Sokeriaineenvaihdunta: Fruktolyysi ja glykolyysi

Hiljattain joukko amerikkalaisia professoreita määritteli sokerin terveydelle haitallisimmaksi ravintoaineeksi.  Sokerin terveydelliset vaikutukset palautuvat erityisesti glukoosin ja fruktoosin aineenvaihduntaan. Kuinka glykolyysi ja fruktolyysi eroavat toisistaan?

Sokereiden aineenvaihdunta

Ravinto sisältää useita sokereita erilaisina molekyylirakenteina. Niiden pilkkominen imeytyvään muotoon alkaa jo suussa. Yleisimmät ravinnosta saatavat sokerit ovat, glukoosi, fruktoosi, laktoosi, galaktoosi ja maltoosi.

Kasvien sisältämä tärkkelys on sokerin varastomuoto. Tärkkelys on monimutkainen glukoosiyksiköistä muodostuva haarautumaton amyloosi tai haarautunut amylopektiini. Se on polysakkaridi, jossa glukoosimonomeerit ovat liittyneet toisiinsa. Kasvit valmistavat tärkkelystä fotosynteesissä. Erityisen tärkkelyspitoisia ravintoaineita ovat esimerkiksi perunat, maissi ja riisi.

Solujen energiantuotannon kannalta glukoosi ja fruktoosi ovat tärkeimpiä sokereita. Niilläkin on omat aineenvaihduntapolkunsa.

Sokereita kuljettavat molekyylit

Glukoosimolekyylejä kuljettavat ohutsuolesta verenkiertoon insuliinin säätelemät GLUT1- ja GLUT4-molekyylit. Fruktoosi ei aktivoi insuliinintuotantoa ja sitä  kuljettavat GLUT5-molekyylit.

Käytännössä GLUT1-molekyyli kuljettaa glukoosimolekyylin ohutsuolen endoteelisoluun ja GLUT4-molekyyli kuljettaa glukoosimolekyylin endoteelisolusta verenkiertoon.

Fruktoosimolekyyli kulkeutuu ohutsuolesta endoteelisoluun GLUT5-molekyylin kuljettamana ja endoteelisolusta verenkiertoon GLUT2-molekyylin kuljettamana.

Sokereita pilkkovat entsyymit

Ruoansulatuskanavassa sokereita pilkkoo joukko entsyymejä, joista tärkkelystä maltoosiksi pilkkova amylaasi on ehkä tutuin. Amylaasi aloittaa tärkkelyksen pilkkomisen jo suussa, johon amylaasia erittyy sylkirauhasista.  Sokereiden pilkkominen imeytyvään muotoon jatkuu vatsassa ja suolistossa. Haima erittää amylaasia ohutsuoleen.

Maltoosi on kahdesta glukoosimolekyylistä muodostuva disakkaridi. Ruoansulatuskanavassa maltoosia pilkkoo suolinesteen maltaasi-entsyymi. Laktoosi eli maitosokeri koostuu glukoosista ja galaktoosista. Laktoosia pilkkoo laktaasi. Sakkaroosi muodostuu fruktoosista ja glukoosista. Sakkaroosia pilkkoo sakkaraasi.

Ruoansulatuskanavassa sokerit pilkotaan yksinkertaisiksi sokerimolekyyleiksi, jotka kulkeutuvat ohutsuolesta verenkertoon sokereille spesifien kuljetusmolekyylien kuljettamina. Sokereiden aineenvaihduntareitit poikkeavat toisistaan.

Esimerkiksi: Aldoosi-1-epimeraasi (GALM) muuttaa β-D-galaktoosin ensin α-D-galaktoosiksi. Tämä muutetaan edelleen UDP-glukoosiksi kolmen pääasiallisen entsyymin avulla (GALK, GALT ja GALE). UDP-glukoosi (uracil-diphosphate glucose) on nukleotidin, eli nukleiinihappojen (DNA, RNA) rakenneyksikön sokeriosa. Nukleotidiin kuuluu kolme osaa, emäs, sokeriosa ja fosfaatti. Galaktoosi vaikuttaa siis nukleiinihappojen aineenvaihduntaan ja rakenteeseen.

Pöytäsokeri on fruktoosia ja glukoosia

Tavallinen pöytäsokeri on ruokosokeria eli sakkaroosia, joka muodostuu yhtäläisestä määrästä glukoosia ja fruktoosia. Sakkaroosi on disakkaridi, jossa kaksi erilaista sokerimolekyyliä on tiukasti sitoutunut toisiinsa.

Glukoosi (rypälesokeri) on elimistön tärkein energianlähde. Glukoosi on yhdestä sokerimolekyylistä muodostuva monosakkaridi. Myös glukoosia selvästi makeampi fruktoosi (hedelmäsokeri) on yhdestä sokerimolekyylistä muodostuva monosakkaridi.

Kasveissa sakkaroosi on yleinen. Sitä on paljon esimerkiksi sokeriruo’ossa, sokerijuurikkaassa, ananaksessa, maississa ja porkkanassa.

Ruoansulatus pilkkoo hiilihydraateista ja tärkkelyksestä yksinkertaisia ohutsuolesta verenkiertoon imeytyviä sokerimolekyylejä. Glukoosi ja fruktoosi ovat yleisimmät ravinnosta saatavat sokerit, mutta ne eivät toimi elimistössä aivan samalla tavalla. Näiden sokereiden reaktioketjut eroavat aineenvaihdunnan kannalta merkittävästi toisistaan.

Fruktoosi ja fruktolyysi

Fruktoosi

Fruktoosi on yhdestä fruktoosimolekyylistä muodostuva monosakkaridi, jota esiintyy luonnostaan hedelmissä, marjoissa ja vihanneksissa joko vapaina fruktoosimolekyyleinä, kahdesta sokerimolekyylistä muodostuvina disakkarideina (kuten ruokosokeri) tai fruktoosin polymeerina (inuliini).

Inuliini on fruktoosista muodostunut varastopolysakkaridi, jossa on 30-50 fruktoosimolekyyliä. Inuliinia esiintyy mm. maa-artisokassa, sipulissa, parsassa, banaanissa, rukiissa, vehnässä, mustajuuressa, ohrassa sekä asterikasvien, kuten daalian, voikukan ja sikurin juurissa ja juurimukuloissa. Inuliinia käytetään elintarviketeollisuudessa makeutusaineena. Se sisältää noin kolmanneksen vastaavan sokerimäärän energiasta.

Teollinen fruktoosi

Fruktoosi on makeampaa kuin glukoosi, joten sitä käytetään yleisesti makeutusaineena. Tavallinen kidesokeri sisältää 50:50 suhteessa glukoosia ja fruktoosia. Fruktoosia saa runsaasti mm. hedelmistä ja marjoista. Teollisesti valmistettua fruktoosia ja fruktoosisiirappia käytetään yhä useammissa elintarvikkeissa.

Edullinen nestemäinen fruktoosisiirappi on syrjäyttämässä perinteisen sakkaroosin yleisimpänä makeutusaineena. Amerikkalaisessa ruokavaliossa päivittäisestä energiansaannista jopa 10 % saadaan fruktoosista. Jos suomalaisen päivittäisestä energiansaannista 10% on peräisin lisätystä sokerista, silloin fruktoosin osuus energiansaannista voi olla jopa 5 %.

Teollinen fruktoosi korreloi vahvasti monien kardiometabolisten sairauksien kanssa. Tätä selittää todennäköisesti fruktoosin glukoosista poikkeava aineenvaihdunta. Erityisen ongelmallista on fruktoosisiirapista nopeasti elimistöön imeytyvät vapaat fruktoosimolekyylit, jotka voivat horjuttaa sokeriaineenvaihdunnan toimintaa, rasittaa maksaa ja altistaa esimerkiksi alkoholista riippumattomalle rasvamaksalle.

Huomio: Korrelaatio fruktoosisiirapin ja kardiometabolisten sairauksien välillä on vahva, mutta kausaliteettia ei välttämättä ole osoitettu.

Fruktolyysi

Fruktoosin aineenvaihdunta tapahtuu pääasiassa maksassa. Maksan lisäksi fruktolyysiä tapahtuu jonkin verran ohutsuolessa, luurankolihaksissa, kiveksissä, rasvakudoksessa ja aivoissa.

Noin prosentti syödystä fruktoosista muutetaan maksassa suoraan plasman triglyserideiksi. 29-54% fruktoosista syntetisoidaan maksassa glukoosiksi. Neljännes fruktoosista muutetaan laktaatiksi eli maitohapon suoloiksi tai estereiksi. 15-18% fruktoosista syntetisoiduista glykoosimolekyyleistä varastoidaan glykogeenien polymerisaatiossa polysakkarideina glykogeeneiksi.

Glykogeenit ovat tuhansista glukoosimolekyyleistä muodostavia pitkäketjuisia ja pitkähaaraisia polysakkarideja.

Glykogeenien polymerisaatio

Glykogeenin polymerisaation lähtöaineina toimivat sokeri-nukleotidit, joissa sokerimonomeeri on aktivoitu kiinnittämällä siihen nukleotidi. Glykogeenin polymerisaatiossa vaikuttavat glykogeenisyntaasi, joka liittää glukoosimolekyylejä pitkään ketjuun sekä entsyymi, joka tekee glykogeeniin haarakohtia. Koska glykogeenisyntaasi voi vain lisätä glukoosimolekyylejä valmiiseen ketjuun, tarvitaan oma entsyymi aloittamaan glykogeenin valmistus (glykogeniini). Lähde: Solunetti

Kehon solut voivat käyttää fruktolyysin syntetisoimaa glukoosia ja laktaattia energianlähteenä solujen glykolyysissä. Aineenvaihdunta voi myös purkaa maksaan ja lihassoluihin varastoituneita fruktoosista valmistettuja glykogeenejä glukagonin stimuloimana glykogenolyysissä, jolloin vereen vapautuu glukoosia. Tämä mekanismi turvaa solujen energiansaannin ruokailujen välillä sekä raskaissa fyysisissä suorituksissa.

Alhainen verensokeri aktivoi haiman erittämään glukagonia, joka purkaa maksan ja lihasten glykogeenejä glukoosiksi. Glukagoni aktivoi myös maksassa ja munuaisissa tapahtuvaa glukoneogeneesiä, ketogeneesiä sekä rasvojen β-oksidaatiota. Matala verensokeri aktivoi rasvan käyttämistä energianlähteenä.

Glykolyysi

Kaikki solut saavat energiaa glukoosista. Solu saa energiantuotantoon tarvittavan glukoosin joko solun ulkopuolelta, josta se kulkeutuu soluun osmoottisesti eli suuremmasta pitoisuudesta pienempään, tai purkamalla solun sisäisen glykogeenin glukoosimolekyyleiksi.

Glykolyysi on solulimassa tapahtuva monimutkainen reaktiosarja, jossa glukoosimolekyylit hajotetaan kahdeksi palorypälehapon anionimuodoksi eli pyruvaatiksi.

Yhdestä glukoosimolekyylistä saadaan kahden pyruvaattimolekyylin lisäksi kaksi ATP-molekyyliä ja kaksi NADH-molekyyliä. Solujen anaerobinen energiansaanti perustuu glykolyysiin.

Soluhengitys

Jos solussa on mitokondrioita ja happea, energiantuotanto jatkuu sitruunahappokierrossa (Krebsin sykli). Eräiden entsyymien avustuksella pyruvaateista saadaan mitokondrioissa tapahtuvassa oksidatiivisessa dekarboksylaatiossa kaksi asetyylikoentsyymi-A:ta.

Rasvahapot hajoavat energiaksi pääasiassa hapettumalla β-oksidaatiossa siten, että rasvahappoketjusta irtoaa kahden hiilen asetyyliryhmiä, jotka ovat kiinnittyneenä reaktioon osallistuvaan koentsyymi-A:han.

Asetyylikoentsyymi-A eli aktiivinen etikkahappo on kaikille ravintoaineille yhteinen välituote solun valmistaessa energiaa. Asetyylikoentsyymi-A:ta saadaan monosakkarideista, triglyserideista sekä aminohapoista erilaisten reaktiovaiheiden kautta. Asetyylikoentsyymi-A:n asetyyliryhmän hiilet hapettuvat hiilidioksidiksi Krebsin syklissä ja vedyt siirtyvät erityisten koentsyymien avulla elektroninsiirtoketjuun. Näissä reaktioissa syntyy energiaa, joka varastoidaan fosfaattiyhdisteisiin, esimerkiksi ATP:ksi. Lähde: Wikipedia

Anaerobinen ja aerobinen glykolyysi

Soluissa, joissa ei ole mitokondrioita (esim. veren punasolut) tai riittävästi happea, pyruvaatti pelkistyy maitohapoksi. Maitohappoon pelkistyvää glykolyysiä kutsutaan anaerobiseksi glykolyysiksi ja asetyylikoentsyymi-A:han päättyvää glykolyysiä aerobiseksi glykolyysiksi.

Asetyylikoentsyymi-A:han päättyvän reaktiossa glukoosimolekyylistä jää jäännöstuotteena hiilidioksidia ja vettä, jotka poistuvat kehosta ihon ja hengityksen kautta.

Laktaatin muodostuminen ei tuota energiaa, mutta se on välttämätöntä, jotta saadaan pelkistyneet NADH-molekyylit takaisin hapettuneeseen NAD+-muotoon, jota tarvitaan glykolyysissä.

 Glykolyysin vaiheet (Lähde: Wikipedia – Glykolyysi)

  1. Glukoosiin liitetään fosfaattiryhmä ATP:ltä heksokinaasin tai glukokinaasin avulla, jolloin syntyy glukoosi-6-fosfaattia. Heksokinaasia inhiboi glukoosi-6-fosfaatti ja glukokinaasia fruktoosi-6-fosfaatti. Lisäksi insuliini aktivoi glukokinaasin transkriptiota tumassa.
  2. Glukoosi-6-fosfaatti muutetaan fosfoheksoosi-isomeraasin avulla fruktoosi-6-fosfaatiksi.
  3. Fruktoosi-6-fosfaatti fosforyloidaan ATP:n avulla fruktoosi-1,6-bisfosfaatiksi. Tätä reaktiota katalysoi fosfofruktokinaasi-1 eli PFK-1. PFK-1:tä inhiboi ATP, sitraatti ja H+. Aktivoivia molekyylejä ovat puolestaan AMP ja fruktoosi-2,6-bisfosfaatti.
  4. Fruktoosi-1,6-bisfosfaatti muutetaan aldolaasi A:n:n avulla dihydroksiasetonifosfaatiksi ja glyseraldehydi-3-fosfaatiksi.
  5. Dihydroksiasetonifosfaatti muutetaan trioosifosfaatti-isomeraasin avulla glyseraldehydi-3-fosfaatiksi.
  6. Neljännen ja viidennen vaiheen reaktioista saaduista glyseraldehydi-3-fosfaateista muodostetaan glyseraldehydi-3-rosfaattidehydrogenaasin avulla 1,3-bisfosfoglyseraattia. Samalla NAD+ pelkistyy NADH:ksi.
  7. 1,3-bisfosfoglyseraatti defosforyloidaan fosfoglyseraattikinaasin avulla 3-fosfoglyseraatiksi. Samalla ADP fosforyloituu ATP:ksi.
  8. 3-fosfoglyseraatti muutetaan fosfoglyseraattimutaasin avulla 2-fosfoglyseraatiksi.
  9. 2-fosfoglyseraatti muutetaan enolaasin avulla fosfoenolipyruvaatiksi.
  10. Fosfoenolipyruvaatti defosforyloidaan pyruvaattikinaasin avulla pyruvaatiksi. Samalla ADP fosforyloituu ATP:ksi. Pyruvaattikinaasia inhiboivat ATP, alaniini ja glukagoni. Aktivoiva molekyyli on puolestaan glykolyysin kolmannessa vaiheessa muodostuva fruktoosi-1,6-bisfosfaatti.

Glukoosin ja fruktoosin aineenvaihduntaan osallistuu samoja entsyymejä ja solujen rakenteita sekä niitä yhdistäviä reaktioketjuja, mutta monista yhtäläisyyksistä huolimatta niiden aineenvaihdunta eroaa toisistaan merkittävällä tavalla.

Fruktoosi ei stimuloi insuliinin eritystä

Fruktoosi ei stimuloi insuliinin eritystä samalla tavalla kuin glukoosi, eikä sen pääsy soluihin ole insuliinista riippuvainen. Glukoosin aineenvaihdunta puolestaan tarvitsee insuliinia.

Insuliinin tuotannon loppuminen tyypin 1 diabeteksessa sekä solujen kasvanut insuliiniresistenssi tyypin 2 diabeteksessa aiheuttavat sen, että solut eivät saa energiantuotannossa tärkeää glukoosia, vaan glukoosimolekyylit jäävät verenkiertoon, jossa ne vaurioittavat verisuonia ja sisäelimiä.

Veren glukoosipitoisuus stimuloi haiman insuliinineritystä. Insuliinin säätelemät kuljetusmolekyylit (GLUT1 ja GLUT4) kuljettavat glukoosin soluihin. Fruktoosin kuljetusmolekyyli on GLUT5.

Haiman erittämä insuliini kiinnittyy solujen insuliinireseptoreihin, mikä käynnistää soluissa toisioviestintäjärjestelmän. Se houkuttelee solun sisällä olevan solukalvon läpäisevän glukoosinsiirtokanavan solukalvolle. Glukoosi pääsee tämän avulla solun sisälle, jossa glukoosimolekyyli osallistuu energiaa tuottavaan glykolyysiin.

Sokereiden rakenne

Monosakkaridit, kuten fruktoosi ja glukoosi voivat olla joko avoketjuisia tai renkaita, mutta elimistössä monosakkaridien vallitsevana muotona on rengasmainen rakenne.

Rengasmaisessa rakenteessa anomeerihiileksi kutsutaan hiiltä, joka on lähimpänä karbonyyliryhmää muodostavaa hiiltä. Karbonyyliryhmästä aloitetaan monosakkaridien hiilten numerointi. Hiiliketjun pituus monosakkaridissa voi olla kolme tai suurempi. Tärkeimpiä elimistössä esiintyviä monosakkarideja ovat heksoosit, joissa on kuuden hiiliatomin ketju.

  • Trioosi: kolme hiiliatomia
  • Totroosi: neljä hiiliatomia
  • Pentoosi: viisi hiiliatomia
  • Heksoosi: kuusi hiiliatomia
  • Heptoosi: seitsemän hiiliatomia

Karbonyyliryhmä koostuu toisiinsa kaksoissidoksella kiinnittyneistä hiili- ja happiatomeista. Esimerkkejä karbonyyliryhmän sisältävistä yhdisteistä ovat: aldehydi, ketoni, karboksyylihappo, esteri ja amidi. Karbonyyliryhmä antaa näille yhdisteille niille ominaisen kemiallisen luonteen.

Fruktolyysi ja glykolyysi ovat itsenäisiä metabolisia reaktioketjuja (metabolic pathway)

 ”Suuri osa syödystä glukoosista kulkeutuu maksan läpi luurankolihaksiin, jossa se metaboloituu glykolyysissa ja edelleen sitruunahappokierrossa ensin pyruvaateiksi ja edelleen hiilidioksidiksi (CO2), hapeksi (H2O) ja ATP-molekyyleiksi, tai rasvasoluihin, jossa glukoosimolekyyleistä metaboloidaan glyserolifosfaattia triglyseridien synteesiin ja energiantuotantoon.”

Fruktoosin aineenvaihdunta syntetisoi maksassa glykogeenejä ja de novo lipogeneesissä rasvahappoja ja triglyseridejä.

Tämä synteesi voidaan jakaa kahteen päävaiheeseen:

  1. Trioosien, dihydroksiasetonin (DHAP) ja glyseraldehydin synteesi.
  2. Toisessa vaiheessa trioosit jatkavat aineenvaihduntaa joko glukoneogeneesissä, täyttävät maksan glykogeenejä ja/tai fruktolyysin reaktioketjussa pyruvaatiksi; pyruvaatti muutetaan sitruunahappokierrossa sitraatiksi ja lopuksi de novo synteesissä vapaista rasvahapoista syntetisoidaan palmitiinihappoa.

Palmitiinihappo

Palmitiinihappo on yleisin tyydyttynyt rasvahappo sekä eräs yleisimmistä rakenneosasista eläin- ja kasvirasvoissa. Esimerkiksi ihrassa ja voissa on 25 % palmitiinihappoa. Myös ihmisen rasvasta 25 % on palmitiinihappoa. Palmitiinihapon estereitä ja suoloja kutsutaan palmitaateiksi.

Trioosit ovat kolmesta hiiliatomista muodostuvia monosakkarideja. Dihydroksiasetoni on kaksi hydroksyyliryhmää sisältävä ketoni. Glyseraldehydi on yksinkertaisin monosakkarideista. Se on makea yhdiste, jota syntyy hiilihydraattien hajoamisen seurauksena.

Fruktoosi metaboloituu DHAP:ksi ja glyseraldehydiksi

Fruktoosin aineenvaihdunnan ensimmäinen askel on fruktoosin fosforylaatio, jossa fruktokinaasi muuttaa fruktoosimolekyylin fruktoosi-1-fosfaatiksi. Tämä reaktioketju sitoo fruktoosin aineenvaihdunnan maksaan.

Maksassa esiintyy myös heksokinaasi IV-entsyymiä (Glukokinaasi), joka voi fosforyloida vähäisestä määrästä fruktoosia fruktoosi 6-fosfaattia (glukoneogneettisen reaktioketjun välivaihe). Käytännössä kaikki fruktoosimolekyylit fosforyloidaan maksassa kuitenkin fruktoosi-1-fosfaatiksi.

Kuvakaappaus: Wikipedia

Toisaalta suurin osa glukoosimolekyyleistä jää fosforyloimatta ja kulkee maksan läpi rasvakudokseen ja luurankolihaksiin insuliiniriippuvaisen glukoosinkuljetusmolekyylin (GLUT4) kuljettamana.

Fruktoosi-1-fosfaatti hydrolysoidaan fruktoosi-1fosfaatti aldolaasin (aldolaasi B) avulla dihydoksiasetonifosfaatiksi (DHAP). Dihydroksiasetonifosfaatti on orgaaninen molekyyli, joka esiintyy välituotteena monissa biokemiallisissa reaktioissa, esimerkiksi glykolyysissä. Aldolaasi eli fruktoosi-1,6-bisfosfaattialdolaasi on entsyymi, joka osallistuu glykolyysiin ja glukoneogeneesiin katalysoimalla fruktoosi-1,6-bisfosfaatin reversiibeliä hajoamista glyseraldehydi-3-fosfaatiksi tai glyseraldehydiksi ja dihydroksiasetonifosfaatiksi.

DHAP voi isomerisoitua glyseraldehydi-3-fosfaatiksi, tai glyseroli-3-fosfaatiksi. Glyseraldehydi kinaasi voi muuttaa glyseraldehydin glyseraldehydi-3-fosfaatiksi tai glyseroli-3-fosfaatiksi.

Fruktoosin aineenvaihdunnan tuottamat väliaineet voivat osallistua glukoneogeneesiin ja glykogeenin synteesiin, tai ne voidaan hapettaa pyruvaatiksi ja edelleen laktaatiksi, tai dekarboksyloida asetyylikoentsyymi-A:ksi mitokondrioissa sekä edelleen siirtää vapaiden rasvahappojen synteesiin ja lopulta triglyseridien synteesiin.

Kuva: Fruktoosin aineenvaihdunta dihydroksifosfaatiksi (DHAP), glyseraldehydiksi ja glyseraldehydi-3-fosfaatiksi maksassa.

Glykogeenin synteesi dihydroksiasetonifosfaatista ja glyseraldehydi-3-fosfaatista

Fruktoosin aineenvaihdunta jatkuu glukoneogeneesin lähtöaineista. Fruktoosista metaboloidaan aluksi dihydroksiasetonifosfaattia (DHAP) ja glyseraldehydia fruktokinaasin ja aldolaasi B:n katalysoimana.

Lisääntynyt DHAP- ja glyseraldehydi-3-fosfaatin konsentraatio maksassa ohjaa glukoneogeneesin reaktioketjun kohti glukoosi-6-fosfaattia, glukoosi-1-fosfaattia ja glykogeenin synteesiä.

Fruktoosi on parempi substraatti glykogeenin synteesille kuin glukoosi. Glykogeenivaraston täydennys on etusijalla triglyseridien synteesiin nähden. Kun maksan glykogeenivarasto on täydennetty, fruktoosin ylimääräiset aineenvaihduntatuotteet jatkavat triglyseridien synteesiin.

Kuva: Fruktoosin aineenvaihdunta glykogeeniksi maksassa

Triglyseridien synteesi dihydroksiasetonifosfaatista ja glyseraldehydi-3-fosfaatista

Ravinnosta saatu ylimääräinen fruktoosi voidaan muuttaa pyruvaatiksi ja siirtää sitruunahappokiertoon, jossa se muutetaan edelleen sitraatiksi, tai ohjata reaktiosarjaa vapaiden rasvahappojen synteesiin soluliman nestemäisessä sytosolissa. Fruktolyysin syntetisoima DHAP voidaan muuttaa glyseroliksi ja edelleen glyseroli-3-fosfaatiksi triglyseridien synteesiin de novo lipogeneesissa.

”Thus, fructose can provide trioses for both the glycerol 3-phosphate backbone, as well as the free fatty acids in TG synthesis. Indeed, fructose may provide the bulk of the carbohydrate directed toward de novo TG synthesis in humans.

Kuva: Triglyseridien synteesi maksassa

Maksassa fruktoosi aktivoi useita rasvahappojen synteesiin (lipogeneesi) osallistuvia insuliinista riippumattomia entsyymejä. Nämä ovat: pyruvate kinase, NADP+-dependent malate dehydrogenase, citrate lyase, acetyl CoA carboxylase, fatty acid synthase, pyruvate dehydrogenase.

Runsaasti teollista fruktoosia sisältävän ravinnon on havaittu altistavan hypertriglyseridemialle eli veren liialliselle triglyseridipitoisuudelle.

”The hypertriglyceridemic effects observed are a hallmark of increased dietary carbohydrate, and fructose appears to be dependent on a number of factors including the amount of dietary fructose consumed and degree of insulin resistance.”

Fruktoosin aineenvaihdunnan virheet

Fruktoosin aineenvaihduntaan vaikuttavien kahden tärkeän entsyymin puutos aiheuttaa kaksi synnynnäistä hiilihydraattien aineenvaihdunnan virhettä.

Fruktokinaasin puutos aiheuttaa essentiaalisen fruktosurian. Fruktokinaasi osallistuu reaktioketjuun, jossa fruktoosi muutetaan fruktoosi-1-fosfaatiksi. Tämän entsyymin puutoksen seurauksena fruktoosin aineenvaihdunta jää epätäydelliseksi, jolloin fruktoosia erittyy virtsaan. Fruktosuria on perinnöllinen tila, joka ei kuitenkaan aiheuta kliinisiä oireita, sillä fruktoosi voidaan metaboloida fruktoosi-6-fosfaatiksi heksokinaasin avulla esimerkiksi rasva- ja lihaskudoksissa.

Fruktoosin imeytymishäiriö ja perinnöllinen fruktoosi-intoleranssi

Fruktoosin imeytymishäiriö on ruoansulatuskanavan häiriö, jossa fruktoosin imeytyminen ohutsuolesta verenkiertoon on heikentynyt fruktoosinkuljetusmolekyylien vähäisyyden vuoksi. Imeytymishäiriön oireita ovat mm. vatsakipu, turvotus, ilmavaivat ja ripuli.

Fruktoosin imeytymishäiriö muistuttaa oireiltaan ärtyvän suolen oireyhtymää sekä laktoosi-intoleranssia.

Fruktoosin imeytymishäiriötä ei pidä sekoittaa mahdollisesti hengenvaaralliseen perinnölliseen fruktoosi-intoleranssiin, jossa maksassa fruktoosia pilkkovat entsyymit eivät toimi oikein.

Fruktoosi imeytyy ohutsuolesta ilman ruoansulatusentsyymien apua. Terveen henkilön ohutsuoli pystyy kerrallaan imeyttämään ohutsuolesta verenkiertoon 25-50 grammaa fruktoosia. Fruktoosin imeytymishäiriötä sairastavilla jo alle 25 g fruktoosiannos voi aiheuttaa vatsavaivoja. Sorbitoli voi edelleen heikentää fruktoosin imeytymistä ja lisätä vatsavaivoja. Imeytymätön fruktoosi fermentoituu suolistobakteerien vaikutuksesta ja lisää suolistokaasujen muodostumista.

Monet runsaasti fruktoosia sisältävät hedelmät, esimerkiksi omenat, päärynät, mangot ja vesimelonit, voivat aiheuttaa oireita fruktoosin imeytymishäiriötä sairastavalla. Oireita voi tulla myös runsaasti fruktoosia sisältävästä pöytäsokerista, hunajasta, maissisiirapista, rusinoista, hedelmämehuista ja fruktaaneista (FODMAP).

Fruktoosin imeytyshäiriöön ei ole parantavaa hoitoa, mutta sen aiheuttamia oireita voi välttää minimoimalla fruktoosin saannin. Myös FODMAP-ruokavalio voi auttaa oireiden helpottamisessa. Lähde: Wikipedia

Perinnöllinen fruktoosi-intoleranssi (HFI)

Perinnöllinen fruktoosi-intoleranssi (HFI) johtuu synnynnäisestä aldolaasi B-entsyymin puutoksesta. Puutoksen seurauksena sakkaroosi, fruktoosi ja sorbitoli aiheuttavat oireita synnynnäistä fruktoosi-intoleranssia sairastavilla. Aldolaasi-B entsyymin puutos johtaa fruktoosi-1-fosfaatin kerääntymiseen maksasoluihin, munuaisiin ja ohutsuoleen. Ajan mittaan tämä johtaa maksasolujen tuhoutumiseen. HFI vaikuttaa myös glukoneogeneesiin, glykogenolyysiin ja adenosiinitrifosfaatin (ATP) regeneraatioon. HFI aiheuttaa mm. pahoinvointia, oksentelua, kouristeluja, ärtyisyyttä, hypoglykemiaa, keltatautia, verenvuotoa, maksan liikakasvua sekä mahdollisesti munuaisten vajaatoimintaa. HFI voi johtaa kuolemaan, mutta se on melko harvinaista.

Kuva: Fruktolyysin ja glykolyysin aineenvaihdunta

image_pdfimage_print
Secured By miniOrange