Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

 

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin ja siihen assosioituvien oireiden taustalla.

Mitä eroa on infektiolla ja inflammaatiolla?

Autoimmuunitaudin voi laukaista jokin infektio, kuten Epstein-Barr- tai herpesvirus. Inflammaatio altistaa sairastumiselle ja pahentaa immuunivälitteisten tulehduksellisten sairauksien oireita. Eräät ravintoaineet aiheuttavat oksidatiivista stressiä, joka ylläpitää ja pahentaa inflammaatiota.    

Infektio ja inflammaatio menevät helposti sekaisin, koska molemmat kertovat tulehduksesta. Ne eivät kuitenkaan tarkoita samaa asiaa.

Infektion aiheuttama lyhytaikainen tulehdus (tartuntatulehdus) auttaa elimistöön tunkeutuneen sairastuttavan mikrobin tuhoamisessa. Jatkuva matala-asteinen tulehdus (inflammaatio) on kudoksia ärsyttävä tila, joka voi kehittyä mm. vamman, ravinnon (postbrandiaalinen tulehdus), tupakoinnin, alkoholin ja eräiden toksiinien sekä joidenkin tuntemattomien syiden seurauksena, kuten eräät autoimmuunitulehdukset (esimerkiksi reuma).

Matala-asteinen tulehdus ei tavallisesti näy ulospäin tai oireile kipuna. Tutkimukset viittaavat siihen, että matala-asteinen tulehdus on kuitenkin lähes kaikkien kroonisten tautien osatekijä.

”Ne ruoka-aineet, jotka vähentävät tulehdusta tuntuvat edistävän ihmisen terveyttä muutoinkin. Ruokavalio, joka vähentää voimallisesti tulehdusta, vähentää myös kolesterolia, verenpainetta, aterian jälkeistä hapetusstressiä, LDL-kolesterolin hapettumista ja verensokeria aterian jälkeen ja paastossa sekä estää lihomista.” – Pronutritionist

Infektio siis puolustaa elimistöä mikrobeja vastaan. Pitkään jatkuva matala-asteinen inflammaatio on elimistölle haitallinen tila, koska se voi aiheuttaa kudosvaurioita. Wikipedian mukaan autoimmuunitulehdus vahingoittaa elimistöä immuunipuolustuksen hyökätessä elimistön omia soluja vastaan.

C-reaktiivinen proteiini eli CRP

Elimistön tulehduksista kertoo verinäytteestä mitattava CRP eli C-reaktiivinen proteiini. CRP on maksan syntetisoima akuutin infektion proteiini, joka sitoutuu solun erilaisiin ainesosiin, kuten polysakkarideihin, lipideihin, nukleiinihappoihin, nukleotideihin sekä kationeihin kuten hepariiniin, protamiiniin ja histoineihin.

CRP on komplementtijärjestelmän aktivoija, joka edistää vierasaineiden opsonisaatiota ja fagosytoosia. CRP osallistuu luontaiseen immuniteettiin ja vierasaineiden eliminointiin. Opsonisaatio on prosessi, jossa infektoivan patogeenin pintaan tarttuu siihen erikoistunut vasta-ainemolekyyli eli opsoniini, jonka avulla syöjäsolut (fagosyytit) tunnistavat ja tuhoavat patogeenit.

CRP:n pitoisuus veressä nousee bakteeri-infektioiden ja muiden tulehdustilojen sekä kudosvaurion yhteydessä nopeasti. CRP:n normaali viitealue on alle 10 mg/l, mutta infektion aikana CRP:n määrä voi kasvaa jopa 1000-kertaiseksi viitealueeseen verrattuna.

Ruokavalio, laihtuminen ja CRP

Lihavuus on matala-asteisen inflammaation yksi tärkeä syy. Laihtuminen voi laskea inflammaatiota mittaavaa CRP-arvoa jopa 80 %. Myös ruokavalio vaikuttaa tulehdusta mittaavaan CRP-arvoon. Terveellinen ruoka, kuten kasvikset, marjat, hedelmät ja kala voivat laskea tulehdusarvoja jopa kolmanneksella.

Wikipedia kertoo, että jo muutaman päivän vesipaasto vahvistaa kehon immuunijärjestelmää taistelussa tulehduksia vastaan. Vastaavia tuloksia on saatu kerran tai kahdesti kuussa toteutettavilla nelipäiväisillä niukan ravinnon jaksoilla.

Elimistö näyttäisi pääsevän paaston ja niukan dieetin avulla eroon immuunijärjestelmän vahingoittuneista ja vanhentuneista osista, joka johtaa immuunijärjestelmän uusiutumiseen (Kari Tyllilä: Yllättävä löytö voi tuoda apua syöpähoitoihin: Paasto uudistaa immuunijärjestelmää).

Tulehdus ja sytokiinit

Sytokiinit ovat immuunijärjestelmän säätelijöitä. Ne ohjaavat immuunijärjestelmän kaikkien solujen erilaistumista, kasvua ja toiminnallista säätelyä. Sytokiini on yleisnimitys yli sadalle pienimolekyyliselle proteiinirakenteiselle välittäjäaineelle.

Valkosolut tuottavat sytokiineihin lukeutuvia interferoneja virusinfektion aikana. Interferonien tarkoituksena on estää virusten lisääntyminen infektion alkuvaiheessa. Proinflammatoristen eli inflammaatiota lisäävien interferonien (sekä happiradikaalien) ensisijaisena tehtävänä on tappaa elimistöön päässeitä viruksia, bakteereita ja ja sieniä.

Jos immuunivasteeseen osallistuvia sytokiineja tai happiradikaaleja muodostuu elimistössä liikaa, ne vaurioittavat kudoksia ja altistavat sairastumiselle.

Beetainterferoneja käytetään MS-taudin oireita hillitsevänä lääkkeenä. Toisaalta gammainterferoni, jota naisilla muodostuu luonnostaan miehiä enemmän, assosioituu suurina pitoisuuksina MS-taudin puhkeamiseen ja pahenemiseen.

Tärkeät sytokiinit

Kuva sytokiinien merkityksestä ja hierarkkisista säätelyverkoista tarkentuu koko ajan. Sytokiineja on tunnistettu yli sata. Pelkästään interleukiiniperheeseen kuuluvia sytokiineja tunnetaan 29. Sytokiinien tutkimus tarjoaa uusia lähestymistapoja myös autoimmuunitautien ja syöpien hoitoon.

Immuunijärjestelmän kannalta keskeisiä sytokiinejä ovat interleukiinit (IL), interferonit (IFN), tuumorinekroositekijä alfa (TNF-α), ja solutyyppispesifiset kasvutekijät, kuten granulosyyttikasvutekijä (G-CSF) ja erytropoietiini (EPO).

Sytokiinien eritys lisääntyy infektion aikana, mikä vahvistaa elimistön puolustautumista taudinaiheuttajia vastaan. Immuunivasteeseen ja infektion torjuntaan osallistuvat ainakin proinflammatoriset sytokiinit, kuten IL-1, IL-6, TNF- α.

IL-17 on nopeasti kasvava sytokiiniperhe, jonka jäsenet eroavat rakenteellisesti muista sytokiineista. IL-17 on keskeinen sytokiini MS-taudin patogenesissä (Gold & Lühder, Interleukin-17 – Extended Features of a Key Player in Multiple Sclerosis).

Monet sytokiinit aiheuttavat ja ylläpitävät elimistön matala-asteista tulehdusta. Toisaalta sytokiinit voivat olla myös inflammaatiota vähentäviä eli anti-inflammatorisia, kuten mm. IL-4, IL-10 ja TGF- β.

Sytokiinien säätelyverkot

Sytokiinit muodostavat toiminnalllisia verkostoja. Yksittäinen sytokiini vaikuttaa tavallisesti useisiin solutyyppeihin, mutta sen aikaansaamat vasteet eri soluissa voivat olla täysin erilaiset.

Monissa immuunivälitteisissä tulehduksellisissa sairauksissa aktivoituu osin samanlainen sytokiiniverkosto, mutta yksittäisen sytokiinin merkitys eri sairauksien patogeneesissa voi vaihdella paljonkin. Yhtenä esimerkkinä tuumorinekroositekijä (TNF-α), joka vaikuttaa mm. nivelreuman, selkärankareuman, tulehduksellisten suolistotautien ja psoriaasin patogeneesissa.

Sytokiinit toimivat ajallisesti ja paikallisesti tarkan säätelyn alaisina hierarkkisina säätelyverkostoina. Jos säätely jostakin syystä pettää, sytokiinien ylituotanto voi toimia laukaisevana mekanismina monissa sairauksissa, kuten autoimmuunitaudeissa.

Sytokiinireseptoreiden signalointi

Sytokiinien biologiset vaikutukset välittyvät solun pinnalla sijaitsevien erityisten reseptoreiden kautta. Interferonien, useimpien interleukiinien ja solutyyppispesifisten kasvutekijöiden (EPO, TPO, GM-CSF, G-CSF) reseptorit välittävät vaikutuksensa hematopoieettiseen sytokiinireseptoriperheeseen kuuluvien reseptoreiden kautta.

Kaikkien reseptroreiden aktivaatiomekanismi on samankaltainen: sytokiinin sitoutuminen reseptorin solunulkoiseen osaan saa aikaan ketjuen pariutumisen ja johtaa reseptoriin kiinnittyneiden JAK-tyrosiinikinaasien (JAK1-3 ja TYK2) aktivaatioon ja signaalinvälitykseen erikoistuneiden proteiinien fosforylaatioon sekä muutoksiin mm. DNA-synteesissä ja transkriptiossa (Levy ja Darnell 2002, O’Shea ym. 2002).

Luettavaa sytokiineista

Kuinka elimistö reagoi tulehdukseen?

Elimistö reagoi tulehdukseen tavallisesti verisuonimuutoksilla sekä kudosnesteen ja tulehdussolujen kertymisellä tulehdusalueelle. Verisuonimuutosten seurauksena hiussuonten seinämät muuttuvat läpäisevimmiksi ja tulehdusalueelle kertyy proteiineja ja nestettä.

Tulehdusreaktio houkuttelee paikalle myös valkosoluja, kuten syöjäsoluja, joiden tehtävänä on puolustaa elimistöä ulkoisilta taudinaiheuttajilta ja siivota tulehdusaluetta vaurioituneista soluista. Tulehduksien aiheuttama ”märkä” muodostuu tulehdussoluista, taudinaiheuttajista, osin tuhoutuneesta kudoksesta ja kudosnesteestä.

Tulehduksen oireet ovat rubor, tumor, calor, dolor ja functio laesa eli punoitus, turvotus, kuumotus, kipu ja toimintakyvyn heikkeneminen.

Ravinto ja inflammaatio

Pitkään jatkuva matala-asteinen tulehdus kasvattaa sairastumisen riskiä. Tutkimusten mukaan inflammaatio on useimpien kroonisten sairauksien taustatekijä. Inflammaatio altistaa mm. autoimmuunitaudeille, sydän- ja verisuonitaudeille, syöville, tyypin 2 diabetekselle, lihavuudelle ja Alzheimerin taudille.

Rasvakudos erittää runsaasti erilaisia tulehdussytokiineja, joten lihavuus ylläpitää ja lisää inflammaatiota. Laihduttaminen voi merkittävästi vähentää elimistöä rasittavaa matala-asteista tulehdusta.

Aterianjälkeinen (postbrandiaalinen) verensokerin nousu kasvattaa oksidatiivista stressiä muodostamalla happiradikaaleja. Oksidatiivinen stressi pahentaa inflammaatiota. Mitä korkeammaksi verensokeri nousee, sitä enemmän muodostuu happiradikaaleja.

Ravinto vaikuttaa inflammaatioon monin tavoin.

Ravinto voidaan jakaa karkeasti tulehduksia aiheuttaviin, neutraaleihin ja tulehduksia hillitseviin ravintoaineisiin. Ravintoaineiden aiheuttamaan tulehdusvasteeseen vaikuttavat mm. ravinnon määrä ja muut samaan aikaan nautitut ravintoaineet.

Rasvat ovat tavallisilla annoksilla tulehduksen kannalta yleensä neutraaleja. Värikkäiden marjojen, hedelmien ja kasvisten syöminen lievittää tulehdusta. Imeytymättömät proteiinit voivat lisätä suoliston tulehduksia, mutta lihan, kanan ja äyriäisten tulehdusvaikutuksista on hyvin vähän tutkittua tietoa.

Tulehduksia vähentäviä (anti-inflammatorisia) ruokia ovat mm.

  • Rasvainen kala
  • Neitsytoliiviöljy
  • Kala
  • Mantelit ja pähkinät
  • Marjat ja hedelmät
  • Monet kasvikset
  • Appelsiinimehu
  • Granaattiomena
  • Kaakao
  • Punaviini

Inflammaation kannalta neutraaleja ruokia ovat mm.

  • Rypsiöljy
  • Margariini
  • Voi
  • Soija ja palkokasvit
  • Meijerituotteet
  • Kananmunat
  • Eräät täysjyvätuotteet
  • Monet kasvikset
  • Tumma pasta
  • Peruna
  • Leipä
  • Vihreä tee
  • Kahvi
  • Valkoviini
  • Maito ja piimä

Tulehduksia lisääviä ruokia ovat mm.

  • Kerma suurina annoksina
  • Makkarat ja lihajalosteet
  • Runsas sokeri
  • Runsas fruktoosi (fruktoosisiirappi?)

Lue lisää:

Pronutritionist: Anti-inflammatorinen eli tulehdusta vähentävä ruokavalio

Inflammaation vaikutus RRMS- ja PPMS-tautien oireisiin

Tulehdustekijät ovat havaittavissa aaltoilevasti etenevän RRMS-taudin patologiassa ja assosioituvat selkeästi taudin oireisiin. RRMS-tautimuodossa keskushermostossa ilmenevät tulehduspesäkkeet (leesiot) ovat yhteydessä taudinkuvaan liittyviin kliinisiin pahenemisvaiheisiin. Inflammaation helpottuminen ilmenee remissiona, jolloin taudin oireet paranevat joko osittain tai lähes täysin etenkin taudin varhaisvaiheessa.

Progressiivinen MS-tauti

Ensisijaisesti etenevä MS-tauti (primaarisprogressiivinen, PPMS) on MS-taudin alatyyppi, jossa oireet ja invaliditeetti lisääntyy sairauden alusta alkaen tasaisesti ilman selviä inflammaatioon assosioituvia pahenemisvaiheita, RRMS etenee toissijaisesti eteneväksi (SPMS) taudiksi yleensä noin parin vuosikymmenen aikana. SPMS ja PPMS muistuttavat hyvin läheisesti toisiaan.

”PPMS-potilailla yleisimmät taudin alkuoireet olivat motoriset-, pikkuaivo- ja tuntohäiriöt. Motorisen toiminnan häiriöt olivat yleisimmät löydökset kliinisessä neurologisessa tutkimuksessa. Kaikilla PPMS-potilailla oli virtsaustoiminnan häiriöitä, joista tihentynyt virtsaamistarve ja siihen liittyvä virtsan karkailu olivat yleisimmät oireet. Urodynaamisen tutkimuksen yleisimmät löydökset olivat virtsarakon seinämälihaksen yliaktiivisuus (detrusor hyperrefleksia) sekä seinämälihaksen ja virtsaputken sulkijalihaksen koordinoimaton supistelu (detrusor sphinkterin dyssynergia, DSD).” – Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva

Tulehduksen vaikutusta ei ole poissuljettu myöskään etenevässä MS-taudissa. Inflamaation voi aiheuttaa autoimmuunitulehdus tai solujen (oligodendrosyyttien) rappeutumisen eli sytodegeneraation aiheuttama neurologinen tulehdus.

”Adheesiomolekyylien ja joidenkin sytokiinien ilmentymisen lisääntyminen viittaa siihen, että tulehduksellista aktiviteettia esiintyy pidemmälle edenneessä PPMS-taudissakin.” – Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva

Tutkimukselliset löydöt

Etenevissä MS-taudeissa on havaittavissa runsaasti molekyyli- ja solutason muutoksia, jotka selittävät taudinkuvaan liittyvää neurologista rappeutumista (neurodegeneraatiota).  Tällaisia neurologiseen rappeutumiseen assosioituvia muutoksia ovat mm.

  • keskushermoston syöjäsoluina toimivien mikrogliasolujen aktivoituminen
  • kroonisen hapettumisreaktion aiheuttamat vauriot keskushermoston soluissa
  • mitokondrioihin kumuloituvat vauriot keskushermoston viejähaarakkeissa
  • ikään liittyvä atrofia
  • viejähaarakkeiden signaalinvälityksen havaittava heikkeneminen.

Tällaiset patologiset muutokset voivat johtua autoimmuunitulehduksen aiheuttamista viejähaarakkeiden eristekalvojen vaurioista (demyelinaatio), mutta syynä voi olla myös tautiin liittyvä keskushermoston solujen (neuronien ja oligodendrosyyttien) primaari rappeutuminen.

Mahdollisesti moolemmat, sekä inflammaatio että keskushermoston solujen rappeutuminen (sytodegeneraatio) vaikuttavat etenevien MS-tautimuotojen patogeneesiin.

Patologiset mekanismit, jotka ylläpitävät neurodegeneraatiota ja aiheuttavat PPMS-ja SPMS-potilaille kudosvaurioita, tunnetaan huonosti. Nämä tekijät liittyvät ilmeisesti perifeerisen immunologisen toleranssin virheelliseen toimintaan.

Taudin aiheuttamasta neurodegeneraatiosta on esitetty (ainakin) kaksi hypoteessia: inside-out-hypoteesi ja outside-in-hypoteesi.

Inside-out hypoteesin mukaan taudin alusta alkaen etenevä keskushermoston solujen rappeutuminen on kaikkien tautiin liittyvien prosessien selittävä tekijä.

Outside-in hypoteesi olettaa, että taudin varhaisvaiheessa ilmenevät inflammaatioon assosioituvat demyelinoivat prosessit laukaisevat joukon keskushermostoa rappeuttavia tapahtumaketjuja.

Osallistuuko suoliston mikrobiomi autoimmuunitaudin patogeneesiin?

Viime aikoina on saatu viitteitä siitä, että suoliston mikrobiomin hyvinvoinnilla on tärkeämpi rooli etenevän MS-taudin taudinkuvassa kuin on aiemmin oletettu.

Tieto mikrobiomista ja sen merkityksestä isäntäorganismille täsmentyy koko ajan. Vagus-hermo välittää tietoa ruoansulatuselimistön tapahtumista aivoille. Se toimii suorana välittäjänä mikrobiomin ja keskushermoston välillä.

Mikrobiomi vaikuttaa keskushermostoon muokkaamalla signaalireittejä aivo-suolisto-akselilla. Tämä kaksisuuntainen kommunikaatioverkko hermoston ja suoliston välillä aktivoi hermoston makrofageja ja vaikuttaa neurologisiin tapahtumiin säätelemällä hermoston immuuniaktiivisuutta.

Mikrobiomin merkitys

BBC kirjoittaa, että kehon solujen kokonaismäärästä 43 % on ihmisen omia soluja. Suurin osa kehossamme elävistä soluista kuuluu kuitenkin mikrobiomin bakteereille, arkeille, viruksille ja sienille.

Ihmisen DNA:ssa on noin 23 000 proteiineja koodaavaa geeniä. Geenit säätelevät solujemme, kudostemme ja elimistömme rakennetta. Geenien väliset alueet ohjaavat geenien toimintaa. Oman genomin lisäksi kehossamme on mikrobiomin geneettistä materiaalia, joka koostuu 2-20 miljoonasta geenistä.

DNA, mutaatiot ja yhden emäksen variaatiot

Ihmisen DNA on noin 3 miljardia emästä pitkä kaksoisjuoste. DNA:n rakenteessa toistuu neljä emästä, joita kuvataan kirjaimilla A (adeniini), T (tymiini, C (sytosiini) ja G (guaniini). A ja T sekä C ja G muodostavat DNA:n kaksoisjuosteessa emäspareja.

Geenit eli perintötekijät muodostuvat eri mittaisista DNA-jaksoista

Solun jakautuminen edellyttää DNA:n kahdentumista. Prosessi on hyvin täsmällinen, mutta aika ajoin siinä tapahtuu virheitä ja DNA-juosteen alkuperäinen emäsjärjestys muuttuu. Tällaiset virheet aiheuttavat geenimutaatioita.

Geenimuutosten kolme lähdettä ovat vanhemmilta saatu perimä, elintapojen ja ympäristön tuoma altistus (myrkyt, patogeenit, ravinto jne.) sekä sattumanvaraiset DNA:n kopioitumisvirheet. Kopioitumisvirheitä tapahtuu jatkuvasti. Aina, kun solu jakaantuu, aiheutuu DNA:han keskimäärin kolme virhettä. Tällaiset geenimutaatiot voivat käynnistää syövän.

Pistemutaatiot eli yhden emäksen variaatiot (Single Nucleotide Polymorphism), joissa esimerkiksi DNA:n emäsjuosteen jonkin geenin emäsparissa adeniini muuttuu sytosiiniksi, ovat hyvin yleisiä. Yleensä nämä ovat neutraaleja, mutta jotkin yhden nukleotidin polymorfismit assosioituvat lisääntyneeseen sairastumisriskiin.

Toinen genomi

Professori Sarkis Mazmanian (Caltech) kertoi BBC:lle, että periaatteessa meillä on kaksi toisiinsa vuorovaikuttavaa genomia. Ne ”kommunikoivat” keskenään kemiallisten signaalien välityksellä. Tällaisia mikrobiomin tuottamia hermostoon vaikuttavia välittäjäaineita ova esimerkiksi eräät mikrobien aineenvaihduntatuotteet, kuten dopamiini, serotoniini ja GABA.

Mikrobiomin tuottamat kemialliset signaalit voivat vaikuttaa myös epigeneettisesti ihmisen omaan genomiin. Tämä tapahtuu esimerkiksi siten, että johonkin geenin emäksistä kiinnittyy ympäristötekijöiden säätelemänä geenin transkriptioon vaikuttava metyyliryhmä.

Mikrobiomiin vaikuttavat ympäristötekijät voivat olla viruksia, bakteereita, sieniä, tietyn kemiallisen koostumuksen omaavia ravintoaineita sekä toksisia tai inflammatorisia kemikaaleja. Nämä voivat heikentää immuunijärjestelmän säätelyä ja edesauttaa epigeneettisten muutosten, pistemutaatioiden ja geenimutaatioiden kehittymistä DNA:han.

Yhden nukleotidin polymorfismit (single nucletide polymorphism, SNP) assosioituvat moniin sairauksiin, kuten syöpiinn ja autoimmuunitauteihin. Esimerkiksi tyypin 1 diabeteksessa ja MS-taudissa tällaisia tautiin assosioituvia yhden nukleotidin polymorfismeja on tunnistettu muun muassa geenin CYP27B1 eri lokuksissa.

Geenit eivät ole täysin muuttumattomia. Ympäristötekijät vaikuttavat geenien toimintaan.

Myös epigeneettinen muutos, jossa geenin yhden tai useamman emäksen päälle on kiinnittynyt metyyliryhmä vaikuttaa geenin ekspressioon ja transkriptioon.

Kuinka mikrobiomi vaikuttaa elimistöön?

Suoliston mikro-organismit estävät vieraiden ja mahdollisesti haitallisten mikrobien pesiytymisen suolistoon ja pääsyn suoliston kautta verenkiertoon.

Mikrobiomi vaikuttaa myös ruoansulatukseen, aineenvaihduntaan, immuunijärjestelmän säätelyyn sekä eräiden vitamiinien ja muiden tärkeiden yhdisteiden, kuten dobamiinin, GABAn ja serotoniinin synteesiin ja edelleen keskushermoston toimintaan mm. vagus-hermon välityksellä.

Onko antibiooteilla ja rokotuksilla vaikutuksia mikrobiomiin?

Antibiootit ja rokotukset ovat pelastaneet kymmeniä tai satoja miljoonia ihmishenkiä viimeisen vuosisadan aikana, mutta joidenkin tutkijoiden mukaan mikrobiomin lajikirjo on pienentynyt infektioilta suojaavan taistelun seurauksena ja tämä on heikentänyt mikrobiomin vaikutusta immuunijärjestelmän säätelyyn.

Hypoteesin mukaan mikrobiomin lajikirjon pienentyminen vaikuttaa immuunijärjestelmän säätelyn kautta sairastumissalttiuden lisääntymiseen. Erityisesti sairastumisalttiuden lisääntyminen vaikuttaa allergioihin ja autoimmuunitauteihin.

Professori Ruth Ley (Max Planck Institute) totesi BBC:lle, että vaikka olemmme taistelleet menestyksekkäästi infektioita vastaan, autoimmuunitautien ja allergioiden määrä on kääntynyt selvään kasvuun.

Tulkitsen tämän niin, että koska mikrobiomi yleensä periytyy äidiltä lapselle, voivat pienet mikrobiomin lajikirjon muutokset kumuloitua sukupolvien aikana ja heikentää pitkällä aikajänteellä immuunijärjestelmän säätelyä. Se voisi selittää väestötasolla eräiden tautien yleistymisen.

Rokotukset ja antibiootit eivät kausaalisesti aiheuta autoimmuunitauteja, mutta ovat voineet useiden sukupolvien aikana vaikuttaa autoimmuunitautien kehittymisen kannalta otollisemman immunologisen ympäristön rakentumiseen. Tällainen spekulaatio kuulostaa ihan järkeenkäyvältä.

Näkökulma: Rokotteiden sisältämät viruksen proteiinit toimivat autoimmuunitaudin laukaisijoina minimaalisen pienellä todennäköisyydellä, mutta näin kävi surullisessa narkolepsiaepidemiassa. Yleisesti ottaen rokotteet ovat hyvin turvallisia. Virus, jolta rokote suojaa voi laukaista autoimuunitaudin myös rokottamattomilla.

Rokottaminen voi laukaista vakavan allergisen reaktion tai sairauden, mutta todennäköisyys sellaiselle on häviävän pieni. Myös rokotteen sisältämien tehoste- ja säilöntäaineiden pelko on aiheeton; hengittämällä elimistöön kulkeutuu taajama-alueilla jo yhdessä päivässä rokotteisiin verrattuna moninkertainen määrä teollisuudesta ja liikenteestä peräisin olevia haitallisia mikropartikkeleita. Hengitysilman pienhiukkaset kulkeutuvat keuhkoista verenkiertoon ja vaikuttavat siten terveyteen.

Maailmanlaajuisesti ilmansaasteet tappavat vuosittain miljoonia ihmisiä. Suurin ongelma on Aasiassa ja Afrikassa. Tämä on rokotteita todellisempi ja akuutimpi uhkakuva myös Euroopassa.

Teollinen ruoka yksipuolisti mikrobiomia

Mikrobiomin heikentymiseen on vaikuttanut myös viime vuosisadalla alkanut ravinnon teollistuminen. Teollisesti valmistetut vähemmän ravinteita ja enemmän energiaa sisältävät ruoat ja rasvat sekä runsas sokereiden käyttö ovat syrjäyttäneet luonnnollisemmat ravinnonlähteet.

Lihan ja sokereiden määrä ravinnossa on lisääntynyt samaan aikaan, kun hapatettujen ruokien ja kasvisten saanti on vähentynyt. Punainen liha, lihajalosteet, transrasvat ja sokerit assosioituvat tutkimuksissa heikentyneen suolistoterveyden ja suoliston tulehdusten kanssa; nämä heikentävät immuunijärjestelmää ja sen säätelyä.

Punainen liha ja suoliston terveys

Runsaan proteiinien saannin kohdalla ongelmia aiheuttaa se, että vaikka proteiinit pilkotaan tärkeiksi aminohapoiksi ja peptideiksi ohutsuolessa, osa proteiineista ei imeydy ohutsuolesta elimistön hyödynnettäväksi, vaan päätyy paksusuoleen, jossa ne ravitsevat mikrobiomin huonoja bakteereita.

Imeytymättömän proteiinin vaikutuksesta paksusuoleen syntyy imeytymätöntä rautaa, ammoniakkia, amiineja, sulfideja ja haaraketjuisia rasvahappoja (BCFA).

Erityisesti lihan paistamisen yhteydessä Mailard-reaktiossa (ruskistumisessa) syntyy sokeroituneita proteiineja, jotka eivät imeydy ohutsuolessa, vaan kulkeutuvat paksusuolen bakteerien fermentoitavaksi (Tuohy et al. 2006). Lähde: Pronutritionist

Ravitsemuksessa tapahtunut muutos ei tietenkään ole yksiselitteisesti huono asia. Ravintoa on enemmän ja monipuolisemmin tarjolla kuin koskaan aiemmin historiassa. Samaan aikaan pikaruoka- ja herkuttelukulttuurilla on kuitenkin hintansa: immuunijärjestelmän toiminnan säätelyyn osallistuvan mikrobiomin heikentyminen on ehkä mahdollistanut aiemmin harvinaisten tautien ja oireyhtymien yleistymisen.

Autoimmuunitautien, allergioiden ja autismin lisääntyminen voisi siis selittyä väestötasolla tapahtuneilla mikrobiomin pitkän aikavälin muutoksilla. Tämä on mielenkiintoinen ajatus.

Ymäristömuuttujat ja terveys

Evoluutio on tehnyt meistä ympäristön muutoksiin hyvin sopeutuvan lajin. Ympäristön muuttuminen mm. ravinnon ja erilaisten kemikaalien osalta on nykyään kuitenkin niin nopeaa, ettei ihmisen aineenvaihdunta ja immuunijärjestelmä ehdi sopeutua muutoksiin.

Kun ihmiset aiemmin sairastuivat ja kuolivat infektioihin, nyt infektioita suurempia uhkia ainakin kehittyneissä maissa ovat elintapoihin assosioituvat kardiometaboliset oireyhtymät, sydän- ja verisuonitaudit, diabetes, syövät jne.

Ravintoaineiden puutokset ja ympäristön myrkyt altistavat sairastumiselle

Välttämättömien ravintoaineiden puutos ei välittömsti johda sairastumiseen, sillä keho varastoi jonkin verran välttämättömiä vitamiineja ja mineraaleja. Elimistössä on simerkiksi B12-vitamiinia yleensä riittävästi kattamaan muutaman vuoden tarpeen, vaikka sitä ei ravinnosta saisikaan. Vakavien puutosoireiden kehittyminen edellyttää pidempiaikaista vitamiinien tai mineraalien puutosta.

Elimistöllä on myös monia aineenvaihduntamekanismeja elintoimintoja ylläpitävien elinten energiansaannin turvaamiseksi. Solut saavat energiaa hiilihydraateista, rasvoista ja proteiineista.

Kun ravintoa ei ole saatavilla, elimistö muuttaa varastorasvoja ketoaineiksi ja glukoneogeneesissä ketoaineita edelleen glukoosiksi tai soluissa energiaksi. Kun elimistön glykogeenit ja rasvavarastot loppuvat, elimistö alkaa tuottaa ketoaineita vapaista proteiineista ja rasvahapoista. Ravinnon jatkuva puutos saa aineenvaihdunnan pilkkomaan lihaksia aminohapoiksi, joita voi käyttää ketoaineina. Näiden selviytymismekanismien ansiosta terve ihminen voi elää jopa kuukauden pelkällä vedellä.

Toksisten aineiden kumuloituminen elimistöön ja välttämättömien ravinteiden puutokset altistavat kuitenkin pitkään jatkuessaan sairastumiselle.

Ravinto ja suolisto

Yksipuolinen ravinto, liiallinen hygienia, runsas alkoholi, tupakointi sekä eräät lääkkeet voivat heikentää suoliston mikrobiomia. Tälla on vaikutuksia terveyteen, koska suoliston mikribiomia tarvitaan mm. suojaamaan suolistoa ulkoisilta taudinaiheuttajilta, vähentämään suolistotulehdusten vaaraa, ehkäisemään suolistosyöpää ja pilkkomaan ravinnon sulamattomia kuituja.

Monista hedelmistä, kasveista, marjoista, tummasta suklaasta ja kahvista saatavilla polyfenoleilla on suoliston mikrobiomille ja painonhallinnalle ilmeisen myönteisiä vaikutuksia. Ne tukevat suoliston terveyttä ylläpitävien bifidobakteerien kasvua. Punaisesta lihasta saatava hemirauta voi pahentaa suoliston tulehduksia, mutta samaan aikaan saatava resistentti tärkkelys vähentää inflammaatiota.

RRSM ja PPMS

MS-taudin kaksi yleisintä mutoa ovat taudinkuvaltaan ja patologisilta mekanismeiltaan hyvin erilaisia tauteja. On ehkä aiheellista harkita sellaista vaihtoehtoa, että RRMS ja PPMS ovat kaksi erillistä sairautta tai monitekijäistä oireyhtymää.

Ne muistuttavat monin tavoin toisiaan, mutta näiden kahden MS-taudin patogeneesi poikkeaa toisistaan merkittävällä tavalla. RRMS on tulehduksellinen autoimmuunitauti, jossa keskushermoston tulehdukset laukaisevat MS-tudille ominaisen demyelinoivan autoimmuunireaktion. PPMS on sairauden alusta alkaen neurodegeneratiivinen, hermoston soluja rappeuttava sairaus, jossa oligodendrosyyttien tuhoutumista ja atrofiaa tapahtuu tasaisesti ilman inflmaatioon assosioituvia pahenemisvaiheita.

Tällaista hypoteesia tukee kliinisten löydösten ohella myös se, että anti-inflammatoriset ja immunosupressiiviset lääkkeet eivät toimi toivotulla tavalla etenevissä MS-taudeissa, vaikka nillä saadaan hyviä hoitotuloksia aaltoilevaa tautimuotoa sairastavilla.

Myöskään kantasoluhoidosta ei löydy apua etenevään MS-tautiin. Kantasoluhoidossa potilaalta kerätään kantasoluja, joita kasvatetaan petri-maljoissa. Kantasolujen keräämisen jälkeen potilaan virheellisesti toimiva immuunijärjestelmä tuhotaan voimakkaalla kemoterapialla. Viimeisessä vaiheessa kantasoluista istutetaan potilaalle uusi immuunijärjestelmä.

Kaiken kaikkiaan kantasoluhoito kestää noin kuukauden ja sillä on saatu hyviä hoitotuloksia RRMS-potilailla. PPMS- ja SPMS-potilaille kantasoluhoito ei ainakaan nykyisellään sovellu.

Immuunijärjestelmää hillitsevillä lääkkeillä ja kantasoluhoidolla ei ole toivottua vaikutusta etenevässä MS-taudissa, koska immuunijärjestelmän virheellinen toiminta ei ole oireiden ensisijainen syy. Etenevä MS-tauti ei myöskään ole ensisijaisesti tulehduksellinen sairaus, koska tulehduksia vähnetävillä lääkkeillä ei saada toivottua vastetta.

Tästä hypoteesista ei vallitse tietellistä konsensusta, mutta etenevien MS-tautien tutkimus on lisääntynyt ja viime aikoina on saatu selkeitä viitteitä siitä, että PPMS on osin virheellisesti ymmärretty sairaus; sen sekoittaminen relapsoivaan-remittoivaan MS-tautiin vain pahentaa tilannetta ja hidastaa tutkimustyötä.

Niin tai näin, molemmissa MS-taudin muodoissa ravinto ja elintavat vaikuttavat taudin etenemiseen, mutta erilaisten patologisten prosessien ja aineenvaihduntakanavien kautta.   

Ehkäpä MS-taudin yksilölliset oireet ja taudinkulku eri potilailla selittyy sillä, että kahteen yleisimpään MS-taudin muotoon vaikuttavat erilaiset geenivariaatiot, geenien alleelit, yhden nukleotidin polymorfismit ja epigeneettiset muutokset.

MS-tautiin assosioituvia geenejä on tunnistettu noin 200, mutta yksikään potilaista ei varmasti kanna kaikkia mahdollisia MS-tautiin liittyviä geenimuutoksia. Tämä monimuotoisuus selittää sen, miksi MS-tautiin on äärimmäisen vaikeaa löytä parantavaa ja kaikille potilaille soveltuvaa hoitoa.

Oksidatiiviseen ainnenvaihduntaan vaikuttavia tekijöitä: PPAR, sirtuiinit ja AMPK

Palataan hapetusreaktioihin, sillä ne vaikuttavat solujen aineenvaihduntaan mm. ravintoaineiden kautta. Oksidatiivinen stressi ja matala-asteinen tulehdus heikentävät elimistön terveyttä ja altistavat kroonisille sairauksille. Immuunivälitteisissä tulehduksellisissa sairauksissa oksidatiivinen stressi ja inflammaatio ylläpitävät ja pahentavat taudin oireita.

Happiradikaalit kaappaavat elektroneja muilta molekyyleiltä

Oksidatiivisella stressillä tarkoitetaan solujen ja laajemmin koko elimistön hapetus-pelkistystilan epätasapainoa. Kun hapettavia tekijöitä on liikaa suhteessa pelkistäviin tekijöihin, oksidatiivinen stressi välittyy reaktiivisten happi- ja typpiradikaalien kautta muihin molekyyleihin.

Reaktiivinen happiradikaali (ROS) on hapesta muodostunut yhdiste, joka sisältää parittoman elektronin. Se pyrkii parilliseen elektronimäärään reagoimalla läheisyydessään olevien muiden yhdisteiden kanssa. Tämä johtaa eräänlaiseen dominoefektiin, jossa happiradikaali vaurioittaa kohtaamansa molekyylin rakennetta ja/tai toimintaa.

Oksidatiivisen metabolismin vaikutusta tehostaa kaksi entsyymiä ja tumareseptori. Entsyymit ovat AMP-aktivoidut proteiinikinaasit: AMPK (Steinberg and Kemp, 2009) sekä sirtuiinit (SIRT), jotka ovat joukko NAD+ -vaikutuksesta aktivoituvia histonideasetylaaseja (Zhang et al., 2011; Rice et al., 2012). Vaikuttava tumareseptori on PPAR-isotyyppi (peroxisome proliferator-activated receptors) Desvergne and Wahli, 1999; Burns and VandenHeuvel, 2007).

Rasvojen energiantuotanto

Keho säilyttää energiaa rasvahappoina, koska rasvahapoissa on hiilihydraatteihin nähden yli kaksinkertainen määrä energiaa painoyksikköä kohden. Rasvahappoja muutetaan energiaksi mitokondrioissa tapahtuvassa beeta-oksidaatiossa:

  • Aluksi rasvat hajotetaan rasvahapoiksi ja glyseroliksi. Esimerkiksi triglyseridissä on kolme rasvahappoketjua, jotka ovat kiinnittyneenä glyseroliosaan.
  • Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi, joka voidaan käyttää energiantuotantoon (n. 5 % triglyserideistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä. Glukoneogeneesi käyttää glukoosimolekyylin tuottamiseen enemmän energiaa kuin syntyvästä glukoosimolekyylistä vapautuu glykolyysissä ja soluhengityksessä.
  • Rasvahapot hapetetaan mitokondrioissa tapahtuvassa beeta-oksidaatiossa (β–oksidaatiossa).
    Rasvahapot aktivoidaan edelleen mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Soluliman asyyli-KoA:lla ja mitokondrion asyyli KoA:lla on eri tehtävät: solulimassa ”rakentava” anabolia ja mitokondriossa ”hajottava” katabolia.
  • Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA).
  • Asetyyli KoA (asetyylikoentsyymi A) hapetetaan edelleen sitruunahappokierrossa.
  • Elimistön energiantuotannon lopputuotteena syntyy vettä ja hiilidioksidia, jotka poistuvat kehosta mm. hengityksen ja hikoilun kautta.

Mitokondrioissa ja peroksisomeissa tapahtuvaa rasvahappojen beetaoksidaatiota tehostavat PPAR-isotyypit. Beetaoksidaatiossa ravinnon tai kehon varastoimia rasvahappoja käytetään energianlähteenä.  PPAR-isotyypit säätelevät beetaoksidaatioon liittyvien geenien transkriptiota ja muodostavat AMPK-sirtuiinipolkuja.

Vähäenerginen ravinto ja liikunta aktivoi AMPK-sirtuiini-PPAR-polun aineenvaihduntaa

AMPK-sirtuiini-PPAR-polku aktivoituu vähäenergisen ravinnon ja fyysisen harjoittelun seurauksena. Aktivaatiota tehostavat kasvisten ja hedelmien sisältämät polyfenolit ja pitkäketjuiset monityydyttämättömät rasvahapot (omega-3). Ligandin aktivoimat PPAR-isotyypit muodostavat kahdesta erilaisesta osasta koostuvia (heterodimeerisiä) komplekseja RXR-reseptorin kanssa.

Käytännössä: Vähäenerginen, omega-3-rasvahappoja ja polyfenoleita sisältävä ravinto tehostaa aineenvaihduntaprosessia, jossa rasvahappoja muutetaan energiaksi beeta-oksidaatiossa.

Vastaavasti runsasenerginen ravinto tehostaa anabolista aineenvaihduntaa ja lipogeneesiä, jossa verenkierrossa olevia sokereita muutetaan varastorasvoiksi. Energiatiheät ravintoaineet edistävät solujen kasvua aktivoimalla SREBP-1c ja SREBP-2 proteiineja (sterol regulatory element-binding proteins), Xu et al., 2013, ja ChREBP (carbohydrate responsive element-binding protein), Xu et al., 2013.

LXR tumareseptorit kontrolloivat SREBP-1c ja SREBP-2-proteiineja, Mitro et al., 2007; Nelissen et al., 2012. Oksysterolit ja glukoosi puolestaan aktivoivat SREBP-1c- ja SREBP-2-proteiineja, jotka osallistuvat lipidien, triglyseridien ja kolesterolin synteesiin.

MS ja inflammaatio: NF-kB ja AP-1)

Ravinnon, inflammaation ja MS-taudin yhteyden kannalta merkityksellisiä ovat kaksi transkriptiotekijää, jotka osallistuvat inflammaatioon ja autoimmuunireaktioihin. Nämä ovat tuman transkriptiotekijä-kB (NF-kB) ja aktivaattoriproteiini (AP-1; Yan and Greer, 2008).

MS-taudissa sekä NF-kB ja AP-1 aktivoituvat vaikuttaen useiden proinflammatoristen geenien ekspressioon ja proinflammatoristen molekyylien tuotantoon. Aktivoitumisen mekanismia ei täysin tunneta, mutta on todennäköistä, että aktivaatioon vaikuttaa virusten, sytokiinien ja oksidatiivisen stressin lisäksi eräät ravintoaineet, kuten tyydyttyneet rasvat, transrasvat.

Tumareseptoreiden aktivaatio

Kaikkien tumareseptoreiden (PPAR, LXR ja VDR) on aktivoiduttava erityisten ligandien avulla. Nämä ligandit voivat olla spesifejä ravintotekijöitä, mikä osoittaa, kuinka solut reagoivat ravintoaineisiin ja säätelevät energian homeostaasia. Samalla tämä mekanismi on kuin molekylaarinen avain, joka auttaa ymmärtämään kuinka ravintoaineet vaikuttavat tulehduksellisten sairauksien etenemiseen (Heneka et al., 2007; Zhang-Gandhi and Drew, 2007; Krishnan and Feldman, 2010; Cui et al., 2011; Schnegg and Robbins, 2011; Gray et al., 2012).

”Therefore, each of the three nuclear receptors—PPAR, LXR, and VDR—competes for the binding to RA-RXR and forms hetero-complexes that can inhibit NF-kB and exert a tight control over the expression of inflammatory genes, thus integrating metabolic and inflammatory signaling. It is clear that there is competition between the three receptors PPAR, LXR, and VDR-D, for the binding with RA-RXR, but this competition should have an influence only on metabolism and not on inflammation, because it is not yet known which of the three heterodimers is more effective in inhibiting NF-kB.”

Proinflammatoristen molekyylien tuotanto MS-taudin pahenemisvaiheen aikana on biosynteettinen prosessi, jota ylläpitää ja pahentaa runsasenerginen ruokavalio. Toisaalta inflammaatioon assosioituvan relapsin oireita ja kestoa voi helpottaa vähäenergisellä ruokavaliolla.

”In principle, what favors anabolism will promote the inflammatory processes, while what favors catabolism will contrast them.”

Kuvan lähde:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342365/figure/fig4-1759091414568185/

 

Tästä artikkelisarjasta on tullut sellainen iisakin kirkko, joka ei näytä koskaan valmistuvan. Aihe on älyttömän kiinnostava. Jatkan tästävielä neljännessä osassa.




Kasvisruokailijan käsikirja

Kasvisruokavalioiden suosio on lisääntynyt räjähdysmäisesti, kirjoittaa Julieanna Hever (MS, RD, CPT) PubMedissa julkaistussa pitkässä lääkäreille suunnatussa artikkelissa. Kasvisruokailijan käsikirja sisältää vastaukset yleisimpiin kasvisruokavalioiden herättämiin kysymyksiin sekä ohjeita tasapainoisen kasvisruokavalion noudattamiseen.

Tämä opas on käännetty ja kirjoitettu henkilökohtaisena valmentajana ja ravintoneuvojana työskentelevän Julieanna Heverin artikkelin pohjalta.

Miksi valita vegaaninen tai vegetaristinen ruokavalio?

Kasvisravinnon suotuisat terveysvaikutukset on kattavasti dokumentoitu1.

Kasvipainotteinen ruokavalio laskee sydän- ja verisuonitautikuolleisuutta 2, auttaa painonhallinnassa3, vähentää lääkkeiden tarvetta4–6, pienentää riskiä sairastua moniin kroonisiin tauteihin7,8, ylläpitää tervettä painonhallintaa9 ja verenpainetta10 sekä ehkäisee hyperlipidemiaa ja hyperglykemiaa11.

Kasvisruokavalio voi jopa kääntää pitkälle edenneen valtimonkovettumataudin12,13 ja tyypin 2 diabeteksen suunnan6.

Kasvispainotteinen ravinto on terveellistä, koska se sisältää runsaasti arvokkaita mikroravinteita (vitamiinit, mineraalit, kuidut, antioksidantit, fytokemikaalit ja prebiootit). Toisaalta kasvisruokailija välttyy myös monilta teollisesti tuotetun ja ultraprosessoidun eläinperäisen ravinnon sisältämiltä epäterveellisiltä ravinteilta, kuten:

  • Tyydyttyneet (”kovat”) rasvat: Tyydyttyneet rasvat ovat ryhmä rasvahappoja, joita saadaan yleensä eläinperäisestä ravinnosta. Tyydyttyneitä keskipitkäketjuisia rasvoja esiintyy myös eräissä trooppisissa öljyissä, kuten kookos- ja palmuöljyissä.Tyydyttyneiden rasvojen vaikutuksista sydänterveyteen väännetään yhä kättä, mutta vallitsevan näkemyksen mukaan ”kovat” rasvat ovat haitallisia sydämen ja verisuonten terveydelle14,15.Erityisen haitallisia ovat teolliset transrasvat, joita muodostuu valmistuksessa moniin prosessoituihin elintarvikkeisiin, kuten kekseihin.
  • Ravinnon sisältämä kolesteroli: Elimistö tuottaa tarvitsemansa kolesterolin itse. Ravinnon sisältämän kolesterolin vaikutuksista seerumin kolesterolitasoihin on väitelty vuosikymmeniä, mutta nykytiedon valossa ravinnosta saatu kolesteroli ei juurikaan vaikuta veren kolesterolitasoihin.Ravinnosta saatu kolesteroli voi kuitenkin joidenkin tutkimusten mukaan lisätä LDL-kolesterolin oksidaatiota, mikä voi lisätä sydän- ja verisuonitauteja16–18. Ravinnon sisältämä kolesteroli on lähes aina peräisin eläinperäisestä ravinnosta.
  • Antibiootit: 70-80 % USA:ssa käytetyistä antibiooteista syötetään terveille tuotantoeläimille 19,20. Tämän tarkoituksena on ennaltaehkäistä puutteellisissa oloissa elävien tuotantoeläinten saamat infektiot. Antibioottien syöttäminen tuotantoeläimille on merkittävin yksittäinen tekijä antibioottiresistenttien bakteerikantojen kehittymiselle. Vuonna 2013 antibioottiresistentit infektiot vaivasivat 2 miljoonaa amerikkalaista, joista noin 23 000 kuoli 20.
  • Insuliinin kaltainen kasvutekijä-1 (IGF-1): Insuliinin kaltainen kasvutekijä-1 on hormoni, jota luonnostaan syntyy eläimillä ja ihmisillä. Kuten nimestä voi päätellä, se on kasvuhormoni, jota käytetään myös anabolisena steroidina. IGF-1 osallistuu elimistön kasvuun ja kudosten rakentumiseen. Se siis lisää tuotantoeläimen lihasmassaa. IGF-1 stimuloi eläimen kasvuhormonien tuotantoa 21. Kasvuhormonina IGF-1 voi lisätä syöpää täysikasvuisilla.
  • Hemirauta: Rauta on välttämätön ravintoaine, jota saa runsaasti eläinperäisestä ravinnosta, josta se imeytyy tehokkaasti verenkiertoon. Kasveissa esiintyy rautaa hieman huonommin imeytyvässä muodossa (nonhemirauta), joten kasvisravintoon voidaan lisätä rautaa.Raudan saantia ja imeytymistä voi kasvisravinnossa tehostaa C-vitamiinilla22. Eläinperäisestä ravinnosta rautaa saadaan usein liikaa; tutkimusten mukaan ylimääräinen rauta on pro-oksidatiivista ja se voi aiheuttaa paksusuolen syöpää, ateroskleroosia sekä insuliiniresistenssiä23, 24, 25, 26.
  • Karsinogeenit: Prosessoituihin eläinperäisiin ruokiin kehittyy usein valmistuksessa käytettävien korkeiden lämpötilojen vuoksi syöpiä aiheuttavia ja tulehdusta edistäviä inflammatorisia ja syöpää aiheuttavia yhdisteitä, kuten karsinogeenejä27,28, 29. Lihatuotteisiin valmistuksessa muodostuvat kemialliset yhdisteet kasvattavat kroonisten sairauksien riskiä.
  • Karnitiini: Karnitiini on aminohappo ja lysiinin johdannainen. Se kuljettaa aktiivisia rasvahappoja eläinsolun sytoplasmasta mitokondrioon, jossa rasvahappo pilkotaan energiaa tuottavassa soluhengitysreaktiossa. Elimistö valmistaa karnitiinia lysiinistä ja metioniinista, mutta sitä saa myös liha- ja maitotuotteista.Liika karnitiini voi suoliston mikrobiomin vaikutuksesta muuttua trimetyyliamiini N-oksidiksi (TMAO), joka on yhdistetty tulehduksiin, ateroskleroosiin, sydänkohtauksiin ja ennenaikaiseen kuolemaan30.
  • N-glykolyylineuramiinihappo (Neu5Gc): On lihan sisältämä yhdiste, jota ei elimistöstä luonnostaan löydy. Neu5Gc aiheuttaa tulehdusreaktion, koska immuunijärjestelmä hyökkää vierasainetta vastaan. Tulehdusreaktio voi altistaa syövälle. Krooninen tulehdus kasvattaa tyypin 2 diabeteksen riskiä ja lisää valtimoiden rasvoittumista31,32.

Fytokemikaalit

Kasviruokavalio sisältää valtavasti hyödyllisiä mikroravinteita, kuten fytokemikaaleja ja kuituja, jotka edistävät tutkimusten mukaan terveyttä. Fytokemikaalit ovat kasveissa esiintyviä yhdisteitä, jotka suojelevat kasvia UV-säteilyltä, tuholaishyönteisiltä, bakteereilta, viruksilta ja sieniltä.

Kasviperäinen ravinto on fytokemikaalien ja kuitujen sekä useimpien vitamiinien ainoa lähde. Erilaisia fytokemikaaleja, kuten karotenoideja, glukosinolaatteja ja flavonoideja on tuhansia.

Fytokemikaalit:

  • Ovat antioksidantteja, jotka neutraloivat vapaita radikaaleja33
  • Anti-inflammatorisia eli tulehduksia ehkäiseviä34
  • Fytokemikaalit estävät syöpäsolujen kasvua ja lisääntymistä35
  • Parantavat immuunijärjestelmän toimintaa36
  • Suojaavat eräiltä taudeilta, kuten osteoporoosilta ja eräiltä syöviltä, sydän- ja verisuonitaudeilta (CVD) sekä viher- ja harmaakaihilta37–39
  • Optimoi veren kolesterolitasot40,41

Kasveista ja erityisesti täysjyväviljoista saatavat kuidut hyödyttävät suoliston, verenkierron ja immuunijärjestelmän toimintaa monin tavoin. Kuitujen terveysväittämät on vahvasti todennettu ja lisää tutkimusnäyttöä kuitujen terveellisyydestä saadaan koko ajan. Kuitenkin esimerkiksi USA:ssa yli 90 % aikuisista ja lapsista syö suosituksiin nähden aivan liian vähän kuituja42.

Kasvipainotteisen ravinnon syöminen parantaa terveyttä käytännössä kaikkien ravintoa ja terveyttä käsittelevien tutkimusten mukaan. Se voi ennaltaehkäistä monia sairauksia ja siten se tuottaa säästöjä myös yhteiskunnalle43.

Sairaanhoidon ammattilaisten tulisi suositella kasvisruokavaliota terveyttä ja hyvinvointia edistävänä ja lääketieteellistä hoitoa tukevana vaihtoehtona potilaille, kirjoittaa Hever.

Ohjeita kasvisruokailun aloittamiseen

Tähän artikkeliin on koottu ohjeita ja vinkkejä tasapainoisen ja ravinnepitoisen kasvisruokavalion suunnitteluun ja aloittamiseen.

Tärkeät ravintoaineet ja niiden riittävä saanti

Kasvisruokavalion sisältämien ravintoaineiden mahdolliset puutokset herättävät kysymyksiä. Saako kasvisruokavalioista kaikki elimistön tarvitsemat ravinteet, kuten proteiinit?

Vegetaristinen ja vegaaninen ruokavalio sisältävät riittävästi elimistön tarvitsemia ravintoaineita ja edistävät monin tavoin terveyttä, toteaa Academy of Nutrition and Dietetics 44. Samassa yhteydessä painotetaan, että hyvin suunniteltu ja tasapainoinen kasvisruokavalio sopii kaikille lapsista aikuisiin, odottaville ja imettäville äideille sekä urheilijoille.

Makro- ja mikroravinteiden saannin kannalta hyvin suunniteltu ja tasapainoinen ruokavalio on yleensä suunnittelematonta ruokavaliota terveellisempi ja tukee tarvittavien ravintoaineiden saantia tehokkaasti riippumatta siitä, mistä ruokavaliosta on kyse45. Ravintoaineiden tuntemus lisää terveyttä ylläpitäviä valintoja.

Tasapainoinen kasvisruokavalio

Tasapainoinen kasvisruokavalio sisältää vihanneksia, hedelmiä, täysjyväviljoja, palkokasveja, yrttejä, mausteita sekä pähkinöitä ja siemeniä.

Puolet lautasesta tulisi täyttää vihanneksilla ja hedelmillä (US Department of Agriculture, American Cancer Society, American Heart Association), eli ravintoaineilla, jotka sisältävät runsaasti kuituja, kaliumia, magnesiumia, rautaa, folaattia sekä C- ja A-vitamiineja. Nämä ovat ravintoaineita, joita amerikkalaiset (ja ehkä myös monet suomalaiset) saavat ravinnosta liian vähän (2015 Dietary Guidelines Advisory Committee46).

Lysiini

Palkokasvit ovat hyvä lysiinin lähde. Lysiini on välttämätön aminohappo, jonka saanti voi jäädä yksipuolisissa kasvisruokavalioissa liian vähäiseksi. Palkokasvit sisältävät lisäksi mm. kuituja, kalsiumia, rautaa, sinkkiä ja seleeniä. On suositeltavaa syödä pari desiä (1,5 cups) palkokasveja päivässä.

Pähkinät sisältävät elimistön tarvitsemia välttämättömiä rasvahappoja, proteiineja, kuituja, E-vitamiinia sekä terveellisiä kasvissteroleja. Ne ylläpitävät sydämen terveyttä ja vähentävät riskiä sairastua tyypin 2 diabetekseen. Pähkinät auttavat painonhallinnassa, suojaavat silmiä kaihilta ja ehkäisevät sappikivien muodostumista47-50. Suositeltava päiväannos pähkinöitä on 30-60 g.

Siemenissä on hyviä rasvahappoja sekä runsaasti tärkeitä hivenaineita ja fytokemikaaleja. Siemeniä suositellaan syötäväksi 1-2 ruokalusikallista päivässä.

Täysjyväviljat sisältävät kaikki viljan hyvät ominaisuudet. Täysjyväviljoissa on runsaasti kuituja, B- ja E-vitamiineja, hivenaineita, rautaa, magnesiumia ja seleeniä. Hiilihydraatit antavat elimistölle energiaa.

Elimistö tarvitsee välttämättömiä rasvoja (omega-3 ja omega-6). Valitsemalla rasvojen lähteeksi ravinnon, kuten pähkinät, siemenet ja avokadot teollisten rasvojen sijaan, elimistö saa vähemmän kaloritiheiden ja hitaammin imeytyvien rasvojen lisäksi kuituja sekä muita tärkeitä ravintoaineita.

Myös yrtit ja mausteet sisältävät fytokemiaaleja. Niiden avulla ravintoon saa jännittäviä makuja ja vaihtelua.

Ruokaryhmät ja suositeltava päivittänen saanti

Ruokaryhmä Suositeltu päivittäinen annos
Vihannekset (myös tärkkelyspitoiset) Vihanneksia ja kasviksia saa syödä niin paljon, kuin jaksaa. Muista syödä monenvärisiä vihanneksia
Hedelmät 2–4 annosta (1 annos = n. 1,2 dl)
Täysjyväviljat (esim. kvinoa, täysjyväriisi, kaura) 6–11 annosta (1 annos = n. 1,2 dl keitettynä tai 1 siivu täysjyväleipää)
Palkokasvit (pavut, herneet, linssit, soijaruoat) 2–3 annosta (1 annos = n. 1,2 dl keitettynä)
Lehtivihreät vihannekset (esim. lehtikaali, salaatti, pinaatti, parsakaali) Vähintään 2–3 annosta (1 annos = n. 2,4 dl raakana tai 1,2 dl kypsänä)
Pähkinät (esim. saksanpähkinät, mantelit, pistaasit) 30-60 grammaa päivässä
Siemenet (esim. chia, hamppu, pellava) 1–3 ruokalusikallista päivässä
Vitaminoidut kasvismaidot (soijamaito, mantelimaito, kauramaito) Halutessa 4-6 dl
Tuoreet yrtit ja mausteet Mieltymysten mukaan niin paljon kuin haluaa

 

Kasvispohjaiset makroravinteet

Ravinnon sisältämää energiaa mitataan usein kilokaloreina (kcal). Energia saadaan energiaravinteista ja niiden erilaisista kombinaatioista. Hiilihydraatit (4 kcal/g), proteiinit (4 kcal/g) ja rasvat (9 kcal/g) ovat energia- ja makroravinteita. Alkoholi sisältää 7 kcal/g, mutta se ei ole oikeastaan ravintoaine – tai ehkä se joillekin on.

Makroravinteiden saantisuosituksista käydään kovaa kädenvääntöä, mutta mitään yleistä konsensusta ei ole. Toisilla runsaasti rasvaa ja vähän hiilihydraatteja sisältävät ruokavaliot toimivat, toiset suosivat vähärasvaisia ja hiilihydraattipainotteisia ruokavalioita.

Kasvava näyttö viittaa siihen, että yleispätevää yksittäistä totuutta makroravinteiden suhteista ei ole. Aineenvaihdunta on mutkikas kokonaisuus, johon vaikuttavat geenien ohella hormonit, suoliston mikrobit, maksan ja haiman terveys sekä lukemattomat muut asiat.

Stanfordin yliopiston tuore tutkimus vertasi vähähiilihydraattisen ja vähärasvaisen ruokavalion terveysvaikutuksia vuoden kestäneessä seurannassa. Mitään selkeää eroa ruokavalioiden vaikutuksista painonhallintaan ei havaittu tutkittavien ryhmien väliltä. Molemmissa seuratuissa ryhmissä esiintyi valtavasti ryhmän sisäistä vaihtelua. Keskimäärin koehenkilöiden paino putosi noin 6 kiloa, mutta suurimmilla pudottajilla painoa katosi lähes kaksikymmentä kiloa. Mayo Clinic pitää vähähiilihydraattista ruokavaliota hieman tehokkaampana laihdutusruokavaliona lyhyellä tähtäimellä kuin vähärasvaista ruokavaliota.

On myös runsaasti tutkimusnäyttöä, jonka perusteella elimistön hyvinvoinnin ja painonhallinnan kannalta parhaiten toimivat vähärasvaiset/runsashiilihydraattiset ruokavaliot (perinteinen Okinawan ruokavalio), Dean Ornish-ruokavalio, Caldwell Esselstyn-ruokavalio, Neal Barnard-ruokavalio  51, 12, 13, 6.

Ja kuitenkin Välimeren ruokavaliossa52 sekä eräissä raakaruokavalioissa päivittäisestä energiasta yli 36 % voi tulla rasvoista, mutta näilläkin ruokavalioilla on runsaasti suotuisia terveysvaikutuksia53.

On siis todennäköistä, että ruokavalioiden kokonaisuus sekä tärkeiden mikroravinteiden saanti on terveyden ja painonhallinnan kannalta tärkeämpää kuin makroravinteiden saantisuhteet.

Hiilihydraatit

Hiilihydraattien optimaaliset lähteet ovat vihannekset, hedelmät, täysjyväviljat ja palkokasvit. Nämä sisältävät hiilihydraattien lisäksi runsaasti muita hyödyllisiä ravinteita ja kuituja. Saantisuositus kaikille (paitsi odottaville ja imettäville äideille) on 130 g pivässä (The Institute of Medicine54).

Prosessoidut hiilihydraatit (sokerit, valkoiset jauhot, valkoiset pastat) eivät energian lisäksi sisällä juurikaan tärkeitä ravinteita, joten niiden runsas kulutus voi johtaa aliravitsemukseen ja elimistön sairastumiseen.

Proteiinit

Proteiinien saantisuosituksissa on hieman vaihtelua. Keho tarvitsee aminohapoista muodostuvia proteiineja, jotka se pilkkoo ravinnosta aminohapoiksi ja käyttää pääasiassa rakennusaineina (lihakset, luut, veri, entsyymit, hormonit, iho jne.). Proteiineissa esiintyy 20 aminohappoa, joista 9 on ihmiselle välttämättömiä.

Riittävä proteiinien saanti riippuu painosta ja iästä. Kasvavien lasten ja ikääntyvien vanhusten proteiinien tarve on hieman nuorten ja aikuisten tarvetta suurempi54. Vaihtelua on, mutta proteiineja tulisi saada iästä riippuen 0,8 – 1,6 grammaa painokiloa kohden päivässä. Urheilijat ja lihasmassaa kasvattavat voivat tarvita enemmänkin.

Monipuolisen kasvisruokavalion tulee sisältää riittävästi proteiineja. Parhaita proteiinien kasvislähteitä ovat: palkokasvit, pähkinät, siemenet, täysjyväviljat, soija sekä pähkinä- ja siemenvoit.

Rasvat

PUFA

Rasvat ovat haastavampi kokonaisuus, koska rasvahapot esiintyvät erilaisina rakenteina, tyydyttyneinä ja tyydyttämättöminä. Ihminen tarvitse ravinnosta monityydyttämättömiä omega-3 ja omega-6 rasvahappoja (PUFA). Kaikki muut tarvittavat rasvahapot elimistö syntetisoi näistä. Rasvahapot toimivat elimistössä eri tavoin ja niillä on omat tarkoituksensa14.

ALA, EPA ja DHA

Lyhytketjuisia omega-3 rasvoja (alfalinoleenihappo – ALA) voidaan hyödyntää energiansaannissa. Elimistö muodostaa lyhytkejuisista alfalinoleenihapoista pidempiketjuisia eikosapentaeenihappoja (EPA) ja edelleen dokosaheksaeenihappoja (DHA).

Elimistö muuttaa lyhytkestoisia omega-3 rasvahappoja pidempiketjuisiksi kuitenkin melko tehottomasti ja siksi niiden saanti lisäravinteista on suositeltavaa. EPAn ja DHAn riittävän saannin voi turvata kasvispohjaisilla omega-3 ravintolisillä, jotka on valmistettu mikrolevistä.

Alfalinoleenihapppoa saa mm. pellavansiemenistä, hampunsiemenistä, chia-siemenistä sekä vihreistä lehtikasveista ja levistä, soijasta, maapähkinöistä sekä näistä valmistetuista öljyistä.

Omega-3 mielletään helposti kalaöljystä saatavaksi, mutta EPAn ja DHAn lähteenä mikrolevistä valmistetut lisäravinteet ovat oivallinen lähde, sillä mikrolevät ovat näiden rasvojen lähde myös kaloille.

Välttämättömien rasvojen lähteenä mikrolevät voivat olla kaloja terveellisempi vaihtoehto, koska ne eivät sisällä myrkyllisiä raskasmetalleja (lyijyä, kadmiumia, elohopeaa) tai muita saastejäämiä, kuten kalat. (Itämeren silakat eivät kelpaa Euroopan markkinoille ravintona, koska ne sisältävät niin paljon myrkkyjä ja raskasmetalleja. On hullua, että niitä Suomessa voidaan markkinoida terveellisenä ruokana.)55. Mikrolevät ovat myös kestävän kehityksen kannalta järkevämpi vaihtoehto omega-3 rasvojen lähteinä kuin kalat56.

MUFA

Kertatyydyttämättömät rasvahapot (MUFA) eivät ole elimistölle välttämättömiä rasvoja, mutta niillä voi olla suotuisia vaikutuksia seerumin kolesterolitasoihin.

Jos MUFAlla korvataan tyydyttyneitä rasvoja, transrasvoja tai prosessoituja hiilihydraatteja, se voi laskea huonon LDL-kolesterolin määrää ja lisätä hyvän HDL-kolesterolin määrää.

Toisaalta kertatyydyttämättömistä kasvirasvoista valmistettuja prosessoituja kasvirasvalevitteitä ja -öljyjä on myös voimakkaasti kritisoitu. Ne käyvät läpi rajuja teollisia prosesseja, joissa rasvojen luontainen rakenne muuttuu.

Kertatyydyttämättömiä rasvahappoja on mm. oliiveissa, avokadoissa, macadamia- ja hasselpähkinöissä, pekaanipähkinöissä, maapähkinöissä sekä pähkinäöljyissä ja rypsi-, rapsi-, auringonkukka- ja safloriöljyistä.

Tyydyttyneet rasvat

Tyydyttyneet rasvat eivät ole elimistölle välttämättömiä ja ne saattavat altistaa sydän- ja verisuonitaudeille. Tyydyttyneiden rasvojen terveysvaikutuksista on kalisteltu peistä 1970-luvulta alkaen. On tutkimuksia, joiden mukaan tyydyttyneet rasvat aiheuttavat sydän- ja verisuonitauteja, mutta toisaalta tuoreimpien tutkimusten mukaan tyydyttyneet rasvat eivät itsenäisesti vaikuta sydän- ja verisuoniterveyteen negatiivisesti. Mutta se ja sama, elimistö ei välttämättä niitä tarvitse.

Tyydyttyneet rasvat ovat lähes poikkeuksetta lähtöisin eläinperäisestä ravinnosta, kuten lihasta ja meijerituotteista. Eräät trooppiset kasvirasvat, kuten kookos- ja palmuöljyt ovat myös tyydyttyneitä rasvoja. Myös avokadoissa, oliiveissa, pähkinöissä ja siemenissä on jonkin verran tyydyttyneitä rasvoja.

Tyydyttyneiden rasvojen osuus päivittäisestä energiansaannista tulisi olla 5-6 % (American Heart Organization).

Transrasvat

Transrasvat ovat epäterveellisiä rasvoja, joita on mm. uppopaistetuissa ja ultraprosessoidussa ravinnossa sekä pikaruoassa. Transrasvat kehiteltiin alun alkaen terveelliseksi vaihtoehdoksi voille ja laardille, mutta niiden on sittemmin osoitettu lisäävän sydäntautien ja syöpien riskiä.

Marraskuussa 2013 FDA julkaisi tiedonannon, jonka mukaan transrasvoja ei voi pitää terveydelle turvallisina rasvoina57. Tarkoituksena on kieltää täysin teollisten transrasvojen käyttö elintarvikkeissa. Transrasvoja esiintyy luonnostaan jonkin verran liha- ja meijerituotteissa.

Jos tuotteen paketissa lukee, että se ei sisällä transrasvoja, niitä voi siinä kuitenkin olla 0,5 grammaa per annos. Hydrogenoidut (kovetetut) ja osittain kovetetut kasvirasvat, margariinit ja prosessoidut öljyt saattavat olla epäterveellisiä ja ne kannattaa jättää kaupan hyllyyn. Myös erilaiset snacksit, keksit ja monet makeiset sisältävät haitallisia transrasvoja.

Kolesteroli

Ravinnon sisältämä kolesteroli on steroli, jota esiintyy pääasiassa eläinperäisessä ravinnossa. Keho tarvitsee kolesterolia mm. hormonien, D-vitamiinin, ruoansulatusnesteiden sekä hermoratoja suojaavien myeliinikalvojen rakentamiseen, mutta elimistö valmistaa kolesterolia itse ns. kolesterolisynteesissä.

Ravinnon sisältämän kolesterolin vaikutuksista on olemassa runsaasti ristiriitaista tietoa. Kananmunat tai muut kolesterolia sisältävät elintarvikkeet eivät ilmeisesti lisää seerumin kolesterolitasoja, mutta joidenkin tutkimusten mukaan ne voivat lisätä LDL-kolesterolia. 1970-luvulta peräisin olevan lipiditeorian mukaan kolesteroli aiheuttaa sydäntauteja, mutta tästä hypoteesista ei enää vallitse tieteellistä konsensusta.

Fytosterolit eli kasvisterolit

Fytosterolit eli kasvisterolit ovat steroidialkoholeja, yhdisteitä, joita kasveissa esiintyy luonnollisesti. Kasvisteroleja käytetään yleisesti elintarviketeollisuudessa ja kosmetiikassa.

Fytosterolit muistuttavat hieman kolesterolia. Kasvisteroleja esiintyy kaikissa kasveissa.Fytosterolit vähentävät kolesterolin imeytymistä suolistossa ja parantavat lipidien profiileja. Joidenkin tutkimusten mukaan fytosterolit, soijaproteiinit, viskoosit kuidut ja mantelit voivat laskea LDL-kolesterolia yhtä tehokkaasti kuin statiinit5,58.

Kasvisteroleja mg/100g annos:

  • Appelsiinit: 24 mg
  • Ananas: 17 mg
  • Banaani: 16 mg
  • Omena: 12-13 mg
  • Parsakaali: 39 mg
  • Lehtisalaatti: 38 mg
  • Porkkana: 16 mg
  • Tomaatti: 5-7 mg
  • Vehnä: 69 mg
  • Kaurahiutaleet: 39 mg
  • Rypsiöljy: 668 mg
  • Soijaöljy: 221 mg
  • Oliiviöljy: 154-176 mf
  • Mantelit: 143 mg
  • Pavut: 76 mg

Täysipainoinen kasvisruokavalio

Täysipainoinen ruokavalio koostuu kaikista kolmesta makroravinteesta. Ruokien ajatteleminen vain hiilihydraatteina, proteiineina ja rasvoina on eräänlainen median ja muodikkaiden laihdutusruokavalioiden ylläpitämä ajatusharha, joka ei palvele aineenvaihdunnan ja elimistön hyvinvoinnin tarpeita.

Ravintoaineet ovat komplekseja, joihin sisältyy veden ja pääravintoaineiden lisäksi runsaasti erilaisia vitamiineja ja hivenaineita, antioksidantteja, kuituja jne.

Panosta laatuun!

Terveellinen ja tasapainoinen ruokavalio sisältää runsaasti hyviä hiilihydraatteja kuten täysjyväviljoja sekä kohtuullisesti hyviä rasvoja ja proteiineja. Ravinnon terveellisyyttä tavoiteltaessa painopisteen tulee olla ravintoaineiden laadussa ja niiden sisältämissä ravinteissa.

Makroravinteiden keskinäisten suhteiden arviointi ja kaloreiden laskeminen ei ole tärkeää silloin kun syö ravinnepitoista ja terveellistä kasvisruokaa.

 

Kasvisravinnon kannalta tärkeät mikroravinteet

Kasvisravinnosta saa kaikki välttämättömät ravintoaineet, paitsi B12-vitamiinia eli kobalamiinia. Suomessa lähes kaikki tarvitsevat myös D-vitamiinia lisäravinteena lyhyen kesän ja pitkän talven vuoksi59.

Kasveista saatava D2-vitamiini eli ergokalsiferoli toimii ihmisen aineenvaihdunnassa aivan samoin kuin lampaanvillasta uutettu tai kalasta ja kalaöljystä saatava D3-vitamiini (kolekalsiferoli).

Kaikkien suomalaisten tulisi syödä D-vitamiinia lisäravinteena 50-100 µg/vuorokaudessa etenkin pimeinä vuodenaikoina. Erityisen tärkeää D-vitamiinin saanti on odottaville ja imettäville äideille, sillä sikiön matalat D-vitamiinitasot lisäävät lapsen riskiä sairastua mm. MS-tautiin ja tyypin 1 diabetekseen. Rintaruokinta ja äidinmaidosta saatava D-vitamiini tehostavat lapsen kehittyvää immuunijärjestelmää.

D-vitamiinin bioaktiivinen muoto toimii elimistössä immuunijärjestelmää säätelevänä hormonin kaltaisena sekosteroidina, joka vaikuttaa yli 200 geenin toimintaan solujen kromosomin DNA:ssa sijaitsevan VDRE-sekvenssin kautta.

B12 eli kobalamiini

B12-vitamiini eli kobalamiini on välttämätön ravintoaine. Kobalamiineja tunnetaan parikymmentä, mutta aineenvaihdunnassa bioaktiivisia ovat vain metyylikobalamiini ja adeniinikobalamiini sekä ravintolisistä saatava synteettinen syanokobalamiini.

Eräät bakteerit tuottavat kobalamiinia, Suolistobakteerit ja arkit syntetisoivat B12-vitamiineja ihmisen paksusuolessa, mutta ne eivät imeydy paksusuolesta aineenvaihdunnan käyttöön. Kasveista saatavat kobalamiinit eivät ole ihmisellä bioaktiivisia.

No fungi, plants, or animals (including humans) are capable of producing vitamin B12. Only bacteria and archaea have the enzymes needed for its synthesis.

Mihin kobalamiinia tarvitaan?

Kobalamiinia tarvitaan nopeasti uusiutuvien veren puna- ja valkosolujen valmistuksessa sekä hermosolujen ja aivojen toimintaan. Aineenvaihdunnassa kobalamiini osallistuu myös homokysteiinin metylaatioon metioniiniksi (aminohappo).

B12-vitamiinia on välttämätön tekijä foolihapon (B9-vitamiini) eli folaatin valmistuksessa. Yhdessä nämä ovat tärkeitä, koska kobalamiinia ja foolihappoa tarvitaan nukleotidien ja DNA:n synteesiin solujen uusiutuessa.

Kasvisruokailijan on turvattava B12-vitamiinin saanti

B12-vitamiini on käytännössä ainut välttämätön ravintoaine, jota kasvisruokailijat eivät ravinnosta saa. Idut, tempe ja merilevät eivät sisällä biologisesti aktiivista B12-vitamiinia, kuten jotkut uskovat. Nori-levä on ainoa poikkeus, mutta kuivattaminen tuhoaa nori-levästä B12-vitamiinin. Sekaravintoa syövät saavat kobalamiinia riittävästi lihasta, kalasta, kananmunista ja meijerituotteista.

Although there are claims that fermented foods, spirulina, chlorella, certain mushrooms, and sea vegetables, among other foods, can provide B12, the vitamin is not usually biologically active. These inactive forms act as B12 analogues, attaching to B12receptors, preventing absorption of the functional version, and thereby promoting deficiency. The most reliable method of avoiding deficiency for vegans or anyone else at risk is to take a B12 supplement. Julieanna Hever

Kobalamiinia on myös vegaaneille

Apteekeista ja luontaistuotekaupoista saa vegaaneille sopivaa bakteeriperäistä B12-vitamiinivalmistetta. Lisäksi moniin kasviperäisiin ruoka-aineksiin, kuten kasvimaitoihin lisätään usein B12-vitamiinia.

B12-vitamiinin (kobalamiinin) vähimmäistarve on

  • naisilla: 2,0 µg/vrk
  • miehillä: 2,4 µg/vrk
  • lapsilla: 0,7 – 1,4 µg/vrk

Kobalamiinivarastot

Elimistön B12-varastot ovat suhteellisen suuret (2 – 3 mg). Varastot riittävät useamman vuoden tarpeisiin. Mikäli vitamiinin saanti vaikeutuu, kliinisen puutostilan kehittyminen voikin kestää useita vuosia. Keskimääräinen B12-vitamiinin saanti ravinnosta on 5-8 µg/vrk, mikä ylittää suositukset moninkertaisesti.

Kobalamiinin puutos

B12-vitamiinin puutoksen alkuoireena on kihelmöinti ja tunnottomuus ääreishermostossa, kuten sormenpäissä. Oireet voivat ilmentyä myös lihasheikkoutena ja muistin häiriöinä. Harvinaisempia oireita ovat kielitulehdukset, verisuonitukokset ja ihon pigmentin lisääntyminen.

Pitkäaikainen B12-vitamiinin puutos johtaa peruuttamattomiin hermostollisiin vaurioihin sekä perniöösiin anemiaan.

B12-vitamiinin tarve korostuu tietyissä tapauksissa:

  • laktoosi-intoleranssi
  • kasviruokavalio
  • keliakia
  • raskaus
  • imetys
  • sairaus- ja toipilasaika
  • kova fyysinen rasitus
  • yksipuolinen ravinto
  • pitkäaikainen paasto
  • dieetti ja laihdutuskuurit
  • ehkäisypillerien käyttö
  • runsas alkoholinkäyttö

D-vitamiini

Paljas iho syntetisoi D-vitamiinia auringon UVB-säteilyn avulla keskikesän kuukausina riittävästi. Vain 15-30 minuuttia keskipäivän auringonvalossa riittää syntetisoimaan paljaalla iholla 250 µg D-vitamiinin lähtöaineena toimivaa7-dehydrokolesterolia, josta kolesterolisynteesissä muodostuu kolekalsiferolia eli D3-vitamiinia,

Kalsidioli

Kolekalsiferoli hydroksyloidaan maksassa kalsidioliksi, joka on D-vitamiinin verestä mitattava varastomuoto. Aineenvaihdunta tarvitsee vuorokaudessa noin 40 µg D-vitamiinia ja loput varastoituvat rasvasoluihin, joista sitä vapautuu aineenvaihdunnan käyttöön pimeänä aikana.

D-vitamiinia tarvitaan mm. kalsiumin homeostaasin säätelyyn sekä verisuonten terveyden ja immuunijärjestelmän toiminnan turvaamiseen.

Kalsitrioli

Kalsidiolista munuaiset hydroksyloivat edelleen pieniä määriä hormonin tavoin vaikuttavaa kalsitriolia. Kalsitrioli on sekosteroidi, joka vaikuttaa monin tavoin aineenvaihdunnassa.

Kalsitrioli kuljetetaan solujen pinnalla oleviin D-vitamiinireseptoreihin ja niiden kautta edelleen soluissa olevan kromosomin D-vitamiiniin reagoivaan DNA:n osaan (Vitamin D Responding Elements). VDRE:ssä kalsitrioli vaikuttaa yli 200 geenin toimintaan.

Nykykäsityksen mukaan kalsitrioli on immunomodulatorinen eli immuunijärjestelmän toimintaa ohjaava hormoni.

D-vitamiinin saanti

D-vitamiini vaikuttaa kaikkien elävien organismien aineenvaihduntaan. Se kehittyi evoluutiossa ilmeisesti jo noin 500 miljoonaa vuotta sitten. Kaikilla selkärankaisilla on monimutkainen D-vitamiiniin liittyvä umpieritysjärjestelmä ja lähes kaikkien solujen pinnalla on D-vitamiiniin reagoiva reseptori.

Vaikka iho syntetisoi D-vitamiinia, on sen puutos valitettavan yleinen ongelma maailmanlaajuisesti. D-vitamiini edellyttää riittävästi auringon UVB-säteilyä, mutta Suomen korkeudella sen saanti rajoittuu vain keskikesän kuukausiin. Muina aikoina otsonikerros estää UVB-säteilyn, jolloin D-vitamiinia ei muodostu iholla. D-vitamiinin puutokseen voi vaikuttaa myös se, että suurin osa ihmisistä viettää päivät sisätiloissa.

Ravinnosta, kuten rasvaisista kaloista, sienistä ja kananmunankeltuaisista saa jonkin verran D-vitamiinia, mutta ei riittävästi. Siksi D-vitamiinia lisätään moniin elintarvikkeisiin, kuten maitoihin ja margariineihin.

Kasvisruokailijoiden on turvattava D-vitamiinin saanti. Kasvipohjainen ergokalsiferoli (D2) toimii aivan kuten kolekalsiferoli (D3). Lisäksi on löydetty jäkälää, josta saa D3-vitamiinia60.

Kalsium

Makromineraali kalsiumia on elimistössä enemmän kuin mitään muuta mineraalia. Noin 99% kalsiumista on varastoituneena luustoon ja hampaisiin ja 1 % on vapaana kudoksissa ja verenkierrossa.

Ihmisen elimistö tarvitsee kalsiumia luuston rakennusaineena ja lihastoiminnassa sekä veren hyytymisprosesseissa. Se säätelee mm. hermo-lihasärtyvyyttä, solukalvoissa tapahtuvia kuljetuksia, hormoni- ja välittäjäaineiden vapautumista sekä useita entsyymireaktioita.

Kasvisruokailijat saavat yleensä riittävästi kalsiumia, mutta koska kalsiumin aineenvaihdunta edellyttää muita ravinteita, kuten D-vitamiinia, K-vitamiinia ja kobalamiinia, kasvisruokailijan on huolehdittava myös niiden riittävästä saannista. Kalsiumin aineenvaihduntaan ja luuston hyvinvointiin vaikuttavat myös magnesium, fosfori ja kalium.

Kalsiumin saanti

Hyviä kalsiumin lähteitä ovat vihreät vihannekset ja salaatit, kuten brokkoli, lehtikaali ja pinaatti, seesaminsiemenet, tahini, tempe, mantelit ja mantelivoi, appelsiinit, bataatit ja pavut.

Riippumatta ravinnosta saadusta kalsiumista, tärkeää on se, kuinka paljon kalsiumista todellisuudessa imeytyy ravinnosta elimistön hyödynnettäväksi. Monet tekijät vaikuttavat kalsiumin imeytymiseen:

  • Kalsiumin kokonaissaanti vaikuttaa imeytymiseen: Vain noin 500 mg imeytyy kerralla ja imeytyminen vähenee saannin kasvaessa.
  • Ikä vaikuttaa kalsiumin imeytymiseen. Vauvoilla ja lapsilla kalsiumin imeytyminen on tehokasta, koska luusto kasvaa voimakkaasti. Ikääntyminen hidastaa imeytymistä.
  • Fylaatit,joita saadaan mm. täysjyväviljoista, pavuista, siemenistä ja pähkinöistä voivat sitoutua kalsiumiin sekä muihin mineraaleihin ja rajoittaa niiden imeytymistä.
  • Oksalaatit, joita saadaan mm. monista vihreistä lehtikasveista, kuten pinaatista, lehtijuurikkaista, persiljasta, purjosta, punajuuren lehdistä sekä marjoista, manteleista, maapähkinöistä, soijapavuista, okrasta, kvinoasta, kaakaosta, teestä ja suklaasta voivat myös heikentää kalsiumin ja muiden mineraalien imeytymistä.
  • Kalsiumia ei imeydy, jos D-vitamiinitasot ovat liian alhaiset.
  • Runsas suolan, proteiinien, kahvin ja fosforin saanti lisää kalsiumin poistumista elimistöstä62.

Rauta

Raudan puutos on yleisin ravintoaineen puutos sekä teollistuneissa että kehittyvissä maissa 63. Raudan puutos on erityisen yleistä nuorilla naisilla, odottavilla äideillä, vauvoilla ja lapsilla sekä teini-ikäisillä tytöillä. Myös runsaat kuukautiset voivat altistaa raudanpuutokselle.

Sekä sekasyöjät että kasvisravintoa syövät voivat kärsiä raudanpuutteesta.

Hemi- ja nonhemirauta

Rautaa esiintyy kahdessa muodossa: hemi- ja nonhemirautana. Lihassa ja kalassa on noin puolet hemirautaa, joka imeytyy nonhemirautaa paremmin. Kasviksissa esiintyy vain nonhemirautaa. Tästä syystä on suositeltavaa, että kasvisruokavaliossa rautaa pyritään saamaan ravinnosta hieman yleisiä suosituksia enemmän.

Tämä ei ole vaikeaa, sillä monet kasvit sisältävät runsaasti rautaa. Vihreät lehtikasvit ja palkokasvit ovat erinomaisia raudan lähteitä. Myös soijavalmisteissa, tummassa suklaassa, seesaminsiemenissä, auringonkukansiemenissä, rusinoissa, luumuissa ja cashew-pähkinöissä on runsaasti rautaa.

Raudan imeytyminen

Raudan imeytymistä ravinnosta voivat heikentää fytaatit, teen sisältämät tanniinit, kalsium, kuidut, kahvin ja kaakaon polyfenolit sekä eräät mausteet (korianteri, chili, kurkuma).

Raudan imeytymistä voi tehostaa syömällä runsaasti rautaa sisältäviä kasviksia eri aikoina kuin imeytymistä heikentäviä aineita. Raudan imeytymistä tehostaa myös, jos syö runsaasti rautaa sisältäviä kasviksia yhdessä C-vitamiinia ja orgaanisia happoja sisältävien kasvisten kanssa.

Esimerkiksi: smoothie, joka sisältää vihreitä lehtikasveja (lehtikaalia, pinaattia tms), joista saa rautaa sekä hedelmiä tai tomaatteja, jossa on C-vitamiinia.

Jodi

Jodia ei välttämättä saa riittävästi kasviravinnosta, mutta sitä on mm. levissä. On kuitenkin huomattava, että levissä jodin pitoisuudet vaihtelevat todella paljon ja joissain levissä jodin määrä on voi ylittää toksisen rajan. Nori-levä on hyvä jodin lähde, mutta hijiki tai hiziki sisältää niin paljon arseenia, että sen syömistä ei suositella.

Jodioidusta suolasta saa riittävästi jodia. Puolikas teelusikallinen jodioitua suolaa riittää kattamaan päivittäisen jodin tarpeen (150 µg). Merisuola ei sisällä jodia.

Jodi vaikuttaa kilpirauhasen toimintaan

Kilpirauhanen säätelee elimistön aineenvaihduntaa ja erittää tärkeitä kilpirauhashormoneja, jotka huolehtivat sisäelinten toiminnasta. Kilpirauhasen toiminnalle jodin saanti on tärkeää.

Kilpirauhasen vajaatoimintaa sairastavan on jodin imeytymisen varmistamiseksi hyvä välttää ns. goitrogeenisiä ruokia, koska ne heikentävät jodin imeytymistä ja voivat pahentaa olemassa olevaa kilpirauhasen vajaatoimintaa.

Goitrogeeniset ruoat

Goitrogeenejä on mm. ruusukalissa, kukkakaalissa, parsakaalissa, retiisissä, sellerissä, maississa, soijatuotteissa, maapähkinöissä, avokadoissa, appelsiineissa, viikunoissa, pinaatissa, bataatissa, mansikoissa ja vehnässä. Näiden välttely on perusteltua, jos on sairastunut kilpirauhasen vajaatoimintaan.

Goitrogeenisten ruokien välttäminen ei ole tarpeen, jos jodin saanti on riittävää ja kilpirauhanen toimii normaalisti.

Seleeni

Seleeni on voimaks antioksidantti, joka suojaa soluja. Sitä tarvitaan kilpirauhashormin säätelyyn, reproduktioon sekä DNA:n synteesiin. Kasvisravinto sisältää riittävästi seleeniä. Sitä saa runsaasti mm. täysjyväviljoista, palkokasveista, siemenistä ja pähkinöistä. Venäjällä ja Kiinassa on alueita, joissa maaperän ravinnepitoisuus on niin köyhtynyttä, että seleenin puutosta voi esiintyä. Muualla seleenin puutos on harvinaista.

Sinkki

Sinkki tukee immuunijärjestelmän toimintaa ja tehostaa haavojen parantumista. Sinkki osallistuu myös proteiinien ja DNA:n synteesiin, sikiön kehitykseen, sekä lasten kasvuun.

Kasvien sisältämien fylaattien vaikutuksesta sinkin saanti kasviksista on vähäisempää kuin eläinperäisestä ravinnosta. Sinkin puutos on vaikea havaita verikokeissa, mutta puutos voi ilmentyä haavojen paranemisen hitautena, kasvun pysähtymisenä (lapsilla), kaljuuntumisena, heikentyneenä vastustuskykynä, ruokahaluttomuutena, makuhäiriöinä sekä ihon ja silmien leesioina.

Puutteellisen imeytymisen vuoksi kasvissyöjien on syötävä sinkkiä jopa 50 % virallisia suosituksia enemmän. Hyviä lähteitä sinkin saannille ovat palkokasvit, pähkinät, siemenet, soijatuotteet ja täysjyväviljat.

 

Tärkeimpien ravintoaineiden lähteet

Ravinne Ruoka
Proteiini palkokasvit (pavut, linssit, herneet, maapähkinät), pähkinät, siemenet, soijatuotteet (tempe, tofu)
Omega-3 rasvat siemenet (chia, hamppu, pellava), vihreät lehtikasvit, mikrolevät, soijapavut ja soijavalmisteet, saksanpähkinät
Kuitu vihannekset, hedelmät (marjat, päärynät, papaijat, kuivatut hedelmät), avokado, palkokasvit (pavut, linssit, herneet), pähkinät, siemenet, täysjyväviljat
Kalsium vähän oksalaattia sisältävät vihreät lehtikasvit (brokkoli, bok choy, kaali, lehtisalaatit, voikukan lehdet, vesikrassi), kalsiumia sisältävä tofu, mantelit, mantelivoi, kalsiumia sisältävät kasvimaidot (mantelimaito, kauramaito, soijamaito) seesaminsiemenet, tahini, viikunat, melassi (blackstrap molasses)
Jodi vesikasvit ja levät (arame, dulse, nori, wakame), jodioitu suola
Rauta palkokasvit (pavut, linssit, herneet, maapähkinät), vihreät lehtikasvit, soijapavut ja soijatuotteet, kvinoa, perunat, kuivatut hedelmät, tumma suklaa, tahini, siemenet (kurpitsa, seesami, auringonkukka), levät (dulse, nori)
Sinkki palkokasvit (pavut, linssit, herneet, maapähkinät) soijatuotteet, pähkinät, siemenet, kaura
Koliini palkokasvit (pavut, linssit, herneet, maapähkinät), bnaani, brokkoli, kaura, appelsiinit, kvinoa, soijatuotteet
Folaatti vihreät lehtikasvit, mantelit, parsa, avokado, punajuuret, folaattia sisältävät viljat (leivät, pastat, riisit), appelsiinit, kvinoa, ravintohiiva
B12 –Vitamiini elintarvikkeet, joihin B12 -vitamiinia eli kobalamiinia on lisätty (ravintohiiva, kasvimaidot), kasvipohjainen B12 lisäravinne (2500 μg viikossa)
C -Vitamiini hedelmät (marjat, sitrushedelmät, verkkomeloni, kiwi-hedelmä, mango, papaya, ananans), vihreät lehtikasvit, perunat, herneet, paprikat, chilipippurit, tomaatit
D – Vitamiini sun, fortified plant milks, supplement if deficient
K -Vitamiini vihreät lehtikasvit, levät, parsa, avokado, brokkoli, ruusukaali, kukkakaali, linssit, herneet, nattō (a traditional Japanese food made from soybeans fermented with Bacillus subtilis var nattō)

 

Tutustu elintarvikkeiden ravintosisältöön ennen tuotteen ostoa!

  • Sivuuta harhaanjohtava markkinointilauseet elintarvikepakkauksissa, kuten (”erinomainen …”, ”…vapaa”, ”luonnollinen”)
  • Keskity elintarvikkeen ravintosisältöön ja unohda kaikki ylimääräiset merkinnät pakkauksessa (ne ovat markkinointia)
  • Suosi elintarvikkeita, jotka:
    • – sisältävät tuttuja ravintoaineita
    • – joiden tuoteseloste on lyhyt (ilman useita lisäaineita)
    • – eivät sisällä keinotekoisia makeutusaineita, makuvahventeita, värejä, säilöntäaineita, stabilointiaineita jne.
    • – älä osta elintarvikkeita, joihin on lisätty tuntemattomia lisäaineita

Suositeltavia sivustoja terveellisestä kasvisravinnosta kiinnostuneille

 

Lähteet:

Julieanna Haver (Ms, RD, CPT): Plant-Based Dietes: A Physician’s Guide, 6.6.2016

  1. Graffeo C. Is there evidence to support a vegetarian diet in common chronic diseases? [Internet] New York, NY: Clinical Correlations; 2013. Jun 20, [cited 2015 Mar 17]:[about 8 p]. Available from:www.clinicalcorrelations.org/?p=6186.
  2. Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013 Jul 8;173(13):1230–8. DOI:http://dx.doi.org/10.1001/jamainternmed.2013.6473. [PMC free article] [PubMed]
  3. Rosell M, Appleby P, Spencer E, Key T. Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes (Lond) 2006 Sep;30(9):1389–96. DOI:http://dx.doi.org/10.1038/sj.ijo.0803305. [PubMed]
  4. Ornish D. Statins and the soul of medicine. Am J Cardiol. 2002 Jun 1;89(11):1286–90. DOI:http://dx.doi.org/10.1016/S0002-9149(02)02327-5. [PubMed]
  5. Jenkins DJ, Kendall CW, Marchie A, et al. Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr. 2005 Feb;81(2):380–7.[PubMed]
  6. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009 May;89(5):1588S–1596S. DOI: http://dx.doi.org/10.3945/ajcn.2009.26736H. [PMC free article] [PubMed]
  7. Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab. 2012;60(4):233–40.DOI: http://dx.doi.org/10.1159/000337301. [PubMed]
  8. Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013 Spring;17(2):61–6. DOI: http://dx.doi.org/10.7812/TPP/12-085. [PMC free article] [PubMed]
  9. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009 May;32(5):791–6. DOI: http://dx.doi.org/10.2337/dc08-1886. [PMC free article] [PubMed]
  10. Appleby PN, Davey GK, Key TJ. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002 Oct;5(5):645–54. DOI:http://dx.doi.org/10.1079/PHN2002332. [PubMed]
  11. Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol. 2009 Oct 1;104(7):947–56. DOI: http://dx.doi.org/10.1016/j.amjcard.2009.05.032. [PubMed]
  12. Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998 Dec 16;280(23):2001–7. DOI: http://dx.doi.org/10.1001/jama.280.23.2001.[PubMed]
  13. Esselstyn CB, Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014 Jul;63(7):356–364b. [PubMed]
  14. Vannice G, Rasmussen H. Position of the Academy of Nutrition and Dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014 Jan;114(1):136–53. DOI:http://dx.doi.org/10.1016/j.jand.2013.11.001. Erratum in: J Acad Nutr Diet 2014 Apr;114(4):644. DOI:http://dx.doi.org/10.1016/j.jand.2014.02.014. [PubMed]
  15. Saturated Fats [Internet] Dallas, TX: American Heart Association; 2015. Jan 12, [cited 2015 Mar 17]. Available from: www.heart.org/HEARTORG/GettingHealthy/NutritionCenter/HealthyEating/Saturated-Fats_UCM_301110_Article.jsp.
  16. Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr. 1992 Jun;55(6):1060–70. [PubMed]
  17. Howell WH, McNamara DJ, Tosca MA, Smith BT, Gaines JA. Plasma lipid and lipoprotein responses to dietary fat and cholesterol: a meta-analysis. Am J Clin Nutr. 1997 Jun;65(6):1747–64. [PubMed]
  18. Spence JD, Jenkins DJ, Davignon J. Dietary cholesterol and egg yolks: not for patients at risk of vascular disease. Can J Cardiol. 2010 Nov;26(9):e336–9. [PMC free article] [PubMed]
  19. Record-high antibiotic sales for meat and poultry production [Internet] Philadelphia, PA: The Pew Charitable Trusts; 2013. Feb 6, [cited 2015 Apr 7]. Available from: www.pewtrusts.org/en/about/news-room/news/2013/02/06/recordhigh-antibiotic-sales-for-meat-and-poultry-production.
  20. Antibiotic resistance threats in the United States, 2013 [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2014. Jul 17, [cited 2015 Apr 7]. Available from:www.cdc.gov/drugresistance/threat-report-2013/.
  21. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002 Nov;11(11):1441–8. [PubMed]
  22. Iron: dietary supplement fact sheet [Internet] Bethesda, MD: National Institutes of Health, Office of Dietary Supplements; 2015. Feb 19, [cited 2015 Apr 12]. Available from:http://ods.od.nih.gov/factsheets/Iron-HealthProfessional/.
  23. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2–3):65–87. DOI: http://dx.doi.org/10.1016/j.tox.2011.03.001. [PubMed]
  24. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 2011 Feb;4(2):177–84. DOI:http://dx.doi.org/10.1158/1940-6207.CAPR-10-0113. [PubMed]
  25. Ahluwalia N, Genoux A, Ferrieres J, et al. Iron status is associated with carotid atherosclerotic plaques in middle-aged adults. J Nutr. 2010 Apr;140(4):812–6. DOI: http://dx.doi.org/10.3945/jn.109.110353. [PMC free article] [PubMed]
  26. Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003 Sep;78(3 Suppl):633S–639S. [PubMed]
  27. European Commission Scientific Committee on Food . Polycyclic aromatic hydrocarbons— occurrence in foods, dietary exposure and health effects [Internet] Brussels, Belgium: European Commission Health and Consumer Protection Directorate-General; 2002. Dec 4, [cited 2015 Apr 7]. Available from:http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf.
  28. Chemicals in meat cooked at high temperatures and cancer risk [Internet] Bethesda, MD: National Cancer Institute at the National Institutes of Health; 2010. Oct 15, [cited 2015 Apr 7]. Available from:www.cancer.gov/cancertopics/causes-prevention/risk/diet/cooked-meats-fact-sheet.
  29. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010 Jun;110(6):911–6. DOI:http://dx.doi.org/10.1016/j.jada.2010.03.018. [PMC free article] [PubMed]
  30. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576–85. DOI:http://dx.doi.org/10.1038/nm.3145. [PMC free article] [PubMed]
  31. Hedlund M, Padler-Karavani V, Varki NM, Varki A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18936–41. DOI: http://dx.doi.org/10.1073/pnas.0803943105. [PMC free article] [PubMed]
  32. Taylor RE, Gregg CJ, Padler-Karavani V, et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010 Aug 2;207(8):1637–46. DOI: http://dx.doi.org/10.1084/jem.20100575. [PMC free article] [PubMed]
  33. Food Insight Functional foods fact sheet: antioxidants [Internet] Washington DC: International Food Information Council Foundation; 2009. Oct 14, [cited 2015 Apr 17]. Available from:www.foodinsight.org/Functional_Foods_Fact_Sheet_Antioxidants.
  34. Bellik Y, Boukraâ L, Alzahrani HA, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2012 Dec 27;18(1):322–53. DOI:http://dx.doi.org/10.3390/molecules18010322. [PubMed]
  35. Phytochemicals: the cancer fighters in the foods we eat [Internet] Washington, DC: American Institute for Cancer Research; 2013. Apr 10, [cited 2015 Apr 17]. Available from: www.aicr.org/reduce-your-cancer-risk/diet/elements_phytochemicals.html.
  36. Schmitz H, Chevaux K. Defining the role of dietary phytochemicals in modulating human immune function. In: Gershwin ME, German JB, Keen CL, editors. Nutrition and immunology: principles and practice. Totowa, NJ: Humana Press Inc; 2000. pp. 107–19.
  37. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas. 2011 Dec;70(4):333–8. DOI: http://dx.doi.org/10.1016/j.maturitas.2011.09.001.[PubMed]
  38. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med. 2012 Mar;5(3):243–8. DOI: http://dx.doi.org/10.1016/S1995-7645(12)60033-9. [PubMed]
  39. Basu HN, Del Vecchio AJ, Filder F, Orthoeter FT. Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc. 2001 Jul;78(7):665–75. DOI:http://dx.doi.org/10.1007/s11746-001-0324-x.
  40. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007 Apr;85(4):1148–56. [PubMed]
  41. Howard BV, Kritchevsky D. Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation. 1997 Jun 3;95(11):2591–3. DOI:http://dx.doi.org/10.1161/01.CIR.95.11.2591. [PubMed]
  42. Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012 Jul;142(7):1390S–401S. DOI:http://dx.doi.org/10.3945/jn.112.160176. [PubMed]
  43. National Center for Chronic Disease Prevention and Health Promotion . The power of prevention: chronic disease … the public health challenge of the 21st century [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2009. [cited 2015 Mar 17]. Available from:www.cdc.gov/chronicdisease/pdf/2009-power-of-prevention.pdf.
  44. Craig WJ, Mangels AR, American Dietetic Association Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009 Jul;109(7):1266–82. DOI:http://dx.doi.org/10.1016/j.jada.2009.05.027. [PubMed]
  45. Farmer B, Larson BT, Fulgoni VL, III, Rainville AJ, Liepa GU. A vegetarian diet pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999–2004. J Am Diet Assoc. 2011 Jun;111(6):819–27. DOI: http://dx.doi.org/10.1016/j.jada.2011.03.012.[PubMed]
  46. 2015 Dietary Guidelines Advisory Committee . Scientific report of the 2015 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture [Internet] Washington, DC: USDA, Department of Health and Human Services; 2015. Feb, [cited 2015 Mar 18]. Available from: www.health.gov/dietaryguidelines/2015-scientific-report/PDFs/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf.
  47. Sabaté J. Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. Am J Clin Nutr. 1999 Sep;70(3 Suppl):500S–503S. [PubMed]
  48. O’Neil CE, Keast DR, Nicklas TA, Fulgoni VL., 3rd Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in US adults: NHANES 1999–2004. J Am Coll Nutr. 2011 Dec;30(6):502–10. DOI: http://dx.doi.org/10.1080/07315724.2011.10719996.[PubMed]
  49. Seddon JM, Cote J, Rosner B. Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol. 2003 Dec;121(12):1728–37. DOI:http://dx.doi.org/10.1001/archopht.121.12.1728. Erratum in: Arch Ophthalmol 2004 Mar;122(3):426. DOI:http://dx.doi.org/10.1001/archopht.122.3.426. [PubMed]
  50. Tsai CJ, Leitzmann MF, Hu FB, Willett WC, Giovannucci EL. Frequent nut consumption and decreased risk of cholecystectomy in women. Am J Clin Nutr. 2004 Jul;80(1):76–81. [PubMed]
  51. Wilcox DC, Wilcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009 Aug;28(Suppl):500S–516S. DOI: http://dx.doi.org/10.1080/07315724.2009.10718117. [PubMed]
  52. Allbaugh L. Crete: a case study of an underdeveloped area. Princeton, NJ: Princeton University Press; 1953.
  53. Davis B, Melina V. Becoming vegan: comprehensive edition. Summertown, TN: Book Publishing Company; 2014.
  54. Dietary reference intakes: macronutrients [Internet] Washinton, DC: Institute of Medicine of the National Academies; 2005. [cited 2015 Apr 15]. Available from:https://iom.nationalacademies.org/~/media/Files/Activity%20Files/Nutrition/DRIs/DRI_Macronutrients.pdf.
  55. Fish [Internet] Washington DC: Physicians Committee for Responsible Medicine; 2009. Jan, [cited 2016 Mar 17]. Available from: www.pcrm.org/health/reports/fish.
  56. Worm B, Barbier EB, Beaumont N, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006 Nov 3;314(5800):787–90. DOI: http://dx.doi.org/10.1126/science.1132294. [PubMed]
  57. FDA cuts trans fats in processed foods [Internet] Washington DC: US Food and Drug Administration; 2015. Jun 16, [2016 Mar 17]. Available from:www.fda.gov/ForConsumers/ConsumerUpdates/ucm372915.htm.
  58. Jenkins DJ, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003 Jul 23;290(4):502–10. DOI:http://dx.doi.org/10.1001/jama.290.4.502. [PubMed]
  59. Jacobs DR, Jr, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009 May;89(5):1543S–1548S. DOI:http://dx.doi.org/10.3945/ajcn.2009.26736B. [PMC free article] [PubMed]
  60. Watson E. Veggie vitamin D3 maker explores novel production process to secure future supplies [Internet] Montpelier, France: William Reed Business Media; 2012. Mar 13, [cited 2016 Jun 6]. Available from: www.nutraingredients-usa.com/Suppliers2/Veggie-vitamin-D3-maker-explores-novel-production-process-to-secure-future-supplies.
  61. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011 Jan;96(1):53–8. DOI: http://dx.doi.org/10.1210/jc.2010-2704. [PMC free article] [PubMed]
  62. National Institutes of Health Office of Dietary Supplements . Calcium: dietary supplement fact sheet [Internet] Washington, DC: National Institutes of Health; 2013. Nov 21, [cited 2015 Mar 26]. Available from: http://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/.
  63. Part II. Evaluating the public health significance of micronutrient malnutrition. In: Allen L, de Benoist B, Dary O, Hurrell R, editors. Guidelines on food fortification with micronutrients. Geneva, Switzerland: World Health Organization; 2006. pp. 43–56.
  64. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014 Sep;68(9):856–62. DOI: http://dx.doi.org/10.1136/jech-2013-203500. [PMC free article] [PubMed]
  65. Gallant MP. The influence of social support on chronic illness self-management: a review and directions for research. Health Educ Behav. 2003 Apr;30(2):170–95. DOI:http://dx.doi.org/10.1177/1090198102251030. [PubMed]



Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen ruokavalio kääntää perinteiset ravintosuositukset päälaelleen. Vähähiilihydraattisena ruokavaliona se ylittää aika ajoin uutiskynnyksen ja keskustelu sen ympärillä on ollut kiivasta karppausbuumin alkuajoista alkaen.

Viime kuussa joukko amerikkalaisia asiantuntijoita rankkasi ketogeenisen ruokavalion 40 dieetin vertailussa pitkäaikaisvaikutuksiltaan huonoimmaksi laihdutusruokavalioksi. Luulen, että ketogeeniseen ruokavalioon liittyy paljon epätietoisuutta. Mitä ketogeenisellä ruokavaliolla tarkoitetaan ja kuinka se toimii?

Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen dieetti on vähähiilihydraattinen ruokavalio, jossa tavoitellaan aineenvaihdunnan ketoositilaa. Kun maksaan ja lihaksiin varastoidut hiilihydraattivarastot tyhjenevät, maksa ryhtyy tuottamaan ketoaineita ketogeneesissä ja käyttämään rasvakudokseen säilöttyä energiaa tasapainottaakseen elimistön energiavajetta.

Käytännössä ketogeenisessä ruokavaliossa tavoitellaan sellaista aineenvaihdunnan tilaa, jossa elimistö oppii käyttämään tehokkaasti rasvakudokseen varastoitua läskiä energianlähteenä.

Ketogeneesin käynnistyminen edellyttää, että ravinnon hiilihydraattien saantia rajoitetaan. Ketoosi alkaa, kun elimistö ei saa riittävästi hiilihydraatteja ja elimistön hiilihydraattivarastot eli glykogeenit tyhjenevät.

Varsinkin ruokavalion alkuvaiheessa hiilihydraatteja rajoitetaan reilusti. Tämän ”induktiovaiheen” tavoitteena on uudelleenohjelmoida elimistö käyttämään energianlähteenä aluksi ketoaineita ja myöhemmin pääasiassa rasvaa. Hiilihydraattien saanti lasketaan 20-100 grammaan vuorokaudessa.

Ketogeeninen ruokavalio lääketieteessä

Lääketieteessä ketogeenista ruokavaliota käytetään erityisesti vaikean epilepsian hoitoon lapsilla. Käypä hoito -suosituksissa neuvotaan harkitsemaan ketogeenista ruokavaliota yhteistyössä ravitsemusterapeutin kanssa vaikean epilepsian hoidossa silloin, kun epilepsialääkkeet eivät käy eikä kirurgisen hoidon mahdollisuutta ole. Ketogeenista ruokavaliota on käytetty myös lasten lihavuuden hoidossa.

Vähähiilihydraattinen ruokavalio on hyväksi diabeetikoille, sydän- ja syöpäpotilaille sekä ylipainoisille. Vähän hiilihydraatteja sisältävä ravinto laihduttaa ja vähentää ylipainoisten ihmisten sydäntautien riskiä tehokkaammin kuin vähärasvainen ruokavalio, osoittaa laajameta-analyysi, jossa käytiin läpi tutkimukset vuosilta 1966-2014 (Sackner-Bernstein ym. 2015).

Induktiovaiheen ravintosisältö

Alkuvaiheessa ketogeeninen ruokavalio sisältää yleensä noin 20 – 50 grammaa hiilihydraatteja vuorokaudessa hieman henkilöstä ja ruokavalion tavoitteista riippuen. Proteiinien saanniksi suositellaan 1-2 grammaa / painokilo, mutta ikääntyneillä proteiinien saanti voi olla korkeampikin lihaksia energianlähteeksi pilkkovan katabolisen aineenvaihdunnan vuoksi. Suurin osa ravinnosta muodostuu ketogeenisessä ruokavaliossa rasvasta.

Vettä on tärkeää juoda runsaasti (3-4 l/vuorokaudessa), sillä ketogeeninen ruokavalio poistaa vettä sitovien hiilihydraattien puutoksen vuoksi runsaasti kehoon sitoutuneita nesteitä. Myös suolan saannista on tärkeä huolehtia, koska se sitoo elimistöön nestettä ja ehkäisee elimistön kuivumista hiilihydraattien puuttuessa.

Noin neljän viikon induktiojakson jälkeen hiilihydraattien määrää voi lisätä  alle 50 grammasta 50-100 grammaan vuorokaudessa esimerkiksi kasviksia lisäämällä.

  • 5-10 % Ravinnon energiamäärästä (kcal) tulisi saada hiilihydraateista
  • 30 % Ravinnon energiamäärästä (kcal) tulisi saada proteiineista
  • 60 % Ravinnon energiamäärästä (kcal) tulisi saada rasvasta

Ketogeenisen ruokavalion tiedetään aiheuttavan päänsärkyä monilla, mutta se on yleensä seurausta veden liian vähäisen juomisen aiheuttamasta nestehukasta.Silloin kannattaa juoda enemmän vettä.

Ketoosi ja ketoasidoosi eivät ole sama asia

Ketoasidoosi eli happomyrkytys on toksinen tila, jossa ketoaineiden määrä verenkierrossa voi kasvaa monikymmenkertaiseksi ketoosiin verrattuna. Lievimmillään ketoasidoosia ei välttämättä edes huomaa, mutta vakavimmillaan se on hengenvaarallinen myrkytystila. Ketoosi ja ketoasidoosi ovat siis kaksi eri asiaa.

Ketogeeninen ruokavalio ja aineenvaihdunta

Aineenvaihdunnan tasolla ketogeneesi tarkoittaa energianlähteiksi kelpaavien ketoaineiden tuottamista rasvahapoista silloin kun hiilihydraattien saanti on niukkaa tai olematonta.

Ketoaineet ovat rasvasta ja etanolista muodostuvia pienimolekyylisia yhdisteitä. Elimistössä muodostuu kolmea eri ketoainetta:

  • asetoasetaattia
  • beeta-hydroksibutyraattia
  • asetonia

Ketoaineiden tuotannon käynnistyminen

Aineenvaihdunta aloittaa ketoaineiden tuotannon, kun maksan ja lihasten sokerivarastot (glykogeenit) on kulutettu loppuun esimerkiksi intensiivisen urheilusuorituksen, vähän hiilihydraatteja sisältävän ravinnon tai paaston vaikutuksesta.

Ketoaineiden tuotannon käynnistyminen ei tarkoita, että elimistö on ketoosissa. Se on vain merkki siitä, että hiilihydraattivarastot ovat loppu ja elimistö siirtyy ”varavoimanlähteen” käyttöön. Ketoosi alkaa yleensä muutamassa päivässä ja rasvan käyttäminen solujen polttoaineena vakiintuu 3-4 viikossa.

Kun keho menee ketoosiin, aineenvaihdunta turvaa elintoimintojen tarvitseman energian saannin glukoneogeneesillä ja ketogeneesillä myös paaston ja hiilihydraatittoman ruokavalion aikana. 3-4 viikossa elimistö korvaa ketoaineet energianlähteinä rasvakudoksen ja ravinnon rasvoilla.

Näiden aineenvaihduntamekanismien ansiosta terve ihminen selviää elossa pelkällä vedellä jopa kuukauden ajan.

Ketoaineita syntyy maksassa ja munuaisissa

Yleensä ketoaineita syntyy maksan ja munuaisten solujen mitokondrioissa solujen glukoneogeneesin sivutuotteina. Kun solut tuottavat glukoosia, ne tuottavat tarvitsemansa energian hapettamalla rasvahappoja asetyylikoentsyymi-A:ksi.

Asetyylikoentsyymi-A

Wikipedia kertoo, että asetyylikoentsyymi-A, eli aktiivinen etikkahappo, on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa.  Asetyylikoentsyymi-A:ta saadaan monosakkarideista (sokereista), triglyserideistä (rasvoista) ja aminohapoista (proteiineista) erilaisten reaktiovaiheiden kautta.

Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä (sitruunahappokierto) ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Glukoosi hajoaa solulimassa tapahtuvassa glykolyysissä kahdeksi pyruvaatiksi, joista molemmista saadaan edelleen oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos happea ja mitokondrioita ei ole riittävästi, pyruvaatti pelkistyy maitohapon anioniksi laktaatiksi.

Rasvahapot hajoavat hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

Wikipedia

Asetyylikoentsyymi-A, joka ei hapetu normaalisti sitruunahappokierrossa glukoneogeneesin ollessa käynnissä, muuntuu ketogeneesissä asetoasetaatiksi ja edelleen betahydroksibutyraatiksi.

Ketoaineet kulkeutuvat verenkierron mukana maksasta ja munuaisista muualle elimistöön. Aivojen gliasolut käyttävät asetoasetaattia ja betahydroksibutyraattia lipidien rakennusaineena. Sydän, lihakset ja aivot voivat tarvittaessa käyttää ketoaineita solujen energianlähteenä.

Ketogeneesi on elintoimintojen varavoimanlähde

Glukoneogeneesi ja ketogeneesi toimivat itsenäisesti energiantuotannon taustaprosesseina ja ylläpitävät solujen energiansaantia silloin, kun syömisestä on kulunut paljon aikaa. Glukoneogeneesi käynnistyy haiman erittämän glukagonin aktivoimana maksassa ja munuaisissa ja se johtaa edelleen ketogeneesin käynnistymiseen maksan ja munuaisten mitokondrioissa.

Ilman näitä aineenvaihdunnan prosesseja evoluutio ja aivojen kehitys olisivat pysähtyneet esihistorian aamuhämärissä, eikä nykyihmistä olisi koskaan kehittynyt.

In essence, a ketogenic diet mimics starvation, allowing the body to go into a metabolic state called ketosis (key-tow-sis). Normally, human bodies are sugar-driven machines: ingested carbohydrates are broken down into glucose, which is mainly transported and used as energy or stored as glycogen in liver and muscle tissue. When deprived of dietary carbohydrates (usually below 50g/day), the liver becomes the sole provider of glucose to feed your hungry organs – especially the brain, a particularly greedy entity accounting for ~20% of total energy expenditure. The brain cannot DIRECTLY use fat for energy. Once liver glycogen is depleted, without a backup energy source, humanity would’ve long disappeared in the eons of evolution. . Scientific American

Ketogeneesi on osa kehon normaalia aineenvaihduntaa. Nykyisin ravinto on sen verran energiatiheää ja hiilihydraattipainotteista, että elimistö turvautuu ketogeneesiin vain satunnaisesti, vaikka se esi-isillämme oli luontainen osa elimistön energiantuotantoa. Viimeisten vuosisatojen aikana ravintotottumukset ovat muuttuneet valtavasti, mutta aineenvaihdunnan mekanismit muuttuvat hitaammin.

Aineenvaihduntamme on lapsesta lähtien opetettu saamaan energia hiilihydraateista, mutta se ei tarkoita sitä, etteikö energiansaantiin olisi muita tapoja. Aineenvaihdunta voidaan uudelleenohjelmoida ”sokeripolttoisesta” tehtaasta ”rasvapolttoiseksi” ravintoon liittyvillä valinnoilla.

Aineenvaihdunta biohakkeroimalla rasvaa polttavaksi

Ketoosi on ketogeneettisessä ruokavaliossa tavoiteltava aineenvaihdunnan tila. Siihen päästään ”biohakkeroimalla” aineenvaihdunnan toimintaa.

Käytännössä biohakkeroinnilla tarkoitetaan ravinnosta saatavien hiilihydraattien rajoittamista 20-50 grammaan vuorokaudessa. Aineenvaihdunta opetetaan käyttämään ketoaineita ja rasvasolujen sisältämiä energiavarastoja energianlähteenä, koska sille ei tarjota helppoa energianlähdettä hiilihydraattien muodossa.

Kuvan lähde: Wikipedia – Glycogen

Glykogeenit

Oheinen kuva esittää kaksiulotteisen mallin glykogeenistä, joka on jopa 30 000 glukoosimolekyylistä muodostuva monihaarainen ja pitkäketjuinen polysakkaridi. Osa verensokerista varastoidaan tällaisina polysakkarideina maksa- ja lihassoluihin.

Kun verensokeri laskee, haima erittää glukagonia, joka purkaa glykogeenejä maksasta verenkiertoon. Se kohottaa verensokeria ja antaa lihas- ja aivosoluille nopeaa energiaa glukoosin muodossa. Lihassolujen varastoimat glykogeenit eivät vapaudu verenkiertoon, vaan lihas käyttää ne nopeana energianlähteenä itse.

Glykogeneesi

Glykogeenit muodostuvat insuliinin aktivoimana glykogeneesissä maksa- ja lihassoluissa. Maksasolut ylläpitävät veren glukoosipitoisuutta glykogeenivarastojensa avulla syömisten välissä.

Aivot käyttävät valtavasti energiaa

Glykogeenivarastot ovat kooltaan varsin pienet ja elimistö kuluttaa varastosokerit nopeasti loppuun.  Pelkästään aivot kuluttavat vuorokaudessa noin 100 g glukoosia, joka saadaan syödyistä hiilihydraateista sekä glukagonin avulla puretuista maksan varastosokereista.

Glukoneogeneesin sivutuotteena syntyy ketoaineita

Kun glykogeenit tyhjenevät, maksa ryhtyy korvaamaan aivojen tarvitsemaa glukoosia ketoaineilla. Glykogeenejä purkava glukagoni aktivoi glukoosia tuottavan glukoneogeneesin maksassa ja munuaisten kuoriosissa.

Glukoosimolekyylin syntetisoiminen kuluttaa enemmän energiaa kuin glukoosimolekyyli tuottaa

Glukoneogeneesi hyödyntää mm. vapaita aminohappoja ja rasvoja sekä glykolyysissä syntyneitä maitohappoja, sitruunahappokierron sivutuotteita sekä ketoaineita glukoosin syntetisoimisessa.

Yhden glukoosimolekyylin tuottaminen vaatii 2 pyruvaattimolekyyliä, 4 ATP:tä, 2 GTP:tä, 2 NADH-molekyyliä ja neljä vesimolekyyliä. Se vaatii siten enemmän energiaa kuin glykolyysi tuottaa yhdesta glukoosimolekyylistä.

Glykogeenit purkautuvat glukagonin vaikutuksesta glykogenolyysissa

Haiman alfasolujen erittämä glukagoni aktivoi glykogeenien purkamisen eli glykogenolyysin maksassa ja lihassoluissa, jolloin glykogeeni purkautuu glukoosiksi (maksasta) ja glukoosi-1-fosfaatiksi (lihaksissa).

Glukagoni käynnistää glykogenolyysin yhteydessä glukoneogeneesin. Haiman beetasolujen erittämä insuliini puolestaan pysäyttää glukongeogeneesin, kun verensokeri nousee ja aineenvaihdunnan energianlähde muuttuu glukoosiksi.

Induktio

Scientific American kirjoittaa, että aivot toimivat hyvin myös ketoaineilla. Aivojen toiminta on turvattu, jos ~70 % aivojen energiatarpeesta saadaan ketoaineista. Prosessi, jossa aivot oppivat käyttämään ketoaineita energianlähteenä 0 – 70 % vie kolmisen viikkoa. Tämä on eräänlainen aineenvaihdunnan induktiovaihe.

Induktiovaiheen aikana aivoja lukuun ottamatta kaikki kehon kudokset vähentävät ketoaineiden käyttöä energianlähteenä. 3-4 viikon aikana solut sopeutuvat käyttämään energianlähteenä rasvasoluista vapautuvia vapaita rasvahappoja.

Induktion jälkeen elimistö tuottaa hyvin vähän ketoaineita (vähemmän kuin 280 kcal / päivä), mutta riittävästi aivosolujen energiantarpeen turvaamiseksi.

Ketogeenisessä ruokavaliossa painosta putoaa ennen induktiovaiheen loppua lähinnä nesteitä, joten nestetasapainon kanssa tulee olla tarkkana ja juoda reilusti vettä. Rasvan käyttö energianlähteenä tehostuu hitaasti koko ajan ja on tehokkaimmillaan vasta kolmisen viikkoa ruokavalion aloittamisen jälkeen. Sen verran kestää, että solut sopeutuvat uuteen energianlähteeseen.

Seuraavalla sivulla käsitellään tarkemmin aineenvaihduntaa

 

Aineenvaihdunta

Aineenvaihduntaan vaikuttaa useita tekijöitä: ravinnon määrä ja laatu, makroravinteet, ravinnon sisältämät vitamiinit ja mineraalit, stressi, nestetasapaino, maksan ja haiman terveys, geenit, hormonit, insuliinisensitiivisyys, liikunta, ja uni.

Oheinen Jonathan Bailorin luento sisältää mielenkiintoisia huomioita aineenvaihdunnan toiminnasta, lihomisesta ja laihtumisesta

Aineenvaihdunta ylläpitää elämää sitkeästi. Se on joustava ja pystyy hyödyntämään tehokkaasti erilaisia ravinnonlähteitä elintoimintojen ylläpidossa.

Perusaineenvaihdunta kuluttaa valtavasti energiaa

Sängyssä makaaminen kuluttaa 80 kg painavalla, 180 cm pitkällä 30 vuotiaalla miehellä noin 1780 kcal vuorokaudessa. Aivojen ja välttämättömien elintoimintojen ylläpito edellyttävät paljon energiaa.

Keskimäärin aikuinen tarvitsee ravinnosta 2000-2500 kcal vuorokaudessa. Liikunta lisää energiantarvetta, mutta ikä, paino ja kehon rakenne vaikuttavat lepokulutukseen.

Tärkeimpiä elintoimintoja ylläpitää perusaineenvaihdunta. Siihen kuuluvat keuhkojen ja sydämen toiminta, kemiallisten yhdisteiden eristys ja synteesit, sekä ionien siirto solukalvojen läpi. Vuorokautisesta kokonaisenergiankulutuksesta 65–75 prosenttia on perusaineenvaihduntaa, miehillä keskimäärin 4,2 kJ/min ja naisilla 3,8 kJ/min. Perusaineenvaihdunta koostuu aivojen (21 %), lihasten (22 %), maksan (18 %), munuaisten (6 %), sydämen (12 %) ja muiden kudosten (21 %) energiankulutuksesta. Sen suuruuteen vaikuttaa sukupuolen lisäksi ikä, kehon tyyppi ja koostumus, paasto, lämpötila ja laihduttaminen. – Wikipedia

Anabolinen ja katabolinen aineenvaihdunta

Solun aineenvaihdunta voidaan jakaa kahteen toimintamekanismiin: anaboliseen ja kataboliseen aineenvaihduntaan.

Anaboliset reaktiot ovat biosynteettisiä eli kokoavia aineenvaihduntatapahtumia, joissa yksinkertaisemmista molekyyleistä rakennetaan monimutkaisempia molekyylejä.

Katabolisissa reaktioissa monimutkaisempia molekyylirakenteita pilkotaan yksinkertaisemmiksi molekyyleiksi.

Energian tuotanto

ADP + Pi      –                ATP
NAD+              –                 NADH +H+

 

  • Energianlähteenä voi hyödyntää hiilihydraatteja, rasvoja ja proteiineja
  • Solut saavat energiaa orgaanisista molekyyleistä hapettamalla niitä esimerkiksi:
    – Glukoosin hapetus tapahtuu sytoplasman glykolyysissä
    – Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Kuvan lähde: Nina Peitsaro

Anabolinen ja katabolinen aineenvaihdunta vuorottelevat elimistössä päivittäisten rutiinien lisäksi myös iän ja elämäntilanteen mukaan. Fyysinen harjoittelu ja sairaudesta toipuminen kallistavat aineenvaihduntaa anaboliseksi, jolloin aineenvaihdeunta rakentaa lihaskudosta tai korjaa sairauden aiheuttamia vaurioita. Myös kasvavien lasten aineenvaihdunta on anabolinen, mutta vanhemmilla ihmisillä ja hyvin vähän liikkuvilla aineenvaihdunta on yleensä pitkäkestoisessa katabolisessa tilassa.

Anabolisen aineenvaihdunnan käynnistyminen

Anabolinen aineenvaihdunta käynnistyy yleensä ruokailun jälkeen. Ravinnosta saaduista perusmolekyyleistä muodostetaan elimistössä suurempia molekyylejä, kuten lihasten tarvitsemia proteiineja.

Kun ruokailusta kuluu enemmän aikaa ja ravintoaineiden saatavuus ruoansulatuskanavan kautta vähenee, aineenvaihdunnan painopiste siirtyy katabolisten reaktioiden puolelle.

Anaboliset reaktiot kuluttavat energiaa

Anaboliset reaktiot kuluttavat energiaa ATP:n tai NADH:n (ja NADPH:n) muodossa.
ATP à ADP + Pi
NADH + H+ — NAD+

Katabolinen aineenvaihdunta tuottaa ravintoaineista soluhengityksen avulla energiaa. Anabolinen aineenvaihdunta rakentaa ja uusii elimistön rakenteita mm. proteiinisynteesissä.

Kehon energiantuotanto: Kuinka hiilihydraatit tuottavat energiaa

Hiilihydraatit ovat energiansaannin kannalta tehokkaimpia ravintoaineita. Myös rasvat ja proteiinit voidaan hyödyntää energiaksi.

Rasvat ovat hiilihydraatteja edullisempi tapa varastoida energiaa, sillä niissä on yli kaksinkertainen määrä energiaa painoyksikköä kohden.

Hiilihydraateista pilkotut sokerit imeytyvät verenkiertoon ohutsuolessa. Glukoosi kohottaa verensokeria, johon haima reagoi erittämällä vereen insuliinia. Insuliini kiinnittyy solun pinnassa olevaan insuliinireseptoriin, jolloin solussa olevat sokerikanavat (kalvorakkulat) siirtyvät solukelmulle ja päästävät glukoosimolekyylin solun sisälle.

Solulimassa glukoosi osallistuu glykolyysiin eli reaktioiden sarjaan, jossa glukoosimolekyyli hajotetaan pyruvaatiksi. Glukoosi on solujen energiantuotannon yleisin lähtöaine. Fruktoosin aineenvaihdunta tapahtuu maksassa, jossa se muutetaan lipogeneesissä triglyseridiksi eli rasvaksi.

Glukoosi, joka ei ravitse solujen energiantarvetta, varastoituu maksa- ja lihassoluihin glykogeeneinä, joista energiavarasto on nopeasti purettavissa. Glukoosi, joka ei ravitse solujen energiantarvetta tai mahdu glykogeenivarastoihin, siirtyy insuliinin avaamien sokerikanavien avulla rasvakudoksen rasvasoluihin, jossa se muutetaan lipogeneesissa rasvaksi.

Lipogeneesi

Insuliini säätelee lipogeneesiä, jossa veren ylimääräiset glukoosimolekyylit muutetaan triglyserideiksi eli rasvoiksi maksassa, rasvakudoksessa ja toimivan maitorauhasen soluissa. Lipogeneesissä yhdestä glukoosimolekyylistä muodostuu ensin kaksi glyserolimolekyyliä, joihin liittyy glukoosin auenneesta renkaasta muodostunut, pelkistynyt rasvahappoketju.

  • Keho käyttää arviolta 45 % ravinnosta saatavista hiilihydraateista energiantuotantoon ja 55 % hiilihydraateista muutetaan lipogeneesissä rasvahapoiksi.

Rasva-aineenvaihdunta on hyvin dynaaminen. Osa vapaista rasvahapoista hyödynnetään glukoneogeneesissä ja osa varastoituu rasvasoluihin. Rasvasoluista vapautuu kuitenkin jatkuvasti rasvasoluja verenkiertoon. Yksittäisen lipidimolekyylin elinaika on arviolta 2-10 vuorokautta.

Solulimassa tapahtuva reaktioketju – glykolyysi tuottaa energiaa

Glykolyysi tuottaa energiaa ATP-molekyylien muodossa. Soluissa, joilla on käytettävissään happea, energiaa tuottava reaktio etenee glykolyysistä mitokondrioiden soluhengitykseen.

Haima ja haiman tehtävät aineenvaihdunnassa

Haima osallistuu ravintoaineiden aineenvaihduntaan erittämiensä ruoansulatusentsyymien sekä insuliinin ja glukagonin avulla.

Haima muodostuu kahdesta toiminnallisesti erilaisesta solukkotyypistä: avorauhas- ja umpirauhasosasta. Avorauhasosa tuottaa ruoansulatusentsyymejä, jotka pilkkovat kaikkia ravintoaineita (sokereita, rasvoja, proteiineja ja nukleiinihappoja).

Haiman erittämät ruoansulatusentsyymit ja niiden tehtävät

  • Amylaasi: pilkkoo sokereita
  • Peptidaasit: pilkkovat proteiineja
  • Lipaasit: pilkkovat rasvahappoja
  • Nukleaasit: pilkkovat nukleiinihappoja (DNA ja RNA)

Insuliini ja glukagoni säätelevät sokeriaineenvaihduntaa

Haiman umpirauhasosa tuottaa elintärkeitä hormoneja: insuliinia ja glukagonia. Useimmista kehon umpirauhasista poiketen glukagonin ja insuliinin eritystä säätelee veressä olevan sokerin määrä eikä aivojen hypotalamus.

Jos veren sokeripitoisuus on matala, haiman Alfa-solut erittävät glukagonia, joka nostaa verensokeria purkamalla maksaan ja lihaksiin varastoituneita glykogeenejä.

Jos veren sokeripitoisuus on korkea, haiman Beta-solut erittävät insuliinia, joka kiinnittyessään solun insuliinireseptoriin, päästää sokerimolekyylin solun sisälle, jossa se osallistuu energiantuotantoon glykolyysissa ja mahdollisesti edelleen mitokondrion soluhengityksessä.

Glukagoni ja glykogeenit

Keho varastoi osan ravinnosta saaduista sokereista maksa- ja lihassoluihin glykogeeneinä, joista energia on nopeasti purettavissa energiaa tuottavan glykolyysin ja soluhengityksen tarvitsemiksi lyhytketjuisiksi sokereiksi.

Kun haiman erittämä glukagoni kiinnittyy maksa- tai lihassolun pinnalla olevaan reseptoriinsa, sokerin pitkäketjuiset varastomolekyylit eli glykogeenit alkavat hajota solussa lyhytketjuisemmiksi sokereiksi. Glykogeeneistä puretut sokerit kulkeutuvat maksasta verenkiertoon, jolloin verensokeri nousee.

Glukagonin purkaa glykogeenejä ja käynnistää glukoneogeneesin

Verensokerin lasku lisää glukagonin eritystä haimasta. Glukagoni purkaa maksa- ja lihassolujen sokerivarastoja, jolloin verensokeri jälleen nousee.

Glukagoni käynnistää myös maksassa ja munuaisten kuorikerroksessa tapahtuvan glukoneogeneesin, joka syntetisoi glukoosia muista yhdisteistä. Glukoneogeneesin yhteydessä maksassa ja munuaisissa alkaa syntyä ketoaineita.

Insuliinin merkitys glukoosin aineenvaihdunnalle

Kaikkien solujen pinnalla on insuliinireseptoreita. Insuliinin kiinnittyminen solureseptoriinsa laukaisee solun sisällä toisiolähettijärjestelmän. Tämä saa aikaan sen, että solun sisällä olevat transmembraanisia (kalvon läpi ulottuvia) sokerikanavaproteiineja kuljettavat kalvorakkulat kiinnittyvät solukelmuun.

Insuliini saa siis sokerikanavat siirtymään solun ulkopinnalle jolloin glukoosi pääsee siirtymään verestä sokerikanavan läpi solun sisälle.

Mutta on hyvä muistaa, että insuliini myös varastoi ylimääräiset glukoosimolekyylit rasvakudoksen, maksan ja maitorauhasten rasvasoluihin eli adiposyytteihin, joissa sokerit muutetaan lipogeneesissä rasvahapoiksi. Näin veren runsas insuliini- ja glukoosipitoisuus aiheuttavat lihomista.

Glykolyysi

Solu saa energiantuotantoon tarvitsemansa glukoosin joko solun ulkopuolelta tai lihassolun sisällä olevasta glykogeenistä.

Glykolyysi on monesta reaktiovaiheesta muodostuva reaktioketju. Solulimassa tapahtuvassa glykolyysissä glukoosi hajotetaan palorypälehapon anionimuodoksi eli pyruvaatiksi. Anaerobinen energiansaanti perustuu glykolyysiin, joka tuottaa kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä.

Jos solulla on happea käytettävissään, energiantuotanto jatkuu soluhengityksessä mitokondrioissa. Pyruvaateista saadaan mitokondrioissa eräiden entsyymien avulla tapahtuvassa oksidatiivisessa dekarboksylaatiossa asetyylikoentsyymi-A:ta.

Jos solulta puuttuu mitokondriot (kuten veren punasoluilta) tai happea ei ole käytettävissä, pyruvaatti pelkistyy maitohapoksi.

  • Anaerobinen glykolyysi päättyy pyruvaatin pelkistyessä maitohapoksi
  • Aerobinen glykolyysi jatkaa energiantuotantoa ja tuottaa pyruvaatista edelleen asetyylikoentsyymi-A:ta.

Sokerikanavaproteiinit kiertävät jatkuvasti soluliman ja solukelmun välillä. Kun insuliinipitoisuus laskee veressä, solu imee sokerikanavia sisältävät solukelmun osat sisäänsä.

Ihminen voi kuluttaa vuorokauden aikana painonsa verran ATP-molekyylejä.

ATP eli Adenosiinitrifosfaatti on runsasenerginen mitokondrioiden soluhengityksessä, tai glykolyysin solulimassa tuottama yhdiste. ATP:tä käytetään energian siirtoon ja lyhytaikaiseen varastointiin lihaksissa.

Kun elimistön solut tarvitsevat ATP-molekyyleihin sitoutunutta energiaa, ATPaasi-entsyymi pilkkoo runsasenergisiä sidoksia fosfaattiryhmien väliltä.

ATP:ssä on emäsoasa (adeniini), sokeriosa (riboosi) ja 3 fosfaattiosaa. Kun ATP:stä irtoaa yksi fosfaattiosa, siitä tulee adenosiinidifosfaattia eli ADP:tä ja kun ADP:stä irtoaa fosfaattiosa, syntyy adenosiinimonofosfaatti eli AMP.

Ihminen kuluttaa vuorokauden aikana arviolta painonsa verran ATP-molekyylejä. Yksi ATP-molekyyli kierrätetään jopa 1000-1500 kertaa vuorokauden aikana.

ATP on lihassupistuksen ainoa energianlähde. Sitä on hieman varastoituneena lihaksissa, mutta nämä varastot hyödynnetään nopeasti.

Energian varastomolekyyli: ADP+ADP à ATP+AMP

Kuinka ketogeneesin aineenvaihdunta toimii

Paasto, intensiivinen liikunta tai vähähiilihydraattinen ruokavalio saa aineenvaihdunnan tuottamaan ketoaineita energianlähteeksi. Muutaman päivän vähähiilihydraattinen jakso siirtää aineenvaihdunnan ketoosiin, jolloin ketoaineiden käyttö energianlähteenä tehostuu. Ketoaineiden tuotanto käynnistyy aina, kun veren insuliinipitoisuus laskee.

Haima erittää insuliinia verensokerin eli glukoosipitoisuuden kohotessa. Kun veressä ei ole glukoosia energianlähteenä, aineenvaihdunta ryhtyy hyödyntämään ketoaineita energianlähteenä ja ”polttamaan” rasvoja.

Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Lähteet:

Scientific American
KetoSchool
CNN
Wikipedia – Ketoasidoosi
Wikipedia – Glykolyysi
Wikipedia – Ketoaine
Wikipedia – Ketogeneesi
Wikipedia – Glukoneogeneesi
Solunetti – Solun aineenvaihdunta
Solun aineenvaihdunta – Nina Peitsaro
Safkatutka
Laihdutus.info




Sokeriteollisuuden tutkimus syövän ja sokerin yhteydestä paljastui

Jacqueline Howard raportoi 21.11.2017 CNN:llä sokeriteollisuuden rahoittamasta vuosikymmeniä salassa pysyneestä tutkimusprojektista. Löytyneestä tutkimuksesta selvisi, että sokeriteollisuus oli tietoinen sokerin terveyshaitoista jo 1960-luvulla. Myös Helsingin Sanomien Niko Kettunen kirjoitti aiheesta 23.11 julkaistussa uutisessa.

Ravintoa käsitteleviä tutkimuksia pitäisi aina tarkastella kriittisesti. Usein tutkimustulokset esitetään tutkimuksen rahoittajan kannalta suotuisina. Howardin artikkeli kuvaa hyvin sitä, kuinka erilaisten eturyhmien, kuten tässä tapauksessa sokeriteollisuuden, toteuttamia tutkimuksia on manipuloitu ja vääristelty oman eturyhmän taloudellisten etujen turvaamiseksi.

Eläinrasvat vastaan sokerit

Sokerin ja eläinrasvojen välillä käydään yhä 1970-luvulla alkanutta ”rasvasotaa”, jossa vastakkain ovat Keysin ja Yudkinin tieteelliset näkemykset eri ravintoaineiden vaikutuksista terveyteen.

Se, että sokerin terveyshaittoja vähäteltiin ja rasvojen haittoja liioiteltiin vuosikymmeniä, on suurella todennäköisyydellä vaikuttanut nykyisiin lihavuus- ja diabetesepidemioihin, kertoo Sanjay Basu Stanfordin yliopistosta. Lihavuus ja diabetes yleistyivät vähärasvaisten ja rasvattomien tuotteiden kulutuksen seurauksena.

Lyhyesti: selittävänä syynä on se, että vähärasvaisissa ja rasvattomissa elintarvikkeissa rasvat on korvattu sokereilla, mikä kasvattaa huomaamattomasti sokereiden saantia. Elimistössä ylimääräinen sokeri muutetaan lipogeneesissä rasvaksi, joita korkean verensokerin houkuttama insuliini varastoi rasvasoluihin.

Vanha tutkimus avaa sokeriteollisuuden tarkoin varjeltuja salaisuuksia

Sokeriteollisuus rahoitti1960-luvulla tutkimuksen, joka viittasi siihen, että runsaasti sokeria sisältävä ruokavalio lisää koe-eläinten kolesterolitasoja ja syöpiä. Tämä tutkimus jätettiin julkaisematta ja se unohdettiin vuosikymmeniksi, kirjoitti PLOS Biology.

Californian yliopiston lääketieteen professori Stanton Glantz, yksi PLOS Biologyn julkaiseman artikkelin kirjoittajista, ihmettelee tutkimuksen kohtaloa:

All we know is that the plug got pulled and nothing got published. Whether the investigator didn’t bother to try or whether he tried and failed, we don’t know. Or whether there was some kind of clause in his agreement with the sugar people that precluded him from publishing, we don’t know.”

Sokeriteollisuuden hautaama ”nollatutkimus” tuo esille kiinnostavia todisteita sakkaroosin terveyshaitoista. Tutkimuksen julkaisematta jättäminen viittaa siihen, että sokeriteollisuuden rahoittama tutkimusryhmä (Sugar Research Foundation) saattoi tarkoitushakuisesti manipuloida tieteellisiä tutkimuksia sokeriteollisuuden taloudellisten etujen ja maineen turvaamiseksi.

Sokeriteollisuuden rahoittamien tutkimusten tutkimusetiikka – tai sen puute on herättänyt epäilyjä aiemminkin. Vaikuttaa siltä, että Sugar Associationin alaisuudessa toimivat tutkijat noudattivat sokerin terveysvaikutuksia käsittelevissä tutkimuksissaan moraalisesti yhtä kyseenalaisia toimintatapoja kuin tupakkateollisuus omissa tupakoinnin haittoja käsittelevissä tutkimuksissaan.

Tutkijat, jotka löysivät tämän arkistojen kätköihin pölyttymään jääneen tutkimuksen, julkaisivat viime vuonna analyysin sokeriteollisuuden historiaan liittyvistä asiakirjoista ja tutkimuksista.

JAMA Internal Medicine-tiedelehdessä julkaistu analyysi todisti, että Sugar Research Foundation rahoitti tutkimusohjelmaa, jonka tehtävänä oli peitellä runsaasti sokeria sisältävän ruokavalion terveyshaittoja, ja kohdistaa huomio sokereiden terveyshaitoista rasvojen ja erityisesti eläinrasvojen terveyshaittoihin.

Strategia onnistui hyvin, sillä vasta viime vuosina on saatu merkittävää tutkimusnäyttöä, joka kyseenalaistaa ja korjaa eräitä eläinrasvojen ja sokereiden käyttöön liitettyjä tarkoituksella vääristeltyjä väitteitä ja tutkimustuloksia.

The kind of science manipulation that the tobacco industry engaged in is exactly the same kind of behavior that we’ve documented in these papers from the sugar industry,” totesi Glantz, joka on myös tutkinut tupakkateollisuutta.

Kuinka arkistoihin haudattu tutkimus löydettiin?

Sokeriteollisuuden kattojärjestö Sugar Association, esitti vastineensa uutisesta kritisoimalla viime vuonna JAMA Internal Medicinen julkaisemaa analyysia sekä PLOS Biologyn julkaisemaa artikkelia todeten, että kyseiset julkaisut ovat vain sokerivastaisen ryhmän rahoittamia näkökulmia, spekulaatioita ja oletuksia tapahtumista, jotka tapahtuivat vuosikymmeniä sitten, ja joista kirjoittavat sokeriteollisuuteen kriittisesti suhtautuvien tutkijoiden ryhmä.

Sugar Association painottaa, että PLOS Biologyn käsittelemä tutkimus jätettiin julkaisematta, koska se myöhästyi ja ylitti tutkimukselle asetetun budjetin.

We don’t know what would have happened had this study come out differently and showed no effect of sugar,” Glantz sanoi. ”I would bet that it would have been published, and they would be thumping the drums about it.

Cristin E. Kearns (assistant professor at the UCSF School of Dentistry), yksi PLOS Biologyn julkaiseman artikkelin kirjoittajista, kertoi, että hän löysi arkistoissa pölyttyvän kadonneen tutkimuksen analysoidessaan Sugar Research Foundationin johtajien ja tutkijoiden välistä kirjeenvaihtoa vuosilta 1959-1971. Tutkimus mainittiin myös eräässä Sugar Research Foundationin julkaisemassa kirjassa.

Tämä kirja listasi ”kadonneen tutkimuksen” ohella Sugar Research Foundationin kaikki tutkimusprojektit vuosilta 1943-1972. Merkillepantavaa oli Christin E. Kearns’in mukaan se, että tätä kyseistä tutkimusta ei koskaan julkaistu missään. Tämä herätti hänen uteliaisuutensa.

Arkistoihin hautautuneesta tutkimuksesta käytettiin nimeä Projekti 259 (Project 259).

Sugar Research Foundation oli myöntänyt löydetyn aineiston mukaan tälle projektille alustavasti 15 kuukauden rahoituksen vuoden 1968 kesäkuusta vuoden 1969 syyskuuhun, mutta tutkimuslöytöjen luonteen vuoksi rahoitus lakkautettiin ja tutkimus lakaistiin maton alle.

Tutustuessaan tähän tutkimusprojektiin, Kearns huomasi, että tutkimukseen liittyvissä rottakokeissa oli tehty kaksi havaintoa, joiden esille tulo olisi voinut vahingoittaa sokeriteollisuuden mainetta ja kaupallisia intressejä.

Sokeriteollisuuden tutkimus syövän ja sokerin yhteydestä paljastui!

Ensinnäkin tutkimus osoitti, että runsaasti sokeria saaneiden rottien virtsassa oli verrokkeja enemmän erästä virtsarakon syöpään vahvasti assosioituvaa entsyymiä (beta-glucuronidase).

”That was of some policy relevance at the time, because there was something called the Delaney clause, which said the FDA was supposed to keep carcinogens out of the food supply even if they were animal carcinogens,” Glantz kertoi CNN:lle.

Kongressi hyväksyi Delaneyn pykälän 1958. Sen tarkoituksena oli estää sellaisten lisäaineiden käyttö ruoka-aineissa, joiden tiedettiin altistavan syövälle.

Projekti 259 osoitti mielenkiintoisen ja tilastollisesti merkittävän laskun veren triglyseriditasoissa niillä rotilla, jotka olivat saaneet runsaasti sokeria sisältävää ravintoa ja joiden suoliston mikrobikantaa oli heikennetty verrattuna niihin rottiin, jotka olivat saaneet ravinnokseen tärkkelystä ja joiden suoliston mikrobikanta oli normaali.

Käytännössä rottien veren triglyseridipitoisuudet kasvavat runsaasti sokeria sisältävällä ravinnolla, mutta tutkimuksessa havaittiin, että jos suoliston bakteerikantaa heikennettiin, veren triglyseridien määrä saatiin laskemaan.

”So without the bacteria, you didn’t get the high triglyceride response, and so this proved to them at the time that the gut microbiome had a role in this elevated triglyceride response to eating sugar. I thought this is a fascinating study that they were even considering the role of the gut microbiome back as far as the 1960s,” Kearns totesi.  

Viime vuosina suoliston mikrobikanta ja sen vaikutukset terveyteen ovat olleet kasvavan mielenkiinon kohteina.

Sokeriteollisuuden vastaus

Kirjallisessa vastineessaan CNN:lle, Sugar Association korosti, etteivät PLOS Biologyn artikkelin kirjoittaneet tutkijat pyytäneet Sugar Associationin vahvistusta väitteilleen.

We reviewed our research archives and found documentation that the study in question ended for three reasons, none of which involved potential research findings: the study was significantly delayed; it was consequently over budget; and the delay overlapped with an organizational restructuring with the Sugar Research Foundation becoming a new entity, the International Sugar Research Foundation. There were plans to continue the study with funding from the British Nutrition Foundation, but, for reasons unbeknown to us, this did not occur,” vastineessa todettiin.

Sugar Associationin kirjallisessa vastineessa korostettiin lisäksi, että kohtuullisesti käytettynä sokeri voi olla osa tasapainoista ruokavaliota, ja että Sugar Association tukee jatkossakin tutkimuksia, joissa tutkitaan sokerin terveydellisiä vaikutuksia.

Christin E. Kearns vastasi Sugar Associationin kritiikkiin toteamalla, että väite tutkimuksen keskeyttämisestä organisaation uudelleenjärjestelyyn vaikuttaa epäilyttävältä selitykseltä, koska muut tutkimukset jatkuivat organisaation uudelleenjärjestelystä huolimatta.

Mitä opimme tästä?

Kaiken kaikkiaan tällaisen julkaisemattoman tutkimuksen löytyminen ajalta, jolloin laadittiin laajoja ja kattavia ravintosuosituksia, on hätkähdyttävää ja eettisesti huolestuttavaa, huomauttaa Stanfordin yliopistossa työskentelevä Sanjay Basu, joka ei osallistunut PLOS Biologyn julkaiseman artikkelin työryhmään.

The context for this historically is that during the time at which these studies were taking place, a lot of dietary recommendations were being formulated that emphasized reducing high-fat foods in particular, and in many cases low-fat foods were replaced by high-sugar foods to be more palatable,” kommentoi Basu, joka on myös tehnyt tutkimusta lisätyn sokerin terveysvaikutuksia.

The fact that sugar was not being considered an additionally concerning substance unfortunately led to a lot of changes in the American diet that correspond to a rise in obesity and type 2 diabetes. So the suppression of this type of study is partly greatly concerning because of the time in which it took place,” he said. ”Although we’re not sure what a safe amount of added sugar is, it’s pretty clear and increasingly apparent that we’re well above what might be considered reasonable in terms of our added sugar consumption as a country,” Basu kommentoi.

Ruokasotaan käännetty ja muokattu uutinen on julkaistu CNN:llä 21.11.2017




Tyydyttyneet rasvat eivät lisää sydän- ja verisuonitautien riskiä, osoitti tuore meta-analyysi

Lähes miljoonan ihmisen ravintotottumuksia kartoittanut 29 tutkimuksen meta-analyysi ei löytänyt korrelaatiota tyydyttyneiden rasvojen kulutuksen ja lisääntyneen sydän- ja verisuontautiriskin väliltä, kirjoittaa Independent.

”Uskomus, että juustojen sisältämä rasva on epäterveellistä, on väärä”, totesi ravitsemustieteen professori Ian Givens Readingin yliopistosta. Edes runsaasti tyydyttyneitä rasvoja sisältävien juustojen, maidon ja jogurtin kulutus ei lisää riskiä sairastua sydäntauteihin.

European Journal of Epidemologyn julkaiseman tutkimuksen mukaan tyydyttyneiden rasvojen kulutus ei assosioidu kohonneen sydän- ja verisuonitautien riskin kanssa.

29 tutkimusten meta-analyysi käsitti seurantatietoja 938 465 ihmisen ravintotottumuksista yli 35 vuoden ajalta.

Rasvasota

Tyydyttyneitä rasvoja sisältäviä meijerituotteita on pidetty yleisesti epäterveellisinä, koska niiden on uskottu kasvattavan mm. ateroskleroosin riskiä. Tämä uskomus palautuu 1970-luvulla alkaneeseen ”rasvasotaan” jossa vastakkain olivat Ancel Keysin ja John Yudkinin teoriat sydän- ja verisuonitautien ravitsemuksellisista syistä.

Tieteellisen kädenväännön voitti Ancel Keysin näkemys, mikä johti siihen, että tyydyttyneet ”kovat” rasvat leimattiin sydän- ja verisuonitautien pääsyyllisiksi ja ravintosuosituksissa runsasrasvaisia meijerituotteita kehotettiin välttämään. Tämä 1970-luvulta periytyvä rasvakammo toi mukanaan vähärasvaiset ja rasvattomat tuotteet ja näkyy yhä myös suomalaisissa ravintosuosituksissa.

Sota rasvoja vastaan 1970-luvulta lähtien on ollut hyvin tehokasta; monet uskovat tyydyttyneiden rasvojen lihottavan ja aiheuttavan sydäntauteja, eikä asiasta vallitse vieläkään tieteellistä konsensusta puoleen tai toiseen.

Rasvojen terveysvaikutuksista ei vallitse vieläkään yksimielisyyttä

Yleisesti tyydyttyneiden (kovien) rasvojen kulutusta kehotetaan välttämään tai korvaamaan niitä pehmeillä kasvisrasvoilla.

Rasvoja on kahta laatua: kovaa eli tyydyttynyttä rasvaa, sekä pehmeää eli tyydyttymätöntä rasvaa. Pehmeää rasvaa on hyvä saada terveyden kannalta riittävästi. Rasvan laatu on ruokavalion tärkein veren kolesterolipitoisuuteen vaikuttava tekijä. Suositusten mukaan rasvojen kokonaismäärästä tulisi olla 2/3 pehmeää ja enintään 1/3 kovaa rasvaa. Suomalaiset saavat keskimäärin ruokavaliostaan suositeltua enemmän kovaa ja vähemmän pehmeää rasvaa. Lähde: sydän.fi

Tyydyttynyttä rasvaa on etenkin eläinrasvoissa, kuten voissa, juustossa, rasvaisessa maidossa ja muissa rasvaisissa meijerituotteissa sekä rasvaisessa lihassa. Kovaa rasvaa on myös eräissä kasvikunnan rasvoissa, kuten kookosrasvassa ja palmuöljyssä.

Tyydyttyneiden rasvojen vähentämisen terveyshyödyistä ei vieläkään vallitse yksimielisyyttä. Aiemmin tänä vuonna British Medical Journal (BMJ) julkaisi tutkimuksen, jonka mukaan tyydyttyneistä rasvoista saadusta päivittäisestä energiasta jopa vain 1 % korvaaminen vihanneksilla, täysjyväviljoilla tai monityydyttämättömillä rasvoilla, kuten oliiviöljyllä, voi parantaa sydänterveyttä.

Sen sijaan norjalaisen Bergenin yliopiston tutkimuksessa rasvaiset ruoat, kuten juustot, voi ja kerma suojasivat sydäntaudeilta, jos niiden saanti oli osa ruokavaliota, jossa pääosa energiasta saatiin rasvoista ja hiilihydraateista saatavan energian määrää rajoitettiin.

Mitä mieltä sinä olet?

[os-widget path=”/samirajahalli1/survey-05-11″ of=”samirajahalli1″ comments=”false”]




Huomioita vegaaniruokavaliosta

Vähintään 6 miljoonaa amerikkalaista noudatti vegaanista elämäntapaa vuonna 2016. Ilmiö on ajankohtainen myös Suomessa, jossa yhä useampi valitsee eettisin ja/tai terveydellisin perustein vegaanisen elämäntavan. Vegaanit eivät hyödynnä ravinnossa, kulutustuotteissa ja palveluissa mitään sellaista, minkä voidaan katsoa perustuvan eläinten riistoon. Kuinka vegaanit elävät ja mistä he saavat välttämättömät ravintoaineet? Mitä vegaani voi syödä ja mitä ei? Minkälaisia positiivisia ja negatiivisia vaikutuksia vegaanisella ruokavaliolla on terveyden kannalta?

Ensin perusteita

Vegaaninen ideologia, on vahva eläinten oikeuksia puolustava kannanotto ja elämäntapa. Sen hyötyjä voidaan perustella eläinten oikeuksien ohella yhtä hyvin terveydellisillä ja sosiaalisilla syillä kuin kestävän kehityksen arvoilla.

En tiennyt vegaanisesta elämäntavasta paljonkaan tätä artikkelia aloittaessani, joten päätin ensinnä referoida journalistina toimivan veganismista kirjan kirjoittaneen Mara Kahnin haastattelua.

Esimerkki vegaanin päivittäisestä ravinnosta:

  • Viljatuotteita 6–11 annosta
    annos = viipale leipää, 1 dl puuroa, keitettyä riisiä tai pastaa tai 30 g aamiaismuroja
  • Palkokasveja, pähkinöitä ja siemeniä 3 – 5 annosta
    annos = 1/2– 1 dl keitettyjä papuja, lasillinen kalsiumrikastettua soijajuomaa, 100 g tofua tai tempehiä, 30 g ”lihankorviketta” (esim. soijarouhe, seitan) tai 2 rkl pähkinöitä, pähkinä- tai siementahnaa
  • Perunaa, juureksia, vihanneksia tai sieniä 3-5 annosta
    annos = 2 dl raakoja kasviksia tai 1 dl keitettyjä kasviksia tai perunaa
  • Marjoja ja hedelmiä 2-4 annosta
    annos = keskikokoinen hedelmä, lasillinen tuoremehua, 1 dl marjoja tai säilykehedelmiä tai ½ dl kuivahedelmiä
  • Kasvirasvaa 2 annosta, annos = 1 rkl öljyä tai kasvimargariinia

Tämän lisäksi vegaaniruokavaliota noudattavan henkilön tulisi kiinnittää huomiota seuraavien suojaravintoaineiden saantiin: B12- ja D-vitamiini sekä kalsium.

Lähde: Vegaaniliitto.fi

Veganismin tausta

Historiallisesti tarkasteltuna veganismi on tuore ideologia. Donald Watson kehitti veganismin ideologisen perustan Englannissa vuonna 1944 sen jälkeen, kun hän 14-vuotiaana näki sian teurastuksen. Teurastuksen järkyttämä Watson lopetti välittömästi kaiken eläinperäisen ravinnon syömisen ja koki elämäntehtäväkseen levittää ideologiaansa mahdollisimman suurelle joukolle ihmisiä.

Kahn muistuttaa, että Watsonilla ei ollut minkäänlaista ravitsemuksellista koulutusta, ja että veganismi perustui lähtökohtaisesti eettiseen ideologiaan, eikä ihmisen fysiologiaan tai biologiaan.

Mara Kahn – Vegan Betrayal: Love, Lies, and Hunger in a Plants-Only World

Mara Kahn tutki vegaanista elämäntapaa kuusi vuotta ja kirjoitti kirjan ”Vegan Betrayal: Love, Lies, and Hunger in a Plants-Only World”. Kirjassaan Kahn sukeltaa syvälle historiaan ja vegaanista elämäntapaa käsitteleviin tutkimuksiin tuoden esille omia kokemuksiaan sekä yllättäviä historiallisia ja tieteellisiä faktoja.

”Even though my book is titled ’Vegan Betrayal,’ I do respect vegans and what they’re trying to do. My own journey led me back to vegetarianism. I know that many … vegetarians that became vegans … are suffering from diminished strength and faltering health.

I think this is a topic which has been swept under the rug and it’s not being openly discussed in the vegan community. I think it’s very important that we start this discussion. I hope this book will help kick-start that really important dialogue,” Kahn says.

 

Vegaanista elämäntapaa ei saa tuomita eettisenä, hengellisenä tai filosofisena valintana, mutta siihen liittyviä terveysargumentteja voidaan arvioida tieteellisen näytön perusteella. En tässä arvioi vegaanisen elämäntavan sosiaalista ja kulttuurista merkitystä, mutta minua kiinnostaa kuinka vegaanit käytännössä elävät ja mistä he saavat elinvoimansa.

Myöhemmin artikkelissa esittelen Erin Janus -nimisen vegaanin videoita. Hänen näkemyksensä ovat hyvin argumentoituja, eettisesti kestäviä ja tieteellisesti uskottavia. Ne toimivat hyvänä vastapainona Mara Kahnin melko kriittiselle lähestymistavalle.

Kyselytutkimusten mukaan eettinen kanta on ensimmäinen ja tärkein syy siirtyä vegetarismista veganismiin. Kahnin mukaan vegaaninen ruokavalio ei kuitenkaan ole ainoa eettinen ruokavalio. Kahn toteaa lisäksi, ettei vegaaniselle elämäntavalle ole historiallista tukea.

Mara Kahn sanoo, että vegaanisen elämäntavan terveysväitteille ei ole historiallista tukea

Kahn löysi vegetaristisen elämäntavan kiertäessään 19-vuotiaana Eurooppaa. Päätös vegetarismista syntyi yhdessä yössä, kun Kahn tapasi nuoren vegaani-naisen, jota hän kuvaa kirjassaan ”kauniiksi esimerkiksi humaanisuudesta” sekä ”älyttömän terveeksi yksilöksi”. (Kahnin kohtaama vegaani irtautui kuitenkin veganismista, koska hänen yleiskuntonsa oli romahtanut vegaanisen ruokavalion seurauksena.)

Ennen vegetaristiksi kääntymistään Kahn oli syönyt amerikkalaisittain lihapainotteista ravintoa. Tuohon aikaan 1970-luvun puolivälissä vegetarismi oli harvinainen – ja vegaaninen elämäntapa vielä käytännössä tuntematon eettinen alakulttuuri.

Kirjaa kirjoittaessaan Kahn tutki kuusi vuotta vegaanista elämäntapaa ja ymmärsi, että historiasta ei löydy ainuttakaan täysin vegaanista elämäntapaa noudattanutta kulttuuria, joka olisi pärjännyt vain kasveihin perustuvalla ravinnolla. Sen sijaan on tosiasia, että esimerkiksi inuitit ja masait ovat historiansa aikana syöneet lähes yksinomaan eläinperäistä ravintoa (verta, lihaa ja rasvaa) pysyen terveinä ja elinvoimaisina. Tiedetään myös, että inuiteille länsimainen ruokavalio aiheutti ja aiheuttaa runsaasti terveysongelmia karieksesta diabetekseen ja alkoholismiin.

”I did a thorough research of the history of vegetarianism. In fact, I spent almost six years researching this book. I’m a journalist … I love to dig deep,” Kahn says.

”At this point, it’s really important that we distinguish between vegetarianism and veganism. Vegetarianism has a very long and honorable history. It goes back at least 2,500 years to Greece, and much further than that in the Indus Valley, India and that part of the world.

It has proven itself to be a viable diet … [Yet even] in the Northern parts of India, the Kashmir regions, they eat meat because the climate is so different in the mountainous regions of North India.

Vegetarianism has a very long and noble history with verified health results. However, veganism … is a non-historical diet … Its health benefits are not verified.

There were scattered enclaves of religious people that lived cloistered lives who probably did follow a vegan diet … but these were very, very tiny populations, and we have no idea if they were healthy and how long they lived.”

Historiallisesti vegetaristit ovat käyttäneet ravinnossa myös eläinperäisiä tuotteita, kuten munat, maito, juustot ja kala. Mara Kahn näkee terveyden optimoimisen intohimonaan. Hän on vakuuttunut, että merenelävät ovat ihmiselle terveellisintä ravintoa mm. solukalvojen tarvitsemien DHA- ja EPA-rasvojen vuoksi.

Mara Kahn unohtaa kuitenkin sen, että omega-3-rasvahappojen todellinen lähde on meren mikrolevät, joita syömällä kalat saavat omega-3-rasvoja. Lisäksi hän erehtyy väittämään, että DHA-rasvahappoja ei saa kasviperäisestä ravinnosta. Erin Janus osoittaa artikkelin lopusta löytyvällä videolla, että mikrolevistä tuotetut omega-3-rasvahapot ovat jopa parempia kuin kalaöljystä valmistetut lisäravinteet.

Vegaanisella ruokavaliolla on todennettuja terveyshyötyjä

Lyhyellä aikajänteellä vegaaninen ruokavalio on tutkimusten mukaan hyvin terveellinen. Se edistää laihtumista, sydän- ja verisuoniterveyttä ja verensokerin ja insuliinin tasapainoa. Monet seurantatutkimukset osoittavat vegaanisen ruokavalion terveyshyödyt kiistattomasti.

Suorat terveyshyödyt ovat ehkä seurausta siitä, että prosessoitu ruoka korvataan kasvisperäisellä ravinteikkaammalla raakaravinnolla. Pitkään jatkuva vegaaninen ruokavalio muuttuu kuitenkin terveyden kannalta ongelmalliseksi, koska kasviravinnosta ei saada kaikkia välttämättömiä ravinteita. B12-vitamiinin puutos on hyvin tunnettu puhtaan kasvisperäisen ravinnon ongelma, joka koskettaa myös vegetaristeja.

Wang, F. et al. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 2015.

  • Vegetaristien ruokavalio laski kokonaiskolesterolia, LDL- ja HDL-kolesterolitasoja enemmän kuin tutkimuksessa verratut muut ruokavaliot.
  • Loppupäätelmä: Kasvisruokavalio laskee tehokkaasti kolesterolia.

Macknin, M. et al. Plant-Based, No-Added-Fat or American Heart Association Diets: Impact on Cardiovascular Risk in Obese Children with Hypercholesterolemia and Their Parents. The Journal of Pediatrics, 2015.

  • Tutkimuksessa seurattiin 30 korkeasta kolesterolista ja ylipainosta kärsivää lasta ja heidän vanhempiaan. Tutkittavat jaettiin vegaaniruokaa tai American Heart Associationin (AHA) suosittelemaa ruokavaliota 4 viikon ajan.
  • Molemmissa ryhmissä kokonaisenergian saanti laski huomattavasti.
  • Lapset, jotka noudattivat vegaaniruokavaliota laihtuivat neljän viikon aikana keskimäärin 3,1 kiloa, mikä oli 197 % enemmän kuin AHA-ryhmän lapsilla.
  • Vegaaniryhmän lasten systolinen verenpaine, kokonaiskolesteroli ja LDL laskivat. AHA-ryhmässä verenpaineen ja kolesterolin laskua ei tapahtunut. Erot eivät kuitenkaan olleet tilastollisesti merkittäviä.
  • Tutkimuksen lopussa vegaaniryhmän lasten painoindeksi  (BMI) oli laskenut enemmän kuin AHA-ryhmän lapsilla.
  • Myös vegaaniryhmän aikuisten paino putosi enemmän kuin AHA-ryhmän aikuisilla.

Mishra, S. et al. A multicenter randomized controlled trial of a plant-based nutrition program to reduce body weight and cardiovascular risk in the corporate setting: the GEICO study. European Journal of Clinical Nutrition, 2013.

  • 291 toimistotyöntekijää jaettiin satunnaisesti joko vähärasvaiselle vegaaniruokavaliolle tai verrokkiruokavaliolle, jossa noudattivat omia ruokailutottumuksia.
  • Vegaaniruokavaliossa tutkittavien paino laski 18 viikon tutkimuksen aikana keskimäärin 4,3 kg, kun painonlasku omaa ruokavaliota noudattavalla ryhmällä oli keskimäärin 0,1 kg.
  • Loppupäätelmä: Vegaaniryhmässä paino putosi ja koehenkilöiden kolesteroli- ja verensokeritasot paranivat.

Barnard. N. D. et al. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. The American Journal of Medicine, 2005.

  • 64 ylipainoista vaihdevuodet ylittänyttä naista jaettiin kahteen ryhmään, joista toinen oli vähärasvainen vegaaniryhmä ja toinen noudatti National Cholesterol Education Program (NCEP) -suosituksia 14 viikon ajan.
  • Kummassakaan ryhmässä ei ollut kalorirajoitteita, vaan koehenkilöitä ohjeistettiin syömään riittävästi.
  • Molemmissa ryhmissä naiset söivät keskimäärin 350 kcal vähemmän kuin normaalisti. Vegaaniryhmä söi vähemmän proteiinia ja rasvaa ja enemmän kuituja kuin NCEP-ryhmä.
  • Vegaaniryhmässä paino putosi keskimäärin 5,8 kg. NCEP-ryhmässä paino putosi keskimäärin 3,8 kg. Tulokset painoindeksin ja vyötärönympäryksen kohdalla olivat myös vegaaniryhmässä paremmat kuin verrokkiryhmässä.
  • Kaikkien koehenkilöiden verensokeriarvot, paastoinsuliini ja insuliiniherkkyys paranivat huomattavasti.

Lisää tutkimuksia löydät täältä >>

Vegetaristit saavat osan välttämättömistä ravintoaineista meijerituotteista, munista ja joissain tapauksissa kalasta. Mistä vegaani saa tarpeeksi omega3-rasvoja (ALA, EPA, DHA), tai seuraavassa lueteltuja ravinteita:

Karnosiini, jota saadaan liharuoasta, ja jota luontaisesti esiintyy lihaksissa, sydämessä, aivoissa ja hermostossa. karnosiini on voimakas antioksidantti, joka ehkäisee diabeteksen komplikaatioita sekä ikääntymisen aiheuttamia muutoksia elimistössä. Karnosiini estää proteiinien ristiinlinkittymistä ja glykaatiota eli sokeroitumista ja poistaa elimistöstä raskasmetalleja sekä vähentää sydän- ja verisuonitautien riskejä estämällä kolesterolin ja triglyseridien hapettumista. Monet kuntoliikuntaa harrastavat syövät karnosiiniä, koska se vähentää maitohapon kertymistä lihaksiin. Karnosiinistä tiedetään myös, että iän myötä sen määrä elimistössä vähenee, minkä vuoksi sille on annettu anti-aging-ominaisuus. Karnosiiniä käytetään mm. autismin hoidossa ja sen uskotaan ehkäisevän myös Alzheimerin tautia, eli beeta-amyloidiplakkien muodostumista aivoihin. Tutkimusten mukaan karnosiini:

  • alentaa verenpainetta
  • suojelee sydän ja verisuonitaudeilta
  • parantaa sydämen lyöntivoimaa
  • vähentää tulehduksia
  • hidastaa joidenkin syöpien etenemistä
  • parantaa immuunijärjestelmän toimintaa
  • ehkäisee mahahaavaa
  • nopeuttaa haavojen paranemista
  • hidastaa kaihin kehittymistä
  • suojelee maksaa
  • vähentää joidenkin solunsalpaajien haittavaikutuksia
  • Vegaanit saavat karnosiiniä merilevästä, pavuista sekä useista alaniinia sisältävistä vihreälehtisistä kasveista. Elimistö syntetisoi alaniinista karnosiiniä.

Karnitiini, jota saadaan liha- ja maitotuotteista. Karnitiini on aminohappo ja lysiinin johdannainen, jolla on kaksi peilikuvaisomeeriä. Nämä ovat L-karnitiini ja D-karnitiini. Karnitiinia muodostuu maksassa ja munuaisissa lysiinistä ja metioniinista. C-citamiini on välttämätön karnitiinin synteesille. Karnitiinilla on olennainen rooli rasva-aineenvaihdunnassa. Sen tehtävänä on kuljettaa aktiivisia rasvahappoja eläinsolun sytoplasmasta mitokondrioon, jossa ne pilkkoutuvat hengitysreaktiossa ja niistä saadaan energiaa. L-karnitiinia on eniten punaisessa lihassa ja maitotuotteissa.

  • Vegaanit saavat karnitiinia pähkinöistä, siemenistä, palkokasveista, pavuista, vihanneksista, hedelmistä ja viljoista. Karnitiinilla voidaan ehkäistä lihasväsymystä ja -heikkoutta, uni- ja muistihäiriöitä ja diabetesta. Sekä karnitiini että ubikinoni ovat tehokkaita ravintolisiä statiinien haittojen ehkäisyssä.

Tauriini, jonka nimi perustuu härkään (taurus), jonka sapesta se eristettiin vuonna 1827. Tauriinia esiintyy ihmisen elimistössä vapaana aminohapona mm. aivoissa sekä silmän verkkokalvossa, sydän- ja luustolihaskudoksessa sekä sapessa. Tauriinia on myös äidinmaidossa. Aikuiset eivät välttämättä tarvitse tauriinia, vaikka sitä on kehossa n. gramma painokiloa kohden. Imeväisikäisille lapsille tauriini on kuitenkin välttämätön ravintoaine, jota on saatava joko äidinmaidosta tai äidinmaidonkorvikkeesta. Energiajuomissa tauriinilla ei ole tutkimusten mukaan hyötyjä tai haittoja. Joillekin nisäkkäille, kuten kissoille, tauriinin saanti on välttämätöntä koko elämän ajan.  Kissanpennuilla tauriininpuute voi aiheuttaa sokeutumisen ja emokissan tauriininpuute voi johtaa pentujen epämuodostumiseen. Koska myös apinoilla on havaittu tauriinin puutteen aiheuttamia vastaavia verkkokalvon muutoksia kuin kissoilla, oletetaan, että tauriinin puutos voi vaikuttaa myös ihmisen näkökykyyn.

  • Aikuiset eivät välttämättä tarvitse tauriinia. Imeväisikäisille se on kuitenkin välttämätön ravinne, jota saadaan äidinmaidosta.

Retinoli, eli A-vitamiinin yleinen rasvaliukoinen muoto, joka on tärkeä näkökyvylle ja luuston kasvulle. Retinoli on A-vitamiinin tavallisin muoto, josta muodostuu elimistössä myös aldehydiä, retinaalia ja retinaalihappoa. Ravinnossa retinolin, A-vitamiinin esiasteiden, karoteenien ja kryptoksantiinien määrä ilmaistaan eretinolekvivalentteina. Retinoli on välttämätön hämäränäölle, koska silmän verkkokalvon sauvasoluissa on proteiinista ja retinaalista muodostuvaa rodopsiinia, joka reagoi herkästi valoon. Suurin osa A-vitamiineista saadaan lihasta, kasveista, ravintorasvoista ja maitovalmisteista.

  • Vegaanit saavat A-vitamiineja mm. porkkanasta, lehtikaalista ja vähäisiä määriä persikoista.

Omega-3-rasvahapot (ALA, EPA ja DHA) ovat monityydyttämättömiä rasvahappoja, joihin kuuluvat  ihmiselle välttämätön afalinoleenihappo (ALA), dokosaheksaeenihappo (DHA ja eikosapentaeenihappo (EPA). Elimistö tuottaa jonkin verran DHA- ja EPA-rasvahappoja alfalinoleenihaposta.

Ravitsemussuositusten mukaan omega-3-rasvahappojen osuuden ravinnon kokonaisenergiamäärästä tulisi olla noin 1 %, eli 2 000 kcal keskimääräisellä energiankulutuksella 2–3 grammaa omega-3-rasvahappoja.  Joidenkin mukaan määrän pitäisi olla korkeampi, koska ravinnosta saadaan suhteessa liikaa omega-6-rasvoja, mutta se on toinen juttu.

  • Omega-3-rasvojen lähteet: alfalinoleenihappoa (ALA) saa runsaasti mm. pellavansiemenöljystä, hamppuöljystä, rypsiöljystä ja saksanpähkinöistä, pellavansiemenistä ja hampunsiemenistä.
  • Eikosapentateenihappoa (EPA) ja dokosaheksaeenihappoa (DHA) syntyy mikrolevissä, joista ne leviävät kalojen kautta ravintoketjuun. Paras, jopa kalaöljyjä parempi EPA:n ja DHA:n lähde on ilmeisesti mikrolevistä valmistettu omega-3-lisäravinne. Rasvainen kala, kuten lohi, silakka ja makrilli sisältävät EPA- ja DHA-rasvahappoja. Viljellyn kalan rasvakoostumus on luonnossa eläviä kaloja huonompi.

B12-vitamiini, eli kobalamiini on välttämätön nopeasti uusiutuvien solujen (veren valko- ja punasolujen sekä hermosolujen) toiminnassa. ” Molekyylitasolla sitä tarvitaan homokysteiinin metylaatiossa metioniiniksi sekä haaraketjuisten aminohappojen kataboliassa. Puutos aiheuttaa muun muassa megaloblastisiin anemioihin kuuluvaa pernisiöösiä anemiaa. Puutoksen eräs alkuoire voi olla kihelmöinti ja tunnottomuus ääreishermostossa, kuten sormenpäissä. Hermoston oireet voivat ilmetä myös lihasheikkoutena tai muistin häiriöinä. Harvinaisempia oireita ovat kielitulehdus, hedelmättömyys, verisuonitukokset ja ihon pigmentin lisääntyminen.”

Ihminen tarvitsee kobalamiinia mm. foolihapon valmistamiseen ja edelleen solut tarvitsevat B12-vitamiinia ja foolihappoa nukleiinihappojen (DNA) valmistamisessa.

  • Sekaravinnon syöjä saa B12-vitamiinia eläinperäisestä ravinnosta, kuten lihasta, kananmunasta, maitotuotteista ja kalasta. B12-vitamiinin saamiseksi vegaanien ja vegetaristien tulee turvautua lisäravinteisiin, sillä yleisestä uskomuksesta huolimatta idut, tempe ja merilevät eivät sisällä B12-vitamiinia. Poikkeuksena on nori-merilevä, mutta kuivaus tuhoaa senkin sisältämän B-vitamiinin.

Proteiinit ja rasvat

Vegaaneille suunnatussa ravintopyramidissa päivittäinen rasvasuositus oli vain ruokalusikallinen. Toki vegaanit saavat hyviä rasvoja mm. pähkinöistä ja siemenistä, mutta määrä tuntuu todella vähäiseltä, koska hormonit, aivot ja solut tarvitsevat rakennusaineeksi rasvoja. Lisäksi kolesteroli toimii välittäjäaineena aivoissa, joten kolesterolin vähäisyys voi aiheuttaa dementiaa ja muita kognitiivisia ongelmia – jotka, kuten tiedetään – ovat statiinien käytön yleinen sivuoire.

” While keeping your protein low is a wise move, excessively low protein can become a problem for vegans — especially if your diet is also low in healthy fats. Some will get just 8 to 12 percent protein from plants in their daily diet, which can trigger muscle wasting. ”In that sense, vegans are consuming flesh after all — their own — if they’re not eating enough protein,” Kahn says.

Low fat is another, and in my view, more concerning problem, among vegans. When you eat a high-net carb diet (total carbs minus fiber), you’re essentially burning carbohydrates as your primary fuel. If you shift down to relatively low levels of net carbs, which is easy to do on a vegetarian diet since vegetables are so high in fiber, then your body starts burning fat as its primary fuel. This means you need to increase the amount of healthy fats in your diet in order to satisfy your body’s fuel demands.

Sufficient dietary fat is also essential for maintaining healthy hormone levels, Kahn notes, including your sex hormones. Raw veganism in particular is associated with loss of menses (amenorrhea), due to low calorie and fat intake, increasing your risk for infertility and osteoporosis.

Low fat is likely far more troublesome than low protein, because once you start burning fat for fuel, powerful protein-sparing processes start taking place, allowing you to get by with as little as 6 to 8 percent protein without risking muscle wasting. I only have 8 percent protein in my diet and I do not believe I’m protein deficient. That’s because fat is my primary fuel. If I were burning carbs, I would not fare well at all with such a low amount of protein.”

Positiivisen kuvan vegaanisesta elämäntavasta saa seuraavista videoista, joilla älykäs Erin Janus kertoo erittäin vakuuttavasti miksi hän on valinnut vegaanisen elämäntavan ja miksi muidenkin kannattaisi tehdä tämä eettinen harppaus.

Erin Janus – Lisää videoita löydät täältä >>





Rasvateoria

Rasvasota on Suomessa, Ruotsissa ja Yhdysvalloissa sekä monissa muissa länsimaissa 1950-1970 alkanut ja edelleen jatkuva julkinen keskustelu ravintorasvojen asemasta ruokavaliossa ja niiden terveysvaikutuksista.

Keskustelun ytimessä on kiista siitä, aiheuttavatko tyydyttyneet eläinperäiset ns. kovat rasvat ja kolesteroli sydän- ja verisuonitauteja. Suomessa keskustelu alkoi Pohjois-Karjala-projektin seurauksena 1970-luvulla.

Keskustelu on tärkeää, sillä sydän- ja verisuonitaudit tappavat eniten ihmisiä maailmassa. Vuosittain Yhdysvalloissa 610 00 ihmistä kuolee sydäntauteihin ja 735 000 ihmistä saa sydän- tai aivoinfarktin. Australiassa yksi ihminen kuolee sydäntautiin keskimäärin kahdentoista minuutin välein.

Diabetes lisää merkittävästi sydäntautien riskiä ja 65 % – 75 % diabeetikoista kuolee sydän- ja verisuonitautiin. Diabetes on lisääntynyt huimalla vauhdilla 1980-luvun jälkeen. Onngelmalliseksi ilmiön tekee se, että kolesterolilääkitys, eli sydäntautien ehkäisyyn käytettävät statiinit lisäävät aikuistyypin diabeteksen riskiä 46 %. Diabeteksessa sydäntautien riskiä kasvattavat mm. verenpaine, veren korkeat triglyseridi- ja kolesterolitasot, verensokerit (hyperglykemia) ja ylipaino. Diabeetikon riski saada sydänkohtaus tai sairastua sydän- ja verisuonitautiin on 2-4 kertainen muuhun väestöön nähden.Kuolemansyytilastoja USA:sta.

heart-disease-stats

The devil has put a penalty on all things we enjoy in life. Either we suffer in health or we suffer in soul or we get fat.

Albert Einstein

Kohti vähärasvaisia ravintosuosituksia
”Vaikka kaikki asiantuntijat olisivat yksimielisiä, he voivat hyvinkin olla väärässä.” B. Russell

Johtava kirurgi C. Everett Koop antoi 1988 lausunnon, joka vaikutti merkittävällä tavalla tulevien sukupolvien ravintosuosituksiin. Lausunnossaan hän totesi, että rasvaiset ruoat aiheuttavat sydän- ja verisuonitautien (CHD/CVD) lisäksi useita muita vakavia terveysongelmia ja siksi rasvaiset ruoat ovat yhtä epäterveellisiä, kuin tupakka. Suurin osa meistä luottaa yhä tähän teoriaan, koska meidät ehdollistettiin rasvakammoon tehokkaalla ja periksi antamattomalla valistuksella, joka alkoi jo 1970-luvulla Pohjois-Karjala-projektin myötä.
[socialpoll id=”2260878″]
C. Everett Koop oli väärässä, mutta miksi?
C. Everett Koop luotti dogmaattisesti edeltäneisiin tutkimuksiin, mikä johti hänet vääriin johtopäätöksiin. Virhe tutkimuksessa tai tutkimuksen virheellinen analyysi kertautuu kaikissa niissä tutkimuksissa, jotka asettavat virheellisen tutkimuksen uuden tutkimuksen lähtökohdaksi. Kuvio on yksinkertainen: Tutkimukseen eksyy virhe, sitä vääristellään, osa jätetään julkaisematta tai sitä tulkitaan väärin. Seuraavaksi uusi ryhmä tekee omaa tutkimustaan ja he käyttävät lähdeaineistona virheellistä tutkimusta. Kolmas tutkija uskoo löytäneensä tutkittavaan ilmiöön oikean selityksen, mutta korjaakin hypoteesiaan, koska luottaa kahden edellisen tutkimuksen tuloksiin enemmän kuin omaan tutkimukseensa.
Analogiana: Tutkija havaitsee, että kaikki pallot ovat palloja, mutta tutkimuspapereihin eksyy virhe, jonka mukaan jokin pallo voi olla kuutio; seuraavassa tutkimuksessa tämä fakta esitetään niin, että useimmat pallot ovat palloja, mutta on kasvavaa näyttöä siitä, että jotkin pallot voivat olla kuutioita. Kolmannessa tutkimuksessa raja pallon ja kuution välillä hämärtyy entisestään: sen mukaan suurin osa palloista on palloja tai kuutioita, mutta eron tekeminen nykytietämyksellä on mahdotonta. Ymmärrätte pointin. Hyvin pieni inhimillinen virhe tai väärintulkinta voi kertautua tutkimuksissa yhä uudestaan ja johtaa virheellisen tiedon leviämiseen tutkimuksesta toiseen. Virheellisestä teoriasta voi tulla jopa paradigma, eli vallitseva tieteellinen totuus. Näin vaikuttaa käyneen tyydyttyneiden rasvojen ja kolesterolin kohdalla. Lipid hypothesis on vahva, hyvin postuloitu ja vakuuttava paradigma, jota monikaan ei uskalla haastaa.
Palataan C. Everett Koopin lausuntoon. Hän perusti näkemyksensä arvostettuun tutkimukseen, joka tunnetaan nimellä: Seitsemän maan tutkimus. Yksi tutkimukseen osallistuneista maista oli Suomi. Tutkimuksen toteutti arvostettu yhdysvaltalainen fysiologi ja ravitsemustieteilijä Ancel Keys (s.1904, k.2004), jonka kiinnostus sydäntauteihin heräsi maailmansotien jälkeisestä huomiosta: Yhdysvalloissa menestyneet ja hyvin ravitut (ylipainoiset) yrittäjät ja johtajat sairastuivat usein sydän- ja verisuonitauteihin, kun puolestaan sodasta toipuvassa ja ruokapulasta kärsivässä Euroopassa sydäntaudit olivat harvinaisia. Tämän havainnon perusteella Ancel Keys postuloi hypoteesin, jonka mukaan syödyn rasvan määrä korreloi sydän- ja verisuonitautien kanssa. Keys esitteli hypoteesin WHO:n asiantuntijakokouksessa Genovassa 1955, jossa sitä kritisoitiin ankarasti. Keys ei kuitenkaan lannistunut kritiikistä, vaan aloitti seitsemän maan tutkimuksena tunnetun projektin.
Keys paneutui intohimoisen tutkijan tarmolla aiheeseen. Hän havaitsi, että koska Etelä-Italiassa eli väestönmäärään suhteutettuna eniten satavuotiaita, täytyi Välimeren vähän eläinrasvaa sisältävällä ruokavaliolla olla kausaalinen vaikutus sydänterveyteen. Tästä hän päätteli, että juuri eläinperäiset rasvat aiheuttavat sydän- ja verisuonitauteja. Palaan Ancel Keysiin hieman myöhemmin. Tarkastelen ensin häntä edeltänyttä ravitsemustieteen historiaa sydäntautien tutkimuksen osalta.

Sydäntautien tutkimuksen historia

Rudolf Virchow (1821-1902) Rudolf_Virchow_NLM3

Rudolf Virchow oli saksalainen patologi, lääketieteilijä ja biologi ja häntä pidetään yleisesti patologian isänä. Virchow tunnisti mm. leukemian ja selvitti solunjakautumisen (omnis cellula e cellula), jonka mukaan jokainen solu syntyy samanlaisesta solusta. Patologina Rudolf Virchow kuvasi lipidien kasaantumisen valtimoiden seinämiin.

Nikolai Anitschkov (1885-1964) – The Response-to-Injury Rabbit Modelindex
Nikolai Anitschkov oli huomattava venäläistaustainen patologi ja tutkija, joka esitti teorian kolesterolin yhteydestä ateroskleroosin patogeneesiin vuonna 1958 (Annals of Internal Medicine). Tätä kutsutaan joskus myös ”kolesterolilla ruokitun jäniksen malliksi” (cholesterol-fed rabbit model). William Dock vertasi Anitschkovin merkitystä tutkijana Robert Kochiin. joka löysi tuberkkelibakteerin.
 ♥
Vuonna 1913 Nikolai Anitschkov osoitti, että kolesterolilla ruokituille jäniksille kehittyi valtimoihin ateroskleroosia muistuttavia leesioita ja vuonna 1951 tunnustettiin, että vaikka aterooman, eli valtimorasvoittuman syy oli edelleen tuntematon, rasvan kasaantuminen verisuonten ja valtimoiden seinämiin ja seinämien sisäkerroksiin (intima) oli ateroskleroosin patogeneesin olennainen faktori. Anitschkov ei pitänyt kolesterolia ateroskleroosin syynä, mutta välttämättömänä vaikuttajana taudin etiologiassa. Toisin kuin usein luullaan, Anitschkov ei koskaan väittänyt, että ravinnon sisältämä kolesteroli aiheuttaa ateroskleroosia. Sen sijaan hän kirjoitti:
”In human atherosclerosis the conditions are different. It is quite certain that such large quantities of cholesterin are not ingested with the ordinary food. In human patients we have probably to deal with a primary disturbance of the cholesterin metabolism, which may lead to atherosclerosis even if the hypercholesterinemia is less pronounced, provided only that it is of long duration and associated with other injurious factors.”
Kolesteroliteorian puolesta puhui Steinberg, joka on osoittanut, että veren kolesterolitasoa lisäämällä ateroskleroosi voidaan tuottaa paviaaneille, kissoille, kanoille, simpansseille, koirille, vuohille, marsuille, hamstereille, apinoille, hiirille, papukaijoille, sioille, kyyhkyille, jäniksille ja rotille. Entä mitä tämä todistaa? Se todistaa vain sen itsestäään selvän tosiasian, että minkä tahansa substanssin määrällisesti riittävä injektointi verisuoneen voi aiheuttaa vakavien tervesongelmien ohella kuoleman.
Yhdysvalloissa 1950-luvulla sydäntautikuolemat olivat yleistyneet voimakkaasti vaurastuneen keskiluokan keskuudessa ja syytä etsittiin mm. sokerista ja rasvasta. Lopulta voimakkaan lobbauksen seurauksena Ancel Keysin edustama tyydyttyneiden rasvojen vastainen linja hyväksyttiin ja yleisiin ravintosuosituksiin se hyväksyttiin 1970-luvulla. Vuonna 1984 kolesteroli nimettiin Yhdysvalloissa syylliseksi sydänsairauksiin.

Anitschkovin varhaisten ideoiden mukaan valtimoita kovettava arterioskleroosi, jonka spesifinen muoto ateroskleroosi on, oli seurausta verisuonten vahingoittumisesta. Vahingoittuminen saattoi johtua fyysisestä vammasta tai toksisesta myrkytystilasta; vamma saattoi Anitschkovin mukaan myös olla hermoradoissa. Tämän hypoteesin perusteella toteutettiin useita eläinkokeita, joissa koe-eläinten:

  • Verisuonia vahingoitettiin mm. suonia solmimalla, puristamalla, vetämällä ja leikkaamalla sekä polttamalla kuumalla johdolla sekä hopeanitraatilla.
  • Verenpaine kohotettiin keinotekoisesti mm. ahtauttamalla aorttaa, jolloin verenvirtaus aortan läpi heikkeni tai munuaisia vahingoittamalla ja roikottamalla jäniksiä jaloista.
  • Hermoja vahingoitettiin ja niitä ärsytettiin erilaisilla ärsykkeillä.
  • Jäniksille injektoitiin adrenaliinia.
  • Jäniksille injektoitiin erilaisia myrkyllisiä aineita, kuten raskasmetalleja, ergosteroleita, erilaisia suoloja, formaliinia, nikotiinia, kofeiinia, barium kloridia jne.
  • Koe-eläimille injektoitiin erilaisia bakteerikantoja ja näiden myrkyllisiä sivutuotteita.

Kokeiden seurauksena verisuonet vahingoittuivat ja kovenivat, mikä osoittaa, että valtimoiden muutosten aiheuttajina vammat ovat varmasti totta. Mikään kokeista ei kuitenkaan tuottanut ihmisellä esiintyvää ateroskleroosia muistuttavia oireita. Arterioskleroosi määrittelee verisuonten yleistä rappeutumista ja ateroskleroosi on yksi sen spesifimpi muoto. Siinä plakkiutuneet rasvatäytteiset valkosolut, kolesteroli, rasvahapot, kalsium ja erilaiset verisuoniin kertyvät jätökset (atheroma) kerääntyvät verisuonen seinämän osaan (intima), joka on endoteelin takana. Endoteeli on yksikerroksinen epiteeli, joka verhoaa sydämessä, veri- ja imusuonissa niiden sisäpintaa ja koostuu endoteelisoluista. Kuva: verisuonen rakenne.

Anatomy_artery

Määritellään artikkelissa esiintyviä käsitteitä

Kolestroliteoria (lipid hypothesis): Kolesteroliteoria viittaa lipidien (rasvojen, eli triglyseridien) ja kolesterolin oletettuun sydän- ja verisuonitaudeille altistavaan vaikutukseen verenkierrossa. Sitä kutsutaan myös nimellä rasva-kolesteroliteoria. Virallisen määritelmän mukaan plasman rasvoja vähentämällä hyperlipidemiaa sairastavien potilaiden sydän- ja verisuonitautien riski pienenee. Toinen määritelmä on, että veren kolesterolitasojen alentaminen vähentää merkittävästi sydän- ja verisuonitautien riskiä. Hypoteesin taustalla on ajatus veren kolesterolipitoisuuden ja valtimonkovettumataudin synnyn syy-yhteydestä, alkaen Rudolf Virchovin kuvauksesta valtimoplakin kolesterolikiteistä (1865). Nikolai Anitschkovin jänis-kolesteroli-kokeisiin Pietarissa (1913). Anitschkov toisti kokeet muilla eläimillä, lihansyöjillä, mutta hän ei saanut samoja tuloksia. Valtimot eivät jäykistyneet, kovettuneet eivätkä ahtautuneet.Usein kolesteroliteoriasta puhuttaessa viitataan myös ruokavalio-sydän hypoteesiin, jolla on hieman eri merkitys kuin kolesteroliteorialla. Ruokavalio-sydän hypoteesi perustuu kahteen periaatteeseen: 1) ravinnosta saatu tyydyttynyt rasva ja kolesteroli lisäävät plasman rasva- ja kolesterolitasoja, 2) ja altistaa siksi sydän ja verisuonitaudeille.

Aterooma: Valtimonrasvoittuma. Aterooma on ateroskleroosille ominainen suuren tai keskisuuren valtimon sisäkalvon pullistuma, jonka syynä on rasva-aineiden, erityisesti kolsesterolin kertyminen suonenseinämään.

Ateroskleroosi, eli valtimonrasvoittumatauti on verenkiertoelimistön sairaus. Sairaudelle on ominaista kolesterolin kertyminen valtimoiden seinämiin, paikallisten kohoumien (ateroomaplakkien) muodostuminen sekä valtimon ontelon kaventuminen. Sen kliinisesti merkittävimmät ilmenemismuodot ovat sepelvaltimotauti sekä aivoverenkierron sairaudet, jotka taas voivat johtaa akuutteihin komplikaatioihin, sydäninfarktiin tai aivohalvaukseen. Ateroskleroosi aiheuttaa myös perifeeristä valtimotautia. LDL-lipoproteiinit kuljettavat kolesterolia soluillerakennusaineiksi. Tämän seurauksena verisuonten endoteelin alla olevaan intimaan kertyy vähitellen LDL-hiukkasia. Solujen muokkaustoiminta muuttaa ne suuriksi rasvapisaroiksi. Paikalle tulevat makrofagit fagosytoivat pisarat sisäänsä ja makrofagin solulima täyttyy LDL:n kolesterolista. Makrofagi muuttuu vaahtosoluksi, joiden kertyminen aiheuttaa verisuonten seinämään kellertäviä raitoja eli rasvajuosteita. Ne voivat kehittyä kohoumiksi eli plakeiksi. Veren suurentunut LDL-pitoisuus edistää rasvajuosteen kehittymistä plakiksi. Plakkien olemassaolo on tunnusomaista ateroskleroosille, joka voi ajan kuluessa johtaa esimerkiksi sepelvaltimoissa verenvirtausta ja sydänlihaksen hapensaantia heikentävään suonen seinämien paksuuntumiseen. Seurauksena on sepelvaltimotauti. Diabetekseen kuuluva hyperglykemia edistää ateroskleroosin kehittymistä. Valtimonkovettumatautia voi olla missä tahansa valtimoissa, mutta erityisen hankalaa se on aivo- ja sepelvaltimoissa, joihin ei ole korvaavia reittejä hapen tuomiseksi. APO A-1 Milano -proteiinin on havaittu ehkäisevän valtimonkovettumistautialähde?. Tulehduksella on suuri merkitys valtimonkovettumataudin kehityksessä ja on ilmeistä, että bakteerit osallistuvat tulehduksen syntyyn. Ateroomaplakissa vallitsee krooninen tulehdus, joka vaikuttaa aterooman kasvumekanismeissa ja repeämisessä. Repeämälle alttiissa plakeissa on ohut sidekudoskatto ja usein paljon tulehdussoluja, jotka erittävät sidekudoskattoa heikentäviä matriksin metalloproteinaaseja (MMP). Valtimonkovettumatautiin liittyvistä bakteereista tunnetuimpia ovat keuhkoklamydia ja kariesia aiheuttavat bakteerit. Ihmisen elinaikanaan sairastamien infektioiden kokonaismäärä lisää valtimonkovettumataudin riskiä. Valtimon seinämän tulehdus ja mahdollisesti myös bakteeri-infektiot ovat yhteydessä valtimonkovettumataudin kehitykseen.

Lähde: Wikipedia

Kolesteroli ja statiinit: kolesteroliteorian kritiikki

Kolesteroliteoria on hallinnut vuosikymmeniä lääkäreiden ja maallikoiden käsityksiä sydän-  ja verisuonitautien syistä, mutta on tullut aika hylätä tämä käsitys, kirjoittavat ruotsalaiset tiedemiehet, sisätautiopin professori Lars Werkö, kirurgian professori Tore Schrestén ja elinsiirtokirurgian dosentti Ralf SundBerg.

Sydänkohtaukseen sairastuneiden ja kuolleiden ihmisten kolesterolilukemat ovat usein muita pienempiä. Matala seerumin kolesteroli liittyy suurentuneeseen kuoleman riskiin.

Kiista kolesterolin merkityksestä vauhdittui 1990-luvulla, jolloin monet tutkijat (mm. Ruotsissa sisätautiopin dosentti Uffe Ravnskov) kyseenalaistivat syy-yhteyden korkeiden kolesteroliarvojen ja sydäntautien välillä. Tämä perustui suureksi osaksi 30 vuotta jatkuneeseen Framinghamin tutkimukseen. Se näet osoitti, ettei kohonnut kolesteroli ole sydäntaudin riskitekijä yli 47-vuotiailla ihmisillä. Asia oli pikemminkin niin päin, että kolesterolin aleneminen lisäsi kuolleisuutta verrattuna niihin, joiden kolesterolipitoisuus suureni. Lähde: Tohtori Tolonen

Sachdevan työryhmä julkaisi tammikuussa 2009 jättitutkimuksen Amerikan Sydänliiton aloitteesta, jossa mitattiin veren kolesteroliarvot lähes 137 000 sydänkohtauksen vuoksi sairaalahoitoa saaneelta potilaalta. Kaikki kolesteroliarvot olivat oletettuja pienempiä, jopa huomattavasti alle amerikkalaisten keskiarvon.

Emeriusprofessorit Matti Järvilehto Oulusta ja Pentti Tuohimaa Tampereelta kritisoivat Medical Hypotheses-lehden artikkelissaan kolesterolihoitoja. Medialle lähettämässään tiedotteessa he esittävät näkemyksensä, joka tukee täysin Erkki Antilan, Pentti Raasteen ja Matti Tolosen vuosia esittämiä näkemyksiä: ravinnon rasvat ja kolesteroli eivät ole valtimotautien syy ja kolesterolin alentaminen lääkkein on enimmäkseen turhaa ja terveydelle haitallista.

Statiinien käyttäjillä D-vitamiinin vajauksen yhteydessä lähes kaikilla esiintyy lihas- ja sidekudoskipuja. Statiinit saattavat lisäksi heikentää D-vitamiinin vaikutusta syrjäyttämällä hoitopitoisuuksilla D-vitamiinin reseptoristaan.

statin_scamEtusivun uutiseksi päätynyt Oxfordin yliopiston professori Rory Collins myöntää salanneensa tutkimuksissaan statiinien sivuvaikutuksia. Statiineista voi olla vakavaa haittaa sydänlihakselle kirjoittavat japanilaiset sydänlääkärit yhdessä amerikkalaisen kardiologin Peter Langsjoenin kanssa julkaisemassaan artikkelissa. Vääristeltyjen tutkimusten perusteella miljoonat britit syövät statiineja turhaan. Collins johtaa vuonna 1994 perustettua Cholesterol Treatment Trialists (CTT) Collaborationia, jonka tutkimuksiin mm. Suomen Sydänliiton ylilääkäri Mkko Syvänne on vedonnut statiineja puolustaessaan.

Yli 20 tutkimusta osoittaa, että pisimpään elävät ne ihmiset, joiden veressä on riittävästi kolesterolia. Siis enemmän kuin 5 mmol/l, jota lääkärit pitävät lääkehoidon rajana. Päivi Tirkkalan väitöskirjassa (2011)osoitettiin, että matalat kolesteroliarvot ovat yhteydessä kuolleisuuteen. Sen sijaan korkeat kolesterolitasot yli 74-vuotiailla eivät lisänneet sairastumisen tai kuoleman riskiä. Lisäksi kolesterolit ovat yhteydessä kognitiivisiin kykyihin. Matalat kolesterolitasot heikentävät muistia ja voivat aiheuttaa dementiaa. Norjan HUNT2-tutkimuksessa seurattiin yli 50 000 20-74 vuotiasta henkilöä. 1,0 mmol/l kokonaiskolesterolin nousu naisilla vähensi kuolleisuutta 6 %, kun alle 5 mmol/l tasot lisäsivät kuoleman riskiä. Miehillä kuolleisuus oli pienintä, kun kolesteroli oli 5,0-5,9 mmol/l. Naisten kuoleman riski on 28 % pienempi, kun kokonaiskolesteroli on yli 7,0 mmol/l verrattuna arvoon alle 4,9 mmol/l. Myös Pietarissa ja Honolulussa tehdyissä tutkimuksissa toistuu sama ilmiö: matala kolesteroli korreloi suurentuneen kuolemanriskin kanssa (Shestov ym. 1993, Schatz ym 2001). Myös Kelan autoklinikkatutkimus tukee näitä tutkimuksia: sen mukaan miesten optimaalinen kolesterolitaso on 5-7 mmol/l ja naisilla vastaava suositus on 6-9 mmol/l.

Statiinit nostavat verensokeria ja lisäävät aikuistyypin diabeteksen riskiä keskimäärin 9-13 %, mutta naisilla riski kasvaa lähes 50 %. Suomalaiseen tutkimukseen osallistui 10 149 henkilöä, joilla oli suurentunut diabeteksen riski.

Rasvateoria on itsessään ristiriitainen, eikä selitä loogisesti ateroskleroosin kehittymistä. Veren korkea kolesteroli ei selitä plakin syntymistä syvälle verisuonen seinämään. Tämä on selitettävissä loogisesti vain verisuonen seinämää ravitsevien suonten (vasa vasorum) toiminnan perusteella. Viime vuonna tekijät julkaisivat teoriansa ravitsevien suonten toiminnallisesta happivajauksesta ateroskleroosin syynä. Näiden pienten päätevaltimoiden vaurio aiheuttaa makromolekyylien (kolesterolipartikkeleiden, mikrobien jne) vuotamisen ja kerääntymisen valtimon seinään. Kolesteroli ei siis ole syy ateroskleroosiin, vaan sen kertyminen on seurausta vasa vasorumien pintakalvon happipuutoksen aiheuttamasta vauriosta. Lähde: Tohtori Tolonen

Sivuhuomautus: K-vitamiinit ja kalsium

K-vitamiinista riippuvaiset proteiinit suojelevat soluja, siivoavat kuolleiden solujen jäännöksiä verestä ja ehkäisevät pehmytkudosten kalkkeutumista. Kun elimistö saa K-vitamiineja riittämättömästi, niistä riippuvaiset proteiinit menettävät toimintakykynsä ja tarkoituksensa, jolloin niistä tulee verenkierron jäteainesta. Näyttää siltä, että K2-vitamiini, jota saadaan mm. eläinrasvoista ja fermentoiduista ruoista, on paljon tärkeämpi tekijä tässä yhtälössä kuin K1-vitamiini, jota saadaan mm. vihreistä kasviksista. Tällä on merkitystä erityisesti miljoonille diabeetikoille, joilla verisuonten kalkkeutuminen lisää sydän- ja verisuonitautien, sydänkohtausten ja pienten verisuonten tukkeutumisen aiheuttamien kuolioiden riskiä. Verisuonille aiheutetut vammat aiheuttavat paikallisen ”korjausprosessin”, jossa solut kerääntyvät vahingoittuneen verisuonen osan ympärille ja siten aiheuttavat suonenseinämän paksuuntumisen. Adrenaliini-injektiot tuottivat mielenkiintoisia tuloksia jäniksillä: ne aiheuttivat solujen nekroosin (kuoleman) ja lisäsivät kalkkeutumista suonessa. Vastaavia oireita esiintyy ihmisillä diabeteksen, munuaistautien ja ikääntymisen seurauksena. K-vitamiinin puutoksen oireet, kuten kalkkeutuminen jäykistyttävät valtimoita ja vaikuttavat sydämen toimintaan. Eräs merkittävä vaikuttaja tässä yhtälössä on K2 -vitamiini, joka puhdistaa verta.

In the 1960s, you could eat anything you wanted, and of course, people were smoking cigarettes and all kinds of things, and there was no talk about fat and anything like that, and butter and cream were rife. Those were lovely days for gastronomy, I must say.

Julia Child

Ancel Keys – Sankari vai konna?

Ancel-KeysPalataan siis Keysin ajatuksiin. Vuonna 1953 hän raportoi, että ravinnon rasva korreloi merkitsevästi seerumin kolesterolin pitoisuuteen ja sydänkuolemiin kuudessa maassa: Japanissa, Italiassa, Englannissa, Walesissa, Kanadassa ja USA:ssa. Tämän tutkimuksen ongelma oli, että Keys kelpuutti tutkintoaineistonsa 22 maasta mukaan vain kuusi maata, joiden aineisto tuki hänen kolesterolihypoteesiaan. Kun kaikkien 22 maan tutkimusaineisto analysoidaan, Keysin esittämää korrelaatiota ei enää löydy. Tutkimus on laadittu tukemaan ennalta asetettua hypoteesia ja koska suurin osa tutkimusaineistosta on tarkoituksella hylätty, ei tutkimus täytä tieteellisen tutkimuksen kriteerejä. Se  on malliesimerkki tieteellisestä huijauksesta.
ancel-keys-destoying-health-bogus-science-1953-tshirt-zoomKeysin toinen merkittävä raportti oli jo mainitsemani seitsemän maan tutkimus, jossa myös Suomi oli mukana. Se julkaistiin Circulation-lehdessä vuonna 1970 ja siinä Ancel Keys ja professori Martti Karvonen kertoivat todistaneensa maaeläinrasvan olevan vaarallista, koska se kohotti veren kolesterolipitoisuutta ja lisäsi sydänkuolleisuutta. Seitsemän maan tutkimus on osoitus siitä, kuinka kikkailemalla tilastot saadaan tukemaan omaa agendaa. Tutkimuksen arviointi on tehty liki mahdottomaksi, koska välillä raportoitiin seitsemän maan ja välillä kuuden maan tilastoja ja raportit muuttuivat matkan varrella siten, että välillä suomalaisia verrattiin hollantilaisiin, kreikkalaisiin ja italialaisiin, jotta saatiin haluttuja tilastollisia tuloksia. Seitsemän maan tutkimus ja sen metodologia on sittemmin useampaankin kertaan tyrmätty tieteellisessä yhteisössä.
chd-deaths
Nykyinen virallinen käsitys tyydyttyneistä rasvoista ja kolesterolista perustuu kuitenkin tähän 1958 Jugoslaviassa alkaneeseen epidemiologiseen seurantatutkimukseen, joka julkaistiin Circulation-lehdessä vuonna 1970. Tämä on tärkeä osa rasvakeskustelua. Seitsemän maan tutkimus alkoi muodollisesti Jugoslaviassa syksyllä 1958 ja siinä seurattiin 12 763 40-59 vuotiaan miehen elämäntapojen ja sydäntautien korrelaatioita. Tutkimuksessa otettiin mukaan 16 tilastollista kohorttitutkimusta seitsemästä maasta, joista: 1 Yhdysvalloista, 2 Suomesta, 1 Alankomaista, 3 Italiasta, 5 Jugoslaviasta, 2 kreikasta ja 2 Japanista. Tutkimuksen aineistoa seurattiin 1958-1964. Epidemiologinen kohorttitutkimus on altistelähtöinen eli tutkitaan altisteen vaikutuksia valitussa väestössä. Yleensä voidaan tutkia yhtä altistetta kerrallaan. Joskus voidaan kohortti jakaa alakohortteihin, mutta tämä edellyttää että kohortti on tarpeeksi suuri ja että altistumistiedot ovat tarpeeksi hyviä. Kohorttitutkimus sallii kuitenkin usean sairauden yhtäaikaisen tutkimisen.Keysin 22 maan tutkimus oli ensimmäinen monikansallinen epidemiologinen seurantatutkimus, jossa verrattiin elintapojen korrelaatiota sydäntauteihin ja sydäninfarkteihin. (Lähteet: Wikipedia, Tohtori Tolonen, jne.)

Framingham Heart Study

Framinghamin sydäntutkimus on pitkäkestoinen seuranta, joka toteutetaan Framinghamissa, Massachusettsissa. Tutkimus alkoi jo 1948, jolloin seurantaan osallistui 5209 aikuista. Nyt tutkittavina on jo kolmas sukupolvi. Projektista vastaa National Heart, Lung and Blood Institute yhteistyössä Bostonin yliopiston kanssa. Framinghamin tutkimuksen seurauksena on julkaistu yli 1000 tutkimusraporttia ja saatu paljon arvokasta tietoa ateroskleroosin ja hypertension epidemiologiasta sekä ruokavalion, liikunnan ja esimerkiksi aspiriinin vaikutuksista sydänterveyteen. Tutkimuksesta suunniteltiin 20-vuotista, mutta vuonna 1968 tutkijat halusivat edelleen jatkaa projektia. Vuonna 1971 seurantaan osallistui jo toinen sukupolvi ja 2002 seurantaan otettiin kolmas sukupolvi. Vaikka Framinghamin sydäntutkimuksen on yleensä uskottu tukevan rasva- ja kolesteroliteoriaa, 30-vuotisseuranta yllätti tutkijat: siinä kävi ilmi, ettei kolesteroli ollutkaan yli 47-vuotiaiden miesten riskitekijä, eikä myöskään minkään ikäisten naisten. Erityisen kiusallista kolesteroliteorian kannattajien kannalta oli se, että eniten oli kuollut niitä miehiä, joiden kolesterolitasot olivat vuosien mittaan laskeneet. Tutkijat kirjoittivat: ”Jokaista alentunutta kolesterolin milligrammaprosenttia kohti sydänkuolleisuus kasvoi 11 % ja kokonaiskuolleisuus 14 %.
Amit Sachdeva ym. havaitsivat 136 905 potilaan tutkimusaineisossa, että akuutin sydänkohtauksen saaneiden potilaiden kolesteroli oli merkittävästi matalampi kuin samanikäisten terveiden verrokkien (American Heart Journal 2009). Al-Mallah ym. totesivat, että ”pahan” LDL-kolesterolin pioisuudet olivat tavallista pienempiä ja kuolleisuus kaksin verroin yleisempää matalien LDL-lukemien potilailla (Cardiology Journal 2009). Nämä tutkimukset osoittavat, että seerumin kohonneen kolesterolipitoisuuden ja sydänkuoleman välillä ei vallitse kausaalisuhdetta.

Rasva onkin ystävä

Pohjoismaiden tunnetuin ja vaikutuvaltaisin ravitsemustieteilijä, tanskalainen professori Arne Astrup on muuttanut täysin mielipiteensä rasvoista ja kolesteroliteoriasta. Aikaisemmin hyvin kriittisesti tyydyttyneisiin rasvoihin suhtautunut Astrup kirjoitti vastattain maailman johtavan ravitsemuslääketieteen lehden pääkirjoituksessa, ettei tyydyttyneillä rasvoilla ole syy-yhteyttä sydän- ja verisuonitauteihin. Astrupin kanssa samoilla linjoilla on myös professori Heikki Karppanen, joka sai melkoisesti kuraa niskaansa puhuessaan kolesteroliteoriaa vastaan.

Arne Astrup oli vannoutunut tyydyttyneiden rasvojen vastustaja ja hiilihydraattien puolestapuhuja. Vuonna 2013 Astrup siirtyi näkemykissään lähelle vähähiilihydraattisen ruokavalion periaatteita. Hän myönsi julkisesti, ettei rasva ole vaarallista, kuten vuosikymmeniä on opetettu. Samaa sanoi myös professori Jussi Huttunen Suomessa.  Nykyisin tiedetään, että elintasosairauksien taustalla ei ole välttämätön rasva, vaan hiilihydraattien liiallinen painottaminen ruokavaliossa.

Hiilihydraatit ovat sokereita ja niiden lisäksi syödään ja juodaan virvoitusjuomina valtavasti lisättyä sokeria. Tämä tiedettiin jo 1960-luvulla, jolloin professori John Yudkin puhui sokerien epäterveellisyydestä. Ikävä kyllä Yudkinin näkemykset tyrmättiin täydellisesti ja vaikka hän oli oikeassa, hänen maineensa kärsi valtavasti.

Uudet suuret meta-analyysit (koontitutkimukset) osoittavat, ettei maaeläinrasvan syönti lisää sydän- ja valtimotauteja, eikä kuolleisuutta näihin. Rasvat kuuluvat välttämättömiin ravintoaineisiin ja niitä tarvitaan mm. solujen rakennusaineina ja steroidien lähtöaineina sekä rasvaliukoisten vitamiinien imeytymiseen.

yudkin

John Yudkin (1910–1995) toimi vuosina 1954–1971 Lontoon yliopiston ravitsemustieteen professorina. Hän esitti jo 1960-luvulla, ettei eläinrasva ole vaarallista terveydelle, mutta sitä vastoin sokeri on. Yudkin julkaisi vuonna 1972 sokerista kirjan Pure, White and Deadly, suomennettu nimellä Puhdasta valkoista ja tappavaa: kirja sokerista. Keysin ja Yudkinin välillä käytiin ankaraa kiistaa, ja lopulta – valitettavasti – Keysin kanta voitti, voi ja muu maaeläinrasva julistettiin pannaan, ja sokeria sai syödä. Vasta nyt myönnetään, että Yudkin oli oikeassa ja Keys väärässä (vaikka suomalaiset ravitsemustieteilijät, Fogelholm, Schwab ym. ja Pekka Puska, Matti Uusitupa ja monet muut lääkärit pelottelevat edelleen ihmisiä eläinrasvalla ja kolesterolilla). Lähde: Matti Tolonen

Tutkimuksia tyydyttyneiden rasvojen ja sydäntautien korrelaatiosta:

A group of researchers from the Children’s Hospital Oakland Research Institute in Oakland, California and the Departments of Nutrition and Epidemiology at Harvard School of Public Health in Boston, Massachusetts, performed a meta-analysis of prospective epidemiologic studies on saturated fatty acid intake and risk of coronary heart disease, stroke, or cardiovascular disease in general. In prospective epidemiologic studies a group of initially healthy people, a cohort, is followed over time to investigate if occurrence of disease is related to the exposure of certain factors e.g. dietary and other lifestyle factors. In a meta-analysis, results from different studies on a specific topic are collected and jointly analysed in order to reach a general conclusion based on the accumulated scientific data. Twenty-one studies matched the inclusion criteria for the current meta-analysis. Together these comprised 347,747 individuals of which some 11,000 developed any cardiovascular disease. The results of the analysis showed no significant association between high intake of saturated fatty acids and an increased risk of coronary heart disease, stroke or cardiovascular disease. Age, sex, and study quality were factors taken into account in the analysis, but they did not impact on the outcome.

http://www.eufic.org/page/en/show/latest-science-news/fftid/Study-no-association-dietary-saturated-fats-cardiovascular-disease-risk/

A meta-analysis of prospective cohort studies and randomized controlled trials examined the association between fatty acids and coronary disease. A total of 32 prospective cohort studies with data on dietary fatty acid intake were identified. The analysis included 530,525 participants with 15,907 incident coronary outcomes and an average follow-up of 5 to 23 years. The authors also examined 17 observational studies with data on circulating fatty acid composition (i.e., fatty acids in the blood). These studies included 25,721 participants with 5,519 incident coronary outcomes for whom the average follow-up was 1.3 to 30.7 years.1

  • Total saturated fatty acid intake was not associated with coronary disease risk (pooled relative risk of 1.02, 95% CI: 0.97-1.07);
  • Total circulating saturated fatty acids were not associated with coronary disease risk (pooled relative risk of 1.06, 95% CI: 0.86-1.30);
  • Individual circulating fatty acids, such as palmitic and stearic acids, were also not associated with coronary disease risk;
  • Margaric acid (a saturated fatty acid found in dairy foods) was significantly associated with a lower risk of coronary disease;
  • The authors concluded that the current evidence does not clearly support cardiovascular guidelines that encourage a low intake of total saturated fats.

Another meta-analysis of 26 prospective cohort studies assessed the association between foods high in saturated fat and the risk of mortality.2

  • High intakes of milk, cheese, yogurt and butter were not associated with a risk of all-cause mortality compared to low intakes;
  • High intakes of total dairy, milk and cheese were not associated with cardiovascular mortality.

A 2010 meta-analysis of prospective cohort studies, which included the follow-up of 347,747 subjects over 5 to 23 years, provided the following evidence on the association between dietary saturated fat and coronary heart disease, stroke and cardiovascular disease:3

  • Saturated fat intake was not associated with an elevated risk of coronary heart disease, stroke or cardiovascular disease;
  • The pooled relative risks were 1.07 (95% CI: 0.96-1.19, p = 0.22) for coronary heart disease, 0.81 (95% CI: 0.62-1.05, p = 0.11) for stroke, and 1.00 (95% CI: 0.89-1.11, p = 0.95) for cardiovascular disease;
  • After adjustments for covariates such as age, sex and study quality, the results did not change, and no significant association was observed;
  • No association between dietary saturated fat and disease prevalence was found after adjustment for other nutrients and total energy.

In a 2009 systematic review, the following summary of evidence from prospective cohort studies and randomized controlled trials was provided:4

  • From the meta-analysis of cohort studies of saturated fat and coronary heart disease, intake of saturated fatty acids was not significantly associated with coronary heart disease death or events;
  • The relative risks for the highest compared to the lowest category of saturated fat intake were 1.14 (95% CI: 0.82-1.60, p = 0.431) for coronary heart disease mortality and 0.93 (95% CI: 0.83-1.05, p = 0.269) for coronary heart disease events;
  • There was no significant association between saturated fat and coronary heart disease death or events per 5% total energy increase in saturated fatty acids intake;
  • From the meta-analysis of randomized controlled trials of dietary fat and coronary heart disease, the relative risk of fatal coronary heart disease was not reduced by fat-modified diets.

Another systematic review of prospective cohort studies and randomized trials examined the evidence for dietary factors in relation to coronary heart disease.5

  • Pooled analyses of cohort studies did not show any significant association between higher intakes of saturated fatty acids, meat or milk and coronary heart disease;
  • The relative risks were 1.06 (95% CI: 0.96-1.15) for saturated fatty acids, 1.23 (95% CI: 0.98-1.49) for meat, and 0.94 (95% CI: 0.75-1.13) for milk;
  • After the dietary exposures were stratified by confounding variables such as dietary assessment tool, sex, geographic region, and type of prevention strategy, the association between saturated fatty acids and coronary heart disease in cohort studies remained statistically insignificant;
  • There was no evidence from pooled analyses of randomized controlled trials to support a causal association between saturated fatty acids, meat or milk and coronary heart disease.

In 2012, de Oliveira Otto et al. undertook a prospective cohort study to assess the association between the intake of saturated fat from different food sources and incident cardiovascular events in a multiethnic population. The participants consisted of 5,209 US adults aged 45 to 84 years, and together they represented 36,364 person-years of follow-up.6

  • After adjusting for potential confounders, a higher intake of dairy saturated fat was associated with a lower risk of cardiovascular disease, with a hazard ratio of 0.79 (95% CI: 0.68-0.92) for every additional 5 g/d of dairy and 0.62 (95% CI: 0.47-0.82) for every additional 5% of energy from dairy;
  • The substitution of 2% of energy from meat saturated fat with energy from dairy saturated fat was associated with a 25% lower risk of cardiovascular disease.

In another prospective cohort study, the association between saturated fatty acid intake and the risk of cardiovascular disease mortality was investigated in 58,453 Japanese adults aged 40 to 79 years.7

  • Dietary saturated fatty acid intake was inversely associated with risk of total stroke, intraparenchymal hemorrhage and ischemic stroke;
  • After adjustments for confounding variables such as potential cardiovascular disease risk factors and nutrients, the hazard ratios for the highest compared with lowest quintile were 0.69 (95% CI: 0.53-0.89, ptrend = 0.004) for total stroke, 0.48 (95% CI: 0.27-0.85, ptrend = 0.03) for intraparenchymal hemorrhage, and 0.58 (95% CI: 0.37-0.90, ptrend = 0.01) for ischemic stroke;
  • There was no association between saturated fatty acids intake and subarachnoid hemorrhage and heart diseases such as ischemic heart disease, cardiac arrest and heart failure.

Conclusions

There is strong evidence to support a lack of association between dietary saturated fat and an increased risk of cardiovascular disease.

Saturated fat derived from dairy has either no impact or a beneficial impact on cardiovascular disease risk.

Further research, especially prospective cohort studies and randomized clinical trials, is needed to evaluate the relationship between different food sources of saturated fat and cardiovascular disease outcomes and mortality.

http://www.dairynutrition.ca/nutrients-in-milk-products/fat/saturated-fat-and-cardiovascular-disease-where-are-we

 

A new review of published evidence challenges current guidelines that suggest in order to reduce heart disease risk, people should generally restrict intake of saturated fats – like those found in butter and dairy foods – in favor of unsaturated fats – such as in margarine and sunflower oil.

The analysis, published in the journal Annals of Internal Medicine by an international group led by a team at the UK’s University of Cambridge, included 72 separate studies on heart risk and intake of fatty acids.

They found no evidence to support guidelines that say people should restrict saturated fat consumption to lower their risk of developing heart disease.

They also found insufficient evidence to support guidelines that advise eating more foods containing polyunsaturated fats (such as omega-3 and omega-6) to reduce heart risk.

And when they dug into the detail of specific fatty acids (such as different types of omega-3), the researchers found their impact on heart risk varied even within the same family of fatty acids.

Findings question current guidelines

The researchers say their findings call into question current guidelines that focus mainly on saturated versus unsaturated fat amounts, as opposed to concentrating on the food sources of the types of fatty acid.

The study was part-funded by the British Heart Foundation, whose associate medical director, Prof. Jeremy Pearson, says:

”This analysis of existing data suggests there isn’t enough evidence to say that a diet rich in polyunsaturated fats but low in saturated fats reduces the risk of cardiovascular disease.”

Lead author Dr. Rajiv Chowdhury of the University of Cambridge, who describes the findings as ”interesting,” says they could open new lines of enquiry that carefully question our current dietary guidelines, and adds:

”Cardiovascular disease, in which the principal manifestation is coronary heart disease, remains the single leading cause of death and disability worldwide. In 2008, more than 17 million people died from a cardiovascular cause globally. With so many affected by this illness, it is critical to have appropriate prevention guidelines which are informed by the best available scientific evidence.”

Researchers pooled data from 72 separate studies

To arrive at their conclusions, Dr. Chowdhury and his colleagues pooled and re-analyzed data from 72 separate studies that included over 600,000 participants in 18 different countries.

The studies had assessed total saturated fatty acid in two ways: one as a component in participants’ diet, and the other way was by measuring levels in the bloodstream.

The results of the pooled analysis showed that whether measured in the bloodstream or as a component of diet, total saturated fatty acid was not linked to coronary disease risk.

The analysis also found no significant link between heart risk and intake of total monounsaturated fatty acids, long-chain omega-3 and omega-6 polyunsaturated fatty acids.

Totuus ostetaan rahalla kun tieteestä on tullut markkinoinnin väline

Monet elävät yhä siinä harhaluulossa, että rasva lihottaa ja on epäterveellistä, koska meidät ehdollistettiin ajattelemaan niin vuosikymmeniä sitten, jolloin behaviorismiakin pidettiin merkittävänä psykologian suuntauksena.

Joseph Goebbelsin sanoin: ”Kun valhetta toistetaan riittävän monta kertaa, se muuttuu totuudeksi”. Valhe voi olla savuverho: ignoratio elenchi, jossa asian vierestä puhumisella johdetaan keskustelu sivupoluille ja varsinainen ongelma jää sivuhuomioksi. Vuosikymmeniä erityisesti tupakkateollisuus käytti näitä argumentaation muotoja, mutta nykyisin niitä sovelletaan hyvin yleisesti lääke- ja elintarviketeollisuudessa. Näiden virheellisen argumentaation muotojen lisäksi nykyisin sovelletaan riskianalyysiä. lasketaan tuottoja ja verrataan voittoja mahdollisiin taloudellisiin sanktioihin. Lääketeollisuus maksaa vuosittain miljardeja erilaisina oikeudenkäynti- ja korvuskuluina vääristeltyjen ja peiteltyjen tutkimusten aiheuttamien joukkokanteiden kompensaationa, mutta maksetut sakot ja korvaukset ovat mitättömiä saatujen voittojen rinnalla. Totuus ostetaan rahalla ja tieteestä on tullut markkinoinnin väline. Kvartaalitalous etenee sijoittajien ehdoilla, ja siinä tärkeämpää on tulojen maksimointi ja ´taloudellisten sanktioiden minimointi; ihmiselämällä ei ole lääketeollisuudessa kuin välineellistä ja taloudellista arvoa. Valitettavasti raha menee kansanterveyden ja hyvinvoinnin edelle. Statiineja syö jo noin 700 000 suomalaista. Oikeastaan vain harvat yli 40-vuotiaat eivät syö säännöllisesti lääkkeitä. Statiinien valmistajien toimintatapa, ”modus operandi” on suunnitella, suorittaa ja analysoida kliinisiä tutkimuksia ja siten käyttää ammattimaisia haamukirjoittajia ja ostaa julkaisijoiden nimiksi tunnettuja akateemisia vaikuttajia: Key Opinion Leaders (KOLs).

Haamuraportteja kirjoittavat niiden tuottamiseen erikoistuneet organisaatiot (Contract Research Organizations, CROs). Haamukirjoituksista on tullut merkittävä osa lääkkeiden markkinointia. Todella taitavata markkinointivelhot toimivat kuin David Blaine, Chris Angel tai David Copperfield. He ovat sananmukaisesti silmänkääntäjiä.

Ruotsissa julkaistu väestötutkimus käsitti lähes kaksi miljoonaa miestä ja kaksi miljoonaa naista. Vuosina 1998–2002 määrätyt statiinit eivät olleet yhtään vähentäneet sydänkohtauksia eikä sydänkuolemia. Tulos on yhdenmukainen Ray ynnä muiden meta-analyysin kanssa (2010): Statiinien käyttö ei lisännyt elinikää satunnaistetuissa primaaripreventiotutkimuksissa, joihin oli osallistunut 65 229 ”suuren riskin” henkilöä. Analyysi käsitti 244 000 henkilövuotta ja 2793 kuolemantapausta.[Kelan ja Tilastokeskuksen tilastot kertovat samaa Suomesta: Statiinien jyrkästi lisääntynyt käyttö ei ole vähentänyt sydänkuolemia.]

Amerikkalaiset lääkärit Hayward ja Krumholz kritisoivat LDL-kolesterolin saamaa liaallista huomiota hoidossa. Heidän mielestään pitäisi hoitaa todellisia risikitekijöitä, ei LDL:ää. ”On aika jättää hyvästit tälle vanhalle, perusteettomalle ja harhaanjohtavalle rasvateorialle”, kirjoittivat ruotsalaislääkärit.

Lähde: Tohtori Tolonen

  ”Two strikingly polar attitudes persist on this subject, with much talk from each and little listening between.” Henry Blackburn, 1975

Seitsemän maan tutkimuksen tulokset ja vaikutukset virallisesti

Tutkimus osoitti populaatioiden ja yksilöiden kohdalla suoran korrelaation ja kausaalisuhteen veren kolesterolitasojen sekä sydän- ja verisuonitautien välillä. Lisäksi tutkimus löysi korrelaation veren kolesterolitasojen ja sydän- ja verisuonitautiriskin (CHD) välillä 5-40 vuoden seurantatutkimuksessa. Kolesteroli ja lihavuus korreloivat myös syöpäkuolleisuuden lisääntymisen kanssa.

Sydän- ja verisuonitautiriski osoittautui tutkimuksessa selvästi suuremmaksi Yhdysvalloissa ja Pohjois-Euroopassa, kuin Etelä-Euroopassa; tämän uskotaan liittyvän välimeren ruokavalioon. Tutkimuksessa kontrolloitiin mm. tupakointi, kolesteroli, liikuntatavat, ikä, verenpaine ja paino, jonka jälkeen merkittävimmäksi sydäntauteja alentavaksi muuttujaksi jäi välimerellinen ravinto. Pidempiaikaisessa seurannassa selvisi, että länsimaisten ruokailutottumusten omaksuminen, fyysisen aktiivisuuden väheneminen ja painon lisääntyminen lisäsivät myös Välimeren alueen ihmisten riskiä sairastua sydän- ja verisuonitauteihin.

Suomessa Ancel Keysin tutkimustulokset otettiin vastaan yhtä innokkaasti kuin DDR:n huippu-urheilijoille suunnittelemat harjoitusohjelmat ja niitä tehostavat anaboliset steroidit.

Seitsemän maan tutkimus sekä Framingham Heart Study, Nurses’ Health Study ja Women’s Health Initiative osoittivat ruokavalion, liikunnan ja normaalipainon merkityksen hyvän terveyden ylläpitäjinä. Seitsemän maan tutkimus osoitti myös, että korkea verenpaine (hypertensio) lisää sekä sydän- ja verisuonitautien että sydän- ja aivoinfarktin riskiä. Tutkimukset ovat sittemmin vaikuttaneet merkittävällä tavalla ravintosuosituksiin lähes kaikissa länsimaissa. Suomessa mm. THL, Valtion ravitsemusneuvottelukunta, Duodecim ja Itä-Suomen yliopisto vetoavat näihin tutkimuksiin ravitsemussuosituksissaan. Kolesteroliteorian vannoutuneisiin puolustajiin kuuluvat mm. Pekka Puska, Mikael Fogelholm, Matti Uusitupa ja ursula schwab, joiden mukaan tuhat tutkimusta tukee kolesteroliteoriaa (yhtään ei ole Antti Heikkilän ynnä muiden kolesteroliteorian vastustajien julkisista pyynnöistä huolimatta esitetty). Useilla Suomen ravitsemussuosituksista vastaavilla asiantuntijoilla on huomattavia sidonnaisuuksia lääke- ja elintarviketeollisuuteen. Helsingin yliopiston ravitsemustieteen professori Mikael Fogelholm on myöntänyt, että ravinnosta saatavat tyydyttyneet rasvat ja kolesteroli eivät aiheuta sydän- ja verisuonitauteja, mutta jo  seuraavassa haastattelussa varoitellut tyydyttyneiden rasvojen vaarallisuudesta (huikea logiikka!).

Englantilainen sydänkirurgi Shyam Kolvekar Lontoon yliopillisesta keskussairaalasta on ehdottanut voille täyskieltoa. Aamupalaksi Kolvekar suositteleekin paahtoleipää teollisella margariinilla. Kolvekarin ohjeen julkaisi KTB, Flora margariinia valmistavan Unileverin PR-yhtiö. Sydänkirurgilta outo lausunto ottaen huomioon, että kaksi paahtoleipäviipaletta vastaa viittä sokeripalaa ja kohonneen verensokerin tiedetään altistavan sydäntaudeille.




Painavaa asiaa lihavuudesta

Syöpä koskettaa tavalla tai toisella jokaista suomalaista jossakin elämänvaiheessa. Ylipaino ja lihavuus heikentävät lähes joka kolmannen ihmisen elämänlaatua maailmassa. Lihavuus voi ennakoida syöpää, sillä se on oire jostakin aineenvaihdunnan ja elämäntapojen häiriötilasta sekä elimistöä kalvavasta tulehduksesta.

Syöpään sairastumiselle altistaa kolme seikkaa: elämäntavat (ravinto, tupakka ja alkoholi), geneettinen alttius sairastua (laukaisijoina ympäristötekijät ja elämäntavat) sekä ”huono tsägä”. Viimeisimmässä tapauksessa tutkijat eivät ole löytäneet selvää kausaalista syytä solujen poikkeukselliselle jakautumiselle ja syövän kehittymiselle.

Vuosittain todettavista syöpätapauksista noin puoli miljoonaa (maailmanlaajuisesti) selittyy ylipainolla sekä niillä ruoka- ja aineenvaihduntatekijöillä, joiden oire myös ylipaino on. Keskityn tässä ensisijaisesti lihavuuteen, koska se on johtava elämäntapamuutoksilla ehkäistävissä oleva tappaja maailmassa yhdessä tupakoinnin kanssa, sekä toissijaisesti lihavuuteen liittyviin terveysriskeihin, joita vähäisilläkin elämäntapamuutoksilla voi huomattavasti pienentää.

Jos ylipainoon liittyvät terveysriskit ja painonhallinta askarruttavat, toivon, että tämä artikkeli antaa vastauksia aihepiiriä sivuaviin kysymyksiin, ylipainoon liittyviin terveysriskeihin sekä menetelmiä painon- ja terveysriskien hallintaan. Ehkä tämä motivoi terveitä elinvuosia lisäävään elämäntaparemonttiin.

Why We Get Fat – Gary Taubes

Lihavuuden ja ylipainon määritteleminen

Lihavuus voidaan määritellä monin tavoin, mutta yleisimmän standardin mukaan ihminen on lihava, kun painoindeksi (BMI, Body Mass Index) on yli 30. BMI arvioi ihmisen pituuden ja painon suhdetta ja se lasketaan jakamalla paino pituuden neliöllä (esim. 70 kg / (1,75 m * 1, 75 m) = 22,85..=> 23). Painoindeksi ei kuitenkaan aina ole täsmällinen tapa mitata lihavuutta, sillä lihakset painavat enemmän kuin elimistön rasva ja siksi indeksin keskivaiheilla tulokset liioittelevat lihavuutta lihaksikkailla ja vähättelevät lihavuutta vähemmän lihaksikkailla.

Vaikea alipaino < 16.0
Merkittävä alipaino 16.0 – 16.99
Lievä alipaino 17.0 – 18.49
Normaali paino 18.5 – 24.99
Lievä lihavuus 25.0 – 29.99
Merkittävä lihavuus 30.0 – 34.99
Vaikea lihavuus 35.0 – 39.99
Sairaalloinen lihavuus 40.0 >=
Lähde: WHO

Lihavuuteen liittyviä terveysongelmia

Lihavuus lisää sairastumisen riskiä mm. sydän- ja verisuonitauteihin, moniin syöpiin, aikuistyypin diabetekseen, uniapneaan jne. Mielestäni on tosin osoitettu, että lihavuus ei ole varsinainen syy sairastumiseen, kuten aikuistyypin diabetekseen (tällainen väärinkäsitys on varsin yleinen), vaan yksi oire niistä aineenvaihdunnan häiriöistä, jotka lopulta johtavat sairastumiseen. ”Lihavuus altistaa sairastumiselle” pitäisi tulkita siten, että ne aineenvaihdunnan ja elämäntapojen tekijät, jotka aiheuttavat lihavuutta lisäävät myös yleistä sairastumisen riskiä.

Aikuistyypin diabetes

Aikuistyypin diabetes ei ole vain lihavuuden aiheuttama sairaus, vaan liiallisen sokerikuorman aiheuttaman insuliinierityksen ja insuliinivasteen häiriön, eli insuliiniresistenssin aiheuttama aineenvaihduntasairaus. Siinä insuliinin eritys haiman endokriinisesta osasta on heikentynyt pitkittyneen insuliinin ylituotannon seurauksena ja sen lisäksi insuliinin vaikutus soluihin on heikentynyt. Vähentyneen insuliinin seurauksena veren glukoosipitoisuus kasvaa, mikä altistaa myös verisuonet kovemmalle rasitukselle ja vaurioitumiselle.

Insuliiniresistenssi vaikuttaa myös GIP-hormonin toimintaan rasvakudoksessa ja lipoproteiini lipaasi entsyymin kykyyn pilkkoa kolmesta glyserolimolekyyliin esteröityneestä rasvahappoketjusta muodostuvia triglyseridejä hydrolyysissä vapaiksi rasvahapoiksi ja monoglyseroleiksi.

Yksipuolinen hiilihydraatti- eli sokeripainotteinen ravinto, liikkumattomuus, geneettinen alttius ja muut ”huonot” elämäntavat sairastuttavat myös normaalivartaloisia ja laihoja aikuistyypin diabetekseen. Yhteys lihavuuden ja aikuistyypin diabeteksen välillä on se, että samat huonot ravitsemustottumukset aiheuttavat molempia sairauksia – sanalla sanoen: diabesitya.

Aikuistyypin diabetes on valtava sosioekonominen ja terveydellinen tragedia, ja se on elintaso- ja elintapasairaus. Vielä 1900-luvun ensimmäisellä puoliskolla aikuistyypin ”sokeritauti” oli äärimmäisen harvinainen sairaus. Nykyisin todetuista diabetes-tapuksista 90 % – 95 % kuuluu aikuistyypin eli tyypin-2 diabetekseen.

Yksistään USA:ssa diagnosoituja on 29,1 miljoonaa ja sen lisäksi arvellaan, että 8,1 miljoonaa sairastaa aikuistyypin diabetesta ilman diagnoosia. Sairastuneiden määrä kasvaa kohisten ja vuonna 2012 Yhdysvalloissa diagnosoitiin 1,7 miljoonaa uutta aikuistyypin diabeetikkoa. Kaksi viidestä amerikkalaisesta sairastuu aikuistyypin diabetekseen elämänsä aikana (The Lancet Diabetes & Endocrinology). Maailmanlaajuisesti sairastuneita on 382 miljoonaa, eli n. 90 % kaikista diabeetikoista (WHO). Aikuistyypin diabetes oli nimensä mukaisesti aikuisiässä kehittyvä sairaus, mutta ei ole enää; yhä useampi lapsi ja nuori sairastuu tyypin-2 diabetekseen.1980-luvulla lihavuudelle ja tyypin-2 diabetekselle annettiin oma nimi: Diabesity.

Aikuistyypin diabetes altistaa sydän- ja verisuonitaudeille sekä syövälle. Monikansallisen tutkimuksen mukaan 50 % diabetesta sairastavista kuolee sydän- ja verisuonitautien aiheuttamaan sydänkohtaukseen. Sairaus heikentää ääreisverenkiertoa, sillä jatkuvasti koholla oleva glukoosi (hyperglykemia) ja insuliini tuhoavat verisuonia; tämän seurauksena potilailta joudutaan usein amputoimaan, varpaita, sormia ja jopa jalkoja. Diabeettinen retinopatia on merkittävä sokeuttava tauti, jonka syntyy kun verkkokalvon pienet verisuonet tuhoutuvat diabeteksen seurauksena. Diabetes johtaa usein myös munuaisten vaurioitumiseen ja niiden toiminnan häiriintymiseen. Diabeetikoiden riski kuolla ennenaikaisesti on kaksinkertainen ei-diabetesta sairastaviin verrattuna.

http://www.healthline.com/health/type-2-diabetes/statistics#2

http://www.diabetes.org/diabetes-basics/statistics/

Syöpä ja aikuistyypin diabetes eivät ole ainoita sairaalloiseen lihavuuteen ja ylipainoon liittyviä sairauksia. Ylipainoisen riski sairastua johonkin seuraavista taudeista on huomattavasti korkeampi, kuin normaalipainoisella. Ylipaino lisää näiden tautien riskiä, mutta ei ole näiden tautien syy. Lihavuus kertoo, että aineenvaihdunnassa ja/tai elämäntavoissa on jotakin pielessä. Yleensä metaboliset ongelmat ovat seurausta insuliiniresistenssistä, jonka aiheuttaa jatkuvasti koholla oleva verensokeri.

Type 2 diabetes Gout Depression
Sleep disorders (including sleep apnea) Cancer (especially breast, endometrial, colon, gallbladder, prostate, and kidney8) Gallbladder disease
Polycystic ovarian syndrome Pulmonary embolism Heart disease and enlarged heart
Hernia Gastro-esophageal reflux disease Hypertension
Urinary incontinence Erectile dysfunction Non-alcoholic fatty liver disease (NAFLD)
Cellulitis Chronic renal failure Dementia
Pickwickian syndrome Stroke Lymph edema
Lipid problems Osteoarthritis Asthma

Kaikkiaan ylipaino ja sairaalloinen lihavuus on yhdistetty 5.4 prosenttiin kaikista naisten syöpätapauksista (koko maailma / 2012) ja 1.9 prosenttiin miesten syöpätapauksista. Ero länsimaiden ja kehittyvien maiden syöpätilastoissa on dramaattinen ja se tukee käsitystä elämäntapojen ja ruokavalion vaikutuksesta riskiin sairastua. Monet syövät ovat elintaso- ja elämäntapasairauksia.

Kahdeksan prosenttia kaikista länsimaissa todetuista naisten syövistä liittyy ylipainoon. Kehittyvissä maissa ylipaino on osallisena 1.5 prosenttia naisten syövistä. Miesten kohdalla luvut ovat pienempiä: länsimaissa lihavuus on osallisena 3 prosentissa kaikista miesten syövistä sekä 0.3 % kaikista miesten syövistä kehittyvissä maissa.

Naisten korkeampaa riskiä sairastua ylipanon aiheuttamiin suolistosyöpiin selittää ainakin liiallinen estrogeenien tuotanto. Näitä naishormoneja muodostuu maksassa, munasarjoissa, lisämunuaisissa sekä rasvakudoksessa.

 

Ylipainon hinta: raskaita tilastoja (Dr. Mercola & WHO)

Ylipainon kanssa korreloivien terveydellisten ongelmien arvioidaan maksavan maailmanlaajuisesti $ 2 biljoonaa (2 000 000 000 000 dollaria) vuodessa, tupakoinnin aiheuttamien terveyskulujen hinta on hieman korkeampi, $ 2,1 biljoonaa ja väkivallan, sotien ja terrorismin kokonaishinnaksi maailmalaajuisesti on laskettu myös $ 2,1 biljoonaa.

Elämäntapojen merkitys taloudelle on siis huomattava. Yhdysvalloissa lihavuuteen liittyvien terveysongelmien suorat ja epäsuorat menot ovat $75-$125 miljardia joka vuosi (National Institute of Health). Kirjassaan ”Fast Food Nation” Eric Schlosser arvioi vuotuisten ylipainoon liittyvien terveydenhoitomenojen lähentelevän jo $240 miljardia.

Ylipaino ja lihavuus terveysongelmineen lisääntyvät etenkin lapsilla. Yhdysvalloissa lihavien lasten määrä on kolminkertaistunut vuoden 1980 jälkeen ja nykyisin jo yksi viidestä lapsesta on ylipainoinen kuusivuotiaana. 17 % lapsista ja nuorista on lihavia (BMI yli 30). 42 miljoonaa alle 5-vuotiasta oli lihavia vuonna 2013. Lasten ja nuorten lihavuus on nopeasti kasvava ongelma etenkin urbaaneissa pienituloisissa sosioekonomisissa ryhmissä ja kehittyvissä maissa. Nykyistä tilannetta voi pitää jonkinlaisena sosiaalisena ja terveydellisenä kriisinä, mutta jos lasten ja nuorten lisääntyvään ylipainoisuuteen ei puututa ajoissa, on edessä myös kasvava taloudellinen ongelma.

Maailmanlaajuisesti ylipainoisten määrä on kaksinkertaistunut vuoden 1980 jälkeen. Yli 20 -vuotiaista 35 % oli ylipainoisia ja 11 % lihavia vuonna 2008. 65 % maailman väestöstä asuu maissa, joissa lihavuus tappaa enemmän ihmisiä kuin aliravitsemus. Joka vuosi n. 3,4 miljoonaa aikuista menehtyy lihavuuteen liittyviin sairauksiin ja lihavuus tappaa nykyisin enemmän ihmisiä kuin aliravitsemus. 44 % diabetesta sairastavista, 23 % iskeemistä sydäntautia sairastavista ja 7-41% syöpää sairastavista on ylipainoisia tai lihavia. Tilastot: WHO.

Britanniassa lihavia oli miehistä 13 % ja naisista 16 % vuonna 1993 ja 24 % miehistä ja 25 % naisista vuonna 2012. Ylipainoisia miehiä oli 42 % ja naisia 32 % vuonna 2012 (patient.co.uk). Ylipainoon liittyvien terveysongelmien kustannukset olivat 5,1 miljardia puntaa vuosina 2006-2007, kun samaan aikaan tupakoinnin aiheuttamien terveysmenojen laskettiin olevan n. 3,3 miljardia puntaa. Britanniassa ennustetaan, että vuonna 2050 lihavuuteen liittyvien sairauksien hoito maksaa yhteiskunnalle jo 50 miljardia puntaa.

Ravinto ja liikunta vs. lihavuus

Ensimmäinen askel diabetes- ja ylipainoepidemian hoitoon on elämäntaparemontti, johon sisältyy ravinnerikas, monipuolinen ja pienen glykeemisen indeksin ravinto. Pakkomielteisen kaloreiden laskemisen sijaan kannattaa kiinnittää huomiota ruoan laatuun ja siihen mitä syö. Mitään maagista laihduttavaa ruokavaliota ei ole olemassa, koska jokaisen ihmisen metabolia toimii yksilöllisesti (osa ihmisistä voi syödä tuplamäärän kaloreita ja pysyä edelleen hoikkina), mutta monet trendikkäät ruokavaliot (5-2, paleo, LCHF jne.) tukevat laihtumista, koska ne perustuvat ihmisen biologiaan ja aineenvaihduntaan.

Tärkeintä ravinnossa on se, että saa välttämättömät ravintoaineet, eli ne ravinteet, jotka pitävät elimistön koneiston toiminnassa ja se, että välttää liiallista sokerikuormaa (etenkin maissi- eli fruktoosisiirappia), transrasvoja ja voimakkaasti prosessoituja ravintoaineita, keinotekoisia makeutusaineita ja GMO-tuotteita (joiden pitkäaikaisista terveysvaikutuksista ei ole tutkittua tietoa). Valmiselintarvikkeet kannattaa korvata tuoreilla tuotteilla ja lihat käyttää ilman marinadeja. Valkoiset vehnäjauhot eivät ole laihduttajan tai kenenkään muunkaan terveysruokaa, mutta itseleivottu leipä on varmasti terveyden kannalta edullisempi vaihtoehto kuin valmiit säilöntäaineita, transrasvoja, sokereita ja/tai fruktoosisiirappia sisältävät leivät.

23 tutkimusta, jotka osoittavat sokerikuorman, siis hiilihydraattien vähentämisen, tehostavan merkittävästi laihtumista. http://authoritynutrition.com/23-studies-on-low-carb-and-low-fat-diets/

Laihduttaminen on järkevintä aloittaa ruokavaliomuutoksella, sillä perusaineenvaihdunta kuluttaa 66 % ja liikunta 33 % terveen ihmisen elimistön tarvitsemasta energiasta. Liikunnan merkitystä terveydelle ei voi väheksyä, mutta se yksin ei ole tehokas tapa laihtua. Jotta laihtuminen lähtee käyntiin, elimistön on opittava muuttamaan kertynyttä rasvaa energiaksi. Tämä tehostuu, kun elimistön tärkeimmän energianlähteen, eli hiilihydraattien määrää vähentää vaikka 50 %.

Glukoneogeneesi alkaa heti, kun glykogeeneihin varastoitu glukoosi on käytetty. Jo pelkästään jauhoista ja sokerista (sekä muilla makeutusaineilla makeutetuista herkuista) luopuminen laihduttaa tehokkaasti. Paras tapa laihtua on yhdistää terveellinen ruokavalio ja liikunta pysyväksi elämäntapamuutokseksi. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406229/

”We hear a lot that a little exercise is the key to weight loss – that taking the stairs instead of the elevator will make a difference, for instance. But in fact it’s much more efficient to cut calories, says Samuel Klein, MD at Washington University’s School of Medicine. “Decreasing food intake is much more effective than increasing physical activity to achieve weight loss. If you want to achieve a 300 kcal energy deficit you can run in the park for 3 miles or not eat 2 ounces of potato chips… ”

Laihduttaminen liikuntaa lisäämällä on toki järkevämpää, kuin olla liikkumatta, Tunnin nopea kävely kuluttaa 400 kcal, mutta jos ei kiinnitä ravinnon laatuun huomiota, liikuntasuorituksen herättämään nälkään syö huomaamatta enemmän kuin on kävelysuorituksessa kuluttanut. Se ei edistä laihtumista. Liikunnan merkitys piileekin energiankulutuksen sijaan toisaalla: ”liikunta korjaa häiriintynyttä aineenvaihduntaa” (James Hill, PhD, University of Colorado). Perusaineenvaihdunta kuluttaa terveillä ja normaalipainoisilla 66 % elimistön saamasta energiasta. Entä ylipainoisilla tai diabeetikoilla, joilla aineenvaihdunta on häiriintynyt?

7023728907_4bd076e643_o_d

Rasvat vs. sokerit

Tyydyttyneet eläinrasvat sekä kolesteroli kuuluvat ihmisen luontaiseen ravintoon; elimistö on siis evoluution myötä sopeutunut hyödyntämään rasvoja sekä ravinto- että rakenneaineina. Rasvat eli lipidit kuuluvat välttämättömiin ravintoaineisiin. Sen sijaan elimistö ei osaa hyödyntää voimakkaasti raffinoituja teollisia rasvoja (margariinit, rypsi-, maissi- ja auringonkukkaöljyt), joissa prosessointi on rikkonut rasvahappoketjuja, ja jotka ilmestyivät ruokapöytään vasta 1950-luvulla.

Kolesterolia ihminen saa ravinnosta, mutta valtaosan tuottaa maksa, sillä lipoproteiinit ovat tärkeitä aivoille, ruoansulatukselle, hormonien tuotannolle ja solujen väliselle viestinnälle – etenkin aivoissa, joissa elimistön kolesterolista on peräti 25 %. Liian alhaiset kolesterolitasot aiheuttavat dementiaa ja Alzheimerin tautia sekä monia muita terveysongelmia.

Yksinkertaistaen kolesterolin tuotantoprosessi on seuraava: ihon skvaleeni muuttuu auringon UVB-säteilyssä kolekalsiferoliksi (D3-vitamiini) ja edelleen kalsidioliksi (D-vitamiinin varastomuoto) ja kalsitrioliksi (D-vitamiinin aktiivinen hormoninkaltainen muoto, sekosteroidi). Skvaleeni on kaikkien steroidien, myös kolesterolin ja kalsitriolin, eli D-vitamiinin aktiivisen sekosteroidimuodon esiaste. Kun auringon UVB-säteily on riittämätön D-vitamiinin synteesiin, muodostaa maksa elimistön skvaleenista mm. kolesterolia. Skvaleeni on ristiriitainen hiiliyhdiste, sillä sen tiedetään alentavan syöpiä eläinkokeissa ja sitä saa mm. terveellisestä oliiviöljystä; kuitenkin skvaleenin käyttäminen rokotteiden adjuvanttina voi joidenkin arvioiden mukaan lisätä erilaisia neurologisia ongelmia; tästä ei toisaalta ole varsinaisia tutkimusnäyttöjä. Skvaleeni on välttämätön aine kasvien biosynteesissä sekä eläinten steroidien tuotannossa. Jopa ihmisten sormista erittyvässä rasvassa on skvaleenia.

Rasvasota

Rasvasota puhkesi Yhdysvalloissa 1970-1980, jolloin Ancel Keysin rasva-kolesteroliteoria (lipid theory) lobattiin FDA:n ravitsemussuosituksiin. Se johti ensinnäkin eläinperäisten tyydyttyneiden rasvojen demonisoimiseen, sillä teorian mukaan tyydyttynyt rasva ja kolesteroli olivat syypäitä ateroskleroosiin ja sydäntautikuolemiin. Eläinperäisten rasvojen käyttöä suositeltiin vähentämään ja suosimaan ”terveellisiä” kevyttyotteita, kasviöljyjä ja margariineja. Yhdysvalloista suositukset levisivät Eurooppaan ja myös Suomeen, jossa yhä noudatetaan Keysin hypoteesia kiveenkirjoitettuna jumalaisena totuutena.

Ancel Keysin teoriat on sittemmin osoitettu virheellisiksi ja tutkimusten metodologiaa pidetään vähintäänkin arveluttavana. Mitä näiden suositusten jälkeen tapahtui? Suositukset toimivat ja ihmisten tyydyttyneistä rasvoista saama energia laski tasaisesti. Laskiko sydänkuolleisuus? Jonkin verran, mutta nykyään syynä pidetään tupakoinnin vähentymistä, muuten terveellisempiä elämäntapoja sekä terveydenhoidon kehittymistä jne. Samaan aikaan, kun kovien tyydyttyneiden ja pahojen eläinrasvojen kulutus väheni, aikuistyypin diabetes ja lihavuus lisääntyivät räjähdysmäisesti. Kuinka se oli mahdollista? Rasvahan aiheutti lihavuutta – vai aiheuttivatko!

Lihavuutta ja diabetesta perustellaan yhä sillä, että ihmiset eivät noudata ravintosuosituksia.

Tyydyttyneiden rasvojen kulutus väheni ja lihavuus sekä aikuistyypin diabetes lisääntyivät. Sama ilmiö on toistunut jokaisessa rasva-kolesterolihuijaukseen sortuneessa maassa – Suomi mukaan lukien. 1980 Suomessa oli n. 80 000 diabetesta sairastavaa, nyt puoli miljoonaa. Yhdysvalloissa ylipainoisten määrä kolminkertaistui ja diabetesta sairastavien määrä seitsenkertaistui. Hieno kansanterveyttä parantava ohjelma kaikenkaikkiaan – ainakin lääketeollisuuden näkövinkkelistä! Rasvasota jatkuu yhä. Monet suomalaiset viranomaiset pitävät yhä yllä myyttiä tyydyttyneiden rasvojen ja kolesterolin haitallisuudesta.

Sokerit ja makeutusaineet

Syy vähärasvaisen ruokavalion aiheuttamaan terveyskatastrofiin on oikeastaan aika selvä: rasvat korvattiin sokereilla (ja nykyään yhä useammin fruktoosi-maissisiirapilla, joka on aineenvaihdunnalle ja maksalle myrkkyä) ja alkuvaiheessa huonoilla teollisilla transrasvoilla.

Transrasvoja ei nykyisin Euroopassa lisätä levitteisiin, mutta niitä saa mm. leivistä, snackseistä ja makeisista, joihin niitä syntyy tuotantoprosessissa. Transrasvat altistavat syöville. Raffinoitujen rasvahappojen ketjut myös tuhoutuvat tuotantoprosessissa niin, ettei elimistö pysty niitä juurikaan hyödyntämään. Huonot rasvat ja jatkuvasti koholla olevat insuliinitasot ja verensokeri (hyperglykemia) johtaa nopeasti aineenvaihdunnan häiriöihin ja erilaisiin tulehduksiin; tulehdukset puolestaan lisäävät lihomisen riskiä.

1980-luvulta ravinnon sokerikuorma on kasvanut valtavasti, eikä elimistö ole näin lyhyessä ajassa oppinut prosessoimaan kasvanutta sokerikuormaa. Monet kuvittelevat, että sokeria on vain makeisissa, virvoitusjuomissa, kekseissä ja leivonnaisissa, mutta kaikki hiilihydraatit ovat pilkotaan sokereiksi. Viljat, perunat, pasta, riisi jne. pilkotaan ruoansulatuskanavassa sokereiksi, jotka imeytyvät verenkiertoon glukoosina ja fruktoosina ihan niin kuin pöytäsokerikin.

Terveellisen ruisleivän glykeeminen indeksi on korkeampi kuin pöytäsokerilla, eli se kohottaa verensokerin nopeammin kuin pöytäsokeri. Sokerit aiheuttavat lihavuutta, koska sokereiden toinen varastomuoto, lipogeneesin muodostama varastorasva, joka kertyy rasvasoluihin vatsan alueelle, elimiin ja elinten ympärille aiheuttaen mm. alkoholista riippumatonta rasvamaksaa.

Jatkuvasti koholla oleva insuliini kasvattaa rasvakudoksen määrää ja ohjaa veren triglyseridejä varastorasvaksi. Mitä enemmän elimistössä on rasvakudosta, sitä enemmän rasvakudos erittää kylläisyyshormoni leptiiniä, joka kertoo aivoille, että energiavarastot ovat täysiä ja syömisen voi lopettaa. Kun leptiiniä on verenkierrossa runsaasti, aivot tulevat immuuneiksi sen välittämälle viestille, eli tieto kylläisyydestä ei saavuta aivoja.

weight-loss-graph-low-carb-vs-low-fat

Leptiini

Leptiiniä syntyy ihmisen ja nisäkkäiden rasvasoluissa ja se välittää aivojen hypothalamukselle tietoa elimistön rasvavarastojen määrästä. Se säätelee mm. talviunta nukkuvien eläinten aineenvaihduntaa, energiankulutusta ja rasvakerroksen määrää. Leptiini lisää kudoksissa olevien rasvahappojen hapettumista (härskiintymistä), joka puolestaan tuottaa vapaita radikaaleja ja aiheuttaa sekä pitää yllä tulehdustilaa elimistössä.

Leptiini osallistuu aivoissa hermosignaalien kulkuun ja se on välttämätöntä myös oppimisessa ja tiedonkäsittelyssä sekä muistin toiminnassa. Rasvasolut tuottavat leptiiniä unen aikana. Vuorotyötä tekevät lihovat herkemmin, koska leptiinintuotanto on epäsäännöllistä. Leptiiniä siis tarvitaan, mutta jos rasvasolut tuottavat sitä liikaa, se aiheuttaa tulehdustilan ja sen vaikutus ”kylläisyyshormonina” lakkaa. (Lähde: Tohtori Tolonen)

Välttämättömät ravintoaineet ja nälkä

Ihminen tarvitsee välttämättä eräitä ravintoaineita. Näihin kuuluvat rasvat (omega-3 ja omega-6 mielellään lähes samassa suhteessa), proteiinit (aminohapot) ja suojaravinteet, eli vitamiinit ja mineraalit sekä vesi. Näitä ravinteita tarvitaan solujen uusiutumiseen, hormonien lähtöaineiksi, solukalvoihin, luuston ja lihaksiston sekä kudosten ja elinten rakennusaineiksi, immuunijärjestelmän ylläpitämiseen, solusignaalien kuljettamiseen jne. Hiilihydraatit ovat elimistön tärkein energianlähde, mutta ei välttämätön ravintoaine, sillä maksa psytyy tuottamaan lihasten, elinten ja aivojen tarvitseman glukoosin muista ravintoaineista glukoneogeneesissä.

Yhdenkin välttämättömän ravintoaineen pitkäaikainen puutos sairastuttaa ja voi johtaa kuolemaan. Elimistömme on kuitenkin kehittynyt hyvin älykkääksi ravinteiden suhteen: se pystyy syntetisoimaan monia tarvitsemiaan aineita muista aineista ja osaa vaatia sellaisia, joita se ei pysty itse valmistamaan: sitä kutsutaan näläksi. Toki näläntunteen päällimmäinen syy on energiantarve, mutta myös rasvasolujen erittämään ”kylläisyyshormoni” leptiiniin kehittyvä resistenssi voi pitää jatkuvaa näläntunnetta yllä. Kun elimstön rasvasolujen määrä on suuri, erittyy leptiiniä liikaa.

Energialtaan rikas, mutta ravintoköyhä ruoka täyttää kyllä vatsan, energiantarpeen ja glykogeenit hetkeksi, mutta ei tarjoa elimistön solujen uusiutumisen ja aineenvaihdunnan vaatimia ravinteita. Kun ravinto koostuu voimakkaasti prosessoiduista raaka-aineista ja sisältää lähinnä hiilihydraatteja, se ei täytä elimistön ravintovaatimuksia, vaan lisää veren sokeri- ja insuliinikuormaa, joka rasittaa haimaa, maksaa, verisuonia, sydäntä ja soluja. Hiilihydraatit pilkotaan ruoansulatuskanavassa glukoosiksi, fruktoosiksi ja ravintokuiduiksi.

Viljojen ravintokuidut ovat sulamatonta ja imeytymätöntä selluloosaa. Glukoosi imeytyy ohutsuolesta verenkiertoon ja haiman erittämä insuliini sitoutuu solujen insuliinireseptoreihin, jolloin veren glukoosi pääsee kulkeutumaan soluihin. Fruktoosi ohjautuu suoraan maksaan, jossa osa fruktoosista muutetaan glukoosiksi ja osa muuttuu triglyserideiksi, jotka jatkavat verenkiertoon tai varastoituvat maksaan sekä elinten ympärille keskivartalolihavuutena.

Myös glykogeeneihin mahtumaton glukoosi muuttuu lipgeneesissä triglyserideiksi, eli läskiksi. Itse rasva ei yleensä varastoidu rasvana, vaan elimistö käyttää sitä uusiutumiseen, hormonien tuotantoon sekä lämmön- ja energian tuottamiseen; yleensä ylimääräinen rasva poistuu luonnollista tietä. Veren koholla oleva insuliini voi täyttää myös rasvasoluja veren triglyserideillä.

Insuliini ja glukagoni

Insuliini on vahva anabolinen hormoni, jota jotkut urheilijat piikittävät palautumisen nopeuttamiseksi ja lihasvoiman kasvattamiseksi. Insuliini myös lihottaa rakentamalla rasvakudosta (tämä on tuttua monille diabetespotilaille). Insuliinilla on huomattava merkitys lihomisessa; se rakentaa rasvakudosta ja ohjaa hiilihydraateista muodostuneita triglyseridejä rasvasoluihin varastoenergiaksi. Ikävä kyllä, rasva, joka ei yleensä varastoidu rasvana, varastoituu läskiksi, kun veren insuliinitaso on riittävän korkea; insuliini, jolla on tärkeä tehtävä energian ohjaamisessa lihassoluihin, ohjaa myös rasvaa rasvasoluihin.

Vähentämällä elimistön ravinnosta saamaa sokerikuormaa, voi vähentää myös verenkiertoon erittyvän insuliinin määrää ja siten ehkäistä rasvakudoksen muodostumista ja veren triglyseridien varastoitumista rasvasoluihin. Kuullostaako tämä järkevältä? Minusta kuullostaa.

Tämän lisäksi tiedetään, että runsas glukoosi aktivoi pohjukaissuolen erittämään GIP-hormonia vereen (Gastric inhibitor polypeptide, joka tunnetaan nykyään nimellä glucose-dependent insulinotropic peptide): GIP-hormoni stimuloi haiman Langerhansin beeta-soluissa sijaitsevia reseptoreja erittämään enemmän insuliinia.

GIP vaikuttaa myös rasva-aineenvaihduntaan stimuloimalla lipoproteiini lipaasia, entsyymiä, joka katalysoi lipoproteiinin hydrolyysiä, eli kemiallista reaktiota, jossa vesimolekyylin osat (-H ja –OH) liittyvät pilkkoutumisosiin. Lipoproteiini lipaasi on vesiliukoinen entsyymi, joka hydrolysoi lipoproteiinien triglyseridejä kahdeksi vapaaksi rasvahapoksi ja yhdeksi monoglyseroli-molekyyliksi. Insuliiniresistenssi vaikuttaa rasvakudoksessa lipoproteiini lipaasin sääntelyyn, mikä voi vaikuttaa siihen, että rasvahapot jäävät elimistöön varastomuodossa, eli triglyserideinä.

Haiman Langerhansin saarekkeiden alfasolut erittävät toista sokeriaineenvaihduntaa säätelevää hormonia, glukagonia. Glukagoni on insuliinin vastavaikuttaja. Siinä missä insuliini johtaa energiavarastojen rakentamista maksaan, lihaksiin, elinten ympärille ja keskivartaloon, glukagoni purkaa näitä rakennelmia. Glukagoni on kuitenkin täysin aseeton, jos veren insuliini pysyy korkeana. Kun verensokeri on alhaalla, glukagoni vapauttaa adrenaliinin avustamana glykogeenivarastoista glukoosia vereen ja stimuloi insuliinin eritystä yhdessä pohjukkaissuolesta erittyvän GIP-hormonin kanssa. Glukagoni myös käynnistää glukoneogeneesin jo ennen glykogeenivarastojen ehtymistä, jolloin elimistön varastorasvoista muodostuu vereen glukoosia; tämä takaa lihasten, elinten ja aivojen toiminnan silloinkin kun ravinnosta ei saa lainkaan hiilihydraatteja.