Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 1

Ravinto ja elintavat vaikuttavat MS-taudin etenemistä kiihdyttäen tai hidastaen, kirjoittavat Paolo Riccio ja Rocco Rossano PubMedissa julkaistussa laajassa tutkimuskatsauksessa.

Ravinnolla on inflammaatiota säätelevä vaikutus sekä aaltoilevasti etenevässä että ensisijaisesti etenevässä MS-taudissa. Matala-asteista tulehdusta hillitsevä ruokavalio voi rauhoittaa MS-taudin oireita ja hidastaa taudin pahenemista.

Liikunta ja vähäenerginen, paljon vihanneksia, hedelmiä, palkokasveja, kalaa, hyviä rasvoja sekä pre- ja probiootteja sisältävä ruokavalio ylläpitää suoliston mikrobiomin hyvinvointia ja hillitsee matala-asteista tulehdusta sekä oksidatiivista stressiä.

Raskas, paljon suolaa, punaista lihaa, nopeita hiilihydraatteja, lisättyjä sokereita ja tyydyttyneitä sekä trans-rasvoja sisältävä länsimainen ruokavalio heikentää suoliston mikrobiomia ja altistaa elimistön oksidatiiviselle stressille sekä matala-asteiselle tulehdukselle, jotka pahentavat MS-taudin oireita.

Tässä artikkelisarjan ensimmäisessä osassa tarkastelen yleisemmin MS-tautia, sen syitä ja oireita. Artikkelisarjan toisessa osassa pureudun inflammaatioon ja ravintoon sekä niiden merkitykseen MS-taudin tautitapahtumissa. (Toinen osa julkaistaa myöhemmin maailiskuun aikana.)

MS-tauti

Multippeli skleroosi (MS) on keskushermoston (CNS) etenevä tulehduksellinen autoimmuunitauti. Se vaurioittaa keskushermoston viejähaarakkeita (aksoneita) suojaavia myeliinivaippoja sekä vaihtelevassa määrin viejähaarakkeita ja neuroneita. Aiheutuneet vauriot hidastavat hermoimpulssien kulkua keskushermostosta lihaksiin ja aiheuttavat taudin monenkirjavat ja yksilöllisesti etenevät oireet.

MS on nuorten aikuisten yleisin etenevä neurologinen sairaus. SuomessaMS-tautia sairastavia on 7000-9000 ja maailmanlaajuisesti jopa 2,5 miljoonaa. Se on selvästi yleisempi naisilla kuin miehillä.

Tautiin ei tunneta parantavaa hoitoa ja se invalidisoi useimmat sairastuneet. Oireita voidaan helpottaa spesifisti oireenmukaisella hoidolla sekä taudin etenemiseen vaikuttavilla erilaisilla immuunijärjestelmän toimintaa hillitsevillä immunosupressiivisilla lääkkeillä.

Sairastumisen tarkkaa syytä ja syntytapaa ei tunneta. MS-tauti on autoimmuunisairaus, jossa immuunijärjestelmän toiminta häiriintyy ja hyökkää elimistön omia kudoksia vastaan. Sairastuminenen edellyttää geneettisen alttiuden lisäksi yhden tai useamman sairastumisen laukaisevan ympäristötekijän toteutumisen. MS-tautiin assosioituvia geneettisiä muutoksia on tunnistettu yli 100, mikä voi selittää taudin yksilöllisesti etenevää ja vaikeasti hoidettavaa luonnetta.

Demyelinoivat mekanismit

MS-taudissa veri-aivoesteen (BBB) verisuonia ympäröi laajat ja epäyhtenäiset tulehdusprosessit. Taudille on tunnusomaista autoreaktiivisten T-solujen, vasta-aineita tuottavien B-lymfosyyttien, makrofagien ja mikrogliasolujen omiin kudoksiin kohdistama aktivaatio keskushermostossa sekä oligoklonaaliset muutokset selkäydinnesteessä.  (McFarland and Martin, 2007; Constantinescu and Gran, 2010; Kutzelnigg and Lassmann, 2014).

Virheellisesti toimiva immuunijärjestelmä kohdistaa aktivaationsa viejähaarakkeita eristäviin myeliinivaippoihin erityisesti aivojen valkeassa aineessa.  Eristeenä toimivan myeliiniproteiinin vaurioitumista kutsutaan demyelinaatioksi tai demyelinoivaksi prosessiksi.

Myeliinivaippojen vaurioituminen aivoissa ja selkäytimessä aiheuttaa MS-taudille ominaisia magneetttikuvissa heijastumina havaittavia arpeutumia (skleroosi).

Demyelinaatio ja plakit

Demyelinaatio muodostaa tulehduspesäkkeitä (leesioita, plakkeja), joita kehittyy eri puolille keskushermostoa (aivot, selkäydin). Tyypillisesti plakkeja havaitaan aivojen valkeassa aineessa, mutta niitä voi esiinty myös harmaassa aineessa.

Pienempiä plakkeja voi esiintyä kaiken ikäisillä ilman, että se olisi merkki sairastumisesta. Plakkeja löydetään usein myös MS-tautiin sairastuneen terveillä lähisukulaisilla. Tämä tukee käsitystä, että kaikki plakit eivät aiheuta kliinisiä oireita.

Kun plakit kasvavat, hermoyhteydet vaurioituvat, ja aivojen lähettämät toimintakäskyt lihaksille hidastuvat tai eivät saavuta kohdelihasta ollenkaan. Se mihin keskushermoston osaan tällainen plakki tai kudosvaurio muodostuu, vaikuttaa MS-taudin oireisiin ja niiden vakavuuteen.

Neurodegeneratiiviset muutokset havaitaan magneettikuvissa signaalinheikentyminä (”black holes”). Ne viittaavat pysyvään aksonivaurioiden aiheuttamaan kudostuhoon eli atrofiaan. Selkäytimen leesiot ovat tavallisia MS-taudissa, mutta niitä voi esiintyä myös ilman spinaalisia oireita.

Atrofia

Aivokudoskatoa eli atrofiaa esiintyy MS-taudissa sekä valkeassa että harmaassa aivoaineessa. Aivojen kudoskatoa tapahtuu normaalisti ikääntymisen seurauksena, mutta kudoskato on usein MS-taudissa nopeampaa kuin ikääntymiseen liittyvä kudoskato. Atrofia assosioituu EDSS-asteikoilla (Expanded Disability Status Scale) invaliditeetin ja kognitiivisten toimintojen heikkenemiseen.

Magneettikuvauksen merkitys

Aivojen magneettikuvaus paljastaa MS-taudin aktiivisuuden herkemmin kuin kliiniset relapsit. Havaittavat muutokset eli lisääntyneet tai kasvavat heijasteet johtuvat tulehdusreaktiosta, de- ja remyelinaatiosta, glioosista, aksonikadosta ja Wallerin degeneraatiosta.

Aktiivisen tulehdusreaktion aikana veri-aivoeste voi olla vaurioitunut, mikä havaitaan varjoainelataumana. Varjoaineella latautuvien pesäkkeiden esiintyminen korreloi kliiniseen relapsiin.

MS-taudin oireet

MS-tauti vaurioittaa lähinnä tahdonalaista hermostoa. Se voi kohdistua myös autonomiseen hermostoon, mikä voi aiheuttaa mm. virtsarakon toimintahäiriöitä, silmän mustuaisen säätelyhäiriöitä, heikentynyttä hikoilua ja miehillä impotenssia. Lisäksi on havaittu muutoksia MS-tautipotilaiden kehon lämmönsäätelyjärjestelmässä sekä heikentyneitä vasteita sydämen sykettä ja verenpaineen säätelyä mittaavissa tutkimuksissa, kertoo Anne Saari väitöskirjassaan Autonomic dysfunction in multiple sclerosis and optic neuritis.

Oireet, jotka voivat viitata MS-tautiin:

  • Näön sumentuminen
  • Kaksoiskuvat
  • Optinen neuriitti, näön nopea heikkeneminen
  • Lihasheikkous
  • Lihasjäykkyys
  • Kivuliaat krampit
  • Pistely tai tunnottomuus eri puolilla kehoa
  • Kömpelyys
  • Tasapainovaikeudet
  • Rakon hallinnan heikkeneminen, virtsankarkailu, pakottava tarve virtsata
  • Huimaus

Yleisimmät MS-taudin oireet:

  • Lihasheikkous
  • Näköhäiriöt
  • Koordinaatio- ja tasapainovaikeudet
  • Tunnottomuus, pistely ja kihelmöinti
  • Kognitiiviset ongelmat
  • Rakon ja suolen toimintahäiriöt
  • Uupumus (fatiikki)
  • Huimaus, pyörrytys
  • Seksuaalinen kyvyttömyys ja/tai seksuaalisen kiinnostuksen loppuminen
  • Lihasjäykkyys ja krampit
  • Vapina
  • Masennus ja muut emotionaaliset muutokset

Harvinaisempia MS-taudin oireita ovat:

  • Päänsärky
  • Kuulon heikkeneminen
  • Kutina
  • Hengitysvaikeudet
  • Kohtaukset, kuten kouristukset
  • Puhevaikeudet
  • Nielemisvaikeudet
  • Aistimuutokset
  • Mielialan vaihtelut
  • Lämpöherkkyys

Ennuste

MS on arvaamaton tauti. Se vaikuttaa eri tavoin eri potilaisiin. Useimmilla esiintyy jonkinlainen yhdistelmä edellä mainituista oireista. Oireiden vakavuus vaihtelee potilaskohtaisesti. Joissain tapauksissa tauti invalidisoi potilaan vain viikoissa tai kuukausissa, mutta useimmilla sairastuneilla tauti etenee melko maltillisesti ja invalidisoituminen vie yleensä useita vuosia tai vuosikymmeniä.

Erään brittiläisen tutkimuksen mukaan MS-potilaan keskimääräinen elinajanodote on 38 vuotta oireiden alkamisesta. Toisen tutkimuksen mukaan MS-tautiin sairastuvat kuolevat keskimäärin 76-vuotiaina.

MS-taudin syyt ja riskitekijät

  • Ikä: MS todetaan yleensä 20 ja 40 ikävuoden välillä
  • Sukupuoli: MS-tauti on selvästi yleisempi naisilla kuin miehillä
  • Etninen tausta: MS on yleisintä eurooppalaistaustaisilla. Erään hypoteesin mukaan viikingit levittivät MS-taudille altistavaa geenimuutosta ympäri Eurooppaa.
  • Geenitekijät: MS-tautiin liittyviä geenimuutoksia on tunnistettu yli 100. MS ei periydy suoraan, mutta alttius taudille kulkee sukupolvelta seuraavalle. Identtisillä kaksosilla tehdyt tutkimukset osoittavat, että pelkkä geneettinen alttius ei väistämättä johda sairastumiseen.
  • Ympäristötekijät: Geneettisen alttiuden lisäksi sairastuminen edellyttää yhden tai useamman laukaisevan tekijän toteutumista. Näitä voivat olla virustartunnat (Epstein-Barr, Varicella zoster), ympäristömyrkyt, ravintoaineiden puutokset (D-vitamiini, ehkä myös B12), liika suola jne.
  • Vuotavan suolen oireyhtymä (LGS) on joidenkin lähteiden mukaan osallisena kaikissa autoimmuunitaudeissa.
  • Veri-aivoesteen lisääntynyt läpäisevyys päästää immuunisolut sabotoimaan keskushermostoa. Veri-aivoesteen läpäisevyys saattaa muuttua suoliston läpäisevyyden lisääntyessä.
  • Huono suuhygienia: Tulehtuneista hampaista tulehdukset pääsevät etenemään sydänlihaksen lisäksi myös keskushermostoon.
  • Suoliston mikrobiomi: Ymmärrys mikrobiomin monimutkaisesta vaikutuksesta terveyteen tarkentuu koko ajan. Suolistoflooran hyvinvointi on liitetty mm. vuotavan suolen oireyhtymään, masennukseen ja autoimmuunitauteihin.

Mahdollisia MS-tautiin vaikuttavia syitä:

Yksikään yllä esitetyistä ympäristömuuttujista ei yksin selitä sairastumista. Yhdessä yksi tai useampi ympäristömuuttuja geneettisen alttiuden kanssa voi laukaista autoimmuunitautiin johtavan prosessin. Muita tautiin vahvasti kytkeytyviä yhdistäviä tekijöitä ovat:

  1. Maantiede:
    MS on yleisintä kehittyneissä ja hyvin toimeentulevissa länsimaissa. Taudin yleisyys kasvaa edelleen, mitä kauemmaksi päiväntasaajasta mennään. Merkillepantavaa on, että näillä alueilla ihmiset saavat vähiten auringonvaloa (D-vitamiini), tekevät eniten istumatyötä, syövät runsasenergisintä ruokaa; eläinperäisiä tyydyttyneitä rasvoja, huonoja hiilihydraatteja, lisättyjä sokereita ja lihaa (Länsimainen ruokavalio) WHO and MSIF, 2008
  2. Migraation vaikutus:
    Kun ihminen muuttaa lapsena alueelta, jossa esiintyy runsaasti MS-tautia, alueelle, jossa MS-tautia esiintyy vain vähän, lapsen riski sairastua laskee uuden elinympäristön tasolle. Tämä sairastumisriskin aleneminen ei toteudu yli 15-vuotiaana muuttaneilla. Ravintotottumuksissa tapahtuvat muutokset voivat selittää ilmiötä. McLeod et al., 2011
  3. D-vitamiinin riittämätön saanti:
    Toinen maantieteeseen liittyvä kuriositeetti on auringonvalon vaikutus sairastuvuuteen. Auringon UVB-säteily tuottaa iholla D-vitamiinia. Mitä etäämpänä ekvaattorista ihminen elää, sitä matalammat D-vitamiinitasot hänellä on. Matalat D-vitamiinitasot korreloivat lisääntyneen sairastuvuuden kanssa. MS-tautia sairastavilla on mitattu alhaisia D-vitamiinitasoja, mutta D-vitamiinin saannin vähäisyys on yhdistetty myihinkin kroonisiin sairauksiin. Ascherio tutkimusryhmineen on osoittanut, että raskaudenaikaiset matalat D-vitamiinitasot lisäävät syntyvän lapsen riskiä sairastua MS-tautiin myöhemmin elämässä. Ascherio et al., 2014, Yin and Agrawal, 2014
  4. Postprandiaalinen inflammaatio:
    Postprandiaalinen inflammaatio eli aterianjälkeinen tulehdustila assosioituu selvästi runsaasti tyydyttyneitä eläinrasvoja, sokereita ja prosessoituja hiilihydraatteja sisältävään ruokavalioon.
    Erridge et al., 2007; Ghanim et al., 2009; Margioris, 2009
  5. Suuri painoindeksi (BMI):
    Suuri painoindeksi eli lihavuus ennen 20 ikävuotta assosioituu kaksinkertaiseen sairastumisriskiin (Hedström et al., 2012). Painoindeksi korreloi myös suoliston mikrobiomin hyvinvoinnin kanssa.
  6. Samankaltaisuus muiden ravitsemukseen assosioituvien tulehduksellisten tautien kanssa:
    MS muistuttaa eräiltä osin tulehduksellisia suolistosairauksia (IBD, Cantorna, 2012): Molempiin assosioituu matalat D-vitamiinitasot sekä ympäristömuuttujat (Dam et al., 2013).Yhdistävänä tekijänä voidaan pitää myös sitä, että glatirameeriasetaatti (GA,  Copolymer 1/Copaxone) toimii lääkkeenä sekä MS-taudin että IBD:n hoidossa (Aharoni, 2013). IBD:n esiintyvyys MS-potilailla on verrokkeja tavallisempaa.Henkilökohtaisena kuriositeettina: Ennen MS-diagnoosia kärsin muutaman vuoden IBD-tyyppisistä suolisto-oireista. Ne kuitenkin helpottivat ja loppuivat syystä tai toisesta. Vuosi tai pari oireiden päättymisen jälkeen MS-diagnoosi varmistui monien muiden oireiden jälkeen. Onko muilla MS-potilailla samanlaisia kokemuksia?

Käsitteitä:

  • Veri-aivoeste (BBB): on verisuonten endoteelisolujen rakenne, joka säätelee eri aineiden pääsyä verenkierrosta keskushermostoon. BBB:n läpäiseviä aineita ovat: rasvaliukoiset ja pienikokoiset molekyylit (mm. rasvat, steroidit, etanoli, nikotiini, kofeiini) sekä sokerit ja eräät hermoston toiminnalle välttämättömät aminohapot. Myös happea kuljettavat punasolut läpäisevät veri-aivoesteen, mutta immuunijärjestelmän solujen, kuten valkosolujen ei pitäisi päästä veri-aivoesteen läpi keskushermostoon. MS-taudissa lisääntynyt läpäisevyys päästää immuunisoluja tekemään tuhoja keskushermostossa. BBB suojelee keskushermoston hermoja ja verisuonia tulehduksilta.
  • Autoreaktiivinen T-solu: Immuunijärjestelmän toiminnalle keskeiset T-solut kehittyvät kateenkorvassa. Kypsymisen (maturaatio) aikana autoreaktiiviset T-solut, jotka tunnistavat kehon omia antigeenejä liian voimakkaasti, tuhotaan. Tätä kutsutaan immunologiseksi toleranssiksi. Jos autoreaktiivisia T-soluja pääsee elimistöön, ne voivat aiheuttaa autoimmuunitauteja. T-solujen toimintaa omaa elimistöä vastaan voivat estää säätelijä- eli regulatoriset T-solut (Treg-solut).
  • Happiradikaali (ROS): Oksidatiivinen stressi välittyy reaktiivisten happi- ja typpiradikaalien kautta. Reaktiivinen happiradikaali (Reactive Oxygen Species) on hapesta muodostunut yhdiste, joka sisältää parittoman elektronin ja on siksi hyvin reaktiivinen. Yhdiste pyrkii parilliseen elektronimäärään reagoimalla läheisyydessä olevien muiden yhdisteiden kanssa. Happiradikaali vaurioittaa yleensä kohtaamansa molekyylin rakennetta ja/tai toimintaa. Esimerkiksi: Lipidioksidaatio (rasvojen härskiintyminen), proteiinien vauriot (proteiinien laajan toimintakentän vuoksi happiradikaalien aiheuttamat vauriot proteiinien rakenteissa voivat ilmetä monenlaisina elintoimintojen häiriöinä sekä DNA-vauriot eli mutaatiot (DNA voi hapettua happiradikaalien vaikutuksesta. Tämä ilmenee DNA-sekvenssin muutoksina eli mutaatioina. Mutaatioiden kertyminen DNA:han saattaa muuttaa soluja pahanlaatuisiksi ja näin altistaa syövän synnylle).
  • B-lymfosyytit: eli B-imusolut ovat valkosoluja eli leukosyyttejä. Ne osallistuvat immuunivasteeseen ja ylläpitävät adaptiivisen immuunijärjestelmän toimintaa. Imusolut erikoistuvat luuytimen kantasoluista ja niillä on kaksi pääluokkaa: B- ja T-lymfosyytit, jotka solupintojensa antigeenireseptorien avulla tunnistavat elimistössä kohtaamiaan antigeenejä. B-lymfosyytit erittävät immunoglobuliineja eli vasta-aineita sekä erikoistuvat plasmasoluiksi, jotka erittävät tiettyä vasta-ainetta sitä antigeeniä vastaan, joka aktivoi B-solujen lisääntymisen ja erikoistumisen. Imusolut ovat spesifisiä yhdelle tietylle vasta-aineelle ja niitä on elimistössä tuhansia. B-solut ovat osa immunologista muistia. Kun B-solu kohtaa antigeenin, se jakautuu nopeasti. Jakautumisen seurauksena syntyvillä soluilla on sama reseptorirakenne alkuperäisen solun kanssa. Suurin osa näistä uusista B-soluista on plasmasoluja, mutta osa kypsyy B-muistisoluiksi.
  • Makrofagit: ovat immuunijärjestelmään kuuluvia syöjäsoluja, jotka syövät vieraiksi tunnistettuja mikrobeja sekä vierasaineita.
  • Mikrogliasolut: poistavat hermokudoksesta solujätettä ja toimivat kuin makrofagit. Mikrogliasolut myös erittävät viestiaineita, etenkin sytokiineja, jotka liittyvät paikalliseen tulehdusreaktioon.
  • Sytokiinit: ovat proteiinirakenteisia solujen välisen viestinnän välittäjäaineita. Immuunijärjestelmää ohjailevat sytokiinit jaetaan toimintansa perusteella viiteen pääryhmään: tuumorinekroositekijöihin, interferoneihin, interleukiineihin, hematopoieettisiin kasvutekijöihin sekä muihin kasvutekijöihin. Sytokiineista kehitetään myös lääkkeitä, kuten MS-taudin hoitoon tarkoitetut Beeta-interferonit.
  • Oksidatiivinen stressi: Oksidatiivisessa stressissä kehon normaali hapetus-pelkistystila toimii epätasapainoisesti joko hapettavien tekijöiden ollessa liian voimakkaita tai pelkistävien tekijöiden eli elimistön antioksidatiivisten järjestelmien toimiessa vajavaisesti. Tämä epätasapaino lisää tulehdusreaktiota ylläpitävien vapaiden happiradikaalien määrää elimistössä ja altistaa mm. eräiden syöpien ja sepelvaltimotautien synnylle.
  • Komplementtijärjestelmä: Komplementti on yli 20 proteiinin muodostama immuunipuolustuksen järjestelmä, joka osallistuu vieraiden solujen tuhoamiseen ja täydentää fagosytoosijärjestelmää.
  • Fagosytoosi: Fagosytoosi eli solunsyönti on immuunijärjestelmän mekanismi, joka tuhoaa elimistöön päässeitä patogeenejä. Fagosyytit (syöjäsolut) tunnistavat vieraat rakenteet niiden pintaan kiinnittyneistä vasta-ainemolekyyleistä. Elimistössä on kahdenlaisia syöjäsoluja: neutrofiilit (granulosyytit) reagoivat infektioon hyvin nopeasti. Monosyytit kypsyvät makrofageiksi siirryttyään kudoksiin.
  • Matriksin metalloproteinaasit (MMP): Matriksin metalloproteinaasit ovat proteiiniperhe, joka kykenee muokkaamaan miltei kaikkia solun ulkoisen matriksin ja tyvikalvon rakenteita. Ne osallistuvat moniin fysiologisiin prosesseihin, kuten haavan paranemiseen. Patologisissa tiloissa, kuten tulehduksissa ja syövissä MMP:ien tuotanto on lisääntynyt.

MS-taudissa esiintyviä havaittavia muutoksia:

MS-taudin 4 yleisintä muotoa ovat: CIS, RRMS, PPMS ja SPMS

Kliinisesti eriytynyt oireyhtymä (CIS/KEO)

Kliinisesti eriytyneellä oireyhtymällä tarkoitetaan ensimmäistä MS-tautiin viittaavavaa oirejaksoa, joka vaurioittaa tyypillisimmin näköhermoa, aivorunkoa tai selkäydintä. KEO ennakoi MS-tautia.

On osoitettu, että noin puolella potilaista KEO kehittyy MS-taudiksi kahdessa vuodessa. MS-taudin riskiä kasvattavia tekijöitä ovat nuori ikä (alle 30 v.), aivorungon tai selkäytimen muutoksesta aiheutuva oire, vaikea oire tai monioireisuus, oligoklonaaliset muutokset aivo-selkäydinnesteessä sekä kliinisiä oireita tukevat magneettikuvissa havaittavat löydökset. MS-diagnoosi voidaan tehdä, kun sairastuneella ilmenee toinen oirejakso, tai uusi aktiivisuus näkyy magneettikuvissa.

RRMS, PPMS ja SPMS

MS-taudin kaksi yleisintä muotoa ovat aaltoilevasti etenevä RRMS sekä ensisijaisesti etenevä PPMS. Aaltoilevasti etenevää tautimuotoa sairastaa noin 85 % ja ensisijaisesti etenevää tautimuotoa noin 15 % MS-tautiin sairastuneista. Arviot vaihtelevat hieman lähteistä riippuen. Dutta and Trapp, 2014; Lublin et al., 2014

Aaltoilevasti etenevälle MS-taudille on tunnusomaista pahenemis- ja paranemisvaiheet eli relapsit ja remissiot. Pahenemisvaihe näkyy kasvavana inflammaationa ja leesioiden muodostumisena aivoihin. Muutokset ilmenevät pahenevina taudinkuvaan liittyvinä oireina. Pahenemisvaihetta seuraavassa remissiossa oireet paranevat osittain tai kokonaan.

RRMS kehittyy yleensä noin 20 vuodessa toissijaisesti eteneväksi MS-taudiksi (SPMS).

Ensisijaisesti etenevälle MS-taudille on ominaista neurologisten vaurioiden ja niiden aiheuttamien oireiden tasainen kehittyminen ilman pahenemis- ja paranemisvaiheita.

MS-taudin hoito

Aaltoilevasti etenevän MS-taudin hoitoon on olemassa useita tulehdusreaktioita ja pahenemisvaiheita hillitseviä ja lyhentäviä lääkettä.

Primaaristi progressiiviseen MS-tautiin on toistaiseksi olemassa vain yksi lääke, joka kliinisten kokeiden perusteella saattaa taudin varhaisvaiheessa hidastaa oireiden pahenemista. Tämä on juuri markkinoille tullut Ocrevus.

Ensisijaisesti etenevää tautimuotoa sairastavilla immuunijärjestelmän toimintaa säätelevät lääkkeet eivät tuota toivottua hoitovastetta. Tämä voi johtua PPMS ja RRMS -tautien erilaisesta patogeneesistä ja toimintamekanismeista.

MS-tautiin käytettyjä lääkkeitä

  • Kortikosteroidit: Käytetään vähentämään tulehdusreaktiota ja hillitsemään elimistön immuunivastetta.
  • Interferon Beta 1a ja 1b: Interferonihoidot voivat ehkäistä oireiden kehittymistä, mutta liiallinen käyttö voi aiheuttaa maksavaurioita. 868 sairastuneen tutkimuksessa interferonit eivät vähentäneet sairastuneiden invalidisoitumista pitkällä tähtäimellä.
  • Copaxone (Glatiramer): Tämän tarkoituksena on estää immuunijärjestelmää aktivoitumasta aksoneita eristäviä myeliinivaippoja vastaan.
  • Tysabri (Natalizumab): Tysabri on vaihtoehto niille potilaille, joille muut lääkkeet eivät sovi. Tysabri kasvattaa progressiivisen multifokaalisen leukoenkefalopatian riskiä. Se on harvinainen kuolemaan johtava aivojen valkean aineen sairaus. Riski on olemassa, mutta se on pieni ja moniin muihinkin lääkkeisiin liittyvä.
  • Mitoxantrone (Novantrone): Tätä immunosupressiivista lääkettä käytetään yleensä vasta taudin myöhäisemmässä vaiheessa. Mitoxantrone voi vahingoittaa sydäntä, mutta jos MS-taudin oireet etenevät nopeasti, se voi hidastaa invalidisoitumista.
  • Cannabis: Cannabis helpottaa tutkimusten mukaan kipuja, unettomuutta ja lihasjäykkyyttä.
  • Aubagio (teriflunomide): Aikuisille RRMS-potilaille tarkoitettu kerran päivässä syötävä tabletti. Aubagio auttaa suojautumaan immuunijärjestelmän keskushermostoon kohdistuvilta hyökkäyksiltä rajoittamalla tiettyjen valkosolujen lisääntymistä. Tämä rajoittaa hermovaurioita aiheuttavia tulehdusreaktioita.
  • Okrelitsumab (): Tuorein hyväksytty lääke MS-hoidoissa on Ocrevus, jolla saatiin kliinisissä kokeissa hyviä tuloksia sekä RRMS- että PPMS-potilaiden hoidossa. Lääke on monoklonaalinen vasta-aine, jonka vaikutus perustuu siihen, että se kiinnittyy tiettyihin spesifisiin B-solujen kohdeproteiineihin ja estää näiden myeliiniä tuhoavan aktivaation immuunijärjestelmässä. Ocrevus voi auttaa RRMS-potilaita sekä PPMS-tautimuotoa sairastavia taudin alkuvaiheessa.

However, as the disease is complex in nature and unique in the individual course, no patient responds to therapy in the same way (Loleit et al., 2014). Similarly, there are no truly reliable biomarkers that allow for everyone to evaluate the effectiveness of treatment and it is therefore important to discover novel markers of the disease (Fernandez et al., 2014).

Plasmanvaihto eli plasmafereesi

Plasmafereesissä potilaan veriplasma puhdistetaan lymfosyyteistä ja korvataan terveellä veriplasmalla. Prosessissa viallisesti toimivan immuunijärjestelmän immuunisolut vaihdetaan toimivaan immuunijärjestelmään. Tutkimuksia jatketaan yhä, mutta toistaiseksi tulokset ovat ristiriitaisia, eikä tiedetä, onko plasmafereesistä potilaalle apua.

Kantasoluhoito (AHSCT – Autologous Haematopoietic Stem Cell Transplantation)

Kantasoluhoitoon liittyi runsaasti odotuksia, mutta tulokset ovat vielä laihanlaisia. Hoito on hyvin vaarallinen ja se sopii vain RRMS-tautia sairastaville. Kriteerit ovat äärimmäisen tiukat. Englannissa on sairaala, joka tarjoaa kantasoluhoitoja kriteerit täyttäville potilaille.

Kantasoluterapiassa potilaalta kerätään kantasoluja, joista kasvatetaan laboratoriossa toimiva immuunijärjestelmä. Tämän jälkeen potilaan immuunijärjestelmä tuhotaan voimakkaalla kemoterapialla. Kun potilaan vanha immuunijärjestelmä on tuhottu, uusi kantasoluista laboratoriossa viljelty immuunijärjestelmä istutetaan potilaan elimistöön. Hoitomuoto saattaa toimia RRMS-potilaiden oireita helpottavana, mutta PPMS-potilailla hyötyä ei ole osoitettu.

Kantasoluhoito on menetelmänä vielä kokeiluasteella. Eräs kliiniseen tutkimukseen osallistunut MS-tautia sairastava kertoi, että olo parani merkittävästi pian hoidon jälkeen, mutta jo noin vuoden kuluttua kaikki aikaisemmat MS-taudin oireet palasivat. Toisessa tapauksessa lääkäri kertoi, että potilas oli kuollut varsin pian kantasoluhoidon jälkeen. Tiedot kantasoluhoitojen hyödyistä ovat toistaiseksi hyvin ristiriitaisia.

Clinical trials conducted so far suggest that AHSCT may be able reduce relapses and to stabilise or reduce the level of disability for some people with relapsing remitting multiple sclerosis.

Unfortunately the trials performed to date show that AHSCT does not work well in primary and secondary progressive multiple sclerosis. In view of this data, at Sheffield Teaching Hospitals NHS Trust we are only treating people with relapsing remitting multiple sclerosis. Sheffield Teaching Hospitals

CCSVI

CCSVI eli krooninen keskushermoston laskimoiden vajaatoiminta on italialaisen laskimoasiantuntija Paolo Zambonin tutkimuslöydös. Se tarkoittaa keskushermostosta verta poistavien kaulan jugularislaskimoiden tai azygolaskimon rakennemuutoksia, jotka heikentävät verenvirtausta laskimossa ja keskushermostossa.

Chronic cerebrospinal venous insufficiency (CCSVI) on laskimosairaus, minkä synnyn taustalla on jo sikiövaiheessa tapahtunut kehityshäiriö.

Krooninen keskushermoston laskioiden vajaatoiminta on liitetty MS-tautiin ja tehdyissä metatutkimuksissa CCSVI on todettu useammin MS-diagnosoiduilla kuin terveillä verrokeilla. MS-taudin patogeneesin ja oireiden selittäminen CCSVI:llä on kuitenkin yhä kiistanalainen näkemys.

CCSVI:n yleisin hoitomuoto on laskimon pallolaajennus, joka on auttanut joitain MS-potilaita, mutta ei kaikkia. Pallolaajennushoitoon liittyy myös riskejä. Useimmissa tehdyissä alustavissa kliinisissä tutkimuksissa laskimoiden pallolaajennuksella on kuitenkin todettu positiivisia vaikutuksia MS-tautipotilaiden oireisiin. Zambonin tutkimusryhmä havaitsi jo pilottitutkimuksessa, että pallolaajennuksella avattu jugulaarilaskimo ahtautui uudelleen puolentoista vuoden tarkkailuaikana.

CCSVI-diagnosoitujen jugulaarilaskimoiden rakenteita on kartoitettu kudosnäytteitä tutkimalla. Vuonna 2013 julkaistussa tutkimuksessa Coen et al vertailivat mikroskoopilla viiden MS/CCSVI-diagnosoidun sekä kahdeksan verrokin jugulaarilaskimoista saatuja kudosnäytteitä. Tutkimuksessa todettiin, että MS-ryhmässä jugulaarilaskimoiden seinämissä oli tapahtunut paksuuntumista ja kollageeni III pitoisuuksien kasvua.

Heinäkuussa 2014 julkaistussa tutkimuksessa oli vertailtu seitsemän CCSVI-diagnosoidun ja kontrollien jugulaarislaskimoiden kudosnäytteitä mikroskoopilla ja tutkimuksessa todettiin, että CCSVI-ryhmässä laskimoiden seinämien endoteelisolukossa oli tapahtunut muutoksia. Lorella Pascolo et al (2014) vertilivat myös MS-diagnosoitujen ja kontrollien jugulaarilaskimoita sekä mikroskoopilla että röntgenfluoresenssi (XRF) -analyysimentelmällä. Heidän tutkimuksensa osoitti, että MS-diagnosoitujen jugulaarilaskimoissa ulkokerroksen (tunica adventitia) kalkkipitoisuudet olivat kontrolleja korkeammat.

Laskimorakenteen muutoksista kertoo myös Farina et al (2013) tekemä tutkimus, jossa oli mukana 313 MS-diagnosoitua ja 298 tervettä kontrollia. Tutkijat mittasivat doppler-signaalin värikoodauslaitteistolla (”väridoppler”) jugulaarilaskimon läpimitan kasvua, kun makuuasennosa olevan tutkittavan päätä käännettiin 90 astetta sivulle. Vain MS-diagnosoiduilla jugulaarilaskimon läpimitassa tapahtui merkittävä kasvua, minkä tutkijat päättelivät johtuvan laskimokudoksen toiminnan häiriöstä (miopragia). – Wikipedia

CCSVI:n esiintyvyyttä MS-tautipotilailla on tutkittu paljon vuodesta 2009 alkaen. Tutkimustulokset ovat vaihdelleet ääripäästä toiseen. Tarkkaa ja yksimielistä tietoa CCSVI:n esiintyvyydestä MS-taudissa ei tunneta johtuen erilaisista tutkimustuloksista ja näkemyksistä.

Kuntoutus

MS-tautiin sairastuneen toimintakykyä ja arjen pärjäämistä ylläpidetään fysikaalisella terapialla ja kuntoutuksella. Kuntoutuksen alkuvaiheessa on tärkeää tukea potilaan työhyvinvointia ja työssäjaksamista. Fysikaalisen kuntoutuksella ylläpidetään motorisia taitoja, tasapainoa ja lihaskuntoa.

Tarvittaessa terapiaan voidaan sisällyttää puhe- ja nielemisterapiaa sekä kognitiivista kuntoutusta, muisti- ja puheharjoituksia.

Ravinnon vaikutukset terveyteen sekä laajemmin ihmisen jaksamiseen ja hyvinvointiin on hyvin dokumentoitu ja siksi ravintoterapian sisällyttäminen MS-taudin kuntouttavaan ohjelmaan olisi perusteltua. Oikeat ravintovalinnat eivät paranna tautia, mutta ne voivat hidastaa taudin etenemistä ja ylläpitää yleisterveyttä ja toimintakykyä kuntoutuksen osana.

D-vitamiini ja omega-3

D-vitamiinin puutos ja matalat D-vitamiinitasot korreloivat MS-taudin kanssa. Äidin raskaudenaikaiset matalat D-vitamiinitasot lisäävät syntyvän lapsen riskiä sairastua myöhemmin MS-tautiin. Tutkijat selvittelevät nyt kuumeisesti voiko D-vitamiinilisällä hoitaa MS-tautia.

D-vitamiinin yhteys MS-tautiin saattaa selittyä sillä, että monilla MS-tautia sairastavilla on havaittu harvinainen epigeneettinen muutos geenin CYP27B1 toiminnassa. Sekä MS-tautia sairastavilla että tyypin 1 diabeetikoilla on tutkimuksissa löydetty yhden nukleotidin polymorfismeja (SNP) tämän geenin eri lokaatioissa. Tällaiset ”snipit” eli emäksiin kiinnittyneet metyyliryhmät korreloivat sairastumisen kanssa autoimmuunitaudeissa sekä eräissä syövissä.

Yhden emäksen muutokset eivät ole mutaatioita, vaan eräänlaisia ympäristötekijöiden genomiin liittämiä geenin transkriptioon vaikuttavia markkereita, jotka periytyvät solusukupolvelta seuraavalle, mutta eivät yleensä yksilösukupolvelta seuraavalle. SNP’t voivat ”sammuttaa” geenin.

CYP27B1

CYP27B1 koodaa alfa-1-hydroksylaasi-entsyymiä, joka hydroksyloi munuaisissa kalsidiolista biologisesti aktiivista immunomodulatorista hormonin tavoin vaikuttavaa kalsitriolia. Kalsidioli ja kalsitrioli ovat D-vitamiinin aineenvaihduntatuotteita. Kalsitrioli vaikuttaa yli 200 geenin toimintaan solujen VDR-reseptorin ja DNA:n VDRE-sekvenssin kautta.

On arveltu, että omega-3-rasvat hyödyttäisivät MS-tautia sairastavia. Norjalaiset tutkijat päättelivät tutkimustulosten perusteella, ettei omega-3-rasvoista ole apua MS-taudin hoidossa. Lue tästä tutkimuksesta.

Omega-3-rasvojen hyödyt terveydelle on vakuuttavasti osoitettu, joten osana muuten tasapainoista ja terveellistä ruokavaliota, monien tutkimusten perusteella ne auttavat tylläpitämään terveyttä.

On tärkeä muistaa, että D-vitamiini tai omega-3-rasvat eivät ole ihmelääkkeitä, jotka parantavat MS-taudin. Sellaista ihmelääkettä ei vielä tunneta.

 

Tämä artikkeli jatkuu: Julkaisen toisen osan ”Inflammaatio ja sen merkitys MS-taudissa” vielä maaliskuun aikana.




Kasvisruokailijan käsikirja

Kasvisruokavalioiden suosio on lisääntynyt räjähdysmäisesti, kirjoittaa Julieanna Hever (MS, RD, CPT) PubMedissa julkaistussa pitkässä lääkäreille suunnatussa artikkelissa. Kasvisruokailijan käsikirja sisältää vastaukset yleisimpiin kasvisruokavalioiden herättämiin kysymyksiin sekä ohjeita tasapainoisen kasvisruokavalion noudattamiseen.

Tämä opas on käännetty ja kirjoitettu henkilökohtaisena valmentajana ja ravintoneuvojana työskentelevän Julieanna Heverin artikkelin pohjalta.

Miksi valita vegaaninen tai vegetaristinen ruokavalio?

Kasvisravinnon suotuisat terveysvaikutukset on kattavasti dokumentoitu1.

Kasvipainotteinen ruokavalio laskee sydän- ja verisuonitautikuolleisuutta 2, auttaa painonhallinnassa3, vähentää lääkkeiden tarvetta4–6, pienentää riskiä sairastua moniin kroonisiin tauteihin7,8, ylläpitää tervettä painonhallintaa9 ja verenpainetta10 sekä ehkäisee hyperlipidemiaa ja hyperglykemiaa11.

Kasvisruokavalio voi jopa kääntää pitkälle edenneen valtimonkovettumataudin12,13 ja tyypin 2 diabeteksen suunnan6.

Kasvispainotteinen ravinto on terveellistä, koska se sisältää runsaasti arvokkaita mikroravinteita (vitamiinit, mineraalit, kuidut, antioksidantit, fytokemikaalit ja prebiootit). Toisaalta kasvisruokailija välttyy myös monilta teollisesti tuotetun ja ultraprosessoidun eläinperäisen ravinnon sisältämiltä epäterveellisiltä ravinteilta, kuten:

  • Tyydyttyneet (”kovat”) rasvat: Tyydyttyneet rasvat ovat ryhmä rasvahappoja, joita saadaan yleensä eläinperäisestä ravinnosta. Tyydyttyneitä keskipitkäketjuisia rasvoja esiintyy myös eräissä trooppisissa öljyissä, kuten kookos- ja palmuöljyissä.Tyydyttyneiden rasvojen vaikutuksista sydänterveyteen väännetään yhä kättä, mutta vallitsevan näkemyksen mukaan ”kovat” rasvat ovat haitallisia sydämen ja verisuonten terveydelle14,15.Erityisen haitallisia ovat teolliset transrasvat, joita muodostuu valmistuksessa moniin prosessoituihin elintarvikkeisiin, kuten kekseihin.
  • Ravinnon sisältämä kolesteroli: Elimistö tuottaa tarvitsemansa kolesterolin itse. Ravinnon sisältämän kolesterolin vaikutuksista seerumin kolesterolitasoihin on väitelty vuosikymmeniä, mutta nykytiedon valossa ravinnosta saatu kolesteroli ei juurikaan vaikuta veren kolesterolitasoihin.Ravinnosta saatu kolesteroli voi kuitenkin joidenkin tutkimusten mukaan lisätä LDL-kolesterolin oksidaatiota, mikä voi lisätä sydän- ja verisuonitauteja16–18. Ravinnon sisältämä kolesteroli on lähes aina peräisin eläinperäisestä ravinnosta.
  • Antibiootit: 70-80 % USA:ssa käytetyistä antibiooteista syötetään terveille tuotantoeläimille 19,20. Tämän tarkoituksena on ennaltaehkäistä puutteellisissa oloissa elävien tuotantoeläinten saamat infektiot. Antibioottien syöttäminen tuotantoeläimille on merkittävin yksittäinen tekijä antibioottiresistenttien bakteerikantojen kehittymiselle. Vuonna 2013 antibioottiresistentit infektiot vaivasivat 2 miljoonaa amerikkalaista, joista noin 23 000 kuoli 20.
  • Insuliinin kaltainen kasvutekijä-1 (IGF-1): Insuliinin kaltainen kasvutekijä-1 on hormoni, jota luonnostaan syntyy eläimillä ja ihmisillä. Kuten nimestä voi päätellä, se on kasvuhormoni, jota käytetään myös anabolisena steroidina. IGF-1 osallistuu elimistön kasvuun ja kudosten rakentumiseen. Se siis lisää tuotantoeläimen lihasmassaa. IGF-1 stimuloi eläimen kasvuhormonien tuotantoa 21. Kasvuhormonina IGF-1 voi lisätä syöpää täysikasvuisilla.
  • Hemirauta: Rauta on välttämätön ravintoaine, jota saa runsaasti eläinperäisestä ravinnosta, josta se imeytyy tehokkaasti verenkiertoon. Kasveissa esiintyy rautaa hieman huonommin imeytyvässä muodossa (nonhemirauta), joten kasvisravintoon voidaan lisätä rautaa.Raudan saantia ja imeytymistä voi kasvisravinnossa tehostaa C-vitamiinilla22. Eläinperäisestä ravinnosta rautaa saadaan usein liikaa; tutkimusten mukaan ylimääräinen rauta on pro-oksidatiivista ja se voi aiheuttaa paksusuolen syöpää, ateroskleroosia sekä insuliiniresistenssiä23, 24, 25, 26.
  • Karsinogeenit: Prosessoituihin eläinperäisiin ruokiin kehittyy usein valmistuksessa käytettävien korkeiden lämpötilojen vuoksi syöpiä aiheuttavia ja tulehdusta edistäviä inflammatorisia ja syöpää aiheuttavia yhdisteitä, kuten karsinogeenejä27,28, 29. Lihatuotteisiin valmistuksessa muodostuvat kemialliset yhdisteet kasvattavat kroonisten sairauksien riskiä.
  • Karnitiini: Karnitiini on aminohappo ja lysiinin johdannainen. Se kuljettaa aktiivisia rasvahappoja eläinsolun sytoplasmasta mitokondrioon, jossa rasvahappo pilkotaan energiaa tuottavassa soluhengitysreaktiossa. Elimistö valmistaa karnitiinia lysiinistä ja metioniinista, mutta sitä saa myös liha- ja maitotuotteista.Liika karnitiini voi suoliston mikrobiomin vaikutuksesta muuttua trimetyyliamiini N-oksidiksi (TMAO), joka on yhdistetty tulehduksiin, ateroskleroosiin, sydänkohtauksiin ja ennenaikaiseen kuolemaan30.
  • N-glykolyylineuramiinihappo (Neu5Gc): On lihan sisältämä yhdiste, jota ei elimistöstä luonnostaan löydy. Neu5Gc aiheuttaa tulehdusreaktion, koska immuunijärjestelmä hyökkää vierasainetta vastaan. Tulehdusreaktio voi altistaa syövälle. Krooninen tulehdus kasvattaa tyypin 2 diabeteksen riskiä ja lisää valtimoiden rasvoittumista31,32.

Fytokemikaalit

Kasviruokavalio sisältää valtavasti hyödyllisiä mikroravinteita, kuten fytokemikaaleja ja kuituja, jotka edistävät tutkimusten mukaan terveyttä. Fytokemikaalit ovat kasveissa esiintyviä yhdisteitä, jotka suojelevat kasvia UV-säteilyltä, tuholaishyönteisiltä, bakteereilta, viruksilta ja sieniltä.

Kasviperäinen ravinto on fytokemikaalien ja kuitujen sekä useimpien vitamiinien ainoa lähde. Erilaisia fytokemikaaleja, kuten karotenoideja, glukosinolaatteja ja flavonoideja on tuhansia.

Fytokemikaalit:

  • Ovat antioksidantteja, jotka neutraloivat vapaita radikaaleja33
  • Anti-inflammatorisia eli tulehduksia ehkäiseviä34
  • Fytokemikaalit estävät syöpäsolujen kasvua ja lisääntymistä35
  • Parantavat immuunijärjestelmän toimintaa36
  • Suojaavat eräiltä taudeilta, kuten osteoporoosilta ja eräiltä syöviltä, sydän- ja verisuonitaudeilta (CVD) sekä viher- ja harmaakaihilta37–39
  • Optimoi veren kolesterolitasot40,41

Kasveista ja erityisesti täysjyväviljoista saatavat kuidut hyödyttävät suoliston, verenkierron ja immuunijärjestelmän toimintaa monin tavoin. Kuitujen terveysväittämät on vahvasti todennettu ja lisää tutkimusnäyttöä kuitujen terveellisyydestä saadaan koko ajan. Kuitenkin esimerkiksi USA:ssa yli 90 % aikuisista ja lapsista syö suosituksiin nähden aivan liian vähän kuituja42.

Kasvipainotteisen ravinnon syöminen parantaa terveyttä käytännössä kaikkien ravintoa ja terveyttä käsittelevien tutkimusten mukaan. Se voi ennaltaehkäistä monia sairauksia ja siten se tuottaa säästöjä myös yhteiskunnalle43.

Sairaanhoidon ammattilaisten tulisi suositella kasvisruokavaliota terveyttä ja hyvinvointia edistävänä ja lääketieteellistä hoitoa tukevana vaihtoehtona potilaille, kirjoittaa Hever.

Ohjeita kasvisruokailun aloittamiseen

Tähän artikkeliin on koottu ohjeita ja vinkkejä tasapainoisen ja ravinnepitoisen kasvisruokavalion suunnitteluun ja aloittamiseen.

Tärkeät ravintoaineet ja niiden riittävä saanti

Kasvisruokavalion sisältämien ravintoaineiden mahdolliset puutokset herättävät kysymyksiä. Saako kasvisruokavalioista kaikki elimistön tarvitsemat ravinteet, kuten proteiinit?

Vegetaristinen ja vegaaninen ruokavalio sisältävät riittävästi elimistön tarvitsemia ravintoaineita ja edistävät monin tavoin terveyttä, toteaa Academy of Nutrition and Dietetics 44. Samassa yhteydessä painotetaan, että hyvin suunniteltu ja tasapainoinen kasvisruokavalio sopii kaikille lapsista aikuisiin, odottaville ja imettäville äideille sekä urheilijoille.

Makro- ja mikroravinteiden saannin kannalta hyvin suunniteltu ja tasapainoinen ruokavalio on yleensä suunnittelematonta ruokavaliota terveellisempi ja tukee tarvittavien ravintoaineiden saantia tehokkaasti riippumatta siitä, mistä ruokavaliosta on kyse45. Ravintoaineiden tuntemus lisää terveyttä ylläpitäviä valintoja.

Tasapainoinen kasvisruokavalio

Tasapainoinen kasvisruokavalio sisältää vihanneksia, hedelmiä, täysjyväviljoja, palkokasveja, yrttejä, mausteita sekä pähkinöitä ja siemeniä.

Puolet lautasesta tulisi täyttää vihanneksilla ja hedelmillä (US Department of Agriculture, American Cancer Society, American Heart Association), eli ravintoaineilla, jotka sisältävät runsaasti kuituja, kaliumia, magnesiumia, rautaa, folaattia sekä C- ja A-vitamiineja. Nämä ovat ravintoaineita, joita amerikkalaiset (ja ehkä myös monet suomalaiset) saavat ravinnosta liian vähän (2015 Dietary Guidelines Advisory Committee46).

Lysiini

Palkokasvit ovat hyvä lysiinin lähde. Lysiini on välttämätön aminohappo, jonka saanti voi jäädä yksipuolisissa kasvisruokavalioissa liian vähäiseksi. Palkokasvit sisältävät lisäksi mm. kuituja, kalsiumia, rautaa, sinkkiä ja seleeniä. On suositeltavaa syödä pari desiä (1,5 cups) palkokasveja päivässä.

Pähkinät sisältävät elimistön tarvitsemia välttämättömiä rasvahappoja, proteiineja, kuituja, E-vitamiinia sekä terveellisiä kasvissteroleja. Ne ylläpitävät sydämen terveyttä ja vähentävät riskiä sairastua tyypin 2 diabetekseen. Pähkinät auttavat painonhallinnassa, suojaavat silmiä kaihilta ja ehkäisevät sappikivien muodostumista47-50. Suositeltava päiväannos pähkinöitä on 30-60 g.

Siemenissä on hyviä rasvahappoja sekä runsaasti tärkeitä hivenaineita ja fytokemikaaleja. Siemeniä suositellaan syötäväksi 1-2 ruokalusikallista päivässä.

Täysjyväviljat sisältävät kaikki viljan hyvät ominaisuudet. Täysjyväviljoissa on runsaasti kuituja, B- ja E-vitamiineja, hivenaineita, rautaa, magnesiumia ja seleeniä. Hiilihydraatit antavat elimistölle energiaa.

Elimistö tarvitsee välttämättömiä rasvoja (omega-3 ja omega-6). Valitsemalla rasvojen lähteeksi ravinnon, kuten pähkinät, siemenet ja avokadot teollisten rasvojen sijaan, elimistö saa vähemmän kaloritiheiden ja hitaammin imeytyvien rasvojen lisäksi kuituja sekä muita tärkeitä ravintoaineita.

Myös yrtit ja mausteet sisältävät fytokemiaaleja. Niiden avulla ravintoon saa jännittäviä makuja ja vaihtelua.

Ruokaryhmät ja suositeltava päivittänen saanti

Ruokaryhmä Suositeltu päivittäinen annos
Vihannekset (myös tärkkelyspitoiset) Vihanneksia ja kasviksia saa syödä niin paljon, kuin jaksaa. Muista syödä monenvärisiä vihanneksia
Hedelmät 2–4 annosta (1 annos = n. 1,2 dl)
Täysjyväviljat (esim. kvinoa, täysjyväriisi, kaura) 6–11 annosta (1 annos = n. 1,2 dl keitettynä tai 1 siivu täysjyväleipää)
Palkokasvit (pavut, herneet, linssit, soijaruoat) 2–3 annosta (1 annos = n. 1,2 dl keitettynä)
Lehtivihreät vihannekset (esim. lehtikaali, salaatti, pinaatti, parsakaali) Vähintään 2–3 annosta (1 annos = n. 2,4 dl raakana tai 1,2 dl kypsänä)
Pähkinät (esim. saksanpähkinät, mantelit, pistaasit) 30-60 grammaa päivässä
Siemenet (esim. chia, hamppu, pellava) 1–3 ruokalusikallista päivässä
Vitaminoidut kasvismaidot (soijamaito, mantelimaito, kauramaito) Halutessa 4-6 dl
Tuoreet yrtit ja mausteet Mieltymysten mukaan niin paljon kuin haluaa

 

Kasvispohjaiset makroravinteet

Ravinnon sisältämää energiaa mitataan usein kilokaloreina (kcal). Energia saadaan energiaravinteista ja niiden erilaisista kombinaatioista. Hiilihydraatit (4 kcal/g), proteiinit (4 kcal/g) ja rasvat (9 kcal/g) ovat energia- ja makroravinteita. Alkoholi sisältää 7 kcal/g, mutta se ei ole oikeastaan ravintoaine – tai ehkä se joillekin on.

Makroravinteiden saantisuosituksista käydään kovaa kädenvääntöä, mutta mitään yleistä konsensusta ei ole. Toisilla runsaasti rasvaa ja vähän hiilihydraatteja sisältävät ruokavaliot toimivat, toiset suosivat vähärasvaisia ja hiilihydraattipainotteisia ruokavalioita.

Kasvava näyttö viittaa siihen, että yleispätevää yksittäistä totuutta makroravinteiden suhteista ei ole. Aineenvaihdunta on mutkikas kokonaisuus, johon vaikuttavat geenien ohella hormonit, suoliston mikrobit, maksan ja haiman terveys sekä lukemattomat muut asiat.

Stanfordin yliopiston tuore tutkimus vertasi vähähiilihydraattisen ja vähärasvaisen ruokavalion terveysvaikutuksia vuoden kestäneessä seurannassa. Mitään selkeää eroa ruokavalioiden vaikutuksista painonhallintaan ei havaittu tutkittavien ryhmien väliltä. Molemmissa seuratuissa ryhmissä esiintyi valtavasti ryhmän sisäistä vaihtelua. Keskimäärin koehenkilöiden paino putosi noin 6 kiloa, mutta suurimmilla pudottajilla painoa katosi lähes kaksikymmentä kiloa. Mayo Clinic pitää vähähiilihydraattista ruokavaliota hieman tehokkaampana laihdutusruokavaliona lyhyellä tähtäimellä kuin vähärasvaista ruokavaliota.

On myös runsaasti tutkimusnäyttöä, jonka perusteella elimistön hyvinvoinnin ja painonhallinnan kannalta parhaiten toimivat vähärasvaiset/runsashiilihydraattiset ruokavaliot (perinteinen Okinawan ruokavalio), Dean Ornish-ruokavalio, Caldwell Esselstyn-ruokavalio, Neal Barnard-ruokavalio  51, 12, 13, 6.

Ja kuitenkin Välimeren ruokavaliossa52 sekä eräissä raakaruokavalioissa päivittäisestä energiasta yli 36 % voi tulla rasvoista, mutta näilläkin ruokavalioilla on runsaasti suotuisia terveysvaikutuksia53.

On siis todennäköistä, että ruokavalioiden kokonaisuus sekä tärkeiden mikroravinteiden saanti on terveyden ja painonhallinnan kannalta tärkeämpää kuin makroravinteiden saantisuhteet.

Hiilihydraatit

Hiilihydraattien optimaaliset lähteet ovat vihannekset, hedelmät, täysjyväviljat ja palkokasvit. Nämä sisältävät hiilihydraattien lisäksi runsaasti muita hyödyllisiä ravinteita ja kuituja. Saantisuositus kaikille (paitsi odottaville ja imettäville äideille) on 130 g pivässä (The Institute of Medicine54).

Prosessoidut hiilihydraatit (sokerit, valkoiset jauhot, valkoiset pastat) eivät energian lisäksi sisällä juurikaan tärkeitä ravinteita, joten niiden runsas kulutus voi johtaa aliravitsemukseen ja elimistön sairastumiseen.

Proteiinit

Proteiinien saantisuosituksissa on hieman vaihtelua. Keho tarvitsee aminohapoista muodostuvia proteiineja, jotka se pilkkoo ravinnosta aminohapoiksi ja käyttää pääasiassa rakennusaineina (lihakset, luut, veri, entsyymit, hormonit, iho jne.). Proteiineissa esiintyy 20 aminohappoa, joista 9 on ihmiselle välttämättömiä.

Riittävä proteiinien saanti riippuu painosta ja iästä. Kasvavien lasten ja ikääntyvien vanhusten proteiinien tarve on hieman nuorten ja aikuisten tarvetta suurempi54. Vaihtelua on, mutta proteiineja tulisi saada iästä riippuen 0,8 – 1,6 grammaa painokiloa kohden päivässä. Urheilijat ja lihasmassaa kasvattavat voivat tarvita enemmänkin.

Monipuolisen kasvisruokavalion tulee sisältää riittävästi proteiineja. Parhaita proteiinien kasvislähteitä ovat: palkokasvit, pähkinät, siemenet, täysjyväviljat, soija sekä pähkinä- ja siemenvoit.

Rasvat

PUFA

Rasvat ovat haastavampi kokonaisuus, koska rasvahapot esiintyvät erilaisina rakenteina, tyydyttyneinä ja tyydyttämättöminä. Ihminen tarvitse ravinnosta monityydyttämättömiä omega-3 ja omega-6 rasvahappoja (PUFA). Kaikki muut tarvittavat rasvahapot elimistö syntetisoi näistä. Rasvahapot toimivat elimistössä eri tavoin ja niillä on omat tarkoituksensa14.

ALA, EPA ja DHA

Lyhytketjuisia omega-3 rasvoja (alfalinoleenihappo – ALA) voidaan hyödyntää energiansaannissa. Elimistö muodostaa lyhytkejuisista alfalinoleenihapoista pidempiketjuisia eikosapentaeenihappoja (EPA) ja edelleen dokosaheksaeenihappoja (DHA).

Elimistö muuttaa lyhytkestoisia omega-3 rasvahappoja pidempiketjuisiksi kuitenkin melko tehottomasti ja siksi niiden saanti lisäravinteista on suositeltavaa. EPAn ja DHAn riittävän saannin voi turvata kasvispohjaisilla omega-3 ravintolisillä, jotka on valmistettu mikrolevistä.

Alfalinoleenihapppoa saa mm. pellavansiemenistä, hampunsiemenistä, chia-siemenistä sekä vihreistä lehtikasveista ja levistä, soijasta, maapähkinöistä sekä näistä valmistetuista öljyistä.

Omega-3 mielletään helposti kalaöljystä saatavaksi, mutta EPAn ja DHAn lähteenä mikrolevistä valmistetut lisäravinteet ovat oivallinen lähde, sillä mikrolevät ovat näiden rasvojen lähde myös kaloille.

Välttämättömien rasvojen lähteenä mikrolevät voivat olla kaloja terveellisempi vaihtoehto, koska ne eivät sisällä myrkyllisiä raskasmetalleja (lyijyä, kadmiumia, elohopeaa) tai muita saastejäämiä, kuten kalat. (Itämeren silakat eivät kelpaa Euroopan markkinoille ravintona, koska ne sisältävät niin paljon myrkkyjä ja raskasmetalleja. On hullua, että niitä Suomessa voidaan markkinoida terveellisenä ruokana.)55. Mikrolevät ovat myös kestävän kehityksen kannalta järkevämpi vaihtoehto omega-3 rasvojen lähteinä kuin kalat56.

MUFA

Kertatyydyttämättömät rasvahapot (MUFA) eivät ole elimistölle välttämättömiä rasvoja, mutta niillä voi olla suotuisia vaikutuksia seerumin kolesterolitasoihin.

Jos MUFAlla korvataan tyydyttyneitä rasvoja, transrasvoja tai prosessoituja hiilihydraatteja, se voi laskea huonon LDL-kolesterolin määrää ja lisätä hyvän HDL-kolesterolin määrää.

Toisaalta kertatyydyttämättömistä kasvirasvoista valmistettuja prosessoituja kasvirasvalevitteitä ja -öljyjä on myös voimakkaasti kritisoitu. Ne käyvät läpi rajuja teollisia prosesseja, joissa rasvojen luontainen rakenne muuttuu.

Kertatyydyttämättömiä rasvahappoja on mm. oliiveissa, avokadoissa, macadamia- ja hasselpähkinöissä, pekaanipähkinöissä, maapähkinöissä sekä pähkinäöljyissä ja rypsi-, rapsi-, auringonkukka- ja safloriöljyistä.

Tyydyttyneet rasvat

Tyydyttyneet rasvat eivät ole elimistölle välttämättömiä ja ne saattavat altistaa sydän- ja verisuonitaudeille. Tyydyttyneiden rasvojen terveysvaikutuksista on kalisteltu peistä 1970-luvulta alkaen. On tutkimuksia, joiden mukaan tyydyttyneet rasvat aiheuttavat sydän- ja verisuonitauteja, mutta toisaalta tuoreimpien tutkimusten mukaan tyydyttyneet rasvat eivät itsenäisesti vaikuta sydän- ja verisuoniterveyteen negatiivisesti. Mutta se ja sama, elimistö ei välttämättä niitä tarvitse.

Tyydyttyneet rasvat ovat lähes poikkeuksetta lähtöisin eläinperäisestä ravinnosta, kuten lihasta ja meijerituotteista. Eräät trooppiset kasvirasvat, kuten kookos- ja palmuöljyt ovat myös tyydyttyneitä rasvoja. Myös avokadoissa, oliiveissa, pähkinöissä ja siemenissä on jonkin verran tyydyttyneitä rasvoja.

Tyydyttyneiden rasvojen osuus päivittäisestä energiansaannista tulisi olla 5-6 % (American Heart Organization).

Transrasvat

Transrasvat ovat epäterveellisiä rasvoja, joita on mm. uppopaistetuissa ja ultraprosessoidussa ravinnossa sekä pikaruoassa. Transrasvat kehiteltiin alun alkaen terveelliseksi vaihtoehdoksi voille ja laardille, mutta niiden on sittemmin osoitettu lisäävän sydäntautien ja syöpien riskiä.

Marraskuussa 2013 FDA julkaisi tiedonannon, jonka mukaan transrasvoja ei voi pitää terveydelle turvallisina rasvoina57. Tarkoituksena on kieltää täysin teollisten transrasvojen käyttö elintarvikkeissa. Transrasvoja esiintyy luonnostaan jonkin verran liha- ja meijerituotteissa.

Jos tuotteen paketissa lukee, että se ei sisällä transrasvoja, niitä voi siinä kuitenkin olla 0,5 grammaa per annos. Hydrogenoidut (kovetetut) ja osittain kovetetut kasvirasvat, margariinit ja prosessoidut öljyt saattavat olla epäterveellisiä ja ne kannattaa jättää kaupan hyllyyn. Myös erilaiset snacksit, keksit ja monet makeiset sisältävät haitallisia transrasvoja.

Kolesteroli

Ravinnon sisältämä kolesteroli on steroli, jota esiintyy pääasiassa eläinperäisessä ravinnossa. Keho tarvitsee kolesterolia mm. hormonien, D-vitamiinin, ruoansulatusnesteiden sekä hermoratoja suojaavien myeliinikalvojen rakentamiseen, mutta elimistö valmistaa kolesterolia itse ns. kolesterolisynteesissä.

Ravinnon sisältämän kolesterolin vaikutuksista on olemassa runsaasti ristiriitaista tietoa. Kananmunat tai muut kolesterolia sisältävät elintarvikkeet eivät ilmeisesti lisää seerumin kolesterolitasoja, mutta joidenkin tutkimusten mukaan ne voivat lisätä LDL-kolesterolia. 1970-luvulta peräisin olevan lipiditeorian mukaan kolesteroli aiheuttaa sydäntauteja, mutta tästä hypoteesista ei enää vallitse tieteellistä konsensusta.

Fytosterolit eli kasvisterolit

Fytosterolit eli kasvisterolit ovat steroidialkoholeja, yhdisteitä, joita kasveissa esiintyy luonnollisesti. Kasvisteroleja käytetään yleisesti elintarviketeollisuudessa ja kosmetiikassa.

Fytosterolit muistuttavat hieman kolesterolia. Kasvisteroleja esiintyy kaikissa kasveissa.Fytosterolit vähentävät kolesterolin imeytymistä suolistossa ja parantavat lipidien profiileja. Joidenkin tutkimusten mukaan fytosterolit, soijaproteiinit, viskoosit kuidut ja mantelit voivat laskea LDL-kolesterolia yhtä tehokkaasti kuin statiinit5,58.

Kasvisteroleja mg/100g annos:

  • Appelsiinit: 24 mg
  • Ananas: 17 mg
  • Banaani: 16 mg
  • Omena: 12-13 mg
  • Parsakaali: 39 mg
  • Lehtisalaatti: 38 mg
  • Porkkana: 16 mg
  • Tomaatti: 5-7 mg
  • Vehnä: 69 mg
  • Kaurahiutaleet: 39 mg
  • Rypsiöljy: 668 mg
  • Soijaöljy: 221 mg
  • Oliiviöljy: 154-176 mf
  • Mantelit: 143 mg
  • Pavut: 76 mg

Täysipainoinen kasvisruokavalio

Täysipainoinen ruokavalio koostuu kaikista kolmesta makroravinteesta. Ruokien ajatteleminen vain hiilihydraatteina, proteiineina ja rasvoina on eräänlainen median ja muodikkaiden laihdutusruokavalioiden ylläpitämä ajatusharha, joka ei palvele aineenvaihdunnan ja elimistön hyvinvoinnin tarpeita.

Ravintoaineet ovat komplekseja, joihin sisältyy veden ja pääravintoaineiden lisäksi runsaasti erilaisia vitamiineja ja hivenaineita, antioksidantteja, kuituja jne.

Panosta laatuun!

Terveellinen ja tasapainoinen ruokavalio sisältää runsaasti hyviä hiilihydraatteja kuten täysjyväviljoja sekä kohtuullisesti hyviä rasvoja ja proteiineja. Ravinnon terveellisyyttä tavoiteltaessa painopisteen tulee olla ravintoaineiden laadussa ja niiden sisältämissä ravinteissa.

Makroravinteiden keskinäisten suhteiden arviointi ja kaloreiden laskeminen ei ole tärkeää silloin kun syö ravinnepitoista ja terveellistä kasvisruokaa.

 

Kasvisravinnon kannalta tärkeät mikroravinteet

Kasvisravinnosta saa kaikki välttämättömät ravintoaineet, paitsi B12-vitamiinia eli kobalamiinia. Suomessa lähes kaikki tarvitsevat myös D-vitamiinia lisäravinteena lyhyen kesän ja pitkän talven vuoksi59.

Kasveista saatava D2-vitamiini eli ergokalsiferoli toimii ihmisen aineenvaihdunnassa aivan samoin kuin lampaanvillasta uutettu tai kalasta ja kalaöljystä saatava D3-vitamiini (kolekalsiferoli).

Kaikkien suomalaisten tulisi syödä D-vitamiinia lisäravinteena 50-100 µg/vuorokaudessa etenkin pimeinä vuodenaikoina. Erityisen tärkeää D-vitamiinin saanti on odottaville ja imettäville äideille, sillä sikiön matalat D-vitamiinitasot lisäävät lapsen riskiä sairastua mm. MS-tautiin ja tyypin 1 diabetekseen. Rintaruokinta ja äidinmaidosta saatava D-vitamiini tehostavat lapsen kehittyvää immuunijärjestelmää.

D-vitamiinin bioaktiivinen muoto toimii elimistössä immuunijärjestelmää säätelevänä hormonin kaltaisena sekosteroidina, joka vaikuttaa yli 200 geenin toimintaan solujen kromosomin DNA:ssa sijaitsevan VDRE-sekvenssin kautta.

B12 eli kobalamiini

B12-vitamiini eli kobalamiini on välttämätön ravintoaine. Kobalamiineja tunnetaan parikymmentä, mutta aineenvaihdunnassa bioaktiivisia ovat vain metyylikobalamiini ja adeniinikobalamiini sekä ravintolisistä saatava synteettinen syanokobalamiini.

Eräät bakteerit tuottavat kobalamiinia, Suolistobakteerit ja arkit syntetisoivat B12-vitamiineja ihmisen paksusuolessa, mutta ne eivät imeydy paksusuolesta aineenvaihdunnan käyttöön. Kasveista saatavat kobalamiinit eivät ole ihmisellä bioaktiivisia.

No fungi, plants, or animals (including humans) are capable of producing vitamin B12. Only bacteria and archaea have the enzymes needed for its synthesis.

Mihin kobalamiinia tarvitaan?

Kobalamiinia tarvitaan nopeasti uusiutuvien veren puna- ja valkosolujen valmistuksessa sekä hermosolujen ja aivojen toimintaan. Aineenvaihdunnassa kobalamiini osallistuu myös homokysteiinin metylaatioon metioniiniksi (aminohappo).

B12-vitamiinia on välttämätön tekijä foolihapon (B9-vitamiini) eli folaatin valmistuksessa. Yhdessä nämä ovat tärkeitä, koska kobalamiinia ja foolihappoa tarvitaan nukleotidien ja DNA:n synteesiin solujen uusiutuessa.

Kasvisruokailijan on turvattava B12-vitamiinin saanti

B12-vitamiini on käytännössä ainut välttämätön ravintoaine, jota kasvisruokailijat eivät ravinnosta saa. Idut, tempe ja merilevät eivät sisällä biologisesti aktiivista B12-vitamiinia, kuten jotkut uskovat. Nori-levä on ainoa poikkeus, mutta kuivattaminen tuhoaa nori-levästä B12-vitamiinin. Sekaravintoa syövät saavat kobalamiinia riittävästi lihasta, kalasta, kananmunista ja meijerituotteista.

Although there are claims that fermented foods, spirulina, chlorella, certain mushrooms, and sea vegetables, among other foods, can provide B12, the vitamin is not usually biologically active. These inactive forms act as B12 analogues, attaching to B12receptors, preventing absorption of the functional version, and thereby promoting deficiency. The most reliable method of avoiding deficiency for vegans or anyone else at risk is to take a B12 supplement. Julieanna Hever

Kobalamiinia on myös vegaaneille

Apteekeista ja luontaistuotekaupoista saa vegaaneille sopivaa bakteeriperäistä B12-vitamiinivalmistetta. Lisäksi moniin kasviperäisiin ruoka-aineksiin, kuten kasvimaitoihin lisätään usein B12-vitamiinia.

B12-vitamiinin (kobalamiinin) vähimmäistarve on

  • naisilla: 2,0 µg/vrk
  • miehillä: 2,4 µg/vrk
  • lapsilla: 0,7 – 1,4 µg/vrk

Kobalamiinivarastot

Elimistön B12-varastot ovat suhteellisen suuret (2 – 3 mg). Varastot riittävät useamman vuoden tarpeisiin. Mikäli vitamiinin saanti vaikeutuu, kliinisen puutostilan kehittyminen voikin kestää useita vuosia. Keskimääräinen B12-vitamiinin saanti ravinnosta on 5-8 µg/vrk, mikä ylittää suositukset moninkertaisesti.

Kobalamiinin puutos

B12-vitamiinin puutoksen alkuoireena on kihelmöinti ja tunnottomuus ääreishermostossa, kuten sormenpäissä. Oireet voivat ilmentyä myös lihasheikkoutena ja muistin häiriöinä. Harvinaisempia oireita ovat kielitulehdukset, verisuonitukokset ja ihon pigmentin lisääntyminen.

Pitkäaikainen B12-vitamiinin puutos johtaa peruuttamattomiin hermostollisiin vaurioihin sekä perniöösiin anemiaan.

B12-vitamiinin tarve korostuu tietyissä tapauksissa:

  • laktoosi-intoleranssi
  • kasviruokavalio
  • keliakia
  • raskaus
  • imetys
  • sairaus- ja toipilasaika
  • kova fyysinen rasitus
  • yksipuolinen ravinto
  • pitkäaikainen paasto
  • dieetti ja laihdutuskuurit
  • ehkäisypillerien käyttö
  • runsas alkoholinkäyttö

D-vitamiini

Paljas iho syntetisoi D-vitamiinia auringon UVB-säteilyn avulla keskikesän kuukausina riittävästi. Vain 15-30 minuuttia keskipäivän auringonvalossa riittää syntetisoimaan paljaalla iholla 250 µg D-vitamiinin lähtöaineena toimivaa7-dehydrokolesterolia, josta kolesterolisynteesissä muodostuu kolekalsiferolia eli D3-vitamiinia,

Kalsidioli

Kolekalsiferoli hydroksyloidaan maksassa kalsidioliksi, joka on D-vitamiinin verestä mitattava varastomuoto. Aineenvaihdunta tarvitsee vuorokaudessa noin 40 µg D-vitamiinia ja loput varastoituvat rasvasoluihin, joista sitä vapautuu aineenvaihdunnan käyttöön pimeänä aikana.

D-vitamiinia tarvitaan mm. kalsiumin homeostaasin säätelyyn sekä verisuonten terveyden ja immuunijärjestelmän toiminnan turvaamiseen.

Kalsitrioli

Kalsidiolista munuaiset hydroksyloivat edelleen pieniä määriä hormonin tavoin vaikuttavaa kalsitriolia. Kalsitrioli on sekosteroidi, joka vaikuttaa monin tavoin aineenvaihdunnassa.

Kalsitrioli kuljetetaan solujen pinnalla oleviin D-vitamiinireseptoreihin ja niiden kautta edelleen soluissa olevan kromosomin D-vitamiiniin reagoivaan DNA:n osaan (Vitamin D Responding Elements). VDRE:ssä kalsitrioli vaikuttaa yli 200 geenin toimintaan.

Nykykäsityksen mukaan kalsitrioli on immunomodulatorinen eli immuunijärjestelmän toimintaa ohjaava hormoni.

D-vitamiinin saanti

D-vitamiini vaikuttaa kaikkien elävien organismien aineenvaihduntaan. Se kehittyi evoluutiossa ilmeisesti jo noin 500 miljoonaa vuotta sitten. Kaikilla selkärankaisilla on monimutkainen D-vitamiiniin liittyvä umpieritysjärjestelmä ja lähes kaikkien solujen pinnalla on D-vitamiiniin reagoiva reseptori.

Vaikka iho syntetisoi D-vitamiinia, on sen puutos valitettavan yleinen ongelma maailmanlaajuisesti. D-vitamiini edellyttää riittävästi auringon UVB-säteilyä, mutta Suomen korkeudella sen saanti rajoittuu vain keskikesän kuukausiin. Muina aikoina otsonikerros estää UVB-säteilyn, jolloin D-vitamiinia ei muodostu iholla. D-vitamiinin puutokseen voi vaikuttaa myös se, että suurin osa ihmisistä viettää päivät sisätiloissa.

Ravinnosta, kuten rasvaisista kaloista, sienistä ja kananmunankeltuaisista saa jonkin verran D-vitamiinia, mutta ei riittävästi. Siksi D-vitamiinia lisätään moniin elintarvikkeisiin, kuten maitoihin ja margariineihin.

Kasvisruokailijoiden on turvattava D-vitamiinin saanti. Kasvipohjainen ergokalsiferoli (D2) toimii aivan kuten kolekalsiferoli (D3). Lisäksi on löydetty jäkälää, josta saa D3-vitamiinia60.

Kalsium

Makromineraali kalsiumia on elimistössä enemmän kuin mitään muuta mineraalia. Noin 99% kalsiumista on varastoituneena luustoon ja hampaisiin ja 1 % on vapaana kudoksissa ja verenkierrossa.

Ihmisen elimistö tarvitsee kalsiumia luuston rakennusaineena ja lihastoiminnassa sekä veren hyytymisprosesseissa. Se säätelee mm. hermo-lihasärtyvyyttä, solukalvoissa tapahtuvia kuljetuksia, hormoni- ja välittäjäaineiden vapautumista sekä useita entsyymireaktioita.

Kasvisruokailijat saavat yleensä riittävästi kalsiumia, mutta koska kalsiumin aineenvaihdunta edellyttää muita ravinteita, kuten D-vitamiinia, K-vitamiinia ja kobalamiinia, kasvisruokailijan on huolehdittava myös niiden riittävästä saannista. Kalsiumin aineenvaihduntaan ja luuston hyvinvointiin vaikuttavat myös magnesium, fosfori ja kalium.

Kalsiumin saanti

Hyviä kalsiumin lähteitä ovat vihreät vihannekset ja salaatit, kuten brokkoli, lehtikaali ja pinaatti, seesaminsiemenet, tahini, tempe, mantelit ja mantelivoi, appelsiinit, bataatit ja pavut.

Riippumatta ravinnosta saadusta kalsiumista, tärkeää on se, kuinka paljon kalsiumista todellisuudessa imeytyy ravinnosta elimistön hyödynnettäväksi. Monet tekijät vaikuttavat kalsiumin imeytymiseen:

  • Kalsiumin kokonaissaanti vaikuttaa imeytymiseen: Vain noin 500 mg imeytyy kerralla ja imeytyminen vähenee saannin kasvaessa.
  • Ikä vaikuttaa kalsiumin imeytymiseen. Vauvoilla ja lapsilla kalsiumin imeytyminen on tehokasta, koska luusto kasvaa voimakkaasti. Ikääntyminen hidastaa imeytymistä.
  • Fylaatit,joita saadaan mm. täysjyväviljoista, pavuista, siemenistä ja pähkinöistä voivat sitoutua kalsiumiin sekä muihin mineraaleihin ja rajoittaa niiden imeytymistä.
  • Oksalaatit, joita saadaan mm. monista vihreistä lehtikasveista, kuten pinaatista, lehtijuurikkaista, persiljasta, purjosta, punajuuren lehdistä sekä marjoista, manteleista, maapähkinöistä, soijapavuista, okrasta, kvinoasta, kaakaosta, teestä ja suklaasta voivat myös heikentää kalsiumin ja muiden mineraalien imeytymistä.
  • Kalsiumia ei imeydy, jos D-vitamiinitasot ovat liian alhaiset.
  • Runsas suolan, proteiinien, kahvin ja fosforin saanti lisää kalsiumin poistumista elimistöstä62.

Rauta

Raudan puutos on yleisin ravintoaineen puutos sekä teollistuneissa että kehittyvissä maissa 63. Raudan puutos on erityisen yleistä nuorilla naisilla, odottavilla äideillä, vauvoilla ja lapsilla sekä teini-ikäisillä tytöillä. Myös runsaat kuukautiset voivat altistaa raudanpuutokselle.

Sekä sekasyöjät että kasvisravintoa syövät voivat kärsiä raudanpuutteesta.

Hemi- ja nonhemirauta

Rautaa esiintyy kahdessa muodossa: hemi- ja nonhemirautana. Lihassa ja kalassa on noin puolet hemirautaa, joka imeytyy nonhemirautaa paremmin. Kasviksissa esiintyy vain nonhemirautaa. Tästä syystä on suositeltavaa, että kasvisruokavaliossa rautaa pyritään saamaan ravinnosta hieman yleisiä suosituksia enemmän.

Tämä ei ole vaikeaa, sillä monet kasvit sisältävät runsaasti rautaa. Vihreät lehtikasvit ja palkokasvit ovat erinomaisia raudan lähteitä. Myös soijavalmisteissa, tummassa suklaassa, seesaminsiemenissä, auringonkukansiemenissä, rusinoissa, luumuissa ja cashew-pähkinöissä on runsaasti rautaa.

Raudan imeytyminen

Raudan imeytymistä ravinnosta voivat heikentää fytaatit, teen sisältämät tanniinit, kalsium, kuidut, kahvin ja kaakaon polyfenolit sekä eräät mausteet (korianteri, chili, kurkuma).

Raudan imeytymistä voi tehostaa syömällä runsaasti rautaa sisältäviä kasviksia eri aikoina kuin imeytymistä heikentäviä aineita. Raudan imeytymistä tehostaa myös, jos syö runsaasti rautaa sisältäviä kasviksia yhdessä C-vitamiinia ja orgaanisia happoja sisältävien kasvisten kanssa.

Esimerkiksi: smoothie, joka sisältää vihreitä lehtikasveja (lehtikaalia, pinaattia tms), joista saa rautaa sekä hedelmiä tai tomaatteja, jossa on C-vitamiinia.

Jodi

Jodia ei välttämättä saa riittävästi kasviravinnosta, mutta sitä on mm. levissä. On kuitenkin huomattava, että levissä jodin pitoisuudet vaihtelevat todella paljon ja joissain levissä jodin määrä on voi ylittää toksisen rajan. Nori-levä on hyvä jodin lähde, mutta hijiki tai hiziki sisältää niin paljon arseenia, että sen syömistä ei suositella.

Jodioidusta suolasta saa riittävästi jodia. Puolikas teelusikallinen jodioitua suolaa riittää kattamaan päivittäisen jodin tarpeen (150 µg). Merisuola ei sisällä jodia.

Jodi vaikuttaa kilpirauhasen toimintaan

Kilpirauhanen säätelee elimistön aineenvaihduntaa ja erittää tärkeitä kilpirauhashormoneja, jotka huolehtivat sisäelinten toiminnasta. Kilpirauhasen toiminnalle jodin saanti on tärkeää.

Kilpirauhasen vajaatoimintaa sairastavan on jodin imeytymisen varmistamiseksi hyvä välttää ns. goitrogeenisiä ruokia, koska ne heikentävät jodin imeytymistä ja voivat pahentaa olemassa olevaa kilpirauhasen vajaatoimintaa.

Goitrogeeniset ruoat

Goitrogeenejä on mm. ruusukalissa, kukkakaalissa, parsakaalissa, retiisissä, sellerissä, maississa, soijatuotteissa, maapähkinöissä, avokadoissa, appelsiineissa, viikunoissa, pinaatissa, bataatissa, mansikoissa ja vehnässä. Näiden välttely on perusteltua, jos on sairastunut kilpirauhasen vajaatoimintaan.

Goitrogeenisten ruokien välttäminen ei ole tarpeen, jos jodin saanti on riittävää ja kilpirauhanen toimii normaalisti.

Seleeni

Seleeni on voimaks antioksidantti, joka suojaa soluja. Sitä tarvitaan kilpirauhashormin säätelyyn, reproduktioon sekä DNA:n synteesiin. Kasvisravinto sisältää riittävästi seleeniä. Sitä saa runsaasti mm. täysjyväviljoista, palkokasveista, siemenistä ja pähkinöistä. Venäjällä ja Kiinassa on alueita, joissa maaperän ravinnepitoisuus on niin köyhtynyttä, että seleenin puutosta voi esiintyä. Muualla seleenin puutos on harvinaista.

Sinkki

Sinkki tukee immuunijärjestelmän toimintaa ja tehostaa haavojen parantumista. Sinkki osallistuu myös proteiinien ja DNA:n synteesiin, sikiön kehitykseen, sekä lasten kasvuun.

Kasvien sisältämien fylaattien vaikutuksesta sinkin saanti kasviksista on vähäisempää kuin eläinperäisestä ravinnosta. Sinkin puutos on vaikea havaita verikokeissa, mutta puutos voi ilmentyä haavojen paranemisen hitautena, kasvun pysähtymisenä (lapsilla), kaljuuntumisena, heikentyneenä vastustuskykynä, ruokahaluttomuutena, makuhäiriöinä sekä ihon ja silmien leesioina.

Puutteellisen imeytymisen vuoksi kasvissyöjien on syötävä sinkkiä jopa 50 % virallisia suosituksia enemmän. Hyviä lähteitä sinkin saannille ovat palkokasvit, pähkinät, siemenet, soijatuotteet ja täysjyväviljat.

 

Tärkeimpien ravintoaineiden lähteet

Ravinne Ruoka
Proteiini palkokasvit (pavut, linssit, herneet, maapähkinät), pähkinät, siemenet, soijatuotteet (tempe, tofu)
Omega-3 rasvat siemenet (chia, hamppu, pellava), vihreät lehtikasvit, mikrolevät, soijapavut ja soijavalmisteet, saksanpähkinät
Kuitu vihannekset, hedelmät (marjat, päärynät, papaijat, kuivatut hedelmät), avokado, palkokasvit (pavut, linssit, herneet), pähkinät, siemenet, täysjyväviljat
Kalsium vähän oksalaattia sisältävät vihreät lehtikasvit (brokkoli, bok choy, kaali, lehtisalaatit, voikukan lehdet, vesikrassi), kalsiumia sisältävä tofu, mantelit, mantelivoi, kalsiumia sisältävät kasvimaidot (mantelimaito, kauramaito, soijamaito) seesaminsiemenet, tahini, viikunat, melassi (blackstrap molasses)
Jodi vesikasvit ja levät (arame, dulse, nori, wakame), jodioitu suola
Rauta palkokasvit (pavut, linssit, herneet, maapähkinät), vihreät lehtikasvit, soijapavut ja soijatuotteet, kvinoa, perunat, kuivatut hedelmät, tumma suklaa, tahini, siemenet (kurpitsa, seesami, auringonkukka), levät (dulse, nori)
Sinkki palkokasvit (pavut, linssit, herneet, maapähkinät) soijatuotteet, pähkinät, siemenet, kaura
Koliini palkokasvit (pavut, linssit, herneet, maapähkinät), bnaani, brokkoli, kaura, appelsiinit, kvinoa, soijatuotteet
Folaatti vihreät lehtikasvit, mantelit, parsa, avokado, punajuuret, folaattia sisältävät viljat (leivät, pastat, riisit), appelsiinit, kvinoa, ravintohiiva
B12 –Vitamiini elintarvikkeet, joihin B12 -vitamiinia eli kobalamiinia on lisätty (ravintohiiva, kasvimaidot), kasvipohjainen B12 lisäravinne (2500 μg viikossa)
C -Vitamiini hedelmät (marjat, sitrushedelmät, verkkomeloni, kiwi-hedelmä, mango, papaya, ananans), vihreät lehtikasvit, perunat, herneet, paprikat, chilipippurit, tomaatit
D – Vitamiini sun, fortified plant milks, supplement if deficient
K -Vitamiini vihreät lehtikasvit, levät, parsa, avokado, brokkoli, ruusukaali, kukkakaali, linssit, herneet, nattō (a traditional Japanese food made from soybeans fermented with Bacillus subtilis var nattō)

 

Tutustu elintarvikkeiden ravintosisältöön ennen tuotteen ostoa!

  • Sivuuta harhaanjohtava markkinointilauseet elintarvikepakkauksissa, kuten (”erinomainen …”, ”…vapaa”, ”luonnollinen”)
  • Keskity elintarvikkeen ravintosisältöön ja unohda kaikki ylimääräiset merkinnät pakkauksessa (ne ovat markkinointia)
  • Suosi elintarvikkeita, jotka:
    • – sisältävät tuttuja ravintoaineita
    • – joiden tuoteseloste on lyhyt (ilman useita lisäaineita)
    • – eivät sisällä keinotekoisia makeutusaineita, makuvahventeita, värejä, säilöntäaineita, stabilointiaineita jne.
    • – älä osta elintarvikkeita, joihin on lisätty tuntemattomia lisäaineita

Suositeltavia sivustoja terveellisestä kasvisravinnosta kiinnostuneille

 

Lähteet:

Julieanna Haver (Ms, RD, CPT): Plant-Based Dietes: A Physician’s Guide, 6.6.2016

  1. Graffeo C. Is there evidence to support a vegetarian diet in common chronic diseases? [Internet] New York, NY: Clinical Correlations; 2013. Jun 20, [cited 2015 Mar 17]:[about 8 p]. Available from:www.clinicalcorrelations.org/?p=6186.
  2. Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013 Jul 8;173(13):1230–8. DOI:http://dx.doi.org/10.1001/jamainternmed.2013.6473. [PMC free article] [PubMed]
  3. Rosell M, Appleby P, Spencer E, Key T. Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes (Lond) 2006 Sep;30(9):1389–96. DOI:http://dx.doi.org/10.1038/sj.ijo.0803305. [PubMed]
  4. Ornish D. Statins and the soul of medicine. Am J Cardiol. 2002 Jun 1;89(11):1286–90. DOI:http://dx.doi.org/10.1016/S0002-9149(02)02327-5. [PubMed]
  5. Jenkins DJ, Kendall CW, Marchie A, et al. Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr. 2005 Feb;81(2):380–7.[PubMed]
  6. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009 May;89(5):1588S–1596S. DOI: http://dx.doi.org/10.3945/ajcn.2009.26736H. [PMC free article] [PubMed]
  7. Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab. 2012;60(4):233–40.DOI: http://dx.doi.org/10.1159/000337301. [PubMed]
  8. Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013 Spring;17(2):61–6. DOI: http://dx.doi.org/10.7812/TPP/12-085. [PMC free article] [PubMed]
  9. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009 May;32(5):791–6. DOI: http://dx.doi.org/10.2337/dc08-1886. [PMC free article] [PubMed]
  10. Appleby PN, Davey GK, Key TJ. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002 Oct;5(5):645–54. DOI:http://dx.doi.org/10.1079/PHN2002332. [PubMed]
  11. Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol. 2009 Oct 1;104(7):947–56. DOI: http://dx.doi.org/10.1016/j.amjcard.2009.05.032. [PubMed]
  12. Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998 Dec 16;280(23):2001–7. DOI: http://dx.doi.org/10.1001/jama.280.23.2001.[PubMed]
  13. Esselstyn CB, Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014 Jul;63(7):356–364b. [PubMed]
  14. Vannice G, Rasmussen H. Position of the Academy of Nutrition and Dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014 Jan;114(1):136–53. DOI:http://dx.doi.org/10.1016/j.jand.2013.11.001. Erratum in: J Acad Nutr Diet 2014 Apr;114(4):644. DOI:http://dx.doi.org/10.1016/j.jand.2014.02.014. [PubMed]
  15. Saturated Fats [Internet] Dallas, TX: American Heart Association; 2015. Jan 12, [cited 2015 Mar 17]. Available from: www.heart.org/HEARTORG/GettingHealthy/NutritionCenter/HealthyEating/Saturated-Fats_UCM_301110_Article.jsp.
  16. Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr. 1992 Jun;55(6):1060–70. [PubMed]
  17. Howell WH, McNamara DJ, Tosca MA, Smith BT, Gaines JA. Plasma lipid and lipoprotein responses to dietary fat and cholesterol: a meta-analysis. Am J Clin Nutr. 1997 Jun;65(6):1747–64. [PubMed]
  18. Spence JD, Jenkins DJ, Davignon J. Dietary cholesterol and egg yolks: not for patients at risk of vascular disease. Can J Cardiol. 2010 Nov;26(9):e336–9. [PMC free article] [PubMed]
  19. Record-high antibiotic sales for meat and poultry production [Internet] Philadelphia, PA: The Pew Charitable Trusts; 2013. Feb 6, [cited 2015 Apr 7]. Available from: www.pewtrusts.org/en/about/news-room/news/2013/02/06/recordhigh-antibiotic-sales-for-meat-and-poultry-production.
  20. Antibiotic resistance threats in the United States, 2013 [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2014. Jul 17, [cited 2015 Apr 7]. Available from:www.cdc.gov/drugresistance/threat-report-2013/.
  21. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002 Nov;11(11):1441–8. [PubMed]
  22. Iron: dietary supplement fact sheet [Internet] Bethesda, MD: National Institutes of Health, Office of Dietary Supplements; 2015. Feb 19, [cited 2015 Apr 12]. Available from:http://ods.od.nih.gov/factsheets/Iron-HealthProfessional/.
  23. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2–3):65–87. DOI: http://dx.doi.org/10.1016/j.tox.2011.03.001. [PubMed]
  24. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 2011 Feb;4(2):177–84. DOI:http://dx.doi.org/10.1158/1940-6207.CAPR-10-0113. [PubMed]
  25. Ahluwalia N, Genoux A, Ferrieres J, et al. Iron status is associated with carotid atherosclerotic plaques in middle-aged adults. J Nutr. 2010 Apr;140(4):812–6. DOI: http://dx.doi.org/10.3945/jn.109.110353. [PMC free article] [PubMed]
  26. Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003 Sep;78(3 Suppl):633S–639S. [PubMed]
  27. European Commission Scientific Committee on Food . Polycyclic aromatic hydrocarbons— occurrence in foods, dietary exposure and health effects [Internet] Brussels, Belgium: European Commission Health and Consumer Protection Directorate-General; 2002. Dec 4, [cited 2015 Apr 7]. Available from:http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf.
  28. Chemicals in meat cooked at high temperatures and cancer risk [Internet] Bethesda, MD: National Cancer Institute at the National Institutes of Health; 2010. Oct 15, [cited 2015 Apr 7]. Available from:www.cancer.gov/cancertopics/causes-prevention/risk/diet/cooked-meats-fact-sheet.
  29. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010 Jun;110(6):911–6. DOI:http://dx.doi.org/10.1016/j.jada.2010.03.018. [PMC free article] [PubMed]
  30. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576–85. DOI:http://dx.doi.org/10.1038/nm.3145. [PMC free article] [PubMed]
  31. Hedlund M, Padler-Karavani V, Varki NM, Varki A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18936–41. DOI: http://dx.doi.org/10.1073/pnas.0803943105. [PMC free article] [PubMed]
  32. Taylor RE, Gregg CJ, Padler-Karavani V, et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010 Aug 2;207(8):1637–46. DOI: http://dx.doi.org/10.1084/jem.20100575. [PMC free article] [PubMed]
  33. Food Insight Functional foods fact sheet: antioxidants [Internet] Washington DC: International Food Information Council Foundation; 2009. Oct 14, [cited 2015 Apr 17]. Available from:www.foodinsight.org/Functional_Foods_Fact_Sheet_Antioxidants.
  34. Bellik Y, Boukraâ L, Alzahrani HA, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2012 Dec 27;18(1):322–53. DOI:http://dx.doi.org/10.3390/molecules18010322. [PubMed]
  35. Phytochemicals: the cancer fighters in the foods we eat [Internet] Washington, DC: American Institute for Cancer Research; 2013. Apr 10, [cited 2015 Apr 17]. Available from: www.aicr.org/reduce-your-cancer-risk/diet/elements_phytochemicals.html.
  36. Schmitz H, Chevaux K. Defining the role of dietary phytochemicals in modulating human immune function. In: Gershwin ME, German JB, Keen CL, editors. Nutrition and immunology: principles and practice. Totowa, NJ: Humana Press Inc; 2000. pp. 107–19.
  37. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas. 2011 Dec;70(4):333–8. DOI: http://dx.doi.org/10.1016/j.maturitas.2011.09.001.[PubMed]
  38. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med. 2012 Mar;5(3):243–8. DOI: http://dx.doi.org/10.1016/S1995-7645(12)60033-9. [PubMed]
  39. Basu HN, Del Vecchio AJ, Filder F, Orthoeter FT. Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc. 2001 Jul;78(7):665–75. DOI:http://dx.doi.org/10.1007/s11746-001-0324-x.
  40. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007 Apr;85(4):1148–56. [PubMed]
  41. Howard BV, Kritchevsky D. Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation. 1997 Jun 3;95(11):2591–3. DOI:http://dx.doi.org/10.1161/01.CIR.95.11.2591. [PubMed]
  42. Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012 Jul;142(7):1390S–401S. DOI:http://dx.doi.org/10.3945/jn.112.160176. [PubMed]
  43. National Center for Chronic Disease Prevention and Health Promotion . The power of prevention: chronic disease … the public health challenge of the 21st century [Internet] Atlanta, GA: Centers for Disease Control and Prevention; 2009. [cited 2015 Mar 17]. Available from:www.cdc.gov/chronicdisease/pdf/2009-power-of-prevention.pdf.
  44. Craig WJ, Mangels AR, American Dietetic Association Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009 Jul;109(7):1266–82. DOI:http://dx.doi.org/10.1016/j.jada.2009.05.027. [PubMed]
  45. Farmer B, Larson BT, Fulgoni VL, III, Rainville AJ, Liepa GU. A vegetarian diet pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999–2004. J Am Diet Assoc. 2011 Jun;111(6):819–27. DOI: http://dx.doi.org/10.1016/j.jada.2011.03.012.[PubMed]
  46. 2015 Dietary Guidelines Advisory Committee . Scientific report of the 2015 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture [Internet] Washington, DC: USDA, Department of Health and Human Services; 2015. Feb, [cited 2015 Mar 18]. Available from: www.health.gov/dietaryguidelines/2015-scientific-report/PDFs/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf.
  47. Sabaté J. Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. Am J Clin Nutr. 1999 Sep;70(3 Suppl):500S–503S. [PubMed]
  48. O’Neil CE, Keast DR, Nicklas TA, Fulgoni VL., 3rd Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in US adults: NHANES 1999–2004. J Am Coll Nutr. 2011 Dec;30(6):502–10. DOI: http://dx.doi.org/10.1080/07315724.2011.10719996.[PubMed]
  49. Seddon JM, Cote J, Rosner B. Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol. 2003 Dec;121(12):1728–37. DOI:http://dx.doi.org/10.1001/archopht.121.12.1728. Erratum in: Arch Ophthalmol 2004 Mar;122(3):426. DOI:http://dx.doi.org/10.1001/archopht.122.3.426. [PubMed]
  50. Tsai CJ, Leitzmann MF, Hu FB, Willett WC, Giovannucci EL. Frequent nut consumption and decreased risk of cholecystectomy in women. Am J Clin Nutr. 2004 Jul;80(1):76–81. [PubMed]
  51. Wilcox DC, Wilcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009 Aug;28(Suppl):500S–516S. DOI: http://dx.doi.org/10.1080/07315724.2009.10718117. [PubMed]
  52. Allbaugh L. Crete: a case study of an underdeveloped area. Princeton, NJ: Princeton University Press; 1953.
  53. Davis B, Melina V. Becoming vegan: comprehensive edition. Summertown, TN: Book Publishing Company; 2014.
  54. Dietary reference intakes: macronutrients [Internet] Washinton, DC: Institute of Medicine of the National Academies; 2005. [cited 2015 Apr 15]. Available from:https://iom.nationalacademies.org/~/media/Files/Activity%20Files/Nutrition/DRIs/DRI_Macronutrients.pdf.
  55. Fish [Internet] Washington DC: Physicians Committee for Responsible Medicine; 2009. Jan, [cited 2016 Mar 17]. Available from: www.pcrm.org/health/reports/fish.
  56. Worm B, Barbier EB, Beaumont N, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006 Nov 3;314(5800):787–90. DOI: http://dx.doi.org/10.1126/science.1132294. [PubMed]
  57. FDA cuts trans fats in processed foods [Internet] Washington DC: US Food and Drug Administration; 2015. Jun 16, [2016 Mar 17]. Available from:www.fda.gov/ForConsumers/ConsumerUpdates/ucm372915.htm.
  58. Jenkins DJ, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003 Jul 23;290(4):502–10. DOI:http://dx.doi.org/10.1001/jama.290.4.502. [PubMed]
  59. Jacobs DR, Jr, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009 May;89(5):1543S–1548S. DOI:http://dx.doi.org/10.3945/ajcn.2009.26736B. [PMC free article] [PubMed]
  60. Watson E. Veggie vitamin D3 maker explores novel production process to secure future supplies [Internet] Montpelier, France: William Reed Business Media; 2012. Mar 13, [cited 2016 Jun 6]. Available from: www.nutraingredients-usa.com/Suppliers2/Veggie-vitamin-D3-maker-explores-novel-production-process-to-secure-future-supplies.
  61. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011 Jan;96(1):53–8. DOI: http://dx.doi.org/10.1210/jc.2010-2704. [PMC free article] [PubMed]
  62. National Institutes of Health Office of Dietary Supplements . Calcium: dietary supplement fact sheet [Internet] Washington, DC: National Institutes of Health; 2013. Nov 21, [cited 2015 Mar 26]. Available from: http://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/.
  63. Part II. Evaluating the public health significance of micronutrient malnutrition. In: Allen L, de Benoist B, Dary O, Hurrell R, editors. Guidelines on food fortification with micronutrients. Geneva, Switzerland: World Health Organization; 2006. pp. 43–56.
  64. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014 Sep;68(9):856–62. DOI: http://dx.doi.org/10.1136/jech-2013-203500. [PMC free article] [PubMed]
  65. Gallant MP. The influence of social support on chronic illness self-management: a review and directions for research. Health Educ Behav. 2003 Apr;30(2):170–95. DOI:http://dx.doi.org/10.1177/1090198102251030. [PubMed]



Hiilihydraattien rajoittaminen korjaa maksa-arvoja

Pienimuotoisen ruotsalaistutkimuksen mukaan hiilihydraattien rajoittaminen korjaa maksa-arvoja ylipainoisilla alkoholista riippumatonta rasvamaksaa sairastavilla. Tutkimuksen mukaan vähän hiilihydraatteja sisältävällä ravinnolla on selvästi suotuisia vaikutuksia alkoholista riippumatonta rasvamaksaa sairastavien terveydelle. Tutkimuksesta uutisoi Medical News Today 20.02.2018. Tutkimus on julkaistu Cell Metabolism lehdessä.

Alkoholista riippumaton rasvamaksa (NAFLD) yleistyy nopeasti kaikissa ikäryhmissä ja se on lasten yleisin maksasairaus. NAFLD voi johtaa diabeteksen kehittymiseen, verenpainetautiin, maksakirroosiin ja maksasyöpään.

NAFLD lisääntyy erityisesti keskivartalolihavilla aikuisilla ja lapsilla. Yhtenä syynä voi olla runsas fruktoosin saanti mm. virvoitusjuomista ja makeisista. Yli 15 g fruktoosia päivässä on joidenkin tutkimusten valossa maksalle haitallista. Fruktoosi voi aiheuttaa maksan sidekudostumista henkilöillä, joilla on alkoholista riippumaton rasvamaksa.

NAFLD ja PNPLA3

Rasvamaksassa rasvaa kertyy maksasolujen sisälle. Rasvamaksan tunnusmerkistö täyttyy, kun yli 5 % maksakudoksesta koostuu rasvapisaroista.

Rasvamaksan komplikaatioiden, kuten sepelvaltimotaudin, aivohalvauksen ja tyypin 2 diabeteksen riski kasvaa vain niillä henkilöillä, joilla on sekä NAFLD että metabolinen oireyhtymä, kertoo Aki Käräjämäki väitöstutkimuksessaan.

Rasvamaksa kaksinkertaistaa eteisvärinän riskin ja on siten jopa suurempi riskitekijä kuin verenpainetauti, jota on perinteisesti pidetty olennaisena eteisvärinän kehittymiselle.

Pregnane-X-reseptori

Lisävalaistusta alkoholista riippumattoman rasvamaksan kehittymisen syihin antaa Aki Käräjämäen 16 vuotta kestänyt väitöstutkimus, jossa seurattiin 1000 keski-ikäistä pohjoissuomalaista henkilöä.

Tutkimuksessa havaittiin, että mm. lääke- ja energia-aineenvaihduntaa säätelevän Pregnane X-reseptorin aktivaatio muutti terveiden nuorten ihmisten maksan rasva-aineenvaihduntaa tavalla, joka voi altistaa rasvamaksalle.

Väitöstutkimuksen kirjoittajan mukaan jopa sadat lääkeaineet, luontaistuotteet ja ympäristökemikaalit aktivoivat Pregnane-X-reseptoria ja voivat näin vaikuttaa maksan rasva-aineenvaihduntaan ja edesauttaa alkoholiin liittymättömän rasvamaksataudin puhkeamista.

(LL Aki Käräjämäen väitöskirja Non-alcoholic fatty liver disease (NAFLD) – perspectives to etiology, complications and lipid metabolism tarkastetaan Oulun yliopistossa 8.12.2017)

Alkoholista riippumaton rasvamaksa – NAFLD (Non-Alcoholic-Fatty-Liver-Disease)

Alkoholista riippumaton rasvamaksa assosioituu vahvasti lihavuuteen, metaboliseen oireyhtymään ja tyypin 2 diabetekseen. NAFLD on maailman yleisin maksasairaus. Eurooppalaisista jopa 20-25 % saattaa tietämättään sairastaa alkoholista riippumatonta rasvamaksaa, suomalaisista 45-74-vuotiaista sitä sairastaa noin 21 %.

PNPLA3-rasvamaksa

NAFLD ei ole yksi sairaus. Diabetekselle ja sepelvaltimotaudille altistava metabolinen rasvamaksa liittyy metaboliseen oireyhtymään ja maksan insuliiniresistenssiin.

PNPLA3-rasvamaksan taustalla on PNPLA3-geenin muunnos (PNPLA3| 148M), jonka kantajien maksa rasvoittuu normaalia helpommin. Jopa 40 %:lla eurooppalaisista on tämä geenimuunnos. Tähän ei liity insuliiniresistenssiä, eikä se altista diabetekselle.

Molemmat: NAFLD ja PNPLA3-rasvamaksa voivat edetä maksakirroosiin tai maksasyöpään. Rasvoittunut maksa lisää kirroosin ja maksasyövän riskiä.

Professori Hannele Yki-Järvisen johdolla tehdyssä tutkimuksessa selvitettiin miksi PNPLA3-rasvamaksa ei altista diabetekselle eikä sydänsairaudelle. Tutkittaville tehdyistä maksabiobsianäytteistä selvisi, että metabolisen rasvamaksan ja PNPLA3-rasvamaksan koostumuksessa oli selviä eroavaisuuksia. Metabolisessa rasvamaksassa oli tyydyttyneitä rasvahappoja ja insuliiniresistenssiä aiheuttavia seramideja, kun taas PNPLA3-rasvamaksan rasvahapot olivat monityydyttämättömiä eikä haitallisia seramideja esiintynyt.

Ihmisillä esiintyy kahta rasvoittuneen maksan päätyyppiä ja seramidirasvat aiheuttavat insuliiniresistenssia ihmisen maksassa. Erot maksan rasvahappo- ja triglyseridikoostumuksessa selittävät hyvin, miksi metabolinen rasvamaksa lisää tyypin 2 diabeteksen ja sepelvaltimotaudin riskiä, mutta PNPLA3-rasvamaksa ei.

ALAT – mitä maksa-arvot kertovat maksan terveydestä?

Maksa-arvojen mittauksia käytetään maksasairauksien seulonnassa sekä niiden vakavuuden ja ennusteen arvioinnissa.

Yleisimmät maksakokeet ovat ALAT (alaniiniaminotransferaasi), AFOS (alkalinen fosfataasi), GT (glutamyylitransferaasi) ja bilirubiini. CDT (desialotransferiiini) on spesifinen alkoholin kroonisen riskikäytön mittari.

ALAT on ensisijainen maksasoluvaurion seulontatutkimus. Virusten ja lääkeaineiden aiheuttamien akuuttien maksatulehdusten (hepatiitti) yhteydessä ALAT kohoaa usein noin kymmenkertaiseksi tai suuremmaksi. Kroonisessa hepatiitissa ja maksakirroosissa ALAT kertoo taudin aktiivisuudesta.

ALATin viitearvot

Lapset (0–16 v) alle 40U/l
Miehet (yli 16v) alle 50U/l
Naiset (yli 16v) alle 35U/l

Yleinen ei-alkoholiperäisen maksasairauden syy on lihavuus, koska lihavuuteen liittyy usein maksasolujen rasvoittumista. Tämä voi johtaa rasvamaksan kehittymiseen. Rasvamaksa voi johtaa diabeteksen kehittymisen lisäksi myös maksakirroosiin ja maksasyöpään. Toistaiseksi ei tiedetä, miksi rasvamaksa joillain etenee hengenvaaralliseksi sairaudeksi ja toisilla ei.

Hiilihydraattien rajoittaminen ja maksan terveys

Hiilihydraattien rajoittaminen mielletään yleensä laihdutusruokavalioksi. Pastan, perunoiden, leivän, sokereiden ja valkoisten jauhojen vähentämiselle voi olla myös terveydellisiä syitä.

Ruotsissa vähähiilihydraattisella ruokavaliolla hoidetaan diabetesta ja ketogeeninen ruokavalio toimii lääkeresistentin epilepsian hoidossa jopa 50 %:lla potilaista.

Kaksi viikkoa karppausta

Ruotsalaistutkijoiden mukaan vain kahden viikon vähähiilihydraattinen ruokavalio vähensi ylipainoisten alkoholista riippumatonta rasvamaksaa sairastavien henkilöiden maksan rasvoittumista ja paransi muita terveyttä mittaavia kardiometabolisia markkereita.

Usein lääkärit kehottavat alkoholista riippumattoman rasvamaksan hoitokeinoksi vähärasvaisia elintarvikkeita. Tämä kuulostaa loogiselta, mutta se ei huomioi aineenvaihduntaa, jossa ylimääräiset hiilihydraatit muutetaan maksa- ja rasvasolujen lipogneesissa triglyserideiksi eli rasvoiksi. Fruktoosin aineenvaihdunta tapahtuu maksassa, ja vaikka maksa muuttaisi osan fruktooista glukoosiksi, prosessi rasittaa maksaa.

Pienessä ruotsalaistutkimuksessa Adil Mardinoglun (KTH Royal Institute of Technology) tutkimusryhmä seurasi kymmenen ylipainoisen alkoholista riippumatonta rasvamaksaa sairastavan maksan terveyttä vähän hiilihydraatteja ja runsaasti proteiineja sisältävällä ruokavalioilla.

Tutkittavat henkilöt söivät kaksi viikkoa ruokavaliota, jossa hiilihydraattien osuutta rajoitettiin ja proteiinien osuutta lisättiin. Lyhyen kokeilun jälkeen tutkimusryhmä tutki minkälainen metabolinen vaikutus ruokavaliolla oli maksan terveyteen.

Tutkimus osoitti, että 14 päivän vähähiilihydraattinen ruokavalio paransi maksan rasva-aineenvaihduntaa ja vähensi maksan rasvoittumista dramaattisesti. Myös tutkittavien tulehdusmarkkerit (erityisesti interleukiini-6 ja tuumorinekroositekijä-alfa) laskivat hiilihydraattien rajoituksen seurauksena. Interleukiini-6 ja tuumorinekroositekijä-alfa assosioituvat alkoholista riippumattoman rasvamaksan vaikeusasteeseen.

Tutkimusryhmän mukaan tutkittavien suoliston mikrobiomissa tapahtui suotuisia muutoksia hiilihydraattien rajoittamisen seurauksena. Erityisesti B-ryhmän vitamiineihin kuuluvan ja maksan rasva-aineenvaihduntaa parantavan folaatin määrä verenkierrossa lisääntyi.

[…] we showed that short-term intervention with an isocaloric low-carbohydrate diet with increased protein content promotes multiple metabolic benefits in obese humans with NAFLD.”

Tutkijat muistuttavat kuitenkin, että hiilihydraattien rajoittaminen ei välttämättä auta kaikkia alkoholista riippumatonta rasvamaksaa sairastavia.

LÄHTEET:

www.helsinki.fi
Potilaan lääkärilehti
Medical News Today
Potilaan lääkärilehti – ALAT




Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen ruokavalio kääntää perinteiset ravintosuositukset päälaelleen. Vähähiilihydraattisena ruokavaliona se ylittää aika ajoin uutiskynnyksen ja keskustelu sen ympärillä on ollut kiivasta karppausbuumin alkuajoista alkaen.

Viime kuussa joukko amerikkalaisia asiantuntijoita rankkasi ketogeenisen ruokavalion 40 dieetin vertailussa pitkäaikaisvaikutuksiltaan huonoimmaksi laihdutusruokavalioksi. Luulen, että ketogeeniseen ruokavalioon liittyy paljon epätietoisuutta. Mitä ketogeenisellä ruokavaliolla tarkoitetaan ja kuinka se toimii?

Ketogeeninen ruokavalio ja aineenvaihdunta

Ketogeeninen dieetti on vähähiilihydraattinen ruokavalio, jossa tavoitellaan aineenvaihdunnan ketoositilaa. Kun maksaan ja lihaksiin varastoidut hiilihydraattivarastot tyhjenevät, maksa ryhtyy tuottamaan ketoaineita ketogeneesissä ja käyttämään rasvakudokseen säilöttyä energiaa tasapainottaakseen elimistön energiavajetta.

Käytännössä ketogeenisessä ruokavaliossa tavoitellaan sellaista aineenvaihdunnan tilaa, jossa elimistö oppii käyttämään tehokkaasti rasvakudokseen varastoitua läskiä energianlähteenä.

Ketogeneesin käynnistyminen edellyttää, että ravinnon hiilihydraattien saantia rajoitetaan. Ketoosi alkaa, kun elimistö ei saa riittävästi hiilihydraatteja ja elimistön hiilihydraattivarastot eli glykogeenit tyhjenevät.

Varsinkin ruokavalion alkuvaiheessa hiilihydraatteja rajoitetaan reilusti. Tämän ”induktiovaiheen” tavoitteena on uudelleenohjelmoida elimistö käyttämään energianlähteenä aluksi ketoaineita ja myöhemmin pääasiassa rasvaa. Hiilihydraattien saanti lasketaan 20-100 grammaan vuorokaudessa.

Ketogeeninen ruokavalio lääketieteessä

Lääketieteessä ketogeenista ruokavaliota käytetään erityisesti vaikean epilepsian hoitoon lapsilla. Käypä hoito -suosituksissa neuvotaan harkitsemaan ketogeenista ruokavaliota yhteistyössä ravitsemusterapeutin kanssa vaikean epilepsian hoidossa silloin, kun epilepsialääkkeet eivät käy eikä kirurgisen hoidon mahdollisuutta ole. Ketogeenista ruokavaliota on käytetty myös lasten lihavuuden hoidossa.

Vähähiilihydraattinen ruokavalio on hyväksi diabeetikoille, sydän- ja syöpäpotilaille sekä ylipainoisille. Vähän hiilihydraatteja sisältävä ravinto laihduttaa ja vähentää ylipainoisten ihmisten sydäntautien riskiä tehokkaammin kuin vähärasvainen ruokavalio, osoittaa laajameta-analyysi, jossa käytiin läpi tutkimukset vuosilta 1966-2014 (Sackner-Bernstein ym. 2015).

Induktiovaiheen ravintosisältö

Alkuvaiheessa ketogeeninen ruokavalio sisältää yleensä noin 20 – 50 grammaa hiilihydraatteja vuorokaudessa hieman henkilöstä ja ruokavalion tavoitteista riippuen. Proteiinien saanniksi suositellaan 1-2 grammaa / painokilo, mutta ikääntyneillä proteiinien saanti voi olla korkeampikin lihaksia energianlähteeksi pilkkovan katabolisen aineenvaihdunnan vuoksi. Suurin osa ravinnosta muodostuu ketogeenisessä ruokavaliossa rasvasta.

Vettä on tärkeää juoda runsaasti (3-4 l/vuorokaudessa), sillä ketogeeninen ruokavalio poistaa vettä sitovien hiilihydraattien puutoksen vuoksi runsaasti kehoon sitoutuneita nesteitä. Myös suolan saannista on tärkeä huolehtia, koska se sitoo elimistöön nestettä ja ehkäisee elimistön kuivumista hiilihydraattien puuttuessa.

Noin neljän viikon induktiojakson jälkeen hiilihydraattien määrää voi lisätä  alle 50 grammasta 50-100 grammaan vuorokaudessa esimerkiksi kasviksia lisäämällä.

  • 5-10 % Ravinnon energiamäärästä (kcal) tulisi saada hiilihydraateista
  • 30 % Ravinnon energiamäärästä (kcal) tulisi saada proteiineista
  • 60 % Ravinnon energiamäärästä (kcal) tulisi saada rasvasta

Ketogeenisen ruokavalion tiedetään aiheuttavan päänsärkyä monilla, mutta se on yleensä seurausta veden liian vähäisen juomisen aiheuttamasta nestehukasta.Silloin kannattaa juoda enemmän vettä.

Ketoosi ja ketoasidoosi eivät ole sama asia

Ketoasidoosi eli happomyrkytys on toksinen tila, jossa ketoaineiden määrä verenkierrossa voi kasvaa monikymmenkertaiseksi ketoosiin verrattuna. Lievimmillään ketoasidoosia ei välttämättä edes huomaa, mutta vakavimmillaan se on hengenvaarallinen myrkytystila. Ketoosi ja ketoasidoosi ovat siis kaksi eri asiaa.

Ketogeeninen ruokavalio ja aineenvaihdunta

Aineenvaihdunnan tasolla ketogeneesi tarkoittaa energianlähteiksi kelpaavien ketoaineiden tuottamista rasvahapoista silloin kun hiilihydraattien saanti on niukkaa tai olematonta.

Ketoaineet ovat rasvasta ja etanolista muodostuvia pienimolekyylisia yhdisteitä. Elimistössä muodostuu kolmea eri ketoainetta:

  • asetoasetaattia
  • beeta-hydroksibutyraattia
  • asetonia

Ketoaineiden tuotannon käynnistyminen

Aineenvaihdunta aloittaa ketoaineiden tuotannon, kun maksan ja lihasten sokerivarastot (glykogeenit) on kulutettu loppuun esimerkiksi intensiivisen urheilusuorituksen, vähän hiilihydraatteja sisältävän ravinnon tai paaston vaikutuksesta.

Ketoaineiden tuotannon käynnistyminen ei tarkoita, että elimistö on ketoosissa. Se on vain merkki siitä, että hiilihydraattivarastot ovat loppu ja elimistö siirtyy ”varavoimanlähteen” käyttöön. Ketoosi alkaa yleensä muutamassa päivässä ja rasvan käyttäminen solujen polttoaineena vakiintuu 3-4 viikossa.

Kun keho menee ketoosiin, aineenvaihdunta turvaa elintoimintojen tarvitseman energian saannin glukoneogeneesillä ja ketogeneesillä myös paaston ja hiilihydraatittoman ruokavalion aikana. 3-4 viikossa elimistö korvaa ketoaineet energianlähteinä rasvakudoksen ja ravinnon rasvoilla.

Näiden aineenvaihduntamekanismien ansiosta terve ihminen selviää elossa pelkällä vedellä jopa kuukauden ajan.

Ketoaineita syntyy maksassa ja munuaisissa

Yleensä ketoaineita syntyy maksan ja munuaisten solujen mitokondrioissa solujen glukoneogeneesin sivutuotteina. Kun solut tuottavat glukoosia, ne tuottavat tarvitsemansa energian hapettamalla rasvahappoja asetyylikoentsyymi-A:ksi.

Asetyylikoentsyymi-A

Wikipedia kertoo, että asetyylikoentsyymi-A, eli aktiivinen etikkahappo, on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa.  Asetyylikoentsyymi-A:ta saadaan monosakkarideista (sokereista), triglyserideistä (rasvoista) ja aminohapoista (proteiineista) erilaisten reaktiovaiheiden kautta.

Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä (sitruunahappokierto) ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi.

Glukoosi hajoaa solulimassa tapahtuvassa glykolyysissä kahdeksi pyruvaatiksi, joista molemmista saadaan edelleen oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta. Jos happea ja mitokondrioita ei ole riittävästi, pyruvaatti pelkistyy maitohapon anioniksi laktaatiksi.

Rasvahapot hajoavat hapettumalla β-oksidaatiossa niin, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

– Wikipedia

Asetyylikoentsyymi-A, joka ei hapetu normaalisti sitruunahappokierrossa glukoneogeneesin ollessa käynnissä, muuntuu ketogeneesissä asetoasetaatiksi ja edelleen betahydroksibutyraatiksi.

Ketoaineet kulkeutuvat verenkierron mukana maksasta ja munuaisista muualle elimistöön. Aivojen gliasolut käyttävät asetoasetaattia ja betahydroksibutyraattia lipidien rakennusaineena. Sydän, lihakset ja aivot voivat tarvittaessa käyttää ketoaineita solujen energianlähteenä.

Ketogeneesi on elintoimintojen varavoimanlähde

Glukoneogeneesi ja ketogeneesi toimivat itsenäisesti energiantuotannon taustaprosesseina ja ylläpitävät solujen energiansaantia silloin, kun syömisestä on kulunut paljon aikaa. Glukoneogeneesi käynnistyy haiman erittämän glukagonin aktivoimana maksassa ja munuaisissa ja se johtaa edelleen ketogeneesin käynnistymiseen maksan ja munuaisten mitokondrioissa.

Ilman näitä aineenvaihdunnan prosesseja evoluutio ja aivojen kehitys olisivat pysähtyneet esihistorian aamuhämärissä, eikä nykyihmistä olisi koskaan kehittynyt.

In essence, a ketogenic diet mimics starvation, allowing the body to go into a metabolic state called ketosis (key-tow-sis). Normally, human bodies are sugar-driven machines: ingested carbohydrates are broken down into glucose, which is mainly transported and used as energy or stored as glycogen in liver and muscle tissue. When deprived of dietary carbohydrates (usually below 50g/day), the liver becomes the sole provider of glucose to feed your hungry organs – especially the brain, a particularly greedy entity accounting for ~20% of total energy expenditure. The brain cannot DIRECTLY use fat for energy. Once liver glycogen is depleted, without a backup energy source, humanity would’ve long disappeared in the eons of evolution. .

Scientific American

Ketogeneesi on osa kehon normaalia aineenvaihduntaa. Nykyisin ravinto on sen verran energiatiheää ja hiilihydraattipainotteista, että elimistö turvautuu ketogeneesiin vain satunnaisesti, vaikka se esi-isillämme oli luontainen osa elimistön energiantuotantoa. Viimeisten vuosisatojen aikana ravintotottumukset ovat muuttuneet valtavasti, mutta aineenvaihdunnan mekanismit muuttuvat hitaammin.

Aineenvaihduntamme on lapsesta lähtien opetettu saamaan energia hiilihydraateista, mutta se ei tarkoita sitä, etteikö energiansaantiin olisi muita tapoja. Aineenvaihdunta voidaan uudelleenohjelmoida ”sokeripolttoisesta” tehtaasta ”rasvapolttoiseksi” ravintoon liittyvillä valinnoilla.

Aineenvaihdunta biohakkeroimalla rasvaa polttavaksi

Ketoosi on ketogeneettisessä ruokavaliossa tavoiteltava aineenvaihdunnan tila. Siihen päästään ”biohakkeroimalla” aineenvaihdunnan toimintaa.

Käytännössä biohakkeroinnilla tarkoitetaan ravinnosta saatavien hiilihydraattien rajoittamista 20-50 grammaan vuorokaudessa. Aineenvaihdunta opetetaan käyttämään ketoaineita ja rasvasolujen sisältämiä energiavarastoja energianlähteenä, koska sille ei tarjota helppoa energianlähdettä hiilihydraattien muodossa.

Kuvan lähde: Wikipedia – Glycogen

Glykogeenit

Oheinen kuva esittää kaksiulotteisen mallin glykogeenistä, joka on jopa 30 000 glukoosimolekyylistä muodostuva monihaarainen ja pitkäketjuinen polysakkaridi. Osa verensokerista varastoidaan tällaisina polysakkarideina maksa- ja lihassoluihin.

Kun verensokeri laskee, haima erittää glukagonia, joka purkaa glykogeenejä maksasta verenkiertoon. Se kohottaa verensokeria ja antaa lihas- ja aivosoluille nopeaa energiaa glukoosin muodossa. Lihassolujen varastoimat glykogeenit eivät vapaudu verenkiertoon, vaan lihas käyttää ne nopeana energianlähteenä itse.

Glykogeneesi

Glykogeenit muodostuvat insuliinin aktivoimana glykogeneesissä maksa- ja lihassoluissa. Maksasolut ylläpitävät veren glukoosipitoisuutta glykogeenivarastojensa avulla syömisten välissä.

Aivot käyttävät valtavasti energiaa

Glykogeenivarastot ovat kooltaan varsin pienet ja elimistö kuluttaa varastosokerit nopeasti loppuun.  Pelkästään aivot kuluttavat vuorokaudessa noin 100 g glukoosia, joka saadaan syödyistä hiilihydraateista sekä glukagonin avulla puretuista maksan varastosokereista.

Glukoneogeneesin sivutuotteena syntyy ketoaineita

Kun glykogeenit tyhjenevät, maksa ryhtyy korvaamaan aivojen tarvitsemaa glukoosia ketoaineilla. Glykogeenejä purkava glukagoni aktivoi glukoosia tuottavan glukoneogeneesin maksassa ja munuaisten kuoriosissa.

Glukoosimolekyylin syntetisoiminen kuluttaa enemmän energiaa kuin glukoosimolekyyli tuottaa

Glukoneogeneesi hyödyntää mm. vapaita aminohappoja ja rasvoja sekä glykolyysissä syntyneitä maitohappoja, sitruunahappokierron sivutuotteita sekä ketoaineita glukoosin syntetisoimisessa.

Yhden glukoosimolekyylin tuottaminen vaatii 2 pyruvaattimolekyyliä, 4 ATP:tä, 2 GTP:tä, 2 NADH-molekyyliä ja neljä vesimolekyyliä. Se vaatii siten enemmän energiaa kuin glykolyysi tuottaa yhdesta glukoosimolekyylistä.

Glykogeenit purkautuvat glukagonin vaikutuksesta glykogenolyysissa

Haiman alfasolujen erittämä glukagoni aktivoi glykogeenien purkamisen eli glykogenolyysin maksassa ja lihassoluissa, jolloin glykogeeni purkautuu glukoosiksi (maksasta) ja glukoosi-1-fosfaatiksi (lihaksissa).

Glukagoni käynnistää glykogenolyysin yhteydessä glukoneogeneesin. Haiman beetasolujen erittämä insuliini puolestaan pysäyttää glukongeogeneesin, kun verensokeri nousee ja aineenvaihdunnan energianlähde muuttuu glukoosiksi.

Induktio

Scientific American kirjoittaa, että aivot toimivat hyvin myös ketoaineilla. Aivojen toiminta on turvattu, jos ~70 % aivojen energiatarpeesta saadaan ketoaineista. Prosessi, jossa aivot oppivat käyttämään ketoaineita energianlähteenä 0 – 70 % vie kolmisen viikkoa. Tämä on eräänlainen aineenvaihdunnan induktiovaihe.

Induktiovaiheen aikana aivoja lukuun ottamatta kaikki kehon kudokset vähentävät ketoaineiden käyttöä energianlähteenä. 3-4 viikon aikana solut sopeutuvat käyttämään energianlähteenä rasvasoluista vapautuvia vapaita rasvahappoja.

Induktion jälkeen elimistö tuottaa hyvin vähän ketoaineita (vähemmän kuin 280 kcal / päivä), mutta riittävästi aivosolujen energiantarpeen turvaamiseksi.

Ketogeenisessä ruokavaliossa painosta putoaa ennen induktiovaiheen loppua lähinnä nesteitä, joten nestetasapainon kanssa tulee olla tarkkana ja juoda reilusti vettä. Rasvan käyttö energianlähteenä tehostuu hitaasti koko ajan ja on tehokkaimmillaan vasta kolmisen viikkoa ruokavalion aloittamisen jälkeen. Sen verran kestää, että solut sopeutuvat uuteen energianlähteeseen.

Aineenvaihdunta

Aineenvaihduntaan vaikuttaa useita tekijöitä: ravinnon määrä ja laatu, makroravinteet, ravinnon sisältämät vitamiinit ja mineraalit, stressi, nestetasapaino, maksan ja haiman terveys, geenit, hormonit, insuliinisensitiivisyys, liikunta, ja uni.

Oheinen Jonathan Bailorin luento sisältää mielenkiintoisia huomioita aineenvaihdunnan toiminnasta, lihomisesta ja laihtumisesta:

Aineenvaihdunta ylläpitää elämää sitkeästi. Se on joustava ja pystyy hyödyntämään tehokkaasti erilaisia ravinnonlähteitä elintoimintojen ylläpidossa.

Perusaineenvaihdunta kuluttaa valtavasti energiaa

Sängyssä makaaminen kuluttaa 80 kg painavalla, 180 cm pitkällä 30 vuotiaalla miehellä noin 1780 kcal vuorokaudessa. Aivojen ja välttämättömien elintoimintojen ylläpito edellyttävät paljon energiaa.

Keskimäärin aikuinen tarvitsee ravinnosta 2000-2500 kcal vuorokaudessa. Liikunta lisää energiantarvetta, mutta ikä, paino ja kehon rakenne vaikuttavat lepokulutukseen.

Tärkeimpiä elintoimintoja ylläpitää perusaineenvaihdunta. Siihen kuuluvat keuhkojen ja sydämen toiminta, kemiallisten yhdisteiden eristys ja synteesit, sekä ionien siirto solukalvojen läpi. Vuorokautisesta kokonaisenergiankulutuksesta 65–75 prosenttia on
perusaineenvaihduntaa, miehillä keskimäärin 4,2 kJ/min ja naisilla 3,8 kJ/min. Perusaineenvaihdunta koostuu aivojen (21 %), lihasten (22 %), maksan (18 %), munuaisten (6 %), sydämen (12 %) ja muiden kudosten (21 %) energiankulutuksesta. Sen suuruuteen vaikuttaa sukupuolen lisäksi ikä, kehon tyyppi ja koostumus, paasto, lämpötila ja laihduttaminen. – Wikipedia

Anabolinen ja katabolinen aineenvaihdunta

Solun aineenvaihdunta voidaan jakaa kahteen toimintamekanismiin: anaboliseen ja kataboliseen aineenvaihduntaan.

Anaboliset reaktiot ovat biosynteettisiä eli kokoavia aineenvaihduntatapahtumia, joissa yksinkertaisemmista molekyyleistä rakennetaan monimutkaisempia molekyylejä.

Katabolisissa reaktioissa monimutkaisempia molekyylirakenteita pilkotaan yksinkertaisemmiksi molekyyleiksi.

Energian tuotanto

ADP + Pi      –                ATP
NAD+              –                 NADH +H+

  • Energianlähteenä voi hyödyntää hiilihydraatteja, rasvoja ja proteiineja
  • Solut saavat energiaa orgaanisista molekyyleistä hapettamalla niitä esimerkiksi:
    – Glukoosin hapetus tapahtuu sytoplasman glykolyysissä
    – Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Kuvan lähde: Nina Peitsaro

Anabolinen ja katabolinen aineenvaihdunta vuorottelevat elimistössä päivittäisten rutiinien lisäksi myös iän ja elämäntilanteen mukaan. Fyysinen harjoittelu ja sairaudesta toipuminen kallistavat aineenvaihduntaa anaboliseksi, jolloin aineenvaihdeunta rakentaa lihaskudosta tai korjaa sairauden aiheuttamia vaurioita. Myös kasvavien lasten aineenvaihdunta on anabolinen, mutta vanhemmilla ihmisillä ja hyvin vähän liikkuvilla aineenvaihdunta on yleensä pitkäkestoisessa katabolisessa tilassa.

Anabolisen aineenvaihdunnan käynnistyminen

Anabolinen aineenvaihdunta käynnistyy yleensä ruokailun jälkeen. Ravinnosta saaduista perusmolekyyleistä muodostetaan elimistössä suurempia molekyylejä, kuten lihasten tarvitsemia proteiineja.

Kun ruokailusta kuluu enemmän aikaa ja ravintoaineiden saatavuus ruoansulatuskanavan kautta vähenee, aineenvaihdunnan painopiste siirtyy katabolisten reaktioiden puolelle.

Anaboliset reaktiot kuluttavat energiaa

Anaboliset reaktiot kuluttavat energiaa ATP:n tai NADH:n (ja NADPH:n) muodossa.
ATP à ADP + Pi
NADH + H+ — NAD+

Katabolinen aineenvaihdunta tuottaa ravintoaineista soluhengityksen avulla energiaa. Anabolinen aineenvaihdunta rakentaa ja uusii elimistön rakenteita mm. proteiinisynteesissä.

Kehon energiantuotanto: Kuinka hiilihydraatit tuottavat energiaa

Hiilihydraatit ovat energiansaannin kannalta tehokkaimpia ravintoaineita. Myös rasvat ja proteiinit voidaan hyödyntää energiaksi.

Rasvat ovat hiilihydraatteja edullisempi tapa varastoida energiaa, sillä niissä on yli kaksinkertainen määrä energiaa painoyksikköä kohden.

Hiilihydraateista pilkotut sokerit imeytyvät verenkiertoon ohutsuolessa. Glukoosi kohottaa verensokeria, johon haima reagoi erittämällä vereen insuliinia. Insuliini kiinnittyy solun pinnassa olevaan insuliinireseptoriin, jolloin solussa olevat sokerikanavat (kalvorakkulat) siirtyvät solukelmulle ja päästävät glukoosimolekyylin solun sisälle.

Solulimassa glukoosi osallistuu glykolyysiin eli reaktioiden sarjaan, jossa glukoosimolekyyli hajotetaan pyruvaatiksi. Glukoosi on solujen energiantuotannon yleisin lähtöaine. Fruktoosin aineenvaihdunta tapahtuu maksassa, jossa se muutetaan lipogeneesissä triglyseridiksi eli rasvaksi.

Glukoosi, joka ei ravitse solujen energiantarvetta, varastoituu maksa- ja lihassoluihin glykogeeneinä, joista energiavarasto on nopeasti purettavissa. Glukoosi, joka ei ravitse solujen energiantarvetta tai mahdu glykogeenivarastoihin, siirtyy insuliinin avaamien sokerikanavien avulla rasvakudoksen rasvasoluihin, jossa se muutetaan lipogeneesissa rasvaksi.

Lipogeneesi

Insuliini säätelee lipogeneesiä, jossa veren ylimääräiset glukoosimolekyylit muutetaan triglyserideiksi eli rasvoiksi maksassa, rasvakudoksessa ja toimivan maitorauhasen soluissa. Lipogeneesissä yhdestä glukoosimolekyylistä muodostuu ensin kaksi glyserolimolekyyliä, joihin liittyy glukoosin auenneesta renkaasta muodostunut, pelkistynyt rasvahappoketju.

  • Keho käyttää arviolta 45 % ravinnosta saatavista hiilihydraateista energiantuotantoon ja 55 % hiilihydraateista muutetaan lipogeneesissä rasvahapoiksi.

Rasva-aineenvaihdunta on hyvin dynaaminen. Osa vapaista rasvahapoista hyödynnetään glukoneogeneesissä ja osa varastoituu rasvasoluihin. Rasvasoluista vapautuu kuitenkin jatkuvasti rasvasoluja verenkiertoon. Yksittäisen lipidimolekyylin elinaika on arviolta 2-10 vuorokautta.

Solulimassa tapahtuva reaktioketju – glykolyysi tuottaa energiaa

Glykolyysi tuottaa energiaa ATP-molekyylien muodossa. Soluissa, joilla on käytettävissään happea, energiaa tuottava reaktio etenee glykolyysistä mitokondrioiden soluhengitykseen.

Haima ja haiman tehtävät aineenvaihdunnassa

Haima osallistuu ravintoaineiden aineenvaihduntaan erittämiensä ruoansulatusentsyymien sekä insuliinin ja glukagonin avulla.

Haima muodostuu kahdesta toiminnallisesti erilaisesta solukkotyypistä: avorauhas- ja umpirauhasosasta. Avorauhasosa tuottaa ruoansulatusentsyymejä, jotka pilkkovat kaikkia ravintoaineita (sokereita, rasvoja, proteiineja ja nukleiinihappoja).

Haiman erittämät ruoansulatusentsyymit ja niiden tehtävät

  • Amylaasi: pilkkoo sokereita
  • Peptidaasit: pilkkovat proteiineja
  • Lipaasit: pilkkovat rasvahappoja
  • Nukleaasit: pilkkovat nukleiinihappoja (DNA ja RNA)

Insuliini ja glukagoni säätelevät sokeriaineenvaihduntaa

Haiman umpirauhasosa tuottaa elintärkeitä hormoneja: insuliinia ja glukagonia. Useimmista kehon umpirauhasista poiketen glukagonin ja insuliinin eritystä säätelee veressä olevan sokerin määrä eikä aivojen hypotalamus.

Jos veren sokeripitoisuus on matala, haiman Alfa-solut erittävät glukagonia, joka nostaa verensokeria purkamalla maksaan ja lihaksiin varastoituneita glykogeenejä.

Jos veren sokeripitoisuus on korkea, haiman Beta-solut erittävät insuliinia, joka kiinnittyessään solun insuliinireseptoriin, päästää sokerimolekyylin solun sisälle, jossa se osallistuu energiantuotantoon glykolyysissa ja mahdollisesti edelleen mitokondrion soluhengityksessä.

Glukagoni ja glykogeenit

Keho varastoi osan ravinnosta saaduista sokereista maksa- ja lihassoluihin glykogeeneinä, joista energia on nopeasti purettavissa energiaa tuottavan glykolyysin ja soluhengityksen tarvitsemiksi lyhytketjuisiksi sokereiksi.

Kun haiman erittämä glukagoni kiinnittyy maksa- tai lihassolun pinnalla olevaan reseptoriinsa, sokerin pitkäketjuiset varastomolekyylit eli glykogeenit alkavat hajota solussa lyhytketjuisemmiksi sokereiksi. Glykogeeneistä puretut sokerit kulkeutuvat maksasta verenkiertoon, jolloin verensokeri nousee.

Glukagonin purkaa glykogeenejä ja käynnistää glukoneogeneesin

Verensokerin lasku lisää glukagonin eritystä haimasta. Glukagoni purkaa maksa- ja lihassolujen sokerivarastoja, jolloin verensokeri jälleen nousee.

Glukagoni käynnistää myös maksassa ja munuaisten kuorikerroksessa tapahtuvan glukoneogeneesin, joka syntetisoi glukoosia muista yhdisteistä. Glukoneogeneesin yhteydessä maksassa ja munuaisissa alkaa syntyä ketoaineita.

Insuliinin merkitys glukoosin aineenvaihdunnalle

Kaikkien solujen pinnalla on insuliinireseptoreita. Insuliinin kiinnittyminen solureseptoriinsa laukaisee solun sisällä toisiolähettijärjestelmän. Tämä saa aikaan sen, että solun sisällä olevat transmembraanisia (kalvon läpi ulottuvia) sokerikanavaproteiineja kuljettavat kalvorakkulat kiinnittyvät solukelmuun.

Insuliini saa siis sokerikanavat siirtymään solun ulkopinnalle jolloin glukoosi pääsee siirtymään verestä sokerikanavan läpi solun sisälle.

Mutta on hyvä muistaa, että insuliini myös varastoi ylimääräiset glukoosimolekyylit rasvakudoksen, maksan ja maitorauhasten rasvasoluihin eli adiposyytteihin, joissa sokerit muutetaan lipogeneesissä rasvahapoiksi. Näin veren runsas insuliini- ja glukoosipitoisuus aiheuttavat lihomista.

Glykolyysi

Solu saa energiantuotantoon tarvitsemansa glukoosin joko solun ulkopuolelta tai lihassolun sisällä olevasta glykogeenistä.

Glykolyysi on monesta reaktiovaiheesta muodostuva reaktioketju. Solulimassa tapahtuvassa glykolyysissä glukoosi hajotetaan palorypälehapon anionimuodoksi eli pyruvaatiksi. Anaerobinen energiansaanti perustuu glykolyysiin, joka tuottaa kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä.

Jos solulla on happea käytettävissään, energiantuotanto jatkuu soluhengityksessä mitokondrioissa. Pyruvaateista saadaan mitokondrioissa eräiden entsyymien avulla tapahtuvassa oksidatiivisessa dekarboksylaatiossa asetyylikoentsyymi-A:ta.

Jos solulta puuttuu mitokondriot (kuten veren punasoluilta) tai happea ei ole käytettävissä, pyruvaatti pelkistyy maitohapoksi.

  • Anaerobinen glykolyysi päättyy pyruvaatin pelkistyessä maitohapoksi
  • Aerobinen glykolyysi jatkaa energiantuotantoa ja tuottaa pyruvaatista edelleen asetyylikoentsyymi-A:ta.

Sokerikanavaproteiinit kiertävät jatkuvasti soluliman ja solukelmun välillä. Kun insuliinipitoisuus laskee veressä, solu imee sokerikanavia sisältävät solukelmun osat sisäänsä.

Ihminen voi kuluttaa vuorokauden aikana painonsa verran ATP-molekyylejä.

ATP eli Adenosiinitrifosfaatti on runsasenerginen mitokondrioiden soluhengityksessä, tai glykolyysin solulimassa tuottama yhdiste. ATP:tä käytetään energian siirtoon ja lyhytaikaiseen varastointiin lihaksissa.

Kun elimistön solut tarvitsevat ATP-molekyyleihin sitoutunutta energiaa, ATPaasi-entsyymi pilkkoo runsasenergisiä sidoksia fosfaattiryhmien väliltä.

ATP:ssä on emäsoasa (adeniini), sokeriosa (riboosi) ja 3 fosfaattiosaa. Kun ATP:stä irtoaa yksi fosfaattiosa, siitä tulee adenosiinidifosfaattia eli ADP:tä ja kun ADP:stä irtoaa fosfaattiosa, syntyy adenosiinimonofosfaatti eli AMP.

Ihminen kuluttaa vuorokauden aikana arviolta painonsa verran ATP-molekyylejä. Yksi ATP-molekyyli kierrätetään jopa 1000-1500 kertaa vuorokauden aikana.

ATP on lihassupistuksen ainoa energianlähde. Sitä on hieman varastoituneena lihaksissa, mutta nämä varastot hyödynnetään nopeasti.

Energian varastomolekyyli: ADP+ADP à ATP+AMP

Kuinka ketogeneesin aineenvaihdunta toimii

Paasto, intensiivinen liikunta tai vähähiilihydraattinen ruokavalio saa aineenvaihdunnan tuottamaan ketoaineita energianlähteeksi. Muutaman päivän vähähiilihydraattinen jakso siirtää aineenvaihdunnan ketoosiin, jolloin ketoaineiden käyttö energianlähteenä tehostuu. Ketoaineiden tuotanto käynnistyy aina, kun veren insuliinipitoisuus laskee.

Haima erittää insuliinia verensokerin eli glukoosipitoisuuden kohotessa. Kun veressä ei ole glukoosia energianlähteenä, aineenvaihdunta ryhtyy hyödyntämään ketoaineita energianlähteenä ja ”polttamaan” rasvoja.

Rasvahappojen hapetus = β-oksidaatio

β–oksidaatiossa rasvahappojen käyttö energiantuotantoon alkaa siten, että rasvat hajotetaan rasvahapoiksi ja glyseroliksi.

Glyseroli hapetetaan solulimassa glyseraldehydi-3-fosfaatiksi ja se voidaan käyttää joko energiantuotantoon (n. 5 % triglyseridistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä.

Rasvahapot hapetetaan mitokondrioissa β–oksidaatiossa. Aluksi rasvahapot aktivoidaan mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi-A. Näin muodostunut asyyli-KoA kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Näin siksi, että soluliman ja mitokondrion asyyli-KoA:lla on eri tehtävät – solulimassa anabolia, mitokondriossa katabolia.

Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-KoA), joka edelleen hapetetaan sitruunahappokierrossa.

Lähteet:

Scientific American

KetoSchool

CNN

Wikipedia – Ketoasidoosi

Wikipedia – Glykolyysi

Wikipedia – Ketoaine

Wikipedia – Ketogeneesi

Wikipedia – Glukoneogeneesi

Solunetti – Solun aineenvaihdunta

Solun aineenvaihdunta – Nina Peitsaro

Safkatutka

Laihdutus.info




Probiootit

Näkökulma: Probiootit vahvistavat mikrobiomin hyvää bakteerikantaa. Suoliston pinta-alaltaan lähes kahden tenniskentän kokoisella alueella elää arviolta yli 100 miljardin mikro-organismin muodostama monimutkainen ekosysteemi.

Jopa tuhannesta bakteerilajista muodostuva mikrobiomi on jokaisella ihmisellä yksilöllinen ja se vaikuttaa aineenvaihdunnan ja immuunijärjestelmän välityksellä vastustuskykyyn ja terveyteen. Kun jokin mikrobipopulaatio suolistossa kuolee, sen elintilan kolonisoi nopeasti jokin toinen ”hyvä” tai ”paha” bakteerikanta. Suolistossa käydäänkin jatkuvasti ”hyvien” ja ”pahojen” bakteerien välistä taistelua.

Ravinnosta ja lisäravinteista saatavat probiootit ovat eläviä mikro-organismeja, joilla uskotaan olevan suolistoflooran hyvinvoinnille suotuisia vaikutuksia. Ne vahvistavat suoliston hyvää mikrobikantaa ja suojelevat elimistöä haitallisilta taudinaiheuttajilta.

Ovatko probiootit huijausta?

Erilaisten lisäravinteiden hyödyistä käydään kiivasta keskustelua. Ovatko pillerit, pallerot ja kapselit vain tapa kusettaa hölmöiltä rahat, vai onko niistä oikeasti jotain hyötyä?

Kysymys on ihan aiheellinen, sillä terveyttä edistävillä tuotteilla on valtava markkinapotentiaali. Tällä hetkellä vitamiini- ja lisäravinteet muodostavat noin 100 miljardin euron maailmanlaajuiset markkinat. Monenlaisia vitamiini-, mineraali- ja probioottivalmisteita myydään ja markkinoidaan aggressiivisesti terveyttä edistävinä ja kehon hyvinvointia ylläpitävinä lisäravinteina. Ovatko ne sellaisia?

Keho on temppeli, jota kannattaa suojella ulkoisilta taudinaiheuttajilta. Suojelevatko probiootit kehoa taudinaiheuttajilta? FDA ja EFSA sekä eräät tutkijat eivät ole täysin vakuuttuneita probioottien hyödyistä.

FDA ja EFSA suhtautuvat probiootteihin kriittisesti

Terveyshyötynäkökulman esiintuominen markkinoinnissa on probioottien osalta estetty USA:ssa, jossa Yhdysvaltain elintarvike- ja lääkevirasto FDA katsoo, ettei yhdestäkään probioottituotteiden terveyshyödystä ole vielä riittävän vahvaa tieteellistä näyttöä.

Samanlainen kriittinen kanta on Euroopan elintarviketurvallisuusvirasto EFSA:lla, joka ei salli probiootteihin liittyvien terveysväittämien käyttöä elintarvikkeiden markkinoinnissa. Jopa pelkkä ”probiootti”-sanan käyttäminen voidaan tulkita kielletyksi terveysväittämäksi.

Probioottien terveyshyödyistä ei siis vallitse täysin aukotonta tieteellistä yksimielisyyttä. Esimerkiksi seuraavat raportit kyseenalaistavat probiootteihin liitettyjä väitteitä:

  • Rijkers GT, de Vos WM, Brummer RJ, Morelli L, Corthier G, Marteau P (2011). ”Health benefits and health claims of probiotics: Bridging science and marketing”. British Journal of Nutrition.
  • Slashinski MJ, McCurdy SA, Achenbaum LS, Whitney SN, McGuire AL (2012). ””Snake-oil,” ”quack medicine,” and ”industrially cultured organisms:” biovalue and the commercialization of human microbiome research”. BMC Medical Ethics.

Ovatko probiootit siis vedätys, jolla tehdään valtavasti rahaa?

Kyllä, mutta käytännössä ei sittenkään. Lisäravinteiden myynnissä pyörii isot rahat, mutta myös tieteellinen näyttö niiden hyödyistä on varsin kattava. Eräillä spesifeillä mikrobikannoilla on runsaan tutkimusnäytön perusteella suotuisia terveysvaikutuksia. Toisaalta terveysväittämät vaikuttavat toteutuvan sairailla, kun taas hyötyjä ei ole terveillä osoitettu.

Mitään spesifejä terveysväittämiä ei voi aukottomasti kytkeä kaikkiin probiootteina kaupattaviin lisäravinteisiin tai yleensäkään kaikkiin lisäravinteisiin. Lisäravinteiden laaduissa on suuria eroja, ja sinänsä hyvätkin valmisteet voivat kärsiä pitkästä varastoimisesta, lämpötilaeroista ja kuljetuksista.

Kaupan hyllyltä kotiin lähtevän probioottivalmisteen sisältämien mikrobien määrästä on valmistajan takeet, mutta voiko niihin aina luottaa? Valmistettaessa probiootti on voinut olla erinomainen ja runsaan mikrobipopulaation sisältävä lisäravinne, mutta täyttääkö se lupaukset viikkoja, kuukausia tai vuosia myöhemmin? Vastaus on: Kyllä lähes aina. Probiootit käyvät läpi hyvin tiukan seulan.

Mutta kriittiset kysymykset ovat aiheellisia

Kuinka monta elävää mikro-organismia Yhdysvalloissa valmistetussa probiootissa on sen jälkeen, kun se on valmistajan varastoista rahdattu Suomeen ja varastoitu odottamaan kuljetuksia myymälöihin? Tätä ei juurikaan valvota, mutta lisäravinteita kuluttavan väestön luottamus on vahva.

Jos kaikki on mennyt oikein, probiootit eivät ehkä ole kärsineet lainkaan kuljetusten ja varastoimisen aiheuttamista lämpötilojen vaihteluista. Probiootit voivat olla yhtä elinvoimaisia kuin valmisteessa luvataan.

Mutta toisinkin voi käydä; kuluttaja ei voi mitenkään tarkistaa, kuinka paljon eläviä mikrobeja probioottikapseli sisältää. Pilleri tai kapseli näyttää aivan samalta riippumatta siitä onko sen sisällä eläviä mikro-organismeja tai ei.

Oletusarvoisesti hyvän probiootin tulisi sisältää vähintään 500 miljoonaa elävää mikrobia. Joissain tapauksissa probiootissa on eläviä mikrobeja kuitenkin vain murto-osa luvatusta määrästä. Sellaisen probiootin käytännön merkitys suoliston hyvinvoinnille voi olla vähäinen ja useimmissa tapauksissa olematon.

Mutta

Asian voi kääntää niinkin, että historian viisastuttamina tiedämme kuinka aggressiivisesti elintarvike- ja lääketeollisuuden lobbaajat pyrkivät vaikuttamaan lääke- ja elintarvikevirastojen ohjeisiin.

Ehkäpä kusetus syntyykin siitä, että syömällä probiootteja ihmisen immuunijärjestelmä toimii paremmin ja hän tarvitsee vähemmän tai harvemmin lääkkeitä, kuin syömättä probiootteja, mikä ei tue lääketeollisuuden etuja. Yleensä tällaiset vedätykset paljastuvat vasta vuosikymmenien kädenväännön jälkeen, kuten tupakka- ja sokeriteollisuuden vääristelemät tutkimukset, joita löydetään vähän väliä arkistoista.

Tai ehkäpä totuus on jälleen jotain siltä väliltä: jospa lääketeollisuus vähättelee ja elintarvike- ja lisäravinneteollisuus liioittelee. Ei sekään täysin mahdotonta olisi. Luultavasti totuus probiooteista menee jotenkin näin. Suoliston terveys ja ihmisen terveys kulkevat käsikkäin, mutta ehkä mitään ohituskaistoja ei suoliston terveydelle ole.

Tutkimusten mukaan

Melko varmasti tiedetään, että ainakin tiettyjen elintarvikkeiden luonnollisen hapatusprosessin myötä kehittyneet probioottipopulaatiot ovat suoliston terveydelle suotuisia. Tähän viittaa laboratoriotutkimusten ohella myös suurten ihmispopulaatioiden laajat ravitsemustottumuksia käsittelevät tutkimukset. Ne viittaavat vahvasti siihen suuntaan, että probiootit hyödyttävät terveyttä.

Mitä probiootit ovat?

Maailman terveysjärjestön (WHO) vuoden 2002 määritelmän mukaan probiootit ovat eläviä organismeja, jotka ovat oikein annosteltuna hyödyksi terveydelle. Tunnetuimmat ja tutkituimmat probiootit ovat Lactobacillus GG- ja Bifido-mikrobit. Probiootteja on kuitenkin useita ja ne toimivat hieman eri tavoin.

Élie Metchnikoff

Teorian probiooteista määritteli Élie Metchnikoff vuonna 1907. Käsitteenä ”probiootti” on syntynyt paljon myöhemmin luultavasti lisäravinteiden markkinointitarkoituksiin.

Käsitteessä yhdistyvät latinan ”pro-” ja kreikan ” biōtikos”, joilla tarkoitetaan jotakuinkin ”elämää ylläpitävää”. Probiootti määritellään usein antibiootin vastakohdaksi.

Metchnikoff päätteli, että jogurttia syövät bulgarialaiset talonpojat olivat keskimääräistä terveempiä ja pitkäikäisempiä jogurtin sisältämien suolistoflooraa hyödyttävien mikrobien ansiosta. Tämä selittyi hänen mukaansa sillä, että jogurtin hyvät mikrobit korvaavat suolistossa haitallisia bakteereita.

Probioottien hyväksytty määritelmä

”This first global effort was further developed in 2010; two expert groups of academic scientists and industry representatives made recommendations for the evaluation and validation of probiotic health claims. The same principles emerged from those groups as the ones expressed in the Guidelines of FAO/WHO in 2002. This definition, though widely adopted, is not acceptable to the European Food Safety Authority because it embeds a health claim that is not measurable.

Monien käsitteen sisältöä täsmentävien tieteellisten paneelien jälkeen on yleisesti hyväksytty, että probioottien on ehdottomasti oltava eläviä mikro-organismeja.

”One of the concerns throughout the scientific literature resides in the viability and reproducibility on a large scale of the observed results, as well as the viability and stability during use and storage, and finally the ability to survive in stomach acids and then in the intestinal ecosystem”

Probiooteilta edellytetään valvottua arviointia ja testejä, jossa terveysväittämät voidaan tieteellisesti dokumentoida. Niinpä probiootti-termiä voivat käyttää vain sellaiset eläviä mikrobeja sisältävät ravintoaineet ja lisäravinteet, joiden terveyshyödyistä on saatu tieteellistä näyttöä.

Probioottien on oltava myös sellaisia mikrobeja, jotka voidaan tieteellisesti luokitella taksonomisiin ryhmiin suvun, lajin jne. perusteella. Probioottien käytön on luonnollisesti oltava turvallista ohjeenmukaisella annostuksella.

Eräitä hyödyllisiä probiootteja ovat:

  • Lactobacillus acidophilus: Ehkäisee iholla ja kynsissä elävien Candida-sienten leviämistä. Asidofilus-bakteerit vähentävät ripulia, kramppeja ja suolistokaasujen muodostumista.
  • Lactobacillus plantarum: Suojelee paksusuolen limakalvoja sekä ylläpitää suoliston läpäisevyyttä säätelevää ”epiteelistä muuria”. Lactobacillus plantarum ehkäisee ummetusta ja ripulia ja on resistentti useimmille antibiooteille.
  • Bifidobacterium bifidum: Muodostavat populaatioita paksusuoleen, jossa nämä probiootit vievät elintilaa haitallisilta bakteereilta ja tehostavat immuunijärjestelmän toimintaa.
  • Lactobacillus fermentum: Osallistuu immuunijärjestelmän ylläpitoon ja suojelee ohutsuolen pintaa. Lactobacillus fermentum absorboi kolesterolia ja pitää immuunijärjestelmän vahvana.
  • Bifidobacterium longum: Ehkäisee tulehduksia laukaisevia bakteereita, auttaa helpottamaan ripulin ja laktoosi-intoleranssin oireita.

Probiootit stimuloivat suolistossa ruoansulatuksen kannalta välttämättömiä ruoansulatusnesteitä ja entsyymejä ja estävät suoliston limakalvoilla taudinaiheuttajien lisääntymistä ja kehittymistä.

Kaikki probiootteihin liitettävät terveysväittämät käyvät läpi tarkan tieteellisen seulan. Mikä tahansa väite ei mene tästä seulasta läpi ja probiootti-käsitettä saa käyttää vain tuotteista, jotka on valvotusti testattu, ja jotka täyttävät probiooteille määritellyt täsmälliset kriteerit.

Suositellun annosmäärän probioottituotetta tulee sisältää viimeiseen käyttöpäivään saakka terveysvaikutuksiin vaadittava määrä probioottisia mikrobeja. Tällä perusteella myös lisäravinteina myytäviin probioottivalmisteisiin voi luottaa.

Kysymys mahahapoista

Mahahapot pilkkovat ravinnosta ruokasulaa, joka kulkeutuu mahalaukusta ohutsuoleen ja sieltä edelleen imusuonten ja verisuonten kautta ravitsemaan elimistöä.

Mahahapoilla on toinenkin tärkeä tehtävä: ne toimivat osana toimivaa immuunijärjestelmää ja estävät elävien mikro-organismien, kuten sairastuttavien bakteerien pääsyn ravinnosta suolistoon. Jotkin bakteerit, kuten E.coli, ovat niin vahvoja, että ne selviävät mahahapoista suolistoon. Myös Lactobacillus- ja Bifido-bakteerit säilyvät elossa mahahapoista huolimatta. On havaittu, että maito suojaa maitohappobakteereita tehokkaasti.

Probioottien syöminen tarkoittaa elävien bakteerien syömistä. Ne ovat muutoksille herkkiä mikro-organismeja, joiden on selvittävä elävinä ruoansulatuskanavaa pitkin suolistoon ohut- ja paksusuoleen. Vakavin uhka probioottien elämälle ovat mahahapot. Maitohappobakteerit pääsevät suolistoon, koska maito suojaa niitä. Pilleri- ja kapselimuotoisilla probiooteilla pitää olla sellainen kalvo, joka kestää mahahapot; muuten ne ovat hyödyttömiä.

Lisäravinteiden tarpeellisuudesta

Lisäravinteet ovat tarpeen, jos ravinnosta ei muuten saa riittävästi välttämättömiä ravintoaineita. D-vitamiinilisä on suositeltava kaikille suomalaisille lyhyen kesän vuoksi. B12 on vitamiini, jota vegaanit eivät välttämättä saa riittävästi, koska sitä saa käytännössä vain eläinperäisestä ravinnosta.

Probiootit ovat hyödyllisiä etenkin, jos ravinto on kovin yksipuolista, alkoholipainotteista tai jos ihminen käyttää paljon lääkkeitä. Antibiootit tappavat sekä tautia aiheuttavia bakteereita että suoliston hyviä mikrobeja.

Sen sijaan ei ole tarkoituksenmukaista korvata monipuolista ravintoa erilaisilla monivitamiini- ja mineraalivalmisteilla, vaikka onkin totta, että tehotuotettu nykyravinto sisältää vähemmän ravinteita kuin mitä ravinto aiemmin sisälsi. Liikaa käytettynä erilaiset monivitamiinit ja muut lisäravinteet ovat terveysriski, sillä ne vaikuttavat aineenvaihduntaan ja elimistön tasapainoiseen toimintaan.

Probioottien terveysvaikutukset

Probiootit tehostavat ihmisen omaa vastustuskykyä viemällä elintilaa sairastuttavilta bakteereilta.

Yksilöllinen mikrobiomi ja suolistofloora kehittyvät syntymästä alkaen ja kehitys jatkuu koko elämän ajan. Lapsi perii äidiltään mikrobiomin, jota rintaruokinta vahvistaa. Lapsesta alkaen ravinto ja antibiootit sekä ympäristön patogeenit ja myrkyt vaikuttavat suoliston mikrobiomin kautta vastustuskykyyn ja terveyteen.

Probiootit

  • suojaavat elimistöä ympäristön taudinaiheuttajilta,
  • vahvistavat ruoansulatuskanavan toimintaa,
  • parantavat ravinteiden imeytymistä,
  • tehostavat aineenvaihduntaa ja
  • vahvistavat immuunijärjestelmää

Maitohappobakteerien säännöllinen käyttö ehkäisee tutkimusten mukaan lapsilla rota-viruksia ja korvatulehduksia.

Terve mikrobiomi voi helpottaa myös painonhallinnassa. Tuoreissa tutkimuksissa on saatu vahvaa näyttöä siitä, että probiootit osallistuvat aineenvaihduntaan ja voivat auttaa merkittävästi painonhallinnan ylläpidossa. Tutkimuksissa on havaittu, että ne lapset, joiden suolistossa esiintyi vähiten Bifido-bakteereja, lihoivat todennäköisimmin hieman vanhempina.

Eräiden probioottisten elintarvikkeiden, kuten jogurttien syöminen raskauden aikana auttaa tutkimusten mukaan äitejä karistamaan raskauskilot synnytyksen jälkeen. Odottavan äidin kannattaa syödä probiootteja myös siksi, että sen on havaittu suojaavan syntyvää lasta allergioilta, ihottumilta ja atooppiselta iholta

Probiootit voivat lievittää stressiä ja masennusta

Tutkimuksissa on saatu viitteitä myös siitä, että probiootit voivat lievittää kroonista väsymysoireyhtymää potevien oireita. Suoliston mikrobit osallistuvat aineenvaihduntaan ja tuottavat elimistöön mm. dopamiinia ja serotoniinia.

Vaikka on epäselvää, kuinka paljon suoliston tuottamista mielialahormoneista ja hermovälittäjäaineista pääsee veri-aivoesteen läpi keskushermostoon, tiedetään, että ne osallistuvat muihinkin elimistön tärkeisiin aineenvaihduntaprosesseihin.

Lactobacillus GG lyhentää vauvojen ja lasten ripulin kestoa

Lactobacillus GG on ilmeisesti kaikkein tutkituin probiootti. Sen on osoitettu helpottavan ja lyhentävän vauvojen ja lasten tulehduksellista ripulia. Samaa ei ole kuitenkaan osoitettu aikuisten potilaiden kohdalla.

Kaksi laajaa seurantatutkimusta osoitti, että probiootit vähentävät antibioottiripulia 60 % tehokkaammin kuin lumelääkkeet.

Mihin probiootit vaikuttavat?

Suolistoflooran hyvinvointi vaikuttaa ihmisen terveyteen monin tavoin immuunijärjestelmän ja aineenvaihdunnan kautta. Monet taudit ja terveysongelmat on tutkimuksissa yhdistetty suoliston mikrobeihin ja suolistoflooran tasapainoon.

Harvard.edu raportoi, että probiooteilla on saatu tutkimuksissa suotuisia vaikutuksia seuraavien oireiden ja tautien hoidossa tai ehkäisyssä.

  • Ripuli
  • IBS eli ärtyvän suolen oireyhtymä
  • Paksusuolen tulehdus
  • Crohnin tauti
  • H. pylori
  • Vaginan tulehdukset
  • Virtsatien tulehdukset
  • Virtsarakon syöpä
  • Ruoansulatuskanavan tulehdukset, joita aiheuttaa Clostridium difficile
  • Lasten ihottumat

Probiootit saattavat myös vaikuttaa suotuisasti:

  • Ahdistukseen
  • Masennukseen
  • Suolistosyöpien ehkäisyyn
  • Reuman oireisiin
  • Vuotavan suolen oireyhtymään (LGS)
  • Sairaalloiseen väsymykseen (fatiikki)
  • Lihomiseen
  • Diabetekseen
  • Allergioihin

Probiootit ravinnosta

Probiootit toimivat parhaiten, jos ne saa elintarvikkeiden mukana. Tämä perustuu siihen, että tabletit, kapselit ja jauheet on monella tapaa käsiteltyjä, ja käsittelyprosessissa probiootit ovat voineet menettää tehoaan.

Hapanmaitotuotteet sekä muut luonnollisesti hapatetut elintarvikkeet auttavat immuunijärjestelmää suojautumaan monilta taudinaiheuttajilta kolonisoimalla suoliston limakalvoja ja estämällä haitallisten bakteerien lisääntymistä.

Probiootteja ei ole elintarvikkeissa itsestään, mutta niitä lisätään moniin ravintoaineisiin, kuten jogurtteihin, mehuihin, rahkoihin ja juustoihin. Lisäksi probiootteja syntyy joihinkin elintarvikkeisiin, kuten kefiiriin ja hapankaaliin perinteisessä hapatusprosessissa.

Vielä 1950-luvun alussa osa ruoasta tehtiin kotona hapattamalla säilyvyyden lisäämiseksi. Hapatetussa ruoassa on luonnostaan paljon probiootteja. Siitä lähtien kun jääkaapit yleistyivät ja hapatettujen elintarvikkeiden käyttö alkoi vähentyä, ihmisen luontainen mikrobisto ei ole saanut ravinnosta tarvitsemaansa täydennystä. – Hyvä Terveys

Se, mistä ravinnosta probiootit saa, ei ole yhdentekevää, sillä mahahapot tappavat tehokkaasti mahaan tulleita vieraita mikrobeja. Hapanmaitotuotteissa mikrobit säilyvät elävänä suolistoon asti, koska maito suojaa mikrobeja mahahapoilta.

Hapanmaitotuotteet sisältävät myös monia probioottien vaikutuksia tehostavia bioaktiivisia yhdisteitä kuten:

  • kalsium
  • oligosakkaridit
  • flykosfingolipidit
  • laktoferriini
  • immunoglobuliinit

Näillä bioaktiivisilla yhdisteillä on antimikrobisia, antikarsinogeenisia ja prebioottisia sekä immuunijärjestelmää sääteleviä vaikutuksia. Kalsium tehostaa lisäksi probioottien tarttumista suoliston limakalvoon.

Maito: tavallinen maito ei sisällä probiootteja

Maidon terveyshyötyjä korostetaan usein suomalaisille. Viime aikoina perinteisiä pastöroituja maitoja on kuitenkin myös kritisoitu. Puolet maailman ihmisistä eivät juo normaalisti maitoa imetysajan jälkeen, koska heidän elimistönsä ei tuota laktaasia, jota tarvitaan pilkkomaan maitosokeria eli laktoosia. Laktaasi-entsyymin puutos aiheuttaa laktoosi-intoleranssia.

Maidosta tapetaan kaikki mikro-organismit pastöroimalla, eli kuumentamalla. Raakamaidossa on hyviä mikrobeja ja entsyymejä, kuten laktaasia, mutta mikrobit tuhoava pastörointi ja molekyylirakenteita pilkkova homogenointi muuttavat maidon kivennäisten, vitamiinien ja proteiinien suhteita, mikä aiheuttaa monilla imeytymisongelmia ja vatsavaivoja. Maidosta saa todennäköisemmin vatsanpuruja kuin terveyttä edistäviä mikrobeja.

Kefiiri on yksi eniten eläviä mikro-organismeja sisältävistä ruoista

Kefiiri on hapatettua lehmän- tai vuohenmaitoa, jonka hapan maku johtuu hapatusprosessista, joka vähentää maidon sisältämiä sokereita. Kefiiri vahvistaa suoliston hyvää mikrobikantaa ja säännöllisesti nautittuna vähentää suolistossa eläviä taudinaiheuttajia.

Hapankaali parantaa suolistobakteerien laatua

Hapankaali on hapatettua kaalia, joka sisältää runsaasti Lactobacillus- ja Bifido-bakteereja. Hapankaalin sisältämät hyvät mikrobit kolonisoivat suoliston limakalvoja ja estävät näin taudinaiheuttajien leviämistä. Hapankaali myös auttaa palauttamaan ohutsuolen pH-tason, tehostaa ruoansulatusta ja auttaa ravintoaineiden imeytymisessä.

Hapankaalissa on lisäksi paljon A-, B1, B2- ja C-vitamiineja sekä hivenaineita, kuten rautaa, kalsiumia, fosforia ja magnesiumia.

Muita hyviä probioottien lähteitä ovat: kreikkalainen jogurtti, misokeitto, kombutsa-juoma, oliivit ja tumma suklaa.

Probiootteja antibioottikuurin jälkeen

Probioottien terveysvaikutuksia terveillä on vaikea arvioida. Se kuitenkin tiedetään, että antibioottikuuri tappaa myös suoliston hyviä bakteereita ja suoliston terveen mikrobiomin palautuminen antibioottikuurista voi viedä kuukausia tai jopa vuosia. Niinpä antibioottikuurin jälkeen probiootteja kannattaa syödä ainakin kuukauden ajan, että suoliston hyvinvointi palautuu.

Probioottitutkimuksiin liittyy myös eräs merkittävä ongelma: hyvät tutkimustulokset on usein saatu tutkimalla sairaita ihmisiä. EU-lainsäädännön mukaan elintarvikkeiden terveysväittämien tulisi kuitenkin päteä keskivertokuluttajaan, joka on usein aika terve. – Hyvä Terveys

Kuvan alkuperä: Huffington Post




Flunssavirus voidaan ohjelmoida infektoimaan vain syöpäsoluja

Flunssavirus aseeksi syöpäsoluja vastaan? Tutkijoiden mukaan viruksen pintareseptoria voidaan muuttaa niin, että se tunnistaa pahanlaatuiset syöpäsolut niille ominaisesta molekyylistä. Aiemmin vastaavia tutkimuksia on tehty ihosyöpien ja aivokasvainten hoidossa. Nyt tutkijat ovat kehittäneet menetelmän, jolla virus tunnistaa ja infektoi haimasyövälle ominaisia syöpäsoluja. Kliiniset kokeet alkavat kahden vuoden sisällä, mikä ennakoi uutta ja tehokasta hoitoa haimasyöpään.

Haimasyöpä

Haimasyöpä on eräs vakavimmista syöpätaudeista. Syöpien täsmähoidot ja syöpäsoluja ruokkivien verisuonten syntyä estävien antiangiogeneettisten lääkkeiden kehittyminen ovat parantaneet hoitotuloksia monissa syöpätaudeissa. Haimasyöpä on valitettava poikkeus. Lääkäreillä ei ole menetelmiä taudin riittävän aikaiseen tunnistamiseen ja tehokkaaseen hoitoon.

Haimasyövän hoitokeinot ovat edistyneet hitaasti ja taudin ennuste on yhä erittäin huono. Tuoreet tutkimustulokset ennakoivat tehokkaampia keinoja myös haimasyövän hoitoon.

Haiman tehtävät

Haima vapauttaa haimanestettä ja ruoansulatusentsyymejä ohutsuoleen ja vaikuttaa näin ruoansulatuskanavan toimintaan ja ravintoaineiden imeytymiseen.

Sillä on myös elintärkeä merkitys kehon energiahuollossa ja umpieritysjärjestelmän toiminnassa. Haima erittää verenkiertoon insuliinia ja glukagonia, jotka ovat kehon hiilihydraattiaineenvaihdunnan kannalta välttämättömiä hormoneja.

Haiman Langerhansin saarekkeiden alfa-solut erittävät glukagonia ja beeta-saarekkeet insuliinia. Korkea verensokeri lisää insuliinin- ja matala verensokeri glukagonin eritystä.

Insuliinin avulla glukoosi pääsee soluihin, joissa glukoosista tuotetaan energiaa. Toisaalta insuliini myös osallistuu ylimääräisen energian varastoimiseen rasvasoluihin. Glukagoni on insuliinin vastavaikuttaja.

Mikä haimasyöpä on ja kuinka siihen sairastuu?

Haimasyövässä haimakudoksen terveet solut muuttuvat pahanlaatuisiksi. Useimmissa tapauksissa haimasyöpä saa alkunsa haiman ruoansulatusentsyymeitä ja haimanestettä tuottavissa kudoksissa.

Nämä eksokriiniset haimasyövät voivat kehittyä mihin tahansa haiman osaan, mutta suurin osa (60 %) niistä saa alkunsa haiman päästä, ohutsuolen yläosan tuntumasta.

Haimasyövän yleisin muoto on adenokarsinooma eli rauhasyöpä. Harvinaisempia ovat haimasyövän alatyypit, kuten saarekesolusyöpä.

Endokriiniset haimasyövät

Saarekesolusyövissä syöpä alkaa haiman hormonituotannosta vastaavista endokriinisista soluista, jotka ovat pieninä saarekkeina hajallaan haimassa. Saarekesolusyöpien osuus kaikista haimasyövistä on muutama prosentti.

Haiman endokriinisista syövistä noin puolet on toiminnallisia ja puolet ei-toiminnallisia. Toiminnallisissa syövissä solujen hormonituotanto kiihtyy. Nämä voidaan jakaa edelleen toiminnallisten haimasyöpien tavallisimpiin muotoihin eli gastrinoomiin ja insulinoomiin niiden erittämien hormonien perusteella.

Gastrinooma tuottaa suuria määriä gastriini-nimistä hormonia, joka moninkertaistaa mahahappojen määrän ja voi vaurioittaa mahakalvoja. Insulinooma tuottaa liikaa insuliinia, jolloin verensokeri laskee vaarallisen matalaksi.

Endokriiniset syövät ovat monimuotoinen tautiryhmä, jossa kasvaimet voivat olla hidaskasvuisia ja vähäoireisia tai toisaalta pienikasvuisinakin hyvin hankalia oireita aiheuttavia.

Haimasyöpien yleisyys ja riskitekijät

Haimasyöpien yleisyys on lisääntymässä, mutta syytä tälle ei tunneta. Vuosittain todetaan noin 1000 uutta tapausta. Neljä viidestä haimasyöpään sairastuneesta on yli 60-vuotiaita. Riski sairastua kasvaa yli 70 vuoden iässä, mutta sitä voi esiintyä nuoremmillakin. Haimasyöpä on yhdenneksitoista yleisin syöpäsairaus Suomessa.

Perintötekijöiden lisäksi haimasyövälle altistavat ainakin tupakointi, diabetes ja krooninen haimatulehdus, joka voi olla seurausta alkoholin runsaasta käytöstä. Kaikkia haimasyövän syitä ei tunneta ja periaatteessa kuka tahansa voi sairastua.

Tupakoivilla haimasyövän todennäköisyys on 2-3 kertainen tupakoimattomiin nähden. Joissain tutkimuksissa on tullut esiin, että rasvainen ruokavalio voi kasvattaa haimasyövän riskiä. Haimasyöpä voi myös kulkea periytyvänä tietyissä suvuissa.

Myöskään akuutit haimatulehdukset, kuten sappikivien aiheuttamat tulehdukset, eivät ilmeisesti kasvata haimasyövän riskiä.

Yleisimmät oireet, diagnoosi ja hoito

Haimasyöpä on salakavala ja vakava tauti, joka löydetään valitettavan harvoin riittävän varhaisessa vaiheessa. Taudin alkuvaiheessa haimasyöpä voi olla vähäoireinen tai oireeton. Oireilun alkaessa, tauti on yleensä jo tehokkaan hoidon ulottumattomissa. Ennuste on hyvin huono: vain muutama prosentti sairastuneista on elossa viisi vuotta diagnoosin jälkeen. Keskimääräinen elinajan ennuste on vain puoli vuotta.

Tavallisimmat oireet, jotka liittyvät jo pitkälle edenneeseen haimasyöpään, ovat laihtuminen, ylävatsakipu, selkäkipu ja ihon kellastuminen. Myös ripulia ja pahoinvoinnin aiheuttamaa oksentelua esiintyy. Huom. Vastaavia oireita voi esiintyä monissa muissakin sairauksissa.

Diagnoosi

Yleensä haimasyöpä ei juuri olemassaolostaan varoittele. Joissain tapauksissa haiman päässä sijaitseva kasvain tukkii sappitiehyet, jolloin maksasta ja sappirakosta peräisin oleva bilirubiini kerääntyy verenkieroon ja aiheuttaa ihon sekä silmänvalkuaisten keltaisuutta (ikterus). Tämä voi johtaa syövän löytämiseen.

Haimasyövän diagnoosissa voidaan käyttää ultraäänitutkimusta, tietokonetomografiaa (TT), magneettikuvausta (MK) ja neulanäytettä. Verinäytteessä haimasyöpään viittaa CA 19-9 -merkkiaine, jota syöpäsolut erittävät. Tätä merkkiainetta esiintyy 80 %:lla haimasyöpäpotilaista, mutta merkkiainetta pidetään epäluotettavana, koska merkkiaineen määrä veressä voi lisääntyä myös muista syistä kuin haimasyövän aiheuttamana.

Hoito

Ensisijainen hoitomuoto on leikkaus, mutta leikkauksella ei yleensä pystytä poistamaan syöpäkudosta kattavasti. Leikkauksen liitännäishoitona gemsitabiini lienee tehokkain lääke. Tämä sytostaatti kuuluu antimetaboliitteihin, jotka häiritsevät syöpäsolujen kasvua. Haimasyövän hoitoon käytetään myös laajemmin solunsalpaajahoitoa sekä solunsalpaaja-sädehoitoyhdistelmää.

Saksalaisen tutkimusryhmän tammikuussa 2007 JAMA-lehdessä olleen artikkelin mukaan gemsitabiinin käytön tulisi olla sädehoidon ja vanhemman lääkkeen, 5-fluorourasiilin (5-FU), ohella vakiohoitoa. Gemsitabiinin käyttö sädehoidon ja 5-fluorourasiilin jälkeen saattaa hyödyttää joitakin potilaita. Asiantuntijat ovat kuitenkin jo vuosia kiistelleet leikkauksenjälkeisen hoidon vivahteista ja kiistelevät varmaan jatkossakin. Valitettavasti näyttää kuitenkin siltä, että miten hyvänsä hoitoja yhdistellään ja kohdennetaan, silti 75 % leikatuista potilaista kuolee taudin uusiutuessa 3 – 4 vuoden kuluessa. Terve.fi

Sappitiehyeiden ja ruoansulatuskanavan tukoksia voidaan avata stenteillä tai leikkauksella. Kivun hallinnassa opioidit (fentanyyli, morfiini ja oksikodoni) auttavat. Alkoholin ruiskuttamisella haiman läheisiin hermoihin ja niiden ympärille voi myös lievittää tehokkaasti kipuja.

Flunssavirus aseeksi syöpäsoluja vastaan?

Vuonna 2015 tutkijat osoittivat, että modifioitu herpesvirus parantaa ihosyöpiä sairastavien paranemisennustetta (Royal Marsden Hospitals). Aiemmin tässä kuussa uutisoitiin, että virukset voidaan ohjelmoida hyökkäämään vaikeasti hoidettavia aivokasvaimia vastaan.

Search and Destroy!

Molecular Cancer Therapeutics, julkaisi hiljattain tutkimuksen, jossa selvitettiin, voidaanko virus ohjelmoida etsimään ja tuhoamaan vaikeasti löydettäviä syöpäsoluja haimasyöpää sairastavilla potilailla.

Haimasyöpä piileskelee usein vaikeasti läpäistävässä arpikudosta muistuttavassa kudoksessa (stroma). Tämä vaikeuttaa lääkehoitojen viemistä syöpäsoluihin. Tutkimusraportin mukaan muokattu flunssavirus voi kuitenkin läpäistä tämän kudoksen ja infektoida vain pahanlaatuisia soluja.

Menetelmä

Tutkimuksessa koehiiriin istutettiin ihmisen haimasoluja, joista osa oli merkitty spesifillä haimasyöpään liittyvällä biologisella syöpämarkkerilla, jota ei terveissä soluissa ole. Tutkimusryhmä kokeili kuinka näille syöpämerkityille solumuutoksille herkistetyt pintareseptoreiltaan muutetut influenssavirukset löytävät pahanlaatuiset solut.

Haimasyövässä syöpäsoluissa on alfa v beta 6-molekyyli, jota terveissä haimasoluissa ei ole. Virus modifioitiin siten, että sen pinnassa oli reseptorina toimiva proteiinimolekyyli, joka pystyi kiinnittymään vain sellaisiin soluihin, joissa oli alfa v beta 6-molekyyli.

Kun virus kiinnittyi pahanlaatuiseen syöpäsoluun, se injektoi geneettistä materiaalia soluun, replikoitui ja muodosti valtavasti uusia viruskopioita. Tämä prosessi jatkui; viruskopiot kiinnittyivät syöpäsoluihin, replikoituivat ja infektoivat pahanlaatuiset syöpäsolut.

Tutkimusten mukaan näin muutettu flunssavirus voidaan injektoida verenkiertoon ilman, että se uhkaa terveitä soluja. Tällainen modifioitu flunssavirus ”uudelleenohjelmoidaan” viruksen reseptoreita muuttamalla kohdistamaan aktivaationsa vain soluihin, joissa esiintyy tietty molekyyli syöpämarkkerina.

Tällaisessa hoidossa vereen injektoitu syöpäsoluja tappava flunssavirus tappaa tehokkaasti myös sellaisia syöpäsoluja, jotka ovat jo levinneet muualle elimistöön ja uhkaavat muita elimiä. Nyt kehitetty menetelmä on toistaiseksi tarkin ja tehokkain viruksia hyödyntävä syöpäterapia.

“The new virus specifically infects and kills pancreatic cancer cells, causing few side effects in nearby healthy tissue,” said lead author, Dr Stella Man, from Barts Cancer Institute at Queen Mary University London (QMUL), who described it as “selective and effective”.

Tulokset syöpäsoluja jahtaavilla flunssaviruksilla ovat hyvin lupaavia aggressiivisten syöpien hoidossa. Jos tutkimustulokset voidaan osoittaa kliinisissä kokeissa haimasyöpää sairastavilla potilailla, tämä hoitomuoto antaa uusia aseita tappavaa haimasyöpää vastaan.

Mitä seuraavaksi?

Riippumattomien asiantuntijoiden mukaan eläinkokeissa saadut tulokset ovat jännittäviä ja lupaavia, mutta ne pitää vielä vahvistaa kliinisillä kokeilla. Se, että virukset voidaan ”uudelleenohjelmoida” tappamaan tehokkaasti syöpäsoluja, tuo vahvan lisän syövän vastaisten hoitojen arsenaaliin.

”Virukset ovat luonnon omaa nanoteknologiaa,” totesi haimasyövän hoitoon erikoistunut professori Gerard Evan (Cancer Research UK), joka ei kuulunut tutkimuksen tehneeseen ryhmään. Professori Evanin mukaan on rohkaisevaa nähdä, että viruksen reseptoreita voidaan muokata siten, että ne tunnistavat syöpämarkkerit pahanlaatuisissa soluissa ja infektoivat vain ne.

Tutkijaryhmä kerää tällä hetkellä rahoitusta kliinisten kokeiden järjestämiseen seuraavien kahden vuoden aikana.

Lähteet:

Independent
Docartes
Duodecim
Terve.fi




D-vitamiini voi ehkäistä tyypin 1 diabetesta

Arvo Ylpön aikana, viime vuosisadan ensimmäisinä vuosikymmeninä lasten D-vitamiinin saantisuositukset Suomessa olivat noin 100 µg/vuorokaudessa. Saantisuositusten lasku 1950-luvulta eteenpäin korreloivat Suomessa lisääntyneen diabetekseen sairastuvuuden kanssa. Nykyisin Suomessa ja Ruotsissa esiintyy tyypin 1 diabetesta eniten maailmassa väestöön suhteutettuna. Vaikka kausaliteetin osoittaminen D-vitamiinin saantisuositusten laskemisen ja diabeteksen lisääntyneen esiintyvyyden kesken ei ole selvä, on korrelaatio silmiinpistävä. D-vitamiini voi ehkäistä tyypin 1 diabetesta, raportoi Honor Whiteman Medical News Today-lehdessä 24.10.2017.

Mikä tällaisen korrelaation selittäisi?

Lähes kaikissa ihmisen biljoonissa soluissa solun pinnalla on D-vitamiinireseptori (VDR), johon D-vitamiinin aineenvaihduntatuotteena syntyvä kalsitrioli kiinnittyy ja pääsee solun sisälle. Solussa kalsitrioli kuljetetaan edelleen solun sisältämässä DNA:ssa sijaitsevaan D-vitamiiniin reagoivaan sekvenssiin (vitamin D responding elements), jossa se vaikuttaa geenien toimintaan.

Mikä tyypin 1 diabetes on ja kuinka se oireilee?

Tyypin 1 diabetes (diabetes mellitus) on yleensä varhaislapsuudessa diagnosoitava sokeriaineenvaihdunnan sairaus, jossa haiman Langerhansin saarekkeiden beetasolujen kyky tuottaa insuliinia on merkittävästi alentunut tai loppunut täysin.

”Sokeritauti”

Diabetes tunnettiin aiemmin nimellä sokeritauti, koska siinä hiilihydraattien hajoamisesta syntyvän rypälesokerin (glukoosi) kohottama verensokeri pysyy korkeana, eikä kulkeudu normaalisti soluihin.

Terveillä verensokerin kohoaminen johtaa haiman insuliininerityksen lisääntymiseen. Insuliini on elintärkeä hormoni, jota tarvitaan kuljettamaan glukoosia verenkierrosta soluihin, joissa se yhdessä hapen kanssa tuottaa energiaa.

Diabeetikoilla haima ei tuota riittävästi insuliinia laskemaan veren glukoosipitoisuutta ja kuljettamaan glukoosia soluihin.

Ykköstyypin diabetes puhkeaa yleensä 0-20 vuoden iässä. Sairastuminen johtaa insuliinintuotannon selviä oireita aiheuttavaan alenemiseen yleensä muutamassa kuukaudessa. Insuliinin aleneminen näkyy erityisesti nopeana laihtumisena, sillä insuliini säätelee sokeriaineenvaihdunnan ohella energian varastoimista rasvasoluihin. Diabetekseen sairastuneiden lapsien paino palautuu normaaliksi yleensä hyvin nopeasti insuliinihoidon aloittamisen jälkeen.

Diabeteksen klassiset oireet ovat:

  • Tihentynyt virtsaamisen tarve
  • Janon tunne
  • Tahaton laihtuminen
  • Väsymys
  • Heikentynyt näkö
  • Hyperventilointi
  • Pahoinvointi ja oksentelu
  • Vatsakivut
  • Tajunnan heikkeneminen

Ennen insuliinilääkitykstä ykköstyypin diabetes tarkoitti käytännössä kuolemantuomiota. Insuliinilääkkeiden (pistokset, insuliinikynät ja -pumput) ansiosta diabetes ei enää suoraan uhkaa sairastuneen henkeä. Insuliinilääkityksen kehittivät Frederick Banting, John Macleod, James Collip ja Charles Best 1920-luvulla.

Diabetes on autoimmuunitauti

Diabetes on autoimmuunitauti, jossa elimistön oma immuunijärjestelmä tuhoaa haiman Langerhansin saarekkeiden beetasolut. Sairastuminen edellyttää perinnöllistä alttiutta ja jotakin taudin laukaisevaa ympäristötekijää.

Laukaisevaksi tekijäksi arvellaan enterovirustartuntoja, koska sairastuminen on yleisintä syksyllä ja talvella, jolloin enterovirustartuntoja on paljon. Suomalainen tutkijaryhmä löysi 2013 viisi ykköstyypin diabetesta mahdollisesti aiheuttavaa enterovirusta, jotka tunkeutuvat haimaan tuhoten insuliinia tuottavat solut. Diabetekseen liittyvien autovasta-aineiden ilmestymistä edeltää usein todettu enterovirustartunta. Myös elimistön D-vitamiinitasot laskevat syksyllä ja talvella, mikä voi altistaa sairaudelle. Varhaislapsuudessa saadun päivittäisen D-vitamiinilisän on huomattu vähentävän sairastumisriskiä (lue tästä). Maaliskuussa 2017 toinen suomalaisten tutkijoiden ryhmä osoitti, että suoliston bakteerikannalla ja antibiooteilla voi olla yhteys ykköstyypin diabeteksen puhkeamiseen. Rintaruokituilla lapsilla diabetesta esiintyy vähemmän kuin korviketta saaneilla lapsilla.

Suomalaiset, ruotsalaiset ja brittiläiset tutkijaryhmät kehittelevät tyypin 1 diabetekselta suojaavaa rokotetta. Myös haiman insuliinia tuottavia soluja uusivia lääkkeitä kehitellään.

D-vitamiini voi ehkäistä tyypin 1 diabetesta

Riittävä D-vitamiinin saanti laskee ykköstyypin diabeteksen riskiä lapsilla, joilla on sairastumiselle altistava geneettinen muutos, kertoo Diabetes-lehti julkaisemassaan tutkimusraportissa.

Tutkijoiden mukaan riittävän korkeat D-vitamiinitasot ehkäisevät ykköstyypin diabetesta

Geneettistä alttiutta kantavilla lapsilla, joiden veren D-vitamiinitasot olivat alhaiset, oli suurempi riski sairastua haiman Langerhansin saarekkeiden beetasoluja tuhoavaan autoimmuunitautiin, kuin niillä diabetekselle altistavaa geeniä kantavilla lapsilla, joiden D-vitamiinitasot olivat korkeammat.

Ykköstyypin diabeteksessa elimistön immuunijärjestelmän virheellinen toiminta kohdistaa immuunivasteen haiman insuliinia tuottaviin soluihin. Immuunihyökkäyksen seurauksena insuliinin tuotanto ensin vähenee ja loppuu lopulta kokonaan, kun sitä tuottavat solut ovat täysin tuhoutuneet. Insuliinin väheneminen ja loppuminen aiheuttavat sen, ettei verensokeri pääse soluihin, jossa sitä tarvitaan energiantuotannossa.

Tutkimus

Tutkimusta johtanut Jill Norris, Ph.D (Colorado School of Public Health) kertoo, tutkimuksen osoittavan, että veren korkeammat D-vitamiinitasot auttavat ehkäisemään tyypin 1 diabetesta.

Aiemmissa tutkimuksissa on saatu tuloksia, joiden perusteella veren matalat D-vitamiinitasot voivat kasvattaa ykköstyypin diabeteksen riskiä lapsilla, joilla on geneettinen alttius tälle sairaudelle.

Myös Alberto Ascherion tutkimusryhmä on osoittanut alhaisten D-vitamiinitasojen yhteyden kasvaneeseen diabetesalttiuteen (lue tästä). Havainnot, joiden mukaan alhaiset D-vitamiinitasot korreloivat kasvaneen diabetesriskin kanssa saivat tutkijat pohtimaan, löytyykö korrelaatio käänteisenä niillä geneettistä alttiutta kantavilla lapsilla, joiden D-vitamiinitasot ovat riittävät. Tutkimuksissa on saatu ristiriitaisia tuloksia.

 

 

D-vitamiinia kutsutaan toisinaan ”aurinkovitamiiniksi”, koska auringon UVB-säteily syntetisoi sitä ihmisen iholla. Sitä esiintyy myös mm. rasvaisissa kaloissa sekä munankeltuaisissa. Moniin elintarvikkeisiin, kuten maitoon ja muihin meijerituotteisiin lisätään D-vitamiinia.

D-vitamiini vaikuttaa kahtena aineenvaihduntatuotteena: maksan  D-vitamiinista eli kolekalsiferolista hydroksyloimana kalsidiolina ja munuaisten kalsidiolista edelleen hydroksyloimana kalsitriolina.

Kalsidioli osallistuu yhdessä K-vitamiinin kanssa kalsiumin homeostaasiin kuljettamalla kalsiumia verenkierrosta luihin ja siivoaa mm. kuolleita soluja verisuonista. Se ylläpitää mm. verisuonten terveyttä ja luuston vahvuutta.

Kalsitrioli on hormonin tavoin vaikuttava sekosteroidi, joka ohjaa jopa 2000 geenin toimintaa. Kalsitrioli on myös immunomodulatorinen aine, joka osallistuu immuunijärjestelmän säätelyyn.

Tutkimusten mukaan useimmilla suomalaisilla esiintyy D-vitamiinin puutosta, joka voi vaikuttaa immuunijärjestelmän toimintaa alentavasti ja luustoa heikentäen. Suositeltavat verestä mitattavat D-vitamiinitasot ovat 100-150 nmol/l.

Tohtori Norris tutkijaryhmineen halusi selvittää enemmän D-vitamiinin ja ykköstyypin diabeteksen korrelaatiosta. Erityisesti tutkijoita kiinnosti, vaikuttavatko lapsuudenaikaiset D-vitamiinitasot haiman insuliinisoluja tuhoavan autoimmuunitaudin kehittymiseen.

Haiman insuliinia tuottavia soluja tuhoavan autoimmuunitaudin riski pieneni

Tutkimuksessa oli mukana 8676 lasta, joilla oli geneettinen alttius sairastua tyypin 1 diabetekseen.

Lasten D-vitamiinitasoja seurattiin neljän ensimmäisen elinvuoden aikana 3-6 kuukauden välein otetuista verinäytteistä. Tutkimuksessa mukana olleista lapsista 376:lla immuunijärjestelmä kohdisti aktivaationsa virheellisesti haiman insuliinia tuottaviin soluihin, eli lapset sairastuivat tyypin 1 diabetekseen. Sairastuneiden D-vitamiinitasoja verrattiin 1041 ei-sairastuneen lapsen näytteisiin.

D-vitamiinitasojen vertailu osoitti, että lapsilla, joilla oli eräs  D-vitamiinireseptoreja säätelevä geenivariantti, korkeammat D-vitamiinitasot assosioituivat pienempään riskiin sairastua haiman insuliinia tuottavia soluja tuhoavaan autoimmuunitautiin varhaislapsuudessa. D-vitamiini laski sairastumisen riskiä.

Tutkijaryhmä kuitenkin toteaa, etteivät he vielä pysty aukottomasti todistamaan kausaliteettia alhaisten D-vitamiinitasojen ja ykköstyypin diabeteksen väliltä. Mutta vaikka kausaliteetin todistaminen on vaikeaa, tohtori Norris uskoo, että D-vitamiini voi ehkäistä tyypin 1 diabetesta lapsilla, joilla on taudille geneettinen alttius.




Immuunijärjestelmän toimintamekanismit

Immuunipuolustus rakentuu kahden toisiaan täydentävän immuunijärjestelmän varaan. Nämä ovat adaptiivinen eli hankittu immuunijärjestelmä ja luontainen (synnynnäinen) immuunijärjestelmä.

Hankittu immuunijärjestelmä

Adaptiivisen immuunijärjestelmän toiminta perustuu immunologiseen muistiin ja imusoluihin eli lymfosyytteihin. Imusolut ovat valkosoluihin (leukosyytteihin) kuuluvia soluja, jotka osallistuvat elimistön immuunivasteeseen ja pitävät yllä immuunijärjestelmän toimintaa. Imusolut erikoistuvat luuytimen kantasoluista ja niillä on kaksi pääluokkaa: B- ja T-lymfosyytit. Sekä B-, että T-soluilla on huomattava merkitys adaptiivisessa immuunijärjestelmässä ja autoimmuunitautien patogeneesissä.

Adaptiivinen eli hankittu immuunijärjestelmä kehittää immunologisen muistin kohtaamistaan taudinaiheuttajista eli patogeeneistä. Näin hankittu immuunijärjestelmä mukautuu ja kehittyy ensimmäisistä elinvuosista alkaen lähes koko elämän ajan.

Adaptiivisen immuunijärjestelmän vahvuus on siinä, että se tallentaa kohtaamiensa taudinaiheuttajien spesifin rakenteen immunologiseen ”solumuistiin”, jolloin se tunnistaa taudinaiheuttajan herkemmin, toimii nopeammin ja aggressiivisemmin, kun solumuistissa oleva tunnistettu taudinaiheuttaja uhkaa seuraavan kerran elimistöä. Tämä mekanismi mahdollistaa immuniteetin kehittämisen eri taudinaiheuttajia vastaan.

Rokotuksissa hyödynnetään adaptiivista immuunijärjestelmää

Rokotuksissa hyödynnetään tätä adaptiivisen immunijärjestelmän mekanismia siten, että taudinaiheuttamiskyvyltään keikennetyt virukset, bakteerit tai niiden rakenne esitellään adaptiiviselle immuunijärjestelmälle, joka tuottaa vereen sellaisia lymfosyyttejä, jotka ”muistavat” niille esitellyn taudinaiheuttajan. Näin immuunijärjestelmä oppii aktivoitumaan taudinaiheuttajaan ja ihminen saa immuniteetin kyseistä taudinaiheuttajaa vastaan.

Antigeenin esittely dendriittisolujen kautta voi tulevaisuudessa vahvistaa rokotteiden tehoa. Tavalliset rokotteet tarjoavat tehokkaan suojan useita taudinaiheuttajia vastaan. Tämä suoja perustuu siihen, että rokotteet stimuloivat hyvin B-lymfosyyttejä ja indusoivat siten tehokkaasti vasta-ainetuotantoa. Kroonisen infektion, kuten HIV-infektion, aikana suojaavan immuunivasteen muodostuminen edellyttää todennäköisesti myös sytotoksisten T-solujen aktivaatiota. Liittämällä rokotteisiin adjuvantiksi esimerkiksi dendriittisolujen kasvutekijää (GM-CSF) tai stimuloivaa sytokiinia (esim. IL-12) voidaan lisätä sytotoksista T-soluvastetta rokotteeseen. Elävän (heikennetyn) viruksen käyttö rokotteena on toinen strategia, jolla rokoteantigeenit voidaan kohdentaa sytotoksisia T-soluja stimuloiviksi. Kolmas vaihtoehto on käyttää rokotteena puhdistettua DNA:ta, joka proteiinisynteesin kautta aikaansaa ohimenevän antigeenin esittelyn dendriittisolussa.

Terveillä koehenkilöillä on saatu aikaan tehokkaat rokotevasteet käsittelemällä heistä eristettyjä dendriittisoluja eri antigeeneillä ja injektoimalla ne takaisin elimistöön. Erityisen kiinnostavia ovat olleet syövän immunologinen hoito ja syöpärokotteet. Immuunivasteen herättäminen syöpäkudosta vastaan edellyttää tuumorispesifisten antigeenien olemassaoloa. Tuumoriantigeenejä tunnetaan runsaasti eri syövissä, ja niiden tiedetään syntyvän mutaatioiden, sikiöaikaisen proteiinien aberrantin ilmenemisen tai tiettyihin syöpiin liittyvien virusinfektioiden seurauksena.

Menetelmän peruskaava on yksinkertainen: Sairastuneen dendriittisoluja viljellään yhdessä tuumoriantigeenin kanssa ja ruiskutetaan takaisin syöpää sairastavan elimistöön. Näiden menetelmien eläinkokeet ovat antaneet lupaavia tuloksia. Syövän immunologinen hoito dendriittisolupohjaisten syöpärokotteiden avulla vaatii toisaalta vielä runsaasti lisätutkimuksia.

Luontainen immuunijärjestelmä

Hankitun immuunijärjestelmän rinnalla toimii synnynnäinen eli luontainen immuunijärjestelmä. Luontaisen immuunijärjestelmän aktivaatio ei edellytä aiempaa kontaktia mahdollisen patogeenin kanssa, vaan se reagoi patogeeneihin yleisellä tasolla, eli se tunnistaa tietyt mikrobiryhmät tunnusomaisten yleisten rakenteiden perusteella.

Luontainen immuunijärjestelmä ei ylläpidä pitkäkestoista immuniteettia spesifeille taudinaiheuttajille, kuten hankittu immuunijärjestelmä.

Ennen hankitun immuunijärjestelmän kehittymistä, lapsen puolustautuminen taudinaiheuttajia vastaan tapahtuu luontaisen immunijärjestelmän avulla sekä mm. äidinmaidosta saatavien vasta-aineiden välityksellä. Ihmisen luontaista immuunijärjestelmää tukevat myös mm. seuraavat epäspesifiset puolustuskeinot:

  • Terve iho ja ihon alhainen pH ehkäisevät mikrobien kasvua.
  • Liman tuotto ja värekarvat (ruoansulatuskanavassa, hengitysteissä ja sukuelinten alueella); lima pysäyttää mikrobien ja muiden partikkelien liikkumisen ja suojaa näin elimistöä taudinaiheuttajilta.
  • Aivastus- ja yskärefleksi poistaa liman mukana myös elimistöä uhkaavia mikrobeja.
  • Mahan hapan pH suojaa elimistöä ravinnon mukana tulevilta mikrobeilta tappaen lähes kaikki patogeenit. Ruoansulatuskanavassa on ravintoaineita pilkkovia entsyymejä, jotka tuhoavat myös mikrobeja.
  • Nestevirtaus elimistön eri osissa rajoittaa mikrobien kasvua; esim. kyynelneste pitää silmän pinnan puhtaana myös mikrobeista. Syljessä ja kyynelnesteessä on bakteereja hajottavaa lysotsyymia ja muita vastaavia proteiineja.
  • Normaalimikrobisto: Iholla ja suolistossa elää normaaliflooraksi kutsuttu mikrobilajisto, jonka lajit eivät aiheuta ihmisellä sairauksia, vaan estävät muiden hyödyllisten ominaisuuksiensa ohella tautia aiheuttavien bakteerien pääsyä elimistöön.

Fagosyytit ja fagosytoosi

Luonnollisen immuniteetin puolustusmekanismeihin kuuluu soluja (fagosyytteja), jotka kykenevät fagosytoimaan eli nielemään elimistöön pyrkiviä taudinaiheuttajia.

Fagosyytit jaetaan kahteen pääluokkaan rakenteensa perusteella. Nämä ovat

  • Monosyytit
  • Granulosyytit (basofiiliset, neutrofiiliset ja eosinofiiliset)

Monosyytit ja granulosyytit ovat sellaisia veren valkosoluja, joilla on kyky siirtyä verenkierrosta verisuonen seinämän läpi kudosnesteeseen. Tämä tapahtuu tulehduspaikalta leviävien, valkosoluja houkuttelevien aineiden eli kemokiinien avulla.

Sekä monosyytit (kudoksissa kypsyviä monosyyttejä kutsutaan makrofageiksi) että granulosyytit tunnistavat taudinaiheuttajan tai sen erittämän tuotteen mikrobien pinnassa olevien yleisten rakenteiden perusteella. Esimerkiksi bakteerien soluseinä eroaa rakenteeltaan ihmisen omien solujen solukalvoista; näin fagosytoivat solut osaavat erottaa taudinaiheuttajat elimistön omista rakenteista.

Fagosyytit eivät tunnista yksittäisiä mikrobilajeja, eikä niillä ole immunologista muistia, kuten adaptiivisella immuunijärjestelmällä. Fagosyytit reagoivat taudinaiheuttajiin seuraavalla tavalla:

  1. fagosyytti tunnistaa taudinaiheuttajan pinnallaan olevien reseptoriproteiinien avulla
  2. fagosyytin pintaan muodostuu kuoppa, johon fagosytoiva (tuhottava) mikrobi painuu
  3. fagosyytti sulkee mikrobin kokonaan sisäänsä ja tuhoaa mikrobin pumppaamalla sitä ympäröivän kalvon sisälle pH:ta laskevia vetyioneita
  4. kalvon sisäpuolen pH:n laskun seurauksena eräät entsyymit aktivoituvat ja alkavat hajottaa mikrobin proteiineja, nukleiinihappoja ja muita rakenteita.

Makrofagi

Makrofagit, eli ”suursyömärit” ovat elimistön syöjäsoluja, jotka syövät vieraiksi tunnistettuja mikrobeja ja vierasaineita. Makrofagin solulimassa on atsurofiilisia jyväsiä. Nämä sisältävät fagosytoosin toiminnan kannalta tärkeitä lysomaalisia entsyymejä ja myeloperoksidaaseja. Kun makrofagi syö patogeenin, se joutuu fagosomin sisälle, joka sitten fuusioituu lysosomin kanssa. Fagolysosomin sisällä entsyymit ja toksiset peroksidit sulattavat patogeenin.

Makrofagit voivat sulattaa yli 100 bakteeria ennen kuolemistaan hajoamistuotteisiin. Makrofagit kehittyvät veressä kiertävistä monosyyteistä ja asettuvat kudoksiin ja niitä on erityisen runsaasti lymfaattisissa kudoksissa, kuten imusolmukkeissa. Makrofagit tuhoavat tehokkaasti solunsisäisiä mikrobeja, mutta niillä on tärkeä tehtävä myös soluvälitteisessä immuunipuolustuksessa, jossa ne toimivat antigeenia esittelevinä soluina (APC).

Makrofagi syömässä patogeenia: a. Syöjäsolu nielaisee patogeenin fagosytoosilla. Fagosytoottinen vesikkeli eli fagosomi muodostuu. b. Lysosomit fuusioituvat fagosomin kanssa muodostaen fagolysosomin; patogeeni pilkotaan entsyymeillä. c. Jätteet poistuvat tai assimiloidaan (ei kuvassa). Osat: 1. Patogeenit 2. Fagosomi 3. Lysosomit 4. Jätteet 5. Sytoplasma 6. Solukalvo

Makrofagi syömässä patogeenia:
a. Syöjäsolu nielaisee patogeenin fagosytoosilla. Fagosytoottinen vesikkeli eli fagosomi muodostuu.
b. Lysosomit fuusioituvat fagosomin kanssa muodostaen fagolysosomin; patogeeni pilkotaan entsyymeillä.
c. Jätteet poistuvat tai assimiloidaan (ei kuvassa).
Osat:
1. Patogeenit
2. Fagosomi
3. Lysosomit
4. Jätteet
5. Sytoplasma
6. Solukalvo

Antigeeni

Antigeeni on mikä tahansa molekyyli, joka aiheuttaa elimistössä immuunivasteen. Antigeenit ovat usein proteiineja tai polysakkarideja, joita esiintyy esimerkiksi bakteerien tai virusten pintarakenteissa. Imusoluilla on antigeenireseptori, jonka avulla ne tunnistavat tietyn antigeenin. Antigeenien avulla elimistö tunnistaa sen, onko solu oma tai elimistölle vieras.  Vasta-aineet tarttuvat antigeeniin. Antigeeni aiheuttaa elimistössä vasta-ainevälitteisen tai soluvälitteisen immuunireaktion. Jos elimistön muistisoluissa on tieto taudinaiheuttajasta, käynnistyvää vastetta kutsutaan sekundaarivasteeksi (adaptiivinen immuniteetti), jossa vaste on nopeampi ja tarkempi. Jos antigeeni on tuntematon, elimistö käyttää muita menetelmiä tunkeutujan tuhoamiseen (primaarivaste, luonnollinen immuniteetti). Primaarivasteen jälkeen immuunipuolustuksen käyttöön jää muistisoluja, jotka muistavat kyseisen antigeenin, joten sen tuhoaminen seuraavalla kerralla on nopeampaa. Elimistön omat solut tunnistetaan samalla menetelmällä.

Komplementti

Komplementti on luontaisen immuunijärjestelmän osa, joka koostuu joukosta veressä ja kudosnesteissä esiintyviä taudinaiheuttajia tunnistavia ja tuhoavia proteiineja. Komplementin proteiinit toimivat tavallaan ketjureaktiona, jossa ensimmäisen proteiinin aktivointi johtaa seuraavan aktivoitumiseen, joka edelleen aktivoi kolmannen proteiinin jne. Kun tämä ketjureaktio käynnistyy, sitä on vaikea pysäyttää. Se myös kasvaa edetessään tehokkaammaksi, sillä jokainen aktivoituneista proteiineista kykenee aktivoimaan useita seuraavan vaiheen proteiineja.

Klassinen aktivaatio

Bakteerin pinnalla on tunnistettu antigeeni, johon immunoglobuliini on kiinnittynyt. Immunoglobuliinin FC-osaan kiinnittyy C1q-entsyymi, johon taas kiinnittyy C1r- ja C1s- entsyymit. Komplementin ensimmäinen entsyymi C1 muodostuu siis osista C1q, C1r:t ja C1s:t. Osat aktivoivat toisiaan ja syntyy C1. Tämän rakenteen säilyttämiseksi tarvitaan Ca2+-ioni.

C1 pilkkoo C4→ C4a ja C4b. C4b kiinnittyy bakteerin pinnalle Mg2+-ionin avulla. C1 pilkkoo myös C2-→ C2a ja C2b. C2b kiinnittyy C4a:n. Näin muodostuu C3-ja C5-konvertaasi eli aktiivinen entsyymi, joka pilkkoo C3 ja C5.

C4a/C2b-entsyymi siis pilkkoo C3→ C3a ja C3b. C3b sitoutuu bakteerin pinnalle ja siihen liittyy C5. C4a/C2b-entsyymi pilkkoo liittyneen C5-→ C5a ja C5b.

C5b kiinnittyy bakteerin pinnalle ja houkuttelee sinne C6, C7, C8 ja C9:t. Nämä muodostavat MACin (engl. Membrane Attack Complex) eli reiän bakteerin solukalvoon. Tästä seuraa lyysis eli bakteerin tuhoutuminen.

Komplementin klassisen reitin aktivoivat siis immunoglobuliinit, joista voimakkaimpia ovat IgG1, IgG3 ja IgM. Myös immunokompleksit, DNA-histonikompleksit ja C-reaktiivinen proteiini (CRP) aktivoivat reittiä.

Lähde: Wikipedia

 

Hankittu immuunijärjestelmä ja sen toiminta

Hankitun immuunijärjestelmän spesifinen tunnistuskyky perustuu siihen, että lymfosyyttien solukalvolla olevat reseptorit ovat patogeenejä tunnistavilta osiltaan hyvin monimuotoisia. Tietyn antigeenin ilmaannuttua elimistöön, vain ne lymfosyytit aktivoituvat, joiden solukalvolla oleva reseptori tunnistaa kyseisen antigeenin.

Hankittu immuniteetti tunnistaa mikrobit yksittäisinä spesifeinä lajeina niissä olevien yksityiskohtaisten ja yksilöllisten rakenteiden perusteella. Hankittu immuniteetti on immuunivasteen kannalta täsmällisempi kuin luontainen immuunijärjestelmä, mutta molemmat immuunijärjestelmät tukevat ja täydentävät toisiaan.

Immunologinen muisti

Immuunipuolustuksen toimivuuden kannalta tärkeää on tehokas puolustautuminen toistuvasti elimistöön pyrkiviä taudinaiheuttajia vastaan. Käytännössä tämä tapahtuu immunologisen muistin avulla: immuunijärjestelmä muistaa elimistöön aiemmin tunkeutuneet patogeenit ja mikäli sama mikrobi kohdataan uudelleen, immunologinen reaktio käynnistyy nopeasti ja on paljon tehokkaampi kuin ensimmäisellä kerralla.

Kun patogeeni pääsee elimistöön ensimmäistä kertaa, muodostuvaa immunologista reaktiota kutsutaan primaarivasteeksi. Saman patogeenin tunkeuduttua elimistöön uudelleen primaarivasteen jälkeen, immunologinen reaktio on sekundaarivaste, jolloin immuunivaste käynnistyy nopeammin ja poikkeaa primaarivasteesta myös mm. erittyvien vasta-aineiden tyypin osalta. Sekundaarivasteen taustalla on muistisoluiksi kutsutun solutyypin kehittyminen.

Kun humoraalisen immuunivasteen käynnistyessä B-lymfosyyteistä kypsyy plasmasoluja, osa niistä muuntuu samanaikaisesti muistisoluiksi. Muistisoluilla on pinnallaan saman antigeenin tunnistava reseptori, mutta sen sijaan, että ne poistuisivat imusolmukkeista verenkiertoon ja edelleen tulehduspaikalle, ne jäävät imukudokseen. Muistisolut ovat pidemmälle kypsyneitä kuin naiivit B-solut, ja tämän vuoksi ne pystyvät käynnistämään sekundaarivasteen tehokkaasti siinä tapauksessa, että sama antigeeni ilmestyy uudestaan imusolmukkeeseen APC-solujen mukana.

T- ja B-lymfosyyttien toiminnan erot

B-lymfosyytit (B-solut) tunnistavat solunulkoisessa tilassa vapaina (liukoisina) olevia antigeenejä B-solun ulkokalvoon kiinnittyneen B-solureseptorina toimivan immunoglobuliinimolekyylin avulla. B-solut osallistuvat vasta-ainevälitteiseen immuniteettiin.

T-lymfosyytit tunnistavat vain sellaisia antigeenejä, jotka ovat kiinnittyneet johonkin elimistön omaan proteiiniin. Näitä T-solujen toiminnan kannalta välttämättömiä elimistön omia proteiineja kutsutaan MHC-molekyyleiksi, ja ne jaetaan kahteen pääluokkaan: MHC I ja MHC II.

T-solujen tyypit määräytyvät sen mukaan, kumpaan MHC-tyyppiin sitoutuneita antigeenejä ne osaavat tunnistaa.

  • Sytoksiset T-solut tunnistavat antigeenin osana MHC I-kompleksia. Sytoksiset T-solut voidaan tunnistaa solun pinnalla olevan CD8-proteiinin avulla (CD8+).
  • Auttaja T-solut tunnistavat MHC II-molekyyliin kiinnittyneen antigeenin. Auttaja-T-solut eroavat sytoksisista T-soluista, sillä niiden pinnalla on CD4-proteiinia (CD4+).

T-solut (eli T-lymfosyytit)

T-lymfosyytti on valkosolun eli leukosyytin alatyyppi; T-lymfosyytti on imusolu, jolla on keskeinen merkitys soluvälitteisessä immuunipuolustuksessa.

T-solut erotetaan muista lymfosyyteistä, kuten B-soluista ja luonnollisista tappajasoluista (NK cells) T-solun pinnalla olevan T-solureseptorin (TCR) avulla. Nimitys T-solu tulee kateenkorvaa tarkoittavasta sanasta: thymus. Suurin osa T-soluista kehittyy kateenkorvassa.

T-solureseptorit (TCR)

T-lymfosyyttien pinnalla on tunnusomainen T-solureseptori, jonka tehtävä on tunnistaa antigeenin pilkkoutunut peptidifragmentti MHC-molekyylien antigeeniä-esittelevän-solun (APC) pinnalla.

T-solureseptorit sisältävät sekä muuttumattomia, että muuttuvia alueita. Kaikki T-solureseptorit sisältävät TCR-CD3-kompleksin, mutta T-solureseptorin muuttuva alue määrittelee sen, mihin antigeeniin erityinen T-solu voi reagoida.

CD4+ auttaja-T-solujen pinnalla on T-solureseptori, joka on herkkä luokan II MHC-proteiineille. Näitä luokan II MHC-proteiineja esiintyy yleensä vain spesifien antigeeniä-esittelevien-solujen (APC) pinnalta.

CD8+ sytoksisten-T-solujen pinnalla on reseptori, joka osaa tunnistaa luokan I MHC-proteiineihin kiinnittyneitä antigeenejä.

Antigeeniä-esittelevät-solut (APC) ovat pääsääntöisesti dendriittisoluja, makrofageja tai B-soluja. Dendriittisolut ovat ainoa soluryhmä, joka esittelee aina luokan II MHC-proteiineja.

T-solureseptorin rakenne

T-solujen solureseptorit muodostuvat kahdesta erillisestä glykoproteiiniketjusta. T-solujen reseptoreista n. 95 % muodostuu TRA:n ja TRB:n koodaamista alfa- ja beetaketjuista ja n. 5 % T-solureseptoreista muodostuu gamma- ja deltaketjuista, joita koodaa TRG ja TRD.

Kaikilla T-solujen alaryhmillä on oma tehtävänsä osana toimivaa immuunijärjestelmää. Suurin osa ihmisen T-soluista on T-solureseptorien alfa- ja beeta-proteiiniketjurakenteen mukaan nimetty alfa-beeta-T-soluiksi (αβ T cells), eli niiden solureseptorit muodostuvat yhdestä alfa- ja yhdestä beeta-ketjusta. Alfa-beeta-T-solut toimivat osana adaptiivista immuunijärjestelmää.

Erikoistuneiden gamma-delta-T-solujen T-solureseptorit muodostuvat yhdestä gamma- ja yhdestä deltaketjusta. Gamma-delta-T-soluja on lähinnä suoliston limakalvojen lymfosyyteissä, eli ne ovat tavallisesti osa intraepiteelilymfosyyttejä (IEL).

Gamma-delta-T-solujen reseptorit ovat muuttumattomia, mutta ne voivat tehokkaasti esitellä antigeenejä muille T-soluille. Niitä pidetään osana luontaista immuunijärjestelmää (innate immune system).

T-solujen tyypit

Efektori-T-solut

Efektori-T-solujen kategoria ovat laaja, sillä se sisältää useita T-solutyyppejä, kuten auttaja-, tappaja- ja säätelijä T-solut.

T-auttaja-solut

T-auttaja-solut (Th) auttavat muita valkosoluja immunologisissa prosesseissa, kuten B-solujen erikoistumisessa plasmasoluiksi ja muisti B-soluiksi sekä sytotoksisten T-solujen ja makrofagien kehityksessä ja aktivaatiossa.

Th-solut aktivoivat muita T-soluja erittämällä solujen välisen viestinnän mahdollistavia sytokiinejä ja näin Th-solut säätelevät tai vaimentavat immuunivastetta.

Täysin kehittyneet T-auttaja-solut tunnetaan myös (positiivisina) CD4+ T-soluina, koska niiden pinnalla on CD4-proteiinia.

CD4+ T-solujen reseptoreilla on herkkyys luokan II MHC-proteiineille. CD4-proteiineja on mukana T-solujen kateenkorvassa tapahtuvassa kehityksessä (maturaatio), ja niiden avulla CD4+ T-solujen herkkyys määräytyy luokan II MHC-proteiineille.

T-auttaja-solujen aktivaatio tapahtuu luokan II MHC-molekyylien antigeenejä-esittelevien solujen (APC [antigen-precenting-cell]) pinnalla esittelemien antigeenipeptidien avulla.

Sytokiinit

Kun T-auttaja-solut aktivoituvat, ne jakautuvat nopeasti ja erittävät sytokiinejä, jotka säätelevät ja auttavat aktiivista immuunivastetta. Immuunijärjestelmää ohjaavat sytokiinit ovat proteiinirakenteisia solujen välisen viestinnän välittäjäaineita, jotka voidaan edelleen jakaa toimintansa perusteella viiteen pääryhmään:

  • tuumorinekroositekijät
  • interferonit
  • interleukiinit
  • hematopoieettiset kasvutekijät
  • muut kasvutekijät

T-auttaja-solujen merkitys käytännössä

T-auttaja-solujen merkitystä voidaan havainnollistaa HIV:lla, joka infektoi ensisijaisesti CD4+ auttaja-T-soluja. HIV:n myöhemmissä vaiheissa toimivien CD4+ T-solujen puutoksen seurauksena on AIDS (Acquired ImmunoDeficiency Syndrome).

MHC (major histocompatibility complex)

MHC on yksi eniten tutkituista genomin alueista, koska sen lokus-variantit assosioituvat vahvasti autoimmuunitauteihin, infektioihin sekä moniin tulehduksellisiin sairauksiin. Lue aihetta sivuava tutkimus tästä >>

MHC-proteiinit ovat MHC-geeniperheen koodaamia solujen solupinnan glykoproteiineja, jotka toimivat immunologisessa puolustuksessa sitoen antigeeninä toimivan proteiinin pilkkoutumisen seurauksena syntyneitä peptidifragmentteja ja kuljettaen niitä antigeeniä esittelevän solun (APC) pinnalle, jossa ne esitellään T-soluille yhdessä muiden stimulatoristen signaalien kanssa.

Tämän seurauksena aktivoituneet efektori-T-solut tunnistavat saman peptidi-MHC-kompleksin kohdesolunsa pinnalla, mikä voi sytoksisten T-solujen tapauksessa olla mikä tahansa infektoitunut elimistön solu, auttaja-T-solujen tapauksessa B-solu, sytoksinen T-solu, infektoitunut makrofagi tai dendriittisolu itse. (Lähde: Solunetti)

MHC-proteiineihin sitoutuvat antigeenit ovat aina lyhyitä peptidejä. Luokan I MHC-proteiineihin kiinnittyvät peptidit voivat olla 8-10 aminohapon mittaisia, kun taas luokan II MHC-peptideissä on jopa 25 aminohapon mittaisia peptidejä.

  • Peptidit ovat proteiineja pienempiä, tavallisesti alle viidestäkymmenestä aminohaposta koostuvia aminohappoketjuja
  • Proteiinit ovat isoja molekyylejä, jotka tavallisesti koostuvat vähintään viidestäkymmenestä aminohappotähteestä, mutta ne voivat koostua jopa yli tuhannesta aminohappotähteestä
  • Aminohapot ovat proteiinien rakenteen perusosia
  • Proteiineissa aminohapot sitoutuvat toisiinsa kovalenttisin amidi- eli peptidisidoksin
  • Entsyymit ovat proteiineja, jotka katalysoivat kemiallisia reaktioita

 

Dendriittisolu (DC) on tärkein antigeeniä esittelevä solu

Dendriittisolut ovat yleiseen immuunijärjestelmään kuuluvia soluja, jotka ilmentävät pinnallaan monia reseptoreja (mm. TLR ja NOD-proteiineja), joiden avulla ne tunnistavat ja fagosytoivat kohtaamiaan patogeenejä. Eri kudoksista on löydetty lukuisia erilaisia dendriittisoluja. Useimmat niistä ilmentävät pinnallaan joko myeloidisten tai lymfaattisten solujen tyyppirakenteita.

Ei ole täysin selvää, mistä kantasoluista ja miten eri kudosten monet dendriittisolutyypit kehittyvät. Myöskään jaottelu myeloidisiin ja lymfaattisiin dendriittisoluihin ei ole täysin yksiselitteistä. Tyypillistä dendriittisolun kehityksessä on luuytimessä muodostuneen ja sieltä verenkiertoon vapautuneen esiasteen muuntuminen myöhemmin kudoksessa tai imusolmukkeessa ns. epäkypsäksi dendriittisoluksi, joka on normaalitilassa dendriittisolun tavallisin olomuoto. Dendriittisolun kypsymisestä (aktivaatiosta) huolehtivat lähinnä patogeenit ja tulehduksen välittäjäaineet.

Ulkoisesti ja toiminnallisesti muuntautumiskykyiset dendriittisolut ohjaavat etenkin T-lymfosyyttien ja osittain myös B-lymfosyyttien toimintaa. Immuunijärjestelmän toiminnan säätelyyn osallistuvat dendriittisolut muodostuvat luutytimen myeloidisista ja lymfaattisista kantasoluista, esiintyvät veressä usein epäkypsinä esiasteina ja siirtyvät verestä kudoksiin. Kudosten dendriittisolut tunnistavat patogeeneille ominaisia rakenteita, muokkaavat niistä antigeenejä ja kypsyttyään vaeltavat imusolmukkeisiin, jossa ne aktivoivat niihin kertyneitä lymfosyyttejä.

Dendriittisolujen muuntautumiskyky ja tieto siitä, kuinka dendriittisolut tunnistavat pintareseptoreiden avulla taudinaiheuttajia sekä toimivat sillanrakentajina luontaisen ja adaptiivisen immuunivasteen välillä on keskeinen kiinnostuksen kohde, kun pohditaan ratkaisua moniin immuunijärjestelmämme toimintaa koskeviin kliinisiin ongelmiin, kuten rokotusvasteiden parantamiseen, elinsiirteiden hyljintäreaktioiden hoitoon, autoimmuunitautien patogeneesiin ja syöpätautien immuuniterapia.

Dendriittisoluilla on keskeinen rooli adaptiivisen immuunivasteen alkutahtien antajana ja tästä vasteesta huolehtivien T- ja B-lymfosyyttien toiminnan ohjeistajina, mutta dendriittisolut toimivat myös lähetin ja tunnustelijan roolissa, sillä ne hankkivat ensimmäisinä hematopoieettisen järjestelmän soluina ihon ja limakalvojen epiteelissä ja niitä syvemmissä kudoksissa kosketuksen elimistöömme tunkeutuviin taudinaiheuttajiin ja kuljettavat tiedon niistä imusolmukkeisiin.

Kateenkorvassa dendriittisolut ohjaavat T-lymfosyyttien esiasteita. Edelleen dendriittisolut ohjaavat imusolmukkeissa aktivoimiaan T-lymfosyyttejä auttaja-T-soluiksi, tappaja-T-soluiksi tai regulatorisiksi T-soluiksi.

Eri dendriittisoluilla on toiminnallisia eroja, jotka ovat immuunijärjestelmän kannalta merkityksellisiä. Imusolmukkeissa T-lymfosyyttialueella sijaitsevat ns. interdigitoivat dendriittisolut ovat erilaistuneet T-soluaktivaatioon, kun taas B-solufollikkekeissa sijaitsevat follikulaariset dendriittisolut ovat välttämättömiä suuriaffiinisten vasta-aineiden muodostukselle.

Eri patogeenit voivat aktivoida eri dendriittisoluja. Myeloidiset ja lymfaattiset dendiittisolut eroavat toisistaan jossain määrin myös stimuloimansa T-soluvasteen osalta. Myeloidiset dendiittisolut ohjaavat Th1-auttajasolujen kautta immuunivastetta varsinkin sytotoksisten T-solujen suuntaan ja lymfaattiset Th2-auttajasolujen kautta varsinkin vasta-ainevälitteisen immuniteetin suuntaan, joskin tähän vaikuttavat oleellisesti liukoiset välittäjäaineet.

Myös epäkypsän ja kypsän dendriittisolun toiminnassa on eroja: antigeeninesittely kypsästä dendiittisolusta aikaansaa todennäköisemmin kunnollisen immuunivasteen, kuin esittely epäkypsästä dendriittisolusta, mikä johtaa telpommin immunologiseen toleranssiin kyseistä antigeeniä kohtaan.

Dendriittisolujen pintareseptorit tunnistavat patogeenejä

Dendiittisolut toimivat siltana synnynnäisen ja adaptiivisen immuunijärjestelmän välillä. Synnynnäisellä immuunijärjestelmällä tarkoitetaan fagosytoivia soluja (monosyytit, makrofagit, granulosyytit), luonnollisia tappajasoluja (NK-solut) ja komplementtijärjestelmää. Mös dendriittisolut ovat osa synnynnäistä immuunijärjestelmää.

Epäkypsille dendriittisoluille on ominaista vilkas endosytoosi, ja ne kykenevät fagosytoimaan patogeenejä mm. mannoosireseptoriensa avulla. Dendriittisolujen pinnalla on TL-reseptoreja (toll-like receptors, TLR 1-10). Näiden reseptorien avulla dendriittisolut kykenevät endosytoimaan muiden fagosytoivien solujen tapaan mikrobeja ja tappamaan niitä lysosomeissa.

Dendriittisolut pilkkovat fagosytoimiensa patogeenien proteiineja peptidifragmenteiksi, jotka sitoutuvat solun MHC-proteiineihin, ja siirtyvät solun pinnalle. Kun tällaisia patogeeniperäisiä peptidifragmentteja esittelevät dendriittisolut siirtyvät paikallisiin imusolmukkeisiin, ne aktivoivat siellä olevia adaptiivisen immuunijärjestelmän T-soluja. Aktivoituneet dendriittisolut erittävät myös sytokiinejä, jotka vaikuttavat muodostuvan immuunireaktion luonteeseen.

Aktivoitunut dendriittisolu pyrkii luomaan kontaktin antigeenispesifisyydeltään sopivan T-lymfosyytin kanssa sekä varmistamaan tämän aktivaation. Tätä kutsutaan antigeenin esittelyksi. Sopiva T-lymfosyytti löytyy, kun sen T-solureseptorit tunnistavat dendriittisolun esittelemän antigeenin riittävällä affiniteetilla. Tämän jälkeen T-lymfosyytti herää toimintaan: se jakaantuu monistaen itsestään yhtenäisen T-solukloonin, joka vähitellen kypsyy vasta-aine- tai soluvälitteisen immuniteetin auttaja- tai toteuttajasoluiksi dendriittisolun ohjeistamana. Aina ei käy näin: Dendriittisolu voi myös lamata antigeenin tunnistaneen T-lymfosyytin. Joskus dendriittisolun aktivoima T-lymfosyytti saattaa ohjelmoitua kuolemaan tai lamaantua toiminnallisesti (anergia). Antigeenin esittely voi myös käynnistää T-lymfosyytin erilaistumisen immuunivastetta aktiivisesti hillitseväksi regulatoriseksi T-soluksi. Kaikkia niitä tekijöitä, jotka määräävät antigeenin esittelyn aikaansaaman T-soluvasteen luonteen, ei täysin tunneta.

Patogeenin aktivoima dendriittisolu voi aktivoida T-lymfosyytin

Osa dendriittisolujen aktivoimista T-soluista siirtyy infektiopaikalle tuhoamaan mikrobeja, osa jää lymfaattisiin elimiin mm. aktivoimaan uusia T-soluja sekä avustamaan vasta-aineita tuottavien B-solujen aktivaatiossa.

Fagosytoituaan jonkin patogeenin epäkypsä dendriittisolu aktivoituu ja alkaa tuottaa sytokiinejä (välittäjäaineita, joihin kuuluvat mm. IL-1, IL-6, IL-12, IFN-α/β, IFN-γ), jotka puolestaan aktivoivat muita lähialueen soluja, mm. makrofageja ja verisuonten endoteelisoluja. Tällä on suuri merkitys tulehdusreaktion käynnistymisessä. Dendriittisolu pilkkoo patogeenistä antigeenejä, joiden esittelyn jälkeen dendriittisolu on valmis aktivoimaan T-lymfosyytin. Tässä voidaan havaita silta luontaisen ja adaptiivisen immuunijärjestelmän välillä.

Päästäkseen naiivien T-solujen luo dendriittisolut ovat kehittäneet kyvyn aistia ympäröivän soluvälinesteen kemotaktisia signaaleja ja liikkua kasvavaa pitoisuusgradienttia kohti. Muun muassa CCL19- ja CCL21-kemokiinien vaikutuksesta dendiittisolut osaavat kemokiinireseptorien välityksellä muuttaa solutukirankaansa siten, että koko solu liikkuu kohti imusolmukkeita, joissa on T-soluja.

Dendriittisolujen mahdolliset terapeuttiset sovellukset ovat kasvavan mielenkiinnon kohteina, sillä perustutkimuksen tasolla on saatu lupaavia tuloksia dendriittisolumanipulaatioiden tehosta infektiotautien, kuten hepatiitin ja HIV-infektion ja toisaalta syöpätautien ja hyljintäreaktoiden hallinnassa, sekä osin myös autoimmuunitautien hoidossa.

Dendriittisolut ja autoimmuunitaudit

Dendriittisolut pystyvät indusoimaan voimakkaita immuunivasteita ja myös säätelemään niitä, mistä syystä ne ovat tärkeitä immunologisen toleranssin ylläpidossa. Omia kudoksia tuhoavan haitallisen immuunivasteen hillitseminen voisi periaatteessa olla mahdollista kohdeantigeenin esittelyllä dendriittisoluista, joiden olomuoto on toleranssia suosiva.

Eläinkokeissa tähän päästään esimerkiksi liittämällä kohdeantigeeni sellaisen endosytoosi-reseptorin ligandiin, jota vain epäkypsät dendriittisolut ilmentävät (Mellman ja Steinman 2001). Kypsymistä ja siten simulaatiokykyä estäviä välittäjäaineita (esim. IL-10, TGF-β) voidaan hyödyntää pyrittäessä kohdeantigeeniin kohdistuvan immuunivasteen hillitsemiseen (Hackstein ym. 2001). Samoin lymfosyyttien solukuolemaa aiheuttavien reseptorien, kuten Fas-reseptorin ligaatiota voidaan hyödyntää immuunivasteen hillitsemisessä (Matsue y. 1999). Solukuolemareseptorien ligandien ja regulatoristen sytokiinien (IL-10, TGF-β) hyödyntäminen geneettiseen manipulaatioon kn vilkkaan tutkimuksen kohteena dendriittisolujen muovaamisessa toleranssia suosiviksi (Lobell ym. 1999) ja siten haitallisia immuunireaktioita hillitseviksi.

Dendriittisolujen toiminnan ja sen säätelyn ymmärtäminen on avaamassa uudenlaisia mahdollisuuksia adaptiivisen immuunivasteen tehostamiseksi ja hillitsemiseksi.

Dendriittisolujen tärkeimmät ominaisuudet ja toiminnot

Ominaisuus Toiminto
Kyky enosytoida patogeenejä ja hajottaa niitä lysosomeissa Osa synnynnäistä luonnollista immuunijärjestelmää
Kyky siirtyä kudoksesta imusolmukkeeseen patogeenin enosytoinnin jälkeen Kudokseen tunkeutuneen patogeenin tuominen adaptiivisen immuunijärjestelmän ulottuville
Kyky stimuloida naiiveja T-soluja imusolmukkeissa Tärkeä rooli uuden immuunivasteen käynnistämisessä ja sillanrakentajana synnynnäisen ja adaptiivisen immuunijärjestelmän välillä
Kyky lamata T-soluaktivaatiota imusolmukkeissa ja kyky ”valikoida” kateenkorvassa kypsyvistä T-soluista soveltuvimmat Tärkeä rooli immunologisen toleranssin muodostamisessa ja ylläpidossa

Lähteet: Solunetti, Dendriittisolu – immuunivasteen kapellimestari >>

 

Immunologisen reaktion eteneminen

Tavallisesti adaptiivinen immuunivaste käynnistyy vasta luontaisen immuniteetin aktivaation jälkeen sen tulehduspaikalla sekä ympäröivän alueen imusuonissa aikaansaamien muutosten seurauksena.

Hankitun immuunijärjestelmän vaste käynnistyy aina auttaja-T-solujen välityksellä. Immuunivasteen etenemiseen vaikuttaa se, onko kyseessä solunulkoinen patogeeni, jolloin immuunivaste etenee humoraalisena, vai solunsisäinen patogeeni, jolloin käynnistyy soluvälitteinen immuunipuolustus.

Primaari- ja sekundaarivaste

Primaarivaste käynnistyy, kun tuntematon taudinaiheuttaja pääsee elimistöön ensimmäistä kertaa. Primaarivasteen aikana immuunijärjestelmä ”tutustuu” antigeeniin ja kehittää antigeenille vasta-aineita. Osa B-soluista”tallentaa” elimistöä uhkaavan antigeenin yksilöllisen rakenteen. Nämä muisti-B-solut jäävät imukudokseen, jossa ne toimivat immunologisena muistina jopa koko ihmisen eliniän.

Sekundaarivaste käynnistyy, kun muistisolu, jolla on primaarivasteessa kohtaamalleen antigeenille herkistynyt reseptori, kohtaa primaarivasteen jälkeen imusolmukkeessa antigeeniä-esittelevien-solun (APC) esittelemän haitallisen antigeenin. Tunnistettuaan taudinaiheuttajan, muistisolu käynnistää nopeasti aggressiivisen sekundaarivasteen haitallista antigeenia vastaan. Sekundaarivasteessa immuunijärjestelmä ryhtyy valmistamaan antigeenin vasta-aineita hyvin nopeasti.

Primaari- ja sekundaarivasteen yleiset erot

Primaarivaste Sekundaarivaste
Elimistön ensimmäinen kontakti antigeeniin. Toinen ja sitä seuraavat kontaktit antigeeniin.
Antigeeniin reagoivat naiivi B-solut ja T-solut. Antigeeniin reagoivat muistisolut.
Immuunireaktion viive on pitkä (4-7 päivää), joskus viikkoja tai kuukausia. Immuunireaktio käynnistyy nopeammin (1-4 päivässä) muistisolujen ansiosta.
Vasta-aineiden määrä korkeimmillaan 7-10 päivää infektion alettua. Vasta-aineiden määrä korkeimmillaan 3-5 päivää infektion alettua.
Immuniteetin kehittyminen vie kauemmin. Immuniteetti kehittyy nopeammin.
Ensimmäinen vasta-aine on IgM. Vähäisiä määriä IgG:tä. Tärkein vasta-aine on IgG. Vähäisiä määriä IgM. Myös muita vasta-aineita, kuten IgA ja IgE esiintyy.
Tuotetun vasta-aineen määrä riippuu antigeenistä. Yleensä vasta-aineita on vähän. Vasta-aineita kehittyy 100-1000 kertainen määrä primaarivasteeseen verrattuna.
Vasta-aineiden määrä laskee nopeasti. Vasta-aineiden määrä pysyy korkeana pidempään.
Vasta-aineen affiniteetti antigeeniin on vähäisempi. Vasta-aineilla suurempi affiniteetti antigeeneihin.
Primaarivaste on selkein imusolmukkeissa ja pernassa. Sekundaarivaste on selkeintä luuytimessä, pernassa ja imusolmukkeissa.
http://www.microbiologynotes.com/differences-between-primary-and-secondary-immune-response/

 

Hankitun immuunivasteen käynnistyminen

Adaptiivisen immuniteetin käynnistymisen olennaisin tapahtuma on antigeenejä esittelevien solujen (APC) ja auttaja-T-lymfosyyttien välinen reaktio. APC-solut ovat erikoistuneita luontaiseen immuniteettiin kuuluvia syöjäsoluja; useimmiten dendriittisoluja, mutta myös muut solutyypit voivat toimia antigeeniä esittelevinä soluina.

Syöjäsolujen tapaan APC-solut fagosytoivat kudoksissa kohtaamansa mikrobit, ja pilkkoessaan mikrobia säsällään ne kiinnittävät osia siitä itse tuottamaansa proteiiniin, MHC II-molekyyliin. Tämä antigeenin (mikrobista irrotettu osa) ja solun oman proteiinin muodostama kompleksi kuljetetaan APC-solun ulkokalvolle, josta muut solut voivat sen havaita.

APC-solu kohtaa mikrobin yleensä elimistön siinä kudoksessa, mihin mikrobi on tunkeutunut. Aktivoituessaan APC-solu siirtyy lymfan eli imunesteen mukana imusolmukkeisiin, jossa varsinainen hankitun immuniteetin käynnistyminen tapahtuu. Imusolmukkeessa on naiiveja (kypsyneitä, mutta aktivoitumattomia) lymfosyyttejä odottamassa aktivoitumiseen johtavaa signaalia, ja APC-solun saapuminen tuottaa tällaisen signaalin. Auttaja T-lymfosyytit omaavat muiden imusolujen tapaan pinnallaan reseptorin, jonka avulla ne tunnistavat spesifisiä antigeenejä, ja juuri auttaja-T-solujen reseptorille on tunnusomaista, että ne tunnistavat antigeenin vain silloin, kun se on liitetty osaksi MHC-II-molekyyliä. APC-solut aktivoivat imusolmukkeessa ne auttaja-T-solut, joiden pintareseptori tunnistaa juuri kyseisen antigeenin. Auttaja-T-solujen aktivoituessa ne kypsyvät lopulliseen muotoonsa ja alkavat tuottaa muita immuunijärjestelmän soluja stimuloivia sytokiinejä eli solunulkoiseen tilaan vapautuvia pienikokoisia proteiineja.

Humoraalinen eli vasta-ainevälitteinen immuunivaste

Humoraalinen eli vasta-ainevälitteinen immuunivaste on adaptiivisen immuniteetin osa, joka tuhoaa taudinaiheuttajia, kuten bakteereita ja näiden erittämiä toksiineja solunulkoisessa tilassa.

Jos APC-solun pinnalla oleva antigeeni on peräisin bakteerista tai muusta solunulkoisessa tilassa vapaana olevasta taudinaiheuttajasta, imukodoksessa aktivoituvat auttaja-T-solut kuuluvat alaluokkaan 2 (Th2), ja niiden tuottamat sytokiinit saavat ensisijaisesti aikaan B-lymfosyyttien kypsymisen.

Tärkein Th2-solujen tuottama sytokiini on interleukiini 4, mutta reaktioon osallistuu useita muitakin sytokiineja. Th2-solujen tuottamien sytokiinien aiheuttama stimulus kypsyttää naiivit B-lymfosyytit lopulliseen muotoonsa, jolloin niistä tulee plasmasoluja.

Plasmasolut poistuvat imusolmukkeesta lymfakierron kautta verenkiertoon, jonka mukana ne kulkeutuvat tulehduspaikalle. Kypsä plasmasolu tuottaa vasta-aineita eli liukoisessa muodossa olevia immunoglobuliineja, joiden antigeenin tunnistava osa on samanlainen kuin A-solun pintareseptorina toimivan immunoglobuliinin: vasta-aineet siis tunnistavat saman antigeenin, joka on alun perin aikaansaanut immuunivasteen käynnistymisen.

Vasta-aineen sitoutuessa taudinaiheuttajan pintaan patogeenin kyky tarttua elimistön rakenteisiin ja aikaansaada sille ominaiset vaikutukset estyvät. Näin vasta-ainevälitteinen immuniteetti neutraloi taudinaiheuttajan.

Patogeenin ja vasta-aineen muodostamaa kokonaisuutta kutsutaan immunokompleksiksi, ja syöjäsoluista erityisesti eosinofiiliset granulosyytit ovat erikoistuneet niiden lopulliseen tuhoamiseen fagosytoosin avulla.

Soluvälitteinen immuniteetti

Soluvälitteinen immuniteetti on kehittynyt torjumaan sellaisten taudinaiheuttajien hyökkäyksiä, jotka lisääntyvät elimistön omien solujen sisällä käyttäen niitä isäntinään ja hyödyntäen niiden molekyylejä sekä ulkokalvon tarjoamaa suojaa immuunijärjestelmää vastaan. Tällaisia solunsisäisiä loisia ovat tyypillisesti kaikki virukset, mutta myös eräät bakteerit (esim. tuberkuloosia aiheuttava Mycobacterium tuberculensis ja klamydiaa aiheuttavat bakteerit), sekä alkueläimet, kuten malariaa aiheuttavat Plasmodium-suvun loiset, jotka lisääntyvät solujen sisällä.

Jos antigeeniä esittelevän solun mukana imukudokseen esiteltäväksi tuotava antigeeni on peräisin tällaisesta patogeenistä, aktivoituvat tyypin 1 auttaja-T-solut (Th19), jotka tunnistavat kyseisen antigeenin. Tärkein tämän auttaja-T-solutyypin tuottama sytokiini on TNF-α (tuumorinekroositekijä alfa), ja tämäntyyppisten sytokiinien erittymisen seurauksena kypsyvät kyseisen antigeenin tunnistavat sytoksiset T-lymfosyytit eli tappaja-T-solut.

Myös tappaja-T-solujen lopulliseen kypsymiseen liittyy niiden monistuminen, muutokset proteiinintuotannoissa ja siirtyminen imukudoksesta lymfakierron ja verenkierron välityksellä tulehduspaikalle. Solunsisäisten taudinaiheuttajien ongelma immuunijärjestelmälle on se, että taudinaiheuttaja viettää suurimman osan elinkierrostaan elimistön omien solujen sisällä, ja siksi puolustusjärjestelmän on tuhottava koko infektoitunut solu päästäkseen patogeenistä eroon.

Elimistön kaikissa omissa soluissa muodostetaan luokan I MHC-molekyylejä (MHC I), ja solun infektoituessa sen pinnalle kulkeutuu vähitellen patogeenin osia MHC I-molekyyliin kiinnittyneenä samaan tapaan kuin MHC II:een antigeenia esittelevien solujen tapauksessa.

T-solut kehittyvät kateenkorvassa, josta naiivit T-solut levittäytyvät kaikkialle elimistöön ja imusolmuihin. Naiivilla tarkoitetaan sitä, että nämä T-solut eivät vielä ole altistuneet antigeeneille, joihin ne on ohjelmoitu reagoimaan. Tappaja-T-solut tunnistavat saastuneet solut näiden pintamolekyylien perusteella, ja tuhoavat ne erittämällä niiden sisälle ja läheisyyteen erilaisia myrkyllisiä yhdisteitä.

Pysy terveenä talvellakin – Varmista vitamiinien saanti Monivitamiinin avulla

Suomen Terveysravinnon monivitamiini on korkealaatuinen pohjoismainen ravintolisä, jonka ainesosista voidaan käyttää yhteensä jopa yli 100 EU:n virallisesti hyväksymää terveysväittämää. Monivitamiinilla on positiivisia vaikutuksia mm. lihaksistoon, immuunijärjestelmään, ihoon, hiuksiin sekä kynsiin, painonhallintaan ja psykologisiin toimintoihin.

Tilaa 10kk annos (300 kapselia) Monivitamiinia vain 35,70€ + Terveyopas-lehti kaupanpäälle. Yksi kapseli sisältää jopa 19 eri vitamiinia sekä hivenainetta. Tilaa nyt!




MS-taudissa suoliston mikrobit vaikuttavat neurologisiin oireisiin

Tohtori Sergio Baranzinin (University of California) johtamassa tutkimuksessa osoitettiin, että MS-taudissa suoliston mikrobit vaikuttavat neurologisiin oireisiin.

MS-tauti on nuorten aikuisten yleisin neurologinen sairaus. Sairastuneilla immuunijärjestelmän virheellinen toiminta vahingoittaa keskushermoston viejähaarakkeita suojaavia myeliinikalvoja. Viejähaarakkeiden vahingoittuneet eristekalvot hidastavat sähköisten impulssien kulkua keskushermostossa, mikä aiheuttaa taudille tyypillisiä neurologisia oireita.

Taudin syntyyn vaikuttavat todennäköisesti geneettinen alttius, sikiöaikainen D-vitamiinin puutos ja EBV-infektio. Myös suoliston lisääntynyt läpäisevyys ja vuotava veri-aivoeste kasvattavat MS-taudin riskiä. Viimeaikaisissa tutkimuksissa on saatu merkittävää näyttöä siitä, että suoliston yksilöllinen mikrobiomi näyttelee merkittävää roolia autoimmuunitaudeissa, kuten MS-taudissa.

MS-taudin oireita hoidetaan oirekohtaisella lääkityksellä sekä uusia pahenemisvaiheita ehkäisevillä immunosupressiivisilla lääkkeillä. Parantavaa hoitoa MS-tautiin ei vielä tunneta. Koska ruokavalio vaikuttaa suoliston mikrobiomiin, on mahdollista, että suoliston hyvää mikrobikantaa tukevalla ruokavaliolla voi hieman hidastaa taudin etenemistä ja ehkä helpottaa taudin oireita.

Baranzinin tutkimusryhmän suorittamassa hiirikokeessa osoitettiin kausaalisuhde MS-spesifin suolistobakteerikannan ja MS-tautiin liittyvien neurologisten oireiden pahenemisen välillä.

Mikä mikrobiomi on ja kuinka se voi vaikuttaa sairastumiseen?

Suolistofloora on suoliston mikrobien ekosysteemi

Syntymästä lähtien kehoomme alkaa kertyä suuria määriä mikrobeja. Ne muodostavat yhdyskuntia kehon eri osiin ja erityisesti suolistoon, johon kehittyy suurin mikrobien ekosysteemi. Eri mikrobien muodostamaa kokonaisuutta kutsutaan mikrobiomiksi. – Duodecim

Suoliston mikrobiomi on tutkijoiden kasvavan mielenkiinnon kohteena. Suolistofloora vaikuttaa immuunijärjestelmän ja aineenvaihdunnan ohella myös keskushermoston toimintaan. Seuraavassa käyn suoliston mikrobiomin hieman tarkemmin läpi Maiju Variksen tutkielman pohjalta.

Suoliston monimutkainen ekosysteemi muodostuu bakteereista, arkeista, sienistä, viruksista ja alkueliöistä. Jokaisen ihmisen mikrobiprofiili on yhtä yksilöllinen kuin sormenjälki, ja se kehittyy ihmisen syntymästä alkaen. Ihmisen mikrobiomiin kuuluu suolistoflooran lisäksi myös iholla ja limakalvoilla elävät mikrobit. Mikrobiomin koostumusta säätelevät mikrobien keskinäiset suhteet, immuunijärjestelmä, metaboliset tekijät, ravinto ja mikrobilääkkeet.

Ihon ja limakalvojen mikrobit tukevat immuunijärjestelmän toimintaa. Suoliston mikrobiomilla on tärkeä merkitys esimerkiksi kasviperäisen ravinnon hajottamisessa. Mikrobiomin häiriöt liittyvät moniin tauteihin.

Ulosteessa olevia pieneliöitä havaitsi ensimmäisen keran 350 vuotta ssitten holantilainen Antoni van Leeuwenhoek. Theodor Escerich onnistui viljelemään suolistobakteereita ensimmäistä kertaa vuonna 1885. Samana vuonna Robert Koch kuvasi kolerabasillin ja Louis Pasteur teki rokotekokeiluja vesikauhuviruksella.

Theodor Escherich oli lasten infektiotautien tutkimuksen pioneeri. Hänen nimensä on jäänyt mikrobiologian historiaan mm. nimeään kantvan bakteerin- Escherichia coli – eli E.coli-bakteerin kautta. Suoliston mikrobeja on tutkittu 130 vuotta. Nyt tutkimus elää uutta renessanssia.

Mikrobiomin kehitys lapsella

Vastasyntyneen lapsen mikrobiomi koostuu bakteereista, jotka pystyvät pilkkomaan laktoosia maidosta

Rintamaidon ja äidinmaitokorvikkeen saanti vaikuttavat eri tavoin lapsen mikrobiomin kehitykseen. Äidinmaitokorviketta saaneilla lapsilla esiintyy enemmän tulehduksia aiheuttavaa Gammaproteobacteria-ryhmää mikrobiomissa kuin rintamaitoa saaneilla lapsilla.

Escherich havaitsi, että vastasyntyneiden ensiuloste, mekonium, on steriiliä. Pienen lapsen mikrobiomi on vielä epävakaa, mutta se tasoittuu yleensä viimeistään viiden ikävuoden iässä. Kiinteä ruoka muuttaa mikrobiomin koostumusta siten, että suolistossa vallitseviksi tulevat bakteerit, jotka pilkkovat hiilihydraatteja, proteiineja ja rasvaa, sekä kykenevät vitamiinisynteesiin.

Osa äidin mikrobiomista periytyy lapselle

Mikrobiomin siirtymisessä alatiesynnytys on lapsen mikrobiomin kehittymisen kannalta toivottavampi kuin sektio. Alateitse syntyvään lapseen tarttuu äidin mikrobeja synnytyskanavasta ja ulosteista. Sektiolla syntyvän lapsen mikrobiomi rakentuu ihon ja sairaalaympäristön bakteereista.

Theodor Escherich osoitti, että bakteerit kolonisoivat lapsen suolen välittömästä ympäristöstä 3-24 tunnin kuluessa syntymästä.  Sittemmin on esitetty, että äidin suolistosta voi myös päästä bakteereita tai todennäköisemmin bakteerien DNA:ta lapsiveteen. Myös istukasta ja sikiöstä löytyvät bakteerien geenit ovat peräisin äidin bakteerifloorasta.

Bakteerien esiintyvyys suoliston ekosysteemissä vaikuttaa lapsella normaaliin immuunijärjestelmän kehitykseen ja kypsymiseen. Mikrobiomi säätelee esimerkiksi luontaisia ja adaptiivisia immuunivasteita.

Immuunijärjestelmä ja suoliston mikrobiomi

Immuunijärjestelmä säätelee mikrobiomia, mutta eräät suoliston bakteerit voivat vaikuttaa immuunijärjestelmään tulehduksia edistäen tai niitä hilliten. Immuunijärjestelmän ja suolistoflooran välillä vallitseekin vuorovaikutteinen tasapainotila.

Antimikrobiset peptidit muodostavat tärkeän aseen luontaiselle immuunipuolustukselle ja ovat aktiivisesti mukana muokkaamassa suoliston mikrobiasujaimistoa. IgA (immunoglobuliini A), molekyyli, joka toimii adaptiivisissa immuunivasteissa, tuotetaan vasteena bakteerien kolonisaatioon ja se aktiivisesti muokkaa mikrobiomia. – – – Puolustuksen puuttuminen vaikuttaa mikrobiomin koostumukseen ja aiheuttaa pathobionttien ylikasvua. Pathobiontit ovat organismeja, jotka yleensä elävät symbiontteina, mutta voivat myös aiheuttaa tauteja. – Mikrobiomi, sen toiminta ja vaikutukset elimistöön, Maiju Varis

Aikuisten suolistoa asuttaa monipuolinen mikro-organismien ekosysteemi. Eniten bakteereita on paksusuolessa. Niistä suurin osa on anaerobeja, mutta joukossa on myös metaania tuottavia arkkibakteereja (1%).

Suoliston bakteereista on tunnistettu yli kymmenen miljoonaa geeniä

Mikrobiomissa on noin 150 kertaa enemmän geenejä kuin ihmisen omassa genomissa. Terveen ihmisen elimistössä voi olla mikrobisoluja kymmenkertainen määrä ihmisen omiin soluihin nähden.

Mikrobiomin monimutkaisen ekosysteemin vuoksi yksittäisten mikrobilajien merkitystä isäntäorganismille on yhä vaikea osoittaa. Mikrobin geenisekvenssi ei kerro, miten mikrobi toimii osana monimutkaista suoliston ekosysteemiä, mistä se saa ravintonsa tai miten se vaikuttaa isäntäorganismin aineenvaihduntaan, immuunijärjestelmään tai keskushermoston toimintaan.

Kolmen päivän välein uusiutuva suoliston mikrobiomi painaa noin kaksi kiloa. Arkit ja bakteerit lisääntyvät jakautumalla. Ne voivat erikoistua geneettisesti monilla mekanismeilla mutaatioiden kautta tai vaihtamalla perintöainesta keskenään esimerkiksi konjugaatiolla. Mikrobit voivat myös ottaa sisäänsä solun ulkopuolista vapaata DNA:ta.

Suoliston ekosysteemi

Suoliston mikrobiomissa elää valtavasti mikro-organismeja. Erillisiä mikrobilajeja voi olla yli 1000

Bakteerit dominoivat mikrobiomia. Viruksia, arkkeja ja eukaryootteja on terveessä mikrobiomissa vähemmän kuin 10 %. Firmikuuttien ja bakteroidien -pääjaksot muodostavat noin 90 % suoliston bakteereista. Ne elävät pääasiassa anaerobisissa oloissa, mutta sietävät happea. Näiden lisäksi runsaslukuisina esiintyy aktinomyseettejä, proteobakteereita ja verrukomikrobeja. Arkkien populaatiot pysyvät yleensä tasaisina. Tästä on arveltu, että arkit säätelevät mikrobiomin tasapainoa.

Kuinka suolistofloora vaikuttaa elimistössä

Mikrobiomi ylläpitää normaalia suoliston toimintaa, hajottaa sulamattomia ravintoaineita (kuten kuituja), tuottaa bioaktiivisia aineenvaihduntatuotteita, vaikuttaa immuunijärjestelmän kypsymiseen, aivojen kehittymiseen ja suojaa elimistöä haitallisten taudinaiheuttajien kolonisaatiolta.

Terve ja tasapainoinen mikrobiomi ylläpitää elimistön terveyttä, koska se vie elintilaa haitallisilta patogeeneiltä.

Mikrobiomin merkitys terveydelle

Mikrobiomin merkitys hyvinvoinnille tarkentuu koko ajan, mutta tutkimusta hankaloittaa se, että eräät mikrobit eivät elä suoliston ulkopuolella. Tällaisten mikro-organismien tutkiminen laboratorio-oloissa on nykymenetelmillä haastavaa tai mahdotonta.

Suoliston epänormaali mikrobiomirakenne ja toiminta (dysbiosis) on yhdistetty moniin sairauksiin. Dysbiosis voi vaikuttaa kroonisen suolistotulehduksen, syöpien sekä eräiden metabolisten ja psykiatristen oireyhtymien syntyyn.

Suolistoflooran monipolinen koostumus ja tasapainoinen ekosysteemi edistävät terveyttä. Yksipuolinen mikrobiomi voi heikentää immuunijärjestelmän ja aineenvaihdunnan toimintaa sekä aiheuttaa neurologisia muutoksia keskushermostossa.

Vielä ei kuitenkaan täysin ymmärretä, kuinka monin tavoin yksittäiset mikrobit tai mikrobipopulaatiot voivat vaikuttaa suoliston ekosysteemin hyvinvointiin, tai kuinka monin tavoin mikrobiomi vaikuttaa ihmisen yleisterveyteen ja sairastuvuuteen.

Yksipuolinen ravinto, alkoholi ja monet lääkkeet voivat heikentää suoliston mikrobikantaa. Esimerkiksi antibiootit tappavat bakteerien ohella myös suoliston hyödyllisiä mikrobeja. Jos jokin mikrobilaji tuhoutuu suolistosta, sen tilan täyttää nopeasti jokin muu bakteerikanta. Tämä vaikuttaa mikrobiomin tasapainoon ja toimintaan.  

Mikrobiomin vaikutukset keskushermostossa

Mikrobiomi vaikuttaa keskushermostoon mm. muokkaamalla signaalireittejä aivo-suolisto-akselilla. Tämä on kaksisuuntainen kommunikaatioverkko keskushermoston, ääreishermoston, autonomisen hermoston ja suoliston mikrobiomin välillä.

Neuraalisten, hormonaalisten ja immuunijärjestelmää säätelevien viestien kaksisuuntainen liikenne säätelee mm. eritys-, tunto-, ja liiketoimintoja ruoansulatuselimistössä.

Keskushermostossa mikrobiomi vaikuttaa makrofageja sisältävän kudokseen sekä aivojen toimintaan vuorovaikuttamalla keskushermoston immuuniaktiivisuuteen.

Immuuniaktiivisuus saa makrofagit erittämään tulehdusvälittäjäaineita eli sytokiinejä. Tämä voi vaikuttaa keskushermoston tapahtumiin esimerkiksi vagus-hermon kautta.

Vagus-hermo välittää tietoa ruoansulatuselimistön tapahtumista aivoille. Sen lisäksi se toimii välittäjänä mikrobiomin ja aivojen välillä. Tätä vaikutusmekanismia ei täysin tunneta.

HPA

HPA (hypotalamic-pituitary-adrenal) toimii välittäjänä mikrobiomin ja aivolisäkkeen tai hypotalamuksen välillä. HPA-akselin kautta hypotalamus ohjaa fysiologisia toimintoja.

HPA:n toimintahäiriö on mahdollisesti syynä joihinkin psykiatrisiin sairauksiin, kuten masennukseen sekä suoliston toimintahäiriöihin, kuten ärtyneen suolen oireyhtymään.

Hermovälittäjäaineet

Suoliston mikrobit vaikuttavat mahdollisesti keskushermoston toimintaan myös tuottamalla aineenvaihduntatuotteina eräitä hermoston välittäjäaineita tai niiden esiasteita.

Välittäjäaineet vaikuttavat aivojen toimintaan ja mielenterveyteen. Esimerkiksi Lactobacillus ja Bifidobacterium erittävät GABAa, aivojen tärkeää välittäjäainetta. On tosin epäselvää missä määrin suolistobakteerien erittämät hermovälittäjäaineet pääsevät keskushermostoon veri-aivoesteen läpi.

Mikrobiomi vaikuttaa myös hermovälittäjäaineiden esiasteiden, kuten tryptofaanin aineenvaihduntaan. Tryptofaani on mm. serotoniinin ja kynureniinireitin metaboliittien esiaste. Kynureiinireitti vaikuttaa keskushermostoon esimerkiksi nikotiinireseptoreina, joten tällä on todennäköisesti vaikutus psykiatrisissa ja neurologisissa sairauksissa.

MS-taudissa suoliston mikrobit vaikuttavat neurologisiin oireisiin

Tohtori Sergio Baranzinin johtaman tutkimuksen tavoitteena oli tutkia eräiden mikrobiomin bakteerikantojen merkitystä immuunijärjestelmälle. PNAS on julkaissut tutkimuksen havainnot.

Tutkimukseen osallistunut tri Egle Cekanaviciute kertoo, että tutkimuksessa haluttiin löytää muutakin kuin korrelaatio MS-taudin ja tietyn suoliston bakteerikannan esiintymisen välillä.

”A lot of microbiome studies say, ’These bacteria are increased in patients with a disease, and those bacteria are reduced.’ And then they stop. We wanted to know more: should we care about the ones that are increased because they are harmful or the ones that are decreased because perhaps they are helpful?” ­Dr. Egle Cekanaviciute

Suoliston mikrobiomi ja immuunijärjestelmä kommunikoivat keskenään

Osana tutkimusta suoliston mikrobiomi analysoitiin 171 MS-tautiin sairastuneelta ja 71 terveeltä kontrollihenkilöltä.

Tutkimuksessa sairastuneiden ja terveiden suolistoflooranäytteistä verrattiin bakteerikantojen selviä eroja; toisin sanoen niitä mikrobikantoja, jotka olivat selvästi yleisempiä ja harvinaisempia MS-tautiin sairastuneilla kuin terveillä kontrollihenkilöillä.

Näytteiden analyysin jälkeen tutkimusta jatkettiin koeputkikokeilla, joissa pyrittiin tunnistamaan poikkeavien bakteerikantojen spesifinen merkitys elimistölle.

Laboratoriokokeissa havaittiin, että bakteerit vuorovaikuttavat immuunijärjestelmän solujen kanssa

Koeputkikokeiden perusteella mikrobit voitiin luokitella tulehduksia hillitseviksi ja tulehduksia aiheuttaviksi. Kokeissa ilmeni, että MS-tautia sairastavien mikrobiomissa yleiset Akkermansia muciniphila ja Acinetobacter calceoaceticus olivat tulehduksia aiheuttavia mikrobeja.

Sen sijaan MS-tautia sairastavien suolistofloorassa oli kontrollihenkilöiden näytteisiin verrattuna poikkeuksellisen vähän Parabacteroides distasonis -mikrobeja, joilla on immuunivastetta hillitsevä vaikutus.

Laboratoriokokeiden tulokset varmennettiin hiirikokeilla

Hiirikokeissa saatiin samanlaisia tuloksia kuin in vitro laboratoriokokeissa: A. muciniphila ja A. calcoaceticus stimuloivat immuunijärjestelmän tulehdusvastetta, kun P. distasonis vaikutti tulehdusta hillitsevästi.

Seuraavaksi tutkijat osoittivat MS-potilaille spesifin mikrobiomin vaikutuksen neurologisten vaurioiden syntyprosessissa. Kokeessa MS-tautia vastaavaa EAE:ta (Experimental Autoimmune Encephalomyelitis) sairastavien hiirien ulostetta siirrettiin terveille hiirille.

Koe todisti, että MS-spesifin mikrobiomin siirto terveille hiirille vähensi koehiirten immuunijärjestelmää sääteleviä soluja (immune-regulatory cells) ja lisäsi neurologisia vaurioita. Tutkijoiden mukaan koe löysi kausaalisen suhteen suoliston mikrobiomin ja neurologisten oireiden pahenemisen väliltä.

”This is the first study in MS,” explained Dr. Baranzini, ”that provides mechanistic (in vitro and in vivo) information on microbiota differences. One limitation is that the [RNA] sequencing is only at 16S resolution, thus we cannot identify every bacteria. Also, larger studies are needed to evaluate heterogeneity and eliminate confounders.”

Tulevissa tutkimuksissa on tärkeää osoittaa suoliston mikrobien ja immuunijärjestelmän solujen välinen vuorovaikutus.

As Dr. Cekanaviciute told us, ”[A]lthough we have shown that immune cells respond to different bacteria by becoming either more pro-inflammatory or more regulatory, we don’t know exactly how the bacteria interact with the immune cells.”

Max Planck instituutissa tehdyn verrannollisen tutkimuksen tulokset tukevat Baranzinin tutkimusryhmän tuloksia

Baranzinin tutkimusryhmän löydöt viitoittavat tietä kohti parempia hoitoja MS-tautiin. Tutkijat painottavat kuitenkin, että he eivät usko suoliston mikrobiomia MS-taudin ainoaksi syylliseksi, vaikka pitävät sitä merkittävänä tekijänä taudin etenemisessä.

PNAS on julkaissut Baranzinin ryhmän tekemiä löytöjä tukevan Max Planck -instituutin vastavan tutkimuksen. Tämä toinen tutkimus osoitti, että MS-spesifin mikrobiomin siirre kiihdytti neurologisia oireita hiirillä, joille tauti oli indusoitu.

”Two different groups, using two separate cohorts of patients and controls, and two distinct mouse models of the disease, saw very similar results. This is very promising evidence that we’re on the right track,” explains Dr. Cekanaviciute.

Huomionarvoista on, että kaksi erillistä tutkimusryhmää, jotka käyttivät tutkimuksissa eri kohortteja (MS-potilaat ja kontrollihenkilöt) sekä kahta erillistä MS-taudin hiirimallia (EAE), saivat hyvin samanlaisia tuloksia.

”Selvyyden vuoksi, emme usko, että mikrobiomi on MS-taudin ainoa laukaisija. Näyttää kuitenkin siltä, että mikrobiomissa on mikrobeja, jotka voivat hidastaa tai nopeuttaa taudin oireiden etenemistä. Suoliston spesifi mikrobiomi saattaa toimia MS-taudin laukaisijana henkilöillä, joilla on geneettinen alttius sairastua ja toisaalta terve mikrobiomi voi suojata geneettisen alttiuden omaavia ja estää sairastumisen,” tri Cekanaviciute sanoo.

Baranzini toivoo, että tämän ja tulevien tutkimuksen löydöt auttavat kehittämään tehokkaampia hoitoja MS-tautiin. Hänen mukaansa on mahdollista, että lähitulevaisuudessa yhtenä hoitomuotona käytetään ulostesiirteitä terveiltä henkilöiltä. Voidaan hyvin spekuloida, että terveen ihmisen mikrobiomi hidastaa MS-taudin oireita tai pysäyttää taudin etenemisen täysin, Baranzini sanoo.

”The microbiome is very malleable. You could relatively easily change it in an adult who has MS or is susceptible – something you cannot do with their genetics. This is not a magical approach, but it is hopeful,” he says.

Ulosteensiirto hoitona: ”bugs are better than drugs”

Mikrobiomin tasapaino voi järkkyä esimerkiksi sairauden seurauksena. Tätä voidaan käyttää hyväksi tautien diagnostiikassa ja hoitojen suunnittelussa. Ulosteensiirto esimerkiksi perheenjäseneltä tai muulta terveeltä henkilöltä voi osoittautua tehokkaaksi hoitokeinoksi monissa sairauksissa.

Ulosteensiirron on osoitettu olevan erityisen tehokas Clostridium difficile -infektion hoidossa. Hollannissa tehdyissä tutkimuksissa osoitettiin vertailemalla vankomysiinihoitoa, vankomysiiniä yhdistettynä suolentyjennyksen sekä suolentyhjennystä yhdistettynä ulosteensiirtoon, että jälkimmäinen yhdistelmä oli ainoa, joka tehosi suurimpaan osaan C. difficile -infektiota sairastavista potilaista. Seurantatutkimuksessa todettiin, että potilaille oli osittain palautunut C. difficile -infektion aikaista bakteerikasvustoa, mutta tämän lisäksi heille oli kehittynyt terveen flooran tapainen mikrobien verkosto, joka säilyi useita kuukausia siirron jälkeen, joten ”bugs are better than drugs”.

Ulosteensiirtojen positiiviset vaikutukset ovat merkittävin osoitus suoliston mikrobiomin vaikutuksesta paitsi suolistotauteihin, myös eräisiin yleistauteihin, kuten tyypin 2 diabetekseen, jossa suoliston mikrobien tuottama pitkien rasvaketjujen pilkkomiseen tarvittava GABA on merkittävästi vähentynyt. Lähitulevaisuudessa mikrobiomisiirteet saattavat olla osa normaalia sairaudenhoitoa.

Lähteet:     

Medical News Today

Maiju Varis: Mikrobiomi, sen toiminta ja vaikutukset elimistöön

Duodecim: Suoliston mikrobit hyvässä ja pahassa – 130 vuotta Theodor  Escherichin jälkeen

 




Viisi huomiota lihavuudesta

Miksi joillakin ihmisillä on taipumusta lihavuuteen. Entä kuinka elintapamme vaikuttavat lastemme geeneihin? Viisi huomiota lihavuudesta perustuu Medical News Today-lehdessä julkaistuun artikkeliin.

Perinteisesti lihavuudella tarkoitetaan ylimääräisiä painokiloja sekä erityisesti kehon rasvasoluihin varastoitunutta ylimääräistä rasvaa. Yleisenä faktana pidetään sitä, että elimistö varastoi energiaa rasvasoluihin silloin, kun energian saanti kilokaloreina on suurempaa kuin sen kulutus. Tämä on tuttu ja turvallinen selitys.

Kalori on vanha energian mittayksikkö. Kalori on lämpömäärä, joka kasvattaa yhden 14,5 asteisen vesigramman lämpötilaa asteella normaalipaineessa. Ravinnosta puhuttaessa käytetään usein virheellisesti kaloria, vaikka oikeasti pitäisi puhua kilokaloreista (1 kcal on 1000 cal).

Ylipaino ja lihavuus lisääntyvät kaikkialla maailmassa, mutta tutkijat eivät vieläkään täysin ymmärrä mistä tämä ilmiö johtuu. Löydetäänkö lihomisen perimmäiset syyt perimästämme vai ovatko ihmiset vain entistä laiskempia liikkumaan ja innokkaampia ahmimaan? Painonsa kanssa kamppailee yli kaksi miljardia ihmistä ympäri maailman, joten ongelma on merkittävä.

Mitä perusteellisemmin lihavuuteen vaikuttavia syitä tutkitaan, sitä varmemmalta näyttää, että perinteinen kaloriteoria ei kerro koko totuutta lihavuuden syistä.

Lihavuuden haitalliset vaikutukset terveydelle tunnetaan hyvin, mutta jotkin lihavuuteen liittyvät tutkimustiedot voivat olla yllättäviä.

Yhdysvalloissa useampi kuin yksi kolmesta aikuisesta on lihava ja lasten lihavuus on kymmenkertaistunut 1970-luvun jälkeen.

Viisi huomiota lihavuudesta

1. Lihominen tapahtuu huomaamatta

Lihominen on huomaamatonta ja painoa kertyy hitaasti tavallisesti useiden vuosien aikana. Professori Claude Bouchard (Human Genomics Laboratory at Pennington Biomedical Research Center, Baton Rouge, LA) kuvaa ilmiötä Nature Reviews Genetics-lehdessä.

Yleensä ylipaino ja lihavuus kehittyvät useiden vuosien aikana. Painoa voi kertyä 1-2 kg vuodessa 15-25 vuoden ajan yksilöstä riippuen. Vuosittainen painonnousu on huomaamatonta etenkin, jos sen jakaa 365 päivälle.

Tämä vaikeuttaa lihomista aiheuttavien syiden osoittamista yksittäisillä ihmisillä. Vaikuttaa siltä, että lihavuuteen vaikuttavat sekä ympäristö että ravinto.

Lihomiselle altistavia tekijöitä kutsutaan obesogeneettiseksi potentiaaliksi. Monet yksittäiset tekijät kasvattavat obesogeneettistä potentiaalia. Tällaisia ovat liiallinen syöminen, ravintovalinnat ja vähäinen liikunta. Nämä tekijät ovat yleensä sidoksissa sosiaaliseen elämään ja elinympäristöön.

Kiinnostavaa uusissa tutkimushavainnoissa on se, että: sama ravinnon sisältämä energiamäärä kilokaloreina ja saman verran fyysistä liikuntaa voivat vaikuttavat eri ihmisillä eri tavoin. Professori Bouchardin mukaan tähän vaikuttavat erilaisten obesogeneettisten potentiaalien kokonaisuus.

Ravinnolla on lihomisen kannalta merkittävä rooli, mutta jopa 70 % kehonpainoon vaikuttavista muuttujista johtuu geneettisistä tekijöistä, kertoi Professori Alfredo Martinez (Center of Nutrition Research at the University of Navarra, Pamplona, Espanja) Nature Reviews Disease Primers-lehdelle.

2. Geenit vaikuttavat lihomiseen

Osa ihmisistä on lihavia geenimuutosten vuoksi. Yhdellä kahdestakymmenestä sairaalloisen lihavasta lihominen alkaa jo lapsuusaikana melanokortiini 4 reseptoreita koodaavassa geenissä tapahtuneiden mutaatioiden seurauksena.

”Melanokortiini 4 reseptori -geenimuutos näyttää liittyvän lihavilla ihmisillä selvästi ahmimishäiriöön. Sveitsiläistutkijat totesivat, että kaikki tätä geenimuutosta kantavat erittäin lihavat potilaat kärsivät ahmimishäiriöstä. Melanokortiini 4 reseptorin geenimuutosta on kahden tuoreen tutkimuksen mukaan runsaalla viidellä prosentilla lihavista ihmisistä. Geenimuunnos vaikuttaa ruokahalun sääntelyyn aivojen hypotalamuksessa.” – Duodecim

Rasvakudoksen kokonaismäärään ja lihomiseen vaikuttavat geenit ovat esiintymiseltään kuitenkin melko harvinaisia, joten mistä maailmanlaajuinen lihavuusepidemia johtuu?

Joidenkin tutkijoiden mukaan lihomisen alttiutta lisääviä geenejä on suuri joukko; ne aiheuttavat lihomista yhdessä elintapojen kanssa. Yksittäinen geeni lisää lihomisen riskiä hieman, mutta useat geenit yhdessä elintapojen ja muiden ympäristömuuttujien kanssa kasvattavat lihomisen riskiä merkittävästi.

Professori Bouchard löysi 118 tällaista lihomiselle altistavaa geenimuutosta laajassa geneettisten tutkimusten meta-analyysissä.

Professori Vann Bennettin (Professor of biochemistry at Duke University School of Medicine, Durham, NC) johtama tutkimus osoittaa syyttävällä sormella ankyrin-B -nimistä geeniä. Proceedings of the National Academy of Sciences-lehdessä julkaistussa tutkimuksessa havaittiin, että muutokset ankyrin-B-geenissä lisäsivät merkittävästi glukoosin kulkua rasvasoluihin.

”We found that mice [with the mutated gene] can become obese without eating more, and that there is an underlying cellular mechanism to explain that weight gain,” Prof. Bennett explains. ”We call it fault-free obesity.”

Jyrsijöillä saatujen tutkimustulosten merkitys ihmisten lihomista selittävänä tekijänä jää nähtäväksi. Varmaa on, että yleensä kilot kertyvät huomaamattomasti ja lihominen on ainakin osittain geenimuutosten syytä. Lihavuudella on suoria vaikutuksia myös seuraavaan sukupolveen.

3. Äidin lihavuus lisää lapsen synnynnäisten epämuodostumien riskiä

Karkeasti puolet odottavista äideistä Yhdysvalloissa ovat ylipainoisia tai lihavia, kertoo Tri Martina Persson (Department of Medicine at the Karolinska Institute, Tukholma, Ruotsi) BMJ-lehden artikkelissa.

Karoliinisen instituutin tutkimuksessa seurattiin yli miljoonan lapsen syntymää Ruotsissa vuosien 2001 ja 2014 välisenä aikana. Huomattavien syntymävammojen ja epämuodostumien riski oli 3,5 %. Lapsen synnynnäisten vammojen riski kasvoi kuitenkin merkittävästi ylipainoisilla ja lihavilla äideillä.

”This large population-based study found that overall risks of major congenital malformations and risks of several organ-specific groups of malformations progressively increase with maternal overweight and severity of obesity.” – Dr. Martina Persson

Äideillä, joiden painoindeksi (BMI) oli suurempi kuin 35, riski syntyvän lapsen epämuodostumille oli 23 % suurempi kuin normaalipainoisilla äideillä. Äideillä, joiden painoindeksi oli yli 40, riski lasten epämuodostumista oli 37 % korkeampi kuin normaalipainoisilla äideillä.

4. Isot äidit saavat isoja vauvoja

Sen lisäksi, että lihavien äitien lapsilla on suurempi synnynnäisten epämuodostumien riski, lapset myös syntyvät usein isokokoisina (makrosomia).

Makrosomia: Sikiötä pidetään poikkeavan kookkaana, jos sen paino ylittää täysiaikaisessa raskaudessa 4 500 grammaa. Määritelmiä on muitakin, ja sikiön koon merkitystä arvioitaessa pitäisi aina ottaa huomioon myös äidin koko. – – – Raskausdiabeteksen merkittävin seuraus on sikiön makrosomia. Sikiön liian suuri koko liittyy myös naisen ylipainoon raskauden alkaessa ja runsaaseen painonnousuun raskauden aikana, vaikka naiselle ei kehity raskausdiabetesta. – Duodecim

Makrosomia lisää syntyvän vauvan luunmurtumien ja synnyttävän äidin runsaan verenvuodon riskiä. Usein isot vauvat syntyvät keisarinleikkauksella.

Tohtori Cuilin Zhang (Eunice Kennedy Shriver National Institute of Child Health and Human Development in Bethesda, MD) johti tutkimusta, jossa selviteltiin makrosomiaan vaikuttavia syitä. Tutkimus on julkaistu JAMA Pediatrics-lehdessä.

Zhangin utkimusryhmä havaitsi, että lihavien äitien lapsille kehittyi pidemmät luut ja suuremmat päät, kuin normaalipainoisten äitien lapsille. Erot sikiöiden kehityksessä havaittiin ultraäänikokeissa jo raskauden 21. viikolta alkaen. 32. raskausviikolta alkaen oli havaittavissa, että myös lasten vatsat olivat suuremmat, kuin normaalipainoisten äitien lapsilla.

Mistä tällaiset erot johtuvat? Cuilin Zhang kertoo, että tutkimusryhmän teorian mukaan lihavat äidit ovat usein insuliiniresistenttejä. Tämä vaikuttaa sikiön ravinnonsaantiin ja kasvuun. Äidin paino raskauden aikana ei vaikuta pelkästään lapsen sikiöaikaiseen kasvuun, vaan jättää lapseen elinikäisen jäljen.

5. Lihavuuden perintö

Äidin painolla ja ruokavaliolla raskauden ja imetyksen aikana on pysyvät vaikutukset lapsen kehitykselle.

Professori Martinezin mukaan raskaudenaikainen lihominen etenkin raskauden ensimmäisten 20 viikon aikana, lisää syntyvän lapsen ylipainoisuuden riskiä.

Ilmiö palautuu sikiöaikaiseen aineenvaihduntaan, joka vaikuttaa pysyvästi lapsen geeneihin. Tällaiset epigeneettiset muutokset vaikuttavat siihen, kuinka tietyt geenit toimivat.

Yleensä ympäristötekijät, kuten sikiöaikainen aineenvaihduntaympäristö, vaikuttavat joihinkin geeneihin yksittäisten nukleotidien polymorfismeina. Niissä geenin yksittäisten nukleotidin päälle on liittynyt geenin luentaan vaikuttava merkki – metyyliryhmä, joka voi kytkeä geenin ”luennan” pois päältä.

Esimerkiksi MS-taudissa ja tyypin 1 diabeteksessa tällaisia yhden nukleotidin polymorfismeja on löydetty 1-alfa-hydroksylaasia tuottavan geenin CYP27B1 eri lokaatioista. Molemmissa taudeissa yhden nukleotidin poikkeamat geenissä ovat todennäköisesti seurausta matalista sikiöaikaisista D-vitamiinitasoista. Vaikka muutos on sikiöaikainen, se vaikuttaa alttiuteen sairastua ja säilyy geenissä yksilön koko elämän. Tällaiset epigeneettiset muutokset periytyvät solusukupolvelta seuraavalle, mutta eivät yleensä yksilösukupolvelta seuraavalle.

Toisaalta äidin imetyksen aikainen ravinto voi aiheuttaa vastaavanlaisia epigeneettisiä muutoksia lapsen insuliininsäätelyä ohjaavissa geeneissä ja altistaa lapsen myöhemmin elämässä insuliiniherkkyyden alenemiselle ja insuliiniresistenssille, kertoo professori Mark H. Vickers (Liggins Institute at the University of Auckland, New Zealand) Frontiers in Endocinology-lehdessä.

Mutta myös lapsen isän hedelmöitystä edeltävillä elintavoilla on vaikutusta hedelmöittyneen lapsen lihomisalttiudelle. Eräät epigeneettiset muutokset voivat nimittäin periytyä siittiöiden kautta tulevalle lapselle.

Alkuperäinen artikkeli: Yella Hewings-Martin (PhD) – Medical News Today