavaan hapettumiseen.

Todennäköisesti malonyyli-CoA:n väheneminen tapahtuu malonyyli-CoA-dekarboksylaasin (MCD) vaikutuksesta, jota AMPK voi säätää. MCD on ACC:n antagonisti dekarboksyloimalla malonyyli-CoA:ta asetyyli-CoA:ksi, mikä johtaa vähentyneeseen malonyyli-CoA:han ja lisääntyneeseen CPT-1:een ja rasvahappojen hapettumiseen.

AMPK: lla on myös tärkeä rooli maksan lipidien aineenvaihdunnassa. On pitkään tiedetty, että maksan ACC:tä on säännelty maksassa fosforylaatiolla. AMPK fosforyloi ja inaktivoi myös 3-hydroksi-3-metyyliglutaryyli-CoA-reduktaasin (HMGCR), joka on kolesterolisynteesin avainentsyymi. HMGR muuntaa 3-hydroksi-3-metyyliglutaryyli-CoA:n, joka on valmistettu asetyylikoentsyymi-A:sta, mevalonihapoksi, joka sitten kulkee useita muita metabolisia vaiheita kolesteroliksi.

AMPK auttaa säätelemään rasvahappojen hapettumista ja kolesterolisynteesiä. Insuliini on hormoni, joka auttaa säätelemään elimistön glukoosipitoisuutta. Kun verensokeri on korkea, insuliinia vapautuu Langerhansin saarekkeiden beetasoluista. Insuliini muun muassa helpottaa glukoosin imeytymistä soluihin lisäämällä glukoosinkuljettaja GLUT-4:n ilmentymistä ja siirtymistä.

AMPK ja kilpirauhashormoni säätelevät eräitä samanlaisia prosesseja. Nämä yhtäläisyydet tuntien Winder ja Hardie et al. suunnittelivat kokeen selvittääkseen, vaikuttiko kilpirauhashormoni AMPK: hon. He havaitsivat, että kaikki AMPK:n alayksiköt lisääntyivät luurankolihaksissa kilpirauhashormonihoidolla. Myös fosfo-ACC: n, AMPK-aktiivisuuden markkerin, määrä lisääntyi.

AMPK:n häviämisen on raportoitu muuttavan glukoosia tunnistavien solujen herkkyyttä huonosti tunnettujen mekanismien kautta. AMPKα2-alayksikön menetys haiman beetasoluissa ja hypotalamuksen neuroneissa vähentää näiden solujen herkkyyttä solunulkoisen glukoosipitoisuuden muutoksille.

Altistuminen toistuville insuliinin aiheuttamille hypoglykemioille laski AMPK:n aktivaatiota hypotalamuksessa ja samalla esti hypoglykemian vasta-ainevasteen rottakokeissa.

AMPK säätyy lysosomeissa useiden kliinisesti merkittävien järjestelmien kautta. Näihin sisältyy AXIN – LKB1 -kompleksi, joka toimii vasteena AMP-tunnistuksesta riippumatta toimiviin glukoosirajoituksiin, joka tunnistavat matalan glukoosin fruktoosi-1,6-bisfosfaatin puuttumisena dynaamisen vuorovaikutussarjan kautta kosketuksissa olevien lysosomaalisesti lokalisoidun V-ATPaasi-aldolaasin välillä.

Toinen lysosomeihin lokalisoitu AMPK-ohjausjärjestelmä riippuu Galectin-9-TAK1-järjestelmästä ja ubikvitinaatiovasteista kontrolloiduilla deubikitinoivilla entsyymeillä, kuten USP9X, mikä johtaa AMPK:n aktivaatioon vasteena lysosomaalisille vaurioille.

Nämä lysosomaaliset vauriot voivat ilmentyä biokemiallisesti ja fyysisesti proteiiniaggregaattien, kuten proteopaattisten tau-proteiinien kautta Alzheimerin taudissa, kiteisinä piidioksideina, jotka aiheuttavat silikoosia, kolesterolikiteinä, jotka aiheuttavat inflammaatiota NLRP3-tulehduksen kautta ja kihtiin liittyvinä uraattikiteinä, tai mikrobien hyökkäyksen aikana, kuten Mycobacterium tuberculosis-infektiossa ja koronavirus-infektiossa.

[62] Molemmat yllä mainitut lysosomaalisesti lokalisoidut AMPK:ta säätelevät järjestelmät aktivoivat vasteena metformiinille, laajalti määrätylle diabeteslääkkeelle. Jotkut todisteet osoittavat, että AMPK:lla voi olla rooli kasvaimen tukahduttamisessa. Tutkimukset ovat osoittaneet, että AMPK voi käyttää suurinta osaa tai jopa kaikkia maksakinaasi B1:n (LKB1) tuumoria tukahduttavista ominaisuuksista. Lisäksi tutkimuksissa, joissa AMPK-aktivaattori metformiinia käytettiin diabeteksen hoitoon, havaittiin korrelaatio vähentyneeseen syöpäriskiin verrattuna muihin lääkkeisiin.

Hiirillä, joilla ei ollut AMPK:ta ilmentävää geeniä, oli kasvanut riski lymfoomien kehittymiselle. Toisaalta jotkut tutkimukset ovat tulkinneet AMPK:n kasvaimen promoottorina, joka suojaa pahanlaatuisia syöpäsoluja. Vaikuttaa siltä, että AMPK voi kääntää takkia syöpäsolujen kohdalla. Kun syöpäsolut ovat muodostuneet organismiin, AMPK alkaakin suojaamaan organismin solujen sijaan pahanlaatuisia syöpäsoluja.

Ei ole suoraa näyttöä siitä, että AMPK:n estäminen olisi tehokas syöpähoito ihmisillä. AMPK:n näennäisesti paradoksaalinen rooli syövän puolustajana/promoottorina toteutuu, kun tarkastelemme lähemmin energiaa tunnistavaa entsyymiä suhteessa liikuntaan ja pitkäaikaiseen harjoitteluun.

Lyhytaikaisen akuutin harjoitusasteikon tavoin pitkäaikaiset kestävyysharjoittelututkimukset paljastavat myös oksidatiivisten metabolisten entsyymien, GLUT-4:n, mitokondrioiden koon ja määrän lisääntymisen ja lisääntyneen riippuvuuden rasvahappojen hapettumisesta. – Wikipedia

4. Ketogeeninen ruokavalio ja amyotrofinen lateraaliskleroosi

Amyotrofinen lateraaliskleroosi, ALS ( sclerosis lateralis amyotrophica) eli Lou Gehrigin tauti tai motoneuronitauti (engl. Motor neuron disease, MND) on etenevä motoneuronisairaus, joka rappeuttaa sekä ylempiä että alempia liikehermoja.

ALS aiheuttaa etenevää rappeutumista liikehermosoluissa, jotka ohjaavat tahdosta riippuvien lihasten toimintaa. ALS:n pääasiallisia oireita ovat lihasten jäykkyys, lihasnykäykset ja asteittain pahentuva lihasten heikentyminen niiden koon pienentyessä.

Tämä johtaa vaikeuksiin puhumisessa, nielemisessä, liikkumisessa ja lopulta hengittämisessä. Sairaus ei vaikuta näköön tai kuuloon eikä haju-, maku- tai tuntoaisteihin. Myös sydän, verenkierto sekä ruoansulatus ja eritysjärjestelmät säilyvät vahingoittumattomina.

Kun sairaus on pitkälle edennyt, potilas ei kykene tekemään juuri mitään ilman ulkopuolista apua; jossain vaiheessa joudutaan tukeutumaan hengityskoneeseen, tarjoamaan potilaalle pillillä imettävää nestemäistä ruokaa tai antamaan ruoka PEG-letkun kautta ja auttamaan tätä kaikissa arkipäivän toimissa. Kuoleman aiheuttaa hengityslihasten heikkous.

Sairaus on harvinainen ja parantumaton. Sairauden aiheuttajaa ei toistaiseksi tunneta. Sairausprosessia on todennäköisesti käynnistämässä usean tekijän vuorovaikutus. – Wikipedia

ALS

Amyotrofinen lateraaliskleroosi (ALS) on progressiivinen neurodegeneratiivinen sairaus, joka vaikuttaa selkärangan ja aivokuoren motorisiin hermosoluihin, mikä johtaa lihasten progressiiviseen heikkenemiseen ja luurankolihasten toimintakyvyn menetykseen.

Tautiin sairastuvat henkilöt kuolevat keskimäärin 2–5 vuoden kuluessa oireiden ilmaantumisesta. Kuolema tapahtuu yleensä hengityshalvauksesta. Tällä hetkellä ALS:lle ei tunneta tehokasta hoitoa.

Ainoa Yhdysvaltain FDA:n hyväksymä farmakologinen hoito rajoittuu rilutsoliin, joka vaikuttaa vain vähän taudin etenemisen ja pidentää elinaikaa vain 2-3 kuukaudella [41]. ALS:n syyt ovat monimutkaisia ja monitekijäisiä. Niihin sisältyy geneettiset tekijät ja ympäristömuuttujat:

  • elimistön oksidatiiviset vauriot,
  • neurofilamenttien kertyminen soluihin,
  • eksitotoksisuus, joka liittyy glutamaattimetabolian häiriöön ja
  • mitokondrioiden kalvojen toimintahäiriöt

ovat eräitä oletettuja taudin kehittymiseen vaikuttavia tekijöitä [42–44]. Muiden hermosoluja rappeuttavien neurodegeneratiivisten häiriöiden tapaan mitokondrioiden todennäköinen vaikutus ALS:n patogeneesiin tekee ketogeenisestä ruokavaliosta lupaavan synergisen työkalun ALS: n hoitoon [45].

Mitokondrioiden yhteys

Noin 10%:lla ALS-potilaista sairaus on perinnöllinen (familiaalinen amyotrofinen skleroosi FALS) ja joka viidennellä FALSia sairastavalla on mutaatio geenissä, joka koodaa entsyymiä Cu / Zn superoksididismutaasi 1 (SOD1) [46]. Tämä mutaatio liittyy mitokondrioiden aktiivisuuteen; itse asiassa juuri mutantti SOD1 on lokalisoitu mitokondrioita sitovaan bcl2:een (solun antiapoptoottinen proteiini) [47].

Lisäksi mitokondrioiden kompleksin I aktiivisuuden heikkeneminen on mitattu ALS-potilaiden luurankolihaksissa ja selkäytimissä [48]. Tulokset osoittavat, että ketoaineet voivat vaikuttaa mitokondrioiden toimintaan palauttamalla esimerkiksi kompleksin I toiminnan farmakologisen eston jälkeen. Lisäksi viljellyissä hermosoluissa, joita hoidetaan farmakologisilla aineilla, jotka estävät kompleksin I, ketoaineiden lisäys palauttaa kompleksin toiminnan [49].

Tutkijat osoittivat hiljattain, että ALS-hiirimallissa ketogeeninen ruokavalio johti korkeampaan motoristen hermosolujen eloonjäämiseen ja parempaan motoriseen toimintaan verrattuna hiiriin, jotka eivät saaneet KD-ruokaa [50]. Tutkimuksissa on myös havaittu, että ketoaineiden lisäys (kapryylihappo) paransi mitokondrioiden toimintaa ja motoristen hermosolujen määrää ALS-hiirimallissa [51].

Tutkijat selittivät nämä tulokset DHB:n neuroprotektiivisella vaikutuksella. Lisäksi he arvelivat, että hyperketonemia saattaa parantaa mitokondrioiden vikoja lisäämällä mitokondrioiden energian ja ATP-molekyylien tuotantoa (mitattuna puhdistetuissa mitokondrioissa ALS-hiirimallista). On huomattava, että kummassakaan tutkimuksessa hiirien eloonjääminen ei lisääntynyt merkittävästi.

Ketogeenisen ruokavalion aikana ruokavalion rasvojen prosenttiosuus oli erittäin korkea (60%). Tämä voi selittää energia-aineenvaihdunnan havaitut ja mitatut parannukset.

Kolesteroli ja fosfolipidit ovat välttämättömiä aksonikalvojen terveydelle ja perifeeristen hermokalvojen vamman korjauksille. Erityisen tärkeitä ovat pienitiheyksiset lipoproteiinit [52].

Eräät epidemiologiset havainnot viittaavat siihen, että hyperlipidemia on merkittävä ALS-potilaiden elinajanodotetta lisäävä tekijä [53]. Paganoni et al. [54], osoitti kuitenkin UI-muotoisen yhteyden painoindeksin ja kuolleisuuden välillä, sekä suuremman eloonjäämistodennäköisyyden potilailla, joilla oli korkeampi painoindeksi (BMI: 30–35). Tässä tutkimuksessa dyslipidemia ei osoittanut riippumattomasti potilaan parempaa ennustetta.

Wills et al. [55] osoittivat äskettäin, että potilailla, jotka saivat runsaasti energiaa / runsaasti hiilihydraatteja sisältävää ravintoa, oli vähemmän haittatapahtumia ja kuolemantapauksia kuin runsaasti rasvaa / paljon kaloreita sisältävässä ryhmässä tai kontrolliryhmässä.

Nämä ilmeisen ristiriitaiset tulokset kuvaavat ALS:n monimutkaista luonnetta. Taudin ennusteessa on tosin joitain yhteisiä piirteitä: suurempi kalorien saanti näyttää parantavan selviytymistä ALS-potilailla, vaikka kolesterolin ja parempien olosuhteiden välillä ei ole löydetty täsmällisiä suhteita.

Insuliini lisää ndogeenisen kolesterolin tuotantoa, mikä vähentää eksogeenistä kolesterolia [4]. Siten runsaasti hiilihydraatteja sisältävä ruokavalio voi olla hyödyllinen kolesterolin tuotannon lisäämiseksi. Korkean energiapitoisuuden hiilihydraattipainotteisen ruokavalion positiivisia vaikutuksia voitaisiin soveltaa vuorotellen korkean rasvapitoisuuden (runsaasti voita [56]) ketogeenisen ruokavalion kanssa joissakin ALS-tyypeissä (SOD1), mutta ei RNA-prosessointihäiriöihin liittyvissä. (TDP43, FUS ja C9orf72).

Lisää kontrolloituja satunnaistettuja tutkimuksia tarvitaan ravitsemuksen ja ketogeenisen ruokavalion täsmällisempien menetelmien tutkimiseksi ALS-terapiana.

5. Mitokondrioiden häiriöt ja ketogeeninen ruokavalio

Edellisessä osassa viittasimme mitokondrioiden rooliin neurologisessa sairaudessa, kuten ALS. On yhä enemmän todisteita siitä, että ketogeeninen ruokavalio voi parantaa mitokondrioiden toimintaa ja stimuloida mitokondriogeneesiä [57–60].

Kuten Wallace ja hänen kollegansa ovat todenneet,

”Ironista kyllä, yksi vanhimmista terapeuttisista lähestymistavoista – paasto ja ketogeeninen ruokavalio – on edelleen lupaavin hoito mitokondrioiden häiriöissä” [61].

Itse asiassa, vaikka ketogeeninen ruokavalio on terapeuttinen työkalu, joka tunnetaan 20-luvulta lähtien, sen vaikutukset mitokondrioihin ovat suhteellisen tuore tutkimushavainto.

Jotkut mitokondrioiden häiriöt voivat aiheuttaa kohtauksia, joilla on erilaisia epileptisia fenotyyppejä [62]. Ketogeenisen ruokavalion vaikutuksista mitokondriopatioihin on joitain rohkaisevia tietoja.

Kang et al. [63] osoitti, että ketogeeninen ruokavalio voisi olla turvallinen ja tehokas hoito, joka vähentää kohtauksia lapsilla, joilla on vaikeasti hoidettava epilepsia ja erilaisia hengityskompleksihäiriöitä (kompleksi I, II, IV tai yhdistetty).

Ahola-Erkkilä ym. [64] ovat hoitaneet ketogeenisellä ruokavaliolla myöhään alkavan mitokondrioiden myopatian hiirimallia. Mitokondrioiden myopatian tiedetään aiheuttavan ihmisillä autosomaalisesti hallitsevaa progressiivista oftalmoplegiaa, lisäävän lihasheikkoutta ja mitokondrioiden mtDNA-vaurioita sekä sytokromi c-oksidaasi-negatiivisia lihaskuiduituja.

Ketogeeninen ruokavalio vähensi sytokromi c-oksidaasi-negatiivisten lihaskuitujen määrää ja esti mitokondrioiden ultrastruktuuristen poikkeavuuksien muodostumisen lihaksessa. Ruokavalio paransi suurimman osan metabolisista ja lipidoomisista poikkeavuuksista, mutta ei vaikuttamalla mtDNA:han, vaan lisäämällä mitokondrioiden biogeneesiä.

Kolikolla on kaksi puolta

Vaikka ketogeeninen ruokavalio voi olla terapeuttinen työkalu monissa mitokondriopohjaisissa sairauksissa, se on kontraindikatorinen (vasta-aiheinen; kontraindikatorinen menetelmä estää jonkin hoidon tai tutkimuksen soveltamisen, koska voi laukaista toisen häiriön tai sairauden).

Rasva-aineenvaihduntasairaudesta kärsivät potilaat saattavat kokea ketogeenisellä ruokavaliolla vakavan katabolisen kriisin. Synnynnäiset virheet lipidien aineenvaihduntaan liittyvissä entsyymeissä: mitokondrioiden kalvon pitkäketjuisten rasvahappojen kuljetusmekanismista beeta-hapetukseen ja Krebsin sykliin voivat olla kohtalokkaita paaston tai ketogeenisen ruokavalion aikana. Potilaan karnitiinipuutos, karnitiinipalmitoyylitransferaasin (CPT) I tai II puutos, karnitiinitransokaasipuutos, beta-oksidaation virheet tai pyruvaattikarboksylaasipuutos tulisi seuloa ennen ketogeenisen ruokavalio-terapian aloittamista. Ketogeeninen ruokavalio voi pahentaa myös akuuttia ajoittaista porfyriaa sairastavien potilaiden tilaa [65].

6. Alzheimerin tauti (AD) ja ketogeeninen ruokavalio

Alzheimerin tauti (AD) on yleisin neurodegeneratiivinen sairaus ja ikääntyneen väestön johtava dementian syy. AD-oireet ovat yleensä kognitiivisia häiriöitä, joihin liittyy progressiivisia muistivajeita ja persoonallisuuden muutoksia.

Alzheimer-potilaiden kognitiivisen taantumisen syyt johtuvat etenevästä synaptisesta toimintahäiriöstä ja sen aiheuttamasta hermosolujen surkastumisesta. Hermosolujen atrofiaa tapahtuu monilla aivojen alueilla: lähinnä neokorteksissa, limbisessä järjestelmässä ja aivokuoren alapuolisilla alueilla [66].

Hippokampus on ketogeenisen ruokavalion spesifinen kohde

McDaniel et al. osoitti, että kainihappo-indusoidussa status epilepticus -rottamallissa ketogeeninen ruokavalio esti mTOR-reitin signalointia aivoissa estäen hippokampuksen myöhäisen mTOR-aktivaation kainihappo-indusoidun status epilepticuksen jälkeen [59].

Kaiinihappo on voimakas neurotoksinen aminohapon agonisti , joka toimii aktivoimalla glutamaatti-reseptoreita. Glutamaatti on pääasiallinen eksitatorinen välittäjäaine keskushermostossa. Glutamaattireseptoreihin on neljä pääluokkaa:

– NMDA-reseptorit,
– AMPA-reseptorit,
– kainaattireseptorit ja
– metabotrooppiset glutamaattireseptorit

Kainiinihappo on kainaattireseptoreiden agonisti. Kainaattireseptorit kontrolloivat todennäköisesti natriumkanavaa, joka tuottaa viritystä aiheuttavia postsynaptisia potentiaaleja (EPSP), kun glutamaatti sitoutuu.

Hippokampuksen neuroneilla on kriittinen rooli oppimisessa ja muistin toiminnassa. Ne ovat erityisen alttiita Alzheimerin taudin aiheuttamille häiriöille ja rappeutumiselle.

AD on luokiteltu kahteen päämuotoon: familiaalinen AD (FAD) ja satunnainen AD (SAD) tai myöhään alkava ikääntymiseen liittyvä AD (LOAD); jälkimmäinen on dementian johtava syy, joka selittää yli puolet kaikista tapauksista. Melkein kaikki FAD-tapaukset johtuvat mutaatiosta kolmessa geenissä (amyloidin esiasteproteiini APP, preseniliini 1 PSEN1 ja preseniliini 2 PSEN2 [67]),

SAD:n tarkkaa etiologiaa ei ymmärretä vielä täysin. Tiedetään, että ikä on suurin riskitekijä. Alzheimerin taudin riski kasvaa eksponentiaalisesti iän myötä 65-vuotiailla tai sitä vanhemmilla ihmisillä [68].

Ikääntymisen tiedetään vaikuttavan yhdessä muiden tekijöiden kanssa. Näitä ovat:

(1) apolipoproteiini E:n (Apo E) alleelivaihtelut
(2) anatomisten reittien rappeutuminen,
(3) mitokondrioiden toimintahäiriöt,
(4) vaurioitunut veri-aivoeste,
(5) immuunijärjestelmän toimintahäiriöt,
(6) tartuntataudit ja muut ympäristötekijät, kuten altistuminen alumiinille,
(7) toistuvaT pään vammat ja
(8) aliravitsemus [69]

Kuten monissa muissakin kroonisissa sairauksissa, myös Alzheimerin taudissa hoidot voidaan jakaa kahteen luokkaan:

(A) oireenmukaiset hoidot (jotka tarjoavat tilapäistä oireiden lieventämistä muuttamatta taudin etenemistä) ja

(B) hoidot, jotka voivat mahdollisesti muuttaa taudin patogeneesiä (hidastaa tai pysäyttää taudin etenemiseen liittyviä neurologisia vaurioita)

Huolimatta joistakin FDA:n hyväksymistä lääkkeistä, kuten asetyylikoliiniesteraasin estäjistä ja memantiinista (glutamaattiantagonisti, jota käytetään käyttäytymisoireiden lieventämiseen taudin kohtalaisessa vaiheessa), tällä hetkellä ei ole olemassa tehokasta hoitoa AD:n estämiseksi, hidastamiseksi tai parantamiseksi. Suurin osa hyväksytyistä lääkkeistä tarjoaa vain kohtalaisen oireellisen vaikutuksen [70, 71].

Muiden sairauksien osalta tehokkaiden hoitojen kehittämistä vaikeuttaa AD-etiologian puutteellinen tuntemus [71] siitäkin huolimatta, että ”amyloidikaskadin” hypoteesia on tutkittu laajasti. Tämä patogeneettinen hypoteesi perustuu β-amyloidin (Aβ) neurotoksisiin ominaisuuksiin ja sen soluihin kumuloitumiseen liittyvään neurotoksisten tapahtumien kaskadin käynnistämiseen. Neurodegeneratiiviseen prosessiin lukeutuvat tunnettujen neurofibrillaaristen vyyhtien (NFT) muodostumisen lisäksi myös krooniset tulehdusreaktiot, oksidatiivisen stressin lisääntyminen ja lopuksi mitokondrioiden toimintahäiriö [71].

Alzheimerin taudin kaksi päätyyppiä johtuvat erillisistä proteiineista: tau neurofibrillaaristen vyyhtien aiheuttajana on tau-proteiini ja amyloidiplakkien tapauksessa aiheuttajana on amyloidi-β-proteiini.

Kuten edellä mainittiin, FAD:lle ja SAD:lle ei tunneta yhtenäistä etiopatogeenista mekanismia. Jälkimmäisestä on saatu havaintoja, jotka viittaavat siihen, että amyloidi-β-proteiinin ja NFT:n väheneminen toimivat yhdessä aiheuttaen mitokondrioiden toiminnan heikkenemistä ja muuttaen aivojen metabolista aktiivisuutta ikääntymisprosesseihin liittyen.

Ottaen huomioon ikääntymisprosessin ja Alzheimerin taudin välisen vahvan yhteyden ja ketogeenisen ruokavalion positiiviset vaikutukset ikääntyvissä aivoissa [72], sekä Alzheimerin taudin monitekijäisen luonteen (mitokondrioiden ja aineenvaihdunnan toimintahäiriöt), on vakuuttavaa näyttöä hypoteesille, jonka mukaan ketogeenisen ruokavalion noudattaminen AD-terapiana tuottaa myönteisiä fysiologisia, metabolisia ja kognitiivisa hoitovasteita potilailla [73, 74].
Esimerkiksi in vitro -tutkimus on osoittanut, että beeta-hydroksibutyraatin (ketoaine) lisääminen suojaa hippokampuksen hermosoluja Aβ -toksisuudelta. Tämä viittaa ketogeenisen ruokavalion mahdollisiin terapeuttisiin hyötyihin Alzheimerin tautiin liittyvissä mitokondrioiden toimintahäiriöissä [75].

Toisaalta eläinkokeet ovat antaneet osin ristiriitaisia tuloksia:

Van der Auwera et al. [76] osoitti Aβ: n vähenemistä nuorten 1,5 kk KD:lla syötettyjen siirtogeenisten AD-hiirten aivoissa, kun taas ikääntyneille koirille KD:n vaikutus näytti rajoittuneen aivojen parietaaliseen lohkoon [77].

Eläinkokeissa ketoniestereitä sisältävä pitkäaikainen (8 kuukautta) ruokinta keski-ikäisillä (8,5 kuukauden ikäisillä) hiirillä paransi hiirten kognitiota ja Aβ- ja tau-patologiaa [75]. Beckett et al. [78] osoitti, että AD-hiirimalli, jossa hiiriä ruokittiin runsaasti rasvaa ja vähän hiilihydraatteja sisältävällä ketogeenisellä ruokavaliolla, johti AD-hiirten parantuneisiin motorisin toimintoihin ilman muutoksia Aβ:ssä.

Eläinkokeiden keskenään ristiriitaiset tulokset voivat johtua eläinten iästä: hiiret ovat useimmiten nuoria tai keski-ikäisiä, mutta aineenvaihdunnan muutoksia esiintyy toistuvasti pääasiassa vanhuksilla.

Alzheimerin tauti liittyy myös metaboliseen dysregulaatioon ja insuliiniresistenssiin [79]. Monet tutkijat ovat osoittaneet, että ketogeeninen ruokavalio voi merkittävästi parantaa glukoosin homeostaasia vähentämällä aineenvaihdunnan häiriöitä ja insuliiniresistenssiä [80–82].

AD:ssä on toinen patofysiologinen mekanismi, joka johtuu muuttuneesta mitokondrioiden toiminnasta ja glukoosimetaboliasta: edistyneiden glykaation lopputuotteiden (AGE) kertyminen [83].

Huolimatta siitä, että AGE:n kertyminen soluihin ja kudoksiin on normaali ikääntymisen ominaisuus, tämä prosessi kiihtyy Alzheimerin taudissa. Glykaation lopputuotteita löytyy myös amyloidiplakeista ja neurofibrillaarisista punoksista. AGE-arvojen nousu voi selittää Alzheimerin taudin monia neuropatologisia muutoksia (proteiinien silloittuminen, oksidatiivisen stressin gliaalinen induktio ja hermosolujen surkastuminen ja kuolema).

Voidaan spekuloida, että ketogeenisen ruokavalion hermosoluja suojaavat neuroprotektiiviset vaikutukset ja ketogeeniseen ruokavalioon liittyvä glykeemisen kuorman väheneminen vaikuttavat suotuisasti Alzheimerin taudissa. Toinen mielenkiintoinen hypoteesi on ketogeenisen ruokavalion arvioidut vaikutukset mitokondriogeneesiin yhdessä mitokondriokoneiston parantamisen kanssa [61, 72, 74, 84–86].

Kuten aiemmin todettiin, mitokondrioiden toimintahäiriöiden uskotaan liittyvän Alzheimerin taudin etiologiaan [72]. Iäkkäillä potilailla on havaittu selvää hermo- ja gliasolujen mitokondrioiden metabolian heikkenemistä verrattuna terveisiin nuoriin koehenkilöihin [87]. Tämä toimintahäiriö, joka liittyy mitokondrioiden glukoosi / pyruvaattihapetuksen heikentyneeseen energiantuotantoon, voi parantaa Aβ :n ja tau:n patologista kerrostumista. Heikentynyttä mitokondrioiden toimintaa voi edustaa lisääntynyt superoksidituotanto hapettumisvaurioiden vasteena, oksidatiivisen fosforylaation väheneminen ja näin ollen mitokondrioiden elektronikuljetusketjun heikkeneminen.

Muut AD: lle ominaiset glukoosimetaboliset häiriöt aivojen tietyissä osissa liittyvät mitokondrioiden toimintahäiriöihin [88]. On mielenkiintoista huomata, että aikaisempi vähentynyt glukoosin hyödyntäminen energiasubstraattina voidaan havaita FDG-PET:llä kognitioon liittyvissä kokeissa henkilöillä, joilla on tunnettu AD-historia [89].

On luultavaa, että alentunut aivojen glukoosin käyttö (hermosolujen heikentynyt glukoosinotto) edistää AD-neuropatologian kehittymistä. Aivojen glukoosimetabolian varhainen heikkeneminen voidaan havaita ennen mitattavissa olevaa kognitiivista heikkenemistä [90]. Muut todisteet tukevat tätä teoriaa, kuten alentunut pitoisuus glukoosin kuljettajia (GLUT 1 ja 2, mutta myös hermosolujen glukoosi kuljettaja GLUT 3). Alzheimerin taudissa aivoissa todettava tau-taudin hyperfosforylaatio liittyy tähän ilmiöön [91].

Aivojen aineenvaihdunnan muutos glukoosista ketogeenisen ruokavalion tuottamiin ketoaineisiin [17] on tehokas hoitomuoto tyypin I glukoosinkuljettajapuutosoireyhtymässä [92]. Ketogeeninen ruokavalio voi olla toimiva terapiavaihtoehto myös GLUT-kuljettajien puutteen aiheuttamaan hermosolujen rappeutumiseen Alzheimerin taudissa [73].

Lopuksi: vaikka suoraa näyttöä ketogeenisen ruokavalion terapeuttisista hyödyistä Alzheimerin taudin hoidossa ei ole, tämä ravitsemuksellinen lähestymistapa näyttää lupaavalta ja ansaitsee siten laajemmat kliiniset tutkimukset.


7. Parkinsonin tauti ja ketogeeninen ruokavalio


Sporadisen Parkinsonin taudin (PD) patogeneesi on yhä ratkaisematta. Tutkimukset viittaavat siihen, että ensisijainen syy on dopaminergisten* hermosolujen eksitotoksinen rappeutuminen
substantia nigrassa, mikä johtaa motoriikan heikentymiseen ja lisääntyvässä määrin kognition alentumiseen sekä muihin kortikaalisen toiminnan häiriöihin.

*Dopaminerginen: autonomisen hermoston hermosoluista dopamiinia erittävä tai sen välityksellä stimuloituva; 2. (aineista) dopamiinin tavoin vaikuttava

Dopamiinia sisältäviä neuroneja on runsaasti erityisesti keskiaivoissa substantia nigran ja tegmentumin tienoilla. Näiden aksonit haarautuvat laajalle alueelle. Aivoissa on neljä dopaminergista päärataa: mesokortikaalinen, mesolimbinen, nigrostriataalinen ja tuberoinfundibulaarinen.

Nigrostriataalisen radan tuhoutuessa ilmentyy Parkinsonin tauti. Skitsofrenian ajatellaan johtuvan mesokortikaalisen ja mesolimbisen radan dopamiinin D2-reseptorien ylistimuloitumisesta.

Mitokondrioiden toiminnan heikentymisellä, johon liittyy substantia nigra (mustatumake), on merkittävä rooli Parkinsonin taudin kehittymisessä ja etenemisessä [94].

Kashiwaya et al. käytti heroiinianalogia 1-metyyli-4-fenyylipyridiniumia, MPP (+), joka tuottaa dopaminergisten substantia nigran eli mustatumakkeen -solujen kuoleman estämällä mitokondrioiden NADH-dehydrogenaasien monientsyymikompleksin. Tämä aiheuttaa samanlaisen oireyhtymän kuin Parkinsonin tauti viljellyissä mesenkefaalisissa neuroneissa. β-hydroksibutyraatti suojasi näitä hermosoluja MPP (+) – toksisuuden aiheuttamalta neurodegeneraatiolta [74].

Eläinmalleissa 1-metyyli-4-fenoli-1,2,5,6-tetrahydropyridiiniä (MPTP) käytetään tuottamaan ihmisen Parkinsonin taudin kaltaista oireyhtymää jäljittelevä dopaminergisten hermosolujen selektiivinen tuhoaminen mustatumakkeessa. Kuten edellä mainituissa sairauksissa, ketogeenisen ruokavalion positiiviset vaikutukset mitokondrioiden toimintaan voivat olla avaintekijä tällaisen ruokavalion terapiakäytössä, koska ketonit voivat ohittaa Parkinsonin taudin aiheuttaman kompleksin I aktiivisuuden puutteen.

Hiirikokeissa β-hydroksibutyraatin infuusio suojasi hiiriä MPTP:n aiheuttamalta dopaminergiseltä hermoston rappeutumiselta ja motorisilta häiriöiltä [49]. Lisäksi ketogeeninen ruokavalio suojasi mustatumakkeen dopaminergisiä neuroneja 6-hydroksidopamiinin neurotoksisuudelta Parkinsonin taudin rottamallissa [95].

VanItaille et al. [96] osoitti, että ihmisillä, jotka pystyvät valmistamaan ”hyperketogeenisen” ruokavalion kotona ja noudattamaan sitä 28 päivän ajan, korkea ketoaineiden pitoisuus assosioitui taudin oireiden paranemiseen yhtenäisellä Parkinsonin taudin luokitusasteikolla Unified Parkinson’s Disease Rating Scale).

8. Glykogenoosit ja ketogeeninen ruokavalio

Glykogenoosit (glykogeenin varastointisairaudet, GSD) ovat entsyymivirheistä johtuvia perinnöllisiä häiriöitä, jotka vaikuttavat glykogeenimetaboliaan ja johtavat normaalin tai epänormaalin rakenteen glykogeenin solunsisäiseen kertymiseen erilaisiin solutyyppeihin.

Klassisesti GSD numeroitiin I – VIII niiden löytämisen ja erityisen entsyymivian mukaan [97]. Viime vuosina on tunnistettu muita primaarisia glykogenooseja (GSD 0, GSD IX – XV) [98].

GSD välittyy autosomaalisena resessiivisenä, lukuun ottamatta GSD VIII, joka on X-kytketty. Toiminnallisesta näkökulmasta GSD I, III, IV, VI ja VIII / IXa voidaan ryhmitellä maksan GSD:ksi [99], koska puutteelliset entsyymit ilmentyvät enimmäkseen maksasoluissa. Kun otetaan huomioon maksan keskeinen rooli glykemian säätelyssä glykogenolyysin avulla, ei ole yllättävää, että hypoglykemia on maksan GSD:n pääasiallinen ilmenemismuoto [97, 100]. Tämä puolestaan aiheuttaa neurologisia oireita, jotka vaihtelevat kouristuksista kohtauksiin, varsinkin sairauden alkuvaiheessa. Pitkällä aikavälillä uusiutuva vaikea hypoglykemia voi aiheuttaa aivovaurioita erityisesti GSD I:ssä (von Gierken tauti, G-6-P-fosfataasin puutos), joka on yleisin maksan GSD.

GSD-hoito perustuu ruokavaliohoitoon hypoglykemian estämiseksi. Potilaita ruokitaan tärkkelyspitoisilla elintarvikkeilla ympäri vuorokauden [100, 101]. Tieteellinen perustelu ketogeenisen ruokavalion (KD) mahdolliselle käytölle johtuu varhaisesta havainnosta, jonka mukaan hypoglykemiaan liittyvät oireet paranivat iän myötä GSD:ssä [102] sekä GSD III:ssa [100].
On tunnettua, että tämä sopeutuminen tapahtuu aivoissa sekä paastotilassa että kuumeen aikana [102]. Tämä havainto tulkittiin klassisesti aivoissa tapahtuvien sopeutumisten seurauksena, joka sallii ketoaineiden lisääntyneen käytön polttoainesubstraateina glukoosin sijasta. Sama mekanismi selittää kalorirajoituksen [100] vaikutusta, joka johtaa myös mataliin verensokeritasoihin.

Mekanistinen tulkinta olisi se, että ketogeeninen ruokavalio lisää aivojen energia-aineenvaihdunnan reittien käyttöä riippumatta glykogeenin hajoamisesta. Näiden näkökohtien perusteella ketogeenistä ruokavaliota on käytetty tehokkaasti lihassolujen GSD V:n (McArdlen tauti) hoidossa [103, 104].

Ketogeenisen ruokavalion kouristuksia estävät vaikutukset ovat tunnustetaan yleisesti, vaikka mekanismeja ei ole vielä täysin selvitetty [105]. Ketogeenisen ruokavalion mahdollista käyttöä patologisissa olosuhteissa, joille on tunnusomaista krooninen hypoglykemia, tukee edelleen se, että ketogeeninen ruokavalio on standardi GLUT1-puutosoireyhtymän hoidossa [106]. Tätä voidaan pitää maksan GSD:n metabolisena fenokopiana, koska siinä verensokeria ei voida kuljettaa hermosoluihin.

Tuore tutkimus [107] arveli, että ketogeenistä ruokavaliota voidaan käyttää menestyksekkäästi vakavan GSD III:een liittyvän kardiomyopatian hoidossa. Kaiken kaikkiaan nämä havainnot saattavat kannustaa jatkotutkimuksiin ketogeenisen ruokavalion käytöstä valittujen GSD-muotojen hoidossa.

9. Loppupäätelmä

Ketogeenisen ruokavalion aiheuttamaa erikoista metabolista tilaa on tutkittu laajalti viime vuosina. Ketoaineiden pitoisuuden nousu, verensokerin aleneminen yhdessä monien tärkeiden aineenvaihduntareittien (esim. IGF-1 / AKT / mTor, AMPK / PGC1α) kanssa on osoittautunut potentiaaliseksi terapeuttiseksi aseeksi monia neurologisia ja neuromuskulaarisia sairauksia vastaan.

Nämä tutkimukset tarjoavat teoreettisen perustan ketogeenisen ruokavalion vaikutukselle useissa hermo-lihassairauksissa. Monia korkeita esteitä on kavuttava, ennen kuin näitä löydöksiä voidaan soveltaa laajasti kliiniseen käytäntöön tai kansanterveyden parantamiseen.

Ensinnäkin ketogeenisen ruokavalion tarkasta mekanismista hermo-lihassairauksien terapiana tiedetään edelleen liian vähän, ja toiseksi tällaisen ruokavalion pitkäaikaisia vaikutuksia tulisi tutkia näillä potilailla, huolimatta siitä, että meillä on vain alustavia todisteita ja todisteita, jotka perustuvat lähinnä eläinmalleihin. Saatavilla olevat tiedot osoittavat, että KD:n aineenvaihduntamekanismi joillakin neurologisilla ja hermo-lihassairauksilla voisi olla seuraava:

(1) Tehokas energialähde tietyntyyppisten hermostoa rappeuttavien sairauksien hoidolle, joille on tunnusomaista aivojen fokaalinen hypometabolia. Tällaisia ovat esimerkiksi Parkinsonin ja Alzheimerin taudit. Neuronaaliset solut pystyvät metabolisoimaan ketoaineita glukoosipuutoksen aikana.

(2) Ketonit voivat lisätä ATP-hydrolyysin vaikutusta ja korvata asetyyli-CoA:lla Alzheimerin taudille ominaisen asetyylikoliinin vähenemisen. Glukoosimetaboliaan verrattuna ketonit tuottavat alhaisempia oksidatiivisen stressin tasoja aivoissa yhdessä suuremman soluenergiantuoton ja antioksidanttikapasiteetin kanssa. Lisäksi ketoosi voi lisätä glutationiperoksidaasia hippokampussoluissa ja yleensä vähentää mitokondrioiden ROS-tuotantoa.

(3) Lisää mitokondrioiden biogeneesireittejä (AMPK:n ja PGC1a-reitin aktivoinnin kautta). Mitokondrioiden reittien parantaminen voi auttaa parantamaan aivojen ja hermosolujen aineenvaihduntaa.

(4) Ketoaineet ohittavat ALS:n luurankolihakseen ja selkäytimeen perustuvan mitokondrioiden kompleksin I aktiivisuuden vian. Viljellyissä hermosoluissa, joita hoidetaan farmakologisilla aineilla, jotka estävät kompleksin I, ketoaineiden lisäys palauttaa kompleksin toiminnan.

(5) Vähentää sytokromi-c-oksidaasi-negatiivisten lihassyiden määrää joissakin mitokondrioiden myopatioissa ja estää mitokondrioiden ultrastruktuuristen poikkeavuuksien muodostumisen.

Lopuksi uskomme, että ketogeenistä ruokavaliota tulisi tutkia syvällisemmin sen rohkaisevan potentiaalisen terapiavaikutuksen vuoksi monien hermo-lihas- ja neurodegeneratiivisten sairauksien hoidossa.

Tutkimuskatsauksen irjoittajat toteavat, ettei heillä ole omia lehmiä ojassa tai mitään taloudellisia intressejä. Minulla ketofiilistelevänä multippelisklerootikkona on, mutta tässä toimin lähinnä editorina. Artikkelin julkaisu voi tuottaa mainostuloja joitain senttejä.

Ketogeeninen ruokavalio ei paranna syntyneitä neurologisia ja neuromotorisia vaurioita, mutta on perusteltua uskoa, että se ainakin hidastaa, ellei jopa ehkäise, uusien vaurioiden syntyä. KD ei lupaa ihmettä, mutta se lupaa parempaa kuin mitä tähän asti on ollut tarjolla. Tieto lisääntyy koko ajan. Ketogeenisen ruokavalion stimuloima autofagosytoosi yhdessä neurogeneesin ja neuroplastisuuden kanssa voi ehkä korjata joitain syntyneitä vaurioita pitkällä aikavälillä. Näín toivon.

Viitteet

  1. N. N. Danial, A. L. Hartman, C. E. Stafstrom, and L. L. Thio, “How does the ketogenic diet work? Four potential mechanisms,” Journal of Child Neurology, vol. 28, no. 8, pp. 1027–1033, 2013. View at: Publisher Site | Google Scholar
  2. E. Kossoff, “The fat is in the fire: ketogenic diet for refractory status epilepticus,” Epilepsy Currents, vol. 11, no. 3, pp. 88–89, 2011. View at: Publisher Site | Google Scholar
  3. R. G. Levy, P. N. Cooper, and P. Giri, “Ketogenic diet and other dietary treatments for epilepsy,” Cochrane Database of Systematic Reviews, vol. 3, 2012. View at: Google Scholar
  4. A. Paoli, “Ketogenic diet for obesity: friend or foe?” International Journal of Environmental Research and Public Health, vol. 11, pp. 2092–2107, 2014. View at: Google Scholar
  5. J. C. Mavropoulos, W. S. Yancy, J. Hepburn, and E. C. Westman, “The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study,” Nutrition and Metabolism, vol. 2, article 35, 2005. View at: Publisher Site | Google Scholar
  6. R. J. Klement and U. Kämmerer, “Is there a role for carbohydrate restriction in the treatment and prevention of cancer?” Nutrition & Metabolism, vol. 8, article 75, 2011. View at: Publisher Site | Google Scholar
  7. T. N. Seyfried, J. Marsh, L. M. Shelton, L. C. Huysentruyt, and P. Mukherjee, “Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?” Epilepsy Research, vol. 100, no. 3, pp. 310–326, 2012. View at: Publisher Site | Google Scholar
  8. A. Accurso, R. K. Bernstein, A. Dahlqvist et al., “Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal,” Nutrition and Metabolism, vol. 5, no. 1, article 9, 2008. View at: Publisher Site | Google Scholar
  9. A. Paoli, A. Rubini, J. S. Volek, and K. A. Grimaldi, “Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets,” European Journal of Clinical Nutrition, vol. 67, no. 8, pp. 789–796, 2013. View at: Publisher Site | Google Scholar
  10. A. Paoli, K. Grimaldi, L. Toniolo, M. Canato, A. Bianco, and A. Fratter, “Nutrition and acne: therapeutic potential of ketogenic diets,” Skin Pharmacology and Physiology, vol. 25, no. 3, pp. 111–117, 2012. View at: Publisher Site | Google Scholar
  11. A. Paoli, M. Canato, L. Toniolo et al., “The ketogenic diet: an underappreciated therapeutic option?” La Clinica Terapeutica, vol. 162, no. 5, pp. e145–e153, 2011. View at: Google Scholar
  12. C. E. Stafstrom and J. M. Rho, “The ketogenic diet as a treatment paradigm for diverse neurological disorders,” Frontiers in Pharmacology, vol. 3, article 59, 2012. View at: Publisher Site | Google Scholar
  13. P. Felig, O. E. Owen, J. Wahren, and G. F. Cahill Jr., “Amino acid metabolism during prolonged starvation,” Journal of Clinical Investigation, vol. 48, no. 3, pp. 584–594, 1969. View at: Publisher Site | Google Scholar
  14. O. E. Owen, P. Felig, A. P. Morgan, J. Wahren, and G. F. Cahill Jr., “Liver and kidney metabolism during prolonged starvation,” The Journal of Clinical Investigation, vol. 48, no. 3, pp. 574–583, 1969. View at: Publisher Site | Google Scholar
  15. S. Jitrapakdee, A. Vidal-Puig, and J. C. Wallace, “Anaplerotic roles of pyruvate carboxylase in mammalian tissues,” Cellular and Molecular Life Sciences, vol. 63, no. 7-8, pp. 843–854, 2006. View at: Publisher Site | Google Scholar
  16. F. C. George, “Fuel metabolism in starvation,” Annual Review of Nutrition, vol. 26, pp. 1–22, 2006. View at: Publisher Site | Google Scholar
  17. O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill Jr., “Brain metabolism during fasting,” Journal of Clinical Investigation, vol. 46, no. 10, pp. 1589–1595, 1967. View at: Publisher Site | Google Scholar
  18. T. Fukao, G. Mitchell, J. O. Sass, T. Hori, K. Orii, and Y. Aoyama, “Ketone body metabolism and its defects,” Journal of Inherited Metabolic Disease, 2014. View at: Publisher Site | Google Scholar
  19. T. Fukao, G. D. Lopaschuk, and G. A. Mitchell, “Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 243–251, 2004. View at: Publisher Site | Google Scholar
  20. A. Paoli, L. Cenci, M. Fancelli et al., “Ketogenic diet and phytoextracts comparison of the efficacy of mediterranean, zone and tisanoreica diet on some health risk factors,” Agro Food Industry Hi-Tech, vol. 21, no. 4, pp. 24–29, 2010. View at: Google Scholar
  21. R. L. Veech, “The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 70, no. 3, pp. 309–319, 2004. View at: Publisher Site | Google Scholar
  22. R. L. Leino, D. Z. Gerhart, R. Duelli, B. E. Enerson, and L. R. Drewes, “Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain,” Neurochemistry International, vol. 38, no. 6, pp. 519–527, 2001. View at: Publisher Site | Google Scholar
  23. M. D. McCue, “Starvation physiology: reviewing the different strategies animals use to survive a common challenge,” Comparative Biochemistry and Physiology A: Molecular & Integrative Physiology, vol. 156, no. 1, pp. 1–18, 2010. View at: Publisher Site | Google Scholar
  24. K. Sato, Y. Kashiwaya, C. A. Keon et al., “Insulin, ketone bodies, and mitochondrial energy transduction,” The FASEB Journal, vol. 9, no. 8, pp. 651–658, 1995. View at: Google Scholar
  25. Y. Kashiwaya, K. Sato, N. Tsuchiya et al., “Control of glucose utilization in working perfused rat heart,” The Journal of Biological Chemistry, vol. 269, no. 41, pp. 25502–25514, 1994. View at: Google Scholar
  26. A. Paoli, L. Cenci, and K. A. Grimaldi, “Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees,” Nutrition Journal, vol. 10, no. 1, article 112, 2011. View at: Publisher Site | Google Scholar
  27. T. N. Seyfried and P. Mukherjee, “Targeting energy metabolism in brain cancer: review and hypothesis,” Nutrition and Metabolism, vol. 2, article 30, 2005. View at: Publisher Site | Google Scholar
  28. J. A. Vazquez and U. Kazi, “Lipolysis and gluconeogenesis from glycerol during weight reduction with very-low-calorie diets,” Metabolism: Clinical and Experimental, vol. 43, no. 10, pp. 1293–1299, 1994. View at: Publisher Site | Google Scholar
  29. M. A. B. Veldhorst, M. S. Westerterp-Plantenga, and K. R. Westerterp, “Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet,” The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 519–526, 2009. View at: Publisher Site | Google Scholar
  30. A. M. Robinson and D. H. Williamson, “Physiological roles of ketone bodies as substrates and signals in mammalian tissues,” Physiological Reviews, vol. 60, no. 1, pp. 143–187, 1980. View at: Google Scholar
  31. H. A. Krebs, “The regulation of the release of ketone bodies by the liver,” Advances in Enzyme Regulation, vol. 4, pp. 339–353, 1966. View at: Publisher Site | Google Scholar
  32. N. Amen-Ra, “Humans are evolutionarily adapted to caloric restriction resulting from ecologically dictated dietary deprivation imposed during the Plio-Pleistocene period,” Medical Hypotheses, vol. 66, no. 5, pp. 978–984, 2006. View at: Publisher Site | Google Scholar
  33. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends in Endocrinology and Metabolism, vol. 25, no. 1, pp. 42–52, 2014. View at: Publisher Site | Google Scholar
  34. S. Jäer, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at: Publisher Site | Google Scholar
  35. C. R. Benton, D. C. Wright, and A. Bonen, “PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions,” Applied Physiology, Nutrition and Metabolism, vol. 33, no. 5, pp. 843–862, 2008. View at: Publisher Site | Google Scholar
  36. J. Yu and J. Auwerx, “Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation,” Pharmacological Research, vol. 62, no. 1, pp. 35–41, 2010. View at: Publisher Site | Google Scholar
  37. D. L. Williamson, “Normalizing a hyperactive mTOR initiates muscle growth during obesity,” Aging, vol. 3, no. 2, pp. 83–84, 2011. View at: Google Scholar
  38. B. Draznin, C. Wang, R. Adochio, J. W. Leitner, and M.-A. Cornier, “Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle,” Hormone and Metabolic Research, vol. 44, no. 9, pp. 650–655, 2012. View at: Publisher Site | Google Scholar
  39. J. C. Yoon, P. Puigserver, G. Chen et al., “Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1,” Nature, vol. 413, no. 6852, pp. 131–138, 2001. View at: Publisher Site | Google Scholar
  40. N. B. Ruderman, X. J. Xu, L. Nelson et al., “AMPK and SIRT1: a long-standing partnership?” The American Journal of Physiology: Endocrinology and Metabolism, vol. 298, no. 4, pp. E751–E760, 2010. View at: Publisher Site | Google Scholar
  41. R. G. Miller, J. D. Mitchell, M. Lyon, and D. H. Moore, “Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND),” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001447, 2002. View at: Google Scholar
  42. L. I. Bruijn, T. M. Miller, and D. W. Cleveland, “Unraveling the mechanisms involved in motor neuron degeneration in ALS,” Annual Review of Neuroscience, vol. 27, pp. 723–749, 2004. View at: Publisher Site | Google Scholar
  43. L. P. Rowland and N. A. Shneider, “Amyotrophic lateral sclerosis,” The New England Journal of Medicine, vol. 344, no. 22, pp. 1688–1700, 2001. View at: Publisher Site | Google Scholar
  44. M. Strong and J. Rosenfeld, “Amyotrophic lateral sclerosis: a review of current concepts,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 4, no. 3, pp. 136–143, 2003. View at: Publisher Site | Google Scholar
  45. N. Siva, “Can ketogenic diet slow progression of ALS?” The Lancet Neurology, vol. 5, no. 6, article 476, 2006. View at: Google Scholar
  46. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at: Publisher Site | Google Scholar
  47. P. Pasinelli, M. E. Belford, N. Lennon et al., “Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria,” Neuron, vol. 43, no. 1, pp. 19–30, 2004. View at: Publisher Site | Google Scholar
  48. S. Vielhaber, D. Kunz, K. Winkler et al., “Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis,” Brain, vol. 123, no. 7, pp. 1339–1348, 2000. View at: Publisher Site | Google Scholar
  49. K. Tieu, C. Perier, C. Caspersen et al., “D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 892–901, 2003. View at: Publisher Site | Google Scholar
  50. Z. Zhao, D. J. Lange, A. Voustianiouk et al., “A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis,” BMC Neuroscience, vol. 7, article 29, 2006. View at: Publisher Site | Google Scholar
  51. W. Zhao, M. Varghese, P. Vempati et al., “Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease,” PLoS ONE, vol. 7, no. 11, Article ID e49191, 2012. View at: Publisher Site | Google Scholar
  52. E. I. Posse de Chaves, A. E. Rusinol, D. E. Vance, R. B. Campenot, and J. E. Vance, “Role of lipoproteins in the delivery of lipids to axons during axonal regeneration,” Journal of Biological Chemistry, vol. 272, no. 49, pp. 30766–30773, 1997. View at: Publisher Site | Google Scholar
  53. L. Dupuis, P. Corcia, A. Fergani et al., “Dyslipidemia is a protective factor in amyotrophic lateral sclerosis,” Neurology, vol. 70, no. 13, pp. 1004–1009, 2008. View at: Publisher Site | Google Scholar
  54. S. Paganoni, J. Deng, M. Jaffa, M. E. Cudkowicz, and A. Wills, “Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 44, no. 1, pp. 20–24, 2011. View at: Publisher Site | Google Scholar
  55. A. M. Wills, J. Hubbard, E. A. Macklin et al., “Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial,” The Lancet, vol. 383, no. 9934, pp. 2065–2072, 2014. View at: Google Scholar
  56. A. Fergani, H. Oudart, J. G. De Aguilar et al., “Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis,” Journal of Lipid Research, vol. 48, no. 7, pp. 1571–1580, 2007. View at: Publisher Site | Google Scholar
  57. K. J. Bough, J. Wetherington, B. Hassel et al., “Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet,” Annals of Neurology, vol. 60, no. 2, pp. 223–235, 2006. View at: Publisher Site | Google Scholar
  58. D. Y. Kim, J. Vallejo, and J. M. Rho, “Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors,” Journal of Neurochemistry, vol. 114, no. 1, pp. 130–141, 2010. View at: Publisher Site | Google Scholar
  59. S. S. McDaniel, N. R. Rensing, L. L. Thio, K. A. Yamada, and M. Wong, “The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway,” Epilepsia, vol. 52, no. 3, pp. e7–e11, 2011. View at: Publisher Site | Google Scholar
  60. S. Srivastava, Y. Kashiwaya, M. T. King et al., “Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet,” FASEB Journal, vol. 26, no. 6, pp. 2351–2362, 2012. View at: Publisher Site | Google Scholar
  61. D. C. Wallace, W. Fan, and V. Procaccio, “Mitochondrial energetics and therapeutics,” Annual Review of Pathology, vol. 5, pp. 297–348, 2010. View at: Publisher Site | Google Scholar
  62. H. Kang, Y. Lee, and H. D. Kim, “Mitochondrial disease and epilepsy,” Brain and Development, vol. 35, no. 8, pp. 757–761, 2013. View at: Publisher Site | Google Scholar
  63. H. Kang, Y. Lee, H. D. Kim, J. S. Lee, and A. Slama, “Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects,” Epilepsia, vol. 48, no. 1, pp. 82–88, 2007. View at: Publisher Site | Google Scholar
  64. S. Ahola-Erkkilä, C. J. Carroll, K. Peltola-Mjösund et al., “Ketogenic diet slows down mitochondrial myopathy progression in mice,” Human Molecular Genetics, vol. 19, no. 10, Article ID ddq076, pp. 1974–1984, 2010. View at: Publisher Site | Google Scholar
  65. E. H. Kossoff, B. A. Zupec-Kania, P. E. Amark et al., “Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group,” Epilepsia, vol. 50, no. 2, pp. 304–317, 2009. View at: Publisher Site | Google Scholar
  66. A. Serrano-Pozo, M. P. Frosch, E. Masliah, and B. T. Hyman, “Neuropathological alterations in Alzheimer disease,” Cold Spring Harbor perspectives in Medicine, vol. 1, no. 1, Article ID a006189, 2011. View at: Google Scholar
  67. P. G. Ridge, M. T. W. Ebbert, and J. S. K. Kauwe, “Genetics of alzheimer’s disease,” BioMed Research International, vol. 2013, Article ID 254954, 13 pages, 2013. View at: Publisher Site | Google Scholar
  68. J. Weuve, L. E. Hebert, P. A. Scherr, and D. A. Evans, “Deaths in the United States among persons with Alzheimer’s disease (2010–2050),” Alzheimer’s & Dementia, vol. 10, no. 2, pp. e40–e46, 2014. View at: Publisher Site | Google Scholar
  69. B. J. Balin and A. P. Hudson, “Etiology and pathogenesis of late-onset Alzheimer’s disease,” Current Allergy and Asthma Reports, vol. 14, article 417, 2014. View at: Publisher Site | Google Scholar
  70. D. M. Holtzman, E. Mandelkow, and D. J. Selkoe, “Alzheimer disease in 2020,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 11, 2012. View at: Google Scholar
  71. D. Selkoe, E. Mandelkow, and D. Holtzman, “Deciphering Alzheimer disease,” Cold Spring Harbor perspectives in Medicine, vol. 2, no. 1, Article ID a011460, 2012. View at: Google Scholar
  72. J. Yao and R. D. Brinton, “Targeting mitochondrial bioenergetics for Alzheimer’s prevention and treatment,” Current Pharmaceutical Design, vol. 17, no. 31, pp. 3474–3479, 2011. View at: Publisher Site | Google Scholar
  73. S. A. Hashim and T. B. Vanitallie, “Ketone Body Therapy: from ketogenic diet to oral administration of ketone ester,” Journal of Lipid Research, 2014. View at: Publisher Site | Google Scholar
  74. Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, and R. L. Veech, “D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5440–5444, 2000. View at: Publisher Site | Google Scholar
  75. Y. Kashiwaya, C. Bergman, J. Lee et al., “A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease,” Neurobiology of Aging, vol. 34, no. 6, pp. 1530–1539, 2013. View at: Publisher Site | Google Scholar
  76. I. Van Der Auwera, S. Wera, F. Van Leuven, and S. T. Henderson, “A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease,” Nutrition and Metabolism, vol. 2, article 28, 2005. View at: Publisher Site | Google Scholar
  77. C. M. Studzinski, W. A. MacKay, T. L. Beckett et al., “Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-β precursor protein (APP) levels in the aged dog,” Brain Research, vol. 1226, pp. 209–217, 2008. View at: Publisher Site | Google Scholar
  78. T. L. Beckett, C. M. Studzinski, J. N. Keller, M. Paul Murphy, and D. M. Niedowicz, “A ketogenic diet improves motor performance but does not affect β-amyloid levels in a mouse model of Alzheimer’s disease,” Brain Research, vol. 1505, pp. 61–67, 2013. View at: Publisher Site | Google Scholar
  79. K. Akter, E. A. Lanza, S. A. Martin, N. Myronyuk, M. Rua, and R. B. Raffa, “Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment?” British Journal of Clinical Pharmacology, vol. 71, no. 3, pp. 365–376, 2011. View at: Publisher Site | Google Scholar
  80. H. M. Dashti, T. C. Mathew, M. Khadada et al., “Beneficial effects of ketogenic diet in obese diabetic subjects,” Molecular and Cellular Biochemistry, vol. 302, no. 1-2, pp. 249–256, 2007. View at: Publisher Site | Google Scholar
  81. A. Paoli, A. Bianco, K. A. Grimaldi, A. Lodi, and G. Bosco, “Long term successful weight loss with a combination biphasic ketogenic mediterranean diet and mediterranean diet maintenance protocol,” Nutrients, vol. 5, no. 12, pp. 5205–5217, 2013. View at: Publisher Site | Google Scholar
  82. E. C. Westman, W. S. Yancy Jr., J. C. Mavropoulos, M. Marquart, and J. R. McDuffie, “The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus,” Nutrition and Metabolism, vol. 5, no. 1, article 36, 2008. View at: Publisher Site | Google Scholar
  83. V. Srikanth, A. Maczurek, T. Phan et al., “Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease,” Neurobiology of Aging, vol. 32, no. 5, pp. 763–777, 2011. View at: Publisher Site | Google Scholar
  84. M. Balietti, B. Giorgetti, G. Di Stefano et al., “A ketogenic diet increases succinic dehydrogenase (SDH) activity and recovers age-related decrease in numeric density of SDH-positive mitochondria in cerebellar Purkinje cells of late-adult rats,” Micron, vol. 41, no. 2, pp. 143–148, 2010. View at: Publisher Site | Google Scholar
  85. M. Balietti, P. Fattoretti, B. Giorgetti et al., “A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes,” Annals of the New York Academy of Sciences, vol. 1171, pp. 377–384, 2009. View at: Publisher Site | Google Scholar
  86. M. Maalouf, J. M. Rho, and M. P. Mattson, “The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies,” Brain Research Reviews, vol. 59, no. 2, pp. 293–315, 2009. View at: Publisher Site | Google Scholar
  87. F. Boumezbeur, G. F. Mason, R. A. de Graaf et al., “Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy,” Journal of Cerebral Blood Flow & Metabolism, vol. 30, no. 1, pp. 211–221, 2010. View at: Publisher Site | Google Scholar
  88. S. Hoyer, “Causes and consequences of disturbances of cerebral glucose metabolism in sporadic alzheimer disease: therapeutic Implications,” Advances in Experimental Medicine and Biology, vol. 541, pp. 135–152, 2003. View at: Google Scholar
  89. L. Mosconi, R. Mistur, R. Switalski et al., “Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease,” Neurology, vol. 72, no. 6, pp. 513–520, 2009. View at: Publisher Site | Google Scholar
  90. T. B. Vanitallie, “Preclinical sporadic Alzheimer’s disease: target for personalized diagnosis and preventive intervention,” Metabolism: Clinical and Experimental, vol. 62, supplement 1, pp. S30–S33, 2013. View at: Publisher Site | Google Scholar
  91. Y. Liu, F. Liu, K. Iqbal, I. Grundke-Iqbal, and C. Gong, “Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease,” FEBS Letters, vol. 582, no. 2, pp. 359–364, 2008. View at: Publisher Site | Google Scholar
  92. P. Veggiotti, F. Teutonico, E. Alfei et al., “Glucose transporter type 1 deficiency: Ketogenic diet in three patients with atypical phenotype,” Brain and Development, vol. 32, no. 5, pp. 404–408, 2010. View at: Publisher Site | Google Scholar
  93. M. A. Reger, S. T. Henderson, C. Hale et al., “Effects of β-hydroxybutyrate on cognition in memory-impaired adults,” Neurobiology of Aging, vol. 25, no. 3, pp. 311–314, 2004. View at: Publisher Site | Google Scholar
  94. A. Camilleri and N. Vassallo, “The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease,” CNS Neuroscience & Therapeutics, vol. 20, no. 7, pp. 591–602, 2014. View at: Google Scholar
  95. B. Cheng, X. Yang, L. An, B. Gao, X. Liu, and S. Liu, “Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson’s disease,” Brain Research, vol. 1286, pp. 25–31, 2009. View at: Publisher Site | Google Scholar
  96. T. B. VanItallie, C. Nonas, A. Di Rocco, K. Boyar, K. Hyams, and S. B. Heymsfield, “Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study,” Neurology, vol. 64, no. 4, pp. 728–730, 2005. View at: Publisher Site | Google Scholar
  97. Y. S. Shin, “Glycogen storage disease: clinical, biochemical, and molecular heterogeneity,” Seminars in Pediatric Neurology, vol. 13, no. 2, pp. 115–120, 2006. View at: Publisher Site | Google Scholar
  98. E. Gazzerro, A. L. Andreu, and C. Bruno, “Neuromuscular disorders of glycogen metabolism,” Current Neurology and Neuroscience Reports, vol. 13, article 333, 2013. View at: Publisher Site | Google Scholar
  99. T. Goldberg and A. E. Slonim, “Nutrition therapy for hepatic glycogen storage diseases,” Journal of the American Dietetic Association, vol. 93, no. 12, pp. 1423–1430, 1993. View at: Publisher Site | Google Scholar
  100. S. Heller, L. Worona, and A. Consuelo, “Nutritional therapy for glycogen storage diseases,” Journal of Pediatric Gastroenterology and Nutrition, vol. 47, pp. S15–S21, 2008. View at: Publisher Site | Google Scholar
  101. T. J. Triomphe, “Glycogen storage disease: a basic understanding and guide to nursing care.,” Journal of pediatric nursing, vol. 12, no. 4, pp. 238–249, 1997. View at: Publisher Site | Google Scholar
  102. J. B. Walter, General Pathology, 1987.
  103. V. Busch, K. Gempel, A. Hack et al., “Treatment of glycogenosis type V with ketogenic diet,” Annals of Neurology, vol. 58, no. 2, article 341, 2005. View at: Google Scholar
  104. M. Vorgerd and J. Zange, “Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle,” Acta Myologica, vol. 26, no. 1, pp. 61–63, 2007. View at: Google Scholar
  105. J. M. Rho and R. Sankar, “The ketogenic diet in a pill: is this possible?” Epilepsia, vol. 49, supplement 8, pp. 127–133, 2008. View at: Publisher Site | Google Scholar
  106. P. Veggiotti and V. De Giorgis, “Dietary treatments and new therapeutic perspective in GLUT1 deficiency syndrome,” Current Treatment Options in Neurology, vol. 16, no. 5, p. 291, 2014. View at: Publisher Site | Google Scholar
  107. V. Valayannopoulos, F. Bajolle, J. Arnoux et al., “Successful treatment of severe cardiomyopathy in glycogen storage disease type III with d,l-3-hydroxybutyrate, ketogenic and high-protein diet,” Pediatric Research, vol. 70, no. 6, pp. 638–641, 2011. View at: Publisher Site | Google Scholar

Antonio Paoli, Antonino Bianco, Ernesto Damiani, and Gerardo Bosco
Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35031 Padova, ItalySport and Exercise Sciences Research Unit, University of Palermo, Via Eleonora Duse 2, 90146 Palermo, Italy
Academic Editor: Giuseppe D’Antona
Received24 Apr 2014
Accepted30 May 2014
Published03 Jul 2014
Copyright © 2014 Antonio Paoli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Solujen puhdistusjärjestelmä – autofagia

Virtuaalisessa rinnakkaistodellisuudessa kierot käärmeöljykauppiaat kauppaavat pitkää ikää ja terveitä elinvuosia erilaisilla detox-kuureilla, jotka voivat perustua mihin tahansa parsa- tai hopeaveden ja tislatun veden välillä. Jotkin näistä ovat parhaimmillaankin terveyden kannalta neutraaleja, mutta osa kuureista on hengenvaarallisia.

Vaikeisiin ongelmiin ei ole helppoja ratkaisuja. On kuitenkin menetelmä, joka kasvavan tieteellisen tutkimusaineiston perusteella puhdistaa elimistöstä haitallisia ja myrkyllisiä partikkeleita. Se on tehokas ja vieläpä täysin maksuton.

Autofagosytoosi on prosessi, jossa solut kierrättävät vaurioituneita, sairastuneita ja ikääntyneitä solujen osia energiaksi ja uusiksi soluelimiksi.

Toimiva autofagosytoosi on avainasemassa hyvän terveyden ja pitkäikäisyyden kannalta. Kun solut vaurioituvat pysyvästi esimerkiksi tulehduksissa ja ikääntyessään, elimistöön kertyy nopeasti toimimattomia ja haitallisia solunosia, jotka pitää korjata tai siivota elimistöstä.

Autofagosytoosi on soluissa tarkasti säädelty prosessi, jossa lysosomaaliset entsyymit hajottavat solun omia rakenneosia, solulimaa ja soluelimiä (esim. mitokondrioita) kalvon ympäröimissä autofagosomeiksi kutsutuissa rakenteissa.

Autofagosomi


Autofagosomi on pallomainen rakenne, jossa on kaksikerroksiset kalvot. Se on avainrakenne
makroautofagiassa, solunsisäisessä hajoamisjärjestelmässä sytoplasman sisällölle, jossa:

  • epänormaalit solunsisäiset proteiinit
  • ylimääräiset tai vaurioituneet organellit
  • mikro-organismit

kierrätetään soluissa ja käytetään solujen uusien rakenteiden osiksi tai ravinnoksi.

Muodostumisen jälkeen autofagosomit toimittavat sytoplasman komponentit lysosomeihin. Autofagosomin ulkokalvo sulautuu lysosomiin muodostaen autolysosomin. Lysosomin hydrolaasit hajottavat autofagosomista vapautuneen sisällön ja sen sisemmän kalvon.

Autofagosomien muodostumista säätelevät eräät geeniperheet, jotka aiemmin tunnettiin nimellä APG, AUT, CVT, GSA, PAZ ja PDD. Geeniperheet on yhdistetty ATG-perheeksi (AuTophaGy related).

Joissakin soluissa, kuten alkion kantasoluuissa, alkion fibroblasteissa ja maksasoluissa, autofagosomit voidaan nähdä renkaanmuotoisina rakenteina valomikroskopialla.

Aluksi autofagosomit sulautuvat endosomeihin tai endosomista peräisin oleviin rakkuloihin. Näitä rakenteita kutsutaan sitten amfisomeiksi tai välituotteiksi autofagisiksi vakuoleiksi. Nämä rakenteet sisältävät endosyyttisiä markkereita, jopa pieniä lysosomaalisia proteiineja, kuten katepsiini D.

Tutkimuksissa on saatu vahvaa näyttöä siitä, että autofagosytoosin virheellinen toiminta on yksi vanhenemisen tärkeimmistä mekanismeista. Tämän järjestelmän löytäminen on johtanut täysin uuteen biologian tutkimusalaan. Autofagosytoosin virheellisen toiminnan korjaaminen on esimerkiksi pidentänyt koe-eläinten elinikää huomattavasti.

Jo 1930-luvulla havaittiin, että normaalia vähemmän energiaa saaneiden rottien elinikä venyi kolmanneksen pidemmäksi kuin normaalin energiamäärän saaneilla lajitovereilla. Vähemmän energiaa saaneet rotat osoittautuivat uteliaammiksi, oppimiskykyisemmiksi ja aktiivisemmiksi kuin normaalisti tai runsaasti ravintoa saaneet rotat. Syytä ilmiölle ei kuitenkaan osattu selittää.

Autofagosytoosin tunnisti japanilainen Joshinori Osumi vasta 1990-luvulla. Vuonna1996 hänet palkittiin löydöstä Nobelin lääketieteen palkinnolla.

Autofagosytoosi yhdessä muiden selviytymismekanismien, ketogeneesin, glukoneogeneesin ja perusaineenvaihdunnan energiankulutuksen vähentämisen kanssa mahdollistaa ihmisen selviytymisen hengissä pitkään ilman ravintoa. Autofagosytoosissa elimistö ”kannibalisoi” sairastuneita soluja ja jäännösproteiineja” tyydyttääkseen solujen energiatarpeen.

Monet sairaudet, kuten Parkinsonin tauti ja jotkut syövät aiheutuvat autofagosytoosin puutteellisesta toiminnasta. Vaikka solujen oli jo aiemmin tiedetty kierrättävän omaa materiaaliaan, vasta Yoshinori Osumi 1990-luvulla määritteli tarkasti geenit ja metaboliareitit, joiden kautta kierrätys tapahtuu. Osumin työstä lähti kokonaan uusi biologian haara, joka selvittää, miten elimistömme käyttää ”itse-kannibalismia” terveenä pysymiseen.

Mitä autofagiasta (autofagosytoosista) pitäisi tietää?


Columbian yliopiston tohtori Priya Khoronan mukaan autofagosytoosi on kehon tapa puhdistaa vahingoittuneet solut uudempien, terveempien solujen regeneroimiseksi.

”Auto” tarkoittaa itseä ja ”phagy” tarkoittaa syödä. Joten autofagian kirjaimellinen merkitys on ”itse syöminen”.

Vaikka itsensä kannibalisoiminen voi kuulostaa pelottavalta, autofagosytoosi on todella hyödyllistä yleiselle terveydelle. Tämä johtuu siitä, että autofagia on evoluution kehittämä suojamekanismi, jonka avulla keho voi poistaa sairastuneet solut ja kierrättää niiden osat kohti solujen korjaamista ja puhdistamista, kertoo kardiologin tohtori Luiza Petre.

Petre kertoo, että autofagian tarkoitus on kierrättää roskat ja säädellä solujen toiminta optimaaliseksi. ”Se on kierrätystä ja puhdistusta samaan aikaan. Lisäksi se siivoaa erilaisia soluihimme kertyneitä stressitekijöijöitä ja toksiineita”.

Autofagosytoosin terveysvaikutukset


Autofagosytoosin tärkein etu näyttää olevan
anti-aging, eli solujen ikääntymisen hidastaminen. Petre kertoo, että tämä mekanismi tunnetaan parhaiten kehon tapana kääntää kelloa ikään kuin taaksepäin rakentamalla nuorempia ja terveempiä soluja.

Khorana huomauttaa, että kun solumme ovat stressaantuneita, autofagia tehostuu, mikä suojelee soluja ja auttaa pidentämään elinikää. Rekisteröity ravitsemusterapeutti, Scott Keatley, RD, CDN, kertoo, että nälässä ja paastotilassa autofagia pitää kehon toiminnassa hajottamalla solumateriaalia ja kierrättämällä sitä solujen uusiutumiseen ja energiantarpeen tyydyttämiseen.

Solutasolla autofagian (autofagosytoosin) etuja ovat erityisesti:

  • myrkyllisten proteiinien poistaminen soluista (tällaiset myrkyllisten proteiinien kasaumat keskushermoston soluissa aiheuttavat neurodegeneratiivisia sairauksia, kuten Parkinsonin ja Alzheimerin tautia).
  • jäännösproteiinien kierrätys
  • energiaa ja rakennuspalikoita soluille
  • vanhojen ja sairaiden solujen uusiminen ja korvaaminen terveillä soluilla

Autofagia on viime aikoina saanut paljon huomiota erityisesti siksi, että virheellisesti toimiva autofagosytoosi näyttelee keskeistä osaa pahanlaatuisten syöpäkasvainten kehittymisessä. Autofagosytoosin korjaaminen voi osoittautua syövän ehkäisyssä ja hoidossa merkittäväksi terapiavaihtoehdoksi.

Autofagosytoosi heikkenee ikääntymisen seurauksena. Soluihin kerääntyy enemmän kuona-ainetta, jota solut eivät pysty siivoamaan, mikä johtaa sairastuneisiin ja puutteellisesti toimiviin soluihin. Toimimattomat ja vahingolliset solut pääsevät rauhassa lisääntymään, mikä on syöpäsolujen modus operandi (MO)”.

Kaikki syövät alkavat jonkinlaisista viallisista soluista. Kehon tulisi tunnistaa ja poistaa nämä viallisesti toimivat solut käyttämällä autofagisia prosesseja. Tällä hetkellä tutkitaan, voiko autofagosytoosi vähentää syöpäriskiä tai jopa auttaa ehkäisemään syövän leviämistä.

Vaikka tästä ei ole vielä riittävästi tieteellistä näyttöä, Jotkut tutkimukset viittaavat siihen, että monet syöpäsolut voidaan poistaa autofagosytoosissa. Virheellisesti toimivien solujen tunnistaminen ja tuhoaminen sekä korjausmekanismin käynnistäminen auttavat vähentämään syöpäriskiä. Tutkijat uskovat, että uudet tutkimukset johtavat terapiaan, joka auttaa lääkäreitä kohdentamaan autofagosytoosia syöpähoitona.

Tutkimuksissa autofagosytoosi on yhdistetty moniin terveysvaikutuksiin. Autofagosytoosi tunnetaan kuitenkin vielä sen verran huonosti, että liian pitkälle meneviä johtopäätöksiä ei kannata tehdä. Autofagosytoosin soluprosessit ovat monimutkaisia ja vaikeasti havainnoitavia.

Vuonna 2019 tehdyssä tutkimuksessa seurattiin autofagosytoosin vaikutuksia syöpäsoluihin. Tutkimus osoitti, että vaikka autofagosytoosi voi estää syöpäsolujen kehittymisen, se voi myös edistää niiden kasvua kasvaimen vaiheesta riippuen.

Tutkijoita kiinnostaa myös autofagian ja maksan terveyden yhteys. Tänä vuonna ilmestyneessä tutkimuskatsauksessa tutkittiin tapoja, joilla autofagosytoosi voi auttaa suojaamaan maksasoluja lääkkeiden ja alkoholin aiheuttamilta maksavaurioilta.

Muissa tutkimuksissa on havaittu, että autofagosytoosi vaikuttaa monissa maksan toiminnoissa. Se voi estää useiden maksasairauksien, kuten Wilsonin taudin, akuutin maksavaurion, alkoholista riippumattoman rasvamaksan ja kroonisen alkoholiin liittyvän maksasairauden etenemisen.

Suurin osa autofagiaa koskevista tutkimuksista on kuitenkin tehty laboratorioissa in vitro (kirjaimellisesti ”lasissa”; in vitro on tutkimustekniikka, jossa koe suoritetaan koeputkessa, lasimaljassa tai yleisesti eliön tai solun ulkopuolella) tai eläinkokeissa.

Autofagosytoosilla näyttää olevan keskeinen rooli immuunijärjestelmän toiminnassa. Autofagosytoosi puhdistaa soluista toksiineja ja tartuntatauteja. On todisteita siitä, että autofagosytoosi voi parantaa infektio- ja neurodegeneratiivisia sairauksia sairastavien solujen terveyttä kontrolloimalla tulehdusta.

Toinen tutkimuskatsaus havaitsi, että autofagosytoosi auttaa suojaamaan soluja soluun tunkeutuvilta mikrobeilta. Vaikka autofagosytoosin vaikutusta soluihin on tutkittu paljon, tutkijat eivät ole vielä varmoja siitä, voisiko autofagosytoosi toimia hoitona erilaisille sairauksille. Eläinmalleista saadun näytön perusteella ketoosin indusoima autofagosytoosi yhdessä sädehoidon kanssa poisti täysin hiiren syöpäkasvaimen. On kuitenkin liian varhaista sanoa, toimiiko sama ihmisillä.

Ruokavalion muutokset, jotka voivat tehostaa autofagosytoosia

Autofagosytoosi tarkoittaa kirjaimellisesti ”itsensä syömistä”. Tämän kannibalistisen prosessin voi käynnistää helposti pätkäpaastolla, paastolla ja ketogeenisellä ruokavaliolla.

”Paasto on tehokkain tapa autofagosytoosin käynnistämiseksi.”, Petre kertoo. ”Ketogeeninen, eli runsasrasvainen ja vähän hiilihydraatteja sisältävä ruokavalio tuottaa samat edut kuin paasto ilman ravinnon välttelyä, koska ketoosi imitoi paastoa aineenvaihdunnan tasolla.

Kun kehoa ei rasiteta ulkoisella kuormituksella kellon ympäri, keholle jää aikaa korjata viallisia soluja. Esimerkiksi jatkuvan syömisen aiheuttama glukoosi-insuliini-glukagoni-glukoosi-insuliini-glukagoni-kierre pitää elimistön ylikierroksilla lähes ympäri vuorokauden.

Korkea verensokeri ja hyperinsulinemia vaurioittavat verisuonia ja elimiä. Vähitellen hyperglykemia ja hyperinsulinemia johtavat solujen insuliiniherkkyyden heikentymiseen, eli insuliiniresistenssiin, joka on käytännössä kaikkien elintapasairauksien yhteinen nimittäjä.

Insuliiniresistentit solut eivät saa riittävästi energiaa veren korkeasta glukoosipitoisuudesta huolimatta, joten solut alkavat surkastua ja kuolla. Kun luurankolihasten ja elinten solut eivät ota glukoosia riittävästi vastaan, glukoosi ohjataan rasvasoluihin, jossa se muutetaan triglyserideiksi, eli läskiksi. Osa glukoosista voi glykatoitua proteiinien ja rasvahappojen kanssa, jolloin verisuoniin muodostuu siirappimaisia glykaation lopputuotteita (AGE), jotka edelleen kasvattavat sairastumisen riskiä.

Hyperglykemia, hyperinsulinemia, viallisesti toimiva autofagosytoosi ja glykaatio kietoutuvat vahvasti toisiinsa erityisesti glukoosin välityksellä. Korkea verensokeri on yhteinen nimittäjä, joka luo metabolisesti suotuisan ympäristön monille elintapasairauksille sydän- ja verisuonitaudeista syöpiin. Korkea verensokeri ylläpitää korkeaa insuliinitasoa, estää autofagosytoosia ja altistaa glykaatiolle. Hyperinsulinemia altistaa insuliiniresistenssille ja estää laihtumista. Autofagosytoosin estyminen altistaa tulehduksille ja pahanlaatuisille kasvaimille. Kaikki nämä yhdessä ovat sydän- ja verisuonitautien riskitekijöitä. Jos autofagosytoosi ei toimi, elimistöön kerääntyy haitallista solujätettä, joka pitäisi siivota ja/tai korjata.

Keto-ruokavaliossa noin 70-75 prosenttia päivittäisistä energiasta saadaan rasvasta, 15-20 % proteiineista ja vain 5-10 prosenttia kaloreista hiilihydraateista. Tämä muutos kalorilähteissä saa elimistön muuttamaan aineenvaihduntareittiään. Solut alkavat käyttää rasvaa polttoaineena hiilihydraateista saatavan glukoosin sijaan.

Glukoosin rajoittamisen seurauksena verenkiertoon vapautuu lipolyyttisiä hormoneja (glukagonia, kortikotropiinia, adrenaliinia ja noradrenaliinia), jotka käynnisävät rasvasolujen lipolyysin.

Lipolyysissä rasvasoluihin varastoituja triglyseridejä pilkotaan vapaiksi rasvahapoiksi ja glyseroliksi. Vapaat rasvahapot kulkeutuvat maksaan, jossa niistä tuotetaan ketogeneesissä ketoaineita (asetonia, asetoasetaattia ja betahydroksibutyraattia). Glyserolia käytetään glukoneogeneesissä. Sydänlihaksen solut voivat hapettaa vapaita rasvahappoja energiaksi betaoksidaatiossa. Ketoaineet laskevat vapaiden happi- ja typpiradikaalien (ROS ja RNS) määrää, mikä vähentää oksidatiivista stressiä ja inflammaatiota. Ketoaineilla on myös syto- ja neuroprotektiivisia ominaisuuksia.

Tutkimukset viittaavat Khoranan mukaan siihen, että ketoosi voi myös tuottaa nälän indusoimana autofagosytoosin, jolla on neuroprotektiivisia vaikutuksia. Alhainen glukoosipitoisuus toteutuu ketogeenisellä ruokavaliolla ja paastolla. Ruokavalioita yhdistää matalat insuliinitasot ja korkeat glukagonitasot. Tämä metabolinen ympäristö on autofagosytoosin avaintekijä.

Glukagonitaso on se tekijä, joka laukaisee autofagosytoosin. Niin kuin tiedämme, insuliini on anabolinen hormoni ja sen vastavaikuttajana glukagoni on katabolinen hormoni. Tämä tarkoittaa, että insuliinia tarvitaan uusien rakenteiden muodostamiseen yhtä hyvin proteiinisynteesissä kuin rasvasynteesissä (lipogeneesissä). Sen sijaan katabolisissa aineenvaihduntatapahtumissa olemassaolevia rakenteita glykogeeneistä adiposyytteihin (rasvasoluihin) puretaan energiakäyttöön. Katabolisia aineenvaihduntatapahtumia ovat esimerkiksi: glykogenolyysi, lipolyysi ja autofagosytoosi.

Kun elimistössä on vähän sokeria paaston tai ketoosin seurauksena, elimistössä kehittyy positiivinen stressi, jonka vasteena on korjaustilan käynnistyminen. Myös intensiivinen ja raskas liikunta käynnistää autofagosytoosin. Erään eläintutkimuksen mukaan fyysinen harjoittelu voi indusoida autofagosytoosia elimissä, jotka osallistuvat aineenvaihdunnan säätelyprosesseihin. Näihin voivat kuulua luurankolihakset, maksa, haima ja rasvakudos.

https://www.healthline.com/health/autophagy

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990190/

https://www.medicalnewstoday.com/articles/autophagy

http://genesdev.cshlp.org/content/21/22/2861.full.html

https://www.hindawi.com/journals/isrn/2012/927064/

https://en.wikipedia.org/wiki/Autophagy

https://fi.wikipedia.org/wiki/Autofagosytoosi

https://oppimis-ja-muistitekniikat.fi/elimiston-puhdistusjarjestelma/

https://en.wikipedia.org/wiki/Phagosome

https://en.wikipedia.org/wiki/Autophagosome




Insuliini ja terveys: Neljäs luku

Jatkan insuliinia käsittelevää kirjoitussarjaa syventymällä insuliinin terveysvaikutuksiin erityisesti sydän- ja verisuonitauteihin liittyen. Aiemmissa artikkeleissa (Insuliini ja terveys: Johdanto, Insuliini ja terveys: Hiilihydraatti-insuliinimalli, Insuliini ja terveys: Kolmas luku)käsittelin insuliinin kemiallista rakennetta, aineenvaihduntaa ja biokemiaa yleisellä tasolla.

Aihe on vaikea ja joiltain osin kiistanalainen, joten esittelen tässä kirjoituksessa kaksi hyvin perusteltua näkemystä insuliiniresistenssin syistä. Ne ovat osittain yhteneviä ja osittain ristiriitaisia. Kahden tutkiimuskatsauksen käsittelyn vuoksi teksti on todella pitkä ja paikoin myös vaikeaselkoinen.

Tässä tutkimuskatsauksessa osoitetaan, että:

Heikentynyt ravinnonsaanti edistää hyperlipidemiaa ja insuliiniresistenssiä aiheuttaen hyperglykemiaa. Tämä tila muuttaa solujen metaboliaa ja solunsisäistä signalointia, joka vaikuttaa negatiivisesti soluihin.

Kardiomyosyytissä tämä vaurio voidaan tiivistää kolmeen vaikutukseen:

  1. muutos insuliinin signalointiin
  2. kasvanut substraatin saavutettavuus ja
  3. aineenvaihdunnan muutosten joustamattomuus

Kaikki nämä vaikutukset edistävät solutapahtumia, kuten:

  1. geeniekspressiomodifikaatiot
  2. hyperglykemia ja dyslipidemia
  3. oksidatiivisen stressin ja tulehdusvasteen aktivoituminen,
  4. endoteelin toimintahäiriöt ja
  5. kohdunulkoisten lipidien kumuloituminen, joka ylläpitää metabolisen sääntelyn purkamista

Kaiken kaikkiaan insuliiniresistenssi vaikuttaa sydän- ja verisuonitauteihin (CVD) kahden itsenäisen aineenvaihdutareitin kautta:

  1. ateroomapleksin muodostuminen
  2. kammion hypertrofia ja diastolinen poikkeavuus

Lyhyesti: Tämä tutkimuskatsaus osoittaa, että korkea verensokeri ja insuliiniresistenssi ovat merkittäviä sydäntautien riskitekijöitä.

Diabeetikoilla on suurempi sydäninfarktin, sydäntautien ja sydänkuolleisuuden riski kuin diabetesta sairastamattomilla. Tätä riskiä ei selitä muut muuttujat, kuten tupakointi, kolesteroli, verenpaine tai kehon rasvan jakautuminen.

Hypo- ja hyperinsulinemiaan liittyvät sairaudet

Insuliinilla on merkittäviä metabolisia vaikutuksia koko kehossa. Haiman Langerhansin saarekkeiden beetasolut säätelevät insuliinin tuotantoa seuraamalla plasman glukoosin, aminohappojen, ketohappojen ja rasvahappojen pitoisuuksia. Insuliini säätelee energiaravinteiden hapettamista energiaksi ja varastointia rasvakudokseen triglyserideina.

Diabetes mellitus (DM1) on insuliinin puutokseen (hypoinsulinemiaan) liittyvä sairaus, jossa elimistön oma immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden beetasoluja, mikä nopeasti johtaa elintärkeän insuliinin tuotannon vähenemiseen ja loppumiseen.Tyypin 1 diabetes puhkeaa tavallisesti alle 40-vuotiaana ja usein jo lapsena ennen murrosikää.

Beetasolujen tuhoutuminen on todennäköisesti seurausta beetasolujen yhteen tai useampaan rakenteeseen kohdistuvasta virheellisen tunnistamisen aiheuttamasta autoimmunireaktiosta, jossa elimistön oma immuunijärjestelmä kohdistaa aktivaation omia kudoksia vastaan.

Taudin tarkkaa syytä ei tunneta, mutta sairastuminen edellyttää geneettisen alttiuden sekä yhden tai useamman taudin laukaisevan ympäristömuuttujan. Tyypin 1 diabeteksen saattaa laukaista esimerkiksi sikiöaikainen D-vitamiinin puutos ja yleinen herpes zoster-infektio.

Taudin oireet saadaan hallintaan insuliinikorvaushoidolla. Verensokeripitoisuuden muutosten tarkkailu, tasaisen verensokerin ylläpitäminen, insuliinihoito ja ruokavaliomuutokset minimoivat tyypin 1 diabeteksen pitkän aikavälin komplikaatioita, kuten verisonten ja hermoston vaurioitumista. Insuliinihoito on elinkautinen.

DM2

Tyypin 2 diabetes mellitus (DM2) on useiden vuosien aikana kehittyvä solujen insuliiniherkkyyden heikentymisestä johtuva elintapasairaus. Toisin sanoen kohdekudokset eivät reagoi asianmukaisesti haiman tuottamaan insuliiniin. Seurauksena voi olla hyperinsulinemia, jossa vereen erittyvä runsaskaan insuliini ei avaa soluja glukoosinotolle.

Rasvakudoksen ja elinten adiposyyttien insuliiniherkkyys säilyy yleensä pitkään, joten glukoosi ohjautuu rasvasoluihin lihasten sijaan.

Tyypillisesti DM2 puhkeaa aikuisiässä. Massiivisista tutkimusponnisteluista huolimatta tyypin 2 diabetekseen johtavien tekijöiden tarkkaa luonnetta on ollut vaikea varmistaa. Taudin patogeneesi on selvästi monitekijäinen.

Lihavuutta pidetään riskitekijänä, mutta lihavuus voi itsessään olla diabetesta edeltävä oire insuliiniresistenssistä. Kaikki diabeetikot eivät ole lihavia, mutta monet lihavat sairastavat insuliiniresistenssiä. Insuliiniresistenssi todennäköisesti johtaa aikuistyypin diabetekseen. Insuliiniresistenssin aiheuttama lihavuus ei aina näy ulospäin, sillä se aiheuttaa tavallisesti elinten rasvoittumista ja viskeraalista keskivartalon elimiä ympäröivää läskiä.

Aikuistyypin diabeteksessa haiman kyky syntetisoida ja erittää insuliinia säilyy ainakin taudin varhaisvaiheessa melko normaalina. Insuliinilääkityksestä ei siis taudin varhaisvaiheessa ole sanottavaa hyötyä. Pikemminkin päinvastoin. Tautia hallitaan ruokavaliohoidolla ja verensokeria laskevilla hypoglykeemisillä lääkkeillä.

Tyypin 2 diabetes on kuitenkin etenevä sairaus, jossa insuliinilääkityskin tulee todennäköisesti ajankohtaiseksi jossain vaiheessa, mikäli verensokeri- ja insuliinipitoisuuksia ei ruokavaliolla saada korjattua.

Hyperinsulinemia, eli liiallinen insuliinin eritys on yleisimmin seurausta insuliiniresistenssistä, joka liittyy tyypin 2 diabetekseen tai metaboliseen oireyhtymään. Hyperinsulinemia voi myös johtua haiman insuliinia erittävästä kasvaimesta (insulinooma), mutta se on harvinaista.

Hyperinsulinemia voi olla hengenvaarallinen tila, josssa veren glukoosipitoisuus laskee nopeasti ja aivojen energiansaanti romahtaa (insuliinishokki).

Glukagoni

Glukagonilla on tärkeä rooli veren normaalin glukoosipitoisuuden säätelyssä. Se on insuliinin vastavaikuttaja. Toisin sanoen glukagonin vaikutus veren glukoosipitoisuuteen on päinvastainen insuliinin vaikutukselle. Insuliini on anabolinen hormoni, joka orkestroi energiaravinteiden käyttöä ja varastoimista. Glukagoni on katabolinen hormoni, joka purkaa energiavarastoja, kuten glykogeenejä verenkiertoon.

Glukagoni on lineaarinen peptidi, jossa on 29 aminohappoa. Sen ensisijainen sekvenssi on melkein täysin konservoitunut (identtinen) selkärankaisten keskuudessa, ja se on rakenteellisesti sukua peptidihormonien sekretiiniperheeseelle.

Glukagoni syntetisoidaan proglukagonina ja prosessoidaan proteolyyttisesti glukagonin tuottamiseksi haimasaarien alfasoluissa. Proglukagonia ilmentyy myös suolistossa, jossa sitä ei prosessoida glukagoniksi, vaan glukagonin kaltaisten peptidien perheeksi (enteroglukagoni).

Glukagonin fysiologiset vaikutukset

Glukagonin tärkein vaikutus on stimuloida veren glukoosipitoisuuden nousua.

Kun veren glukoosipitoisuus alkaa laskea normaalin alapuolelle, on välttämätöntä löytää ja pumpata lisää glukoosia vereen. Glukagoni hallitsee kahta keskeistä metaboliareittiä maksassa, mikä johtaa siihen, että elin luovuttaa glukoosia muuhun kehoon:

  • Glukagoni stimuloi maksassa varastoituneen glykogeenin hajoamista.

    Kun veren glukoosipitoisuus on korkea, maksa varastoi suuria määriä glukoosia glykogeeneiksi. Maksan glykogeenien koko vaihtelee ihmisten ja elämäntilanteiden välillä, mutta keskimäärin glukoosia varastoituu maksaan noin 200-250 g.

    Insuliinin vaikutuksesta osa glukoosista varastoidaan glykogeenin muodossa. Myöhemmin, kun veren glukoosipitoisuus alkaa laskea, glukagonin erittyminen vaikuttaa maksasoluihin aktivoiden entsyymejä, jotka depolymeroivat glykogeenejä glukoosiksi ja vapauttavat glukoosia verenkiertoon.

  • Glukagoni aktivoi maksan glukoneogeneesiä. Glukoneogeneesi on aineenvaihduntakanava, jossa sitruunahappokierron väliaineita, eräitä aminohappoja ja glyserolia muutetaan glukoosiksi.

    Glukoneogeneesi tuottaa tarvittaessa kaiken elimistön tarvitseman glukoosin.

Glukagonilla näyttää olevan vähäinen vaikutus triglyseridien lipolyysin tehostamisessa rasvakudoksessa.

Lipolyyttiset hormonit, kuten kortikotropiini, glukagoni ja adrenaliini aktivoivat rasvasolujen lipolyysin, jossa triglyseridejä pilkotaan verenkiertoon vapaiksi rasvahapoiksi ja glyseroliksi.

Insuliini on puolestaan lipolyyttisten entsyymien, kuten hormonisensitiivisen lipaasin (HSL) estäjä. Veren korkea insuliinipitoisuus estää rasvasolujen purkamisen energiakäyttöön.

Glukagonierityksen hallinta

Glukagonin tärkein vaikutus on lisätä veren glukoosipitoisuutta. Glukagonia erittyy hypoglykemian, eli matalan veren glukoosipitoisuuden vaikutuksesta. Kahden muun mekanismin tiedetään laukaisevan glukagonin erityksen:

  1. Kohonnut aminohappopitoisuus veressä: Tässä tilanteessa glukagoni edistää ylimääräisten aminohappojen muuntumista glukoosiksi lisäämällä glukoneogeneesiä.

    Koska korkea veren aminohappopitoisuus stimuloi myös insuliinin erittymistä, tämä on poikkeuksellinen tilanne, jossa sekä insuliini että glukagoni ovat samanaikaisesti aktiivisia.

  2. Liikunta: Tässä tapauksessa ei ole täysin selvää, onko todellinen glukoosin erittymisen laukaiseva ärsyke liikunta sinänsä vai liikunnan aiheuttama veren glukoosipitoisuuden lasku.

    Glukagonin eritystä estävät korkeat verensokeritasot. Ei ole selvää, heijastako tämä glukoosin suoraa vaikutusta alfasoluun vai ehkä insuliinin vaikutusta, jonka tiedetään vaimentavan glukagonia.

    Toinen hormoni, jonka tiedetään estävän glukagonin eritystä, on somatostatiini.

Glukagoniin liittyvät sairaudet

Glukagonin korkeaan tai matalaan eritykseen liittyvät sairaudet ovat hyvin harvinaisia. Alfa-solujen (glukagonomat) syövät ovat eräs sairaus, jonka tiedetään aiheuttavan liiallista glukagonieritystä.

Vaikka insuliinipuutos on selvästi tärkein tekijä tyypin 1 diabetes mellituksessa, on huomattavaa näyttöä siitä, että glukagonin poikkeava eritys edistää taudissa havaittuja metabolisia häiriöitä.

Monilla diabetesta sairastavilla potilailla, joilla mitataan hyperglykeminen verensokeri, on myös kohonnut glukagonipitoisuus veressä, vaikka kohonnut verensokeritaso estää glukagonin eritystä.

Sydän- ja verisuonitaudit: Yleinen näkemys

Vuosikymmenten ajan sydän- ja verisuonitaudit (CVD) ovat olleet johtava kuolinsyy ympäri maailmaa.

Sydän- ja verisuonitauteihin liittyy useita samanaikaisia sairauksia, kuten lihavuus, epänormaalit lipidiprofiilit ja insuliiniresistenssi. Vaikka insuliiniresistenssi ja DM2 hyväksytään vihdoin sydän- ja verisuonitautien itsenäisiksi riskitekijöiksi, yleinen sydänsairauksien malli nojaa vahvasti perinteiseen oppiin rasvojen ja erityisesti tyydyttyneiden rasvojen haitallisuudesta.

Vaikka vapaat rasvahapot näyttävät kasvattavan insuliiniresistenssin riskiä, mekanismi jolla rasvahapot aiheuttavat insuliiniresistenssin, on tuntematon.

Kyse lienee perinteisestä muna-kana-ongelmasta: kumpi oli ensin? Aineenvaihdunnan tasolla syy- ja seuraussuhteet kääntyvät herkästi nurinniskoin.

Insuliiniresistenssistä on ainakin kaksi vaihtoehtoista mallia: a) rasva aiheuttaa insuliiniresistenssia, ja b) insuliiniresistenssi aiheuttaa kehon ja veren rasvapitoisuuden lisääntymistä ja lihomista.

Avaan tässä tutkimuskatsausta, jonka ovat koonneet Valeska Ormazabal, Soumyalekshmi Nair, Omar Elfeky, Claudio Aguayo, Carlos Salomon & Felipe A. Zuñiga. Association between insulin resistance and the development of cardiovascular disease on julkaistu alun perin Cardiovascular Diabetology -lehdessä.

Lopuksi tutustun vielä lyhyesti James J. DiNicolantonion ja James H. O’keefen BMJ-lehdessä julkaistuun artikkeliiin: Added sugars drive coronary heart disease via insulin resistance and hyperinsulinaemia: a new paradigm.

Ensimmäinen tutkimuskatsaus noudattaa nähdäkseni yleistä ja perinteisempää  lääke- ja ravintotieteellistä tulkintaa insuliiniresistenssistä ja sen vaikutuksista sydän- ja verisuonitauteihin.

Tämä käsitys on osittain ristiriidassa kasvavan rasvojen aineenvaihduntaa selittävän tutkimusaineiston kanssa. Tieteen periaatteisiin kuuluu tieteen itseään korjaava luonne; paremmin ilmiöitä selittävä evidenssin tukema malli kumoaa heikommin ilmiöitä selittävän mallin. Nähdäkseni tyydyttyneisiin rasvoihin liittyvä paradigma on romahtamassa ja oppi sokereiden haitallisuudesta täsmentyy jatkuvasti.

Kasvavan evidenssin mukaan hyperglykemia ja insuliiniresistenssi ovat sydän- ja verisuoniterveyden kannalta merkittävämpiä riskitekijöitä, kuin LDL.

Jälkimmäinen artikkeli vastaa lähemmin uutta käsitystä insuliiniresistenssista sydän- ja verisuonitautien riskitekijänä. Siinä sydän- ja verisuonitaudit palautuvat hyperglykemiaan, insuliiniresistenssiin ja hyperinsulinemiaan.

Insuliini on avainhormoni, joka toimii solujen aineenvaihdunnan säätelijänä monissa ihmiskehon kudoksissa.

Insuliiniresistenssi määritellään kudosvasteen heikkenemisenä insuliinin stimulaatiolle, joten insuliiniresistenssille on tunnusomaista glukoosin imeytymisen ja hapettumisen häiriöt, glykogeenisynteesin väheneminen ja vähäisemmässä määrin kyky estää lipidien hapettumista ( β-oksidaatiota).

Vapaat rasvahapot ovat hallitseva substraatti, jota aikuisen sydänlihaksessa käytetään ATP:n tuotantoon, mutta sydämen metabolinen verkosto on erittäin joustava ja se voi käyttää muita substraatteja, kuten glukoosia, laktaattia, ketoaineita tai aminohappoja energian tuotantoon.

Substraatilla tarkoitetaan yhdistettä, jota entsyymi- tai muu reaktio muuttaa. Energia-aineenvaihdunnan substraatteja ovat glukoosi, vapaat rasvahapot, ketoaineet ja aminohapot.

Insuliiniresistenssin aikana useat metaboliset muutokset johtavat sydän- ja verisuonitautien riskin lisääntymiseen. Insuliiniresistenssi voi esimerkiksi aiheuttaa glukoosimetabolian epätasapainon, kuten kroonisen hyperglykemian, mikä puolestaan laukaisee oksidatiivisen stressin, joka aiheuttaa soluvaurioihin johtavan tulehdusreaktion.

Insuliiniresistenssi voi myös muuttaa systeemistä lipidimetaboliaa, joka johtaa sitten dyslipidemiaan ja haitallisen lipiditriadin kehittymiseen:

  1. korkeat plasman triglyseridipitoisuudet

  2. matalat korkean tiheyden lipoproteiinipitoisuudet (HDL)

  3. matalatiheyksisten lipoproteiinien lisääntyminen (LDL)

Tämä lipiditriadi yhdessä endoteelin insuliinisignaloinnin toimintahäiriöiden kanssa myötävaikuttaa ateroskleroottisen plakin muodostumiseen.

Insuliiniresistenssin ja sydämen metabolisten muutosten systeemiset seuraukset aiheuttavat vahinkoa ainakin kolmella mekanismilla:

  1. insuliinisignaloinnin muuttuminen
  2. heikentynyt energiasubstraatin aineenvaihdunnan säätely

  3. muuttunut substraattien kulku sydänlihakseen

Insuliiniresistenssin vähentämiseen keskittyvät hoidot voivat vähentää sekä sydän- ja verisuonitautien että ateroskleroottisten plakkien muodostumista.

Sydäntautien tausta

Sydän- ja verisuonitauteihin liittyvät patologiset prosessit ja riskitekijät alkavat jo lapsuudessa.

Erityisesti lihavuus, joka liittyy epänormaaliin lipidiprofiiliin nuoremmalla iällä, assosioituu vahvasti insuliiniresistenssin kanssa. Kuten tutkimuksissa korostetaan, monilla tekijöillä, kuten lihavuudella, epänormaalilla lipidiprofiililla ja insuliiniresistenssillä, on keskeinen rooli sydän- ja verisuonitautien (CVD) kehittymisessä.

Fysiologisissa olosuhteissa insuliini stimuloi metabolisten substraattien käyttöä monissa kudoksissa, kuten sydämessä, luurankolihaksissa, maksassa ja rasvakudoksessa.

Kardiomyosyyteissä, eli sydänlihassoluissa insuliini edistää glukoosin ja rasvahappojen imeytymistä, mutta estää β-ksidaation eli rasvahappojen hapettamisen energiaksi.

Haima yrittää kompensoida solujen heikentynyttä insuliiniherkkyyttä erittämällä kasvavia määriä insuliinia, mikä johtaa hyperinsulinemiaan.

Insuliiniresistenssin ja / tai hyperinsulinemian aikana normaali glukoositoleranssi säilyy johtuen joukosta fysiologisia muutoksia, jotka tämä ilmiö aktivoi.

Insuliiniresistenssin ja CVD:n kehittymisriskin välillä on todettu vahva korrelaatio. Useat molekyylimekanismit edistävät insuliiniresistenssin ja CVD:n välistä yhteyttä. Nämä mekanismit sisältävät insuliiniresistenssin roolin ateroskleroosin kehittymisessä, verisuonten (endoteelin) toiminnassa, verenpainetaudissa ja makrofagien lisääntymisessä.

Insuliinisignalointi

Insuliini on voimakas anabolinen hormoni, jolla on laajasti vaikutuksia monentyyppisiin soluihin.

Jotkut insuliinin tärkeimmistä metabolisista vaikutuksista ovat glukoosinoton stimuloiminen luurankolihaksissa ja adiposyyteissä, glykogeenisynteesin edistäminen luurankolihaksissa, maksan glukoosituotannon (glukoneogeneesin) tukahduttaminen ja lipolyysin estäminen adiposyyteissä.

Ruokailun seurauksena insuliinia erittyy haimasta verenkiertoon. Se aiheuttaa kiertävän glukoosin imeytymistä kohdekudoksiin sitoutumalla solujen insuliinireseptoreihin.

Tämä sitoutuminen aktivoi reseptorin autofosforylaation, joka laukaisee alavirran signalointikaskadin fosforyloimalla insuliinireseptorisubstraattien tyrosiinitähteet, IRS (IRS-1 tai IRS-2), mitä seuraa reaktiosarja, jossa fosfatidyyli-inositoli-3-kinaasi (PI3K), fosfoinositidista riippuvainen kinaasi -1, Akt (Akt1 ja Akt2), proteiinikinaasi C (PKC) ja rapamysiinin* nisäkäskohde (mTOR), samoin kuin ribosomaalinen proteiini S6-kinaasi beeta 1 (S6K1) fosforyloituvat.

Substraattitason fosforylaatio

Substraattitason fosforylaatio on soluissa tapahtuva kemiallinen reaktio, jossa syntyy ATP:tä fosfaattiryhmän liittyessä ADP:hen. Reaktio tapahtuu solulimassa glykolyysin yhteydessä sekä aerobisissa että anaerobisissa oloissa.

Substraattitason fosforylaatiossa voi syntyä neljä ATP:tä. Kaksi ATP-molekyyliä syntyy kahden 1,3-bisfosfoglyseraatin luovuttaessa fosfaattiryhmän ADP:lle fosfoglyseraattikinaasientsyymin avulla. Samalla syntyy 3-fosfoglyseraattia. Kaksi ATP:tä syntyy myös, kun fosfoenolipyruvaatti luovuttaa fosfaattiryhmän ADP:lle pyruvaattikinaasientsyymin avulla. Lisäksi syntyy palorypälehappoa.

Substraattitason fosforylaatio toimii myös luustolihaksissa ja aivoissa, joissa on energiaa varastoivaa ja fosfaattiryhmän sisältävää fosfokreatiinia ja kreatiinifosfokinaasientsyymi siirtää fosfaattiryhmän ADP:lle, jolloin tuloksena on ATP:tä. – Wikipedia

*Rapamysiini (sirolimuusi) on immunosuppressiivinen lääke, jota käytetään elinsiirron, varsinkin munuaisensiirron jälkeisen hylkimisreaktion estossa. Se löydettiin alun perin Pääsiäissaarelta (Rapa Nui), mistä tulee nimitys rapamysiini.

Yhdysvaltalaisessa tutkimuksessa sirolimuusi pidensi vanhojen hiirten jäljellä olevaa elinajanodotetta 28–38%:lla. Aine kuitenkin heikentää immuniteettia, joten ihmisille se ei sovi vanhenemisen hidastamiseen.

Rapamysiini lisää henkilön alttiutta saada vaarallinen infektio. Lääkkeen aiheuttama immuunijärjestelmän heikkeneminen voi myös lisätä syöpäriskiä. Lääkkeellä on runsaasti sivuvaikutuksia, kuten hypertensio, nivelkivut, vatsavaivat, kuume, virtsatietulehdus, pahoinvointi, päänsärky, anemia ja hypokalemia. Rapamysiini hidastaa energian kulutusta.

GLUT4

Nämä aineenvaihduntatapahtumat johtavat lisääntyneeseen glukoosinkuljettaja-4:n (GLUT4) siirtymään (translokaatio) solukalvolle, mikä helpottaa glukoosinottoa.

Imeytymisen jälkeen vapaa glukoosi fosforyloituu nopeasti glukoosi-6-fosfaatiksi (G6P), joka myöhemmin siirtyy eri metaboliareiteille.

Insuliinisignalointi tehostaa lipidien varastoitumista rasvasoluihin kahdella mekanismilla, stimuloimalla triglyseridisynteesiä ja estämällä lipolyysin käynnisymistä.

Triglyseridejä varastoidaan lipidipisaroihin, jotka sisältävät lipidipisaraproteiineja, kuten perilipiiniä.

Lipolyysin esto tapahtuu vähentämällä cAMP-tasoja ja estämällä proteiinikinaasi A:n (PKA) -aktiivisuutta, mikä heikentää siten hormoniherkän lipaasin -fosforylaatiota ja perilipiiniä aiheuttaen lipolyysinopeuden laskun.

Adiposyyttien lipidipisaroiden sisältämät triglyseridit hydrolysoituvat rasvahapoiksi, asyyliglyserideiksi ja glyseroliksi aktivoimalla hormoniherkkää lipaasia.

Maksassa insuliini estää glukoosin tuotantoa ja vapautumista estämällä glukoneogeneesin ja glykogenolyysin säätämällä fosfoenolipyruvaattikarboksylaasin (PEPCK) ilmentymistä.

Lisäksi insuliini voi stimuloida glykogeenisynteesiä Akt2-aktivaation, glykogeenisyntaasikinaasi 3:n (GSK3) estämisen ja glykogeenisyntaasin (GS) aktivaation kautta seriinitähteiden desfosforylaation kautta näiden proteiinien NH2- ja COOH-terminaaleissa.

Insuliinin verisuonivaikutukset ovat monimutkaisia: insuliinilla voi olla joko suojaavia tai haitallisia vaikutuksia verisuonistossa.

Insuliinin verisuonia suojaavat vaikutukset liittyvät endoteelin typpioksidisyntaasin (eNOS) aktivaatioon PI3K / Akt-reitin kautta.

Haitallisiin vaikutuksiin sisältyy verisuonten sileän lihassolun (VSMC) lisääntymisen indusointi, verisuonten supistuminen ja proinflammatorinen aktiivisuus.

Nämä verisuonivaikutukset välittyvät mitogeeniaktivoidun proteiinikinaasireitin (MAPK) kautta. Tämä osallistuu vain insuliinin mitogeenisiin vaikutuksiin, mutta ei sen metabolisiin vaikutuksiin. Mitogeeni on yhdiste, joka käynnistää solunjakautumisen.

Insuliiniresistenssi

Yleisen hypoteesin mukaan insuliiniresistenssi määritellään kliiniseksi tilaksi, jossa insuliinilla on odotettua pienempi fysiologinen vaikutus.

Insuliiniresistenssi tarkoittaa tilaa, jossa insuliinin vaikutus heikkenee. Insuliiniresistenssi aiheuttaa verensokerin nousua (hyperglykemia). Insuliiniresistenssi lisää huomattavasti kakkostyypin diabeteksen sekä sydän- ja verisuonisairauksien riskiä.

Muutos voi olla lyhyt- tai pitkävaikutteinen aiheuttajasta riippuen. Resistenssille herkistäviä tekijöitä tunnetaan yli 30, niitä ovat muun muassa lihavuus, tupakointi, asidoosi, alkoholi, korkea verenpaine, raskaus (raskausajan diabetes) ja palovammat. Insuliiniresistenssi on yhteinen nimittäjä monille sairauksille, jotka yleistyvät länsimaissa. Yksi yleisimmistä on metabolinen oireyhtymä.

Insuliiniresistenssi voi johtua häiriöstä insuliinin sitoutumisessa solun insuliinireseptoriin, reseptorien määrän tai toiminnan muutoksesta, glukoosin-sokerin kuljetusproteiinin (GLUT4) määrän tai toiminnan häiriöstä tai glukoosiaineenvaihdunnan häiriöstä solun sisällä. Häiriö on siis glukoosin otossa soluun tai sen aineenvaihdunnassa solun sisällä.

Insuliiniresistenssistä kärsiviä suositellaan valitsemaan matalan glykemiaindeksin ruoka-aineita ja ruokia. Lisäksi heidän kannattaa valita sellaisia ruoka-aineita, joilla on myös matala insuliini-indeksi. – Wikipedia

Glukoosinoton häiriö

Tämä ilmiö johtuu puutteista insuliinin stimuloimassa glukoosinotossa, erityisesti glykogeenisynteesissä, ja vähemmässä määrin glukoosin hapettumisessa. Insuliiniresistenssin vaikutukset eri kudoksiin riippuvat kudosten fysiologisesta ja metabolisesta toiminnasta.

Suuren aineenvaihduntavaikutuksen vuoksi insuliiniresistenssillä on merkittäviä vaikutuksia luurankolihakseen, rasvasoluihin ja maksakudokseen, jotka ovat solunsisäisen glukoosikuljetuksen sekä glukoosi- ja lipidimetabolian pääkohteet.

Luurankolihasten ja rasvasolujen osuus GLUT4 -reseptorien insuliinin stimuloimasta glukoosinotosta ovat noin 60–70%.

Insuliiniresistenssi heikentää maksan ja lihasten glykogeenisynteesiä, lisää proteiinikataboliaa luurankolihaksissa (lihasten kannibalisoiminen energiaksi) ja estää lipoproteiinilipaasiaktiivisuutta adiposyyteissä, mikä johtaa vapaiden rasvahappojen ja tulehduksellisten sytokiinien, kuten IL-6, TNFa sekä kylläisyyshormoni leptiinin, erityksen lisääntymiseen.

Maksan aineenvaihdunta kattaa karkeasti 30% insuliinin stimuloimasta glukoosin metaboliasta. Insuliiniresistenssi heikentää maksan glukoosiaineenvaihduntaa ja rasvahappojen aineenvaihduntaa, mikä puolestaan lisää veren triglyseridipitoisuutta ja VLDL-lipoproteiinien eritystä maksasta.

Insuliiniresistenssi aiheuttaa endoteelisolujen toimintahäiriöitä vähentämällä typpioksidin tuotantoa endoteelisoluissa ja lisäämällä veren hyytymistä estävien tekijöiden vapautumista. Tämä johtaa verihiutaleiden aggregaatioon (puuroutumiseen).

Insuliiniresistenssi vaikuttaa PI3K-reitin metaboliaan, kun taas MAP-kinaasireitti toimii normaalisti. Tämä aiheuttaa insuliinin mitogeenisen vaikutuksen endoteelisoluissa ja kasvattaa ateroskleroosin riskiä.

Veren matalalalla insuliinipitoisuudella ja insuliiniresistenssillä on merkittävä fysiologinen rooli raskauden ja nälkiintymisen aikaisen aineenvaihdunnan säätelyssä.

Ravinnon puutteellisen saannin aiheuttama alhainen glukoosipitoisuus johtaa heikentyneeseen insuliinin eritykseen, mikä helpottaa glukoosin mobilisoitumista maksasta.

Matala insuliinipitoisuus edistää lipolyysin käynnistymistä, jolloin rasvasoluista vapautuu vereen vapaita rasvahappoja ja glyserolia, joita voidaan käyttää ketoaineiden, β-oksidaation ja glukoosin lähtöaineina.

Nämä kompensointimekanismit auttavat ylläpitämään verensokeritasoja poikkeusolosuhteissa, kuten paastolla. Nykyään tiedetään, että aivosolut osaavat tuottaa energiaa ketoaineista, mutta vielä kymmenisen vuotta sitten aivotoiminnan uskottiin edellyttävän tasaista glukoosinsaantia.

β-hydroksibutyraatti on aivojen kuvantamisen ja kognitiivisten testien perusteella erinomainen energianlähde aivosoluille.

Veren punasoluilta puuttuu mitokondriot, joten niiden energianluotanto on glukoosista energiaa tuottavan glykolyysin varassa. Gukoosin puuttuessa ja glykogeenien ehtyessä glukoneogeneesi valmistaa glukoosia veren punasoluille.

Odottavan äidin insuliiniresistenssi sekä glukoosinsaannin turvaavat kompensoivat aineenvaihduntamekanismit varmistavat sikiölle kasvun ja kehityksen kannalta riittävän energian- ja ravinteiden saatavuuden.

Insuliiniresistenssi on avainasemassa metabolisten sairauksien, kuten tyypin 2 diabeteksen patogeneesissä. Insuliiniresistenssi on osallisena useissa muissakin sairauksissa, kuten rintasyövässä, nivelreumassa, munasarjojen monirakkulaoireyhtymässä, alkoholista riippumattomassa rasvamaksassa sekä sydän- ja verisuonitaudeissa. Insuliinimetabolian häiriöt vaikuttavat useimpien elintapasairauksien taustalla.

Ei-hapettavalle aineenvaihduntareitille päätyneiden lipidien liiallinen määrä kardiomyosyyteissä johtaa myrkyllisten lipidilajien (lipotoksiinien) kertymiseen soluihin, mikä muuttaa solujen signalointia ja sydämen rakennetta.

Lipotoksiinit

Lipotoksisuus on metabolinen oireyhtymä, joka johtuu lipidivälituotteiden kertymisestä ei-rasvakudokseen. Tämä johtaa solujen toimintahäiriöihin ja solukuolemaan. Kudoksiin, joihin lipotoksisuus normaalisti vaikuttaa, kuuluvat munuaiset, maksa, sydän ja luurankolihakset.

Lipotoksisuudella uskotaan olevan huomattava merkitys sydämen vajaatoiminnassa, liikalihavuudessa ja diabeteksessa.

Normaaleissa solutoiminnoissa lipidien tuotannon ja niiden hapettumisen tai kuljetuksen välillä on tasapaino.

Lipotoksisissa soluissa tuotettujen lipidien määrän ja energian tuotantoon hapetettujen lipidien määrän välillä on epätasapaino. Soluuntulon jälkeen rasvahapot voidaan muuntaa erityyppisiksi lipideiksi varastointia varten.

Rasvan yleinen varastomuoto, eli triglyseridi koostuu kolmesta glyserolimolekyyliin sitoutuneesta rasvahaposta, ja sitä pidetään neutraalimpana ja vaarattomimpana solunsisäisenä lipidivarastona.

Vaihtoehtoisesti rasvahapot voidaan muuntaa lipidivälituotteiksi, kuten diasyyliglyseroliksi, keramideiksi ja rasva-asyyli-CoA:ksi.

Nämä lipidivälituotteet voivat heikentää solun toimintaa, jota kutsutaan lipotoksisuudeksi

Adiposyytit, solut, jotka normaalisti toimivat kehon lipidivarastona, pystyvät käsittelemään ylimääräisiä lipidejä. Liian suuri lipidien määrä ylikuormittaa soluja ja aiheuttaa lipidien leviämisen ei-rasvasoluihin, joilla ei ole rasvoille tarvittavaa varastotilaa.

Kun ei-rasvasolujen varastointikapasiteetti ylitetään, seurauksena on solujen toimintahäiriö ja / tai solukuolema. Mekanismia, jolla lipotoksisuus aiheuttaa solun kuoleman ja toimintahäiriöitä, ei tunneta hyvin. Apoptoosin syy ja solun toimintahäiriön laajuus liittyvät solutyyppiin sekä ylimääräisten lipidien tyyppiin ja määrään.

Lihavuuden syy-vaikutus lipotoksisuudessa on kiistanalainen aihe. Jotkut tutkijat väittävät, että lihavuudella on suojaavia vaikutuksia lipotoksisuutta vastaan, koska se johtaa ylimääräiseen rasvakudokseen, johon voidaan varastoida ylimääräisiä lipidejä. Toiset väittävät, että lihavuus on lipotoksisuuden riskitekijä. Molemmat osapuolet myöntävät, että runsasrasvainen ruokavalio lisää lipotoksisten solujen määrää.

Henkilöt, joilla on paljon lipotoksisia soluja, sairastuvat yleensä sekä leptiini- että insuliiniresistenssiin. Tälle korrelaatiolle ei kuitenkaan ole löydetty selvää syy-mekanismia.

Häiriöt useilla solun signalointireiteillä, kuten mitokondrioiden toimintahäiriöissä ja endoplasmisen verkkokalvon stressissä, on liitetty lipotoksisuuteen.

Välittäjien, kuten reaktiivisten happilajien (ROS), typpioksidin (NO), keramidin, fosfatidyyli-inositoli-3-kinaasin, diasyyliglyserolin (DAG), PPAR-ydinreseptorien ligandien, leptiinin, on ehdotettu edistävän näitä lipotoksisia vaikutuksia ja lisäävän solujen apoptoosinopeutta.

Insuliiniresistenssi solutasolla

Insuliini vaikuttaa useissa aineenvaihduntaprosesseissa ja toimii signalointijärjestelmänä, joka mahdollistaa tasapainon ravinteiden tarjonnan ja tarpeen välillä.

Insuliiniresistenssissä kohdesolut eivät reagoi veresssä kiertävän insuliinin tavanomaisiin tasoihin, joten normaalia vastetta varten tarvitaan suurempia insuliinipitoisuuksia.

Insuliiniresistentti tila määritellään glukoosin imeytymisen heikkenemisenä lihaksissa ja maksan lisääntyneenä glukoneogeneesinä, mikä johtaa hyperglykemiaan, eli postbrandiaaliseen ja paastonjälkeiseen kohonneeseen verensokeriin.

Insuliiniresistenssiin liittyviä mekanismeja on selitetty monin tavoin, mutta kiistatonta tieteellistä konsensusta insuliiniresistenssin syystä ei taida olla.

Insuliiniresistenssin patogeneesi voidaan kuitenkin ryhmitellä geneettisiin virheisiin, rasvasta peräisin olevaan signaalointiin (kohdunulkoisten rasvojen kertyminen), fyysiseen passiivisuuteen, lihavuuteen ja tulehduksiin.

Insuliiniresistenssi ja geenit

Yksi lähestymistapa sairastumisen selittämiseen on insuliiniresistenssiin johtavan geneettisen virheen analysointi selvittämällä insuliinin signalointiketjuun assosioituvia ehdokasgeenejä. Insuliiniresistenssissä ja tyypin 2 diabeteksessa on havaittu useita muutoksia insuliinin signalointiin liittyvissä geeneissä.

IRS-1- ja IRS-2-geenien poikkeavuudet hiirikokeissa osoittavat, että IRS-1-hiiret ovat insuliiniresistenttejä, mutta eivät hyperglykeemisiä. Hiiret, joilta puuttuu IRS-2-geeni ovat vakavasti hyperglykeemisiä johtuen perifeerisen insuliinin toiminnan poikkeavuuksista ja β-solujen insuliinin erityksen häiriöistä.

Akt1:n häiriö hiirissä ei aiheuta merkittäviä häiriöitä aineenvaihdunnassa, kun taas hiiret, joilta Akt2 on estetty, osoittavat insuliiniresistenssiin viittaavia oireita, jotka fenotyypiltään muistuttavat läheisesti tyypin 2 diabetesta.

Muita mutaatioita, jotka on tunnistettu ja tutkittu tyypin 2 diabetekseen liittyen, ovat mutaatiot insuliinireseptorissa, PI3K:ssa, maksan glukokinaasipromoottorissa, GLUT4, glykogeenisyntaasissa ja proteiinifosfataasi-1:ssä.

Erilaisista tyypin 2 diabetekseen assosioituvista mutaatioista huolimatta, harvat henkilöt ovat diabeettisia geneettisten mutaatioiden vuoksi.

Geneettinen alttius aikuistyypin diabetekseen kuitenkin kasvattaa sairastumisriskiä. Voi myös olla useita muita geneettisiä poikkeamia, joita ei ole vielä tunnistettu ja jotka voivat vaikuttaa insuliiniresistenssin ja tyypin 2 diabeteksen patogeneesiin.

Ympäristötekijät

Lihavuuden aiheuttama vapaiden rasvahappojen (FFA) lisääntyminen verenkierrossa saattaa laukaista insuliiniresistenssin lipidien kertymisen kautta.

Tämä voi aktivoida epätyypillisen PKC:n, joka estää insuliinin solusignaloinnin ja insuliinin stimuloiman glukoosinoton luuston lihaksissa, sekä vähentää insuliinin stimuloimaa maksan glykogeenisynteesiä. Tämä voi johtaa insuliiniresistenssiin ja lisääntyneeseen glukoosin kulkeutumiseen maksassa.

Lisäksi vapaat rasvahapot laukaisevat insuliiniresistenssin aktivoimalla suoraan Tollin kaltaisen reseptorin 4 (TLR4) ja luontaisen immuunivasteen.

Lihavuus liittyy tulehdustekijöihin, joille on tunnusomaista ATM:ien (rasvakudoksen makrofagien) lisääntyminen

Tulehdustekijät lisäävät lipolyysiä ja edistävät maksan triglyseridisynteesiä ja hyperlipidemiaa lisääntyneen rasvahappoesteröinnin vuoksi.

ATM stimuloi tulehdussytokiineja, jotka estävät insuliinin signalointia ja nopeuttavat maksan glukoneogeneesiä sekä postbrandiaalista eli aterianjälkeistä hyperglykemiaa.

Muita insuliiniresistenssiä selittäviä mekanismeja ovat sekä mTOR- että S6K1-reittien aktivaatio. Nämä aktivaatiot aiheuttavat IRS-1: n seriinifosforylaation ja sen jälkeen IRS-1:een liittyvän PI3K-aktiivisuuden vähenemisen. On arveltu, että ravinteiden kyllästysolosuhteissa S6K1 voi säätää negatiivisesti insuliinin signalointia ja herkkyyttä.

Lisäksi IRS-1:n seriinifosforylaatiota on tutkittu eri olosuhteissa. Näyttää siltä, että mTOR-S6K1:stä riippuvaisen mekanismin lisäksi erilaiset seriinikinaasit, kuten c-Jun NH2-terminaalinen kinaasi (JNK), stressillä aktivoidut proteiinikinaasit, tuumorinekroositekijä-alfa (TNF-a) ja PKC voivat edistää IRS:n seriinifosforylaatiota aiheuttaen insuliinisignaalin voimakkuuden vähenemisen metaboliareitillä.

Lihavuuden merkitys insuliiniresistenssissa

Ihmisillä, joiden painoindeksi (BMI) on korkea (BMI ≥ 30 kg / m2), on suurempi sydän- ja verisuonitautien riski verrattuna ihmisiin, joilla on normaali BMI (BMI = 18,8–24,9 kg / m2).

Lihavuus assosioituu insuliiniresistenssiin. Molekyylimekanismi, jolla rasvan lisääntyminen selittäisi insuliiniresistenssin, on kuitenkin epäselvä; lipidien kertymisestä johtuva tulehdus, rasvahappojen hapettumisen estävä vaikutus glukoosin hapettumiseen, lipotoksiinien kertyminen ja adiposytokiinien eritys on kaikki yhdistetty paikallisen ja systeemisen insuliiniresistenssin kehittymiseen.

Lisääntyvä näyttö viittaa siihen, että rasvakoostumuksen heterogeenisuus ja rasvakudoksen jakautuminen voi olla ratkaisevan tärkeää insuliiniresistenssin ja kardiometabolisten häiriöiden kehittymisessä.

Viskeraalinen rasvakudos (VAT) assosioituu vahvasiti insuliiniresistenssin, DM2:n lisääntyvään esiintyvyyteen ja suurempaan sydän- ja verisuonitautien riskiin.

Viskeraalinen rasva liittyy tulehdusta edistävien adiposytokiinien korkeaan tuotantoon, oksidatiiviseen stressiin ja reniini-angiotensiini-aldosteronijärjestelmän (RAAS) aktivaatioon.

Krooninen energian (kalorien) liikasaanti aiheuttaa sisäelinten rasvamassan lisääntymisen, yksittäisten adiposyyttien hypertrofian ja adiposyyttien jakautumisen uusiksi rasvasoluiksi.

Rasvapitoisuuden lisääntyessä adiposyytit vapauttavat kemotaktisia tekijöitä, kuten monosyyttien kemoattraktantiproteiini-1 (MCP-1) ja tuumorinekroositekijä-a (TNFa), jotka moduloivat tulehdusvastetta rasvakudoksessa. MCP-1 aloittaa monosyyttien migraation viskeraaliseen rasvakudokseen ja edistää niiden erilaistumista makrofageiksi.

Makrofagit erittävät suuria määriä TNF-alfaa. Lipolyysi lisääntyy samalla kun insuliinin stimuloiman glukoosin kuljettaja-4 (GLUT4), triglyseridien biosynteesi ja adiposyyttien varastointi viskeraalisessa rasvakudoksessa vähenevät, mikä tämän mallin mukaan johtaa kiertävien veressä triglyseriditasojen nousuun.

Tämä tapahtuma voi johtaa toksisten rasvahappolajien (eli diasyyliglyserolin, keramidin) lipidisaostumiin rasvakudoksessa, haimassa, munuaisten verisuonissa, maksassa, luurankolihaksissa ja sydämessä, mikä johtaa epikardiaalisen rasvakudoksen (EAT) lisääntymiseen.

EAT:n kasvu aiheuttaa sydämen rasvoittumiseen ja massan lisääntymiseen molemmissa kammioissa, mikä johtaa kammion hypertrofiaan, supistumishäiriöön, apoptoosiin, fibroosiin ja heikentyneeseen vasemman kammion diastoliseen toimintaan.

Insuliiniresistenssi ja sydäntaudit

Kohonnneet LDL-tasot, tupakointi, korkea verenpaine ja tyypin 1 ja 2 diabetes ovat tunnettuja sydän- ja verisuonitautien riskitekijöitä, mutta insuliiniresistenssi, hyperglykemia ja inflammaatio voivat myös ennakoida haitallisia sydän- ja verisuonitapahtumia.

Insuliiniresistenssi liittyy aineenvaihdunnan häiriöihin, kuten hypertriglyseridemiaan sekä mataliin HDL-tasoihin. Lisäksi insuliiniresistenssiä on havaittu noin 30%:lla potilaista, joilla on diagnosoitu verenpainetauti (hypertensio).

Vuonna 1996 toteutetussa insuliiniresistenssin ateroskleroositutkimuksessa (IRAS) tutkijat osoittivat suoran yhteyden insuliiniresistenssin ja ateroskleroosin välillä. Jatkotutkimuksessa 2938 potilaan kohortissa määriteltiin insuliiniresistenssi tärkeäksi sydäninfarktin riskitekijäksi.

Vuonna 2012 tehty 65 tutkimuksen ja yhteensä 516 325 henkilön meta-analyysi, osoitti, että HOMA-indeksillä arvioituna insuliiniresistenssi ennustaa hyvin sydän- ja verisuonitauteja.

Archimedes-mallin ja 20–30-vuotiaiden nuorten diabetesta sairastamattomien aikuisten populaation seurannan perusteella tutkijat päätyivät johtopäätökseen, että insuliiniresistenssin estäminen populaatiotasolla voisi vähentää 42% sydäninfarkteista simuloidun 60 vuoden seurantajakson aikana.

Vaikka useat tutkimukset tukevat ajatusta siitä, että sydän- ja verisuonitaudit liittyvät insuliiniresistenssiin, on myös eräitä kiisteltyjä raportteja.

Insuliiniresistenssin lisäksi insuliiniresistenssiin liittyvällä kompensoivalla hyperinsulinemialla voi olla kriittinen rooli ateroskleroottisten plakkien muodostumisessa muuttamalla estrogeenireseptoreihin liittyvää geeniekspressiomallia, kuten eläinmalleissa on havaittu.

Hyperglykemia aiheuttaa muutoksia aineenvaihdunnan- ja solujen toiminnoissa: dyslipidemia (veren huono lipiditasapaino), hypertensio, endoteelin toimintahäiriöt, oksidatiivinen stressi ja muutokset sydämen aineenvaihdunnassa näyttävät liittyvän hyperglykemiaan.

Noin 50–70% sydänlihaksen tarvitsemasta ATP:stä  tuotetaan (pitkäketjuisten) rasvahappojen hapetuksella ( β-oksidaatio). Glykolyysin osuus terveessä sydämessä on alle 10% ATP:n kokonaistuotannosta.

Sydän käyttää energiantuotantoon ensisijaisesti pitkäketjuisia rasvahappoja, mutta sydämellä on kyky vaihtaa toiseen energiasubstraattiin ATP:n tuottamiseksi sydämen energiantarpeen varmistamiseksi. Myös substraattikuljettimilla, GLUT4 (glukoosille) ja CD36 (rasvahapoille), on merkitys tässä substraatin käyttöasteen dynaamisessa tasapainossa.

Loukkaantumisen aikana sydän siirtyy rasvahappojen käytöstä energia-substraateina kohti glukoosia, mutta tämä metabolinen joustavuus heikentyy insuliiniresistenssin aikana, jolloin rasvahappo on ainoa polttoaineen lähde.

Tämä muutos indusoi lipidien imeytymisen ja kertymisen lisääntymistä sydämessä tuottaen lipotoksisuutta. Tässä mielessä tasapaino lipidien hajoamisen ja glukoosin hapettumisen välillä voi vähentää diabeettista kardiomyopatiaa.

Insuliiniresistenssi ja dyslipidemia

Insuliiniresistenssin ja tyypin 2 diabeteksen (diabeettinen dyslipidemia) aiheuttamalle dyslipidemialle on tunnusomaista lipidien kolmikko:

  1. korkeat plasman triglyseriditasot
  2. matalat HDL-tasot

  3. pienten tiheiden matalatiheyksisten lipoproteiinien (sdLDL) pitoisuuden kasvu sekä liiallinen aterianjälkeinen lipidemia

Hypertriglyseridemia lisää sydän- ja verisuonitautien ilmaantuvuutta miehillä 32% ja naisilla 76%.

10 038 ihmisellä, joilla oli normaali verenpaine tai pre-hypertensio, tehty tutkimus osoitti dyslipidemian olevan vahva ennuste tyypin 2 diabeteksen kehittymiselle.

Usein diabeettinen dyslipidemia kehittyy vuosia ennen tyypin 2 diabetesta, mikä viittaa siihen, että epänormaali lipidimetabolia on varhainen sydän- ja verisuonitautien indikaattori tyypin 2 diabeteksessa.

Lihavuus on maailmanlaajuinen epidemia, joka liittyy läheisesti tyypin 2 diabeteksen sekä sydän- ja verisuonitautien (CVD) kehittymiseen.

Lihavuuteen liittyvä viskeraalinen ja epikardiaalinen rasva ovat sydänsairauksien riskitekijöitä. Lihavuudella on merkittävä vaikutus lipoproteiiniprofiilin ja systeemiseen ja verisuonitulehdukseen sekä endoteelin toimintahäiriöön liittyvien tekijöiden modifioinnissa.

Epänormaalit lipidien ja apolipoproteiinien pitoisuudet voivat aiheuttaa muutoksia lipoproteiinihiukkasten tuotannossa, konversiossa tai kataboliassa.

Nämä muutokset voivat myötävaikuttaa liikalihavuuden lisääntyneeseen basaaliseen lipolyysiin ja rasvahappojen vapautumiseen verenkiertoon, mikä johtaa proaterogeeniseen fenotyyppiin.

Insuliiniresistenssi ja liporoteiinieprofiilien muutokset

VLDL, hyvin matalatiheyksinen lipoproteiini, kootaan ja tuotetaan substraattien saatavuuden perusteella maksassa.

Insuliini säätelee tiukasti VLDL-tuotantoa. Maksan VLDL-tuotanto indusoituu paastotilassa, mikä johtaa lisääntyneeseen VLDL-pitoisuuteen veressä.

Eri lähteistä peräisin olevien lipidien lisääntyminen, kuten verenkierron vapaat rasvahapot, triglyseridipitoisten lipoproteiinien endosytoosi ja de novo lipogeneesi mahdollistavat apoB:n translaation jälkeisen stabiloinnin ja tehostavat VLDL-hiukkasten kokoonpanoa ja eritystä.

Tämä johtaa VLDL:n ja vapaiden rasvahappojen uotantoon. Lipoproteiinit kuljettavat energiaa maksan ja rasvakudoksen välillä. Vastauksena insuliinin eritykseen VLDL-synteesi estetään plasman triglyseriditason rajoittamiseksi. Normaalisti insuliini edistää PI3K-aktivaation avulla apoB:n hajoamista, mutta insuliiniresistenssin aikana tämä hajoaminen on heikentynyt.

Yhdistelmä:

  1. käytettävissä olevien rasvahappojen ylimäärä

  2. apoB: n rajoitettu hajoaminen

  3. apoB: n suurempi stabiloituminenVLDL-synteesin kasvu selittää insuliiniresistenssissä havaitun hypertriglyseridemian

Insuliiniresistenssi vähentää myös lipoproteiinilipaasiaktiivisuutta, joka on tärkeä VLDL-puhdistuman välittäjä. Tällä vaikutuksella on vähäinen vaikutus plasman triglyseriditasoon, vaikka se on myös mekanismi, jota myös muutetaan.

Tyypin 2 diabetesta sairastavilla potilailla VLDL:n, IDL:n ja LDL:n imeytyminen maksassa vähenee, mikä johtaa näiden lipoproteiinien viipymisaikojen pitenemiseen plasmassa.

SdLDL: n muodostuminen ja alentuneet HDL-tasot liittyvät läheisesti insuliiniresistenssiin. Ateroskleroosiriskien (ARIC) prospektiivisessa tutkimuksessa sdLDL: n plasmatasoihin liittyi sepelvaltimotaudin (CHD) riski. Lisäksi VLDL-tasot ovat tärkein LDL-koon ennustaja.

SdLDL: n muodostuminen riippuu sekä kolesteryyliesterin siirtoproteiinin (CETP) että maksan lipaasin osallistumisesta. CETP helpottaa triglyseridien siirtymistä VLDL:stä LDL:ään ja HDL:ään, tuottaa triglyseridipitoisen LDL:n ja johtaa matalaan HDL-C:hen.

Triglyseridipitoinen LDL on maksalipaasin substraatti, mikä lisää triglyseridipitoisen LDL:n lipolyysiä, mikä johtaa sdLDL: n muodostumiseen. Erilaisia mekanismeja on ehdotettu selittämään sdLDL:n lisääntynyttä aterogeenistä vaikutusta.

Näitä mekanismeja ovat:

  1. alempi affiniteetti LDL-reseptoriin

  2. helpotettu pääsy valtimon seinämään

  3. valtimon retentio

  4. suuri hapettumisherkkyys

  5. pidempi puoliintumisaika

Lisääntyneet sdLDL-tasot edustavat lisääntynyttä määrää aterogeenisiä hiukkasia, mikä ei välttämättä heijastu LDL-tasoilla, koska sdLDL-hiukkaset sisältävät vähemmän kolesterolia.

HDL-hiukkasten triglyseridirikastus CETP:llä yhdistettynä maksalipaasin lipolyyttiseen vaikutukseen johtaa plasman HDL-C:n ja apoA-I:n vähenemiseen, mikä vaikuttaa pienen tiheän HDL:n muodostumiseen ja johtaa näiden hiukkasten lisääntyneeseen kataboliaan.

Vuonna 1932 ei-diabeetikoilla tehdyssä retrospektiivisessä tutkimuksessa raportoitiin, että triglyseridin ja HDL-kolesterolin suhde voi ennustaa insuliiniresistenssin ja metabolisten sairauksien todennäköisyyden. Lisäksi on osoitettu lipidien kerääntymistuotteiden ja triglyseridien glukoosindeksin korrelaatio insuliiniresistenssin ja CVD:n kanssa.

Insuliiniresistenssi johtaa lisääntyneeseen vapaiden rasvahappojen (FFA) vapautumiseen rasvasoluista. Plasman paasto-FFA:n kohonnut suhde insuliinipitoisuuteen on rasvakudoksen insuliiniresistenssi. Rasvakudoksen insuliiniresistenssin on raportoitu olevan riskitekijä aortan venttiilin kalkkeutumisessa, mikä ennustaa sydän- ja verisuonitaudit.

Insuliiniresistenssi, verenpainetauti ja endoteelin häiriöt

Kliiniset tutkimukset ovat osoittaneet, että noin 50 prosentilla hypertensiivisistä koehenkilöistä on komorbidi hyperinsulinemia tai glukoosi-intoleranssi, kun taas vähintään 80 prosentilla tyypin 2 diabetesta sairastavista potilaista on komorbidi hypertensio.

Komorbiditeetti tarkoittaa kahden tai useamman itsenäisen sairauden esiintymistä samanaikaisesti. Komorbidi sairaus tai häiriö voi olla seurausta perussairaudesta tai suorassa yhteydessä siihen. Tämä johtuu usein erilliseksi luokiteltujen ongelmien yhteisestä taustatekijästä.

Komorbidit häiriöt ovat silti usein vaikeammin hoidettavissa kuin yksittäisesti esiintyvät häiriöt, sillä hoitoa suunniteltaessa on otettava huomioon kunkin häiriön yksittäiset ominaispiirteet ja niiden yhdistelmien variaatiot. – Wikipedia

Verenpainetaudin ja diabeteksen yhdistelmää sairastavilla potilailla on selvästi korostunut sydän- ja verisuonitautien riski.

On ehdotettu, että poikkeavuudet vasodilataatiossa, verenkierrossa ja reniini-angiotensiini-aldosteronijärjestelmässä (RAAS) voivat liittyä hypertensioon ja insuliiniresistenssiin. Lisäsyynä verenpainetautiin insuliiniresistentillä potilaalla on sympaattisen hermoston yliaktiivisuus, joka edistää myosyyttien hypertrofiaa, interstitiaalista fibroosia ja heikentynyttä verisuonten supistumista, johon liittyy lisääntynyt myosyyttien apoptoosi (solukuolema).

RAAS-järjestelmässä angiotensinogeeni muuttuu reniiniksi angiotensiini I:ksi, joka sitten ACE:n (angiotensiiniä konvertoivan entsyymin) avulla muutetaan angiotensiini II:ksi (Ang II). Lopuksi Ang II vaikuttaa sekä AT1- että AT2-reseptoreihin. AT1-reseptori välittää kaikki Ang II:n klassiset vaikutukset, kuten verenpaineen nousu, verisuonten supistuminen, lisääntynyt sydämen supistuvuus, munuaisten natriumpitoisuus, veden reabsorptio ja aldosteronin vapautuminen lisämunuaisen kuoren zona glomerulosasta lisämunuaisessa.

Yksi aldosteronin rooleista on lisätä natriumin reabsorptiota distaalisessa nefronissa. Tämän vaikutuksen tarkoituksena on ylläpitää natriumtasapainoa aktivoimalla apikaalisen epiteelin natriumkanava ja basolateraalinen Na +, K + -ATPaasi. Aldosteronilla on kuitenkin vaikutuksia myös munuaisiin, verisuoniin ja sydänlihakseen, millä voi olla patofysiologisia seurauksia.

Tutkimukset ovat osoittaneet, että hyperglykemia lisää angiotensinogeenin, ACE:n ja Ang II:n transkriptiota. Tyypin 2 diabetesta sairastavilla on havaittu RAAS:n ylöspäin säätely sydän- ja verisuonijärjestelmässä. Ylössäädelty RAAS voi vaikuttaa monien diabeettisten komplikaatioiden, kuten mikrovaskulaaristen ja makrovaskulaaristen sairauksien, kehittymiseen. Lisäksi on osoitettu, että Ang II:n ylössäätely ja mineralokortikoidireseptorin aktivointi aldosteronilla voivat edistää insuliiniresistenssia aktivoimalla mTOR – S6K1-signaalinsiirtoreitti indusoimalla fosforylaatio IRS:n seriinitähteissä.

Diabeettisen kardiomyopatian kehittymiseen liittyvät mekanismit

Normaalisti insuliinin signalointi säätelee glukoosin ja lipidien aineenvaihduntaa sydämessä. Insuliiniresistenssi aiheuttaa metabolisen häiriön, joka johtaa korkeaan lipidihapetukseen ja matalaan glukoosihapetukseen.

Reniini-angiotensiini-aldosteronijärjestelmän (RAAS) aktivaatio voi aiheuttaa mitokondrioiden toimintahäiriöitä, endoplasmisen verkkokalvon stressiä ja oksidatiivista stressiä. Tämä voi johtaa epänormaaliin Ca2 + -käsittelyyn ja alhaiseen ATP-tuotantoon, mikä johtaa kardiomyosyyttien kuolemaan.

RAAS:n aktivaatio ja hyperinsulinemia voivat synergistisesti stimuloida MAPK-reittiä, jolla on verisuoniseinää vahingoittava vaikutus, koska se indusoi endoteelin toimintahäiriöitä ja edistää näin ateroskleroosia.

Tutkimuksissa on pohdittu, että insuliinin ja Ang II:n signaalinsiirtoreitit jakavat useita alavirran tehosteita ja kommunikoivat useilla tasoilla. RAAS:n (Ang II ja aldosteroni) ja yliravitsemuksen aktivaatio edistää endoteelin toimintahäiriötä lisäämällä nikotiiniamidiadeniinidinukleotidifosfaatti (NADPH) -oksidaasin välittämää ROS-tuotantoa, mekanismia, joka myös kohottaa verenpainetta.

Itse asiassa ROS johtaa redox-herkkien kinaasien, kuten S6K1:n ja mTOR:n, aktivoitumiseen, aiheuttaen insuliini-PI3K-signalointireitin, fosforylaation kautta IRS-1: n seriinitähteissä. Viimeksi mainittu mekanismi estää Akt-fosforylaation, Glut-4-translokaation sarkolemmaan ja typpioksidin (NO) tuotannon alavirran signaloinnin endoteelissä.

Lisäksi hypertensioon ja tyypin 2 diabetekseen liittyy myös endoteelin esisolujen määrän väheneminen ja toimintahäiriöt, jotka ovat kiertäviä luuytimestä peräisin olevia kantasoluja, joilla on tärkeä rooli verisuonten seinämän endoteelikorjauksessa.

Joissakin kliinisissä ja kokeellisissa tutkimuksissa on osoitettu, että RAAS-esto paransi insuliinin signalointia ja insuliiniherkkyyttä, mutta toisissa ei ole osoitettu mitään hyödyllistä vaikutusta. Tämä ero voidaan selittää joko eroilla kokeiden suunnittelussa tai tutkimuspopulaatioissa.

Yhteenvetona voidaan todeta, että TOR / S6K: n aktivointi RAAS:lla tai yliravitsemuksella johtaa insuliiniresistenssiin, jolla on metabolisia ja biologisia seurauksia. Se johtaa myös heikentyneeseen sydänlihaksen glukoosikäyttöön ja diastolisen rentoutumisen vähenemiseen.

Insuliiniresistenssi ja endoteelin toimintahäiriöt

Funktionaalisen endoteelin eheys on tärkeä verisuonten terveyselementti. Typpioksidia (NO) pidetään kehon tehokkaimpana endogeenisena vasodilataattorina (verisuonten laajentajana), ja NO:n biologisen hyötyosuuden väheneminen on endoteelin toimintahäiriön tunnusmerkki.

Endoteelin toimintahäiriö vaikuttaa sydän- ja verisuonitauteihin, kuten hypertensio, ateroskleroosi ja sepelvaltimotauti, jotka myös aiheutuvat insuliiniresistenssistä.

NO osallistuu verisuonten seinämän homeostaasiin verihiutaleiden aggregaation, leukosyyttien adheesion eston ja anti-inflammatoristen ominaisuuksien avulla. Fysiologisissa olosuhteissa insuliinin NO-tuotannon konstitutiivisella stimulaatiolla voi olla tärkeä rooli verisuonten terveyden ylläpidossa, koska se kykenee rentouttamaan verisuonen sileää lihasta.

Insuliiniresistenssitilassa insuliinin stimuloima NO-synteesi on kuitenkin heikentynyt selektiivisesti ja kompensoiva hyperinsulinemia voi aktivoida MAPK-reitin, mikä johtaa verisuonten supistumiseen, tulehdukseen, lisääntyneeseen natriumin ja veden kertymiseen, mikä johtaa verenpaineen nousuun.

Insuliiniresistenssi endoteelisoluissa lisää protromboottisia tekijöitä, tulehdusta edeltäviä markkereita ja vapaita happiradikaleja, mikä johtaa adheesiomolekyylin 1 (ICAM-1) ja verisuonisolujen adheesiomolekyylin 1 (VCAM-1) solunsisäisten tasojen nousuun.

Endoteelin toiminnan ja insuliinin aineenvaihdunnan välinen suhde on erittäin tärkeä. Tämä johtuu siitä, että insuliiniresistenssin ja endoteelin signaalihäiriöiden välinen yhteys edistää tulehdusta, häiritsee endoteelin tasapainoa vasodilataattorin ja vasokonstriktorimekanismien välillä ja lisää kardiovaskulaarista riskiä.

Tutkimuksessa, joka tehtiin ei-diabeetikoilla, joilla epäillään sydänlihasvaurioita, raportoitiin, että HOMA-IR:llä mitattu insuliiniresistenssi korreloi voimakkaasti endoteelin toimintahäiriöiden ja prognostisen arvon kanssa.

Krooninen hyperglykemia sydän- ja verisuonitaudeissa

Lisääntynyt sydän- ja verisuonitautiriski tyypin 2 diabetesta sairastavilla potilailla on tunnettu jo pitkään. Diabetesta sairastavilla potilailla on lisääntynyt verisuonten sairastuvuus ja kuolleisuus, mikä alentaa heidän elinajanodotettaan noin 5–15 vuodella.

Lisäksi on osoitettu, että sydän- ja verisuonitautien ilmaantuvuus on 2–8 kertaa suurempi tyypin 2 diabetesta sairastavilla henkilöillä kuin diabeetikoilla, ja tämä tauti aiheuttaa suurimman osan kuolemista.

Jälkimmäisen tueksi epidemiologiset ja patofysiologiset tutkimukset viittaavat siihen, että hyperglykemia (kroonisesti korkea verensokeri) voi olla suurelta osin vastuussa sydän- ja verisuonitaudeista.

Verensokerin on raportoitu ennakoivan luotettavasti ateroskleroosia, ja yli 90 mg / dl: n verensokeritaso voi johtaa ateroskleroosiin kaulavaltimossa. Pitkän aikavälin seurantatiedot tyypin 1 ja 2 diabetesta sairastavilta potilailta viittaavat siihen, että hyperglykemia on diabetekseen liittyvien sairauksien ja CVD:n riskitekijä.

Salvin et al. Havaitsi, että yhden yksikön nousu glykosyloidussa hemoglobiinissa tai HbA1C:ssä voi lisätä sydän- ja verisuonitautien riskiä 18%.

Jopa selkeän diabeteksen puuttuessa glukoosihomeostaasin heikkeneminen voi vaikuttaa sydämen autonomiseen toimintaan, mikä johtaa korkeaan sydänsairauksien riskiin.

Hyperglykemian haitalliset vaikutukset kardiomyosyyteihin voidaan selittää ilmiöllä, jota kutsutaan hyperglykeemiseksi muistiksi. Ilmiössä hyperglykeeminen stressi jatkuu pitkään verensokeritason normalisoitumisen jälkeen.

Glukoosivaihtelut ja hyperglykemia laukaisevat tulehdusreaktioita mitokondrioiden toimintahäiriöiden ja endoplasmisen verkkokalvon kautta. Tämä edistää vapaiden reaktiivisten happiradikaalien kertymistä, mikä puolestaan aiheuttaa soluvaurioita.

Hyperglykemia voi myös lisätä tulehdusta edistävien ja hyytymistä estävien tekijöiden ilmentymistä, mikä edistää leukosyyttien tarttumista endoteelisoluihin. Se indusoi apoptoosia ja heikentää typpioksidin vapautumista, mikä johtaa endoteelin toimintahäiriöön. Tästä syystä tulehdus johtaa insuliiniresistenssiin ja β-solujen toimintahäiriöihin, mikä pahentaa edelleen hyperglykemiaa.

Lisäksi glukoosivaihteluiden ja hyperglykemian tuottamat muutokset voivat aiheuttaa pitkäaikaisia epigeneettisiä modifikaatioita NF-KB: n promoottorissa, jonka näyttää vaikuttavan lisääntyneestä oksidatiivisesta stressistä.

Toinen pysyvän hyperglykemian haitallinen vaikutus on pitkälle edenneiden glykaation lopputuotteiden (AGE) sukupolvi, jotka ovat proteiinien ja lipidien ei-entsymaattisia glykaation tuotteita sokereille altistumisen seurauksena.

Yleensä AGE:t kertyvät verisuonen seinämään, mikä vaikuttaa solunulkoisen matriisin (ECM) rakenteelliseen eheyteen (tunnetaan myös nimellä matriisisoluvuorovaikutukset). Jälkimmäinen aiheuttaa endoteelivaurioita ja vähentää NO-aktiivisuutta. Kaiken kaikkiaan AGE:t edistävät diabeettisten komplikaatioiden, kuten retinopatian, nefropatian sekä sydän- ja verisuonitautien etenemistä.

Insuliiniresistenssi ja muutokset sydänmetaboliassa

Sydänseinämän paksuin kerros on sydänlihassoluista koostuva sydänlihas, joten luurankolihassolujen fysiologian tarjoama tieto auttaa selittämään sydämen aineenvaihduntaa.

Nisäkkään sydämen on supistettava lakkaamatta; mikä tarkoittaa, että optimaalisen toiminnan energiantarve on valtava. Tämä on mielenkiintoinen ilmiö, koska sydämen lihaksessa ei ole ATP-varausta.

Energiaa varastoidaan sydämen lihassoluihin kolmessa muodossa:

  1. Ensimmäinen on fosfokreatiini (PCr), joka voi nopeasti luovuttaa korkean energian fosfaatit ATP:n tuottamiseksi ADP:stä. PCr: stä saatavissa oleva energia on suhteellisen vaatimaton, sitä käytetään vain erittäin nopeiden harjoitusten aikana

  2. Toinen on glykogeeni, joka muodostaa solussa endogeenisen energiamuodon. Lihaksen glykogeenivarastokapasiteetti on rajallinen. Sen etuna on kuitenkin se, että se kuluttaa paljon vähemmän happea kuin rasvahapot ja on helposti saatavilla käytettäväksi polttoaineena lihaksissa.

  3. Kolmas muoto on triglyseridit ja vapaat rasvahapot (FFA). Niiden hapettuminen on vähemmän tehokasta verrattuna glykogeeniin, vaikka ne sisältävät enemmän energiaa.
    On yleisesti hyväksyttyä, että vapaat rasvahapot ovat hallitsevia substraatteja, joita käytetään aikuisen sydänlihaksessa ATP:n tuotantoon mitokondriossa. Siten 60-70% sydämen työn ylläpitoon tarvittavasta energiasta tulee vapaiden rasvahappojen β-oksidaatiosta. Verenkierron vapaiden rasvahappojen tasot määräävät suurelta osin vapaiden rasvahappojen imeytymisen sydämessä. Kun FFA on imeytynyt, sen metaboliaa säätelee pääasiassa transkriptiotasolla ligandiaktivoitujen transkriptiotekijöiden perhe, nimittäin peroksisomiproliferaattorin aktivaattorireseptori a (PPAR-a).

Sydämen aineenvaihduntaverkosto on ravinnon, paaston ja intensiivisen liikunnan suhteen erittäin joustava energiasubstraattien käytössä. Kardiomyosyytit, eli sydänlihassolut pystyvät käyttämään glukoosia ja laktaattia, aminohappoja, sekä ketoaineita.

Glukoosinottoa välitetään glukoosikuljettimien kautta. Kuljettimia on kahta erilaista tyyppiä, Na2 + -kytketty kantajajärjestelmä ja helpottavat glukoosikuljettimet (GLUT). GLUT1 ja GLUT4 ovat tärkeimmät toimijat sydämen glukoosikuljetuksissa.

GLUT4 edustaa tärkeintä mekanismia, joka säätelee glukoosin sisäänpääsyä sykkivässä sydämessä. GLUT1:llä on vähäisempi rooli, koska se on ensisijaisesti paikallaan plasmamembraanilla ja vastuussa sydämen glukoosin perusinsuliinista.

GLUT4:ää esiintyy enimmäkseen solunsisäisissä rakkuloissa lepovaiheissa ja se siirtyy plasmamembraaniin insuliinistimulaation yhteydessä. Imeytymisen jälkeen vapaa glukoosi fosforyloituu nopeasti glukoosi-6-fosfaatiksi (G6P), joka myöhemmin pääsee moniin metaboliareitteihin.

Glykolyysi edustaa glukoosin aineenvaihdunnan pääreittiä, joka tuottaa pyruvaatin myöhempää hapetusta varten. Glykolyysin ohella G6P voidaan myös kanavoida glykogeenisynteesiin tai pentoosifosfaattireittiin (PPP). PPP on tärkeä NADPH-lähde, jolla on kriittinen rooli solun oksidatiivisen stressin säätelyssä ja jota tarvitaan lipidisynteesiin.

Vastauksena lisääntyneeseen energiantarpeeseen sydämen lihassolut luottavat aluksi hiilihydraattien hapettumiseen. Esimerkiksi stressin, kuten liikunnan, iskemian ja patologisen hypertrofian alaisena, glukoosin substraattipreferenssiä voidaan muuttaa. Stressin aikana GLUT4-ilmentymisen nopea kasvu on varhainen adaptiivinen vaste, joka viittaa siihen, että tämän sopeutumisen fysiologisena tehtävänä on parantaa lihasten glykogeenivarastojen täydennystä.

Kun glykogeenipitoisuus on korkea, sydän käyttää ensisijaisesti glykogeenia energiasubstraatin lähteenä, mutta kun glykogeenivarastot ovat vähäisiä, se muuttuu rasvahappojen hapettumiseksi. Tämä induktio voidaan estää suurella hiilihydraattiruokavaliolla palautumisen aikana. Aineenvaihdunnan hallinta palautumisessa glykogeenitasojen avulla korostaa sen merkitystä aineenvaihdunnan lihasten varaan.

Insuliiniresistenssissä sydän on rikkaassa rasvahappo- ja glukoosiympäristössä. Ylimääräinen insuliini edistää vapaiden rasvahappojen lisääntynyttä imeytymistä sydämessä klusterin erilaistumisproteiinin 36 (CD36) säätelyn seurauksena. Se on voimakas vapaiden rasvahappojen kuljettamiseen ja säätelyyn vaikuttava proteiini. Tämä lisää solunsisäisiä rasvahappoja ja PPAR-a-ilmentymistä. Viimeksi mainittu lisää geeniekspressiota rasvahappojen hapettumisen kolmessa vaiheessa lisäämällä (1) FFA-kuljettajien synteesiä solussa, (2) proteiineja, jotka tuovat FFA:ta mitokondrioon, ja (3) entsyymejä rasvahappojen hapetuksessa.

Toisaalta glukoosin käytön eston takia kardiomyosyytteihin kertyy glykolyyttistä välituotetta, mikä indusoi glukotoksisuutta

Kun diabetes etenee tai kun sydämeen kohdistuu lisärasituksia; metabolista sopeutumista voi esiintyä, ja aineenvaihdunnan joustavuus heikkenee huomattavasti. Sydän heikentää kykyään käyttää rasvahappoja, lisää vapaiden rasvahappojen kulkeutumista ja johtaa lipidien (keramidit, diasyyliglyserolit, pitkäketjuiset asyyli-CoA:t ja asyylikarnitiinit) kertymiseen sydänlihakseen.

Tämä lipidien kertyminen voi vaikuttaa solujen kuolemaan (apoptoosiin), heikentää mitokondrioiden toimintaa, sydämen hypertrofiaa ja supistushäiriöitä. Esimerkiksi diasyyliglyseroli ja rasva-asyylikoentsyymi (CoA) indusoivat epätyypillisen PKC: n aktivaation, mikä johtaa heikentyneeseen insuliinin signalointiin.

Keramidit, jotka yhdistävät lipidien aiheuttaman tulehduksen insuliinin signaloinnin estoon, toimivat lipotoksisten signalointireittien avainkomponentteina. Toisaalta korkea lipidipitoisuus voi aiheuttaa supistushäiriöitä insuliiniresistenssistä riippumatta. Seurauksena oleva sydänlihaksen energiantuotannon vika heikentää myosyyttien supistumista ja diastolista toimintaa. Nämä muutokset aiheuttavat toiminnallisia muutoksia, jotka johtavat kardiomyopatiaan ja sydämen vajaatoimintaan.

Glukoosin puuttuessa maksassa syntyvät ketoaineet pääsevät verenkiertoon, ja elimet, kuten aivot, munuaiset, luurankolihakset ja sydän, käyttävät niitä energiasubstraatteina. Sydänlihaksen polttoaineenvaihdunnan ja bioenergian häiriöt vaikuttavat sydän- ja verisuonitauteihin, koska aikuisen sydän vaatii paljon energiaa supistumiseen.

Sydän- ja verisuonitauteissa sydämen kyky käyttää rasvahappoja, sydämen ensisijaista polttoainetta, on heikentynyt

Tässä tilanteessa sydän käyttää vaihtoehtoisia reittejä, kuten ketoaineita, polttoaineena ATP:n tuotannossa. Edelleen kiistellään siitä, kuinka hyvin sydänlihas sopeutuu tähän energiasubstraatin muutokseen.

Viime aikoina on osoitettu, että syklinen ketoaineiden käyttö energiasubstraattina ylläpitää sydämen nuoruutta vanhoilla hiirillä. Toisaalta on raportoitu, että isokalorinen (yhtäläisen energian sisältävä) ketogeeninen ruokavalio (hyvin vähän hiilihydraatteja ja runsaasti rasvoja ja / tai proteiineja) pidentää elinikää.

Ketogeenisen ruokavalion vaikutus voidaan välittää tukahduttamalla pitkäikäisyyteen liittyvä insuliinin signalointi ja mTOR-reitti sekä aktivoimalla peroksisomiproliferaattorilla aktivoitunut reseptori a (PPARa), pääsäädin, joka kytkee päälle ketogeneesiin osallistuvat geenit.

Useat raportit viittaavat siihen, että ketogeeniseen ruokavalioon voi liittyä sydän- ja verisuonitautien riskitekijöiden, kuten liikalihavuuden, diabeteksen, valtimoverenpaineen ja kolesterolitasojen, esiintyvyyden väheneminen. Toisaalta monien raporttien mukaan sydän- ja verisuonitautien riskitekijöiden väheneminen vastasi painonlaskua käytetystä ruokavaliosta riippumatta.

Muut tekijät, jotka vaikuttavat diabeettisen kardiomyopatian patogeneesiin

Muita diabeettisen kardiomyopatian patogeneesiin vaikuttavia tekijöitä ovat metaboliset poikkeavuudet, joihin liittyy mitokondrioiden toimintahäiriöitä, endoplasman verkkokalvon stressiä ja heikentynyttä Ca2 + -käsittelyä. Reaktiivisten happiradikaalien (ROS) liiallinen tuotanto johtaa proteiini-, DNA- ja kalvovaurioihin. Lisäksi ROS:lla on haitallisia vaikutuksia endoplasmiseen verkkokalvoon.

Oksidatiivinen stressi ja endoplasman verkkokalvon stressi voivat aiheuttaa solunsisäisen Ca2 + -tason nousun. Mitokondrioiden ylimääräinen Ca2 +:n otto johtaa Ca2 +:n ylikuormitukseen ja mitokondrioiden läpäisevyyden siirtymähuokosten avautumiseen, mikä johtaa myöhemmin mitokondrioiden toimintahäiriöihin ja solujen apoptoosiin. Tämä vaikuttaa myös diabeettisen kardiomyopatian patogeneesiin.

Sokerit ohjaavat sepelvaltimotautia insuliiniresistenssin ja hyperinsulinemian kautta: uusi paradigma

I know of no single acceptable study that shows a high intake of sugar in a population that is almost entirely free from heart disease.’1—John Yudkin

Sepelvaltimotauti (CHD) aiheuttaa joka kuudennen kuolemantapauksen Yhdysvalloissa. Sepelvaltimotauti johtaa lopulta akuuttiin infarktiin (MI). Yhdysvalloissa tapahtuu vuosittain melkein miljoona akuuttia sydäninfarktia, ja noin 15% potilaista kuolee sydäninfarktin seurauksena.

Oireeton hyperglykemia on sydän- ja verisuonitautien ja infarktin riskitekijä. Hyperglykemia voi kehittyä akuutin infarktin aikana myös potilaille, joilla ei ole diabetesta. Hyperglykemian voi aiheuttaa insuliinin erityksen väheneminen, insuliiniresistenssin kehittyminen sekä katekoliamiinien (adrenaliini, noradrenaliini ja dopamiini), kortisolin ja kasvuhormonin lisääntyminen.

Monilla infarktipotilailla on diagnosoitu tai diagnosoimaton diabetes, jossa akuutti stressi pahentaa diabeettista tilaa ja johtaa hyperglykemiaan. Erään tutkimuksen mukaan 73%:lla akuutin infarktin saaneista potilaista oli epänormaali glukoositoleranssi ja 50%:lla diabetes. 6 kuukauden kuluttua infarktista 43%:lla oli epänormaali glukoositoleranssi, mikä on noin kolminkertainen määrä terveisiin verrokkeihin nähden.

Hyperglykemia ei siis näytä olevan akuutti tai väliaikainen löydös potilailla, joilla on ollut infarkti. Monilla potilaalla on havaittavissa jatkuvasti epänormaali glukoositoleranssi.

Whitehall-tutkimus (prospektiivinen kohorttitutkimus), johon osallistui 18 403 potilasta, osoitti, että verensokeri 2 tuntia suun kautta otetun glukoositoleranssitestin jälkeen liittyi iän mukaan mukautettuun kardiovaskulaariseen kuolleisuuteen 7,5 vuoden jälkeen.

Ei-diabeetikoilla 2 tunnin veri glukoosipitoisuus 96 mg / dl tai korkeampi liittyi kaksinkertaiseeb sydän- ja verisuonitautien kuolleisuuden riskiin.

Suun kautta otettavaan glukoosin aiheuttama korkea insuliinivaste on todettu perifeeristen-, aivo- ja sepelvaltimoiden ateroskleroosipotilailla.

Australian Busseltonissa tehdyssä tutkimuksessa, insuliinipitoisuudet tunnin kuluttua 50 g:n glukoosiannoksen jälkeen korreloivat merkittävästi 60-vuotiaiden ja sitä vanhempien miesten 6 vuoden CVD-ilmaantuvuuteen ja 12-vuotiseen CVD-kuolleisuuteen.

Sekä Helsingin poliisitutkimuksessa että Pariisin siviilipalveluksessa olevien tutkimuksessa paastotilassa otetun 75 g tai 90 g oraalisen glukoosiannoksen jälkeinen insuliinipitoisuuden kasvu korreloi infarkti- ja sydäntautikuolemiin 5 vuotta myöhemmin 30–59-vuotiailla miehillä.

Insuliini-glukoosisuhteella oli selvin yhteys sydän- ja verisuonitauteihin. Kaikissa kolmessa tutkimuksessa insuliinin suhde sydän- ja verisuonitautiin oli riippumaton muista muuttujista, kuten lipidit, verenpaine ja verensokeri.

Puhdistetun sokerin aiheuttama insuliinivaste on jopa tärkkelyksen insuliinivastetta suurempi. Tämä on vakuuttava osoitus siitä, että lisättyjen sokereiden (sakkaroosi sekä runsaasti fruktoosia sisältävä maissisiirappi) liiallinen käyttö voi johtaa lisääntyneeseen sydän- ja verisuonitautieriskiin kohonneiden insuliinitasojen kautta.

Insuliinin ja hiilihydraattehin rooliin aterogeneesissä viittaava näyttö on vahva. Tämä järjestelmä yhdistää ateroskleroosin diabetekseen, lihavuuteen, hyperlipidemiaan ja mahdollisesti verenpainetautiin. (Stout ja Vallance-Owen)

Yli 50 vuoden ajan on ollut tiedossa, että hyperkolesterolemiaa ja hyperlipatemiaa sairastavilla ihmisillä on yleensä epänormaali hiilihydraattien aineenvaihdunta. Kohonneet insuliinitasot johtavat usein hyperlipidemiaan.

Insuliinin on todettu lisäävän lipogeneesiä (glukoosin muuttamista triglyserideiksi, eli varastorasvaksi) ja stimuloivan sileiden lihassolujen lisääntymistä. Hyperinsulinemia on itsenäinen sydänsairauksien riskitekijä. Insuliiniresistenssi ennustaa hyvin kardiovaskulaarisia riskejä. Näin ollen kaikki ruokavalion tekijät, jotka heikentävät glukoosinsietokykyä tai edistävät insuliiniresistenssiä, lisäävät todennäköisesti myös akuutin infarktin, sydän- ja verisuonitautien (CHD) ja CHD-kuolleisuuden riskiä.

Runsaasti lisättyä sokeria (erityisesti teollisesti käsiteltyä fruktoosia) sisältävä ruokavalio johtaa insuliiniresistenssiin. Lisättyjen sokereiden liiallinen kulutus on vaikuttava tekijä CHD- ja CVD-kuolleisuudessa.

Ihmisillä, joiden ruokavaliossa päivittäisestä energiasta alle 10% saadaan lisätyistä sokereista, on lähes kolme kertaa pienempi sydän- ja verisuonitautien riski, kuin ihmisillä, joiden ruokavalio sisältää 25% tai enemmän energiaa lisätyistä sokereista.

Eläin- ja ihmistutkimuksissa on havaittu, että tärkkelyksen, glukoosin tai molempien yhdistelmän isokalorinen (yhtäläisen energiapitoisuuden) korvaaminen sakkaroosilla tai fruktoosilla lisää paastoinsuliinipitoisuutta, heikentää insuliiniherkkyyttä, lisää paastoglukoosipitoisuutta, lisää glukoosi- ja insuliinivasteita sakkaroosikuormitukseen ja vähentää solun insuliiniin sitoutumista.

Toisin sanoen kalori on kalori, mutta lisättyjen sokereiden kulutus on selvästi haitallisempaa kuin tärkkelys ja/tai glukoosi, koska lisätyt sokerit heikentävät insuliiniherkkyyttä ja glukoositoleranssia.

Rottien ruokinta sakkaroosilla johtaa heikentyneeseen glukoositoleranssiin ja rasvakudokseen, joka on vähemmän herkkä insuliinin vaikutuksille.Eläimiltä ja ihmisiltä saadut tiedot viittaavat siis siihen, että lisättyjen sokereiden liiallinen kulutus johtaa insuliiniresistenssiin ja hyperinsulinemiaan.

Akuutin sydäninfarktin aikana sydän siirtyy ensisijaisesta rasvahappojen käytöstä energiana glukoosin käyttämiseen. Koska insuliini helpottaa glukoosinottoa soluihin, insuliiniresistenttien potilaiden ennuste on huonompi.

Insuliiniresistenssin aste liittyy sydäninfarktin vakavuuteen. Sydäninfarktin saanet diabeetikot kuolevat todennäköisemmin kuin ei-diabeetikot. Runsas lisättyä sokeria sisältävä ruokavalio edistää insuliiniresistenssiä ja diabetesta, ja voi siten johtaa sydäninfarkteihin ja lisätä sydänkuolleisuuden riskiä.

Diabeetikoilla on suurempi sydäninfarktin, sydäntautien ja sydänkuolleisuuden riski kuin diabetesta sairastamattomilla. Tätä riskiä ei selitä muut muuttujat, kuten tupakointi, kolesteroli, verenpaine tai kehon rasvan jakautuminen.

Potilailla, joilla on diagnosoitu äskettäin diabetes, on myös suurempi sydäninfarktin riski. Diabeetikoilla on enemmän sepelvaltimoiden ateroskleroosia kuin ei-diabeetikoilla. Erityisesti vasemman sepelvaltimon kapeneminen ja parantuneiden transmuraalisten ventrikulaaristen arpien esiintymistiheys on diabeetikoilla verrokkeja yleisempää.

Framingham-tutkimus osoitti, että diabeetikoilla on likimäärin kolminkertainen riski kuolla sydän- ja verisuonitautiin verrattuna väestöön keskimäärin, sekä lisääntynyt aivohalvauksen, sydänsairauden ja perifeerisen valtimosairauden riski.

Korkeampi verenpaine tai korkeammat lipoproteiiniarvot eivät selitä sydänsairauden lisääntynyttä esiintyvyyttä diabeetikoilla

Runsaasti lisättyä sokeria sisältävän ruokavalion on osoitettu lisäävän diabeteksen esiintyvyyttä, kun taas vähäisempi sokerin saanti assosioituu pienempään diabetesriskiin.

Lisätyt sokerit edistävät insuliiniresistenssiä. Akuutin sydäninfarktiin kokevat ovat todennäköisemmin insuliiniresistenttejä. Lisättyjen sokereiden liiallinen kulutus on sydän- ja verisuonitautien riskitekijä.

Me olemme kasvaneet uskossa, että kohonnut kolesteroli selittää sydän- ja verisuonitautien syntymekanismia, mutta se ei suinkaan ole ainoa tai ehkä edes merkittävin riskitekijä.

Sydänsasairauksissa havaitaan kolesterolin ohella monia muita kliinisiä poikkeavuuksia, kuten kohonnut glukoosi (hyperglykemia), insuliini (hyperinsulinemia), triglyseridit, virtsahappo ja matalat korkean tiheyden lipoproteiinikolesterolin (HDL) tasot. Kaikki nämä CHD-riskitekijät aiheutuvat tai pahenevat ihmisillä ja eläimillä, kun he noudattavat runsaasti sokeria sisältävää ruokavaliota.

Lisättyjen sokereiden liiallinen kulutus on tärkein sydänsairauksien aiheuttaja

Korkean glykeemisen kuorman ruokavalion noudattaminen vain muutaman viikon ajan kasvatti sydäntautien ja perifeeristen verisuonitautien riskitekijöitä kolmanneksella tutkimukseen osallistuneista.

Tämä viittaa siihen, että sokerin liiallinen kulutus ja sitä seuraava insuliiniresistenssi ja / tai hyperinsulinemia lisäävät sydän- ja verisuonitautien sekä monien muiden sairauksien, kuten verenpainetaudin, diabeteksen, lihavuuden ja kihdin riskiä.

Mielenkiintoista on, että tupakoinnin, joka on sydänsairauksien riskitekijä, on todettu aiheuttavan hyperinsuliniaa, mikä viittaa siihen, että sekä lisättyjen sokereiden liiallinen kulutus että tupakointi altistavat sydänsairauksille samalla mekanismilla (hyperinsulinemian kautta; vaikka molemmat aiheuttavat myös inflammaatiota, oksidatiivista stressiä ja lisääntynyttä verihiutaleiden puuroutumista).

Viimeisten 200 vuoden aikana keskimääräinen lisättyjen sokerien saanti on kasvanut vajaasta kahdesta kilosta lähes 60 kiloon vuodessa. Se, että diabeetikoilla on kasvanut okklusiivisen valtimosairauden riski, ja että ei-diabeetikoilla, joilla on verisuonisairaus, on myös selvästi kohonneet insuliinitasot, viittaa siihen, että insuliiniresistenssilla on merkittävä vaikutus sydäntautien patogeneesissä.

Kun otetaan huomioon, että runsaasti lisättyä sokeria sisältävä ruokavalio voi aiheuttaa ihmisille insuliiniresistenssin ja hyperinsulinemian, ja toisaalta lisättyjen sokerien vähentäminen voi parantaa näitä aineenvaihdunnan häiriöitä, on vakuuttavaa näyttöä siitä, että lisättyjen sokereiden (runsaasti fruktoosia sisältävä maissisiirappi ja sakkaroosi) runsas saanti on keskeinen sydäntautien vaikuttaja.

Puhdistettu sokeri verrattuna rasvaan, tärkkelykseen, glukoosiin tai tärkkelyksen ja glukoosin yhdistelmään, edistää suurempia haittoja ihmisen glukoositoleranssille ja insuliiniherkkyydelle.

Vieläkin uskotaan, että tärkein ruokavalion sydän- ja verisuonitautien riskiä kasvattava yksittäinen ravintoaine on tyydyttynyt rasva. Lisättyjen sokerien (sakkaroosi- tai pöytäsokeri ja runsasfruktoosinen maissisiirappi) liialliseen kulutukseen liittyy myös lisääntynyt sydän- ja verisuonitautien riski sekä sydän- ja verisuonitaudeista johtuva kuolleisuus.

Korkean glykeemisen kuorman lisättyjä sokereita sisältävä ruokavalio kasvattaa sydäntautien riskitekijöitä jo muutaman viikon aikana. Vielä tärkeämpää on, että ruokavalion, jossa on vähän lisättyjä sokereita ja puhdistettuja hiilihydraatteja, on havaittu korjaavan nämä aineenvaihduntahäiriöt.

Todisteet osoittavat, että lisätyt sokerit kasvattavat sydän- ja verisuonitautien riskiä enemmän kuin tyydyttyneet rasvat, jotka itse asiassa ovat viimeisimpien tutkimusten mukaan sydänterveyden kannalta neutraaleja. Asiasta on siis vähintään kaksi perusteltua mielipidettä. Sokereiden haitallisuutta korostava näyttö on lisääntynyt ja tyydyttyneiden rasvojen maine on vastaavasti puhdistunut.




Insuliini ja terveys: Johdanto

95-vuotiaana kuollut tohtori Joseph Kraft teki lääkärinurallaan yli 14 000 sokerirasitustestiä, joiden rinnalla hän mittasi potilaidensa insuliinitasoja. Kraftin kliiniset havainnot johtivat insuliiniresistenssin tunnistamiseen. Hän osoitti myös, että alkavan diabeteksen voi havaita insuliinipitoisuuden ja insuliiniherkkyyden muutoksista jo ennen kuin sokerirasitustestit viittaavat diabetekseen.

25 vuotta kardiologina työskennellyt Nadir Ali kertoo, että korkeat kolesterolipitoisuudet ja kolesterolin kumuloituminen verisuoniin on insuliiniresistenssin biomarkkeri.

Entä jos kolesteroli ei ole sydän- ja verisuonitautien ensisijainen syy, vaan seuraus verisuonten vahingoittumisesta? Korkea verensokeri ja hyperinsulinemia vahingoittavat tunnetusti verisuonia.

Diabeetikoilla on poikkeuksellisen suuri sydän- ja verisuonitautien riski, sillä noin 70 % diabeetikoista kuolee sydän- ja verisuonitauteihin. Voisiko jatkuvasti korkea veren insuliinipitoisuus (hyperinsulinemia) selittää tämän?

Kraft arveli, että suurin osa sydän- ja verisuonitaudeista johtuu diagnosoidusta tai diagnosoimattomasta diabeteksesta. Oliko Kraft oikeassa?

”Those with cardiovascular disease not identified with diabetes… are simply undiagnosed.” – Joseph Kraft

Tutkimukset ovat sittemmin osoittaneet, että nsuliiniresistenssi ja hyperinsulinemia ovat itsenäisiä sydän- ja verisuonitautien riskitekijöitä. Lisääntyvä kliininen potilasnäyttö viittaa siihen, että Kraft oli oikeassa.

Insuliiniin palautuvat häiriötilat, insuliiniresistenssi ja hyperinsulinemia, vaikuttavat terveyteen paljon uskottua enemmän.

Insuliini

Insuliini on elintärkeä hormoni, josta puhutaan melkeinpä vain sokeriaineenvaihdunnan ja diabeteksen yhteydessä. Erityisesti tyypin 1 diabetesta sairastaville 1920-luvulla keksitty insuliinilääkitys on elämän ja kuoleman kysymys.

Tieto insuliinin tärkeydestä on diabeteksen ansiota, mutta kääntöpuolena on se, että diabeteksen vuoksi moni ei tiedä, että insuliinilla on elimistössä muitakin tehtäviä, kuin sokeriaineenvaihdunnan säätely. Insuliini on anabolinen hormoni, jota hyödynnetään enenevässä määrin doping-aineena. Sitä tarvitaan moniin aineenvaihduntatapahtumiin proteiinisynteesistä lipogeneesiin, eli läskisynteesiin.

Ennen kuin Frederic G. Banting, Charles H. Best ja J.J. Macleod löysivät insuliinin1921, tyypin 1 diabetes oli kuolemantuomio. Haiman Langerhansin insuliinia tuottavien betasolujen tuhoutuminen aiheutti sen, että diabeetikon elimistö ei pystynyt hyödyntämään ravintoa.

Ilman insuliinilääkitystä diabeetikot kuihtuivat ja kuolivat nälkään syödyn ravinnon määrästä riippumatta.


Haima: eksokriininen ja endokriininen osa

Haima tuottaa ruoansulatusnestettä, insuliinia ja insuliinin vastavaikuttajaa, glukagonia.

Haima muodostuu kahdesta kudostyypistä. Eksokriininen, eli avoeritteinen osa käsittää jopa 98 % haimasta. Eksokriininen kudos erittää ruoansulatusnesteitä haimatiehyen välityksellä pohjukaissuoleen.

Haimasta erittyy noin puolitoista litraa haimanestettä vuorokaudessa. Neste sisältää tiehytsolujen emäksistä eritettä ja rauhassolujen entsyymipitoista eritettä. Haimanesteen sisältämä natriumvetykarbonaatti neutraloi mahasta tulevan ruokasulan happamuutta.

Haimaneste sisältää ravinnon pilkkomisen kannalta tärkeitä entsyymejä:

Haimaneste sisältää myös trypsiininestäjää, joka estää trypsiiniä aktivoitumasta liian aikaisin niin, ettei se pilkkoisi elimistön omia proteiineja.

Haimanesteen eritystä ohjailevat pohjukaissuolen limakalvon vereen erittämät hormonit sekä parasympaattinen hermosto.

  • Hapan mahaneste saa pohjukaissuolessa aikaan sen, että vereen erittyy sekretiiniä, joka aiheuttaa natriumvetykarbonaattipitoisen haimanesteen erityksen tiehytsoluista
  • Rasvojen ja valkuaisaineiden pilkkoutumistuotteet saavat aikaan pankreotsymiinin eli kolekystokiniinin erityksen, joka taas aiheuttaa entsyymipitoisen haimanesteen erityksen

Haiman endokriininen osa

Umpieritteinen, eli endokriininen osa käsittää vain pari prosenttia koko haimasta. Endokriininen osa koostuu noin miljoonasta Langerhansin saarekkeesta (haimasaarekkeesta), jotka ovat levittäytyneet eri puolille haimaa.

Langerhansin saarekkeiden alfasolut erittävät glukagonia, beetasolut insuliinia ja deltasolut somatostatiinia, joka on kasvuhormonia hillitsevä hormoni. Lisäksi PP-solut tuottavat haiman polypeptidejä.

Katabolinen ja anabolinen aineenvaihdunta

Katabolinen aineenvaihdunta kuluttaa energiaa. Anabolinen aineenvaihdunta rakentaa lihasmassaa ja varastoi energiaa glykogeeneihin ja/tai rasvasoluihin.

Katabolisen aineenvaihdunnan aikana haiman erittämä glukagoni tehostaa maksan glykogenolyysiä ja maksassa (sekä munuaisten kuoriosassa) tapahtuvaa glukoneogeneesiä.

Glykogenolyysi pilkkoo tuhansista glukoosimolekyyleistä muodostuvia maksan ja lihasten sokerivarastoja (glykogeenejä) glukoosiksi. Lihassolujen glykogeeneistä pilkotut glukoosimolekyylit jäävät lihassolujen ravinnoksi.

Maksa erittää glykogeeneistä purettuja glukoosimolekyylejä vereen, jolloin verensokeri kohoaa.

Glukoneogeneesi valmistaa glukoosia mm. maitohaposta, rasvojen glyseroliosasta sekä eräistä aminohapoista. Tämä mekanismi ylläpitää elimistön glukoosihomeostaasia.

Glukagoni nostaa veren glukoosipitoisuutta silloin, kun ravinnon syömisetä on kulunut aikaa ja/tai kun ravintoa ei ole saatavilla (kuten paaston aikana). Glukagonin eritys alkaa, kun veren insuliinipitoisuus laskee riittävän matalaksi.

Katabolinen ja anabolinen aineevaihdunta vaihtelevat jatkuvasti

Katabolisessa aineenvaihdunnassa glukagoni ohjaa elimistön energiavarastojen purkamista ensiksi glukoosiksi ja myöhemmin yhdessä lipolyyttisten hormonien kanssa vapaiksi rasvahapoiksi.

Anabolisessa aineenvaihdunnassa insuliini ohjaa energiaravinteiden oksidaatiota ja varastoimista sekä proteiini- ja rasvasynteesiä.

Insuliini säätelee anabolista aineenvaihdutaa, jossa elimistöön varastoidaan enemmän energiaa kuin sitä kuluu. Anabolisen aineenvaihdunnan aikana insuliini toimii energia-aineenvaihdunnan kapellimestarina: se avaa solukalvot niin, että ravinteet pääsevät soluihin.

Kehon kaikki solut osaavat tuottaa glukoosista energiaa glykolyysissä. Suurin osa soluista (punasoluja paitsi) tuottaa energiaa glykolyysissä, sitruunahappokierrossa ja elektroninsiirtoketjussa.

Lihas- ja maksasoluissa glukoosista syntetisoidaan glykogeenejä, eli kymmenistä tuhansista glukoosimolekyyleistä muodostuvia sokerivarastoja.

Insuliinituotannon heikkeneminen tai sen loppuminen johtaa diabetekseen.

Mitä insuliini on?

Insuliini on haiman Langerhansin saarekkeiden betasolujen erittämä hormoni, joka säätelee mm. sokeriaineenvaihduntaa.

Insuliini on keskeinen vaikuttaja useissa aineenvaihduntareaktioissa. Insuliini ohjaa energiaravinteiden oksidaatiota ja varastoimista. Se säätelee sekä hiilihydraattien että rasvojen energia-aineenvaihduntaa ja sillä on keskeinen rooli proteiinien ja mineraalien aineenvaihdunnassa.

Insuliinisignallointi vaikuttaa merkittävällä tavalla monien elinten ja kudosten toimintaan.

Tyypin 1 diabetes on autoimmuunitauti, jossa kehon immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden betasoluja. Näin haiman kyky tuottaa insuliinia heikkenee ja loppuu. Aikuistyypin diabeteksessa solujen insuliiniherkkyys häiriintyy, jolloin insuliinin teho heikkenee.

Insuliini on proteiinihormoni, jonka reseptorit sijaitsevat solukalvoilla. Reseptorit muodostuvat kahdesta disulfidisidoksen liittämästä alfa-alayksiköstä ja kahdesta beta-alayksiköstä.

Insuliinimolekyylit kiinnittyvät solunulkoisiin alfaketjuihin, jotka puolestaan läpäisevät solukalvon ja yhdistyvät solunsisäisiin betaketjuihin.

Insuliinin synteesi ja eritys

Insuliini on pieni kahdesta disulfidisidoksen yhdistämästä ketjusta muodostuva proteiini. Selkärankaisten insuliinin aminohapposekvenssi on erittäin konservoitunut (pysynyt eri lajeilla samanlaisena), joten yhden nisäkkään erittämä insuliini on yleensä biologisesti aktiivinen myös muilla nisäkkäillä. Vielä nykyäänkin monia diabetesta sairastavia potilaita hoidetaan sian haimasta saadulla insuliinilla.

Insuliinin biosynteesi

Insuliinia syntetisoidaan haiman betasoluissa. Insuliinin mRNA muunnetaan yksiketjuiseksi esiasteeksi, jota kutsutaan preproinsuliiniksi, ja sen signaalipeptidin poisto endoplasman verkkokalvoon insertoinnin aikana tuottaa proinsuliinia.

Proinsuliini muodostuu kolmesta jaksosta:

  • aminoterminaalinen B-ketju
  • karboksiterminaali A-ketju
  • C-peptidi, joka yhdistää edellisiä

Endoplasmisessa verkkokalvossa proinsuliini altistetaan useille erityisille endopeptidaaseille, jotka leikkaavat C-peptidin, jolloin muodostuu kypsän insuliinin rakenne. Insuliini ja vapaa C-peptidi pakataan Golgin laitteen eritysrakkuloihin, jotka kertyvät sytoplasmaan.

Kun betasolua stimuloidaan, insuliini erittyy solusta eksosytoosin avulla ja sekoittuu saarekkeen kapillaarivereksi. C-peptidi erittyy myös vereen, mutta sillä ei ole tunnettua biologista aktiivisuutta.

Insuliinin rakenne

Insuliini muodostuu kahdesta peptidiketjusta, joihin viitataan A- ja B-ketjuina. A- ja B-ketjut kytkeytyvät toisiinsa kahdella disulfidisidoksella, ja A-ketjussa muodostuu ylimääräinen disulfidi.

Useimmilla nisäkkäillä insuliinin A-ketju koostuu 21 aminohaposta ja B-ketju 30 aminohaposta. Vaikka insuliinin aminohapposekvenssi vaihtelee lajeittain, molekyylin tietyt segmentit ovat erittäin konservoituneita. Erityisesti kolmen disulfidisidoksen asemat, A-ketjun molemmat päät ja B-ketjun C-terminaaliset tähteet vastaavat useilla lajeilla toisiaan. Nämä samankaltaisuudet insuliinin aminohapposekvenssissä johtavat insuliinin kolmiulotteiseen konformaatioon, joka on hyvin samanlainen lajien välillä.

Yhden eläimen insuliini on hyvin todennäköisesti biologisesti aktiivista muilla lajeilla

Sian insuliinia on käytetty laajalti ihmispotilaiden hoidossa. Insuliinimolekyyleillä on taipumus muodostaa dimeerejä liuoksessa johtuen vety-sitoutumisesta B-ketjujen C-päiden välillä. Lisäksi sinkki-ionien läsnä ollessa insuliinidimeerit sitoutuvat heksameereiksi.

Näillä vuorovaikutuksilla on merkittäviä kliinisiä seurauksia. Monomeerit ja dimeerit sekoittuvat (diffundoituvat) helposti vereksi, kun taas heksameerit diffundoituvat huonosti. Siksi suurta osaa heksameerejä sisältävien insuliinivalmisteiden imeytyminen on hidasta. Tämä havainto on stimuloinut useiden rekombinanttien insuliinianalogien kehitystä.

Ensimmäinen tällaisista molekyyleistä – lisproinsuliini – on suunniteltu siten, että lysiini- ja proliinitähteet B-ketjun C-terminaalisessa päässä ovat päinvastaiset; tämä modifikaatio ei muuta reseptoriin sitoutumista, mutta minimoi taipumuksen muodostaa dimeerejä ja heksameerejä.

Insuliinin erityksen hallinta

Insuliinin eritystä säätelee erityisesti veren glukoosipitoisuuden muutokset. Tämä on perusteltua, koska insuliini säätelee glukoosin pääsyä solukalvon läpi soluihin.

Eräät hermoston ärsykkeet (esim. ruoan näkeminen, haistaminen ja maistaminen) sekä muiden energiaravinnemolekyylien, aminohappojen ja rasvahappojen lisääntyneet veripitoisuudet lisäävät myös insuliinin eritystä, mutta selvästi vähemmän kuin glukoosi.

Tieto insuliinin erityksen taustalla olevista mekanismeista on edelleen hajanaisia. Aineenvaihduntaprosessin tietyt piirteet on kuitenkin osoitettu selvästi ja toistuvasti, mikä antaa seuraavan mallin:

  • Glukoosi kuljetetaan beetasoluun helpotetun diffuusion avulla glukoosin kuljettajamolekyylin (GLUT4) kautta; kohonneet glukoosipitoisuudet solunulkoisissa nesteissä johtavat kohonneisiin glukoosipitoisuuksiin beetasolussa.
  • Kohonnut glukoosipitoisuus beetasolussa vaikuttaa solukalvon depolarisaatioon, eli solukalvon jännitteen purkautumiseen ja solunulkoisen kalsiumin soluun pääsyyn.Kalsiumin lisääntyminen solussa on yksi insuliinia sisältävien eritysrakkuloiden (granuloiden) ensisijaisista laukaisijoista. Mekanismeja, joilla beetasolun kohonnut glukoosipitoisuus aiheuttaa solukalvojen jännitteen purkamisen (depolarisaation), ei täysin tunneta, mutta ne näyttävät johtuvan glukoosin ja muiden solun sisällä olevien energiaravinemolekyylien aineenvaihdunnasta.Tähän reaktioon voi vaikuttaa myös ATP:ADP-suhde, joka vaikuttaa solukalvon läpäisevyyteen.
  • Beetasolujen lisääntynyt glukoosipitoisuus näyttää myös aktivoivan kalsiumista riippumattomia reittejä, jotka osallistuvat insuliinin eritykseen.


Haiman insuliinivaste voidaan tarkistaa helposti. Ihmisillä ja useilla nisäkkäillä normaali paastoverensokeripitoisuus on 4,5-5,5 mmol /l, mikä assosioituu vähäiseen insuliinin eritykseen.

Glukoosin infuusiolla (glukoosin tiputuksella vereen) haiman insuliinivatetta tai insuliinin erittymistä voidaan mitata

Melkein heti glukoosiinfuusion jälkeen plasman insuliinipitoisuudet kohoavat dramaattisesti. Tämä pitoisuuden kohoaminen johtuu ennalta muodostetun insuliinin erityksestä. Valmis insuliini kuitenkin ehtyy nopeasti.

Toissijainen insuliinipitoisuuden kohoaminen heijastaa välittömästi erittyvää vasta syntetisoitua insuliinia. Kohonnut glukoosi vaikuttaa insuliinin erityksen lisäksi myös insuliinigeenin transkriptioon ja sen mRNA:n translaatioon.

Insuliinireseptori on tyrosiinikinaasi. Se toimii entsyyminä, joka siirtää fosfaattiryhmät ATP:stä solun sisäisten kohdeproteiinien tyrosiinitähteisiin.

Insuliinin sitoutuminen alfa-alayksiköihin saa beeta-alayksiköt fosforyloimaan itsensä (autofosforylaatio) aktivoiden siten reseptorin katalyyttisen aktiivisuuden. Aktivoitu reseptori fosforyloi sitten useita solunsisäisiä proteiineja, mikä puolestaan muuttaa niiden aktiivisuutta ja tuottaa siten biologisen vasteen.

Useat solunsisäiset proteiinit on tunnistettu insuliinireseptorin fosforylaatiosubstraateiksi. Näistä tunnetuin ja tutkituin on insuliinireseptorisubstraatti 1 tai IRS-1. Kun IRS-1 aktivoidaan fosforylaatiolla, tapahtuu useita asioita.

IRS-1 toimii muun muassa telakointikeskuksena muiden insuliinin vaikutuksia välittävien entsyymien rekrytoinnissa ja aktivoinnissa.

Glukoosia saadaan hiilihydraateista ohutsuolessa tapahtuvan hydrolyysin avulla. Glukoosi imeytyy ohutsuolesta verenkiertoon.

Kohonnut veren glukoosipitoisuus stimuloi insuliinin eritystä. Insuliini vaikuttaa soluihin kehon ulkopuolella stimuloiden glukoosin imeytymistä, käyttöä ja varastointia. Insuliinin vaikutukset glukoosimetaboliaan vaihtelevat kohdekudoksesta riippuen. Kaksi tärkeää vaikutusta ovat:

  1. Insuliini helpottaa glukoosin pääsyä lihas- ja rasvasoluihin sekä muihin kudoksiin. Ainoa mekanismi, jolla useimmat solut voivat ottaa glukoosia, on helpotettu diffuusio heksoosikuljettajaperheen kautta.Monissa kudoksissa glukoosin ottoon käytetty kuljettajamolekyyli (GLUT4) on insuliinin vaikutuksesta saatavilla plasmakalvossa.Alhaisilla insuliinipitoisuuksilla, GLUT4-glukoosinkuljetusmolekyylejä on solujen sytoplasmisissa rakkuloissa.Insuliinin kiinnittyminen solujen insuliinireseptoreihin johtaa näiden rakkuloiden plasmakalvoon fuusioitumiseen ja GLUT4-kuljetusmolekyylien esiintyöntymiseen, mikä antaa solulle mahdollisuuden ottaa glukoosia tehokkaasti solun sytoplasmaan.

    Kun veren insuliinitasot laskevat ja insuliinireseptorit eivät enää ole käytössä, glukoosinkuljettajat kierrätetään takaisin sytoplasmaan.

    On eräitä sellaisia kudoksia, jotka eivät edellytä insuliinia tehokkaaseen glukoosinottoon: tällaisia ovat aivot ja maksa.

    Tämä johtuu siitä, että nämä solut eivät käytä GLUT4-kuljetusmolekyylejä glukoosin tuontiin, vaan toista kuljetusmolekyyliä, jonka aktivaatio ei vaadi insuliinia.

  2. Insuliini stimuloi maksaa varastoimaan glukoosia glykogeeneiksi. Suuri osa ohutsuolesta imeytyneestä glukoosista imeytyy välittömästi maksasoluihin, jotka muuttavat sen varastointipolymeeriglykogeeniksi.Insuliini stimuloi glykogeenisynteesiä maksassa monin tavoin. Ensinnäkin insuliini aktivoi heksokinaasientsyymin, joka fosforyloi glukoosin, vangitsemalla sen soluun.Samalla insuliini estää glukoosi-6-fosfataasin aktiivisuutta. Insuliini aktivoi entsyymejä, jotka osallistuvat suoraan glykogeenisynteesiin:- fosfofruktokinaasi
    – glykogeenisyntaasi

    Vaikutus on selvä: kun glukoosia on runsaasti saatavilla, insuliini ”käskee” maksaa tallentamaan mahdollisimman suuren määrän glukoosia myöhempää käyttöä varten.

  3. Insuliini vähentää glukoosipitoisuutta veressä, mikä on ymmärrettävää ottaen huomioon edellä kuvatut mekanismit.Toinen tärkeä huomio on, että verensokeripitoisuuden laskiessa insuliinin eritys vähenee.Jos veren insuliinipitoisuus laskee, suurin osa kehon soluista ei pysty ottamaan glukoosia energiakäyttöön. Näiden solujen on siirryttävä käyttämään vaihtoehtoisia polttoaineita, kuten rasvahappoja.Kun veren insuliinipitoisuus laskee, maksan glykogeenisynteesi vähenee ja glykogeenin hajoamisesta vastaavat entsyymit aktivoituvat.

    Glykogeenin hajoamista stimuloi paitsi insuliinipitoisuudern lasku, myös glukagoni, jota erittyy, kun verensokeritaso laskee normaalin pitoisuuden alle.

Insuliinin ja lipidien aineenvaihdunta

Aineenvaihduntareitit rasvojen ja hiilihydraattien hyödyntämiseksi ovat monimutkaisia. Insuliinin vaikutukset hiilihydraattien aineenvaihduntaan ovat kiistattomasti osoitettu ja elintärkeä.

Insuliinilla on myös merkittäviä vaikutuksia lipidien aineenvaihduntaan, mukaan lukien seuraavat:

  1. Insuliini edistää rasvahappojen synteesiä maksassa. Insuliini stimuloi glykogeenin synteesiä maksassa. Kun glykogeenivarastojen koko kasvaa suureksi (noin 5% maksan massasta), synteesi jatkuu tukahdutettuna.Kun maksan glykogeenivarastot ovat täyttyneet, kaikki maksasolujen ottama ylimääräinen glukoosi siirtyy aineenvaihduntareitille, joka johtaa rasvahappojen synteesiin. Rasvahappoja viedään maksasta lipoproteiineina (esim. LDL, HDL). Lipoproteiinit kuljettavat vapaita rasvahappoja ja kolesterolia maksasta verenkierron välityksellä muihin kudoksiin. Esimerkiksi adiposyyteissä, eli rasvasoluissa, lipoproteiinien kuljettamat vapaat rasvahapot syntetisoidaan triglyserideiksi.
  2. Insuliini estää triglyseridien purkamista rasvakudoksesta estämällä solunsisäistä lipaasia, joka hydrolysoi triglyseridejä rasvahappojen vapauttamiseksi. Toisin sanoen insuliini on lipolyysin estäjä.
    Veren korkea insuliinipitoisuus estää rasvasolujen purkamisen vereen vapaiksi rasvahapoiksi, joita maksa voi muuttaa energiaksi kelpaaviksi ketoaineiksi.

    Insuliini myös helpottaa glukoosin pääsyä rasvasoluihin. Rasvasoluissa glukoosia voidaan käyttää glyserolin syntetisoimiseksi.

    Lipogeneesissä glyseroliin liitetääna vapaita rasvahappoja, jolloin rasvasoluun muodostuu triglyseridejä – kolmesta rasvahappoketjusta ja glyseroliosasta koostuvia rasvamolekyylejä.

    Yllä kuvattujen mekanismien avulla insuliini lisää triglyseridien eli rasvan kertymistä rasvasoluihin, ja rasvasolujen purkamista verenkiertoon.

    Elimistössä insuliinilla on rasvaa säästävä vaikutus

    Paitsi että insuliini ohjaa useimpia soluja hapettamaan ensisijaisesti hiilihydraatteja rasvahappojen sijaan, se stimuloi epäsuorasti rasvan kertymistä rasvakudokseen.

Insuliinin muita vaikutuksia

Sen lisäksi, että insuliini vaikuttaa glukoosin soluihin viemiseen ja rasva-aineenvaihduntaan, se stimuloi myös aminohappojen imeytymistä, mikä osaltaan edistää insuliinin yleistä anabolista vaikutusta.

Insuliini lisää myös solujen läpäisevyyttä kalium-, magnesium- ja fosfaatti-ioneille. Vaikutus kaliumiin on kliinisesti tärkeä.

Insuliini aktivoi natrium-kalium-ATPaaseja monissa soluissa aiheuttaen kaliumvirtauksen soluihin. Tietyissä olosuhteissa insuliinin injektio voi tappaa potilaan, koska se kykenee tukahduttamaan plasman kaliumpitoisuuden.

Tämä oli johdanto insuliinia käsittelevään artikkelisarjaan. Tulevissa katsannoissa avaan täsmällisemmin insuliinin toimintaa ja merkitystä aineenvaihdunnan ja terveyden säätelijänä.




Ruokasotaa ja anarkiaa osa 3

Diet Heart-hypoteesin jälkeinen ravitsemuspolitiikka hukutti kuluttajat kelvottomaan teolliseen mönjään ja väitti monityydyttämätöntä hydrattua mönjää sydänterveyttä edistäväksi rasvaksi. Kovat tyydyttyneet rasvat voivat olla mainettaan parempia.

Ruokasotaa ja anarkiaa osa 3 jatkaa ravinnosta räksytyttämistä, annettujen tosiasioiden kyseenalaistamista ja ravitsemussuositusten solvaamista. Suhtaudun ravintoon aiheellisen asenteellisesti.

Tiesitkö, että

  • Ranskassa syödään enemmän tyydyttyneitä rasvoja, kuin missään muussa Euroopan maassa, mutta ranskalaisilla esiintyy vähiten sydäntauteja Euroopassa.
  • Ranskalaisten jälkeen sveitsiläiset syövät toiseksi eniten tyydyttyneitä rasvoja. Vastaavasti sveitsiläisten sydäntautikuolleisuus on toiseksi matalin Euroopassa.
  • Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautien ja sydäntautikuolleisuuden esiintyvyys on alhaisinta.
  • Vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä Euroopassa.

Edelliset tilastolliset tosiasiat eivät todista, että tyydyttyneet ravat olisivat terveellisiä. Tällaiset tilastot ovat ns. ekologista dataa, johon voi vaikuttaa sadat tai tuhannet tunnistetut ja tunnistamattomat muuttujat. Näistä ei saa vetää hätiköityjä johtopäätöksiä. Havainnot julkaisi British Journal of Nutrition.

Ne ovat kuitenkin tosiasioita, jotka osoittavat, että ravintosuositusten ja todellisuuden välillä on kiusallinen ristiriita.

Miksi niissä maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautikuolleisuus on vähäistä, kun niissä maissa, joissa syödään eniten pehmeitä ja terveellisiä monityydyttämättömiä kasvirasvoja, sydäntautikuolleisuus on Euroopan korkeinta. Se on hämmentävää.

Tällaiset tosiasiat eivät mahdu ravitsemussuosituksiin. Mikä tällaisen selittäisi?

Aikahyppy

1950-luvulla amerikkalainen tutkija, Ancel Keys päätyi hypoteesiin, jonka mukaan kolesteroli ja tyydyttyneet eläinrasvat selittävät valtimonkovettumatautia.

Ensin tieteellinen yhteisö huvittui Keysin absurdeista väitteistä, mutta seitsemän maan tutkimus sai joidenkin tutkijoiden silmät avautumaan. Entä jos Keys on oikeassa?

Sydäntautikuolleisuus oli lisääntynyt Yhdysvalloissa kiihtyvästi 1900-luvun alusta alkaen, mutta syytä ilmiölle ei tunnettu. Sydänkohtauksia oli ilmassa, kortisolia veressä ja paniikin hajua kongressin käytävillä. Jotain pitäisi kai tehdä!

Jo 1950-luvulla saatiin osviittaa siitä, että runsas sokereiden saanti assosioituu sydän- ja verisuonitautien lisäksi moniin syöpiin. Tämä havahdutti sokeriteollisuuden johtajat. Sugar Research Foundation ei piitannut tutkimuksista tai terveydestä, mutta sokeriteollisuuden voitot piti turvata ja maksimoida. Business as usual!

Poliittinen ilmasto muuttui eläinrasvojen vastaiseksi 1960- ja 1970-luvuilla. Yleiseen mielialaan vaikuttivat sokeriteollisuuden aggressiivinen lobbaus Washingtonissa ja ja tyydyttyneitä rasvoja mustamaalaava tutkimus, jonka Sugar Research Foundation rahoitti.

Ancel Keysin teoria vaikutti hyväksyttävältä ja se sai taakseen vaikutusvaltaisia tukijoita ja tutkijoita.

Keys tarjosi yksinkertaisen ratkaisun: jos eläinrasvat ja kolesteroli aiheuttavat sydän- ja verisuonitauteja, eläinrasvojen ja kolesterolin kulutuksen vähentäminen väestötasolla laskee sydän- ja verisuonitautien esiintyvyyttä väestötasolla. Ihmisiä pitäisi kehottaa välttämään rasvaa ja erityisesti kovia eläinrasvoja.

Sugar Daddy Cool

Tyydyttyneiden rasvojen haittoja korostava näkemys sopi mainiosti Mark Hegstedille, joka oli kansallisten ravitsemussuositusten laatimisen aikaan (1977) Yhdysvaltojen maatalousministeriön ravitsemusasioista vastaava johtaja.

Kymmenen vuotta aikaisemmin Hegsted toimi tutkijana Harvardissa. Hän oli yksi niistä kolmesta tutkijasta, jotka Sugar Research Foundation (Sugar Association) palkkasi nykyrahassa 49 000 dollarin korvausta vastaan kirjoittamaan sokereiden haittoja vähättelevän ja eläinrasvojen haittoja liioittelevan tutkimuksen sokeriteollisuuden kokoaman aineiston pohjalta. Maatalousministeriön kansalaisille laatimat yleiset ravitsemussuositukset olivat Hegstedin vastuulla. Lue tästä.

Suositusten läpimeno Yhdysvalloissa perustui enemmänkin aggressiiviseen lobbaukseen ja politiikkaan kuin tieteesen ja terveyteen.

Kansikuvapoika ja ravitsemustieteen supertähti

Keys oli ravitsemustieteen kansikuvapoika ja aikalaisten palvoma komea ja karismaattinen supertiedemies. Seitsemän maan tutkimuksessa seurattiin kahdenkymmenenkahden maan rasvalla lotraamista, mutta vain ne seitsemän maata, joissa lotrattiin paljon tyydyttyneillä rasvoilla ja kuoltiin riittävän usein sydäntauteihin, täyttivät Keysin vaatimukset tyydyttyneiden rasvojen vaaroista. Tällaista tutkimusmetodia kutsutaan ”kirsikoiden poimimiseksi” (cherry picking).

Keys poimi tutkimusaineistosta vain alkuperäistä hypoteesiaan tukevat tulokset (kirsikat) ja sivuutti tulokset, jotka olivat ristiriidassa hypoteesin kanssa. Näin lopullisessa tutkimuksessa tutkimusaineistosta hylättiin yli puolet. Jos koko Keysin tutkimusaineisto analysoidaan, tutkimuksen johtopäätökset muuttuvat.

Tarkemmin analysoituna Keysin aineisto osoittaa, että sydäntautien ja sokerin korrelaatio on vahvempi kuin sydäntautien ja tyydyttyneiden rasvojen korrelaatio, mutta sellainen mahdollisuus ei sopinut Keysin todellisuuteen. Se hylättiin.

Keysin alkuperäinen data sisältää mielenkiintoisia havaintoja. Tyydyttyneiden rasvojen saanti Ranskassa oli samalla tasolla tai korkeampi kuin Suomessa, mutta sydäntautikuolleisuuden esiintyvyys oli Ranskassa hyvin alhainen. Tämä ilmiö tunnetaan ranskalaisena paradoksina.

Ranska on mielenkiintoinen kuriositeetti muutenkin. Runsaasta tyydyttyneiden rasvojen kulutuksesta huolimatta simerkiksi ärtyvän suolen oireyhtymä, närästys ja sydäntaudit ovat selvästi harvinaisempia Ranskassa, kuin Suomessa ja Yhdysvalloissa.

Myös muissa pohjoismaissa tyydyttyneitä rasvoja syötiin enemmän kuin Suomessa, mutta sydäntautien esiintyvyys ja sydäntautikuolleisuus oli Suomeen verrattuna vähäistä. Kuinka se voi olla mahdollista, jos tyydyttyneet rasvat aiheuttavat sydäntauteja?

Rasvateorian kritiikki

Rasvan ja erityisesti tyydyttyneiden rasvojen saannin vähentämistä suosittava diet-heart-hypoteesi on ollut ankaran kiistelyn kohteena vuosikymmenten ajan.

Vähärasvainen ja runsaasti hiilihydraatteja sisältävä ruokavalio, jollaista Yhdysvaltojen kansalliset terveysjärjestöt (NCEP, NIH ja AHA) ovat suositelleet vuoden 1984 LCR-CPPP:n (Lipid Research Clinics-Primary Prevention Program) ja Yhdysvaltojen maatalousministeriön 1977 julkaisemien ravintosuositusten jälkeen, saattoi hyvinkin osaltaan vaikuttaa nykyisten elintapasairauksien nopeaan yleistymiseen.

Aikuistyypin diabetes, lihavuus, metabolinen oireyhtymä ja erilaiset suolistosairaudet lähtivät laukalle 1980-luvun alussa. Miksi? Voisiko liika sokerinsaanti selittää elämäntapasairauksien epidemiaa?

Sydäntautien esiintyvyys ja sydäntautikuolleisuus ovat hieman laskeneet. Lasku voidaan selittää esimerkiksi tupakoinnin ja ilmansaasteiden vähenemisellä, vähäisemmällä altistumisella terveydelle haitallisille kemikaaleille sekä paremmilla lääkkeillä ja tehokkaammilla hoitomuodoilla.

Sydäntautikuolleisuuden lasku selitetään nimenomaasn tyydyttyneiden rasvojen käytön vähenemisen seurauksena ja sillä perustellaan yhä tyydyttyneiden rasvojen välttämiseen kehottavia toimia.

Esimerkiksi Pekka Puskan mukaan Pohjois-Karjala-projekti pelasti neljännesmiljoona suomalaista. Se on roskaa, sillä sydäntaudit olivat kääntyneet laskuun jo ennen Pohjois-Karjala-projektia, ja laskivat nopeammin Länsi-Suomessa, joka ei ollut interventiotutkimuksen piirissä!

Tyydyttyneiden rasvojen ja hiilihydraatteja rajoittavien ruokavalioiden haittoja korostavaa narratiivia ruokitaan jatkuvasti uusilla absurdeilla valheilla: insuliiniresistenssi ja aikuistyypin diabetes ovat viimeisimpien mielikuvituksellisten satujen mukaan seurausta tyydyttyneistä rasvoista ja – Herra tietää – karppaamisesta.

Tyydyttyneiden rasvojen tuotanto, käyttö ja myynti ovat laskeneet tasaisesti 1980-luvulta alkaen. Samaan aikaan monityydyttämättömien kasvirasvojen ja hiilihydraattien kulutus on lisääntynyt. Vaikka runsasenergisten rasvojen saanti kääntyi 1980-luvulla laskuun, amerikkalaisten kaloreiden saanti lisääntyi huomattavasti.

Kaloreiden saannin kasvu USA:ssa

Ketogeenistä ruokavaliota noudattavia on kourallinen maailman ihmisistä, mutta diabetesta sairastaa jo lähes 10 % maailman väestöstä, ja suurin osa diabetesta sairastavista ei karpannut sairastuessaan. Väite siitä, että ketogeeninen ruokavalio lisäisi insuliiniresistenssin ja diabeteksen riskiä esiteltiin taannottain erään iltapäivälehden terveyssivuilla. Se on epätieteellistä roskaa.

Tällaisen epätieteellisen roskan mukaan kaikki karppaaminen on saatanasta.

Ketoilusta maalataan käsittämättömiä kauhukuvia. Syy voi olla se, että ketoilu uhkaa perinteisten ravitsemussuositusten legitimiteettiä. Ketoilu on anarkismia, jossa valistuneet yksilöt uskaltavat kyseenalaistaa norsunluutorneissa elävien viranomaisten antamien ohjeiden legitimiteettiä.

Maailmassa jo yli 10 000 lääkäriä hoitaa lihavuutta ja aikuistyypin diabetesta ketogeenisellä ruokavaliolla. Pelkästään Kanadassa on yli 4000 naistentautien lääkäriä, jotka suosittelevat potilailleen vähän hiilihydraatteja ja runsaasti rasvaa sisältävää ruokavaliota. Jatkuvasti kasvava evidenssi tukee tätä lähestymistapaa. Valitettavasti vakiintuneet paradigmat kumoutuvat hitaasti.

Ketogeenisen ruokavalion terveyshyötyjä osoittavia kontrolloituja satunnaistettuja tutkimuksia julkaistaan kiihtyvällä tahdilla, mutta ne tunnetaan yhä valitettavan huonosti.

Surulliset tilastot

Maailman terveysjärjestön (WHO) raportin mukaan lihavien määrä on kolminkertaistunut vuoden 1975 jälkeen. Jopa 39 % kaikista aikuisista (n.1,9 miljardia) oli ylipainoisia 2016. Ylipainoisista lihavia oli yli 650 miljoonaa. 340 miljoonaa lasta ja nuorta (5-19) ja 38 miljoonaa alle 5-vuotiasta oli ylipainoisia tai lihavia vuoden 2016 raportin mukaan.

Lihavuus tappaa enemmän ihmisiä kuin nälkä

Diabetesta sairastavien määrä on kasvanut 108 miljoonasta (1980) 422 miljoonaan (2014). Taudin esiintyvyys lähes tuplaantui 4,7 % > 8,5 %. Vuosien 2000 ja 2016 kuolleisuus diabetekseen kasvoi 5 %.

Diabetes aiheuttaa mm. sokeutta, munuaissairauksia ja sydän- ja verisuonitauteja. Vuonna 2016 diabetes oli globaalisti seitsemänneksi yleisin kuolinsyy.

Insuliiniresistenssin tunnistanut tri Joseph Kraft uskoi, että lähes kaikki sydän- ja verisuonitaudit johtuvat diagnosoidusta tai diagnosoimattomasta diabeteksesta.

Sydän- ja verisuonitaudit ovat ”terveelliseen” mönjään siirtymisestä huolimatta yhä maailmanlaajuisesti yleisin kuolinsyy.

Sydäntautikuolleisuus on hitaasti laskenut, mutta lasku voidaan selittää mm. tupakoinnin vähenemisellä, aiempaa paremmilla lääkkeillä ja hoitojen kehittymisellä.

Diabeetikoista suurin osa sairastuu ja kuolee sydän- ja verisuonitauteihin

Ehkä Kraft oli oikeassa? Aikuistyypin diabetes voi olla paljon laajempi ongelma kuin halutaan tunnustaa.

Diabetes ei ole vain kansanterveydellinen ongelma, vaikka se on todennäköisesti tärkein sydän- ja verisuonitaudeille altistava riskitekijä. Aikuistyypin diabetes on myös kansantaloudellinen ongelma, jonka kustannukset syövät leijonanosan terveydenhoitomenoista ja -resursseista.

Kraft on purkanut pitkän lääkärinuransa aikana hyperinsulinemiaa ja osoittanut kuinka jatkuvasti koholla oleva insuliini (hyperinsulinemia) altistaa sydän- ja verisuonitaudeille. Tämä ei voi olla yllätys, kun tiedetään, että diabetes vahingoittaa verisuonia ja on yleisin syy verenkiertohäiriöistä johtuville raajojen amputaatioille. Jatkuvasti korkea verensokeri ja insuliini vahingoittavat verisuonia ja elimiä.

Vähärasvaisia ravintosuosituksia ei voi perustella ohjeilla, jotka nojaavat auttamattomasti vanhentuneeseen dataan ja epäluotettaviin tutkimuksiin.

Kasvava kliininen näyttö kiistää opit tyydyttyneiden rasvojen haitoista ja monityydyttämättömien rasvojen eduista. Vahvistuva näyttö osoittaa, että paljon parjattu vähän hiilihydraatteja sisältävä ruokavalio on paljon mainettaan parempi. Se on tutkimusten valossa tehokas tapa hoitaa lihavuutta, metabolista oireyhtymää, aikuistyypin diabetesta ja verenpainetautia.

Ketogeeninen ruokavalio vähentää elimistön hiljaista tulehdusta, joka assosioituu lähes kaikkiin nykyisiin sairauksiin. Viimeaikainen näyttö viittaa siihen, että ketogeeninen ruokavalio voi hillitä Covid-19-tautiin liittyvää sytokiinimyrskyä. Lue tästä. Aihetta tutkitaan ja palaan siihen myös Ruokasodassa.

Enemmän monityydyttyneitä rasvoja, enemmän sydäntauteja

Ancel Keysin kokoaman aineiston olisi pitänyt herättää kriittisiä kysymyksiä jo viime vuosisadalla. Hypoteesin heikkouksia ei korjattu. Seitsemn maan tutkimus vahvisti mielikuvaa tyydyttyneiden rasvojen ja kolesterolin haitoista, vaikka tutkimuksesta johdetut päätelmät vuotavat kuin seula. Surullista kyllä, se on ravitsemussuositusten perusta.

Diet-heart-hypoteesi juntattiin ravitsemustieteen perustaksi kirsikoita poimimalla ja tutkimusaineistoa manipuloimalla.

Ranskalainen paradoksi on eurooppalainen paradoksi, joka ei oikeastaan ole paradoksi lainkaan, jos hyväksytään, ettei tyydyttyneet rasvat ole sydäntautien tärkein syy.

Ranskalaiset syövät paljon tyydyttyneitä rasvoja, mutta eivät sairastu tai kuole sydäntauteihin samassa suhteessa kuin vähemmän tyydyttyneitä rasvoja syövät. Kuinka se on mahdollista?

Ehkäpä ranskalaisten sydänterveyden perusta on punaviinin sisältämä resvetratoli?

Tehtyä virhettä on piiloteltu vuosikymmeniä. On helpompi keksiä erilaisia hassuja meriselityksiä ranskalaiselle paradoksille, kuin myöntää, että rasvojen suhteen tehtiin virhe, joka on vaikuttanut negatiivisesti satojen miljoonien ihmisten terveyteen.

Punaviini ehkäisee sydäntauteja ja syöpiä Ranskassa yhtä todennäköisesti kuin Koskenkorva ehkäisee alkoholismia Suomessa. Riittävä määrä kossua poistaa alkoholismin luonnollisen poistuman kautta. Ehkä meidän kaikkien pitäisi juoda enemän punaviiniä tai kossua ja sairastua maksakirroosiin ranskalaisten tapaan.

Resveratroli on tärkeä antioksidantti. Sydänterveydelle hyödylliset vaikutukset edellyttäisivät annostusta, jonka saa 400 viinilasillisesta. Kyllä minä kannatan punaviinin juomista, mutta ei se sydäntäni suojaa, paitsi sydänsuruilta.

On hyväksyttävä mahdollisuus, että tyydyttyneet rasvat eivät ole sydäntautien pääasiallinen syy. Jos sydäntauteja aiheuttaa jokin muu tekijä, silloin ranskalaisen paradoksin ongelma ratkeaa kuin itsestään.

Ongelmaksi jää se, että meitä on viety kuin pässiä narussa viimeiset viisikymmentä vuotta.

Onko ranskalainen paradoksi totta?

Ranskalainen paradoksi on totta, mutta se on eräänlainen tilastollinen illuusio. Laajoja populaatioita käsittelevistä tilastoista voi vetää jännittäviä korrelaatioita. Isojen väestöjen kohdalla vaikuttavia muuttujia on kuitenkin valtavasti. Jonkin havaitun ilmiön ja valitun muuttujan välille on helppoa vetää korrelaatio, mutta syy- ja seuraussuhteen osoittaminen onkin jo vaikeampaa.

Esimerkiksi margariinien kulutus korreloi avioerojen kanssa Mainen osavaltiossa. Suomessa jäätelön kulutus korreloi hukkumistapausten kanssa. Nämä ovat tosiasioita, mutta niiden välillä ei vallitse suoraa syy- ja seuraussuhdetta.

Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntaudit ja sydäntautikuolleisuus on vähäisintä. Vastaavasti on totta, että sydäntautien esiintyvyys ja sydäntautikuolleisuus on korkeinta maissa, joissa tyydyttyneitä rasvoja syödään vähiten. Kansallisia ja alueellisia muuttujia on paljon, eikä korrelaatiosta voi johtaa kausaliteettia.

Joissain vanhoissa seurantatutkimuksissa tyydyttyneiden rasvojen ja sydäntautien esiintyvyyden välillä on havaittu heikko korrelaatio

Vähemmän tyydyttyneitä rasvoja syöneet ihmiset ovat todennäköisesti noudattaneet muutenkin terveellisempiä elämäntapoja. Terveellisiä elämäntapoja noudattavan ihmisen efekti on hyvin tunnettu ilmiö.

Terveelliset elämäntavat ovat yleisiä muitakin terveellisiä elämäntapojan noudattavassa ihmisryhmässä. Tähän ryhmään kuuluvat liikkuvat enemmän, ovat hoikempia, sairastavat vähemmän diabetesta, tupakoivat vähemmän, juovat vähemmän alkoholia jne.

Sydänterveyttä ylläpitää yleisesti terveellisemmät elintavat. Ihminen, joka välttää tyydyttyneitä rasvoja sen vuoksi, että viranomaiset ovat kehottaneet välttämään epäterveellisiä rasvoja, välttää usein myös muita epäterveellisiksi luokiteltuja elämäntapoja, kuten tupakointia, yletöntä alkoholilla läträämistä, ylimääräistä suolaa tai sokeria jne.

Totuus on ranskalaisen paradoksin ja seurantatutkimusten välillä. Tyydyttyneet rasvat eivät ole sydäntautien merkittävin aiheuttaja. Elämäntapojen kokonaisuus vaikuttaa sairastumisriskiin enemmän, kuin yksittäinen muuttuja, kuten tyydyttynyt rasva.

 Ruokavalion ja muiden elämäntapojen lisäksi terveyteen vaikuttaa geeneistä ja ympäristöstä alkaen suuri määrä tunnettuja ja tuntemattomia muuttujia, joiden kontrollointi tutkimuksissa on hankalaa.

Oheinen kaavio, jonka julkaisi British Journal of Nutrition, perustuu Maailman terveysjärjestön (WHO) ja YK:n elintarvike- ja maatalousjärjestön (FAO) tilastoihin tyydyttyneiden rasvojen keskimääräisestä saannista 41 Euroopan maassa vuonna 1998, sekä ikään mukautetusta riskistä kuolla sydänsairauksiin. Se kertoo sen, mitä kysyin tekstin aluksi.

  • Ranskassa syödään enemmän tyydyttyneitä rasvoja, kuin missään muussa Euroopan maassa, mutta ranskalaisilla esiintyy vähiten sydäntauteja Euroopassa.
  • Ranskalaisten jälkeen sveitsiläiset syövät toiseksi eniten tyydyttyneitä rasvoja. Vastaavasti sveitsiläisten sydäntautikuolleisuus on toiseksi matalin Euroopassa.
  • Euroopan maissa, joissa syödään eniten tyydyttyneitä rasvoja, sydäntautien ja sydäntautikuolleisuuden esiintyvyys on alhaisinta.
  • Vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä Euroopassa.

Vähemmän tyydyttynyttä rasvaa, enemmän sydäntauteja

Euroopassa vähiten tyydyttyneitä rasvoja ja eniten monityydyttämättömiä rasvoja kuluttavissa maissa, kuten Georgiassa ja Moldovassa, sydäntautikuolleisuus on yleisintä.

Tämä ei tietenkään todista, että tyydyttynyt rasva suojaisi sydänsairauksilta.

Tämä havainto nostaa esiin aiheellisen kysyyksen: Jos tyydyttyneiden rasvojen kulutus assosioituu suurempaan sydäntautikuolleisuuteen, kuten viranomaiset väittävät, miksi niissä maissa, joissa tyydyttyneitä rasvoja syödään eniten, sydäntautikuolleisuus on todellisuudessa harvinaisempaa, kuin maissa, jossa tyydyttyneitä rasvoja syödään vähiten?

Ovatko tyydyttyneet rasvat sittenkin haitallisia?


Paleoruokavalion johtava teoreetikko, Loren Cordain arvioi, että varhaisten metsästäjä-keräilijöiden energiansaannista 15 % oli peräisin tyydyttyneistä rasvoista. Jos se on totta, kehomme on hyvin adaptoitunut käyttämään tyydyttyneistä rasvoista saatavaa energiaa.

Ihminen voi Cordainin hypoteesin mukaan syödä yli kaksi kertaa enemmän tyydyttyneitä rasvoja, kuin mitä Yhdysvalloissa suositellaan. Ranskassa ja Sveitsissä ihmisten energiansaannista jo noin 15 % saadaan tyydyttyneistä rasvoista, mikä tukee Cordainin näkemystä.

Onko raskalaisten ja sveitsiläisten parempi sydänterveys vain ilahduttava sattuma, vai voisiko se liittyä tyydyttyneisiin rasvoihin?

Savua ja peilejä

Ravitsemustieteessä käytetään paljon savua ja peilejä. Tilastollisten silmänkääntötemppujen soveltaminen taloudellisten ja poliittisten päämäärien saavuttamiseksi on yleistä.

Joskus iltapäivälehtien ravitsemusta käsittelevät jutut ovat yhtä epätieteellisiä, kuin astrologiset väittämät, joiden mukaan ravuilla on erityinen alttius suolistotaudeille, koska kuun merkeissä syntyneet ravut stressaavat muita tähtimerkkejä enemmän.

Kritiikkiä kovista rasvoista

Rasvojen merkitystä ateroskeloosin patogeneesissä on tutkittu siitä alkaen, kun Anitschkow kidutti kaneja monilla mielikuvituksellisilla menetelmillä. Hänen tutkimuksensa osoittivat, että kolesteroli ja tyydyttyneet rasvat aiheuttavat kanien valtimoissa ateroskleroosiin viittaavia muutoksia.

Kriittinen pilkunnussija voisi kysyä: pitäisikö tämän yllättää? Tyydyttyneet eläinrasvat ja kolesteroli eivät ole kanien luontaista ravintoa. Kanin aineenvaihdunnalta puuttuu keinot hyödyntää eläinrasvoja ja kolesterolia.Ihmisen aineenvaihdunta sen sijaan osaa hyödyntää kovia eläinrasvoja ja kolesterolia.

Seerumin kohonneen kolesterolin ja sepelvaltimotaudin suhde on vuosikymmenten aikana vakiintunut tieteelliseksi paradigmaksi, mutta ruokavalion rooli sepelvaltimotaudin ehkäisyssä ja hoidossa on edelleen epäselvä ja kiistelty aihe.

Mann kirjoitti vuonna 1977: ”Vuosikymmenen jatkunut kiista ruokavalion yhteydestä sydäntauteihin on johtanut kaaokseen”. E.H. Ahrens, Jr., joka oli yksi diet-heart-hypoteesin alullepanijoista, totesi vuonna 1985, että vielä ei ole osoitettu ruokavalion muuttamisen ehkäisevän sepelvaltimotautia.

Ancel Keysin 1950-luvulla tekemät tutkimukset keskittyivät tyydyttyneitä rasvoja sisältäviin ruokavalioihin.

1960-luvulla senaattori George McGovern johti senaatin molempien puolueiden komiteaa, joka yhdessä Yhdysvaltain maatalousministeriön (USDA) kanssa päätyi suosittelemaan Ancel Keysin mallin mukaista ruokavaliota, jossa kovat rasvat korvataan monityydyttämättömillä kasvirasvoilla.

Väestötasolla ravitsemuksen ohjaaminen vähärasvaiseen, ja erityisesti vähän kovia rasvoja sisältävään suuntaan alkoi toden teolla, kun Kansallisen terveysjärjestön (NIH) rahoittamien Lipiditutkimusklinikoiden sepelvaltimotaudin ennaltaehkäisyyn tähtäävä ohjelma (LRC-CPPT) valmistui.

Silmänkääntötemppuja

LRC-CPPT osoitti, että kolestyramiini, jota annettiin koehenkilöille noin seitsemän vuoden ajan, laski seerumin kolesterolia 10% ja sepelvaltimotautikuolleisuutta 24%. Tämä oli tilastollisesti merkittävä tulos.

Absoluuttinen sepelvaltimotaudin väheneminen oli selvästi maltillisempi ja lumelääkettä saavassa ryhmässä tulokset olivat jopa hieman paremmat: sepelvaltimotaudin esiintyvyys laski 2 % lumelääkettä saaneessa, ja 1,6 % kolestyramiinia saaneessa kohortissa.

Tämän tutkimuksen perusteella LRC-CPPT-tutkijat päättelivät kuitenkin, että seerumin kolesterolin laskeminen oli merkittävä tekijä sydäntautien ehkäisyssä ja hoidossa. Tämä päätös vahvistettiin, kun statiinikokeissa seerumin kolesterolia onnistuttiin laskemaan 30% – 35%.

Tämä antoi vahvaa näyttöä siitä, että seerumin kolesterolin laskeminen vaikuttaa positiivisesti sydäntautien ennusteeseen.

Nykyään toisaalta tunnustetaan, että osa statiinien hyödyistä voi johtua mekanismeista, jotka eivät liity rasva-aineenvaihduntaan ja kolesteroliin.

LCR-CPPT oli lääketutkimus. Se ei tutkinut ruokavalion vaikutuksia terveyteen.

LRC-CPPT:n tutkijat, NIH, kansallinen kolesterolikoulutusohjelma (NCEP) ja Amerikan sydänliitto (AHA) tekivät tulosten pohjalta uskoon perustuvan hypoteesin:

Jos seerumin kolesterolin lasku lääkkeillä on tehokas tapa ehkäistä sydäntauteja, silloin ravinnosta saatavan rasvan ja kolesterolin saannin vähentäminen laskee seerumin kolesterolia ja vaikuttaa myönteisesti sydän- ja verisuoniterveyteen.

Tämä oli tutkijoiden valistunut arvaus. Vain arvaus. Päätelmä ei perustunut kliiniseen näyttöön ruokavalion sisältämien rasvojen vaikutuksista sydänterveyteen.

Päätelmää seurasi eräs Yhdysvaltojen laajimmista PR-kampanjoista. Tutkijoiden ja viranomaisten oli vakuutettava ammattilaiset, lääkärit, organisaatiot ja kansalaiset siitä, että ravinnon sisältämän rasvan vähentäminen on tehokkain tapa ehkäistä sydän- ja verisuonitauteja.

Elintarviketeollisuus liittyi terveysjärjestöjen (NIH, NCEP, AHA), maatalousministeriön (USDA) ja lukemattomien lääketieteellisten järjestöjen kanssa edistämään tätä konseptia.

Lyhyessä ajassa marketit täyttyivät sydänterveellisistä vähärasvaisista tuotteista, joissa kovat eläinrasvat oli korvattu pehmeillä monityydyttämättömillä kasvirasvoilla ja sokerilla.

Viesti oli selvä: vähärasvaisten ruokien syöminen on turvallista

Valitettavasti 1980-luvun ihminen ei ymmärtänyt, että vähärasvaisissa tuotteissa rasvat korvattiin sokereilla. Rasvojen saannin väheneminen johti hiilihydraattien saannin kasvuun.

Mozaffarianin vuoden 2010 meta-analyysin eräs avainhuomioista oli, että tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla saattaa pitkällä aikavälillä suojata sydänterveyttä, mutta vastaavaa vaikutusta ei ole, jos tyydyttyneet rasvat korvataan hiilihydraateilla. Ja juuri näin tehtiin iloisella 1980-luvulla.

Valitettavasti tämä ei ollut ainoa ongelma. Prosessoitujen öljyjen, margariinien ja lähes kaikkien rasvaa sisältävien elintarvikkeiden mukana tuli transrasvoja, jotka ihan aikuisten oikeasti ovat helvetin haitallisia terveydelle.

”I hope that when you have read this book I shall have convinced you that sugar is really dangerous.” – John Yudkin (Pure, White and Deadly)

Lääketieteellisestä kirjallisuudesta löytyi varoituksia, mutta ne jätettiin suurelta osin huomiotta. John Yudkin kamppaili 1970-luvulla Keysin hypoteesia vastaan ja varoitti sokereiden vaaroista mm. kirjassa Pure, White and Deadly (1972). Yudkin oli oikeassa ja hänen pelkonsa toteutuivat valitettavan tarkasti. Yudkinin varoitukset kaikuivat kuitenkin kuuroille korville.

Rosenman totesi laaja-alaisessa katsauksessa, että ruokavalio ei juurikaan vaikuta seerumin kolesteroliin. Hän mainitsi myös ristiriitaiset uskomukset ruokavalion kausaalisesta roolista sydäntautien patogeneesissä.

Hu et al.wrote that replacing saturated and trans-unsaturated fats with unhydrogenated mono-unsaturated and poly-unsaturated fats was more effective in preventing CAD in women than in reducing overall fat intake. They noted that low-fat–high-carbohydrate (LF-HCarb) diets were widely recommended to reduce the risk of CAD by reducing low-density lipoprotein (LDL) by limiting dietary fat. However, because of its high-Carb content, LF-HCarb diets also decrease high-density lipoprotein (HDL) and increase triglycerides, well-established independent risk factors for coronary disease.”

Yancey et al. kirjoitti: ”Tiedot parhaasta ruokavaliosta sydäntautien ehkäisemiseksi ovat puutteellisia, epätieteellisiä ja usein ristiriitaisia.”
Elämäntapoihin liittyvät epidemiat (lihavuus, tyypin II diabetes ja metabolinen oireyhtymä) ovat vähän rasvaa ja runsaasti hiilihydraatteja sisältävän LFHC-ruokavalion väistämätön seuraus.

Yudkin varoitteli tämänkaltaisesta kehityksestä jo 1970-luvulla. Monista varoituksista, kliinisestä näytöstä ja lihavuus- yms. epidemioista piittaamatta lääketieteelliset organisaatiot ja viranomaiset jatkavat aggressiivista kampanjaa vähärasvaisen elämäntavan edistämiseksi.

Välillä minusta tuntuu siltä, kuin järkevät ihmiset olisivat itsesuggestion avulla hypnotisoineet itsensä uskomaan täysin absurdeja väitteitä.

Covid-19 pandemian rinnalla yhteiskunnan rajallisia resursseja syövät lihavuuteen, aikuistyypin diabetekseen, suolistosairauksiin ja kardiometabolisiin sairauksiin liittyvät pandemiat. Niiden taloudellista rasitetta yhteiskunnille voi vain arvailla.

Yhdysvalloissa lähestytään tilannetta, jossa kaikilla kuolevilla on diabetes. Tämä ei tarkoita, että kaikki kuolevat diabetekseen, mutta se kertoo kuinka nopeasti tauti on yleistynyt. Se kertoo, että pian kaikki amerikkalaiset sairastuvat diabetekseen. Se on aivan sairasta!

Samaan aikaan Yhdysvalloissa tiedostetaan, että lihavuuden ja diabeteksen hoitoon ei pian riitä resursseja.

Ei siis ole lainkaan yllättävää, että miljoonat lihavuuden ja kardiometabolisten sairauksien kanssa kamppailevat ihmiset ovat löytäneet avun ketogeenisistä ruokavalioista, jotka kääntävät viralliset suositukset ylösalaisin ja nurinkurin. Jatkan tätä anarkistista ruokasotaa pian. Siihen asti hyvää syksyä. Pysykää terveinä!

https://www.researchgate.net/publication/322861096_The_Diet-Heart_Hypothesis_Changing_Perspectives

https://www.sciencedirect.com/science/article/pii/S0735109703016310

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950931/

https://www.nutritioncoalition.us/there-is-concern-about-the-dietary-guidelines

https://www.ncbi.nlm.nih.gov/books/NBK190354/

https://www.repository.cam.ac.uk/bitstream/handle/1810/247312/Chowdhury_et_al-2014-Annals_of_Internal_Medicine.pdf?sequence=1

https://pubmed.ncbi.nlm.nih.gov/28526025/




Ruokasotaa ja anarkiaa osa 2

Jatkan anarkistista tutustumista ravinnon ympärillä käytävään ruokasotaan. Artikkelisarjan ensimmäisessä osassa pohjustin näkemystä, jonka mukaan ravintoon liittyviä väestötason ravintosuosituksia pitäisi kriittisesti uudelleenarvioida.

Jatkan kiukuttelua referoimalla LessLikely-sivustolla julkaistun kriittisen analyysin paljon siteeratusta Mozaffarianin meta-analyysistä.

Laajat ravitsemustutkimukset antavat ristiriitaisia tuloksia eri ravintoaineiden terveysvaikutuksista. Vallitsevat ravitsemussuositukset eivät hillitse maailmanlaajuista elämäntapasairauksien epidemiaa. Vaikuttaa pikemminkin siltä, että vallitsevat ravitsemussuositukset ylläpitävät ja lisäävät kardiometabolisten sairauksien riskiä.

Epidemiologisissa tutkimuksissa yksittäisten ravinteiden erottaminen ravintokokonaisuudesta ei anna kovin luotettavaa kuvaa ravintoaineen merkityksestä ihmisen terveydelle.

Ravinteet vaikuttavat elimistössä usein yhdessä. Riskienhallinnan kannalta kokonaisuuksilla on suurempi merkitys kuin yksittäisillä ravinteilla. Mikro- ja makroravinteet vaikuttavat keskenään eri tavoin. Esimerkiksi

  • C-vitamiini hidastaa lihan sisältämän raudan imeytymistä
  • Tyydyttyneen rasvan korvaaminen monityydyttämättömillä rasvoilla voi suojata sydänterveyttä, mutta vastaava hyöty ei toteudu, jos tyydyttyneet rasvat korvaa hiilihydraateilla
  • Fruktoosin ja glukoosin aineenvaihdunta eroaa toisistaan kuin yö ja päivä
  • Kaikki kalorit eivät ole elimistölle samanarvoisia (vrt. etanoli*)
  • Hiilihydraattien ja rasvan yhteisvaikutus on se, että solut käyttävät energiaksi ensin glukoosia ja varastoivat rasvaa. Solut eivät voi hapettaa samaan aikaan glukoosia ja rasvahappoja

*Etanoli ei tiettävästi varastoidu läskinä, vaikka etanoli (7 kcal/g) on melkein yhtä energiatiheää kuin rasva (9 kcal/g). Maksa priorisoi etanolin aineenvaihdunnan ennen kuin keho alkaa prosessoida muita ravintoaineita. Maksa polttaa alkoholin ennen kuin aineenvaihdunta ryhtyy polttamaan tai varastoimaan muita ravinteita.

Entä jos aineenvaihdunta prosessoi energianlähteet myrkyllisyysjärjestyksessä: ensin etanolin, sitten glukoosin ja lopuksi rasvan?

Sellainenkin näkemys on esitetty. Kyse on mielipiteestä, mutta sen taustalla on järkevä ajatusketju. Alkoholin aineenvaihduntatuotteena on mm. karsinogeenisiä aldehydejä. Veren korkea sokeripitoisuus altistaa verisuoni- ja elinvaurioille sekä tyypin 2 diabetekselle.

Lähes koko nykyihmisen 200 000-vuotisen historian ajan eläinrasva oli ihmisen tärkein energianlähde.

Hiilihydraattien merkitys energianlähteenä lisääntyi vasta maanviljelyn kehittymisen ja kaupungistumisen jälkeen noin 10 000 vuotta sitten. Viime vuosisadalla hiilihydraattien osuus päivittäisestä energiansaannista kasvoi nopeasti ja lisättyjen sokereiden saanti moninkertastui.

Syömämme ravinto on muuttunut enemmän ja nopeammin kuin ihmisen fysiologia ja aineenvaihdunta.

Rasvaista lihaa

Kriittinen analyysi Mozaffarianin meta-analyysistä

Viittasin juttusarjan ensimmäisessä osassa Suomalaiseen mielisairaalatutkimukseen. Se on eräs vahvimmista tyydyttyneiden rasvojen ja kolesterolin haittoja puoltavista tutkimuksista.

Suomalainen mielisairaalatutkimus saa toimia aasisiltana LessLikely-sivustolla julkaistulle analyysille, jota referoimalla jatkan kriittistä syventymistä ravitsemuksen taustoihin.

Suomalaisessa mielisairaalatutkimuksessa (1959-1971) verrattiin ravinnon sisältämien rasvojen vaikutuksia kahdella potilasryhmällä, joista toisessa tyydyttyneiden rasvojen saantia ei rajoitettu, ja toisessa tyydyttyneet rasvat korvattiin monityydyttämättömillä rasvoilla.

Kahdessa Helsingin lähellä sijaitsevassa mielisairaalassa tehtiin valvottu interventiotutkimus, jonka tarkoituksena oli testata hypoteesia, jonka mukaan sepelvaltimotautien (CHD) ilmaantuvuutta voidaan vähentää käyttämällä seerumin kolesterolia alentavaa (SCL) ruokavaliota.

Koehenkilöt olivat sairaalahoidossa olevia mielenterveyspotilaita. Toisessa sairaalassa potilaat noudattivat vain vähän tyydyttyneitä rasvoja, kolesterolia, sekä suhteellisen runsaasti tyydyttymättömiä rasvoja sisältävää SCL-ruokavaliota.

Toisen sairaalan potilaat olivat normaalia sairaalaruokaa saava kontrolliryhmä. Kokeen ensimmäinen vaihe kesti kuusi vuotta. Sen jälkeen seurantaryhmien noudattamat ruokavaliot vaihdettiin ja koetta jatketiin toiset kuusi vuotta.

Suomalaisessa mielisairaalatutkimuksessa seurattiin miehiä ja naisia, mutta naisia käsitellään saman tutkimusryhmän laatimassa erillisessä tutkimuskatsauksessa.

Kahden suomalaisen mielisairaalatutkimuksen, (jotka ovat vain yksi tutkimus, josta laadittiin erilliset raportit miesten ja naisten tuloksista) kokonaisotanta oli 818 potilasta.

Tutkimusmenetelmät: Mitä meta-analyysillä tarkoitetaan (Wikipedia)

Haluan kirjoittaessani oppia jotain uutta, joten selvitän teksteissä iteellisiä menetelmiä ja käsitteitä, joista voi myöhemmin olla apua.

Tutkimusmenetelmät kuuluvat yleissivistykseen, mutta niiden ymmärtäminen ei ole itsestäänselvää. Minä käyn tätä kirjoittaessani läpi yleisimpiä tutkimusmenetelmiä ja niiden tulosten tulkitsemista.

Meta-analyysi on tilastollinen menetelmä, jolla pyritään johtamaan kvantitatiivisia päätelmiä yhdistelemällä systemaattisesti aiempia yksittäisiä tutkimuksia. Tarkoituksena on koota tutkimusten synteesi, joka antaa tutkittavasta kysymyksestä vahvempaa näyttöä kuin yksittäiset tutkimukset.

Tutkimustyypit – Lähde: Duodecim

Meta-analyysiin valittavat tutkimukset voivat olla johtopäätöksiltään ristiriitaisia.

Meta-analyysin tarkoitus on yhdistää aihetta käsittelevät tutkimukset tilastollisesti, jolloin voidaan tehdä luotettavampia johtopäätöksiä. Tilastollista lähestymistapaa sovelletaan useiden aikaisempien tulosten yhdistämiseen. Käytännössä meta-analyysi kokoaa painotetun keskiarvon useista tutkimuksista.

Lähestymistavan hyötyjä:

  • Tulokset ovat yleistettävissä laajempaan tilastolliseen populaatioon
  • Tulosten tarkkuus paranee kun käytettävissä on enemmän dataa
  • Aikaisempien tutkimusten erot voidaan kvantifioida ja analysoida.
  • Hypoteesien testaus voidaan tehdä aikaisemmista tutkimuksista muodostetuille yhteisestimaateille
  • Julkaisuharhan olemassaoloa voidaan arvioida

Meta-analyysia kritisoidaan yleensä seuraavista puutteista:

  • menetelmä ei pyri kontrolloimaan aikaisempien tutkimusten harhaa: jos huonosti toteutetuista tutkimuksista tehdään meta-analyysi, meta-analyysikin on huono.
  • julkaisuharha. Tutkijoille ei ole insentiivia (kannustinta/motivaatiota) julkaista tuloksia, jotka eivät ole mielekkäitä. Tutkimukset, joita ei julkaista eivät päädy meta-anayyseihin, mikä heikentää meta-analyyseja.
  • tavoite-harha. Meta-analyysiin poimitaan vain sellaisia tutkimuksia, jotka sopivat tutkijan omiin tavoitteisiin.

Cochrane-verkosto käyttää oppaassaan Cochrane Handbook for Systematic Reviews of Interventions seuraavaa vaiheistusta meta-analyysiin pohjautuvan systemaattisen kirjallisuuskatsauksen luomisessa:

  1. Tutkimusongelman muodostaminen ja meta-analysoitavien tutkimusten valintakriteerin määrittäminen
  2. Tutkimuskirjallisuuteen tutustuminen
  3. Tutkimusten valinta ja datan kerääminen valituista tutkimuksista
  4. Valittujen tutkimusten harhan riskiarviointi
  5. Datan analysointi ja varsinaisten meta-analyysiestimointien suorittaminen
    1. Yhdistettyjen estimaattien laskenta
    2. Tutkimusten heterogeenisuuden mallintaminen
    3. Sensitiivisyysanalyysi
  6. Raportointiharhojen käsittely
  7. Tulosten esittely ja yhteenveto
  8. Johtopäätökset

Meta-analyysin havaintoja voidaan esittää esimerkiksi forest plot -diagrammilla, joka on tapa visualisoida meta-analyysin tilastollista synteesiä.

Yleensä forest ploteissa on kaksi saraketta. Vasemmanpuoleisessa sarakkeessa esitetään tutkimusten nimet aikajärjestyksessä. Oikeanpuoleisessa sarakkeessa esitetään yksittäisten tutkimusten tulokset. Yksittäisen tutkimuksen tuloksessa on kaksi komponenttia:

  • Jana, joka kuvaa tutkimuksen luottamusväliä
  • Neliö, jonka sijainti kuvaa yksittäisen tutkimuksen keskimääräistä vaikutusta. Neliön koko kuvaa yksittäisen tutkimuksen painoarvoa yhdistetyssä meta-analyysissä.

Kuvaajan alaosassa oleva timantti kuvaa yhdistettyjä tuloksia. Sen pystydiagonaalin sijainti kuvaa yhdistettyä keskimääräistä vaikutusta ja neliön leveys tutkimusten yhdistettyä luottamusväliä. Keskimääräistä vaikutus piirretään yleensä myös katkoviivalla, jotta sitä voi vertailla yksittäisiin tutkimuksiin.

Kuvaajaan merkitään yhtenäisellä pystyviivalla tilanne, jossa vaikutusta ei ole. Jos timatti on tämän viivan päällä, voidaan todeta että vaikutusta ei ole havaittavissa kyseisellä luottamusvälillä.

Mozaffarianin meta-analyysin tulokset

Funnel plot-kuvaajaa käytetään meta-analyyseissä harhan ja systemaattisen heterogeenisuuden tarkasteluun. Hajontakuviolla piirretään yksittäisten tutkimusten vaikutus vaaka-akselille ja tutkimuksen koko pystyakselille. Pystysuoralla katkoviivalla merkitään meta-analyysin yhdistettyä keskimääräistä vaikutusta.

”Hyvin käyttäytyvässä” funnel plotissa tuloksena on tasasivuinen kolmio. Tämä johtuu siitää, että isokokoisten tutkimusten tulisi olla lähempänä yhdistettyä vaikutusta kuin pienikokoisten. Pyramidin vinous tai huipukkuuden puute taas implikoivat mahdollisista ongelmista. Tutkimuksen koon mittana voidaan käyttää esim. vaikutuksen keskihajontaa tai otoksen kokoa.

Mozaffarian – funnel plot

LessLikely: Mozaffarianin meta-analyysin kritiikki

Kokoan Ruokasotaan kriittisiä havaintoja ravitsemuksesta ja terveydestä. Perustelen kantani tutkitulla tiedolla ja luotettavilla lähteillä. Opiskelen samalla ravitsemukseen liittyviä ilmiöitä ja tutkimusmenetelmiä.

Hämmentävissä ruokajutuissa tutustu vallitseviin suosituksiin kriittisesti suhtautuviinravitsemusoppeihin

Erilaiset meta-analyysit antavat erilaisia tuloksia monityydyttämättömien ja tyydyttyneiden rasvojen terveysvaikutuksista. Siri-Tarinon ja Chowdhuryn meta-analyysit eivät löytäneet yhteyttä tyydyttyneiden rasvojen ja sydäntautien väliltä. Sen sijaan Mozaffarianin tutkimus osoitti, että monityydyttämättömät rasvat laskevat sydäntautien riskiä. Tilastollisia tutkimuksia kriittisesti tulkitseva LessLikely havaitsi Mozaffarianin meta-analyysissä virheen, joka vähentää meta-analyysin luotettavuutta.

”Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.” – Chowdhury

Sydän- ja verisuonitautitapahtumien osalta Suomalaisen mielisairaalatutkimuksen painoarvo on varsin merkittävä useita tutkimuksia käsittävissä meta-analyyseissä. Tämä selviää mm. Mozaffarianin & Wallacen meta-analyysistä (2010), joka on yksi tieteellisissä lähteissä eniten siteeratuista tämän aihepiirin meta-analyyseistä.

Mozaffarianin metaanalyysin tutkimusten sisällyttämis- ja poissulkemiskriteerejä kuvatan suurin piirtein näin:

Etsimme tutkimukseen kaikkia kontrolloituja satunnaistettuja tutkimuksia (RCT), jotka satunnaistivat aikuisten monityydyttämättömien omega6-rasvojen saannin vähintään vuodeksi ilman muita kontrollitoimia (tupakointi, verenpaine, muut ruokavalion toimenpiteet tms.).

Avokado

Mozaffarianin meta-analyysiin kelpasivat vain satunnaistetut vähintään vuoden mittaiset tutkimukset. Lisäksi meta-analyysi poissulki ei-satunnaistetut tutkimukset ja seurantatutkimukset.

Seuraavassa Mozaffarianin meta-analyysin sisältämien tutkimusten lista. Huomioi suomalaisten tutkimusten tutkimussuunnitelma.

Mozaffarianin meta-analyysin tutkimukset

Millaisia tutkimuksen tulokset olivat?

Vuoden 2010 meta-analyysissä havaittiin, että ruokavalion tyydyttyneiden rasvojen (SFA) korvaaminen monityydyttämättömillä rasvoilla (PUFA) laskee tilastollisesti merkittävällä tavalla sydän- ja verisuonitautitapahtumia.

19%:n lasku sydäntautitapahtumissa on sen verran merkittävä, että tulosta ei voi sivuuttaa. Luottamusväli (CI) kallistuu kohti luotettavaa.

Sydänterveyden kannalta tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla vaikuttaa siis lupaavalta ruokavaliointerventiolta. Tämän vuoksi Mozaffarianin meta-analyysiin viitataan ahkerasti. Metaanalyysiin sisältyvien tutkimusten laatu oli heikko tai kohtalainen.

Many of the trials had design limitations, such as single-blinding, inclusion of electrocardiographically defined clinical endpoints, or open enrollment. All trials utilized blinded endpoint assessment. Quality scores were in the modest range and relatively homogeneous: all trials had quality scores of either 2 or 3.”

Mikä sitten meni metsään?

Suurin ongelma Mozaffarianin meta-analyysissä on se, että kahta kvantitatiiviseen analyysiin sisältyvää suomalaista tutkimusta ei ole satunnaistettu. Tutkijat tekivät sisällyttämisperusteillaan selväksi, että he halusivat sisällyttää meta-analyysiin vain satunnaistettuja tutkimuksia. Mitä se tarkoittaa?

Satunnaistettu kontrolloitu tutkimus (Randomized Controlled Trial, RCT)

Satunnaistettu kontrolloitu tutkimus on terveyttä selvittävien interventiotutkimusten laadullisesti paras ja luotettavin tutkimusasetelma.

Satunnaistetun kontrolloidun tutkimuksen perusidea on, että verrataan interventioryhmää ja kontrolliryhmää keskenään. Kontrolliryhmän avulla ruokavalioon tehtävien muutosten, lääkityksen tai muiden interventioiden vaikutuksista voidaan tehdä päätelmiä intervention vaikutuksista.

Kontrolliryhmän lisäksi tärkeää on satunnaistaminen (randomointi). RCT-asetelmassa koehenkilöt jaetaan kahteen tai useampaan ryhmään niin, että tutkija ei itse vaikuta millään tavoin ryhmäjakoon, vaan se tapahtuu satunnaisesti, arpomalla. Tämä takaa sen, että tuloksiin (tutkittavan intervention lisäksi) mahdollisesti vaikuttavat tekijät jakautuvat ryhmien välillä satunnaisesti.

Ihannetapauksessa toteutetaan koe lisäksi sokkoutettuna, jolloin tutkimukseen osallistuja ja tutkimushenkilökunta eivät tiedä kuuluuko osallistuja interventio- vai kontrolliryhmään, lääketutkimuksien ulkopuolella tämä tosin on usein vaikeaa tai mahdotonta toteuttaa.

Edes RCT ole täysin aukoton tutkimusasetelma. Julkaistujen tutkimusten metodien sekä tulosten raportoinnissa havaitaan usein puutteita (Montgomery, 2018). RCT-asetelmaan voi liittyä myös eettisiä haasteita.

Satunnaistetulla kontrolloidulla tutkimuksella on kuitenkin vahva asema tutkimusmenetelmien joukossa.

Kaksi suomalaista mielensairaalatutkimusta merkittiin ryvästetyksi (cluster) satunnaistetuksi tutkimukseksi”. Kun tämä meta-analyysi julkaistiin, monet tutkijat suhtautuivat kriittisesti siihen, että ryvästetty satunnaistettu tutkimus oli merkitty satunnaistetuksi tutkimukseksi, etenkin kun ryhmiä oli vain kaksi (kahden sairaalan potilaat).

Tämä on pätevä ja perusteltu kritiikki, koska ryvästetty satunnaistettu tutkimus, jossa on vain yksi klusteri ehtoa kohden, ei kelpaa ryhmien välisiin tilastollisiin vertailuihin. Brown ym., 2015 selittävät tässä kattavassa artikkelissa,

A particularly pernicious and invalid design that requires recognition is the inclusion of only one cluster per condition… Such designs are unable to support any valid analysis for an intervention effect, absent strong and untestable assumptions. In such designs, the variation that is due to the cluster is not identifiable apart from the variation due to the condition.

A one-cluster-per-condition design is analogous to assigning one person to the treatment and one person to the control in an ordinary (nonclustered) RCT, measuring each person’s outcome multiple times, treating the multiple observations per person like independent observations, and interpreting the results like a valid RCT. In such a situation, the observations on person A can be tested as to whether they are significantly different from those on person B but cannot support an inference about the effect of treatment per se.

Joten on selvää, että yhden klusterin ehtoa koskeva malli ei ole pätevä antamaan luotettavaa tietoa interventiosta. Monet eivät kuitenkaan kiinnittäneet huomiota siihen, että Suomalaiset mielisairaalatutkimukset eivät edes olleet ryvästettyjä satunnaistettuja tutkimuksia.

Yhdessäkään näiden kahden tutkimuksen viidestä julkaisusta ei ole viitteitä satunnaistumisesta. Voit tarkistaa kaikki viisi artikkelia täältä:


Journal

Year

Title

International Journal of Epidemiology

1983

Dietary Prevention of Coronary Heart Disease in Women: The Finnish Mental Hospital Study

Circulation

1979

Effect of Cholesterol-Lowering Diet on Mortality from Coronary Heart Disease and Other Causes

American Journal of Clinical Nutrition

1968

Dietary Prevention of Coronary Heart Disease: Long-Term Experiment: I. Observations on Male Subjects

International Journal of Epidemiology

1979

Dietary Prevention of Coronary Heart Disease: The Finnish Mental Hospital Study

The Lancet

1972

Effect of Cholesterol-Lowering Diet on Mortality from Coronary Heart-Disease and Other Causes a Twelve-Year Clinical Trial in Men and Women


Ryvästetyt satunnaistetut tutkimukset eivät oleet Suomalaisten mielisairaalatutkimusten aikaan tilastollisessa analyysissä vielä yleisesti käytössä. Tämän vuoksi on aiheellista suhtautua skeptisesti ryvästettyihin satunnaistettuihin tutkimuksiin.

Nämä kaksi tutkimusta kuitenkin nimettiin virheellisesti ryvästetyiksi satunnaistetuiksi tutkimuksisksi ja sisällytettiin siksi metaanalyysiin. Tutkimusten painoarvo meta-analyysissä oli 16 %.

Tekijät havaitsivat melko merkittävän laskun CVD-tapahtumissa (RR: 0,81, 95% CI 0,70 – 0,95, p = 0,008)

 


LessLikely korjasi tutkimusasetelman virheen

Mitä tuloksille tapahtuu, kun virhe korjataan poistamalla meta-analyysistä kaksi tutkimussuunnitelman kannalta epäkelpoa tutkimusta?

Kuten havaitaan, analyysin uudelleentarkastelu suomalaisten tutkimusten poistamisen jälkeen johtaa siihen, että intervention vaikutuksen koko supistuu 19%:n alenemisesta 13%:n pienenemiseen (RR: 0,87, 95% CI 0,76 – 1,00). Tuo on suuri ero!

LessLikely – korjattu tutkimus

Suomalaisten mielisairaalatutkimusten poistamisen jälkeen Mozaffarianin meta-analyysin tulokset eivät ole enää tilastollisesti merkittäviä.

Tilastofilosofiasta riippumatta tämä on merkittävä objektiivinen virhe. Kahden tutkimusaineistolle määriteltyihin kriteereihin sopimattoman tutkimuksen merkitseminen sisällyttämiskriteerien mukaisiksi oli virhe.

Tämän virheen korjaaminen johtaa tulosten tilastollisesti merkittävään muutokseen. Mozaffarianin meta-analyysia ei ole korjattu, vaikka virheestä on tekijöille tiedotettu.

Monet, jotka lukevat artikkelin tai lainaavat sitä, eivät tiedä, että yhteenvetovaikutukset ovat virheelliset ja että joitain analyysiin liittyviä tutkimuksia ei pitäisi olla mukana meta-analyysissä!

On tärkeää korostaa, että tämän tutkimuksen virheiden korjaaminen ei johda täysin erilaisiin johtopäätöksiin.

Vaikka vaikutus ei ole enää tilastollisesti merkitsevä, vaikutus on silti olemassa vaikutuksen koon ja luottamusvälien kattavuuden perusteella.

Systematic reviews by other groups including Cochrane did not include the Finnish studies in their meta-analyses because the authors didn’t believe that a “cluster randomized trial” with so few clusters (2) met the inclusion criteria for a randomized trial (also worth remembering, that there is no indication in any of the papers that this was even cluster randomized!). Some of these systematic reviews that exclude the Finnish studies still find a benefit to replacing saturated fats in the diet with polyunsaturated fats.

Assosiaatio monityydyttämättömien rasvojen ja paremman sydänterveyden välillä on puutteellisesti osoitettu. Steven Hamleyn meta-analyysi ei pystynyt osoittamaan sydän- ja verisuonitautien vähenemistä, jos tyydyttyneet rasvat korvatiin monityydyttämättömillä rasvoilla.

Conclusion: Available evidence from adequately controlled randomised controlled trials suggest replacing SFA with mostly n-6 PUFA is unlikely to reduce CHD events, CHD mortality or total mortality. The suggestion of benefits reported in earlier meta-analyses is due to the inclusion of inadequately controlled trials. These findings have implications for current dietary recommendations.

Rasvojen vaikutuksista sydän- ja verisuoniterveydelle vallitsee yhä valtavasti erimielisyyksiä. Tieteellinen näyttö ei ole lainkaan selvä. Tutkimukset eivät osoita, että tyydyttyneet rasvat kasvattaisivat sydän- ja verisuonitautien riskejä, tai että tyydyttyneiden rasvojen korvaaminen monityydyttämättöukkö rasvoilla laskisi sydäntautien riskiä.

Mozaffarianin meta-analyysi teki merkittävän virheen. Se on ongelma, vaikka sen yleiset päätelmät eivät muuttuisi korjauksen jälkeen. Ongelma on olemassa, koska:

  • Kaksi merkittävää tutkimusta luokiteltiin väärin
  • Tutkimukset eivät täyttäneet tutkimukselle asetettuja kriteerejä, mutta niitä käytettiin analyysissä
  • Tutkimusten hyväksyminen analyysiin johti merkittävästi erilaiseen lopputulokseen
  • Tutkimusta siteerataan muissa tutkimuksissa ja sillä perustellaan vallitsevia rasvasuosituksia

Mozaffarianin meta-analyysia lainataan muissa tutkimuksissa jatkuvasti. Sen katsotaan tukevan ja perustelevan vallitsevia oppeja tyydyttyneiden rasvojen terveyshaitoista ja monityydyttämättömien rasvojen terveyshyödyistä. Näin ei ole. Mozaffarianin tutkimuksen korjatun analyysin tulokset eivät ole tilastollisesti merkittäviä, tai tue vallitsevia ravintosuosituksia.




Ruokasotaa ja anarkiaa osa 1

Ravintoon liittyy väärinkäsityksiä ja myyttejä. Eräiden ravitsemusoppien tieteellinen perusta on vuosikymmenten jälkeen kyseenalainen. Tyydyttynyt rasva ei ehkä olekaan niin vaarallista kuin meille uskotellaan. Ruokasotaa ja anarkiaa kompuroi ravitsemusteorian sudenkuoppiin.

Noam Chomsky sanoo, että anarkismin pitää haastaa, kyseenalaistaa ja ravistella vallitsevien sosiaalisten rakenteiden ja normien legitimiteettiä.

Asioiden vallitsevasta tilasta ei nimittäin voi päätellä, että vallitseva asioiden tila on ainoa oikea, paras mahdollinen tai edes toivottavin tila. Chomskyn ja veljeni määritelmän mukaan minä taidan olla anarkisti.

Uskon, että maailmassa on aina korjattavaa. Monet ravitsemusohjeet vaikuttavat lähemmin tarkasteltuna pikkiriikkisen puskaabeleilta. Jätän tuon termin määrittelemättä.

Myös ravitsemusohjeita pitää aika ajoin ravistella, pureskella ja töniä, ettei ohjeita automaattisesti kuvitella muuttumattomiksi tosiasioiksi. Täysin kiistattomat tosiasiat ovat harvinaisia.

Kaikkien ravitsemusohjeiden tieteellinen perusta ei kestä kirkasta päivänvaloa

Tutkimuksissa ilmeneviä aukkoja tilkitään, mutta esimerkiksi oppi tyydyttyneeen rasvan ja kolesterolin haitoista vuotaa. Nähdäkseni ravintotieteessä soudetaan venellä, jonka toinen airo on poikki.

Ravitsemusoppeja voidaan perustella vääriin tietoihin perustuneilla päätöksillä, eettisillä, ideologisilla ja polittisilla mielipiteillä sekä tutkimustulosten tietoisella tai tiedostamattomalla vääristelyllä ja peittelyllä.

Kansanterveyden ja taloudellisen kantokyvyn vuoksi ravintoa koskeavien ohjeiden pitäisi kuitenkin perustua viimeisimpään tieteelliseen dataan. Näin ei aina tapahdu.

Vallitsevat ohjeet ovat osaltaan vaikuttaneet kardiometabolisten tautien nopean lisääntymiseen. Suolistosairaudet ovat yleistynet tyypin 2 diabeteksen ja lihavuuden rinnalla nopeasti vuoden 1980 jälkeen.

SARS-CoV-2 ei ole ainoa yhteiskunnan voimavaroja kuluttava globaali terveysuhka.

Lihavuuden yleistyminen

Lisääkö punainen liha suolistosyöpien riskiä?

Lihansyöjiä varoitettiin jälleen 17. huhtikuuta 2019 punaisen ja prosessoidun lihan syömiseen liittyvistä riskeistä. Se ei ollut ensimmäinen, eikä varmasti viimeinen kerta, jolloin kasvissyöjät korottavat ääntään. 

Terveyspommi räjähti, kun the Guardian uutisoi, että ”jopa maltillinen punaisen lihan syöminen lisää syöpäriskiä”. CNN heitti bensaa liekkeihin raportoimalla, että ”vain yksi pekoniviipale päivässä on yhteydessä suurempaan paksusuolen syövän riskiin”. The Telegraph kasvatti uhkaa varoittamalla, että ”punaisen lihan syöminen kerran päivässä lisää syöpäriskiä viidenneksellä”.

Luotettavien uutistoimistojen syöpäpeloilla leikittelevät jutut nostivat monen lihansyöjän niskakarvat pystyyn. Jeremy Braude kiinnostui syöpäpelkoja lietsovista uutisotsikoista niin paljon, että päätti hillitä lihapaniikkia avaamalla uutisten taustalla vaikuttavaa tilastotiedettä.

Tilastot ovat tehokkaita vaikuttamisvälineitä, koska ne voivat olla uskomattoman petollisia.

Alkuperäisessä tutkimuksessa, joka julkaistiin International Journal of Epidemiology -lehdessä, todettiin, että ”ihmisillä, jotka syövät punaista ja prosessoitua lihaa neljä kertaa viikossa tai useammin, on 20 % suurempi paksusuolen syövän riski verrattuna niihin, jotka yövät punaista tai prosessoitua lihaa vähemmän kuin kahdesti viikossa.”

Selvä homma! Punaisen ja prosessoidun lihan syöminen on hemmetin vaarallista

Näissä tutkimuksissa 20 % on kuitenkin suhteellinen ja tilastollinen, ei absoluuttinen arvo. On toinenkin tapa tarkastella täsmälleen samoja lukuja.

Kaikista tutkimukseen osallistujista, jotka söivät punaista tai prosessoitua lihaa vähemmän kuin kaksi kertaa viikossa, 0,40 %:lle kehittyi paksusuolen syöpä. Ihmiset, jotka söivät punaista ja prosessoitua lihaa enemmän kuin neljä kertaa viikossa, 0,63 %:lle kehittyi paksusuolen syöpä.

Ero paksusuolen syövän kehittymisen todennäköisyydessä vähän punaista lihaa ja paljon punaista lihaa syövien väestöryhmien välillä oli vain 0,23 %. Harvempi kuin 1 % ”korkeamman riskin” ryhmästä sairastui paksusuolen syöpään.

Punaisen ja prosessoidun lihan kulutus voi tilastollisesti lisätä suolistosyövän riskiä, mutta syy-seuraussuhde ei ole selvä ja todellinen riski sairastua suolistosyöpään punaisen lihan vuoksi on hyvin pieni.

Vertailun vuoksi paksusuolen syöpää havaittiin samassa tutkimuksessa 0,48 prosentilla osallistujista, jotka käyttivät vähemmän kuin gramman alkoholia päivässä, ja 0,68 prosentilla osallistujista, jotka käyttivät yli 16 grammaa alkoholia päivässä.

Tilastollisesti oluen tai viinilasillisen juomisella joka päivä on yhtäläinen vaikutus paksusuolen syövän riskiin kuin punaisen tai prosessoidun lihan syömisellä neljä kertaa viikossa. Riski oli kuitenkin selvästi alle prosentin ja mahtuu tutkimuksen virhemarginaaliin.

Laajennetaan katsantoa

Verrataan lihan syömisen riskejä tupakoinnin riskeihin. Länsimaissa keuhkosyövän riski on 9,4 – 23,2 kertainen tupakoitsijoilla tupakoimattomiin verrattuna. Punaisen ja prosessoidun lihan syöminen neljä kertaa viikossa voi lihapaniikkia lietsovan uutisoinnin mukaan kasvattaa paksusuolen syövän riskiä noin 20 %, mutta tupakointi kasvattaa keuhkosyövän riskiä jopa 840–2220%.

Punaisen lihan syömisen riskit ovat siedettäviä tupakointiin verrattuna.

Experimental Biology and Medicine kertoo tutkimuskatsauksessaan, että havaintojen mukaan hemirauta ja heterosykliset amiinit kasvattavat paksusuolen syövän riskiä. Hemirautaa saa punaisesta lihasta. Heterosyklisiä amiineja kehittyy, kun liha valmistetaan korkeassa lämpötilassa.

Monet tutkimukset tehdään laboratorio-oloissa joko soluviljelmillä tai koe-eläimillä. Näissä tutkimuksissa käytetään lihakomponenttitasoja, jotka ylittävät selvästi ihmisten normaalin punaisen lihan kulutuksen. Tutkimukset eivät yleensä huomioi muista ravinteista saatavien biologisesti aktiivisten yhdisteiden vaikutuksia. Esimerkiksi C-vitamiini hidastaa hemiraudan imeytymistä.

Kausaalista ja mekaanista yhteyttä punaista lihaa sisältävän monipuolisen ruokavalion ja lisääntyneen suolistosyövän riskin välillä on hankala osoittaa.

Muistelen, että punaisen lihan syöpäriskiä kasvattavan ideologian lanseerasi maailman medioille ja Maailman terveysjärjestölle pelkästään vegetaristeista ja vegaaneista koostuva tieteellinen paneeli. Vaikuttiko punaisen lihan mustamaalaamiseen eettiset, ideologiset ja poliittiset syyt?

Suattaapi olla, että vaikutti, mutta suattaapi olla ettei vaikuttanut, sanoisi poliittisesti korrekti savolainen.

Kyselykaavakkeisiin perustuvat epidemiologiset väestötutkimukset eivät yleensäkään anna täsmällistä ja luotettavaa tietoa tutkittavan väestön todellisista elintavoista. Ihmiset unohtavat, liioittelevat, väheksyvät ja valehtelevat tietoisesti tai tietämättään syömistään ruoista. Tämän vuoksi epidemiologisista väestötason kyselytutkimuksista ei pitäisi johtaa muuta kuin yleisiä suuntimia ja väestötason tendenssejä.

Australialaistutkimuksessa osoitettiin, että punaisen lihan syöminen osana Välimeren ruokavaliota laskee MS-tautiin sairastumisen riskiä 38 % (1).

Okei. Minä olen multippelisklerootikko ja lihansyöjä. Minulla kävi sitten vain helvetin huono tsägä!

Vastaavat tutkimukset ovat osoittaneet, että Mainen osavaltiossa margariinien syönti korreloi avioerojen kanssa. Onko ilmiö yleistettävissä ja voisiko voihin siirtyminen vähentää avioerojen riskiä globaalisti?

Minä kokeilin, mutta ei se toiminut. Voihin siirtyminen ei pelastanut minun avioliittoani, joten syy erolle taisi olla jokin muu kuin margariini.

Vastaavasti voidaan kysyä, vähentääkö punaisesta lihasta luopuminen paksusuolen syövän riskiä yhtä paljon kuin punaisesta lihasta luopuminen lisää multippeliskleroosin riskiä? Entä lisääkö punaisesta lihasta luopuminen diabeteksen riskiä?

Nämä ovat hankalia monivalintatehtäviä: ms, diabetes vai syöpä? Siinäpä pulma.

Tyydyttynyt rasva ja rasvaisia ruokajuttuja

Kova tyydyttynyt rasvat ja kolesteroli voivat nykytiedon mukaan kasvattaa sydän- ja verisuonitautien riskiä. Kolesterolin vaarallisuutta ei epäillä juuri koskaan.

Kolesteroli tappaa yhtä varmasti kuin glyfosaatti, mutta hitaammin kuin syanidi tai arsenikki. Näyttö ja ihmisen historia ei yksiselitteisesti ja kiistattomasti tue tällaisia uskomuksia. Epäilylle jää tilaa.

Elämä tarvitsee vältämättä kolesterolia ja tyydyttynyttä rasvaa. Kaikissa ihmisen solujen rakenteissa on kolesterolia.

Kolesteroli vaikuttaa steroidihormonien, kuten sukupuolihormonien synteesiin. Hermoston ja aivojen normaali kehitys edellyttää, että imeväisikäiset vauvat saavat äidinmaidosta tärkeitä eläinrasvoja ja kolesterolia.

Rintaruokittavat vauvat noudattavat ketogeenistä ruokavaliota. Karppaus on kaikesta siihen liittyvästä pelottelusta huolimatta ihmisen ensimmäinen ruokavalio.

Jos tyydyttynyt rasva ja kolesteroli olisivat yhtä haitallisia, kuin uskotaan, evoluutio olisi miljoonien vuosien kehityshistorian aikana muuttanut rintamaidon rasvakoostumusta terveellisempään suuntaan. Ei pelkästään ihmisellä, vaan kaikilla muillakin nisäkkäillä.

Miksi nisäkkäät tuottavat kolesterolia kolesterolisynteesissä, jos se on kovin haitallista?

Kolesterolia tuotetaan asetyylikoentsyymi-A:sta nelivaiheisessa synteesissä. Ensimmäisessä vaiheessa kolme asetyyli-KoA:ta yhdistetään mevalonaatiksi.

Mevalonaatista syntyy kaksi fosfaattiryhmillä aktivoitua isopreenimolekyyliä. Kuusi tällaista isopreenimolekyyliä polymerisoituu ketjuksi, jossa on useita kaksoissidoksia. Nämä kaksoissidokset muutetaan hiiliatomien välisiksi sidoksiksi, jolloin syntyy nelirenkainen rakenne, joka on kaikkien sterolien perusrakenne.

Suurin osa maksasolun tuottamasta kolesterolista kuljetetaan ulos solusta esimerkiksi sappihappoina tai kolesteryyliesterinä. Kolesteryyliesteri on kolesterolia hydrofobisempi molekyyli, joka kuljetetaan maksasta muualle elimistöön lipoproteiinipartikkeleissa, erityisesti LDL-partikkeleissa

Lisämunuaisessa kolesterolista valmistetaan steroidihormoneja, kuten lisämunuaiskuoren mineralokortikoideja ja glukokortikoideja, jotka säätelevät munuaisten ionien imeytymistä ja glukoneogeneesiä. Sukupuolihormoneja, kuten androgeenejä, estrogeenejä ja progesteronia, tuotetaan sukupuolirauhasissa ja istukassa.

Pahaa kolesterolia ei ole – on vain kolesterolia, joka on elimistön välttämättä tarvitsema aine

”Kolesteroli on ihmisen ja muiden eläinten kudoksissa, etenkin maksassa, tuotettu steroideihin kuuluva tyydyttymätön, rengasrakenteinen, veteen liukenematon kiteinen alkoholi.

Kolesteroli on ihmisen kaikkien kudosten toiminnalle välttämätön aine, jota esiintyy runsaasti varsinkin äidinmaidossa, rasvakudoksessa, aivoissa, hermoissa, maksassa ja munuaisissa. Usein puhutaan kansanomaisesti ”hyvästä” ja ”pahasta” kolesterolista, mutta kaikki kolesteroli on silti kemialliselta rakenteeltaan täysin samanlaista.” – Wikipedia/Kolesteroli

LDL ja HDL ovat rasvaa, rasvaliukoisia vitamiineja ja kolesterolia kuljettavia lipoproteiineja. Lyhenteet viittaavat Low Density Lipoprotein- ja High Density Lipoprotein -kuljetusmolekyyleihin.

Keho tarvitsee pieniä määriä omega6-rasvoja, kuten linolihappoa. Mutta käynnissä oleva tutkimus viittaa siihen, että linolihapon runsas saanti voi ylläpitää kehon hiljaista tulehdusta (inflammaatiota) ja altistaa monille sairauksille. Omega3- ja omega6 rasvahappojen tasapainoinen saanti lienee terveyden kannalta tärkeämpää kuin kiista kovista tyydyttyneistä ja pehmeistä tyydyttämättömistä rasvahapoista.

Ihminen, läski ja kolesteroli – miksi?

Ihmisen suolisto ja ruoansulatus käyttää vähemmän energiaa kuin useinpien muiden eläinten suolisto. Mikään muu laji ei toisaalta käytä niin paljan ravinnosta saatua energiaa aivojen toiminnan ylläpitoon kuin ihminen.

Tyydyttynyt rasva on erinomainen ja runsaasti energiaa sisältävä ravintoaine. Rasvan sisältämä energia, 9 kcal/g, piti varhaiset metsästäjä-keräilijät hengissä ennen maanviljelyn ja säilöntämenetelmien kehittymistä.

On selvää, että puolukoiden kerääminen talvihangilla ei taannut pohjoisten ihmisten selviytymistä. Minä uskon, että eläinrasvan sisältämä energia joudutti ihmisaivojen kehittymistä ja auttoi ihmislajin selvitymään.

Rasva on syntyvän ihmisen ensimmäistä ravintoa, joten ihmisen aineenvaihdunta virittyy rasvaan ravinnonlähteenä jo hyvin varhain.

Rintaruokinnassa olevat vauvat ovat ketoosissa. Vauvat karppaavat.

Tyydyttynyt rasva on ollut osa ihmisten ruokavaliota koko ihmislajin kehityshistorian ajan. Ihmisen aivot eivät ehkä olisi koskaan kehittyneet nykyihimisen suuriksi ja runsaasti energiaa kuluttaviksi ihmisaivoiksi, jos kaukaiset esivanhempamme eivät olisi saaneet riittävästi energiaa eläinrasvoista. 

Maanviljely kehittyi noin 10 000 vuotta sitten. Ennen maanviljelyn kehittymistä eläneet varhaiset metsästäjä-keräilijät saivat suuren osan ravinteista ja energiasta eläinproteiineista ja eläinrasvoista lähes 200 000 vuoden ajan.

Tyydyttyneistä rasvoista varoittelevat ravitsemussuositukset julkaistiin Yhdysvalloissa alle 50 vuotta sitten. Onko ihmisen aineenvaihdunta ratkaisevasti muuttunut viimeisen vuosisadan kuluessa?

Syömämme ravinto on muuttunut enemmän kuin aineenvaihduntamme. Monityydyttämättömiä siemenöljyjä on hyödynnetty ravinnossa vain noin sata vuotta.

Ravinto on osatekijänä monissa nopeasti yleistyvissä sairauksissa. Lihavuus, metabolinen oireyhtymä, aikuistyypin diabetes, suolistosairaudet, sydän- ja verisuonitaudit ja monet syövät voidaan tietyin varauksin palauttaa syötyyn ravintoon, ja aivan erityisesti sellaiseen prosessoituun ruokaan, jonka käyttöön aineenvaihduntamme ei ole ehtinyt adaptoitua.

60– ja 70-luvuilla rasvojen terveysvaikutuksista tehtiin kiinnostavia kontrolloituja satunnaistettuja tutkimuksia (CRT). Nämä tutkimukset eivät kuitenkaan mahtuneet vallitsevaan hypoteesiin kovien rasvojen haitallisuudesta, joten ne niiden annettiin unohtua.

Minnesota Coronary Experiment

Hiljattain pölyisestä kellarista löydetty vuosikymmeniä vanha tutkimus herättää kysymyksiä vallitsevista ravitsemusohjeista.

Minnesota Coronary Experiment, oli kontrolloitu satunnaistettu tutkimus (CRT), joka toteutettiin vuosina 1968 – 1973.

Valtion mielisairaaloissa ja vanhainkodeissa tutkittiin yli 9000 ihmisen avulla ruokavalion sisältämien rasvojen vaikutuksia terveyteen, kolesterolitasoihin sekä sydäntautien ja sydänkuolemien riskiin.

Kansallisen sydän-, keuhko- ja veri-instituutin (National Heart, Lung and Blood Institute) rahoittamaa tutkimusta johti Minnesotan yliopiston lääketieteellisen koulun tohtori Ivan Frantz Jr.

Institutionalisoituneiden tutkimushenkilöiden ruokavalion sisältämiä rasvoja kontrolloitiin. Puolet koehenkilöistä sai ravintoa, jossa oli runsaasti maidon, juuston ja naudanlihan sisältämiä tyydyttyneitä rasvoja (SFA – saturated fatty acids).

Vertailuryhmän ruokavaliosta tyydyttyneet rasvat poistettiin lähes täysin ja korvattiin monityydyttämättömillä kasvirasvoilla (PUFA – poly unsaturated fatty acids).

Tutkimuksen tavoitteena oli todistaa, että tyydyttyneiden eläinrasvojen korvaaminen kasviöljyistä saatavilla tyydyttymättömillä rasvoilla laskee sydäntautien ja -kuolleisuuden riskiä.

Tietoja ei koskaan analysoitu täysin, vaikka Minnesota Coronary Experiment oli eräs laajimmista kontrolloiduista satunnaistetuista ruokavaliotutkimuksista, joita koskaan on tehty.

Joitain vuosia sitten Kansallisen terveysinstituutin (National Health Institute) lääketutkija Christopher E. Ramsden kuuli unohdetusta tutkimuksesta. Hän kiinnostui aiheesta ja otti yhteyttä Minnesotan yliopistoon tutustuakseen julkaisemattoman tutkimuksen aineistoon.

Vuonna 2009 kuollut tohtori Frantz oli elinaikanaan tyydyttyneiden rasvojen terveysvaikutuksiin perehtynyt tutkija Minnesotan yliopistossa. Eräs Frantzin läheisistä kollegoistaan oli vaikutusvaltainen ravitsemustutkija Ancel Keys.

Ancel Keysin alkuperäistä dataa 7 maan tutkimuksesta. Maita oli 22, mutta tutkimukseen Keys hyväksyi vain ne 7 maata, joiden data tuki hänen ennakkohypoteesiaan. Esimerkiksi Ranskassa tyydyttyneiden rasvojen kulutus on runsasta, mutta sydätaudit ja -kuolemat harvinaisia. Tämä tunnetaan ranskalaisena paradoksina.

Keys uskoi kolesterolin ja tyydyttyneiden rasvojen lisäävän sydäntautien riskiä. Häntä voi pitää nykyisten ravitsemussuositusten isänä.

Tohtori Frantz uskoi Keysin tavoin tyydyttyneiden rasvojen haitallisuuteen, kertoi tutkijan poika, sydänlääkäri tohtori Robert Frantz, joka löysi Minnesotan pölyttyneen tutkimusraportin vanhempiensa kellarista.

Minnesota Coronary Experiment oli yllättävä. Koehenkilöillä, joiden ravinto sisälsi vain vähän tyydyttyneitä eläinrasvoja, kolesteroli laski keskimäärin 14 prosenttia. Vertailuryhmässä muutos kolesterolitasoissa oli vain prosentin luokkaa.

Vähän tyydyttyneitä rasvoja sisältävä ruokavalio ei kuitenkaan laskenut sydänkuolleisuutta. Päinvastoin. Tutkimuksen havainnot osoittivat, että mitä enemmän kolesteroli laski, sitä korkeammaksi sydäntautikuoleman riski kasvoi. Toisin sanoen kolesterolin laskeminen lisäsi kuolleisuutta.

Framingham Heart Study oli tehnyt samankaltaisen havainnon 1960-luvulla, mutta sekin jäi muiden Framinghamin tutkimusten varjoon.

Tulokset ovat ristiriidassa tyydyttyneiden rasvojen välttämiseen ohjaavien neuvojen kanssa. Kellarista löydetty tutkimus aiheutti melkoisen pöhinän ja pienimuotoisen skandaalin tutkijapiireissä. Pian ravitsemuspiireissä alkoi kiivas selittely ja tutkimuksen vähättely.

Huoli: institutionalisoidut opit vaarassa?

Analyysi, joka julkaistiin BMJ-lehdessä, nostatti ravitsemustutkijoiden keskuudessa kiivaita vastalauseita. Kritiikin mukaan Minnesotan tutkimus oli puutteellinen.

Walter Willett, Harvardin yliopiston ravitsemusosaston puheenjohtaja, väitti tutkimusta merkityksettömäksi. Willett tunnetaan mm. siitä, että hän laati monissa nykyisissä epidemiologisissa ravitsemustutkimuksissa käytettävät kyselykaavakkeet, joiden tutkimuksellista arvoa pidetään epäluotettavana.

Vuoden 2015 kansallisten ravintosuositusten päivittämiseen osallistunut ravitsemusasiantuntija Frank Hu väitti puolestaan, että Minnesotan tutkimus ei ollut tarpeeksi pitkäkestoinen osoittamaan monityydyttämättömien kasviöljyjen sydän- ja verisuonitautien riskiä alentavaa vaikutusta, koska koehenkilöitä seurattiin keskimäärin vain noin 15 kuukautta. Ehkäpä Hu on oikeassa, tai sitten ei ole.

Mozaffarianista Chowdhuryyn ja Zamoraan

Frank Hu viittasi Mozaffarianin vuoden 2010 metaanalyysiin, jonka mukaan ihmisillä oli 10 % vähemmän sydänkohtauksia, kun he korvasivat 5 % päivittäisistä tyydyttyneistä rasvoista monityydyttymättömillä rasvoilla vähintään neljän vuoden ajan.

Mozaffarianin tutkimuksessa oli kiinnostava havainto: jos tyydyttyneiden rasvojen saanti korvattiin hiilihydraateilla, hyötyä ei saavutettu.

Mozaffarian ja Skeaff/Miller (2009) suosittavat meta-analyysiensa perusteella tyydyttyneiden rasvojen korvaamista monityydyttämättömillä kasvirasvoilla. Siri-Tarino (2010), ja Chowdury (2014) saivat meta-analyyseissaan tuloksia, jotka eivät tue nykyisiä ravitsemussuosituksia ja väitteitä tyydyttyneiden rasvojen haitoista.

Tohtori Zamora ja hänen kollegansa puolestaan analysoivat neljä vastaavaa ravitsemuskoetta, joissa tutkittiin tyydyttyneen rasvan korvaamista kasviöljyillä ja rasvatyypin vaihdon terveysvaikutuksia.

Zamoran ryhmän analysoimat kontrolloidut satunnaistetut tutkimukset eivät tukeneet vallitsevia ravitsemussuosituksia tai väitettä, että monityydyttämättömät rasvat vähentävät sydänsairauksiin kuolleisuutta.

Vallitseva näkemys on, että matalat kolesterolitasot ovat yhteydessä pienempään sydäntautien riskiin ja sydäntautikuolleisuuteen.

Minnesota Coronary Experiment havaitsi kuitenkin täysin päinvastaisen yhteyden. Tutkimus osoitti, että kolesterolin lasku lisää kuolleisuutta.

Minnesotan tutkimuksessa interventio-ryhmän seerumin kolesteroli laski merkittävästi verrattuna kontrolliryhmään.

Jokainen 0,78 mmol / l seerumin kolesterolipitoisuuden lasku kasvatti sydäntautikuoleman riskiä 22%.

Interventioryhmässä ei saatu näyttöä monityydyttämättömien rasvahappojen ateroskleroosilta ja sydäninfarkteilta suojaavasta vaikutuksesta. Systeemisessä katsauksessa huomioitiin viisi satunnaistettua kontrolloitua tutkimusta. Meta-analyyseissä nämä kolesterolia laskevat interventiot eivät osoittaneet sepelvaltimotautikuolleisuuden tai kokonaiskuolleisuuden laskua.

Satunnaistettujen kontrolloitujen tutkimusten käytettävissä olevat todisteet osoittavat, että ruokavalion tyydyttyneiden rasvojen korvaaminen linolihapolla alentaa tehokkaasti seerumin kolesterolia, mutta ei tue hypoteesia, jonka mukaan kolesterolin lasku vähentäisi sepelvaltimotaudin, sydäninfarktien tai kaikkien syiden aiheuttamaa kuoleman riskiä.

Minnesota Coronary Study on osa kasvavaa näyttöä siitä, että monityydyttämättömien kasviöljyjen ja tyydyttyneiden rasvojen vaikutuksia sydänterveydelle on liioiteltu.

Tyydyttyneiden rasvojen vaihtaminen monityydyttämättömiksi kasvirasvoiksi voi tutkimuksesta riippuen olla jopa sydänterveydelle haitallista.


Eräs selitys yllättävälle havainnolle voi olla omega6-rasvahapot, joita on korkeina pitoisuuksina maissi-, soija-, puuvillansiemen- ja auringonkukkaöljyissä.

Johtavat ravitsemusasiantuntijat korostavat, että ruoanlaitto kasviöljyillä laskee kolesterolia ja estää sydänsairauksia.

Mutta on sellaistakin tutkimusnäyttöä, että runsas omega6-rasvojen saanti voi ylläpitää hiljaista tulehdusta (inflammaatiota) ja siten lisätä sairastumisalttiutta ja kuolleisuutta.

Inflammaatioon kytkeytyvät terveysriskit voivat olla suurempia kuin kolesterolin alentamiseen liittyvät edut.

Ramsden ja Sydney Diet Heart Study

Vuonna 2013 tohtori Ramsden kollegoineen julkaisi hämmennystä herättäneen selvityksen Australiassa 1960-luvulla toteutetusta kliinisestä tutkimuksesta. Tämän tutkimuksen tuloksia ei koskaan julkaistu tai analysoitu.

Australialaisessa tutkimuksessa havaittiin, että miehillä, jotka korvasivat tyydyttyneet rasvat monityydyttämättömillä omega6-rasvoilla, kolesteroli laski, mutta sydänkuolleisuus vastaavasti kasvoi enemmän kuin tyydyttyneitä rasvoja syövällä kontrolliryhmällä. Tulos on nykyisten suositusten vastainen.

Ramsden korosti, että havaintoja tulee tulkita varovaisesti. Tutkimus ei osoittanut, että tyydyttyneet rasvat olisivat terveellisempiä kuin monityydyttämättömät rasvat, hän sanoi. Mutta ehkä ne eivät ole niin haitallisia kuin yleisesti uskotaan.

Ravintorasvojen taustalla oleva tiede on monimutkaisempaa kuin ravitsemussuositukset antavat ymmärtää. Rasvojen ja kolesterolin vaikutukset eivät ole yksinkertaisia ja mustavalkoisia. Syöty ravinto on aina monista ravintoaineista muodostuva kokonaisuus.

Sata vuotta sitten amerikkalaisten päivittäisestä energiasta vain 2 prosenttia tuli linolihaposta. Nykyään amerikkalaiset saavat linolihaposta keskimäärin yli kolminkertaisen määrän energiaa.


Suuri osa omega6-rasvoista saadaan prosessoiduista ruoista, kuten makeisista, pizzasta, ranskalaisista, välipaloista, perunalastuista, kekseistä ja salaattikastikkeista.

Luonnollisemmat rasvalähteet, kuten oliiviöljy, voi ja munankeltuaiset, sisältävät myös linolihappoa, mutta vähemmän kuin monet kasviöljyt ja margariinit.

Alkuperäisen jutun lähde: New York Times

Sydney Diet Heart Study

Linolihappoa (omega6) saaneessa interventioryhmässä oli korkeampi kuolleisuus sydäntauteihin ja kaikkiin syihin kuin verrokkiryhmässä.

Suositukset tyydyttyneiden rasvojen korvaamisesta tyydyttämättömillä kasvirasvoilla ovat keskeinen osa kansainvälisiä ravitsemusohjeita. Ohjeiden tavoite on laskea sepelvaltimotaudin ja muiden sydänsairauksien riskiä.

Sydneyn tutkimuksessa ei havaittu linolihapon (omega6) kliinisiä etuja sydänterveydelle.

Tässä kohortissa tyydyttyneiden rasvojen korvaaminen linolihapolla itse asiassa lisäsi kuolleisuutta sepelvaltimotautiin, sydän- ja verisuonisairauksiin ja kaikkiin syihin.

Linolihappojen terveydellisten vaikutusten interventiotutkimuksen päivitetty meta-analyysi ei löytänyt näyttöä, joka tukisi nykykäsitystä monityydyttämättömien rasvojen eduista sydän- ja verisuoniterveydelle.

Muita tutkimuksia tyydyttyneiden ja tyydyttymättömien rasvojen vaikutuksista terveyteen

Suomalainen mielisairaalatutkimus

Kellokosken ja Nikkilän mielisairaaloissa tehtiin 1959-71 kontrolloitu interventiotutkimus, jonka tarkoituksena oli selvittää, voiko sepelvaltimotaudin (CHD) ilmaantuvuutta laskea seerumin kolesterolia alentavalla ruokavaliolla.
Suomalainen mielisairaalatutkimus on eräs vahvimmista Keysin Diet-Heart-hypoteesia tukeva tutkimus.

Koehenkilöt olivat sairaalahoidossa olevia naisia ja miehiä. Osa koehenkilöistä sai kolesterolia laskevaa ravintoa. Ruokavalio sisälsi vain vähän tyydyttyneitä rasvoja ja kolesterolia sekä runsaasti tyydyttymättömiä rasvoja.

Toinen potilasryhmä sai normaalia sairaalaruokaa. Kuusi vuotta myöhemmin koehenkilöiden ruokavaliot vaihdettiin ja tutkimusta jatkettiin vielä kuusi vuotta.

Vähän tyydyttyneitä rasvoja sisältävä ruokavalio laski koehenkilöiden kolesterolia huomattavasti. Sepelvaltimotauti ja sepelvaltimotautikuolemat laskivat noin puoleen normaalia sairaalaruokaa syövään kontrolliryhmään nähden.

Johtopäätöksenä oli, että seerumin kolesterolia alentavan ruokavaliolla oli huomattava ehkäisevä vaikutus sepelvaltimotaudin esiintymiseen.

Suomalaisessa mielisairaalatkimuksessa maitorasvan vaihtaminen soijaöljyyn laski tyydyttyneen rasvan saantia 27 grammaan päivässä, jolloin veren kokonaiskolesteroli laski n. 13 % naisilla ja 16 % miehillä.

Sepelvaltimotautitapahtumat lähtökohtaisesti sydänterveillä vähenivät seuraavasti:

Miehillä 44 % (p=0,008)
Naisilla 37 % (p=0,04)

Lisäksi yhteisanalyysinä erikseen julkaistussa tutkimuksessa sydänperäinen kuolleisuus laski miehillä 53 % mutta naisilla ei.

Siri-Tarino 2010

Oletusarvoisesti ruokavalion tyydyttyneiden rasvojen vähentämisen uskotaan parantavan sydän- ja verisuoniterveyttä.

Siri-Tarinon meta-analyysin tavoitteena oli koota yhteenveto epidemiologisten tutkimusten näytöstä, jonka mukaan ruokavalion sisältämät tyydyttyneet rasvat lisäävät sepelvaltimotaudin (CHD), aivohalvauksien ja sydän- ja verisuonisairauksien riskiä. Analyysiin koottiin 24 tutkimusta MEDLINE- ja EMBASE-tietokannoista

5–23 vuoden aikana seurattiin 347 747 henkilöä, joista 11 006:lle kehittyi sepelvaltimotauti tai aivohalvaus.

Tyydyttyneen rasvan saanti ei liittynyt lisääntyneeseen sairastumisriskiin.

Prospektiivisten epidemiologisten tutkimusten meta-analyysin näyttö ei tue oletusta, jonka mukaan tyydyttyneet rasvat kasvattavat sydän- ja verisuonitautien riskiä

Mozaffarian 2010

Sydäntautien riskejä kartoittavien satunnaistetujen kontrolloitujen tutkimusten, suurten kohorttien taudin päätetapahtumien ja kontrolloitujen satunnaistettujen tutkimusten tulokset viittaavat siihen, että tyydyttyneiden rasvojen merkitys sydäntautien selittäjänä on puutteellinen.

Merkittävät todisteet osoittavat, että tyydyttyneiden rasvojen vähentämisen terveysvaikutukset vaihtelevat korvaavasta ravintoaineesta riippuen.

Ihmistutkimuksista saatujen parhaiden todisteiden perusteella tydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvahapoilla (esim. margariinit, kasviöljyt) vähentää sydän- ja verisuonitautien riskiä, kun taas tyydyttyneiden rasvojen korvaaminen hiilihydraateilla ei tuo minkäänlaisia terveysetuja.

Mozaffarianin meta-analyysin mukaan merkittävät todisteet osoittavat, että tyydyttyneiden rasvahappojen (SFA) vähentämisen terveysvaikutukset vaihtelevat korvaavien ravintoaineiden mukaan.

Seurantatutkimusten perusteella tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvahapoilla (PUFA) vähentää sydäntautien riskiä, mutta tyydyttyneiden rasvojen korvaaminen hiilihydraateilla (CHO) ei tuottanut mitään terveysvaikutuksia.

Tyydyttyneiden rasvojen korvaaminen kertatyydyttämättömillä rasvoilla antoi tutkimuksissa epävarmoja tuloksia.

Tyydyttyneiden rasvojen korvaaminen hiilihydraateilla, kuten tavallisesti tehdään, ei vaikuta sydäntautiriskiä alentavasti. Mozzaffarianin tutkimuksen mukaan ei ole perusteltua nostaa hiilihydraattien saantisuosituksia ja laskea tyydyttyneen rasvan saantisuosituksia.

Tyydyttyneiden rasvojen korvaaminen monityydyttämättömillä rasvoilla vaikuttaa Mozaffarianin tutkimusaineiston ja muuttujien huomioimisen jälkeen laskevan sydäntautien riskiä 10 %, kun tyydyttyneiden rasvojen saantia vähennetään 5 % päivittäisestä kokonaisenergiansaannista. Yhdysvalloissa kansanterveydellisen hyödyn toteutuminen edellyttäisi, että väestötasolla ltyydyttyneiden rasvojen saanti putoiaisi 11,5 %:sta 6,5 %:iin.

Suositukset tyydyttyneiden rasvojen korvaamisesta tyydyttämättömillä rasvoilla voi tuntua tarkoituksenmukaiselta, mutta sydäntautiriskin kannalta tyydyttyneiden rasvojen kulutusta merkittävämpiä tekijöitä ovat matalat omega3-tasot, hedelmien ja vihannesten vähäinen saanti, transrasvojen saanti, sokeri ja runsas suolan kulutus.

Lopuksi haluan todeta, että ravitsemussuositukset eivät ole aivan niin ristiriidattomia ja kiistattomia kuin monet haluavat uskoa.




Likaista biologiaa & muutama vesiperä

Biologia on likaista. Paperilla matematiikka on puhdasta ja kaunista, mutta jos ihmisen aineenvaihdunnan toiminta määritellään termodynamiikan ensimmäisellä pääsäännöllä muuttujista piittaamatta, johtopäätökset ovat väistämättä harhaanjohtavia. Likaista biologiaa & muutama vesiperä tutustuu painonhallintaan ja terveyteen vaikuttaviin tekijöihin hieman toisesta vinkkelistä.

Olen aiemmissa kirjoituksissani arvioinut, että LCHF-ruokavaliota noudattavia ja suosittelevia lääkäreitä on muutamista kymmenistä satoihin. Olin väärässä. Pelkästään Kanadassa on lähes 4000 naistentautien lääkäriä, jotka suosittelevat potilailleen LCHF-ruokavaliota osana hoitosuosituksia.

Gary Taubesin mukaan koko maailmassa voi olla jo yli 10 000 lääkäriä, jotka toimivat institutionalisoituja lääketieteen dogmeja vastaan suosittelemalla LCHF-ruokavaliota osana lihavuuden, metabolisen oireyhtymän ja aikuistyypin diabeteksen hoitosuunnitelmaa.

Andreas Eenfeldtin Diet Doctor on maailman johtava lääketieteen ammattilaisten ylläpitämä ketogeeniseen ruokavalioon keskittynyt riippumaton verkkosivusto. Monet pidempään ketoilleet tunnistavat Diet Doctorin suunnannäyttäjien joukosta useita henkilöitä. Tämä henkilögalleria esimerkkinä siitä, että maailmalla yhä useammat lääketieteen ammattilaiset ja ravintoterapeutit luottavat tieteeseen ja tutkimukseen enemmän kuin pölyttyneisiin dogmeihin.

Diet Doctor Team

Tieteellinen tieto ei perustu muuttumattomiin dogmeihin

Koska tieteellinen metodologia on itseään korjaava järjestelmä, oletus on, että paremmin ilmiöitä kuvaava havaintojen ja evidenssin tukema malli korvaa huonommin ilmiöitä selittävän mallin. Perinteinen diet-heart hypoteesi on aikansa elänyt. Se on aika kuopata. Myös kaloriteoria kaipaa kipeästi päivittämistä.

Conclusions: Available evidence from randomized controlled trials shows that replacement of saturated fat in the diet with linoleic acid effectively lowers serum cholesterol but does not support the hypothesis that this translates to a lower risk of death from coronary heart disease or all causes. Findings from the Minnesota Coronary Experiment add to growing evidence that incomplete publication has contributed to overestimation of the benefits of replacing saturated fat with vegetable oils rich in linoleic acid.”

Uudet utkimukset eivät tue Ancel Keysin vuosikymmeniä vanhaa hypoteesiä, jonka mukaan tyydyttyneet rasvat ja kolesteroli aiheuttavat ateroskleroosia ja lisäävät kuolleisuutta.

On totta, että tyydyttyneet rasvat lisäävät ja monityydyttämättömät rasvat vähentävät lipoproteiinien määrää veressä. Tutkimusten mukaan kuolleisuus lisääntyy enemmän matalilla kolesterolitasoilla.

Robert Atkins

Palataan historiassa hieman taaksepäin. Robert Atkins ei ollut ensimmäinen ketoilija. Aihetta on käsitelty länsimaisessa lääketietellisessä kirjallisuudessa jo 1700-luvulta lähtien. Paaston ja hiilihydraattien rajoittamisen hyödyt on tunnettu Kiinassa pari vuosituhatta.

Robert Atkins (1930-2003) oli yhdysvaltalainen lääketieteen tohtori, fysiologi ja sydänlääkäri. Perinteisiä ruokavaliosuosituksia noudattanut Atkins kärsi ylipainosta ja masennuksesta. Hän aloitti 33-vuotiaana Alfred W. Penningtonin kehittämän ruokavalion noudattamisen rajoittamalla sokerin ja tärkkelyksen saantia. Vain kuudessa viikossa hänen painonsa putosi 12 kg.

Laihtumisen rohkaisemana hän ryhtyi hoitamaan ylipainoisia potilaitaan samanlaisella ruokavaliolla. Myös potilaiden paino laski ja terveys koheni. Vuonna 1972 Robert Atkins julkaisi maineikkaan laihdutusoppaan: Dr. Atkins’ Diet Revolution: The High Calorie Way to Stay Thin Forever. Vuonna 1992 hän julkaisi toisen kirjansa: Dr. Atkins’ New Diet Revolution, joka toimi lähtölaukauksena vuosituhannen vaihteen jälkeiselle vähähiilihydraattiselle buumille.

On selvää, etteivät terveysviranomaiset ja terveysjärjestöt katsoneet hyvällä Atkinsin oppeja. Hiilihydraattien rajoittamista vastustavat muistavat aina mainita, että Atkins kuoli 125 kiloisena läskinä sydänkohtaukseen, ja että hänellä oli pitkä historia sydänkohtauksia. Tällä urbaanilla legendalla halutaan alleviivata ketogeenisen Atkinsin ruokavalion oletettuja sydänriskejä. tarina on myytti.

Robert Atkins kaatui ja loukkasi päänsä. Sairaalassa hänet punnittiin. Robert Atkins painoi sairaalaan tullessaan 88,5 kiloa. Atkins vaipui sairaalassa koomaan ja sai nesteytystä yhdeksän päivää kestäneen kooman ajan. Sairaalassa Atkinsin paino nousi noin 28 kiloa. Hän siis painoi kuollessaan enemmän kuin sairaalaan saapuessaan. Robert Atkins sairasti kardiomyopatiaa (sydännlihaksen sairaus), jonka todennäköisin aiheuttaja oli infektio. Robert Atkins kuoli kaatumisen aiheuttamaan aivovammaan. Tämä on virallinen lääketieteellinen totuus.

Tutkimusten mukaan Atkinsin dieetti on turvallinen ja tehokas

Vuoden 2000 jälkeen tehdyt tutkimukset ovat osoittaneet, että Atkinsin dieetti on tehokas ruokavalio painonpudotuksessa ja hyödyllinen sydänterveyden riskitekijöiden kannalta. Tutkimukset eivät ole kuitenkaan vakuuttaneet läheskään kaikkia.

Kun sata lääkäriä julkaisi taannoin ketogeenisen ruokavalion terveyshyötyjä painottavan julkilausuman Huffington Postissa, vain muutama viikko myöhemmin ketogeeninen ruokavalio ja Atkinsin dieetti teilattiin mediassa täysin. Kamppailu on ankaraa. Paradigmat kaatuvat väistämättä, mutta väärien tietojen kumoaminen on hidasta.

Miksi ihminen lihoo?

Nykyihminen kehittyi noin 200 000 vuotta sitten. Ravitsemussuositukset otettiin käyttöön Yhdysvalloissa vuonna 1977. Ihmiskunta selvisi ja kehittyi 200 000 vuotta ilman virallisia ohjeita. Kuinka se on mahdollista? Miksi ihminen lihoo, vaikka meillä on vimpan päälle ohjeet oikein syömiseen?

Ihminen kehittyi sekasyöjäksi,koska se oli ainoa tapa selvitä. Ravinto kerättiin luonnosta silloin kun jotain ravintoa oli kerättävissä. Eläimiä saalistettiin ravinnoksi aina kuin se oli mahdollista tai tarpeen. Talvisin saaliseläimet olivat käytännössä varhaisten ihmisten ainoa ravinnonlähde. Tähän kehityshistoriaan nojaa paleodieetin perusta. Ruokaa syötiin silloin, kun sitä oli. Ylimääräisen energian elimistö varastoi rasvasoluihin.

Ihminen lihoo siksi, että evoluutio on mahdollistanut energian varastoimisen rasvasoluihin pahan päivän varalle. Ihminen selviää erinomaisesti ilman ravintoa pitkiäkin aikoja. Miten ihminen lihoo, on kokonaan toinen kysymys, joka liittyy energiansaannin ja kulutuksen tasapainoon sekä noin kymmeneen muuhun muuttujaan.

Luontokappaleet joko varastoivat energiaa tai vaihtolämpöisinä säästävät energian kulutuksessa. Varastoiminen tarkoittaa rasvan keräämistä, koska ravinnon saanti ei aina ollut itsestään selvää.

Lähes kaikki eläimet varastoivat energiaa rasvasoluihin. Lihominen on siis luonnollinen tapa varautua siihen, että ravintoa ei olekaan saatavilla. Rasvasoluihin varastoituu myös rasvaliukoisia vitamiineja.

Kun ihminen ei saa energiaa ravinnosta, elimistössä aktivoituu aineenvaihduntaprosessi, joka purkaa rasvasoluihin varastoituneita triglyseridejä vapaiksi rasvahapoiksi ja glyseroliksi verenkiertoon. Vapaiden rasvahappojen karboksyyliryhmät hapetetaan solujen beetaoksidaatiossa asetyylikoentsyymi-A:ksi, jota mitokondriot voivat sitruunahappokierrossa hapettaa energiaksi. Osa asetyylikoentsyymi-A:sta voidaan edelleen muuttaa solujen energiaksi kelpaaviksi ketoaineiksi. Maksa muuttaa ketogeneesissä vapaita rasvahappoja ketoaineiksi, kuten betahydroksibutyraatiksi.

Vapaita aminohappoja, sitruunahappokierron välituotteita, ketoaineita, vettä ja glyserolia voidaan muuttaa glukoosiksi glukoneogeneesissä. Veren punasolut tarvitsevat välttämättä glukoosia, jonka keho osaa itse valmistaa. Aiempien oletusten mukaan aivojen solut eivät ole riippuvaisia glukoosin saannista.

Evoluutio on varmistanut näin sen, että me emme kuole nälkään, jos emme saa heti ruokaa. Terve ihminen voi paastota pelkällä vedellä jopa 30 vuorokautta ja pysyä terveenä ja toimintakykyisenä.

Maailman pisimpään paastosi skotlantilainen Angus Barbieri, joka paastosi veden ja vitamiinipillereiden avulla kokonaista 382 vuorokautta. Paaston aikana hänen painonsa putosi 125 kiloa. Tapaus on hyvin dokumentoitu ja mainitaan mm. Guinnesin ennätysten kirjassa.

Angus Barbieri
Lähde: Wikipedia

Lämpöopin ensimmäinen pääsääntö

Aineenvaihdunta on enemmän kuin lämpöoppia ja paljon enemmän kuin iltapäivälehtien höpöhöpöjutut. Ongelma on se, että monimutkaiset asiat halutaan yksinkertaistaa. Lihomisen selittäminen energian säilymisellä tarkoittaa sitä, että viivat vedetään suoriksi ja kaikki häiritsevät taustavaikuttajat pyyhitään yhtälöstä.

Tutkiva journalismi on lähestulkoon haudattu. Uutiset julkaistaan sen tarkemmin asioihin paneutumaatta. Monet journalistit käytännössä vain kääntävät uutistoimistojen uutisia ymmärtämättä uutisen aiheesta juuri mitään. Se on valitettavaa, mutta totta.

Kalorioppi toimii periaatteessa hyvin paperilla. Ikävä tieteellinen fakta on, että rumat tosiasiat pilaavat kauniit teoriat. Biologia on likaista. En tarkoita saastaista, vaan tarkoitan, että kaikkien yhtälöön vaikuttavien tekijöiden laskeminen ja mallintaminen jokaiseen ihmiseen päteväksi universaaliksi lainalaisuudeksi on mahdotonta.

Biologia on likaista, koska aineenvaihdunnasta ei voi vetää universaaleja lakeja. Se sisältää liikaa rumia tosiasioita, jotka pilaavat kauniin teorian.

Energia ei häviä suljetusta systeemistä, mutta energian käyttöä ja varastoitumista säätelee monimutkainen biokemiallinen kone. Perinteisenen kalorioppi selittää kyllä lihomista, mutta se kuvaa puutteellisesti lihomisen syitä ja aineenvaihdunnan mekanismeja.

Kalorioppi

Kalori on vanha energian mittayksikkö. Se tarkoittaa lämpömäärää, joka kasvattaa yhden 14,5 asteisen vesigramman lämpötilaa assteella normaalipaineessa. Ravinnosta puhuttaessa pitäisi puhua kilokaloreista.

Tohtorit Newburg ja Johnston esittivät vuonna 1930 hypoteesin, jonka mukaan lihavuus johtuu kalorein mitattuna liian rusaasta ravinnosta, eikä aineenvaihdunnan häiriöstä. Tutkimusaineisto oli niukka, mutta kaloriteoria otettiin vastaan kumoamattomana tieteellisenä faktana.

Montignacin kritiikki kaloriteoriaa vastaan

Ranskalaisen Michel Montignacin periaate on seuraava: ”Lihominen ei johdu liiasta syömisestä vaan huonosta syömisestä.”

Montignacin mukaan kalorien vähentämiseen perustuva laihdutusteoria on 20. vuosisadan suurin ”tieteellinen ankka”. ”Se on ansa, huiputus, hölmö ja vaarallinen olettamus, jolla ei ole mitään tieteellistä perustaa. Ja kuitenkin se on ohjannut ravitsemuskäyttäymistämme yli puolen vuosisadan ajan.”

Montignac selvittää painon kertymisen logiikan seuraavasti: Olettakaamme, että yksilön päivittäinen tarve on 2500 kcal ja hänen saamansa kalorimäärä on pitkän ajan vastannut tätä tarvetta. Mikäli päivittäinen kaloriannos putoaa äkkiä 2000 kcal:iin, seurauksena on todellakin vastaavan vararasvamäärän käyttö ja toteamme painon pudonneen.

Jos päivittäinen kalorimäärä sen sijaan vakiintuu 2000:ksi aiemman 2500:n sijasta, elimistön eloonjäämisvaisto mukauttaa energiatarpeen nopeasti uudelle tasolle. Koska ihmiselle annetaan vain 2000 kcal, hän kuluttaa vain 2000 kcal. Painonmenetys keskeytyy nopeasti. Mutta elimistö ei jää tähän. Itsesäilytysvaisto houkuttelee sen entistä suurempaan varovaisuuteen. Ja tämä varovaisuus johtaa uusien varastojen muodostamiseen. Mikäpä siinä, jos sille annetaan vain 2000 kcal, se vähentää energiantarvettaan entisestään ja kuluttaa esimerkiksi vain 1700 kcal ja tallettaa ylimääräiset 300 kcal vararasvoiksi.

Montignacin mukaan vararasvojen muodostuminen tai muodostumatta jääminen on suoraan riippuvainen insuliinin erityksestä. Insuliinin eritys käynnistyy aina silloin kun veren sokeripitoisuus on nousemassa liian korkeaksi. Sen tehtävänä on auttaa veren glukoosin imeytymistä elimistön kudoksiin. Tarjolla oleva glukoosi käytetään joko tyydyttämään kehon välitöntä energiantarvetta tai, mikäli sitä esiintyy runsaasti, vararasvojen muodostamiseen. (1)
Ajatus, että jokaisen ihmisen biokemiallinen kone noudattaa täsmälleen samalla tavalla termodynamiikan ensimmäistä pääsääntöä, on yhtä hölmö, kuin väite, että kaikkien autojen bensiininkulutus on täsmälleen sama.

Termodynamiikan ensimmäinen pääsääntö:

  • Energiaa ei voida hävittää, se vain muuttaa muotoaan.
  • Termodynaamiseen systeemiin voidaan tuoda energiaa kahdessa eri muodossa työnä W ja lämpönä Q.
  • Tuotu energia muuttuu systeemin sisäenergiaksi U.
  • Sisäenergian muutos on siis systeemiin tuodun energian määrä:

ΔU=Q+W

  • Sisäenergian muutos ilmenee muutoksena systeemin lämpötilassa, paineessa, tilavuudessa tai olomuodossa.
  • Systeemistä voi myös lähteä energiaa. Tällöin systeemi, joko luovuttaa lämpömäärän -Q tai tekee ympäristölle työn -W. Huomaa miinus merkki energian lähtiessä systeemistä.

Syötyjen ja kulutettujen kaloreiden laskeminen on käytännössä mahdotonta. Erilaiset laskurit ja laskentakaavat helpottavat seurantaa, mutta nekin antavat epätäsmällisiä osatotuuksia.

Tietenkin ihminen laihtuu, jos syödyn energian määrä on vähäisempi kuin kulutetun energian määrä, mutta jos aineenvaihdunta toimii normaalisti, se purkaa energianpuutteessa mm. lihasten proteiineja polttoaineeksi. Äärimmäisellä rasvoja rajoittavalla ruokavaliolla ihminen voi ”syödä” omat lihaksensa. (1)

Kaikki laihduttajat tietävät, että laihduttaminen on vaikeampaa kuin lihominen. Meidät on ehdollistettu syömään 4-6 kertaa päivässä (mukaanlukien välipalat), että verensokerimme pysyy tasaisena.

Koska ravintomme koostuu pääasiassa sokereista, verensokerin ja insuliinipitoisuuden vaihtelut aiheuttavat energiapiikkejä ja energiatason nopeita laskuja. Tämä pitää meidät nälkäisinä ympäri vuorokauden. Jatkuvaa nälkää kompensoidaan välipalapatukoilla, pullakahveilla, välipaloilla, snackseillä, virvoitusjuomilla jne.

Tämä aiheuttaa toisaalta kokonaisenergian huomaamattoman kasvun, mutta tärkeämpää on se, kuinka ruoka vaikuttaa verensokeriin ja insuliiniin.

Miksi insuliini on tärkeää?

Kuvaparissa tyypin 1 diabetesta sairastava potilas ennen ja jälkeen insuliinihoidon. Kun haima lopettaa insuliinintuotannon, aineenvaihdunta ei voi käyttää syötyä ravintoa polttoaineena, joten se turvaa välttämättömien elintoimintojen jatkuvuuden purkamalla lihaksiin, maksaan ja rasvakudokseen varastoitua energiaa solujen polttoaineeksi.

Ennen insuliinilääkitystä tyypin 1 diabeetikot nääntyivät nälkään riippumatta siitä, kuinka paljon he söivät.

Haiman beetasolut erittävät vereen insuliinia kahdella mekanismilla.

  1. Ensinnäkin syöminen signaloi aivoille, että elimistö saa ravintoa. Tällöin hypotalamus signaloi haimalle, että ruokaa olisi pian tulossa, joten eritäpä sitä insuliinia vereen.Syöminen vaikuttaa insuliinin eritykseen makuaisti-hypotalamas-haima reitillä. Hypotalamuksen säätelemään insuliinin eritykseen vaikuttaa ainakin makuaisti. (1, 2).
  2. Veren glukoosipitoisuuden kasvu vaikuttaa haiman insuliinin eritykseen suoraan. Haiman Langerhansin saarekkeiden beetasolut aistivat verensokerin muutoksia ja pystyvät autonomisesti säätelemään verensokeria.Verensokerin noustessa haiman beetasolut erittävät vereen insuliinia, joka siivoaa glukoosin (ja muut ravinteet) verestä soluihin. Verensokerin laskiessa haiman alfasolut erittävät vereen glukagonia, joka aktivoi lihaksiin ja maksaan varastoitujen glykogeenien purkamisen glukoosimolekyyleiksi.

Insuliinin merkitystä painonhallinnalle ja terveydelle ei voi vähätellä.

  1. Insuliini on elintärkeä hormoni, jota ilman me kuolisimme.
  2. Insuliini vaikuttaa glukoosin ja muiden ravintoaineiden soluunottoon, glykolyysiin, glykogeenien synteesiin, proteiinien synteesiin sekä elektroninsiirtoketjun toimintaan.
  3. Insuliini estää glukoosia tuottavan glukoneogeneesin käynnistymisen, maksan ja lihasten sokerivarastoja purkavan glykogenolyysin, rasvahappoja purkavan lipolyysin, proteolyysin ja ketogeneesin.

Insuliinin toiminta

Insuliini on energia-aineenvaihdunnan tarvitsema elintärkeä hormoni. Se toimii kuin liikennevalvoja, joka ohjaa solujen energia-aineenvaihduntaa ja energian varastointia.

Solujen energiakylläisyyden perusteella solujen insuliinireseptoreihin kiinnittyneet insuliinimolekyylit päästävät ravintoaineita soluihin, jotka tarvitsevat energiaa ja/tai soluihin, joissa on tilaa varastoida energiaa.

Soluun kiinnittynyt insuliinimolekyyli näyttää glukoosi- ja rasvamolekyyleille vihreää valoa; tänne mahtuu.

Insuliini on porttivahti, joka avaa solut vain yhteen suuntaan: sisälle. Glukagoni insuliinin vastavaikuttajana puolestaan toimii solusta ulos periaatteella ja purkaa mm. glykogeeneihin varastoituneita sokereita verenkiertoon.

Veressä on aina insuliinia, mutta, kun insuliinipitoisuus laskee riittävästi, haima erittää glukagonia,joka purkaa energiavarastoja. Kun maksan ja lihasten sokerivarastot on kulutettu, verenkiertoon erittyy lipolyyttisiä hormoneja (adrenaliini, noradrenaliini, kortikotropiini ja glukagoni), jotka käynnistävät rasvasolujen purkamisen. Insuliini estää rasvasolujen purkamista, eli lipolyysiä. Jos verensokeri on jatkuvasti korkea ja veressä on paljon insuliinia, rasvasolujen purkaminen energiakäyttöön estyy.

Insuliiniresistenssi ja hyperinsulinemia

Jos haiman kyky tuottaa insuliinia loppuu, kuten tyypin 1 diabeteksessa tapahtuu, ravintoaineet eivät pääse verestä soluihin. Insuliinin puutteessa energian tuotanto loppuu ja ihminen nääntyy nälkään, vaikka söisi koko ajan. Tyypin 2 diabeteksessa haima tuottaa alkuun jopa normaalia enemmän insuliinia, mutta solujen insuliiniherkkyyden heikentyminen johtaa siihen, että veressä on liikaa insuliinia (hyperinsulinemia).

Insuliiniresistenssi ja hyperinsulinemia assosioituvat kaikkiin yleisimpiin kroonisiin sairauksiin. Tätä ei vielä tiedetty viime vuosisadan puolivälissä, mutta tieto lisääntyy ja se korjaa vanhoja käsityksiä.

Useimpien sairauksien taustalla on aineenvaihdunnan toimintahäiriö ja tämän aiheuttamat komplikaatiot. Lihavuus on lähes aina oire siitä, että aineenvaihdunnan toiminta on häiriintynyt. Nykyisin on tapana syyllistää ja leimata lihavia, mutta se on väärin. Lihavuus on oire, ei syy.

Hyperinsulinemiaan assosioituvat mm. Alzheimerin ja Parkinsonin taudit, tyypin 2 diabetes, alkoholista riippumaton rasvamaksa, haavainen paksusuolentulehdus, krooninen inflammaatio, lihavuus, ateroskleroosi, kardiomyopatia, sydänhalvaukset ja verenpaine. Edelliset kuvankaappaukset Catherine Kroftsin videolta.

Insuliini rakentaa lihas- ja rasvakudosta

Insuliini vaikuttaa myös anabolisiin aineenvaihduntatapahtumiin, kuten energian varastoimiseen lihasten ja maksan glykogeeneihin ja rasvasoluihin sekä esimerkiksi lihaskudosta rakentavaan proteiinisynteesiin. Tämä on äärimmäisen tärkeää.

Kun verenkierrossa on liikaa energiaravinteita (glukoosia ja rasvaa), ravintoaineet ohjataan ensin soluihin, jotka tarvitsevat energiaa. Ylimääräinen glukoosi varastoidaan ensimmäiseksi maksan ja lihasten sokerivarastoihin (glykogeenit), johon mahtuu keskimäärin 250-500 grammaa sokeria ihmisen lihaskunnosta riippuen.

Glukoosi, joka ei mahdu glykogeeneihin, varastoidaan rasvasoluihin. Myös ylimääräinen rasva ohjataan rasvasoluihin. Insuliinilla on keskeinen rooli energiaravinteiden ohjaamisessa soluihin. Solut käyttävät energian lähteenä joko rasvaa tai glukoosia. Solu ei voi samanaikaisesti sekä polttaa, että varastoida energiaa. Niin ei vain tapahdu. Tämä on periaatteessa perinteisen kaloriopin mukainen mekanismi.

Kiinnostavaksi tilanne muuttuu, kun likainen biologia kumoaa perinteisen mallin. Jos ja kun veressä on liikaa sokeria (hyperglykemia) ja insuliinia (hyperinsulinemia), sokeri voidaan varastoida vain rasvasoluihin, jossa glukoosi muutetaan lipogeneesissä triglyserideiksi. Jatkuvasti koholla oleva insuliini johtaa solujen insuliiniresistenssiin, minkä seurauksena insuliinin kyky siivota verestä ravintoaineet soluihin heikkenee. Rasvasolujen insuliinisensitiivisyys säilyy pisimpään, joten insuliini ohjaa yhä enemmän ravintoa verenkierrosta rasvasoluihin samalla, kun insuliiniresistenttien lihassolujen energiansaanti vähenee. Tämän seurauksena ihminen alkaa lihoa.

Insuliiniresistentti varastoi enemmän energiaa rasvasoluihn

Mitä tämä käytännössä tarkoittaa? Se tarkoittaa sitä, että samasta syödystä energiamäärästä insuliini varastoi suhteessa suuremman osan rasvakudokseen, koska ravintoa energiaksi polttavien lihassolujen kyky vastaanottaa energiaa on heikentynyt. Insuliiniresistentin ihmisen lihominen voi alkaa, vaikka kilokalorimääräisesti energiansaanti pysyisi aiemmalla tasolla. Insuliiniresistenssi vaikuttaa lihomiseen satunnaista ylensyöntiä enemmän.

Veressä on aina hieman insuliinia. Proteiinit ja rasvat lisäävät insuliinin eritystä, koska energia-aineenvaihdunta loppuu ja ihminen nääntyy nälkään, jos insuliinia ei ole saatavilla. Glukoosi kohottaa insuliinitasoja tuplasti enemmän kuin proteiini ja moninkertaisesti enemmän kuin rasva. Liikaa hiilihydraatteja sisältävä ravinto pitää verensokerin liian korkealla, jolloin insuliinin eritys lisääntyy ja vähitellen jatkuvasti koholla olevat verensokeri ja insuliini alkavat vaikuttaa negatiivisesti aineenvaihdunnan toimintaan. Tämä ennakoi insuliiniresistenssia, joka on useimpien kardiometabolisten sairauksien tärkein aiheuttaja.

Aineenvaihdunta on enemmän kuin lämpöoppia ja paljon enemmän kuin iltapäivälehtien höpöhöpöjutut. Energia ei häviä suljetusta systeemistä, mutta energian käyttöä ja varastoitumista säätelee monimutkainen biologinen kone. Perinteisenen kalorioppi selittää kyllä lihomista, mutta se kuvaa puutteellisesti lihomisen syitä ja aineenvaihdunnan jänniä mekanismeja.

Se, että eräät konservatiiviset ja institutionalisoituneet tieteestä piittaamattomat ravitsemusneuvojat väittävät, ettei hormoneilla, kuten insuliinilla ole suurtakaan merkitystä painon kannalta, on raivostuttavaa paskapuhetta.

Yksinkertaisesti: keho ei voi varastoida sokereita tai läskiä ilman insuliinin välittävää vaikutusta.

Etanolin aineenvaihdunta

Entä, jos laitamme energian tilalle alkoholin? Termodynamiikan ensimmäisen pääsäännön mukaan juodun alkoholin pitäisi poistua kehosta, koska muuten ylimääräinen alkohli varastoituisi elimistöön alkoholina tai läskinä.

Aineenvaihdunta polttaa juotua alkoholia muiksi aineiksi. Myös ravinnon sisältämä energia muuttuu aineenvaihdunnassa. Ravinto ei ole pelkkää energiaa.

Lämpöoppi toimii, mutta siinä on huomioitava myös yhtälöön vaikuttavat lukemattomat muuttujat, koska muuten siihen ei voi luottaa.
Etanoli on luonnosta ja alkoholijuomista löytyvä alkoholi, joka metaboloituu monimutkaisella katabolisella aineenvaihduntareitillä. Useat entsyymit osallistuvat etanolin prosessointiin ensin asetaldehydiksi ja edelleen etikkahapoksi ja asetyylikoentsyymi-A:ksi.

Kun asetyylikoentsyymi-A on muodostunut, siitä tulee sitruunahappokierron substraatti, joka hapetetaan solujen mitokondrioissa energiaksi. Sitruunahappokierron jäännöstuotteina on vettä ja hiilidioksidia.

Entsyymien esiintymisessä ja saatavuudessa olevien erojen vuoksi eri ikäiset ihmiset käsittelevät etanolia eri aineenvaihduntareiteillä. Maksa on tärkein etanolin aineenvaihduntaan osallistuva elin, koska maksassa esiintyy korkeina pitoisuuksina etanolin aineenvaihdunnan tarvitsemia entsyymeitä.

Ruoansulatusjärjestelmä tuottaa noin 3 g etanolia päivässä fermentoimalla ravintoa. Etanolin katabolinen hajoaminen on välttämätöntä paitsi ihmisten, myös kaikkien tunnettujen organismien, elämälle.

Eräät etanolin aineenvaihduntaan liittyvien entsyymien aminohapposekvenssit eivät ole muuttuneet 3,5 miljardiin vuoteen. Kaikki organismit tuottavat alkoholia pieninä määrinä useilla aineenvaihduntareiteillä.

Etanolia syntyy pääasiassa rasvahappojen synteesin, glyserolipidimetabolian, ja sappihapon biosynteesireittien kautta. Jos keholla ei olisi mekanismia alkoholien katabolisoimiseksi, alkoholit kumuloituisivat elimistöön ja muuttuisivat myrkyllisiksi.

Ehkä tämän vuoksi evoluutio on kehittänyt keinon katabolisoida etanolia myös sulfotransferaasin avulla. Sulfotransferaasit sulfonoivat serebrosideja sulfatideiksi. Serebrosidit ovat sfingolipideihin kuuluvia glykolipidejä, jotka vaikuttavat mm. hermokudoksessa.

Serebrosidien rakenne koostuu sfingosiinistä, rasvahappo-osasta ja glukoosista tai galaktoosista. Galaktooseja sisältäviä serebrosideja esiintyy erityisesti myeliinistä. No niin. Pitikö se viina vetää tähänkin juttuun? Ohessa etanolin aineenvaihduntareitti

Kuvankaappaus: Wikipedia

Kuinka etanolin aineenvaihdunta liittyy termodynamiikan ensimmäiseen pääsääntöön?Aineenvaihdunta muuttaa etanolin energiaksi, mutta ei varastoi etanolia soluihin alkoholina. Itse asiassa aineenvaihdunta ei edes osaa muuttaa etanolia läskiksi.

Lihottaako alkoholi ja miten se lihottaa?

Alkoholi sisältää noin 7 kcal/g energiaa. Puhtaassa etanolissa on enemmän energiaa kuin sokerissa ja melkein saman verran kuin rasvassa.

Alkoholi voi vaikuttaa lihomiseen ja rasvoittaa maksaa, mutta ei sen vuoksi, että laskennallisesti etanolissa on paljon energiaa. Lihomiseen ja maksan rasvoittumiseen vaikuttavat ne muuttujat, jotka sotkevat puhtaan termodynamiikan ensimmäisen pääsäännön kauniin yhtälön likaisella biologialla.

Mitä alkoholille tapahtuu? Kun ihminen juo alkoholia, maksa paiskii ylitöitä. Entsyymi nimeltä Alkoholidehydrogenaasi (ADH) hapettaa alkoholin asetaldehydiksi. Alkoholia palaa noin 0,1 g/painokilo/h, eli 70-kiloinen henkilö polttaa 7 grammaa alkoholia tunnissa.

Aldehydidehydrogenaasi metaboloi asetaldehydistä edelleen asetaattia. Asyyli-CoA syntaasi (ACSS2) ja asetyyli-CoA syntaasi (ACSS1) syntetisoivat asetaatista asetyylikoentsyymi-A:ta. Kun asetyylikoentsyymi-A on muodostunut, se siirtyy mitokondrioiden sitruunahappokiertoon, jossa siitä hapetetaan energiaa ja jäännöstuotteena on vettä ja hiilidioksidia. Kaikki energiaa tuottavat ravinteet muuttuvat aineenvaihdunnassa asetyylikoentsyymi-A:ksi, joka poltetaan vedeksi ja hiilidioksidiksi.

Alkoholin sisältämät sokerit lihottavat, alkoholi hidastaa rasvan palamista ja kasvattaa ruokahalua. Jos alkoholin yhteydessä syö energiatiheää ruokaa, alkoholi lisää ravinnon sisältämän rasvan ja hiilihydraattien varastoimista mm. maksaan. Puhdas alkoholi ei muutu elimistössä läskiksi. Se on sitä likaista biologiaa, joka ei sovi yhteen termodynamiikan ensimmäisen pääsäännön kanssa. Eräs alkoliin liittyvä kiinnostava huomio on se, että alkoholi itse asiassa parantaa solujen insuliinisensitiivisyyttä.

Runsaan alkoholin nauttimisen seurauksena veren alkoholipitoisuus pysyy korkeana kunnes maksa on prosessoinut kaiken alkoholin asetaldehydiksi, astetaatiksi ja asetyylikoentsyymi-A:ksi, joka hapetetaan sitruunahappokierrossa energiaksi. Jo tämä itsessään todistaa, että keho ei osaa muuttaa alkoholia läskiksi. Elimistö metabolisoi alkoholin ennen muita ravinteita. Jos ihminen syö, kun veressä on alkoholia, syöty ravinto muutetaan energiaksi tai varastoidaan vasta alkoholin palamisen jälkeen. Tämä voi lihottaa.

Aineenvaihdunta on siitä merkillinen biokemiallinen järjestelmä, että rasvat eivät aina varastoidu läskinä, mutta hiilihydraatit joudutaan joskus muuttamaan läskiksi.

Energiaravinteet: rasvat, hiilihydraatit ja proteiinit seuraavat kukin omia kemiallisia aineenvaihduntareittejään. Niillä on elimistössä muitakin tehtäviä kuin energian tuottaminen.

Alkoholiesimerkin takoituksena oli havainnollistaa, että aineenvaihdunnan kannalta tapahtumat eivät ole yksinkertaisesti sisään-ulos-tapahtumia, vaan paljon paljon monimutkaisempia reaktioketjuja, joihin vaikuttavat mm. geenit, sukupuoli, ikä ja hormonit.

Me tiesimme tämän aina, mutta emme ymmärtäneet. Alkoholin aiheuttama humalatila jatkuu, kunnes maksa on polttanut kaiken alkoholin verestä. Alkoholin sisältämä energia (kalorit) palaa, mutta ei varastoidu.

Lihava ihminen – Homo Corpulentus

Lihomiseen vaikuttaa ravinnon sisältämän energian lisäksi mm. ympäristö, geenit, hormonit, sukupuoli,ikä, suolistoflooran koostumus, stressi, unen määrä ja laatu, sekä ruumiinrakenne, eli kehon rasva- ja lihaskudoksen suhde. Näillä kaikilla on huomattava merkitys siihen, kuinka elimistö käyttää ravinnosta saatuja kaloreita, ja kuinka ihminen lihoo. Lihomiseen vaikuttavia tekijöitä kutsutaan obesogeneettiseksi potentiaaliksi.

Yleisesti ottaen aineenvaihdunta varastoi energiaa silloin kun energiansaanti ylittää kulutuksen. Tämä on selvää, mutta tutkimuksista tiedetään, että samaa ruokaa saman verran syövien ihmisten aineenvaihdunnan tapa käsitellä ravinnosta saatua energiaa poikkeaa toisistaan.

Tämä on osoitettu mm. identtisillä kaksosilla, jotka ovat syöneet laskennallisesti saman verran energiaa, mutta toinen on pysynyt hoikkana ja toinen lihonut. Kuinka se on mahdollista? Identtisillä kaksosilla on havaittu suoliston mikrobiomin vaikutus energia-aineenvaihduntaan. Lajistoltaan runsaampi mikrobiomi on yhteydessä tehokkaamaan aineenvaihduntaan ja energian kulutukseen, kun lajistoltaan köyhempi mikrobiomi assosioituu lihomiseen.

Ravinnolla on lihomisen kannalta merkittävä rooli, mutta jopa 70 % kehonpainoon vaikuttavista muuttujista johtuu geneettisistä tekijöistä, kertoi Professori Alfredo Martinez (Center of Nutrition Research at the University of Navarra, Pamplona, Espanja) Nature Reviews Disease Primers-lehdelle.

Melanokortiini 4 reseptori -geenimuutos näyttää liittyvän lihavilla ihmisillä selvästi ahmimishäiriöön. Sveitsiläistutkijat totesivat, että kaikki tätä geenimuutosta kantavat erittäin lihavat potilaat kärsivät ahmimishäiriöstä. Melanokortiini 4 reseptorin geenimuutosta on kahden tuoreen tutkimuksen mukaan runsaalla viidellä prosentilla lihavista ihmisistä. Geenimuunnos vaikuttaa ruokahalun sääntelyyn aivojen hypotalamuksessa.”Duodecim

Lihomisalttiuteen vaikuttavia geenimuutoksia on löydetty 118. Yksittäinen muutos ei kasvata lihomisen riskiä merkittävästi, mutta ihmisillä, joilla on useita lihomisalttiuteen vaikuttavia geenimuutoksia, on vahva taipumus lihomiseen kaloreista ja liikunnan määrästä riippumatta. Esimerkiksi ankyrin-B geenin muutokset lisäävät glukoosin kulkua rasvasoluihin.

Myös äidin paino vaikuttaa raskauden ja imetyksen aikana lapsen kehitykseen. Professori Martinezin mukaan raskaudenaikainen lihominen ensimmäisten 20 raskausviikon aikana lisää syntyvän lapsen ylipainoisuuden riskiä. Ilmiö palautuu sikiöaikaiseen aineenvaihduntaan, joka vaikuttaa pysyvästi lapsen geeneihin.

Toisaalta äidin imetyksen aikainen ravinto voi aiheuttaa vastaavanlaisia epigeneettisiä muutoksia lapsen insuliininsäätelyä ohjaavissa geeneissä ja altistaa lapsen myöhemmin elämässä insuliiniherkkyyden alenemiselle ja insuliiniresistenssille, kertoo professori Mark H. Vickers (Liggins Institute at the University of Auckland, New Zealand) Frontiers in Endocinology-lehdessä.

Kolesteroli

Yritän kirjoittaa kolesterolista oman tutkielman, koska aihe on äärimmäisen laaja ja monimutkainen.

Ei ole olemassa hyvää tai pahaa kolesterolia. On vain kolesterolia. Jos kolesterolimolekyyliä muutetaan yhdelläkin atomilla puoleen tai toiseen, se ei enää ole kolesterolia.

LDL, HDL ja kylomikronit (yms.) ovat rasvaa, kolesterolia ja vitamiineja kuljettavia lipoproteiineja. Sellaisina ne ovat aivan välttämättömiä rasva-aineenvaihdunnan normaalille toiminnalle. Se, että lipoproteiineja kutsutaan kolesteroliksi on hyvin harhaanjohtavaa.

Kolesterolisynteesi tuottaa kolesterolia, joka on mm. steroidihormonien, kuten estrogeenin, testosteronin ja D-vitamiinin synteesin välttämätön lähtöaine. Ruoansulatusnesteet tarvitsevat kolesterolia, aivot tarvitsevat kolesterolia, hermoratoja suojaavissa myeliinikalvoissa on kolesterolia ja solut tarvitsevat kolesterolia solukalvoihin. Joka päivä uusiutuu noin 200 grammaa soluja, joiden solukalvojen yksi rakennusaine on kolesteroli. Ihmisen kolesterolista 25 % on aivoissa, ja ravinto ei lisää kokonaiskolesterolia juuri lainkaan. Elimistö tuottaa sen verran kolesterolia kuin se tarvitsee.

Esimerkiksi suomalaisen väitöstutkimuksen mukaan naisten kuolleisuus lähtee kasvuun, jos kokonaiskolesteroli laskee neljään tai sen alle. Mutta tutustutaan kolesteroliin toisessa artikkelissa.

Inspiraation ja tiedon lähteitä

Gary Taubes

Robert Lustig

Paul Mason

Catherine Crofts

Nina Teicholz

Andreas Eenfeldt

Jason Fung

Georgia Erde

Benjamin Bikaman

Stephen Phinney

Darius Mozaffarian
Tim Noakes

David Unwin

Jeffry Gerber

Ted Naiman

Ivor Cummins

Dave Feldman




Ketogeeninen ruokavalio ja terveys

Korkea verenpaine on huonojen ravitsemustottumusten jälkeen toiseksi yleisin sairastumisen riskiä lisäävä tekijä, kertoo David J. Unwin (lue tutkimus tästä). Unwin on vuoden 2012 jälkeen hoitanut lihavia, korkeaa verenpainetta ja aikuistyypin diabetesta sairastavia potilaita ketogeenisellä ruokavaliolla. Tulokset ovat olleet hyviä.  Ketogeeninen ruokavalio ja terveys on laaja katsaus ketoilun positiivisiin terveysvaikutuksiin.

Kymmenet lääkärit ympäri maailman suosittelevat ketogeenistä ruokavaliota laihduttamiseen ja kardiometabolisten sairauksien hoitoon.

Uuden ravitsemusmallin omaksumisen vaikeus on siinä, että kasvavasta tutkimusnäytöstä ja parantuneista potilaista huolimatta ketogeeninen ruokavalio ei sovi nykyisiin ravitsemusmalleihin. Se haastaa vuosikymmeniä vallalla olleet ravitsemusopit ja lääketieteen paradigmat.

Ketogeeninen ruokavalio olettaa, että tyydyttyneisiin rasvoihin perustuva energiansaanti laihduttaa ja pitää kehon terveenä. Se sotii kaikkea oppimaamme vastaan.

Tieteen itseään korjaava periaate sopii huonosti ravitsemustieteen institutionalisoituihin dogmeihin. Jos tutkimukset antavat tuloksia, jotka eivät tue vallalla olevia käsityksiä, vanhoja oppeja pitää korjata vastaamaan uusia havaintoja.

Onko ketoilu vaarallista, koska siinä syödään paljon rasvaa?

Oppi rasvojen terveyshaitoista on rakennettu tieteellisesti hataralle perustalle. Rasvojen yhteys sydän- ja verisuonitauteihin on tieteellisesti kyseenalaistettu, mutta tämän paradigman asema ravitsemustieteessä on horjumaton.

Laajan kohorttitutkimusten meta-analyysin mukaan tyydyttyneet rasvat eivät lisää sydän- ja verisuonitautien riskiä.

” This current meta-analysis of cohort studies suggested that total fat, SFA, MUFA, and PUFA intake were not associated with the risk of cardiovascular disease. However, we found that higher TFA intake is associated with greater risk of CVDs in a dose-response fashion. Furthermore, the subgroup analysis found a cardio-protective effect of PUFA in studies followed up for more than 10 years.” Lue meta-analyysi tästä!

Olen laihtunut ketogeenisellä ruokavaliolla kolmessa kuukaudessa 9-10 kiloa. Ruokavalioni perusravinne on rasva, jota syön valtavasti virallisiin saantisuosituksiin nähden.  Verensokerini on hyvä 4,5-5,5. Verenpaineet ovat keskimäärin 135/85/80 -tasolla, mutta vaihteluväli on +/-10 suuntaansa.

Laihtuminen on ollut käsittämättömän helppoa, ja oloni on säilynyt koko ajan energisenä. Tältä osin uskallan suositella ruokavaliota muillekin. Tässä esiin tulevat lääketieteelliset havainnot ja väitteet perustuvat useisiin lähteisiin, joihin viittaan tekstissä ja tekstin jälkeen.

Kardiometabolinen syndrooma (CMS)

Kardiometaboliseen syndroomaan (CMS) sisältyy joukko aineenvaihduntaan, verenkiertoon ja munuaisiin assosioituvia häiriöitä. Yhteisiä nimittäjiä kardiometabolisille sairauksille ovat viskeraalinen rasva, keskivartalolihavuus ja insuliiniresistenssi.

Keskivartalolihavuuteen liittyy usein insuliinin heikompi vaikutus ääreiskudoksissa ja/tai seerumin korkea insuliinipitoisuus.

CMS:n oireisiin kuuluvat mm. korkea verenpaine, poikkeavuudet verenpaineen ja sykkeen vuorokausivaihtelussa, diabetekseen viittaavat rasva- ja sokeriaineenvaihdunnan muutokset, aikuistyypin diabetes, alkoholista riippumaton rasvamaksa, lisääntynyt verenhyytymistaipumus, kihti sekä sydän- ja verenkiertoelinten lisääntynyt tulehdusriski.

Epidemiologisissa tutkimuksissa on havaittu, että kardiometabolinen oireyhtymä kasvattaa sepelvaltimotauti-, aivohalvaus-, sydän- ja verisuonitautikuolleisuus- ja kokonaiskuolleisuus-riskejä.

Rohkeimpien lääkäreiden ja ketogeenisen ruokavalion puolestapuhujien, kuten Joseph R. Kraftin ja Ted Naimanin mukaan useimmat sydän- ja verisuonitaudit assosioituvat diagnosoituun tai diagnosoimattomaan diabetekseen. Tämä näkemys sopii hyvin havaintoon, että diabeetikoiden sydän- ja verisuonitautikuolleisuus on hyvin korkea.

Diabeteksen laboratoriodiagnoosin kehitykseen 1970-luvulla osallistuneen tri Joseph R. Kraftin mukaan hyperinsulinemia liittyy vahvasti verenpainetaudin, lihavuuden, ateroskleroosin, neurodegeneratiivisten sairauksien (Parkinsonin tauti, Alzheimerin tauti), eräiden syöpien ja verisuonitautien kehittymiseen.

Kardiometabolinen oireyhtymä ja kardiometaboliset sairaudet yleistyvät vauhdilla. Kraft varoitti diabetesepidemiasta ja hyperinsulinemiaan assosioituvista sairauksista jo 1970-luvulla.

Yhteinen nimittäjä kardiometabolisille sairauksille on samanaikainen insuliiniresistenssin aiheuttama hyperinsulinemia. Paikallinen insuliiniresistenssi ei yksistään yleensä aiheuta sairauksia, sillä aineenvaihdunta turvautuu siihen joskus tarkoituksella. Insuliiniresistenssi ja korkeat insuliinitasot yhdessä ovat vakava uhka terveydelle.

Lihavien prosentuaalinen osuus väestöstä Euroopassa

Synkkiä lukuja

Monet sairastuvat, vaikka he liikkuvat ja noudattavat yleisiä ravitsemussuosituksia. Länsimaissa on maailman paras sairaanhoitojärjestelmä, mutta samanaikaisesti todella sairas väestö.

Ylipainoisten ja lihavien määrä on Maailman terveysjärjestön (WHO) mukaan kolminkertaistunut vuoden 1975 jälkeen.

Kiinassa lihavia on 5-6 prosenttia väestöstä, mutta suurissa kiinalaiskaupungeissa, joissa syödään eniten pikaruokaa, lihavien osuus on lyhyessä ajassa kasvanut yli 20 prosenttiin; ylipainoisten ja lihavien kiinalaisten määrä on vain 10 viime vuoden aikana kolminkertaistunut. Keskivartalolihavien kiinalaisten määrä on samana aikana lisääntynyt 50 prosenttia.

Amerikkalaisista 35,4 prosenttia on lihavia, 61,5 % vyötärölihavia. Noin 100 miljoonaa amerikkalaista sairastaa tyypin 2 diabetesta tai esidiabetesta. Euroopan unionin alueella 30-70 % ihmisistä on jo ylipainoisia ja 10-30 % lihavia. EU:ssa lähes 30 miljoonaa ihmistä sairastaa diabetesta. Koko Euroopan (56 valtiota) alueella diabetesta sairastaa noin 60 miljoonaa ihmistä.

Diabetes

Aikuistyypin diabetesta sairastavien määrä on kasvanut noin 108 miljoonasta (1980) 422 miljoonaan (2014). Prosentuaalisesti maailman väestössä diabeteksen esiintyvyys on kasvanut 4,3 prosentista 8,8 prosenttiin neljässä vuosikymmenessä. Kasvun uskotaan jatkuvan. Nykyisen trendin perusteella vuonna 2045 joka kymmenes maailman ihminen sairastaa diabetesta.

Diabetesta sairastavien lisäksi jopa 352 miljoonan ihmisen glukoosin sieto on heikentynyt ja he sairastavat esidiabetesta. Mikä tällaisen selittää ja pitääkö tästä huolestua?

Minun mielestäni pitää huolestua. Diabetes yleistyy nopeimmin pieni- ja keskituloisten parissa, mutta se yleistyy myös muissa sosioekonomisissa väestöryhmissä. Diabetes on tärkein sokeutta, munuaisvaurioita, sydänkohtauksia ja alaraajojen amputaatioita aiheuttava sairaus.

Vuonna 2016 1,6 miljoonaa ihmistä menehtyi diabeteksen seurauksena ja näiden lisäksi 2,2 miljoonaa kuolemantapausta assosioitui vahvasti korkeaan verensokeriin (WHO).

IDF:n tilastojen mukaan diabetes ja siihen liittyvät komplikaatiot tappavat vuosittain noin 4 miljoonaa ihmistä. Tilastollisesti yksi ihminen kuolee diabeteksen seurauksena seitsemän sekunnin välein. Inhimillisen kärsimyksen lisäksi tyypin 2 diabetes tulee yhteiskunnille mahdottoman kalliiksi.

”The figures given in the IDF Atlas fit well with the estimates of an international consortium reporting worldwide trends in diabetes since 1980 based on a pooled analysis of 751 population-based studies with 4·4 million participants. According to this group global age-standardised diabetes prevalence increased from 4.3% (95% CI 2.4-7.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women.”

Syitä diabetesepidemialle voidaan etsiä esimerkiksi vähentyneestä arkiliikunnasta, väestön lisääntymisestä ja ihmisten odotettavissa olevan elinajan kasvusta. Nämä eivät kuitenkaan selitä nykyistä diabetesepidemiaa riittävän hyvin, sillä miljoonat raskasta fyysistä työtä tekevät ja ravintosuosituksia noudattavat lihovat ja sairastuvat diabetekseen.

Eräs tärkeimmistä diabeteksen kasvua selittävistä tekijöistä on keskivartalolihavuuden nopea lisääntyminen lähes kaikissa sosioekonomisissa ryhmissä ympäri maailman.

Mistä tiedän, onko minulla diabetes?

Terveellä ihmisellä paaston jälkeinen plasman sokeri on 6 mmol/l tai vähemmän. Kahden tunnin sokerirasituksessa terveen ihmisen verensokeri pysyy alle 7,8 mmol/l.

Kun paastoverinäytteestä mitataan sokeria 6,1–6,9 mmol/l, kyseessä on kohonnut paastoplasman sokeri eli heikentynyt paastosokeri (IFG, impaired fasting glucose).

Heikentynyt sokerinsieto (IGT, impaired glucose tolerance) todetaan, kun verensokeripitoisuus on 7,8–11 mmol/l sokerirasituskokeessa 2 tunnin kohdalla tai 2 tuntia aterian jälkeen.

Tutkimuksessa ketogeeninen ruokavalio oli perinteistä vähärasvaista diabetesruokavaliota parempi:

”Individuals with type 2 diabetes improved their glycemic control and lost more weight after being randomized to a very low-carbohydrate ketogenic diet and lifestyle online program rather than a conventional, low-fat diabetes diet online program. Thus, the online delivery of these very low-carbohydrate ketogenic diet and lifestyle recommendations may allow them to have a wider reach in the successful self-management of type 2 diabetes.”

Hyvä uutinen on se, että tyypin 2 diabetes ei ole krooninen sairaus. Se on voitettavissa! Tyypin 2 diabetes voidaan hoitaa esimerkiksi vähäkalorisella tai ketogeenisellä ruokavaliolla. Näistä jälkimmäinen on tutkimusten perusteella parempi.

”A literature search was performed, and a total of 99 original articles containing information pertaining to diabetes reversal or remission were included. Results: Evidence exists that T2D reversal is achievable using bariatric surgery, low-calorie diets (LCD), or carbohydrate restriction (LC).” Lue tästä!

Lihavien määrän kasvu eri väestöissä

Pitääkö klassinen ruokapyramidi kaataa?

Perinteiset lautasmallit ja ravintopyramidit eivät selvästikään suojele meitä lihomiselta ja sairastumiselta. Sairaudet yleistyvät, vaikka ihmiset noudattavat suosituksia, liikkuvat ja lääketiede kehittyy. Missä vika?

Eräs perinteisen ravintopyramidin kaatajista on professori Tim Noakes, joka on elämänsä aikana juossut kymmeniä maratoneja ja ultramaratoneja. Noakes kirjoitti uransa alussa vähärasvaiseen ja runsaasti hiilihydraatteja sisältävään ruokavalioon kannustavia kirjoja.

Noakes käänsi oman ravitsemuksensa ylösalaisin sairastuttuaan aikuistyypin diabetekseen. Hän sairastui, vaikka vältteli rasvoja, liikkui hyvin aktiivisesti ja söi virallisten suositusten mukaisesti. Vallalla olevan mallin mukaan maailman ”timnoakesien” ei pitäisi lihoa tai sairastua aikuistyypin diabetekseen, mutta monet maailman ”timnoakesit” sairastuvat.

Tohtori David Unwin kertoo, että vuonna 1986 hänen vastaanotollaan kävi 57 aikuistyypin diabetesta sairastavaa. Tauti oli tuohon aikaan vielä melko harvinainen ja siihen sairastuivat lähinnä iäkkäät ihmiset. Vuonna 2012 samalla vastaanotolla tyypin 2 diabeetikkoja oli jo 472.


Insuliini on anabolinen hormoni

Verenpainetauti, lihavuus, dyslipidemia ja glukoosi-intoleranssi assosioituvat hyperinsulinemiaan. Oirekirjo tunnetaan metabolisena oireyhtymänä. Hyperinsulinemia vaikuttaa verenpaineeseen lisäämällä munuaisten natriumretentiota (natriumin säilytystä).

Insuliini on aminohapoista muodostuva hormoni. Hormonit ovat elimistön valmistamia endogeenisiä viestinvälittäjämolekyylejä, jotka kulkevat erittymispaikasta kohdesoluihin pääosin verenkierron välityksellä. Hormoni voi vaikuttaa pieninäkin määrinä soluun, jossa on hormonille spesifisiä reseptoreja.

Eri puolilla elimistöä sijaitsevat umpirauhaset erittävät hormoneja aivolisäkkeen ja hypotalamuksen säätelemänä. Insuliinin eritystä ohjaa veren sokeripitoisuus. Glukoosi aiheuttaa piikin insuliinin erityksessä. Proteiinit ja rasvat vaikuttavat insuliinin eritykseen paljon sokereita maltillisemmin.


Mitä hormonit ovat?

Hormonit, jotka voivat olla joko vesiliukoisia (katekoliamiinit, glukagoni ja insuliini) tai rasvaliukoisia (D-vitamiini, steroidit ja kilpirauhashormonit) säätelevät lähes kaikkia elimistön aineenvaihduntaprosesseja. Ne ovat aminohappo-, rasvahappo-, proteiini- ja peptidihormoneja tai steroideja.

Aminohappoyhdisteistä muodostuneet hormonit muodostuvat tyrosiinista ja tryptofaanista. näihin hormoneihin kuuluvat kilpirauhasen erittämät kilpirauhashormonit ja lisämunuaisytimen erittämät katekoliamiinit.

Solukalvojen fosfolipidi arakidonihappo toimii rasvahappoyhdisteisten hormonien lähtöaineena. Tällaisia ovat mm. eikosanoidit (esimerkiksi postglandiinit, tromoksiaanit ja leukotrieenit).

Proteiini- ja peptidihormonit ovat muodostuneet muutamista tai jopa sadoista aminohapoista. Tällaisia ovat esimerkiksi vasopressiini ja tyreoliberiini.

Proteiinihormoneja ovat mm. insuliini ja kasvuhormoni. Proteiinihormoneja, joihin on liittyneenä hiilihydraattiryhmä, kutsutaan glykoproteiineiksi. Glykoproteiineja ovat esimerkiksi follikkelia stimuloiva hormoni ja luteinisoiva hormoni. Steroidihormonien lähtöaineena toimii kolesteroli.

Insuliini ja insuliiniresistenssi

Terve aineenvaihdunta reagoi ruokailun kohottamaan verensokeriin erittämällä insuliinia haiman Langerhansin saarekkeiden β-soluista. Insuliinimolekyylit kulkeutuvat verenkierron mukana soluihin ja kiinnittyvät kudosten insuliiniherkkien solujen insuliinireseptoreihin.

Insuliinireseptoriin kiinnittynyt insuliinimolekyyli ”kutsuu” solukalvon läpäisevän kanavan, jota pitkin glukoosimolekyyli pääsee sujahtamaan solun sytoplasmaan.

Insuliini vaikuttaa insuliiniherkkiin kudoksiin, kuten lihas- ja rasvasoluihin sekä maksan soluihin. Sillä on merkittävä tehtävä kehon energiataloudessa ja erityisesti sokeriaineenvaihdunnassa, koska insuliini lisää insuliiniherkissä kudoksissa glukoosin, aminohappojen ja rasvahappojen soluun ottoa. Insuliiniresistenssi vaikuttaa ensimmäiseksi lihassoluihin, joten rasvasolujen energian varastoiminen lisääntyy.

Normaalisti insuliinin eritys vähenee verensokerin laskiessa. Terveillä verensokeri pysyy noin 5 mmol /l (90 mg /dl) -tuntumassa. Esidiabeteksessa sokeritasot kohoavat lähelle 7 mmol /l -tasoa. Diabetekseen sairastuneilla yön yli paaston jälkeen mitattu verensokeri on toistuvasti 7,0 mmol/l tai sitä korkeampi. Normaalin verensokerin yläraja on 6,0 mmol/l.

Insuliini on kehon energiatalouden kapellimestari. Se ohjaa ravinteiden käyttöä energian tuotantoon tai varastoimiseen solujen kylläisyysasteen mukaisesti.

Insuliinipitoisuuden laskiessa glukagoni purkaa insuliinin rakentamia energiavarastoja maksan ja lihasten glykogeeneistä. Näiden hormonien pitoisuus veressä vaihtelee jatkuvasti. Välillä glukoosia puretaan glukagonin aktivoimana glykogeeneistä ja välillä glykogeeni- ja rasvavarastoja kootaan insuliinin avulla.

Insuliiniresistentillä henkilöllä insuliini ei laske verensokeria halutulla tavalla. Rasva- ja lihassolut, tarvitsevat insuliinia glukoosin sisäänottoon. Kun nämä solut eivät reagoi insuliiniin, verensokeri nousee.

Pitkään jatkuvalla korkealla verensokerilla on monia haitallisia terveysvaikutuksia: se mm. heikentää verisuonia.  Aterioiden välillä insuliinitasot laskevat. Insuliinin laskun vaikutuksesta haiman alfasolut erittävät vereen glukagonia. Tämä insuliinin vastavaikuttaja aktivoi sokerivarastojen purkamisen maksasta vereen ja lihaksista lihasten omaan käyttöön. Näin verensokeri pysyy tasaisena myös aterioiden välillä.

Rasvasolujen insuliiniresistenssissä verenkierrossa olevien lipidien imeytyminen heikkenee ja varastoituneiden triglyseridien hydrolyysi kiihtyy. Tämä lisää vapaiden rasvahappojen määrää veriplasmassa ja voi edelleen pahentaa insuliiniresistenssiä.

Hyperinsulinemia


Lisääntynyt viskeraalinen rasva erittää tulehdusta aiheuttavia sytokiinejä vereen, ja nämä vaikuttavat insuliinireseptorien toimintaa heikentävästi.

Hyperinsulinemia

Insuliiniresistenssi voi johtaa hyperinsulinemiaan, eli tilaan, jossa veressä on aivan liikaa insuliinia. Rasvasolujen insuliinisensitiivisyys säilyy pisimpään, minkä vuoksi veren glukoosia varastoidaan rasvasoluihin.

Insuliiniresistenssin vaikutuksesta lihasten toiminta heikkenee, sillä lihassolujen glukoosinsaanti vähenee. Samalla insuliinin vaikutuksesta rasvakudoksen rakentaminen tehostuu ja ihminen lihoo.

Koska insuliini on ensisijainen hormonaalinen signaali energian varastoimiselle insuliiniherkkiin rasvasoluihin, se stimuloi uuden rasvakudoksen muodostumista ja kiihdyttää painonnousua.

Insuliiniresistenssi lisää haiman beetasolujen insuliinin tuotantoa. Tämä nostaa veren insuliinitasoja (hyperinsulinemia) korkean verensokerin kompensoimiseksi.

Kompensoidun insuliiniresistenssivaiheen aikana insuliinitasot kasvavat, mutta verenkierron lisääntynyt insuliini ei kuitenkaan laske verensokeria.

Jos lisääntynyttä verensokeria kompensoiva insuliinieritys epäonnistuu laskemaan verensokeria, paastoglukoosi ja aterianjälkeinen glukoosi näkyvät mittauksissa kohonneina glukoosipitoisuuksina. Normaali glukoosipitoisuus pysyy aina 5 mml/l tuntumassa. Esidiabeteksessa verensokeritasot ovat 6,0-6,9 mml/l ja diabeteksessa yli 7 mml/l. Heikentynyt insuliinisensitiivisyys eli insuliiniresistenssi vaikuttaa näin tyypin 2 diabeteksen kehittymiseen.

Insuliiniherkät rasvasolut maksassa ja haimassa säilyttävät insuliinisensitiivisyyden lihassoluja pidempään. Tämän vuoksi insuliini kompensoi kohonnutta verensokeria ohjaamalla glukoosia rasvasoluihin, jossa glukoosi de novo lipogeneesissä muutetaan triglyserideiksi.

Tämä lisää myös maksan ja haiman rasvoittumista. Maksan rasvoittuminen lisää alkoholista riippumattoman rasvamaksan riskiä, mutta sitä suurempi ongelma insuliiniresistenssin ja aikuistyypin diabeteksen kannalta on haiman rasvoittuminen, sillä se heikentää entisestään insuliinintuotantoa, kunnes lopulta beetasolujen toiminta lakkaa kokonaan.

Insuliiniresistenssi assosioituu vahvasti ihmisiin, joilla on runsaasti viskeraalista keskivartaloläskiä, verenpainetauti, hyperglykemia, dyslipidemia, kohonneet triglyseriditasot, kohonnut hyvin pienten matalan tiheyden lipoproteiinien (sdLDL) tasot ja pienentyneet HDL-tasot.

Viskeraalinen keskivartalorasva assosioituu tutkimusten perusteella vahvasti insuliiniresistenssiin kahdella tavalla:

Ensinnäkin toisin kuin ihonalainen rasvakudos, viskeraalinen rasva tuottaa tulehduksellisia sytokiinejä, kuten tuumorinekroositekijä-alfa (TNF-a), interleukiini-1 ja interleukiini-6. Monissa kokeissa on osoitettu, että nämä proinflammatoriset, eli tulehdusta edistävät sytokiinit, hajottavat insuliinia tai estävät insuliinin normaalia toimintaa. Suuri osa tulehduksellisten sytokiinien tuotannosta on keskittynyt IKK-beeta / NF-kappa-B-reitille, proteiiniverkolle, joka tehostaa insuliiniresistenssiä vaikuttamalla tulehduksellisten markkerien ja välittäjien transkriptioon.

Toisaalta viskeraalinen rasva vaikuttaa myös rasvan kerääntymiseen maksaan, mikä aiheuttaa alkoholista riippumattoman rasvamaksan kehittymistä (NAFLD). Tämän seurauksena verenkiertoon vapautuu liikaa vapaita rasvahappoja lisääntyneen lipolyysin seurauksena. Edelleen NAFLD:n seurauksena maksan glykogenolyysi (glykogeenien pilkkominen glukoosiksi) ja maksan glukoosin tuotanto kiihtyvät, mikä pahentaa perifeeristä insuliiniresistenssiä ja kasvattaa tyypin 2 diabeteksen riskiä.

Insuliiniresistenssiin liittyy usein myös hyperkoaguloituva tila (heikentynyt fibrinolyysi) ja lisääntyneet tulehdukselliset sytokiinitasot.

Molekyylitasolla

Molekyylitasolla solu havaitsee insuliinin insuliinireseptoreiden välityksellä signaalin kulkiessa signalointikaskadin läpi. Tämä tunnetaan nimellä PI3K / Akt / mTOR signalointireitti.

Tuoreet tutkimukset viittaavat siihen, että tämä signalointireitti voi toimia fysiologisista olosuhteista riippuvaisena kaksisuuntaisena eli bistabiilina kytkimenä tietyntyyppisille soluille, jossa insuliinivaste voi olla kynnysilmiö.

Tämän signalointireitin herkkyys insuliinille voi heikentyä monien tekijöiden, kuten vapaiden rasvahappojen aiheuttaman insuliiniresistenssin seurauksena. Laajemmasta näkökulmasta herkkyyden virittäminen (tai herkkyyden vähentäminen) on organismin normaali tapa sopeutua muuttuvan ympäristön tai aineenvaihdunnan olosuhteisiin. Eli insuliiniresistenssi voi joissain tilanteissa olla elimistön kannalta toivottava tila.

Esimerkiksi raskaus muuttaa odottavan äidin aineenvaihduntaa. Odottavan äidin elimistön on vähennettävä lihaksiensa insuliiniherkkyyttä varatakseen enemmän glukoosia aivan erityisesti sikiön aivojen kehitykselle. Tämä voidaan saavuttaa siirtämällä insuliinin vastekynnystä, eli herkkyyttä erittämällä vereen istukan kasvutekijää, joka estää insuliinireseptorisubstraatin (IRS) ja PI3K:n vuorovaikutusta. Tämä on ns. säädettävän kynnyshypoteesin ydin.

Insuliiniresistenssi superoksidaasidismutaasi

Insuliiniresistenssi voi olla lisääntyneen ravinnonsaannin aiheuttama solutason reaktio. Ylimääräinen energiansaanti vaikuttaa solujen mitokondrioissa superoksidaasidismutaasin toimintaan.

Superoksidisdaasimutaasi on yksi tärkeimmistä antioksidanteista. Tällaisesta molekyylitason vaikutuksesta on viitteitä erilaisissa insuliiniresistenssistä tehdyissä havainnoissa. Kokeissa on havaittu myös, että insuliiniresistenssi voidaan kääntää nopeasti altistamalla solut esimerkiksi elektronin kuljetusketjun estäjille tai mitokondrioiden superoksididismutaasia jäljitteleville aineille.

Superoksidaasidismutaasi

Insuliiniresistenssi on yhteydessä verenpaineeseen. Nakamura tutkijakollegoineen. osoitti insuliiniresistenteillä jyrsijöillä ja ihmisillä, että vaikka insuliinin stimuloiva vaikutus adiposyyttien glukoosin imeytymisen insuliinireseptorisubstraatin 1 (IRS1) välityksellä heikentyi voimakkaasti, IRS2 välittämä vaikutus suolan imeytymiseen munuaisten proksimaaliseen tubulukseen, säilyi.

Kompensoiva hyperinsulinemia yksilöillä, joilla on insuliiniresistenssi, voi lisätä natriumin kerääntymistä proksimaaliseen tubulukseen, mikä johtaa natriumin ylikuormitukseen ja verenpaineen kohoamiseen.

Superoksidaasidismutaasi (SOD3) on useimmissa kudoksissa esiintyvä antioksidanttientsyymi, joka muuttaa haitallista superoksidia vähemmän haitalliseksi vetyperoksidiksi. Sekin on reaktiivinen happiyhdiste, mutta se toimii myös solujen viestinnässä viestinvälitysmolekyylinä. SOD3 saattaa siis osallistua solujen viestintään.

FM, PhD Lilja Laatikainen selvitti väitöstutkimuksessaan, kuinka solunulkoinen superoksididismutaasi-entsyymi suojaa kudoksia tulehdusreaktion aiheuttamilta vaurioilta. Tutkimus osoitti, että kudokseen virusvektorin avulla siirretty SOD3 estää tulehdussolujen, erityisesti makrofagien, kulkeutumisen vaurioituneeseen kohtaan.

Mekanismi on Laatikaisen tutkimuksen perusteella tulehdussolujen tarvitsemien tarttumismolekyylien ja tulehdusta edistävien sytokiinien tuoton vähentäminen estämällä keskeisen NF-kappa-B-molekyylin toimintaa. Tämän lisäksi SOD3 voimisti viestien välitystä Erk- ja Akt-signalointireiteillä, jotka edistävät solujen eloonjääntiä stressitilanteissa, ja vastaavasti vähensi solukuolemaan johtavien tekijöiden ilmentymistä, vähensi kudosvaurion laajuutta ja nopeutti kudoksen paranemista.

Insuliiniresistenssi tai heikentynyt insuliiniherkkyys on olennainen piirre aineenvaihdunnan oireyhtymässä, johon assosioituvat liikalihavuus, heikentynyt glukoosin sieto, dyslipidemia ja verenpaine. Dyslipidemialla tarkoitetaan rasva-aineenvaihdunnan häiriötä, jossa jokin veren rasva-arvoista (LDL, HDL, triglyseridit) ei vastaa suosituksia. Dyslipidemiasta puhutaan, jos seerumin LDL on yli 3 mmol litrassa, triglyseridipitoisuus yli 2 mmol/l tai HDL-pitoisuus alle 1mmol/l.

Insuliinin toiminta

Heikentynyt insuliiniherkkyys johtaa kompensoivaan hyperinsulinemiaan normaalin verensokerin ylläpitämiseksi. Insuliiniresistenssi voi olla toissijainen vaste insuliinireseptorin (IR) ja telakointiproteiinien, kuten insuliinireseptorisubstraattien (IRS) vaimennussäätelyä tai inaktivaatiota ohjaavalle signaloinnille.

Insuliinilla on tärkeä tehtävä verensokerin säätelyssä, sillä se stimuloi glukoosin kuljetusta rasvasolujen ja luurankolihasten kudosten läpi insuliinireseptorisubstraattien aktivaation jälkeen.

Insuliini stimuloi glukoosin kuljettajien (GLUT) siirtämistä solunsisäisistä kalvo-osastoista plasmakalvoon lisäämällä sokerin imeytymistä. Rasva- ja luurankolihaskudoksissa vaikuttaa useita glukoosin kuljetusmolekyylejä, mutta havaintojen perusteella GLUT4 on glukoosin solukalvojen läpi kuljettamisen kannalta tärkein kuljetusmolekyyli.

Insuliini sitoutuu ja aktivoi insuliinireseptori-tyrosiinikinaasia (IR), mikä johtaa IRS1:n, IRS2:n, IRS3:n ja IRS4:n fosforylaatioon. Sitoutumalla signalointipartnereiden, kuten fosfoinositidi-3-kinaasin (PI3K) kanssa insuliini aktivoi Akt/proteiinikinaasi B- ja proteiinikinaasi C-ζ -kaskadit, joilla on tärkeä tehtävä insuliinin toiminnassa.

IRS-alatyypit jakautuvat kudosspesifisesti, ja niillä on selkeät signalointikanavat. IRS1 välittää insuliinin vaikutusta glukoosin imeytymiseen rasvasoluissa ja luurankolihaksissa. IRS2 toimii ensisijaisesti välittäen insuliinin vaikutusta munuaistiehyihin.

Insuliiniresistenssi ja verenpaine

Insuliiniresistenssi ja verenpaine

Insuliiniresistenssin ja verenpaineen välinen yhteys on joko kahden itsenäisen prosessin yhteys, joka ei ole ainakaan suoraan yhteydessä verenpaineeseen, tai syy-seuraussuhde, jossa insuliiniresistenssi aiheuttaa kohonneen verenpaineen.

Jos insuliiniresistenssi ei aiheuta kohonnutta verenpainetta, insuliiniresistenssi ja kohonnut verenpaine voivat olla saman soluhäiriön toisiinsa liittymättömiä seurauksia. Eli kyse voi olla solunsisäisen vapaan kalsiumin määrän lisääntymisestä, mikä johtaa verisuonten supistumiseen ja insuliinin heikentyneeseen toimintaan.

Insuliiniresistenssi on toisaalta myös moniin verenpaineen kohoamista aiheuttaviin aineenvaihdunnan poikkeamiin assosioituva molekyylimarkkeri.

Toinen vaihtoehto on, että hyperinsulinemia vaikuttaa verenpainetaudin syntyyn, lisäämällä natriumin imeytymistä munuaisiin, aktivoimalla sympaattista hermostoa ja muuttamalla verisuonten resistenssiä.

Kudoksen heikentynyt insuliiniherkkyys on yhteinen nimittäjä useille sairauksille, kuten metabolinen oireyhtymä, keskivartalolihavuus, hyperglykemia, dyslipidemia, hypertensio ja insuliiniresistenssi. Vaikka insuliiniresistenssin osuutta hyperglykemian ja dyslipidemian osalta on tutkittu, insuliiniresistenssin merkityksestä verenpainetaudin patogeneesissä tiedetään vähemmän kuin insuliiniresistenssin merkityksestä metabolisen oireyhtymän ja tyypin 2 diabeteksen sekä lihavuuden synnyssä.

Miten Suomessa?

Diabetesliiton mukaan Suomessa vajaat puoli miljoonaa ihmistä sairastaa aikuistyypin diabetesta. Arviolta 100 000 sairastaa diabetesta tietämättään. Joka vuosi yli 20 000 suomalaista sairastuu tyypin 2 diabetekseen.

Diabetes on suurin yksittäinen valtimotautien, aivoverenkiertohäiriöiden ja alaraaja-amputaatioiden syy. Se lisää myös munuais- ja silmäsairauksia. Suomessa diabeteksen hoitokustannuksiin kuluu ihan helvetisti rahaa. Diabeteksen hoitoon käytetään 15 % terveydenhuollon menoista.

FinTerveys 2017 -tutkimuksen mukaan yli 30-vuotiaista miehistä 72 % ja naisista 63 % oli vähintään ylipainoisia. Miehistä 26 % ja naisista 28 % oli lihavia. Melkein puolet suomalaisista on vyötärölihavia.

Jo noin puoli miljoonaa ihmistä käyttää verenpainelääkkeitä. Tuhansilla verenpaineet ovat jatkuvasti riskirajoilla.  

Ketogeeninen ruokavalio toimii painonhallinnassa, pitää verensokerin tasaisena ympäri vuorokauden ja laskee tutkitusti verenpainetta. Voisiko ketogeeninen ruokavalio auttaa verenpaineen, painon ja huonojen lipidiprofiilien kanssa kamppailevia myös Suomessa?

Miksi ketoilu laskee verenpainetta?

David J. Unwin kertoo hiljattain tehdystä pilottitutkimuksesta, jossa tutkijat havaitsivat, että hyvin vähän hiilihydraatteja sisältävään ruokavalioon assosioitui merkittäviä verenpaineen, painon ja lipidiprofiilien paranemista, minkä vuoksi potilaiden lääkitystä voitiin tutkimuksen aikana vähentää.

Kysymys on: Voidaanko samanlaisia positiivisia terveyshyötyjä saada laajemmassa tutkimuksessa? Unwin tutkijaryhmineen rekrytoi perusterveydenhuollon seurantatutkimukseen 154 potilasta, jotka sairastivat aikuistyypin diabetesta, tai joilla sokerin sietokyky oli merkittävästi heikentynyt.

Vähähiilihydraattisen ruokavalion vaikutuksia sydämen ja verisuonitautien riskitekijöihin tutkittiin keskimäärin kaksi vuotta. Seurattujen potilaiden verenpaine laski merkittävästi LCHF-ruokavaliolla:

* Systolinen verenpaine laski keskimäärin 10,9 mmHg
*Diastolinen verenpaine laski keskimääräinen 6,3 mmHg
*Tutkimukseen osallistuneiden potilaiden paino laski keskimäärin 9,5 kg    *lipidiprofiilit paranivat selvästi

Tutkimuksen aikana potilaiden verenpainelääkitystä vähennettiin 20 prosentilla.  Kansallinen terveydenhuollon huippuosaamisinstituutti (National Institute for Health and Care Excellence – NICE) määrittelee kohonneen verenpaineen riskirajaksi 140/90 mmHg ja sitä korkeammat tulokset. Kotioloissa mitatut päivittäiset verenpaineen keskiarvot, jotka ovat vähintään135/85 mmHg ovat korkean verenpaineen riskirajoilla. Ymmärtääkseni näitä arvoja noudatetaan myös suomalaisessa terveydenhuollossa.

Hiljattain julkaistun tutkimuksen (lue tästä) mukaan huonojen ravitsemustottumusten jälkeen korkea verenpaine on globaalisti merkittävin sairastumisen riskitekijä.

Isossa-Britanniassa korkea verenpaine on tupakoinnin ja huonojen ravitsemustottumusten jälkeen kolmanneksi merkittävin sairastumiselle altistava riskitekijä.

Usein korkean verenpaineen syy voi johtua esimerkiksi ylipainosta, tupakoinnista, runsaasta suolan käytöstä tai perinnöllisistä tekijöistä, mutta toisinaan kohonneelle verenpaineelle ei löydetä mitään suoraa kausaalista syytä. Tällöin puhutaan essentiaalisesta hypertensiosta. Se on viisaalta kuulostava diagnoosi, joka kertoo, että syytä kohonneelle verenpaineelle ei tiedetä.

Tutkijat laativat vuonna 2013 ohjeita vähähiilihydraattisen ruokavalion (vähemmän kuin 130 g hiilihydraattia / päivä) hoitosuosituksia tyypin 2 diabeteksen. 19 potilaan pilottitutkimuksen potilaat sairastivat aikuistyypin diabetesta tai heidän sokerinsietokykynsä (IGT) oli merkittävästi heikentynyt. Kahdeksan kuukauden tutkimuksen hämmästyttävimmät seuraukset olivat potilaiden verenpaineen merkittävä parantuminen.  è systolinen 148 ± 17–133 ± 15 mmHg, p <0,005 è diastolinen 91 ± 8–83 ± 11 mmHg, p <0,05).  Koehenkilöiden verenpaineet laskivat huolimatta verenpainelääkkeiden käytön lopettamisesta.

Hypoteesi vuoden 2013 pilottitutkimuksen tuloksille oli, että vähähiilihydraattiset ruokavaliot voivat toimia diabeteksen ja painonhallinnan hoidossa perinteisiä hoitomuotoja paremmin. Aluksi hypoteesi herätti lääketieteellisessä yhteisössä runsaasti kritiikkiä ja epäilyjä, mutta sittemmin ketogeeninen ruokavalio on laajemmin hyväksytty osaksi aikuistyypin diabeteksen hoitoa. (Lue tästä ja tästä).

Hiilihydraattien vähentämisen vaikutukset insuliinin aktiivisuuteen ja metabolisen oireyhtymän oireiden hoitoon osoitettiin jo vuonna 2005 (lue tutkimus). Lisätyn sokerin lisäksi kaikkien ravinnon glukoosilähteiden, kuten leivän, perunan, viljan ja riisin rajoittaminen vähentää insuliinin eritystä ja parantaa insuliiniherkkyyttä.

Metabolinen oireyhtymä, korkea verenpaine DB2, keskivartalolihavuus, dyslipidemia ja alkoholista riippumaton rasvamaksa (NAFLD) ovat vain jäävuoren huippu. Kaikki nämä sairaudet palautuvat pinnan alla vaanivaan insuliiniresistenssiin.

Vuonna 2013 valmistunut vähän hiilihydraatteja sisältävän ketogeenisen ruokavalion ja vähärasvaisen ruokavalion pitkäaikaisia vaikutuksia selvittänyt satunnaistettujen kontrolloitujen tutkimusten (> 12 kuukauden kesto) meta-analyysi, osoitti vähän hiilihydraatteja sisältävällä ruokavaliolla selvää laskua diastolisessa verenpaineessa, mutta ei systolisessa verenpaineessa.

Samana vuonna valmistunut toinen satunnaistettu kontrolloitu tutkimus havaitsi, että sekä systolinen että diastolinen verenpaine laskivat kuuden viikon kuluttua.

Tyypin 2 diabetesta sairastavilla hyperinsulinemia lisää munuaisten natriumin pidättämistä. Samaa ei tapahdu terveillä verrokeilla. Vuonna 2017 satunnaistettujen vertailututkimusten systemaattinen katsaus ja meta-analyysi osoitti, että pienemmän glykeemisen kuorman ruokavalio laskee merkittävästi verenpainetta. (Lue tästä)

Huolimatta ketogeenisen ruokavalion hyötyjen laajemmasta hyväksynnästä, vähähiilihydraattisen ruokavalion pitkäaikaisvaikutukset herättävät yhä kysymyksiä.

Iso-Britannian diabetesyhdistyksen marraskuussa 2018 antaman lausunnon mukaan: vaikka vähän hiilihydraatteja sisältävän ruokavalion ”lyhytaikaiset” hyödyt diabetesta sairastavan painonhallintaan, parantunut glykeeminen kontrolli ja pienentynyt sydän- ja verisuonitautien riski on osoitettu, ketogeenisen ruokavalion pitkäaikaisvaikutuksista tarvitaan lisää tutkimuksia.

Tutkimus ja menetelmät

Tutkimuksessa analysoitiin retrospektiivisesti yleislääkäreiden tutkimusta varten keräämiä kliinisiä tietoja 9700 potilaasta Pohjois-Englannista.  Lääkärit ja sairaanhoitajat tarjosivat tyypin 2 diabetesta tai heikentynyttä glukoositoleranssia (IGT) sairastaville potilaille vaihtoehtoisena hoitomuotona vähän hiilihydraatteja sisältävää ruokavaliota.

Tutkimuksesta poissuljettiin: raskaana olevat, syömishäiriöiset, alipainoiset, tyypin 1 diabetesta sairastavat ja alle 18-vuotiaat. Tietoja kerättiin maliskuusta 2013 marraskuuhun 2018.

Ruokavalio-kokeeseen osallistuneille annettiin kirjalliset ohjeet ja lisätukea potilaan valinnasta ja kliinisestä tarpeesta riippuen.  Kokeeseen valikoitui monenkirjava joukko eri ikäisiä ja erilaisissa elämäntilanteissa eläviä ihmisiä.  Lääkärin ja sairaanhoitajan tapaamisten lisäksi kokeeseen osallistuville tarjottiin säännöllisiä 90 minuutin ”ryhmäistuntoja” lähes kuukausittain.

Ryhmäistuntoihin osallistui myös perheenjäseniä. Kohorttiin valikoitui 154 osallistujaa: 90 miestä ja 64 naista. Kunkin potilaan paino, verenpaine ja verenkuva tutkittiin ennen tutkimuksen alkua. 89 oli tyypin 2 diabetes. Kokeeseen osallistuvien ikähajonta oli 40-89 ja ryhmän keski-ikä 63 vuotta tutkimuksen alkaessa. Useimmat seurantaan osallistuvista olivat ylipainoisia (keskimääräinen painoindeksi 34).

Alkutiedot Lähtötason mittauksiin sisältyivät seuraavat: Paino, verenpaine, kokonaiskolesteroli, HDL-kolesteroli, paaston triglyseriditasot ja verenpainetaudit. Kaikki mittaukset kerättiin käyttämällä Yhdistyneen kuningaskunnan kansallisen terveyspalvelun standardilaitteita ja laboratorioanalyysejä.

Tutkittavia ohjeistettiin vähentämään merkittävästi ruokavalion sisältämiä piilosokereita ja tärkkelyspitoisia elintarvikkeita, kuten perunoita, leipää ja riisiä. Ohjeistuksessa käytettiin apuna tutkimusta varten kehitettyä sokeriekvivalenttijärjestelmää, joka edustaa erilaisten elintarvikkeiden glykeemistä kuormaa.

Esimerkiksi pieni viipale leipää aiheuttaa vastaavan verensokerin nousun kuin kolme teelusikallista sokeria, ja 150 g keitettyä riisiä nostaa verensokeria saman verran kuin kymmenen teelusikallista sokeria.  Sokeriekvivalenttijärjestelmän avulla potilaat ymmärsivät, että esimerkiksi maissihiutaleista, paahtoleivästä ja mehusta muodostuva aamiainen on käytännössä sokeria.

Tulokset

Kahden vuoden tutkimuksen aikana tutkittavien potilaiden verenpaine, paino ja lipidiprofiilit paranivat selvästi ketogeenisellä ruokavaliolla.

Tutkimus osoitti, että hiilihydraattien rajoittaminen on turvallinen ja tehokas tapa hoitaa tyypin 2 diabeteksen oireita.


Yhteenveto

Ketogeenisen ruokavalion vaaroja liioitellaan. Todennäköisesti näin tehdään, koska keto-dieetti ei mahdu perinteisiin oppeihin hyvästä ja terveellisestä ruokavaliosta.

Tutkimuksia ketogeenisen ruokavalion terveyshyödyistä julkaistaan kiihtyvään tahtiin ja yhä useammat lääketieteen ammattilaiset ovat ottaneet ketogeenisen ruokavalion osaksi lihavuutta, verenpainetautia, metabolista oireyhtymää, tyypin 2 diabetesta jne. sairastavien potilaiden hoitosuunnitelmaa.

Ketogeeninen ruokavalio pitää verensokerin ja veren insuliinipitoisuuden tasaisena. Korkea verensokeri ja korkea insuliini assosioituvat  kardiometabolisiin ja kroonisiin sairauksiin, kuten tyypin 2 diabetekseen. Ketogeeninen ruokavalio on paras tapa hoitaa insuliiniresistenssiä, joka on monien sairauksien perussyy. Ruokavalio hillitsee oksidatiivista stressiä ja inflammaatiota, jotka assosioituvat lukemattomiin kroonisiin sairauksiin.

Kansainvälisesti yhä suurempi joukko lääketieteen ammattilaisia ja ketogeeniseen ruokavalioon syvällisesti perehtyneitä ravintoterapeutteja, insinöörejä ja nörttejä luennoi ja kirjoittaa ketogeenisen ruokavalion hyödyistä.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695889/

https://en.wikipedia.org/wiki/Insulin_resistance

https://www.sciencedirect.com/science/article/pii/S0085253815301745

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359196/

https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1035-2

https://www.ncbi.nlm.nih.gov/pubmed/28193599

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664869/

 




Salaperäiset sirtuiinit

Salaperäiset sirtuiinit tehostavat solujen aineenvaihduntaa, hidastavat ikääntymistä, säätelevät geenien aktiivisuutta ja suojaavat aivoja. Mutta mitä sirtuiinit ovat ja miten ne vaikuttavat aineenvaihduntaan?

”Jo 1930-luvulta asti on tiedetty, että energiarajoitus pidentää jyrsijöiden elinikää. Nimenomaan energiamäärä (noin 60-70 % normaalista) eikä energian lähde näyttää tässä suhteessa olevan ratkaiseva tekijä. Energiamäärän vähentäminen saa aikaan kehon lämpötilan laskun sekä glukoosi- ja insuliinipitoisuuden, painon ja rasvamäärän vähenemisen (Guarente ja Picard 2005). Vähäinen energiansaanti tekee eläimet resistentiksi ulkoisille stressitekijöille, kuten oksidatiiviselle stressille. Tämä on tärkeä sopeutumismekanismi, sillä ikääntymisen uskotaan liittyvän ROS:n (reactive oxygen species) muodostukseen.”- Professori Markku Laakso / Duodecim


Johdanto

Nyt syntyviä sukupolvia odottavat ilmastonmuutoksen, hallitsemattoman väestönkasvun ja taloudellisesti yhä selvemmin jakaantuneen maailman asettamat haasteet.

Toisaalta lääketieteellinen kehitys ja ymmärrys geenien toiminnasta lupaa tuleville sukupolville pitkää ja tervettä elämää. Eräs mullistavimmista lääketieteellisistä keksinnöistä viime vuosina on ollut CRISPR-Cas-9 geenisakset, joilla DNA:sta voidaan leikata viallisia jaksoja ja korvata ne terveillä jaksoilla. Samaan aikaan ymmärrys ikääntymisestä ja siihen vaikuttavista aineenvaihduntamekanismeista on täsmentynyt.

Salaperäiset sirtuiinit ohjaavat ja tehostavat solujen rasva-aineenvaihduntaa silloin kun glukoosin saanti on vähäistä. Niukka energiansaanti käynnistää aineenvaihdunnan luonnollisen sopeutumismekanismin, johon osallistuu SIRT1-geeni. Sirtuiinit ovat NAD+ -riippuvaisia solujen apoptoosia, tulehdusvastetta, solujen elämänkaarta, geenitranskriptiota ja aineenvaihduntaa sääteleviä proteiiniasetylaaseja.



NAD+ eli nikotiiniamidiadeniinidinukleotidi ja proteiiniasetylaasit

Molekyylibiologiaan harjaannuttamattoman silmissä nämä sanat ovat silkkaa hepreaa. Mitä ne tarkoittavat ja mitä helvettiä ne meille tekevät? Vaikeilla sanoilla on miltei maagisia tarkoituksia. Mitä koentsyymit, kofaktorit ja entsyymit ovat?

NAD+ on kaikissa elävissä soluissa esiintyvä koentsyymi. Koentsyymit (tai kofaktorit) ovat orgaanisia molekyylejä tai epäorgaanisia metalli-ioneja, joka entsyymin on sidottava itseensä toimiakseen kemiallisia reaktioita katalysoivana entsyyminä.

Monet koentsyymeistä ovat vitamiineja, osa metalleja, kuten kofaktori-ionit Mn2+, Mg2+ ja Zn2+. Entsyymi, johon ei ole sitoutunut sen luontaista kofaktoria tai kofaktoreita on toimimaton apoentsyymi. Koentsyymi muodostaa entsyymin proteiiniosan eli apoentsyymin kanssa toimivan entsyymin.

Epäorgaanisia kofaktoreita ovat mm. ravinnosta saatavat metalli-ionit Cu2+, Fe2+ tai Fe3+, K+, Mg2+. Arvaatte varmaan, että näitä on paljon enemmän, mutta eiköhän pointti selvinnyt.

Nämä epäorgaaniset kofaktorit muodostavat apoentsyymien kanssa entsyymejä, kuten: sytokromi-c-oksidaasin, katalaasin, peroksidaasin, pyryvaattikinaasin, heksokinaasin ja glukoosi-6-fosfataasin.

Monet orgaanisista koentsyymeistä ovat vitamiineja tai niiden johdannaisia, kuten biosytiini, koentsyymi A, 5’-deoksiadenosyylikobolamiini, flaviiniadeniinidinukleotidi, lipoaatti, NADH/NAD+, pyriokdaalifosfaatti jne. Näiden koentsyymien esiasteet ovat vitamiineja, kuten biotiini (B7), pantoteenihappo(B5), B12, riboflaviini (B2), niasiini (B3), B6, folaatti (B9) ja tiamiini (B1).

Entsyymit ovat kemiallisia aineenvaihduntareaktioita nopeuttavia biologisia katalyytteja. Ne ovat yleensä proteiineja, mutta myös RNA-molekyylit eli ribotsyymit voivat olla entsyymejä. Entsyymien vaikutus perustuu niiden kykyyn alentaa substraattiin kohdistuvan reaktion aktivaatioenergiaa. Ilman entsyymejä kemialliset reaktiot tapahtuisivat soluissa liian hitaasti, eikä elämä olisi mahdollista. Nopeimmat entsyymit muuttavat jopa 40 miljoonaa molekyyliä reaktiotuotteiksi sekunnissa.


NAD+ ja sen pelkistynyt muoto NADH toimivat koentsyymeinä monissa biologisissa hapetus-pelkistysreaktioissa.

Nikotiiniamidiadeniinidinukeotidi muistuttaa kemialliselta rakenteeltaan toista tärkeää koentsyymiä, nikotiiniamidiadeniinidinukleodifosfaattia (NADP+). NAD+ osallistuu katabolisiin aineenvaihduntareaktioihin ja NADP+ on tärkeä koentsyymi anabolisissa reaktioissa.

Kataboliset aineenvaihduntareaktiot pilkkovat monimutkaisia molekyylejä yksinkertaisemmiksi ja anaboliset aineenvaihduntareaktiot rakentavat yksinkertaisemmista molekyyleistä suurempia ja monimutkaisempia molekyylirakenteita.

Eliöt tuottavat NAD+:a kahdella tavalla:

1. Geenien säätelemässä de novo-synteesissä tryptofaanista (aminohappo) syntetisoidaan ensin kinoliinihappoa, joka muutetaan nikotiinihappomononukleotidiksi ja edelleen nikotinaattinukleotidiadenyylitransferaasientsyymin avulla desamino- NAD+:ksi.
NAD+ syntaasientsyymi muuttaa desamino- NAD+:n nikotiiniamidiadeniinidinukleotidiksi.

2. NAD+-biosynteesiä tapahtuu myös nikotiiniamidista, joka prosessoidaan nikotiiniamidaasientsyymin avulla nikotiinihapoksi. Nikotiinihaposta muodostetaan nikotiinihappomononukleotidia, joka muokataan NAD+:ksi kuten de novo -synteesissä.

Proteiiniasetylaasit ovat asetyyliryhmään kiinnittyviä proteiineja. Deasetylaasit poistavat osia asetyyliryhmästä. Nisäkkäillä tunnetaan seitsemän erilaista ja erilaisiin reaktioihin osallistuvaa sirtuiinia. Esimerkiksi SIRT1-3 ja SIRT5 ovat deasetylaaseja. Solun tumassa on SIRT1:tä, SIRT6:ta ja SIRT7:ää. Mitokondrioissa on puolestaan SIRT3-5:tä ja solulimassa SIRT2:ta.

Mitä ne sirtuiinit siellä soluissa tekevät?

SIRT1 säätelee aineenvaihduntaa ja solujen elinkaarta
SIRT2 ja SIRT6 saattavat vaikuttaa kasvaimien kehittymiseen ja syöpään
SIRT3 ja SIRT4 osallistuvan aineenvaihdunnan säätelyyn
SIRT4 liittyy aminohappovälitteiseen insuliinin eritykseen

SIRT1 vaikuttaa erityisesti energia-aineenvaihdunnan kannalta keskeisissä kudoksissa, kuten haimassa, maksassa ja rasvakudoksessa. SIRT1:n aktivoituminen lisää insuliiniherkkyyttä ja laskee glukoosi- ja insuliinipitoisuuksia.

Koska SIRT1 on PPAR*-estäjä (*peroxisome proliferator-activated receptor), se kiihdyttää rasvakudoksen lipolyysiä vapauttamalla rasvakudoksiin varastoituja rasvahappoja verenkiertoon.


Lipolyysi vs. lipogeneesi

Lipolyysi pilkkoo rasvasoluihin varastoituja triglyseridejä glyseroliksi ja vapaiksi rasvahapoiksi. Glyseroli kulkeutuu verenkierron mukana maksaan, ja rasvahapot energialähteiksi luurankolihaksille, maksalle ja sydämelle.

Lipolyysi aktivoituu paaston ja vähän hiilihydraatteja sisältävän ruokavalion yhteydessä hormonaalisesti lipolyyttisten hormonien: glukagonin, kortikotropiinin, adrenaliinin ja noradrenaliinin vaikutuksesta.

Lipolyysin tarkoitus on säästää glukoosia punasoluille ja hermosoluille, jotka eivät pysty käyttämään rasvahappoja energiantuotannossa. Lipolyysille vastakkainen aineenvaihduntareaktio on lipogeneesi, joka prosessoi ja varastoi ylimääräisiä sokereita rasvahapoiksi.

Insuliini osallistuu ravinnon soluun pääsyyn sekä ravinteiden varastoimiseen lihas-, maksa- ja rasvasoluihin. Glukagoni ja muut lipolyyttiset hormonit purkavat solujen sokeri- ja rasvavarastoja verenkiertoon, jolloin niitä voidaan käyttää solujen energiantuotannossa.

Lipolyysiä ohjaa lipaasi. Kun haima erittää vereen insuliinia, lipolyysi estyy. Rasvakudos on herkkä insuliinin säätelylle. Kun veren insuliinipitoisuus laskee, lipolyyttiset hormonit ohjaavat lipaasin toimintaa. Tämä käynnistää lipolyysin ja rasvahappoja vapautuu rasvasoluista vereen.

Veren mukana soluihin kulkeutuneista rasvahapoista tuotetaan beetaoksidaatiossa asetyylikoentsyymi-A:ta, joka on kaikille energiaravinteille yhteinen väliaine sitruunahappokierrossa. Asetyylikoentsyymi-A voi jatkaa solujen energiantuotantoa mitokondrioissa tapahtuvassa sitruunahappokierrossa, jos glukoneogeneesi ei ole käynnissä.

Kun SIRT1 aktivoituu, insuliinin eritys haimasta lisääntyy. SIRT1myös suojaa haiman beetasoluja oksidatiiviselta stressiltä.

PCG-1:n*-aktivoituminen (*peroxisome proliferator-activated receptor gamma coactivator-1) lisää glukoosin syntetisoimista maksassa osana SIRT1-aktivaatiota. PCG-1 kasvattaa mitokondrioiden määrää ja kokoa sekä kiihdyttää rasvahappojen hapettumista beetaoksidaatiossa. Nämä tekijät yhdessä vaikuttavat suotuisasti glukoosin aineenvaihduntaan.

SIRT1 suojaa keskushermoston soluja neurodegeneratiivisilta prosesseilta. Punaviinin, mustikoiden, viinimarjojen ja karpaloiden sisältämä fenoliyhdiste resveratroli on SIRT1-aktivaattori, joka lisää PCG-1-aktivaatiota. Tämä on tutkimuksissa tehostanut mitokondrioiden toimintaa, energiankulutusta ja hapenottokykyä. Se voi lisätä myös solujen insuliiniherkkyyttä ja laskea rasvamaksaan sairastumisen riskiä.

Resveratroli on eläinkokeissa suojannut runsaasti energiaa ravinnosta saavia hiiriä lihomiselta estämällä PPAR:n* (*peroxisome proliferator-activated receptor) aktivaation. SIRT1 voi vaikuttaa suotuisasti aikuistyypin diabetekseen, sillä se lisää solujen insuliiniherkkyyttä ja haiman insuliinin eritystä, sekä laskee painoa ja kehoon varastoituneen rasvan määrää.

Yhteenveto

SIRT1 (Silent Information Regulator 1) osallistuu useisiin aineenvaihduntaprosesseihin ja energia-aineenvaihdunnan säätelyyn. SIRT1 vaikuttaa lihavuuteen ja aikuistyypin diabetekseen säätelemällä rasvojen aineenvaihduntaa ja mitokondrioiden biogeneesiä.

Sirtuiinien hermoja ja aivosoluja suojaava vaikutus perustuu toisaalta SIRT1:n oksidatiivista stressiä vähentävään vaikutukseen ja toisaalta SIRT1:n kykyyn vähentää tulehdusvastetta sitoutumalla NF-kB*:en (Nuclear Factor-kappaB) ja siten ehkäistä hermosoluissa tapahtuvaa neurodegeneraatiota ja atrofiaa.


NF-kB


Hiirikokeissa sekä akuutit, että pitemmän ajan kuluessa syntyvät hermosoluvauriot johtavat lähes aina aivojen mikrogliasolujen aktivaatioon. M1-tyypin mikrogliat erittävät tulehdusta edistäviä sytokiineja, jotka lisäävät osaltaan hermosolujen atrofiaa, kun taas M2-tyypin solut poistavat kuolleita soluja ja erittävät vaurioituneisiin hermoston osiin erilaisia kasvutekijöitä.

Keskeisenä tulehdusreaktioiden välittäjänä toimii transkriptiotekijä, tumatekijä kappaB (NF-kB) ja erityisesti sen p50/105-alayksikkö. Hiirikokeissa havaittiin, että NF-kB p50/105-alayksiköllä on merkittävä rooli aivojen tulehdusreaktioiden välittäjänä ja sitä kautta aivojen uusien hermosolujen muodostumisessa. NF-kB p50/105-alayksikön puuttumisen vaikutus vaihtelee eri tautimalleissa ja eri ikäisillä hiirillä.  (Taisia Rõlova)

”Tulehdus on immuunijärjestelmän aikaansaama reaktio, jonka avulla elimistö pyrkii vastaamaan infektioon tai kudosvaurioon ja korjaamaan sen. Matala-asteinen krooninen tulehdus on häiriötila, joka voi ylläpitää tulehdusvasteita kudoksissa aineenvaihdunnan muutosten kautta ja johtaa edelleen kudosvaurioihin sekä altistaa monille sairauksille, kuten astmalle, Alzheimerin taudille, sydän- ja verisuonitaudeille ja erilaisille syöville.”- Anu Wiklund

VIDEO


OSA 1: Energia-aineenvaihdunnan perusteet


Evoluution seurauksena ihmiselle on kehittynyt tehokkaita selviytymismekanismeja toisaalta adaptiivisen immuunijärjestelmän kautta erilaisia taudinaiheuttajia vastaan, ja toisaalta turvaamaan välttämättömät elintoiminnot silloinkin, kun ravintoa ei ole riittävästi saatavilla.

Terve nuori aikuinen selviää pelkällä vedellä kolmisenkymmentä vuorokautta. Aineenvaihdunta käyttää energianlähteenä ensimmäiseksi elimistön sokeri- ja rasvavarastot, mutta ravinnonpuutteen jatkuessa myös lihasten proteiineja käytetään energian lähteenä välttämättömien elintoimintojen turvaamiseksi.

Nykyinen yltäkylläisyys ja ravinnon helppo saatavuus on uusi ilmiö. Meille ruoka ja sen vaivaton saatavuus on itsestäänselvyys, mutta kaukaiset esivanhempamme joutuivat elämään pitkiäkin aikoja hyvin niukalla ravinnolla tai kokonaan ilman ruokaa.

Varhaiset ihmiset söivät silloin, kun ravintoa oli tarjolla ja paastosivat, kun ruokaa ei ollut. Ravinnosta saatu ylimääräinen energia varastoitiin rasva- ja lihassoluihin. Lihominen auttoi ihmisiä selviämään niukoista ajoista.

Toisaalta ravinnon saatavuuden epävarmuus on ilmeisesti vaikuttanut erilaisten biologisten selviytymismekanismien kehittymisen lisäksi eräänlaisen psykologisen selviytymismoodin syntymiseen. Nälkäinen ihminen valpastuu, aistit tarkentuvat, keskittymiskyky paranee, ympäristön hahmottaminen tehostuu, päätöksenteko nopeutuu jne. Tälle on biokemialliset ja hormonaaliset syyt. Väitän, että hieman nälkäinen ihminen on älyllisesti ja fyysisesti parhaimmillaan. Se on asia, josta toki voi kiistellä.

Sokeria vai rasvaa? Kuinka solut saavat energiaa?

Kaikki solut voivat käyttää glukoosia energianlähteenä. Solujen sytoplasmassa tapahtuva glykolyysi pilkkoo glukoosimolekyylin kahdeksi pyruvaatiksi, mikä tuottaa kaksi runsasenergistä ATP-molekyyliä. Kummastakin pyruvaatista saadaan oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta.

Aminohapot, hiilihydraatit ja rasvahapot on muutettava asetyyliryhmiksi ja liitettävä koentsyymi-A:han, jotta ne pääsevät mitokondriossa tapahtuvaan sitruunahappokiertoon. Sitruunahappokierrossa pyruvaateista saadaan vielä kolmisenkymmentä ATP-molekyyliä. Tämän soluhengityksen lopputuotteena on vettä ja hiilidioksidia.

Myös rasvaa (ja proteiineja) voidaan käyttää energian tuottamiseen. Aineenvaihdunta osaa käyttää esimerkiksi eräitä proteiineista saatavia ja vapaita aminohappoja glukoosia tuottavassa glukoneogeneesissä.

Rasvojen energia-aineenvaihdunnan perusta on beetaoksidaatio, ketoosi ja ketogeneesi. Solujen kannalta hiilihydraateista saatava glukoosi on kaikkein helpoin ja nopein energianlähde. Siihen aineenvaihduntamme on totutettu lapsesta alkaen. Rasvan ja proteiinien muuttaminen energiaksi kelpaavaan muotoon edellyttää useita aineenvaihduntareaktioita.

Lähtökohtaisesti keho suosii siis hiilihydraatteja energianlähteenä. Hiilihydraatit pilkotaan sokereiksi, jotka imeytyvät ohutsuolen epiteelin läpi verenkiertoon. Glukoosi kohottaa verensokeria ja haima reagoi glukoosipitoisuuden kasvuun erittämällä vereen insuliinia. Insuliinimolekyyli kiinnittyy solun pinnassa olevaan insuliinireseptoriin ja toimii kuin avain, joka avaa solun glukoosimolekyyleille.

Fruktoosi prosessoidaan maksassa ensisijaisesti glykogeeneiksi eli kymmenistä tuhansista glukoosimolekyyleistä muodostuviksi polysakkarideiksi. Nämä ovat nopeita varastosokereita. Osa fruktoosista muutetaan glukoosiksi, joka vapautuu verenkiertoon ja 1-2 % fruktoosista muutetaan triglyserideiksi.

Myös veressä oleva ylimääräinen glukoosi muutetaan mahdollisuuksien mukaan lihasten glykogeeneiksi. Glykogeenivarastojen rajallisen koon vuoksi osa glukoosista varastoidaan rasvasoluihin ja muutetaan rasvasolussa tapahtuvassa lipogeneesissä triglyserideiksi.

Veren glukoosipitoisuuden laskiessa haiman alfasolut erittävät vereen glukagonia, joka vapauttaa maksan glykogeenivarastoista glukoosia vereen ja lihasten glykogeeneistä glukoosia lihasten käyttöön. Näin verensokeri pysyy tasaisena myös aterioiden välillä.



Entä sitten kun sokerivarastot loppuvat?


Maksan ja lihasten sokerivarastot voivat loppua paastotessa, hyvin niukkaenergisellä ruokavaliolla tai hiilihydraattien saantia rajoitettaessa. Tällöin elimistön on turvauduttava varastoimaansa energiaan eli läskiin.

Veren glukoosipitoisuuden laskun seurauksena vereen erittyy lipolyyttisiä hormoneja: glukagonia, kortikotropiinia, adrenaliinia ja noradrenaliinia. Näiden vaikutuksesta elimistön rasva-aineenvaihdunta tehostuu.

Ketoaineiden tuotanto

Lipolyysi purkaa rasvasolujen triglyseridejä glyseroliksi ja vapaiksi rasvahapoiksi. Glyseroli kulkeutuu maksaan, jossa sitä voidaan hyödyntää mm. glukoosia syntetisoivassa glukoneogeneesissä.

Soluihin kulkeutuvat vapaat rasvahapot pilkotaan beetaoksidaatiossa asetyylikoentsyymi-A:ksi. Glukoneogeneesin yhteydessä asetyylikoentsyymi-A:ta ei voida hapettaa normaalisti mitokondrioissa, vaan ylimääräisestä asetyylikoentsyymi-A:sta muodostetaan 3-hydroksi-3-metyyliglutaryyli-koentsyymi-A-syntaasin katalysoimana 3-hydroksi-3-metyyliglutaryyli-koentsyymi-A:ta (HMG-KoA) ja edelleen mitokondrioissa 3-hydroksi-3-metyyliglutaryyli-koentsyymi-A-lyaasin (HMG-KoA-lyaasi) katalysoimassa reaktiossa ketoaineita: asetoasetaattia ja siitä edelleen betahydroksibutyraattia ja asetonia.

Asetyylikoentsyymi-A on kaikille ravintoaineille yhteinen väliaine solun valmistaessa energiaa. Sen asetyyliryhmän hiilet hapettuvat hiilidioksidiksi sitruunahappokierrossa (Krebsin sykli) ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, kuten ATP.

Oksidatiivinen fosforylaatio

Oksidatiivinen fosforylaatio on elektroninsiirtoketjusta ja ATP-syntaasista koostuva aineenvaihduntareitti. Happea käyttävien solujen ATP-energiasta noin 90 % syntyy oksidatiivisessa fosforylaatiossa eli kun ravintoaineet hapettuvat ja energia sitoutuu suurienergisiin fosfaattiyhdisteisiin, kuten ATP.

Oksidatiivinen fosforylaatio, glykolyysi ja sitruunahappokierto päättävät solun katabolisen energiantuotannon. Glykolyysissä, rasvahappojen oksidaatiossa ja trikarboksyylihappokierrossa muodostuneiden pelkistyneiden koentsyymien (NADH ja FADH2) elektronit siirtyvät oksidatiivisen fosforylaation elektroninsiirtoketjuun. Nämä elektronit pelkistävät happimolekyylit vedeksi, jolloin vapautuva energia sitoutuu ATP:nä.

Yhdestä glukoosimolekyylistä saadaan noin 30 suurienergistä ATP-molekyyliä.

Katabolisessa aineenvaihdunnassa pienimolekyyliset yhdisteet (aminohapot, monosakkaridit, rasvahapot) pilkotaan ja ”poltetaan” solujen energiaksi. Kaikkien energiaravinteiden yhteinen väliaine on asetyylikoentsyymi-A.

Asetyylikoentsyymi-A voidaan pilkkoa sitruunahappokierrossa, jossa sen hiiliatomit hapettuvat hiilidioksidiksi ja vetyatomit siirtyvät hapetus-pelkistysreaktioissa keoentsyymeille (NADH ja FADH2) Nämä siirtävät vetyä sitruunahappokierron ja elektroninsiirtoketjun välillä. Koentsyymit menettävät elektronit ja hapettuvat NAD+:ksi ja FAD:ksi, jotka jatkavat kiertoa.

Osa 2: Ketoosi ja sirtuiinit

Ketoosi kiihdyttää sirtuiinien aktivaatiota soluissa. Sirtuiinit kuuluvat histonideasetylaaseihin (HDAC). Ne ovat proteiineja, jotka poistavat asetyyliryhmän geenin histonista ja näin ”sammuttavat” geenin ilmentymisen eli ekspression.

Jokainen solu sisältää yksilön jokaisen geenin, mutta geeni ilmentyy vain tietyissä soluissa, ja joskus vain tiettyyn aikaan. Sammutettua geeniä ei lueta proteiinin valmistuksessa.

Ketoosi lisää sirtuiini1:en (SIRT1) määrää hippokampuksen eli aivoturson alueella ohimolohkojen sisäosissa korvien lähellä. Kummankin ohimolohkon hippokampus on yhteydessä toiseen ja hypotalamukseen aivokaaren välityksellä.

Nyt liikutaan kiistanalaisilla vesillä. Vuosittain arviolta 2,8 miljoonaa ihmistä kuolee lihavuuden aiheuttamiin komplikaatioihin. Tutkimuksissa on havaittu, että väestöjen keskimääräinen älykkyys laskee. Voisiko olla niin, että runsasenerginen ravinto ei tuhoa vain terveyttämme, vaan myös kognitiiviset kykymme? Voisimmeko elää nälässä terveempinä ja älykkäämpinä. Siinä on provokatiivinen keskustelunaihe kahvipöytään.


Hippokampus ja deklaratiivinen muisti



Hippokampus osallistuu muistitoimintoihin. Erityisen tärkeä hippokampus on deklaratiivisen muistin eli säilömuistin toiminnassa. Deklaratiivinen muisti jakautuu semanttiseen ja episodiseen muistiin. Semanttiseen muistiin tallentuvat asiat, joiden merkitys ymmärretään. Episodimuistiin tallentuu välähdyksenomaisia muistoja tapahtumista. SIRT1-puutos aiheuttaa kognition, muistin ja suunnitelmallisuuden häiriötilan.

”Li-Huei Tsai’s group found that Sirt1 regulates memory by forming a complex that downregulates microRNA miR-134.  This microRNA targets mRNA transcripts for the key learning and memory genes CREB and BDNF, so by keeping miR-134 low, Sirt1 promotes memory formation by keeping CREB and BDNF levels high.”

2016 tehdyssä tutkimuksessa (Heyward et al.) havaittiin, että jatkuvasti liikaravittujen hiirien muistitoiminnot heikkenivät ja hippokampuksen sirt1-pitoisuudet laskivat. Muistia ja oppimista säätelevien geenien ekspression heikkeneminen assosioitui DNA:n lisääntyneeseen metylaatioon.

Tutkijat raportoivat myös SIRT1-geeniin liittyvän DNA:n hydroksimetylaation vähenemisestä. Runsaasti energiaa sisältävän ravinnon aiheuttama DNA:n metylaatio hiirillä alleviivaa ympäristövälitteisten epigeneettisten muutosten vaikutuksia geenin ilmentymiseen.

Hydroksimetylaation merkitys aivojen toiminnalle on yhä arvailujen varassa, mutta tutkijat uskovat, että hydroksimetyloitunut DNA estää eräiden repressiivisten kompleksien sitoutumisen DNA:han.

Kolmas ruokavalioon liittyvä havaittu epigeneettinen mekanismi on, että yksi kolmesta ketoainetyypistä, betahydroksibutyraatti on itsessään endogeeninen HDAC-estäjä. Vaikka sirtuiinit estävät muistin repressoreita (torjujat?), toiset HDAC-luokan histonideasetylaasit voivat estää muistia parantavien geenien toimintaa. Tällaisten histonideasetylaasien estäjät parantavat muistin toimintaa ja niillä on suuri terapeuttinen potentiaali.

Moses Chaon tutkijaryhmä havaitsi, että betahydroksibutyraatti lisää hippokampuksen BDNF-expressiota estämällä HDAC2:ta ja HDAC3-5:tä. Käänsin edellisen kappaleen niin sekavasti, että täsmennetään: betahydroksibutyraatti parantaa muistiin vaikuttavien geenien ilmentymistä estämällä eräitä histonideasetylaaseja.

Eläinkokeiden perusteella ravinnosta saadun energian rajoittaminen ja ketogeeninen ruokavalio suojaavat aivojen soluja, tehostavat muistia ja parantavat kognitiivisia toimintoja. Vastaavasti runsasenerginen ja hiilihydraattipainotteinen ravinto ylläpitää oksidatiivista stressiä ja kasvattaa neurodegeneratiivisten muutosten riskiä.  Eräässä lievistä muistivaikeuksista kärsivillä vanhuksilla toteutetussa tutkimuksessa kuuden viikon vähähiilihydraattinen ruokavalio paransi koehenkilöiden verbaalista muistia. Toisessa kokeessa terveille nuorille aikuisille annettiin annos glukoosia. Kognitiivisia kykyjä mitattiin ennen glukoosia ja sen jälkeen. Tässä tutkimuksessa nuorten kognitiiviset kyvyt heikkenivät 20 minuuttia glukoosiannoksen jälkeen.

Ketogeeninen ruokavalio säätelee NAD+-riippuvaisia entsyymejä ja vähentää DNA:n vaurioita hippokampuksen alueella

Ketogeenisen ruokavalion (KD) epileptisia kohtauksia vähentävät vaikutukset on hyvin dokumentoitu. Ketogeeninen ruokavalio on joillain lapsilla ainoa tehokas keino vähentää epilepsiaan liittyviä kohtauksia.

Hiljattain on havaittu ketogeenisen ruokavalion terapeuttinen potentiaali useiden neurodegeneratiivisten sairauksien hoidossa. Kokeellinen todistusaineisto ketoruokavalion hyödyistä on kuitenkin edelleen puutteellista.

Rotilla tehdyssä tutkimuksessa on osoitettu, että ketogeenistä ravintoa saavien rottien hippokampuksen alueen solujen nikotiiniamidiadeniinidinukleotidi+ (NAD+) -tasot kasvavat.

NAD+ on soluaineenvaihdunnan toiminnalle välttämätön koentsyymi, signalointimolekyyli, soluterveyden markkeri sekä pitkäikäisyyteen ja DNA:n vaurioiden korjaamiseen osallistuvien entsyymien, kuten sirtuiinien ja poly-ADP riboosi polymeraasi-1:n (PARP-1) substraatti.

NAD+-riippuvaisten entsyymien aktivaatio voi selittää laajemminkin ketogeenisen ruokavalion hyödyllisiä vaikutuksia. En mene tarkemmin tuon rottakokeen arviointiin, mutta sen tulokset olivat hyvin rohkaisevia aivojen terveyden osalta.

Miten ketogeeninen ruokavalio suojaisi aivoja?

Ketogeeninen (KD) eli LCHF-ruokavalio sisältää hyvin niukasti hiilihydraatteja, runsaasti rasvoja ja kohtuullisesti proteiineja. Hiilihydraattien määrä rajoitetaan noin 10 prosenttiin päivittäisestä energiansaannista. Suurin osa päivittäisestä energiasta saadaan rasvasta, jonka määrä voi olla 60-70 % päivittäisestä energiansaannista. Proteiinien saanti pidetään 20-30 prosentin tasolla päivittäisestä energiansaannista.

KD ohjaa energia-aineenvaihdunnan helpoista ja nopeista hiilihydraateista (glukoosista) enemmän energiaa kuluttavaan rasva-aineenvaihduntaan, jossa vapaista rasvahapoista valmistettuja ketoaineita käytetään solujen ATP:n lähteenä.

Vähän hiilihydraatteja ja runsaasti rasvaa sisältävä ruokavalio on ainoa tehokas hoitomuoto lasten lääkeresistentin epilepsian epileptisten kohtausten hillitsemiseen. (Neal et al., 2009; Sharma et al., 2013; Cervenka et al., 2017)

Jatkuvasti kasvava tutkimusnäyttö osoittaa, että ketogeenisella ruokavaliolla on suotuisia vaikutuksia terveyteen (Yang and Cheng, 2010; Winter et al., 2017; Augustin et al., 2018) sekä pitkäikäisyyteen (Newman et al., 2017; Roberts et al., 2017).

Tuoreissa tutkimuspapereissa ketogeenisen ruokavalion terveysvaikutukset assosioituvat vahvasti NAD -koentsyymiin (Elamin et al., 2017), joka on välttämätön ATP:n prosessoinnille ja hapetus-pelkistys-reaktiolle. Ketoaine-perusteisessa aivosolujen energia-aineenvaihdunnassa pelkistyy vähemmän NAD-molekyylejä, kuin glukoosiin perustuvassa energia-aineenvaihdunnassa. Tämän seurauksena aivosoluihin jää korkeampia pitoisuuksia hapettuneita NAD+ -molekyylejä.

Ketogeeninen ruokavalio voi havaintojen perusteella indusoida nopeita ja pysyviä muutoksia NAD+ / NADH -suhteissa aivojen runsaasti energiaa kuluttavalla hippokampuksen alueella. Tämä aivojen osa tunnetaan leikkimielisellä nimellä – kohtausportti (seizure gate). Vastaavia havaintoja on tehty ikääntyneillä hiirillä. Sen sijaan ketoaineisiin nojaavan energia-aineenvaihdunnan ei havaittu vaikuttavan aivokuoren alueella.

Korkeammat NAD+ -tasot rajoittavat epileptisia kohtauksia ja kasvattavat koe-eläinten elinajan odotetta (Lin and Guarente, 2003; Mills et al., 2016; Liu et al., 2017). Kokeellisesti kohotetut NAD+ -arvot tehostavat mitokondrioiden toimintaa, suojaavat oksidatiivisen stressin aiheuttamilta vaurioilta ja vähentävät solujen kuolemaa (Kussmaul and Hirst, 2006). Nämä vaikutukset palautuvat alemman tason aineenvaihduntareitteihin.

NAD+ on kahden entsyymiryhmän, sirtuiinien ja poly-(ADP-riboosi) polymeraasien eli PARP:ien substraatti. Nämä entsyymiryhmät vaikuttavat solujen toimintaan geenien ilmentymisestä DNA:n vaurioiden korjaamiseen (Belenky et al., 2007).

NAD+-riippuvaiset sirtuiini-entsyymit ovat tärkeitä aineenvaihdunnan, tulehdusvasteiden ja DNA:n vaurioiden korjaamisen säätelijöinä. Sirt1 osallistuu transkriptiotekijöiden, kasvutekijöiden, anti-apoptisten (ohjattua solukuolemaa estävien) ja anti-inflammatoristen proteiinien deasetylaatioon, eli asetyyliryhmien purkuun.

Sirt1 on välttämätön kognitiivisten toimintojen, muistin ja neuroplastisuuden normaalille toiminnalle (Michan et al., 2010) ja sillä on havaittu epileptisia kohtauksia ehkäiseviä vaikutuksia. Ravinnosta saatavan energian (kaloreiden) rajoittaminen ja ketogeeninen ruokavalio assosioituvat solujen parempaan terveyteen ja ainakin eläinkokeissa odotettavissa olevan elinajan pidentymiseen. Sirt6 ja Sirt7 osallistuvat suoraan DNA:n emäsjaksojen korjaamiseen, mikä vähentää ikääntymisen aiheuttamia DNA-vaurioita.

Lopuksi

On kiinnostavaa seurata sirtuiinien ja ketogeenisen ruokavalion tutkimuksia. Väitteet karppauksen, rasvojen ja ketogeenisen ruokavalion haitallisuudesta ovat vähintäänkin liioiteltuja ja todennäköisesti jopa haitallisia. Tutkimusaineisto sirtuiinien molekyylibiologisesta roolista ja ketogeenisen ruokavalion terveysvaikutuksista karttuu vauhdilla. Minä palaan tähän aiheeseen Ruokasodassa varmasti vieläkin täsmällisempien tutkimusten kautta. Omalla kohdallani olen havainnut, että vähäisempi ravinnonsaanti kasvattaa motivaatiota, muistia ja aktiivisuutta. Nämä tutkimukset näyttävät vahvistavan omia huomioitani.

PS. Iloista ja rauhallista joulua!

Lähteinä olen käyttänyt erikseen ilmoitettujen lähteiden lisäksi mm. Duodecimia ja Wikipdiaa yleisimpien aineenvaihduntareaktioiden osalta. Kuvien lähde: Pixabay

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928875/

https://www.jneurosci.org/content/36/4/1324.long

https://elifesciences.org/articles/15092

https://www.frontiersin.org/articles/10.3389/fncel.2018.00263/full

https://www.duodecimlehti.fi/lehti/2007/19/duo96781




Mitä, miten ja miksi LCHF-ruokavalio?

Mitä, miten ja miksi LCHF`Vähän hiilihydraatteja ja runsaasti rasvoja sisältävässä ruokavaliossa (LCHF) hiilihydraattien saantia korvataan hyvillä rasvoilla. LCHF-ruokavaliot (ketogeeninen ruokavalio ja Atkinsin dieetti) ovat suosittuja etenkin laihduttajien keskuudessa, sillä ne laihduttavat nopeasti ja tehokkaasti.

Vähän hiilihydraatteja sisältävässä ruokavaliossa elimistö opetetaan käyttämään energianlähteenä sekä ravinnosta saatua että rasvasoluihin varastoitua rasvaa, josta aineenvaihdunta valmistaa energiaravinteiksi kelpaavia ketoaineita.

Lääketieteellisesti suhtautuminen LCHF-dieetteihin on hyvin kaksijakoinen. Perinteisemmän rasvateorian mukaan rasvat ovat syypäitä lähes kaikkiin terveysongelmiin ja kaikkiin maailman muihinkin ongelmiin nälänhädästä Antti Rinteen hallitukseen.

Kasvavan tutkimusaineisto haastaa perinteiset ja fakkiutuneet opit rasvojen haitallisuudesta. Yleistä tieteellistä konsensusta rasvojen terveyshaitoista ja -hyödyistä ei kuitenkaan vallitse.


Miten noin niin kuin aikuisten oikeasti? Kannattaako ketoilu?


Täällä Ruokasodan ketonurkkauksessa haluan tarjota objektiivisen ja kattavan kuvan ketogeenisistä ruokavalioista, Atkinsin dieetistä ja muista pahamaineisista moraalia ja terveyttä turmelevista LCHF-ruokavalioista. Yritän tarjota terveellisiä LCHF-reseptejä ja vinkkejä ketoiluun. Katsotaan kuin tämä etenee.

Lähdin tähän seikkailuun 02.12.2019. Aiemmat kokemukseni vähähiilihydraattisesta ruokavaliosta olivat hyvin rohkaisevia, mutta niistä on jo vuosia. Sen jälkeen vyötärönympärys on harpannut kolme paitakokoa ja paino 20 kiloa. Tervetuloa mukaan!

Asetun itse ruokavalion keskiöön koekaniiniksi. Kommentoin ketonurkkauksessa viimeaikaista keskustelua ketogeeenisten ruokavalioiden ympärillä, tuoreita tutkimuksia ja uutisia sekä omia havaintojani. Lähtöpainoni on 92 kg ja vyötärölihavuus alkaa olla hengenvaarallisella tasolla. Lisäksi sairastan etenevää multippeliskleroosia, mikä vaikuttaa fyysiseen aktiivisuuteen sitomalla minut käytännössä tuoliin. Tavoitepainoni on 72 kg. Verenpaineeni ovat nyt riskirajoilla (keskimäärin 80-90 alapaine ja yläpaine 135-150 tasolla).

Vähän hiilihydraatteja, mutta runsaasti rasvaa ja proteiineja sisältävä ruokavalio ylläpitää kylläisyyden tunnetta hiilihydraatteja paremmin. Tämän seurauksena ravinnosta saatu kokonaisenergia yleensä laskee, mikä edistää laihtumista. Kaikissa ruokavalioissa on kuitenkin muistettava turvata välttämättömien ravintoaineiden saanti. Se on terveyden kannalta olennaista.

Laihtumisen lisäksi LCHF-dieetti auttaa ylläpitämään terveyttä, kuten European Journal of Clinical Nutrition kertoo katsauksessaan. Tuoreiden tutkimusten valossa LCHF-ruokavaliolla on suotuisia vaikutuksia

  • aikuistyypin diabetekseen
  • eräisiin syöpiin
  • munasarjojen monirakkulaoireyhtymään (PCOS)
  • Alzheimerin tautiin
  • sydämen terveydelle
  • etenevään multippeliskleroosiin

Varoituksen sana on paikallaan: tutkimukset ovat antaneet ristiriitaisia tuloksia LCHF-ruokavalioiden terveysvaikutuksista. Vähän hiilihydraatteja, kohtuullisesti proteiineja ja runsaasti rasvoja sisältävien ruokavalioiden pitkäaikaisvaikutuksia ei vielä tunneta.

Lääketieteellisessä Lancet-julkaisussa esitetyn tutkimuksen mukaan LCHF lisää kuolleisuutta kaikkiin syihin, mutta sama ilmiö toteutuu U-käyrän toisessa päässä; myös eniten hiilihydraatteja syövien kuolleisuus kasvaa saman tutkimuksen perusteella verrokkeihin nähden. Mistä tällainen voisi johtua?

On luultavaa ja jopa todennäköistä, että molemmissa ääripäissä ruokavalion yksipuolisuuden vuoksi syntyy puutoksia välttämättömistä ravintoaineista. Erään toisen tutkimuksen mukaan terveyden kannalta tärkeintä ei ole se, kuinka monta pizzaa tai hampurilaista syö, vaan se, että samalla saa kaikki välttämättömät ravintoaineet. Välttämättömien ravintoaineiden merkitystä terveydelle ei voi korostaa liikaa.

On jännä, että varsin monille LCHF-ruokavalio on punainen vaate, joka herättää suoranaista raivoa. Samanlainen vihainen asennoituminen on havaittavissa suhtautumisesta kasvisruokaan, lihan rajoittamiseen, vegaanisuuteen ja paleo-dieetin noudattamiseen. Yhteistä kaikille näille ruokavalioille on se, että niillä pyritään ylläpitämään terveyttä. Jonkin rajatun ruokavalion noudattaminen johtaa nopeasti paljon syvällisempään ravintoaineiden ja aineenvaihdunnan ymmärtämiseen, kuin mihin raivokkaimmat ruokavalioiden vastustajat koskaan yltävät. Miksi sortua trendikkäisiin ruokavalioihin, jotka muuttuvat nopeammin kuin muoti?

En halua asettaa ruokavalioita paremmuusjärjestykseen. Useimmat niistä painottavat välttämättömien ravintoaineiden saantia ja karsivat epäterveellisiä tai elimistön kannalta turhia ravintoaineita pois. On valtavasti tutkimusnäyttöä siitä, että esimerkiksi kasvisruokavaliot ja vegaanisuus ovat oikein noudatettuina hyvin terveellisiä.


Tärkeimmät syyt miettiä mitä suuhunsa laittaa ovat


Aikuistyypin diabetes

The International Diabetes Federation arvioi maailmanlaajuisesti aikuistyypin diabetekseen sairastuneiden määräksi yli 400 miljoonaa vuonna2015. Sairastuneiden määrä lisääntyy nopeasti.

Tutkimusten mukaan Yhdysvalloissa esidiabetesta sairastaa yksi kolmesta aikuisesta ja yhdeksän kymmenestä esidiabetesta sairastavasta ei tiedä olevansa sairas ennen kuin esidiabetes pahenee diabetekseksi. Pelkästään Yhdysvalloissa aikuistyypin diabetesta sairastavia on lähemmäksi 10 % väestöstä ja joka vuosi diagnosoidaan 1,4 miljoonaa uutta sairastunutta. Yhdysvalloissa diabeteksen hoitomenot olivat 245 miljardia dollaria vuonna 2012 ja kasvavat vuosittain.

Maailmanlaajuisesti diabetes aiheutti arviolta 1,5 miljoonaa ennenaikaista kuolemantapausta vuonna 2012. Sairastuneiden määrä, hoidon hinta ja kuolleisuus lisääntyvät joka vuosi.

Tyypin 2 diabetes on elintaso- ja elintapasairaus, johon vaikuttavat mm. lihavuus (erityisesti vyötärölihavuus), ikä, vähäinen liikunta ja huonot ravitsemustottumukset. Tutkimusten mukaan LCHF-ruokavaliot pienentävät sairastumisen riskiä ja vähentävät aikuistyypin diabetesta sairastavien lääkkeiden tarvetta. Esimerkiksi Ruotsissa LCHF on aikuistyypin diabeteksen hoidossa hyväksytty ruokavalio.


Lihavuus

Lihominen on maailmanlaajuinen ongelma. Se tappaa jo enemmän ihmisiä kuin aliravitsemus. Vuoden 1975 jälkeen lihavien määrä on kolminkertaistunut. Ylipainoisia aikuisia maailman väestöstä oli vuonna 2016 yli 1,9 miljardia. Näistä 650 miljoonaa eli 39 % oli lihavia. Alle 5-vuotiaista lapsista jopa 41 miljoonaa ja 5-19-vuotiaista 340 miljoonaa oli samana vuonna ylipainoisia tai lihavia. Luvut ovat käsittämättömiä. (WHO)

WHO:n mukaan ylipainoisia ovat ihmiset, joiden BMI (painoindeksi) on 25 tai suurempi. Lihavia ovat ihmiset, joiden BMI on 30 tai suurempi.

Lihavuus on lisääntynyt dramaattisesti. Lihavien ja ylipainosten osuus lapsista oli 4 % vuonna 1975. Nyt lapsista lähes viidennes (18 %) on ylipainoisia tai lihavia. Vuonna 1975 ylipainoisten ja lihavien 5-19-vuotiaiden osuus ikäryhmässä oli vain 1 %, vuonna 2016 saman ikäisten ylipainoisten ja lihavien osuus oli ikäryhmän tytöistä 6 % ja pojista 8 %.

Lihavuus kasvattaa mm. sydän- ja verisuonitautien, metabolisen oireyhtymän, aikuistyypin diabeteksen, syöpien, luunmurtumien ja erilaisten nivel- ja selkävaivojen sekä ennenaikaisen kuoleman riskiä.


Suolistotulehdukset (ärtyvän suolen oireyhtymä eli IBS)

Ärtyvän suolen oireyhtymä (IBS) vaivaa jopa 10-15 prosenttia maailman aikuisväestöstä. IBS ei sinänsä ole hengenvaarallinen sairaus, mutta sen vaikutukset elämänlaatuun ja terveydenhoidolliset kustannukset ovat merkittäviä. IBS on suurin sairauspoissaolopäivien syy tavallisen flunssan jälkeen.

Tulehdukselliset suolistosairaudet yleistyvät nopeasti. Suomessa myös paksusuolen syöpä lisääntyy, mutta lisääntymisen syytä ei tunneta.

Crohnin tauti ja haavainen paksusuolentulehdus ovat kroonisia suoliston tulehduksellisia sairauksia, jotka oireilevat mm. ripulina, verisenä ulosteena ja vatsakipuina. Molemmat edellyttävät perinnöllisen alttiuden sairastua, mutta sairastuminen käynnistyy usein jonkin infektion (kuten turistiripulin) tai stressin seurauksena. Riskitekijöitä ovat lisäksi runsaasti eläinperäistä proteiinia sisältävä ja rasvainen ruoka sekä D-vitamiinin puutos.

Ärtyvän suolen oireyhtymää sairastaa Suomessa jo noin 300 000 henkilöä ja esiintyvyys aikuisväestössä on 10 %. Diagnosoitujen keliakiatapausten ja tulehduksellisten suolistosairauksien esiintyvyys on 1 prosentin luokkaa molempien kohdalla.

Ärtyvän suolen oireyhtymän tavallisia oireita ovat: vatsan turvotus, vatsakipu sekä ummetus- ja ripulioireet. Oireiden taustalla voi olla mm.

Tavallista herkempi vatsan alueen kipuaistimus (alhainen kipukynnys)

  • Lisääntynyt kaasun tuotto paksusuolessa ja mahdollisesti ohutsuolessa
  • Häiriöitä suoliston mikrobitasapainossa
  • Matala-asteinen tulehdus suolessa
  • Suoliston voimakas ja kivulias supistelu tai suolen toiminnan laiskistuminen


    FODMAP-hiilihydraattien (fermentoituvien hiilihydraattien) rajoittaminen helpottaa viimeaikaisen tutkimusnäytön perusteella ärtyvän suolen oireyhtymää. FODMAP-hiilihydraatit ovat kasvikunnan tuotteissa esiintyviä huonosti ohutsuolessa imeytyviä kuitumaisia hiilihydraatteja. FODMAP-hiilihydraattien huono imeytyminen ohutsuolessa päästää näitä paksusuoleen, jossa ne fermentoituvat paksusuolen mikrobien vaikutuksesta. Fermentaatio on sinänsä aivan luonnollinen ja hyvä reaktio, mutta IBS-potilailla se aiheuttaa oireita.

    Laktoosi-intoleranteilla ihmisillä oireita aiheuttaa maitotuotteet. Ksylitoli, sorbitoli, laktitoli, maltitoli, mannitoli ja isomalti, luumut ja kivelliset hedelmät, omenat, sienet, raffinoosi, inuliini, vehnä, ruis, ohra, palkokasvit, sipulit, kaalikasvit ja vesimelonit, jogurtit ja fruktoosi selittävät oireita monilla ärtyvän suolen oireyhtymää sairastavilla.

Kesäkuussa 2009 Clinical Gastroenterology and Hepatology -lehdessä julkaistun tutkimusraportin mukaan hyvin vähän hiilihydraatteja sisältävä ruokavalio helpottaa ärtyvän suolen oireyhtymän oireita. On jonkin verran tieteellistä näyttöä siitä, että suolisto-oireet helpottavat LCHF-ruokavaliolla.

Alkoholista riippumaton rasvamaksa (NAFLD)

Alkoholista riippumaton rasvamaksa yleistyy nopeasti myös Suomessa. Maksan vähäinen rasvoittuminen ei välttämättä ole vaarallista, mutta se voi johtaa vakavampiin sairauksiin, kuten NASH (non-alcoholic steatohepatitis), jossa maksan rasvoittuminen assosioituu maksan tulehdukseen. Se voi johtaa maksan arpeutumiseen ja maksakirroosiin. Rasvamaksa ei välttämättä juuri oireile ennen kuin se pahenee maksatulehdukseksi.

NAFLD liittyy lihomiseen, metaboliseen oireyhtymään, esidiabetekseen ja aikuistyypin diabetekseen. Mikä maksan rasvoittumista aiheuttaa. Tästä vallitsee useita tieteellisesti perusteltuja näkemyksiä. Tutkimuksissa on havaittu, että vakavampaan NASH-tautiin vaikuttavat mm.

– Oksidatiivinen stressi
– Inflammaatio
– Maksasolujen nekroosi eli maksasolujen kuoleminen
– Rasvakudoksen inflammaatio
– Suoliston mikrobiomin epätasapaino (huono bakteerikanta)

Alkoholista riippumattoman rasvamaksan riskitekijöistä lihavuus on ylivoimainen ykkönen. Lihavista kahdella kolmanneksella on rasvoittunut maksa. Insuliiniresistenssi ja aikuistyypin diabetes sekä PCOS kasvattavat myös maksan rasvoittumisen riskiä.

Tehokkain tapa hoitaa rasvoittunutta maksaa on laihduttaminen. Myös lisättyjen sokereiden ja aivan erityisesti teollisen fruktoosisiirapin saannin vähentäminen päivittäisestä energiansaannista on järkevää, koska fruktoosin aineenvaihdunta tapahtuu maksassa ja pieni osa fruktoosista muutetaan aina triglyserideiksi maksassa.

Vähän hiilihydraatteja ja runsaasti rasvaa sisältävistä LCHF-ruokavalioista ja niiden terveysvaikutuksista voidaan toki olla montaa mieltä, mutta varmaa on se, että oheiset ravitsemukseen liittyvät epidemiana leviävät sairaudet eivät johdu siitä, että kourallinen ihmisiä rajoittaa hiilihydraatteja ja korvaa merkittävän osan päivän energiansaannista rasvoilla.

Jos LCHF ei paranna mainittuja sairauksia, on todennäköistä, että oksidatiivisen stressin ja inflammaation hillitseminen sekä laihtuminen helpottavat oheisten sairauksien oireita ja laskevat sairastumisriskiä LCHF-ruokavaliolla.

Nykyiset elintavat, energiatiheät ja ravitsemukseltaan köyhät ruoat sekä stressi ja jatkuva kiire ylläpitävät ja levittävät lihavuusepidemiaa, metabolista oireyhtymää, suolistosairauksia, diabetesta, rasvamaksaa jne. Siksi mikä tahansa ruokavalio kasvisruokavaliosta välimerelliseen tai LCHF-ruokavalioon sekä ymmärrys ravintoaineista ja aineenvaihdunnasta voi laskea sairastumisen riskiä ja ylläpitää terveyttä ja terveellistä painonhallintaa.

Joskus lääketieteessä tuntuu olevan vallalla ajatus, että jos auto liikkuu, ei autolla kannata ajaa ennen kuin tiedetään mihin sen liikkuminen perustuu. Tarvitaan siis lisää tutkimuksia. Se on hyvä asia. LCHF toimii ja sitä noudattavat ihmiset raportoivat jatkuvasti laihtumisesta ja terveyden kohenemisesta, mutta teoriassa sitä ei kannata noudattaa, koska vielä ei sataprosenttisesti ymmärretä, miksi se toimii. LCHF-ruokavalion pitkäaikaisvaikutuksista ei ole olemassa tutkittua tietoa ja siksi siihen suhtaudutaan vielä hyvin varovaisesti. Jokaisen on järkevää kuunnella ja seurata oman elimistönsä lähettämiä viestejä.

Ruokasotaa aloitellessani vuosia sitten uskoin, että jos kysyn oikeat kysymykset, löydän myös oikeat vastaukset. Nykyään olen paljon skeptisempi. Uskon, että ei ole oikeita kysymyksiä ja oikeita vastauksia. Kaikkiin lupauksiin, joita nettivideoissa ja kirjoituksissa annetaan, kannattaa suhtautua terveen skeptisesti.

Helppoja ja yleispäteviä vastauksia vaikeisiin kysymyksiin ei ole. LCHF ei ole ruokavalio, joka soveltuu kaikille tai parantaa kaikki vaivat. Se on tehokas laihdutusruokavalio, joka tutkimusten mukaan voi vähentää oksidatiivista stressiä ja inflammaatiota. Stanfordin yliopistossa tehdyn tutkimuksen mukaan sekä kaloreita rajoittamalla että runsaasti rasvaa sisältävällä ruokavaliolla laihtuu, mutta molemmissa tutkimusryhmissä esiintyi paljon vaihtelua seurattujen henkilöiden laihtumisen suhteen.

Kesäkurpitsanuudelit


Okei, miten aloitan?


Aineenvaihdunta on mutkikas järjestelmä. Ihmisten painonhallintaan vaikuttaa lukemattomia tekijöitä stressistä hormoneihin ja perinnölliseen lihomisalttiuteen. Jotkut eivät liho ja toiset keräävät varastorasvoja luokattoman helposti ja nopeasti. Toisaalta joillekin arkiliikunta ja tasapainoinen ruokavalio riittävät hyvän terveyden ylläpitoon, kun taas sairaalloisen lihavien laihtuminen vaikuttaa jo mahdottomalta.

Jörn Donner totesi, että lukeminen kannattaa aina. Hän oli oikeassa. Sama pätee laihduttamiseen ylipainoisilla. Laihtuminen parantaa terveyttä ja lisää terveitä elinvuosia. Se, miten ihminen laihtuu, on vähemmän tärkeää kuin se, että ihminen laihtuu. Tavallaan on ristiriitaista, että ihmisiä syyllistetään ja pelotellaan onnistumisesta, perustuu onnistuminen sitten vegaaniruokavalioon tai Atkinsin dieettiin. Jos ihmisen verenkuva, paino, verenpaine, verensokeri ja yleinen hyvinvointi kohenevat, onko sillä väliä, päästiinkö tulokseen LCHF-ruokavaliolla vai kasvisruokavaliolla.

Tärkeintä on, että ihminen saa ravinnostaan kaikki välttämättömät ravintoaineet. Laajemmin on havaittu, että vähemmän energiaa sisältävä ravinto (syödyistä makroravinteista riippumatta) ylläpitää terveyttä ja terveitä elinvuosia. Tämä johtunee sirtuiineista (histonideasetylaaseista). Esimerkiksi SIRT1 säätelee keskeisiä metabolisia prosesseja ja sillä on tärkeä merkitys aineenvaihdunnan säätelyssä.

SIRT1 säätelee mm. mitokondrioiden biogeneesiä sekä energia- ja rasvametaboliaa, oksidatiivista stressiä ja vaikuttaa esimerkiksi lihavuuteen ja diabetekseen. SIRT1 säätelee todennäköisesti tulehdusvaisteita ja kudosten atrofioitumista sitoutumalla NF-kB:en. SIRT2 vaikuttaa solunjakautumiseen.

Henkilöiden, jotka päättävät kohentaa terveyttä ja laihtua LCHF-ruokavalion avulla, on syytä syödä hiilihydraattirajoitteista riippumatta mahdollisimman monipuolisesti.

On jonkin verran tutkimusnäyttöä, jonka mukaan kasviperäisten proteiinien ja rasvojen saanti LCHF-ruokavaliossa ylläpitää terveyttä paremmin kuin eläinperäiset rasvat ja proteiinit. Ruokavalion sallimia kasviksia on hyvä syödä runsaasti. Niistä saa kuituja, antioksidantteja, polyfenoleita, vitamiineja, mineraaleja jne., joita elimistö tarvitsee. Rasva on LCHF-ruokavaliossa polttoaine, mutta keho tarvitsee myös aminohappoja, kuituja, vitamiineja jne.

Ensimmäinen ja kenties yksi tärkeimmistä ravintoon liittyvistä valinnoista koskee lisättyjen sokereiden, valkoisten jauhojen ja voimakkaasti raffinoitujen elintarvikkeiden välttämistä. Pelkästään tämä pieni muutos elämäntavoissa voi auttaa laihtumaan ja parantamaan yleistä hyvinvointia. Vaaleat leivät kannattaa korvata täysjyväviljoista leivottuihin leipiin, makeisista ja virvoitusjuomista on hyvä luopua kokonaan jne.

Minä en laske kaloreita tai hiilihydraatteja lainkaan. Tiedän suurin piirtein, mitä kasviksia voin syödä ja sen jälkeen seuraan vain omaa kylläisyyttäni. Luultavasti saan päivittäisestä energiastani nyt yli puolet rasvasta, 30 prosenttia proteiineista ja 10-20 % hiilihydraateista. Se ei aivan noudata ketogeenistä ruokavaliota tai Atkins-ruokavaliota, mutta toisaalta olen luopunut lisätyistä sokereista, runsaasti tärkkelystä sisältävistä perunoista ja riisistä sekä viljoista ja korvaan noiden rajoittamisen tuottaman energiavajeen rasvoilla.

Tämä on kolmas päivä ruokavaliomuutokseni jälkeen. Kaksi ateriaa päivässä on pitänyt minut kylläisenä ja energisenä kahtena ensimmäisenä päivänä. Olen syönyt lounasbrunssin puolen päivän tienoilla ja päivällisen 17-18 aikaan.

Molempien päivien ruoka on koostunut suuresta määrästä sallittuja kasviksia (tomaatit, kurkku, kaali, paprika, salaatti, kesäkurpitsa), rasvasta ja proteiinista (jauheliha, kana). Mitään välipaloja tms. ei ole tehnyt mieli. Yhtenä huomiona olen havainnut, että suoli on toimin poikkeuksellisen hyvin ja täsmällisesti. Se on ilahduttavaa, sillä minulla on ollut ärsyttäviä suolistovaivoja.

Eilinen ruoka (0.12.2019)

Heräsin viiden aikaan. Join aamun ja aamupäivän aikana 4 kupillista mustaa kahvia. En ole koskaan ollut aamupalan ystävä.

Nälkä tuli kello 11 ja 12 välillä, jolloin tein kanasalaattia lounaaksi. Salaattiin tuli jäävuorisalaattia, kurkkua, tomaatteja ja keitettyjä vihreitä papuja. Paistoin ja maustoin (pippurilla, suolalla ja chilillä) kanafileistä leikkaamani suikaleet runsaassa voissa. Tein majoneesin itse: 2 dl rypsiöljyä, muna, korkillinen etikkaa, 0,5 tl suolaa, 1 tl mustapippuria, 1 tl valkosipulijauhetta, 1 tl chilimurskaa öljyssä, 2 tl currya. Näin syntyy hyvin kiinteä majoneesi, jota pehmensin 1,5 desillä rasvaista maustamatonta turkkilaista jogurttia. Sekoitin ainekset keskenään ja hyvää tuli. Se oli lounas.

Iltapäivällä join melkoisesti vettä. Päivälliseksi tein ison täytetyn kesäkurpitsan, johon tuli täytteeksi mm. paistettua jauhelihaa, tomaattikastiketta ja runsas juustokuorrutus. Päivällisen jälkeen join vielä 4 kupillista teetä.

Ruokavalion noudattamisessa on tärkeää seurata ja kuunnella omaa elimistöä

LCHF sisältää useita koulukuntia ja erilaisia ravintohifistelijöitä mahtuu jokaiseen koulukuntaan ruokavalioista riippumatta. En pidä hifistelyä tarkoituksenmukaisena. Pääpiirteitten ollessa selvät henkilön tulee kuunnella omaa elimistöään, eikä jotain gurua. Hiilihydraattien määrä LCHF-ruokavaliossa lasketaan maksimissaan 50 grammaa päivätasolle, mutta mieluummin vieläkin alemmalle tasolle, jos tarkoituksena on ketoosiin pääsy.

Atkinsin ruokavalio

Atkinsin ruokavalio koostuu neljästä vaiheesta:

  • Vaihe 1: Hiilihydraattien määrä lasketaan 20 grammaan päivässä. Tämä jatkuu 2 viikkoa.
  • Vaihe 2: Päivittäiseen syömiseen lisätään pähkinöitä, vähäisiä määriä hedelmiä ja vähähiilihydraattisia vihanneksia.
  • Vaihe 3: Asetetun painotavoitteen lähestyessä hiilihydraattien saantia voidaan lisätä.
  • Vaihe 4: Ruokavalioon otetaan mukaan täysjyväviljoja ja muita terveellisiä hiilihydraatteja sen verran, että paino pysyy tasaisena.

The ketogeeninen ruokavalio

Ketogeeninen ruokavalio rajoittaa hiilihydraatteja merkittävästi ja tähtää ketoosiin, jossa elimistö alkaa tehokkaasti käyttää rasvoja solujen energian lähteenä.

Ketogeeniset ruokavaliot jakautuvat opillisten ja tavoitteellisten erojen puitteissa eräänlaisiin koulukuntiin. Tavallisesti tavoitteena on laskea päivittäinen hiilihydraattien saanti 5-10 prosenttiin päivittäisestä energiasta. Määrällisesti tämä tarkoittaa noin 20-50 grammaa hiilihydraatteja/päivässä.

Ruokavalion tavoitteena on ketoosi, joka on luonnollinen tila, kun elimistö ei saa riittävästi energiaa hiilihydraateista. Ketoosissa elimistö alkaa pilkkomaan varastoimiaan rasvahappoja ketoaineiksi, joita solut voivat hyödyntää energian tuotannossa. Ketoosia ei tule sekoittaa vaaralliseen happomyrkytykseen, ketoasidoosiin. Ketoasidoosissa veren ketoainepitoisuudet nousevat jopa kymmenkertaisiksi ketoosiin verrattuna.

Kanasalaatti


Hyvin suunniteltu on puoliksi tehty


Kaikki ruokavaliot edellyttävät hieman valmistelua ja suunnittelua. Ongelmia syntyy, jos ruokavalio yksipuolistuu liikaa. Silloin se ruokavalion noudattamisesta tulee vaikeaa ja laihduttaminen loppuu nopeasti alkuinnostuksen jälkeen. Siksi on tärkeää suunnitella ruokavaliota niin, että se sisältää vaihtelua, monipuolisia raaka-aineita ja tarjoaa kaikki tarvitut ravinteet.


Mitä söisin tänään?


LCHF-ruokavalioissa hiilihydraattien rajoittaminen rajoittaa syötävien ruokien määrää. Tämä voi tuottaa motivaatio-ongelmia.

Alkavan ketoilijan kauppalista

– Cashew-pähkinät (hyviä rasvoja ja proteiineja)
– Lihat (possu, nauta, kana, kalkkuna, lammas)
– Kalat (erityisesti rasvaiset lohi, sardiinit ja makrilli)
– Juustot
– Voi
– Avokadot
– Öljyt (oliivi-, kookos-, avokado- ja pellavansiemenöljy)
– Pähkinät (maapähkinät, mantelit, cashew-pähkinät)
– Siemenet (auringonkukan siemenet, chia ja pellavansiemenet)
– Munat
– Pinaatti ja muut tummanvihreät lehtivihannekset
– Marjat (mustikat, mustaviinimarjat, mansikat )
– Parsakaali
– Kukkakaali
– Valkokaali
– Ruusukaali
– Parsa
– Kesäkurpitsa
– Tomaatit
– Paprika
– Myskikurpitsa
– Juomaksi (vesi, kahvi, tee)

Seuraavia voi ketogeenisella ruokavaliolla syödä hieman ruokavalion tavoitteista riippuen:

– Porkkanat (vähän)
– Punajuuret (vähän)
– Omena, vesimeloni tai persikka (vähän)
– Kvinoa (vähän)
– Bataatti (vähän)
– Pavut ja palkokasvit (vähän)
– Kauraa (vähän)
– Täysjyviä (vähän)

Rajoitettavia ruokia ovat

Kaikilla LCHF-ruokavalioilla rajoitetaan hiilihydraatteja ja aivan erityisesti puhtaita sokereita ja runsaasti tärkkelystä sisältäviä kasviksia, kuten perunoita ja riisiä. Ruokavalio ei suosittele virvoitusjuomia, mehuja, kakkuja, leivoksia, makeisia, fruktoosisiirapilla tai millään teollisilla makeutusaineilla makeutettuja raffinoituja elintarvikkeita tai alkoholisokereita. Muita rajoitettavia ovat:

  • valkoinen pasta
  • valkoinen riisi
  • leipä, sämpylät ja patongit
  • leivonnaiset, pullat, muffinssit jne.
  • makeiset
  • virvoitusjuomat, mehut
  • olut
  • dieettijuomat ja yleensäkin dieetti-mitkä tahansa
  • vähärasvaiset elintarvikkeet, sillä niissä rasvat on korvattu sokereilla

Kaikkia hiilihydraatti- ja tärkkelyspitoisia ruokia ei ole pakko poistaa ruokalistalta. LCHF-ruokavaliota voi noudattaa, jos siihen sisältyy rajoitetusti papuja ja muita palkokasveja sekä täysjyväviljoja. Niiden määrien tulisi olla vähäisiä, eikä niitä suositella päivittäiseen ruokavalioon.

Ja lopuksi

LCHF-ruokavaliot vaikuttavat eri ihmisiin eri tavoin. Korostan jälleen, että välttämättömien ravintoaineiden saannista tulee huolehtia, vettä tulee juoda riittävästi ja elimistöä pitää kuunnella. LCHF-ruokavaliot voivat aiheuttaa (ainakin kuurin alkuvaiheessa)

  • väsymystä ja heikkoutta
  • kramppeja
  • päänsärkyä
  • ummetusta tai ripulia
  • kutinaa
  • pahanhajuisen hengityksen

Kun elimistö sopeutuu ruokavalion muutoksiin, sivuoireet vähenevät ja katoavat. Tsemppiä ja hyvää terveyttä kaikille, jotka tämän tien valitsevat. Omat kokemukseni olivat ja ovat rohkaisevia, mutta nähtäväksi jää. Oli LCHF-ruokavalio terveellinen tai ei, se ei ainakaan voi olla huonompi vaihtoehto kuin ravinneköyhien ja energiatiheiden transrasvoja runsaasti sisältävien eines- ja pikaruokien, makeisten ja makeiden virvoitusjuomien ahmiminen pitkin päivää.

Kuvat: Pixabay




Ketogeeninen ruokavalio ja MS

Noudatin vähähiilihydraattista ruokavaliota vuosia sitten. Kokeilu jäi vain vajaan vuoden mittaiseksi, mutta kokemukseni olivat sekä painonhallinnan että yleisen hyvinvoinnin kannalta rohkaisevia. Oloni oli erinomaisen hyvä ja painoni laski.

Ruokavalion noudattaminen kaatui jouluherkkuihin. Noiden aikojen jälkeen olen lihonut 20 kiloa ja rasvaa on kerääntynyt erityisesti keskivartalolle haitallisena viskeraalisena läskinä. On aika tehdä jotain.

Ketogeeninen ruokavalio ja MS selvittää vähän hiilihydraatteja ja runsaasti rasvaa sisältävän ruokavalion vaikutuksia etenevää MS-tautia sairastavan terveyteen. 

Ketogeeninen ruokavalio herättää voimakkaita tunteita. Monien on yhä vaikea hyväksyä sitä, että syöty rasva voi laihduttaa. Ketogeeninen ruokavalio kuitenkin toimii mainiosti laihdutusruokavaliona.

MS on siinä mielessä viheliäinen sairaus, että se vaikuttaa vääjäämättä fyysiseen aktiivisuuteen. Painoa alkaa kertyä huomaamatta. Minä olen nauttinut invaliditeetin tuomasta joutenolosta syömällä epäterveellisesti ja juomalla pikkukylän vuosittaista vedenkulutusta vastaavan määrän olutta. Siinäpä tekosyyt.

Mitä ketogeenisella ruokavaliolla tarkoitetaan?

Ketogeeninen dieetti on vähähiilihydraattinen ja runsaasti rasvaa sisältävä ruokavalio. Proteiinien määrä pidetään ruokavaliossa maltillisena.

Evidenssiä tämän ruokavalion hyödyistä laihdutusruokavaliona on runsaasti. Sen sijaan näyttö siitä, että ketogeeninen ruokavalio helpottaisi etenevän multippeliskleroosin oireita, on vähäistä.

Laihtumisella ja elimistön hiljaisen tulehduksen – inflammaation – hillitsemisellä on terveyttä edistäviä vaikutuksia. En usko, että ruokavalio tekee ihmeitä sairaudelleni, mutta toivon laihtuvani sen avulla.

Ruokavaliossa hiilihydraattien, kuten tärkkelyksen ja sokereiden määrää rajoitetaan. Tämä tarkoittaa, että monet yleiset ruoka-aineet, kuten perunat, pastat, riisi, leivät ja hedelmät ovat rajoitettavien ravintoaineiden listalla.

Lihakasvis-vartaat

Ruokavalion puolestapuhujat korostavat, että ketogeeninen ruokavalio voi auttaa laihtumaan ja hillitsemään keskushermostoa degeneroivia tulehdusreaktioita.

Ketogeenisen aineenvaihdunnan perusteet ja toivotut hyödyt

Ketogeeninen ruokavalio voi mahdollisesti hillitä multippeliskleroosin oireita. Mihin ruokavalio ja tällaiset väitteet perustuvat?

Ketogeenisen ruokavalion tarkoituksena on ohjata solujen energia-aineenvaihdunta sokeripolttoisesta rasvapolttoiseksi. Kehon energiantuotantoa säätelee monet hormonit ja entsyymit, joista ketogeenisen ruokavalion kannalta mielenkiintoisimpia ovat insuliini ja glukagoni.
Ketogeeninen ruokavalio perustuu pitkälti juuri insuliinin ja glukagonin toiminnan ymmärtämiseen ja hyödyntämiseen.

Solujen energiantuotanto

Solut rakastavat glukoosia, sillä se on helppo ja nopea energianlähde. Ruoansulatuskanavassa hiilihydraatit, kuten tärkkelystä sisältävät perunat ja riisi, pilkotaan sokereiksi ja muiksi ravinteiksi. Glukoosi kulkee ohutsuolen endoteelin läpi verenkiertoon eräiden glut-molekyylien kuljettamana ja kohottaa verensokeria.

Haima reagoi sokeripitoisuuden lisääntymiseen erittämällä vereen insuliinia. Insuliinimolekyylit kiinnittyvät solujen insuliinireseptoreihin, jolloin solun sisältämät solukalvon läpäisevät glukoosia kuljettavat kanavat tulevat solukalvolle. Näiden avulla glukoosi pääsee soluun.

Solun sytoplasmassa käynnistyy glykolyysi, jossa glukoosimolekyyli pilkotaan kahdeksi pyruvaatiksi. Reaktiossa syntyy myös kaksi korkeaenergistä ATP-molekyyliä ja kuusi vetyionia kumpaakin pyruvaattia kohden. Syntyneet 12 protonia pelkistävät NAD+ ja NADP+ (dyhydronikotiiniamidi-adeniini-dikuleotidi -fosfatti) ionit.

NADH ja NADPH molekyylit siirtävät protonit elektronisiirtoketjun käyttöön, jos happea on riittävästi soluhengityksen käynnistämiseen. Anaerobinen (hapeton) energiantuotanto loppuu siihen, että pyruvaatit pelkistyvät laktaatiksi.

Sitruunahappokierto
Kuvan lähde: Wikipedia

Aerobinen (hapellinen) energiantuotanto jatkuu soluhengityksenä sitruunahappokierrossa sellaisissa soluissa, joilla on käytettävänään happea ja mitokondrioita. Sitruunahappokierto (Krebsin sykli, trikarboksyylihappokierto (TCA-kierto)) käynnistyy sitraattisyntaasientsyymin katalysoidessa sitraatin muodostumista oksaaliasetaatista ja asetyylikoentsyymi-A:sta.  

Sitraatista kierto etenee isositraattiin, siitä alfa-ketoglutaraattiin, edelleen sukkinyyli-koentsyymi-A:han, sitten sukkinaattiin, edelleen fumaraattiin, sitten malaattiin, kunnes kierto palaa oksaaliasetaattiin. Tuloksena asetyyliryhmä on hapetettu täydellisesti hiilidioksidiksi ja kolme NADH:ta, yksi FADH2 ja yksi GTP on tuotettu. Ketoilijoiden kannalta oleellista on, että rasva muutetaan sitruunahappokierron väliaineeksi – asetyylikoentsyymi-A:ksi.

Ennen kuin hiilihydraatit ja rasvat voivat tulla mukaan sitruunahappokiertoon, solussa tapahtuvien muiden prosessien on muutettava ne sopivaan muotoon asetyyliryhmäksi, joka sitoutuu koentsyymi-A:n kanssa aktiiviseksi etikkahapoksi eli asetyylikoentsyymi-A:ksi.

 Mitokondrioissa tapahtuvassa sitruunahappokierrossa syntyy vielä parikymmentä korkeaenergistä ATP-molekyyliä ja protoneja elektroninsiirtoketjuun. Soluhengityksen lopputuotteena on vettä ja hiilidioksidia, jotka poistuvat ihon ja hengityksen kautta. Sokerit ja rasvat siis palavat solujen mitokondrioissa vedeksi ja hiilidioksidiksi. Glukoosi kelpaa sellaisenaan solujen energiantuotantoon. Rasvat ja proteiinit on ensin muokattava asetyylikoentsyymi-A:ksi ja sokerit glukoosiksi.

Kun elimistö pakotetaan hyödyntämään rasvasoluihin varastoitua rasvaa energianlähteenä, läskin palaminen tehostuu huomattavasti.

Kaikki sokerit eivät kelpaa suoraan energiantuotantoon, vaan ne pitää ensin muuttaa glukoosiksi ja glykogeeneiksi, jotka muodostuvat jopa kymmenistä tuhansista yksittäisistä glukoosimolekyyleistä. Ravinnosta saatavan fruktoosin aineenvaihdunta eli fruktolyysi tapahtuu maksassa. Suurin osa fruktoosista syntetisoidaan glykogeeneiksi maksan nopeisiin sokerivarastoihin. Osa fruktoosista muutetaan maksassa glukoosiksi, joka vapautuu verenkiertoon ja ravitsee solujen energiantarvetta. Pari prosenttia fruktoosista muutetaan maksassa suoraan triglyserideiksi eli varastorasvaksi. Fruktoosin aineenvaihdunta rasittaa ja voi pahimmillaan rasvoittaa maksaa. Ilmeisesti epidemiaksi äitynyt alkoholista riippumaton rasvamaksa palautuu väestön ylettömään sokerin kulutukseen.

Jos veressä on liikaa glukoosia solujen ravinteiksi sekä lihasten ja maksan glykogeenivarastoihin, aineenvaihdunta alkaa muuttaa sokereita triglyserideiksi eli varastorasvaksi de novo lipogeneesissa. Insuliini osallistuu myös rasvanhappojen varastoimiseen rasvasoluihin. Tähän perustuu sokereiden lihottava vaikutus.

Kun veren sokeripitoisuus laskee, haima erittää vereen glukagonia. Glukagoni on insuliinin vastavaikuttaja ja sillä on monia tärkeitä tehtäviä aineenvaihdunnan säätelyssä.

1. Glukagoni purkaa maksan glykogeenivarastoja glukoosiksi verenkiertoon solujen energiantuotannon turvaamiseksi ja lihasten glykogeenivarastoja lihasten energiantuotantoon.

2. Glukagonin vaikutuksesta rasvasoluihin varastoituja triglyseridejä vapautuu verenkiertoon. Maksassa ja munuaisissa käynnistyvät ketogeneesi ja glukoneogeneesi. Ne valmistavat verenkiertoon vapautuneista vapaista rasvahapoista yms. aineista solujen energiantuotantoon kelpaavia ketoaineita ja glukoosia. Glukoneogeneesi syntetisoi mm. vapaista aminohapoista ja sitruunahappokierron välituotteista glukoosia.

Verensokerin kohotessa insuliini keskeyttää ketogeneesin ja glukoneogeneesin.

3. Rasvahappojen beetaoksidaatio käynnistyy

Beetaoksidaatiossa rasvahappoketjusta muodostetaan ketohappoja siten, että kolmanteen hiileen liittyy ketoryhmä. Sen edellä oleva kahden hiilen mittainen ketju karboksyyliryhmineen irrotetaan muodostamaan asetyylikoentsyymi-A-molekyyli ja jäljellä oleva hiiliketju aloittaa ketohappojen muodostamisen alusta, kunnes ketju on pilkottu loppuun. Rasvahapon kohta, johon ketoryhmä muodostuu, joutuu ensin luovuttamaan 2 protonia, jotka NAD+ molekyylit siirtävät elektronisiirtoketjulle.

Ketogeenisessä ruokavaliossa elimistö alkaa aktiivisesti muuttaa varastoimiaan rasvoja energiaksi kelpaavaan muotoon, koska soluille ei tarjota helppoa ja nopeaa glukoosia energianlähteeksi. Keho siis pakotetaan polttamaan rasvaa. Tästä ketoosissa ja ketogeenisessä ruokavaliossa on kyse.

Aineenvaihduntaprosessi on täysin luonnollinen. Elimistö osaa käyttää rasvaa polttoaineena, mutta koska solut on lapsuudesta lähtien tehokkaasti opetettu käyttämään polttoaineena sokeria, rasvavarastoja ei juurikaan pureta; lihominen jatkuu niin kauan kuin tarjolla on helppoja hiilihydraatteja ja veren insuliinipitoisuus säilyy korkeana. Elimistö alkaa purkaa rasvavarastoja, kun sille ei tarjota helppoa energiaa. Tavallaan kaloreita merkittävästi rajoittamalla päädytään samaan tilanteeseen, jossa kehon on turvauduttava varastoenergiaan.


Ketoosin hyödyt

Elimistö menee ketoosiin, kun veren sokeripitoisuus ja sen seurauksena insuliinipitoisuus ovat matalat. Varsinainen ketoaineita tuottava ketoosi käynnistyy muutamassa vuorokaudessa, jos hiilihydraattien saantia rajoitetaan 20-50 grammaan vuorokaudessa. Kehon varastoimien rasvojen tehokas käyttö energianlähteenä alkaa noin kolmessa viikossa edellyttäen, että hiilihydraattien saanti pysyy hyvin matalana. Ketoosissa:

  • paino laskee ja elimistö käyttää tehokkaasti varastorasvoja energianlähteenä
  • muuttunut aineenvaihdunta suojaa soluja
  • inflammaatio ja hapetus-pelkistysreaktion epätasapainon seurauksena syntyneet happiradikaalit vähenevät ja antioksidatiiviset prosessit tehostuvat
  • stressihormonien määrä elimistössä ja stressitasot laskevat


Ketogeeninen ruokavalio ja MS

Eräs ketogeeniseen ruokavalioon liitetty vaikutus on se, että se suojelee elimistöä solutasolla vaikuttamalla hapetusstressiin (oksidatiivinen stressi). Verensokerin nousu assosioituu oksidatiiviseen stressiin ja se ylläpitää inflammaatiota.  

Lihavilla myös ylimääräinen rasvakudos ylläpitää elimistön tulehdustilaa, koska rasvakudos erittää erilaisia tulehdussytokiineja eli tulehdusta välittäviä aineita. Laihduttaminen vähentää tällaista inflammaatiota ja tehokas laihtuminen voi laskea tulehdusarvoja (CRP) merkittävästi ja siten parantaa yleistä terveyttä.  

Mitä tutkimukset sanovat?

Saksalaisen 2015 toteutetun seurantatutkimuksen perusteella ketogeeninen ruokavalio parantaa multippeliskleroosia sairastavien elämänlaatua. Tutkimuksen miinuksena on, että se oli hyvin pienimuotoinen (60 osallistujaa) ja kesti vain puoli vuotta.

Saman vuoden aikana ilmestynyt tutkimusraportti löysi viitteitä siitä, että ketogeeninen ruokavalio suojaa etenevää multippeliskleroosia sairastavien keskushermostoa etenevään multippeliskleroosiin assosioituvilta neurodegeneratiivisilta tuhoilta.

”Until recently, multiple sclerosis has been viewed as an entirely inflammatory disease without acknowledgment of the significant neurodegenerative component responsible for disease progression and disability. This perspective is being challenged by observations of a dissociation between inflammation and neurodegeneration where the neurodegenerative component may play a more significant role in disease progression. In this review, we explore the relationship between mitochondrial dysfunction and neurodegeneration in multiple sclerosis. We review evidence that the ketogenic diet can improve mitochondrial function and discuss the potential of the ketogenic diet in treating progressive multiple sclerosis for which no treatment currently exists.” Lue tutkimus
tästä.

Ketogeeninen ruokavalio näyttää hyödyttävän multippeliskleroosia sairastavia solutasolla. Se vähentää oksidatiivista stressiä ja lisää veren antioksidanttitasoja. Tämä suojaa hermo- ja aivosoluja neurodegeneraatiolta. Vastaavia havaintoja on tehty dementian ja Alzheimerin taudin kohdalla; ketogeeninen ruokavalio on tutkimuksissa liitetty pienempään muistisairauksien riskiin.

Oksidatiivinen stressi ja antioksidantit

Oksidatiivinen stressi tarkoittaa solujen ja laajemmin koko elimistön hapetus-pelkistystilan epätasapainoa. Käytännössä hapettavien tekijöiden liiallinen määrä ja antioksidatiivisten järjestelmien vajavainen toiminta välittyy reaktiivisten happi- ja typpiradikaalien kautta, mikä ylläpitää elimistön inflammaatiota.

Verensokeri vaikuttaa oksidatiiviseen stressiin ja inflammaatioon sitä enemmän, mitä korkeammalle verensokeri nousee ja mitä suuremmasta syödystä hiilihydraattimäärästä on kyse. Suuren glykeemisen kuorman sisältävät ruoka-annokset nostavat verensokeria rajusti. Oksidatiivisen stressin aiheuttamia tulehdusta lisääviä vaikutuksia voi vähentää tulehdusta jarruttavilla tekijöillä: polyfenoleilla, C-vitamiinilla, kanelilla ja etikalla, kuiduilla ja rasvalla.

Miten se toimii?

Reaktiivinen happiradikaali sisältää parittoman elektronin ja on siksi hyvin reaktiivinen. Energiataloudellisesti parittomat elektronit ovat epäedullisia ja siksi yhdiste pyrkii parilliseen elektronimäärään reagoimalla läheisyydessä olevien muiden yhdisteiden kanssa. Happiradikaali vaurioittaa kohtaamiaan molekyylejä. Tämä voi ilmetä eri tavoin:

Lipidiperoksidaatiossa rasvat härskiintyvät. Oksidatiivisessa stressissä rasvat hapettuvat happiradikaalien liiallisen määrän vuoksi ja seurauksena voi olla esimerkiksi rasvakalvojen virheellinen toiminta, joka vaikuttaa hormonien ja muiden viestiaineiden aikaansaamien signaalien välittymisessä solukalvon kautta soluun.
– Proteiinien vauriot. Proteiinit toimivat entsyymikatalyytteina, jotka mahdollistavat elintoiminnoille välttämättömät kemialliset reaktiot. Jotkin proteiinit toimivat reseptoreina, jotka vastaanottavat soluun tulevia kemiallisia viestejä. Happiradikaalien vaikutukset proteiineihin voivat aiheuttaa monenlaisia elintoimintojen häiriöitä.
– Myös DNA voi vaurioitua hapettumisen seurauksena. Tämä aiheuttaa geneettisiä vaurioita eli mutaatioita DNA:n emäsjärjestyksissä. Tällaiset muutokset voivat muuttaa ko. aluetta koodinaan käyttävän proteiinin rakennetta ja edelleen pysyvästi solun toimintaa, minkä seurauksena solut saattavat muuttua pahanlaatuisiksi. Se altistaa syövän kehittymiselle.  

Happiradikaaleja syntyy elimistön normaalin toiminnan seurauksena esimerkiksi ruokailun jälkeen ja soluhengityksessä, kun mitokondrioiden elektroninsiirtoketju käyttää happea energiantuotannossa. Happiradikaalien muodostuminen on osa perusaineenvaihduntaa, mutta niiden määrää rajoittaa elimistön omat antioksidatiiviset järjestelmät. Hapetus-pelkistystiloissa tapahtuvat muutokset ovat osa solujen välistä viestintämekanismia (redox signaling). Keho voi hyödyntää happiradikaaleja myös immuunijärjestelmän osana. Luontainen immuniteetti ja siihen liittyvät fagosytoivat solut tuhoavat elimistölle vieraita mikrobeja tuottamalla happiradikaaleja.

Elimistöllä on omia mekanismeja reaktiivisten happiradikaalien määrän rajoittamiseen. Näistä tärkeimpiä ovat happiradikaaleja vaarattomiksi molekyyleiksi muuttavat entsyymit, kuten superoksididismutaasi, katalaasi ja glutationiperoksidaasi.  Ravinnosta saatavat pienimolekyyliset antioksidantit pystyvät myös inaktivoimaan happiradikaaleja. Antioksidantteihin kuuluu eräitä vitamiineja ja flavonoideja. Tutuimpia ovat C- ja E-vitamiinit.

Liiallinen oksidatiivinen stressi voi johtaa solukuolemaan ja kudostuhoon. Inflammaatio on kaikkien kroonisten sairauksien riskitekijä.

Tässä on syytä painottaa sitä, että kovin paljon tutkimustietoa ketogeenisen ruokavalion hyödyistä multippeliskleroosia sairastavien oireiden helpottajana ei ole. Havaitut hyödyt on todennettu lähinnä eläinkokeissa ja pitkäaikaisvaikutuksista ei ole tietoa. Toisaalta tutkimusten tulokset ovat hyvin rohkaisevia.

Huomioitavaa

Ketogeenisen ruokavalion noudattaminen voi aiheuttaa multippeliskleroosia sairastavilla väsymystä (fatiikkia). Omalla kohdallani en sellaista huomannut, mutta multippeliskleroosi vaikuttaa eri ihmisiin eri tavoin, joten varoituksen sana on paikallaan.

Usein vähän hiilihydraatteja sisältävää ruokavaliota noudattavia varoitetaan kuitujen ja välttämättömien ravintoaineiden mahdollisista puutoksista hiilihydraattirajoitteiden seurauksena. Se voi olla yksipuolisella ketogeenisella dieetillä ongelma, mutta myös vähän hiilihydraatteja sisältävällä ruokavaliolla saa kaikki välttämättömät ravintoaineet ja riittävästi kuituja, jos ruokavalio on riittävän monipuolinen.

Mitä pitäisi vältellä

Ketoosi edellyttää hiilihydraattien tuntuvaa rajoittamista päivittäisessä ruokavaliossa ja hiilihydraattien korvaamista rasvalla ja proteiineilla. Välteltäviä ravintoaineita ovat erityisesti sokerit ja tärkkelys, jauhot ja niistä valmistetut ruoat sekä riisi, peruna, maissi ja hedelmät.

Rasvat

Hyväksyttyihin ravintoaineisiin kuuluvat hyvät rasvat ja proteiinit sekä vähän hiilihydraatteja sisältävät kasvikset ja pähkinät. Voi kuuluu monissa virallisissa ravintosuosituksissa vältettäviin epäterveellisiin rasvoihin, mutta minä suhtaudun voihin äärimmäisen myönteisesti. Sen sijaan margariineja en mielelläni syö. Voin terveysvaikutuksista vallitsee kaksi koulukuntaa: klassinen rasvavastainen koulukunta ja uusimpiin tutkimuksiin perustuva modernimpi lähestymistapa. Jokainen tehköön valintansa itse. Yhtä totuutta voin terveysvaikutuksista ei ole olemassa.

  • oliiviöljy
  • voi (tai ei, jos syö mieluummin voimakkaasti raffinoituja margariineja)
  • avokadot
  • pähkinät, mantelit, pistaasit
  • rasvaiset kalat, kuten lohi, sardiinit ja makrilli

Proteiinit

Ketogeeniseen ruokavalioon voi sisältyä sekä eläin- että kasvisperäisiä proteiineja.

  • liha
  • meijerituotteet (juustot yms.)
  • munat
  • pähkinät, maapähkinät ja cashew-pähkinät

Hiilihydraatit

Ketogeenisella ruokavaliolla rajoitetaan erityisesti seuraavien hiilihydraattien saantia:

  • sokerit
  • hedelmämehut, virvoitusjuomat ja makeutetut teet
  • makeiset ja leivonnaiset
  • maitoa, sillä se sisältää maitosokeria eli laktoosia
  • pasta
  • leipä
  • pavut
  • hedelmät
  • murot, puurot yms.
  • tärkkelyspitoiset vihannekset, kuten perunat ja maissi

Esimerkki päivän ruoista ketogeenisella ruokavaliolla

Aamiainen

  • pari paistettua munaa
  • pekonia
  • kahvia

Välipala

  • puolikas avokado, kourallinen pähkinöitä

Lounas

  • viipaloitua kurpitsaa
  • lihapullia ja tomaattikastiketta

Välipala

  • manteleita

Päivällinen

  • paistettua lohta
  • kukkakaalia ja voita
  • pinaattia

Tuo on vain eräs esimerkki päivittäisen ruokavalion sisällöstä. Tulen lisäämään tänne ketonurkkaukseen erilaisia hyviksi koettuja reseptejä sekä muuta aihetta sivuavaa infoa.  

Lopuksi

En voi sietää sanaa ”karppaaminen”. Siinä on jotenkin negatiivinen sointi. Lisäksi se kuulostaa pikemminkin hiilihydraattien syömiseltä kuin niiden rajoittamiselta. Käytän itse ketoilu-sanaa vähän hiilihydraatteja ja runsaasti rasvaa sisältävästä ruokavaliosta.

 Aloitin ketoilun eilen 2.12.2019. Söin päivän aikana kaksi ateriaa. Brunssi-lounaalla naudan jauhelihapihvin, runsaasti paistettua valkosipulilla ja chilillä maustettua kaali-paprika-sekoitusta ja juustoraastetta. Päivällisellä 3 paistettua munaa, kaali-paprikasekoituksen jämät ja paistetun naudan jauhelihapihvin. Pysyin kylläisenä, enkä kaivannut välipaloja tai iltapalaa.

Aloitan tulevien viikkojen aikana kokoamaan Ruokasotaan erityistä Ketonurkkausta, jossa kerron ketoiluun liittyvistä tutkimuksista, omista havainnoistani ja hyvistä resepteistä.